1
|
Wu TK, Fu Q, Liotta JL, Bowman DD. Proteomic analysis of extracellular vesicles and extracellular vesicle-depleted excretory-secretory products of Toxocara canis and Toxocara cati larval cultures. Vet Parasitol 2024; 332:110331. [PMID: 39426022 DOI: 10.1016/j.vetpar.2024.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Toxocara canis and Toxocara cati are parasitic nematodes in the order Ascaridida, which inhabit the small intestines of dogs and cats, respectively, as adults. Although often nonpathogenic as adults, nematodes within this genus are capable of causing widespread disease throughout the host while in a larval stage, during which time larvae migrate throughout the body in a process termed larva migrans. Larvae are also capable of surviving within host tissues in an encysted arrested stage, without immune clearance by the host. The ability of larvae to survive within host tissues during migration and encystment may be attributed to immunomodulatory molecules released by the excretory cells of larvae in excretory-secretory (ES) products. ES products of parasites contain a variety of molecules, including proteins, lipids, and extracellular vesicles (EVs). Toxocara excretory-secretory (TES) products have been studied to some degree, with proteomic analysis of TES proteins described previously; however, investigation of the EVs within TES is lacking, despite the suggested role for these molecules in host interaction and potential immunomodulation. To further characterize the protein cargo within EVs in TES, EVs were isolated from larval cultures of T. canis and T. cati via ultrafiltration, with concurrent collection of EV-depleted TES filtrate for additional study. Isolated EVs and EV-depleted TES from both T. canis and T. cati were submitted for proteomic analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). Proteomic identification results revealed 140 proteins across all samples, with 16 shared by all samples, and 76 total proteins shared between T. canis and T. cati, present within EVs and EV-depleted TES. There were 17 proteins shared exclusively by EV samples, and 15 were shared exclusively between EV-depleted TES samples. Many shared proteins were associated with the host immune response. Several proteins were specific to either T. canis or T. cati, highlighting the potential use of these proteins as diagnostic tools in the differentiation of etiologic agents in cases of toxocariasis. The results of this study build upon previously reported proteomic evaluations of TES, contributing new information in regards to newly identified proteins, EV protein cargo within TES, and potential immunomodulatory functions of these proteins.
Collapse
Affiliation(s)
- Timothy K Wu
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States.
| | - Qin Fu
- Cornell University, Proteomics and Metabolomics Facility, Institute of Biotechnology, Ithaca, NY 14850, United States
| | - Janice L Liotta
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States
| | - Dwight D Bowman
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States
| |
Collapse
|
2
|
Caka C, Ergenoğlu DN, Sinanoğlu N, Maslak IC, Bildik HN, Çiçek B, Esenboga S, Tezcan I, Cagdas D. A large cohort from an immunology reference center and an algorithm for the follow-up of chronic neutropenia. J Clin Immunol 2024; 45:38. [PMID: 39499404 DOI: 10.1007/s10875-024-01816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/25/2024] [Indexed: 11/07/2024]
Abstract
Chronic neutropenia causes involve nutritional deficiencies and inborn errors of immunity(IEI), such as severe congenital neutropenia. To classify common chronic neutropenia causes in a pediatric immunology unit. We enrolled 109 chronic neutropenia patients admitted to a pediatric immunology department between 2002-2022. We recorded clinical/laboratory features and genetic characteristics. The male/female ratio was 63/46. Fifty-eight patients had parental consanguinity(57.4%). 26.6% (n = 29) patients had at least one individual in their family with neutropenia. Common symtpoms at presentation were upper respiratory tract infections(URTI)(31.1%), oral aphthae(23.6%), skin infections(23.6%), pneumonia(20.8%), and recurrent abscesses(12.3%). Common infections during follow-up were URTI(56.8%), pneumonia(33%), skin infections(25.6%), gastroenteritis(18.3%), and recurrent abscesses(14,6%). Common long-term complications were dental problems(n = 51), osteoporosis(n = 22), growth retardation(n = 14), malignancy(n = 16)[myelodysplastic syndrome(n = 10), large granulocytic leukemia(n = 1), acute lymphoblastic leukemia(n = 1), Hodgkin lymphoma(n = 1), EBV-related lymphoma(n = 1), leiomyosarcoma(n = 1), and thyroid neoplasm(n = 1)]. We performed a genetic study in 86 patients, and 69(71%) got a genetic diagnosis. Common gene defects were HAX-1(n = 26), ELA-2 (ELANE)(n = 10), AP3B1(n = 4), and ADA-2(n = 4) gene defects. The IEI ratio(70.6%) was high. GCSF treatment(93.4%), immunoglobulin replacement therapy(18.7%), and HSCT(15.9%) were the treatment options. The mortality rate was 12.9%(n = 14). The most common long term complications were dental problems that is three times more common in patients with known genetic mutations. We prepared an algorithm for chronic neutropenia depending on the present cohort. An important rate of inborn errors of immunity, especially combined immunodeficiency(11.9%) was presented in addition to congenital phagocytic cell defects. Early diagnosis will allow us tailor the disease-specific treatment options sooner, preventing irreversible consequences.
Collapse
Affiliation(s)
- Canan Caka
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Nidanur Sinanoğlu
- Faculty of Medicine, Medical Student, Hacettepe University, Ankara, Turkey
| | - Ibrahim Cemal Maslak
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics Suleyman Demirel Univercity Faculty of Medicine, Isparta, Turkey
| | - Hacer Neslihan Bildik
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Begüm Çiçek
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ilhan Tezcan
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Deniz Cagdas
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey.
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
3
|
Farmand S, Aydin SE, Wustrau K, Böhm S, Ayuk F, Escherich G, Skokowa J, Müller I, Lehmberg K. Case report: Granulocyte-macrophage colony-stimulating factor sargramostim did not rescue the neutrophil phenotype in two patients with JAGN1-mutant severe congenital neutropenia. Front Immunol 2024; 15:1373495. [PMID: 39286252 PMCID: PMC11404322 DOI: 10.3389/fimmu.2024.1373495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background Homozygous or compound heterozygous mutations in JAGN1 cause severe congenital neutropenia. JAGN1-mutant patients present with severe early-onset bacterial infections and most have been described as low-responders to recombinant granulocyte colony-stimulating factor (G-CSF) therapy. In a murine, hematopoietic JAGN1 knockout model, which displays susceptibility to Candida albicans infection in the absence of neutropenia, treatment with granulocyte-macrophage-CSF (GM-CSF) was able to restore the functional defect of neutrophils. Patients We present two unrelated patients with biallelic JAGN1 mutations, who were both treated with subcutaneous GM-CSF (sargramostim) after treatment failure to G-CSF. The first patient was an 18-year-old pregnant woman who received GM-CSF at 12 weeks of gestation up to a dose of 10 µg/kg/d for 7 days. The second patient was a 5-month-old girl who received GM-CSF for a total of 9 days at a dose of up to 20 µg/kg/d. GM-CSF did not increase neutrophil counts in our patients. Treatment was stopped when neutrophil numbers declined further, no beneficial effect was noticed, and patients presented with infections. No adverse effects were observed in either patient and the fetus. Both patients ultimately underwent successful hematopoietic stem cell transplantation. Discussion Both patients showed a high recurrence rate of severe infections on G-CSF treatment. GM-CSF therapy did not ameliorate the clinical phenotype, in contrast to the improvement of neutrophil function observed in the JAGN1 mouse model. No major additional extra-hematopoietic manifestations were evident in our patients. Conclusion In two unrelated patients, GM-CSF did not have any beneficial effect on neutrophil counts. Patients with JAGN1-mutant SCN with reduced G-CSF responsiveness and elevated infection rate should be evaluated early for stem cell transplantation.
Collapse
Affiliation(s)
- Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Eva Aydin
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Wustrau
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Svea Böhm
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Parisi X, Bledsoe JR. Discerning clinicopathological features of congenital neutropenia syndromes: an approach to diagnostically challenging differential diagnoses. J Clin Pathol 2024; 77:586-604. [PMID: 38589208 DOI: 10.1136/jcp-2022-208686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The congenital neutropenia syndromes are rare haematological conditions defined by impaired myeloid precursor differentiation or function. Patients are prone to severe infections with high mortality rates in early life. While some patients benefit from granulocyte colony-stimulating factor treatment, they may still face an increased risk of bone marrow failure, myelodysplastic syndrome and acute leukaemia. Accurate diagnosis is crucial for improved outcomes; however, diagnosis depends on familiarity with a heterogeneous group of rare disorders that remain incompletely characterised. The clinical and pathological overlap between reactive conditions, primary and congenital neutropenias, bone marrow failure, and myelodysplastic syndromes further clouds diagnostic clarity.We review the diagnostically useful clinicopathological and morphological features of reactive causes of neutropenia and the most common primary neutropenia disorders: constitutional/benign ethnic neutropenia, chronic idiopathic neutropenia, cyclic neutropenia, severe congenital neutropenia (due to mutations in ELANE, GFI1, HAX1, G6PC3, VPS45, JAGN1, CSF3R, SRP54, CLPB and WAS), GATA2 deficiency, Warts, hypogammaglobulinaemia, infections and myelokathexis syndrome, Shwachman-Diamond Syndrome, the lysosomal storage disorders with neutropenia: Chediak-Higashi, Hermansky-Pudlak, and Griscelli syndromes, Cohen, and Barth syndromes. We also detail characteristic cytogenetic and molecular factors at diagnosis and in progression to myelodysplastic syndrome/leukaemia.
Collapse
Affiliation(s)
- Xenia Parisi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Doll L, Welte K, Skokowa J, Bajoghli B. A JAGN1-associated severe congenital neutropenia zebrafish model revealed an altered G-CSFR signaling and UPR activation. Blood Adv 2024; 8:4050-4065. [PMID: 38739706 PMCID: PMC11342096 DOI: 10.1182/bloodadvances.2023011656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
ABSTRACT A variety of autosomal recessive mutations in the JAGN1 gene cause severe congenital neutropenia (CN). However, the underlying pathomechanism remains poorly understood, mainly because of the limited availability of primary hematopoietic stem cells from JAGN1-CN patients and the absence of animal models. In this study, we aimed to address these limitations by establishing a zebrafish model of JAGN1-CN. We found 2 paralogs of the human JAGN1 gene, namely jagn1a and jagn1b, which play distinct roles during zebrafish hematopoiesis. Using various approaches such as morpholino-based knockdown, CRISPR/Cas9-based gene editing, and misexpression of a jagn1b harboring a specific human mutation, we successfully developed neutropenia while leaving other hematopoietic lineages unaffected. Further analysis of our model revealed significant upregulation of apoptosis and genes involved in the unfolded protein response (UPR). However, neither UPR nor apoptosis is the primary mechanism that leads to neutropenia in zebrafish. Instead, Jagn1b has a critical role in granulocyte colony-stimulating factor receptor signaling and steady-state granulopoiesis, shedding light on the pathogenesis of neutropenia associated with JAGN1 mutations. The establishment of a zebrafish model for JAGN1-CN represents a significant advancement in understanding the specific pathologic pathways underlying the disease. This model provides a valuable in vivo tool for further investigation and exploration of potential therapeutic strategies.
Collapse
Affiliation(s)
- Larissa Doll
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karl Welte
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Children’s Hospital, University Hospital Tuebingen, Tuebingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Gene and RNA Therapy Center, Tuebingen University, Tuebingen, Germany
| | - Baubak Bajoghli
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Austrian BioImaging/CMI, Vienna, Austria
| |
Collapse
|
6
|
Yeshareem L, Yacobovich J, Lebel A, Noy-Lotan S, Dgany O, Krasnov T, Berger Pinto G, Oniashvili N, Mardoukh J, Bielorai B, Laor R, Mandel-Shorer N, Ben Barak A, Levin C, Asleh M, Miskin H, Revel-Vilk S, Levin D, Benish M, Zuckerman T, Wolach O, Pazgal I, Brik Simon D, Gilad O, Yanir AD, Goldberg TA, Izraeli S, Tamary H, Steinberg-Shemer O. Genetic backgrounds and clinical characteristics of congenital neutropenias in Israel. Eur J Haematol 2024; 113:146-162. [PMID: 38600884 DOI: 10.1111/ejh.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Congenital neutropenias are characterized by severe infections and a high risk of myeloid transformation; the causative genes vary across ethnicities. The Israeli population is characterized by an ethnically diverse population with a high rate of consanguinity. OBJECTIVE To evaluate the clinical and genetic spectrum of congenital neutropenias in Israel. METHODS We included individuals with congenital neutropenias listed in the Israeli Inherited Bone Marrow Failure Registry. Sanger sequencing was performed for ELANE or G6PC3, and patients with wild-type ELANE/G6PC3 were referred for next-generation sequencing. RESULTS Sixty-five patients with neutropenia were included. Of 51 patients with severe congenital neutropenia, 34 were genetically diagnosed, most commonly with variants in ELANE (15 patients). Nine patients had biallelic variants in G6PC3, all of consanguineous Muslim Arab origin. Other genes involved were SRP54, JAGN1, TAZ, and SLC37A4. Seven patients had cyclic neutropenia, all with pathogenic variants in ELANE, and seven had Shwachman-Diamond syndrome caused by biallelic SBDS variants. Eight patients (12%) developed myeloid transformation, including six patients with an unknown underlying genetic cause. Nineteen (29%) patients underwent hematopoietic stem cell transplantation, mostly due to insufficient response to treatment with granulocyte-colony stimulating factor or due to myeloid transformation. CONCLUSIONS The genetic spectrum of congenital neutropenias in Israel is characterized by a high prevalence of G6PC3 variants and an absence of HAX1 mutations. Similar to other registries, for 26% of the patients, a molecular diagnosis was not achieved. However, myeloid transformation was common in this group, emphasizing the need for close follow-up.
Collapse
Affiliation(s)
- Lital Yeshareem
- Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Joanne Yacobovich
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Lebel
- Pediatric Nephrology Unit, HaEmek Medical Center, Afula, Israel
| | - Sharon Noy-Lotan
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Galit Berger Pinto
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Nino Oniashvili
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Jacques Mardoukh
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Bella Bielorai
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ruth Laor
- Hematology Service, Bnei Zion Medical Center, Haifa, Israel
| | - Noa Mandel-Shorer
- Department of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
| | - Ayelet Ben Barak
- Department of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, Haifa, Israel
| | - Carina Levin
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
- Pediatric Hematology Unit and Research Laboratory, Emek Medical Center, Afula, Israel
| | - Mahdi Asleh
- Pediatric Hematology, Soroka University Medical Center, Ben-Gurion University, Beer Sheva, Israel
| | - Hagit Miskin
- Pediatric Hematology, Soroka University Medical Center, Ben-Gurion University, Beer Sheva, Israel
| | - Shoshana Revel-Vilk
- Pediatric Hematology/Oncology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Dror Levin
- Department of Pediatric Hemato-Oncology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Marganit Benish
- Department of Pediatric Hemato-Oncology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Tsila Zuckerman
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
- Hematology and Bone Marrow Transplantation Institute, Rambam Healthcare Campus, Haifa, Israel
| | - Ofir Wolach
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Idit Pazgal
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Comprehensive Center of Thalassemia, Hemoglobinopathies & Rare Anemias, Institute of Hematology, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Dafna Brik Simon
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Oded Gilad
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf David Yanir
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Tracie Alison Goldberg
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Shai Izraeli
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hannah Tamary
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Orna Steinberg-Shemer
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| |
Collapse
|
7
|
Katsaras G, Koutsi S, Psaroulaki E, Gouni D, Tsitsani P. Neutropenia in Childhood-A Narrative Review and Practical Diagnostic Approach. Hematol Rep 2024; 16:375-389. [PMID: 38921186 PMCID: PMC11203312 DOI: 10.3390/hematolrep16020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Neutropenia refers to a decrease in the absolute neutrophil count according to age and race norms and poses a common concern in pediatric practice. Neutrophils serve as host defenders and act crucially in acute inflammation procedures. In this narrative review, we systematically present causes of neutropenia in childhood, mainly adopting the pathophysiological classification of Frater, thereby studying (1) neutropenia with reduced bone marrow reserve, (2) secondary neutropenia with reduced bone marrow reserve, and (3) neutropenia with normal bone marrow reserve. Different conditions in each category are thoroughly discussed and practically approached from the clinician's point of view. Secondary mild to moderate neutropenia is usually benign due to childhood viral infections and is expected to resolve in 2-4 weeks. Bacterial and fungal agents are also associated with transient neutropenia, although fever with severe neutropenia constitutes a medical emergency. Drug-induced and immune neutropenias should be suspected following a careful history and a detailed clinical examination. Cytotoxic chemotherapies treating malignancies are responsible for severe neutropenia and neutropenic shock. Rare genetic neutropenias usually manifest with major infections early in life. Our review of taxonomies clinical findings and associates them to specific neutropenia disorders. We consequently propose a practical diagnostic algorithm for managing neutropenic children.
Collapse
Affiliation(s)
- Georgios Katsaras
- Paediatric Department, General Hospital of Pella—Hospital Unit of Edessa, 58200 Edessa, Greece; (S.K.); (E.P.); (D.G.); (P.T.)
| | - Silouani Koutsi
- Paediatric Department, General Hospital of Pella—Hospital Unit of Edessa, 58200 Edessa, Greece; (S.K.); (E.P.); (D.G.); (P.T.)
| | - Evdokia Psaroulaki
- Paediatric Department, General Hospital of Pella—Hospital Unit of Edessa, 58200 Edessa, Greece; (S.K.); (E.P.); (D.G.); (P.T.)
| | - Dimitra Gouni
- Paediatric Department, General Hospital of Pella—Hospital Unit of Edessa, 58200 Edessa, Greece; (S.K.); (E.P.); (D.G.); (P.T.)
- Paediatric Outpatient Department, Health Care Center of Aridaia, 58400 Aridaia, Greece
| | - Pelagia Tsitsani
- Paediatric Department, General Hospital of Pella—Hospital Unit of Edessa, 58200 Edessa, Greece; (S.K.); (E.P.); (D.G.); (P.T.)
| |
Collapse
|
8
|
Akkus GN, Yildiz K. Extracellular traps development in canine neutrophils induced by infective stage Toxocara canis larvae. Vet Parasitol 2024; 328:110186. [PMID: 38640875 DOI: 10.1016/j.vetpar.2024.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Neutrophils, a crucial element of the host defense system, develop extracellular traps against helminth parasites. Neutrophils accumulate around the larvae of Toxocara canis (T. canis) in the tissues of the organism. This study aimed to determine the reaction in canine neutrophils after incubation with infective stage T. canis larvae (L3) in vitro. Most L3 were still active and moved between the extracellular traps (NETs) after 60-min incubation. NETs were not disintegrated by L3 movement. The L3 was only immobilized by NETs, entrapped larvae were still motile between the traps at the 24 h incubation. NETs were observed not only to accumulate around the mouth, excretory pole or anus but also the entire body of live L3. The extracellular DNA amount released from the canine neutrophils after being induced with phorbol 12-myristate 13-acetate was not affected by T. canis excretory/secretory products obtained from 250 L3. To the Authors'knowledge, the extracellular trap structures was firstly observed in canine neutrophils against T. canis L3 in vitro. NETs decorated with myeloperoxidase, neutrophil elastase and histone (H3) were observed under fluorescence microscope. There were not significant differences in the amount of extracellular DNA (P > 0.05), but the morphological structure of NETs was different in the live and head-inactivated T. canis larvae.
Collapse
Affiliation(s)
- Gozde Nur Akkus
- Kirikkale University, Health Sciences Institute, Department of Parasitology, Kirikkale, Turkey
| | - Kader Yildiz
- Kirikkale University, Faculty of Veterinary Medicine, Department of Parasitology, Kirikkale, Turkey.
| |
Collapse
|
9
|
Choi Y. Association of neutrophil defects with oral ulcers but undetermined role of neutrophils in recurrent aphthous stomatitis. Heliyon 2024; 10:e26740. [PMID: 38439826 PMCID: PMC10911260 DOI: 10.1016/j.heliyon.2024.e26740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Objective Recurrent oral ulcers and severe periodontal diseases in patients with quantitative or qualitative neutrophil defects highlight the important role of neutrophils in maintaining oral mucosal barrier homeostasis. Recurrent aphthous stomatitis (RAS) is a common oral mucosal disease affecting up to 25% of the population, yet its etiopathogenesis remains unclear, and management is unsatisfactory. This review aims to gain insight into the pathogenesis of RAS. Design This narrative review examines the characteristics of oral and blood neutrophils, the associations between neutrophil defects and the occurrence of oral ulcers, and the evidence for the involvement of neutrophils in RAS. To conduct the review, relevant literature was searched in PubMed and Google Scholar, which was then thoroughly reviewed and critically appraised. Results Neutropenia, specifically a decrease in the number of oral neutrophils, impaired extravasation, and defective ROS production appear to be associated with oral ulcers, while defects in granule enzymes or NETosis are unlikely to have a link to oral ulcers. The review of the histopathology of RAS shows that neutrophils are concentrated in the denuded area but are latecomers to the scene and early leavers. However, the evidence for the involvement of neutrophils in the pathogenesis of RAS is inconsistent, leading to the proposal of two different scenarios involving either impaired or hyperactive neutrophils in the pathogenesis of RAS.
Collapse
Affiliation(s)
- Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Dobrewa W, Bielska M, Bąbol-Pokora K, Janczar S, Młynarski W. Congenital neutropenia: From lab bench to clinic bedside and back. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108476. [PMID: 37989463 DOI: 10.1016/j.mrrev.2023.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Neutropenia is a hematological condition characterized by a decrease in absolute neutrophil count (ANC) in peripheral blood, typically classified in adults as mild (1-1.5 × 109/L), moderate (0.5-1 × 109/L), or severe (< 0.5 × 109/L). It can be categorized into two types: congenital and acquired. Congenital severe chronic neutropenia (SCN) arises from mutations in various genes, with different inheritance patterns, including autosomal recessive, autosomal dominant, and X-linked forms, often linked to mitochondrial diseases. The most common genetic cause is alterations in the ELANE gene. Some cases exist as non-syndromic neutropenia within the SCN spectrum, where genetic origins remain unidentified. The clinical consequences of congenital neutropenia depend on granulocyte levels and dysfunction. Infants with this condition often experience recurrent bacterial infections, with approximately half facing severe infections within their first six months of life. These infections commonly affect the respiratory system, digestive tract, and skin, resulting in symptoms like fever, abscesses, and even sepsis. The severity of these symptoms varies, and the specific organs and systems affected depend on the genetic defect. Congenital neutropenia elevates the risk of developing acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS), particularly with certain genetic variants. SCN patients may acquire CSF3R and RUNX1 mutations, which can predict the development of leukemia. It is important to note that high-dose granulocyte colony-stimulating factor (G-CSF) treatment may have the potential to promote leukemogenesis. Treatment for neutropenia involves antibiotics, drugs that boost neutrophil production, or bone marrow transplants. Immediate treatment is essential due to the heightened risk of severe infections. In severe congenital or cyclic neutropenia (CyN), the primary therapy is G-CSF, often combined with antibiotics. The G-CSF dosage is gradually increased to normalize neutrophil counts. Hematopoietic stem cell transplants are considered for non-responders or those at risk of AML/MDS. In cases of WHIM syndrome, CXCR4 inhibitors can be effective. Future treatments may involve gene editing and the use of the diabetes drug empagliflozin to alleviate neutropenia symptoms.
Collapse
Affiliation(s)
- Weronika Dobrewa
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland.
| | - Marta Bielska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland.
| |
Collapse
|
11
|
Thomas S, Guenther G, Rowe JH, Platt CD, Shimamura A, Levy O, Ganapathi L. Severe congenital neutropenia due to jagunal homolog 1 ( JAGN1) mutation: a case report and literature review. Front Pediatr 2023; 11:1223191. [PMID: 37528877 PMCID: PMC10389042 DOI: 10.3389/fped.2023.1223191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
Severe congenital neutropenia caused by jagunal homolog 1 (JAGN1) mutation is a rare condition resulting from maturation arrest secondary to endoplasmic reticulum stress response from impaired neutrophil protein glycosylation. Here, we report a case of a 4-year-old boy who presented with a history of recurrent infections and manifestations, including recurrent intracranial hemorrhage. A review of similar cases reported in the literature indicates that a bleeding diathesis has not been previously described in these patients. We hypothesize that this newly described association of bleeding complications in this patient with JAGN1 mutation is secondary to defective glycosylation in the normal functioning of platelets or clotting factors. Recurrent infections with intracranial hemorrhage, new focal neurologic defects, or altered mental status in a child should warrant a suspicion for this immunodeficiency for the prompt initiation of treatment and prophylaxis for life-threatening infections or trauma.
Collapse
Affiliation(s)
- Sanya Thomas
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Geoffrey Guenther
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Jared H. Rowe
- Harvard Medical School, Boston, MA, United States
- Division of Hematology, Boston Children’s Hospital and Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Craig D. Platt
- Harvard Medical School, Boston, MA, United States
- Division of Immunology, Boston Children’s Hospital, Boston, MA, United States
| | - Akiko Shimamura
- Harvard Medical School, Boston, MA, United States
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Broad Institute of MIT & Harvard, Cambridge, MA, United States
| | - Lakshmi Ganapathi
- Harvard Medical School, Boston, MA, United States
- Division of Pediatric Global Health, Massachusetts General Hospital, Boston, MA, United States
- Division of Pediatric Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
12
|
Ascencio G, de Cruz MA, Abuel J, Alvarado S, Arriaga Y, Conrad E, Castro A, Eichelberger K, Galvan L, Gundy G, Garcia JAI, Jimenez A, Lu NT, Lugar C, Marania R, Mendsaikhan T, Ortega J, Nand N, Rodrigues NS, Shabazz K, Tam C, Valenciano E, Hayzelden C, Eritano AS, Riggs B. A deficiency screen of the 3rd chromosome for dominant modifiers of the Drosophila ER integral membrane protein, Jagunal. G3 (BETHESDA, MD.) 2023; 13:jkad059. [PMID: 36932646 PMCID: PMC10320142 DOI: 10.1093/g3journal/jkad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
The mechanism surrounding chromosome inheritance during cell division has been well documented, however, organelle inheritance during mitosis is less understood. Recently, the endoplasmic reticulum (ER) has been shown to reorganize during mitosis, dividing asymmetrically in proneuronal cells prior to cell fate selection, indicating a programmed mechanism of inheritance. ER asymmetric partitioning in proneural cells relies on the highly conserved ER integral membrane protein, Jagunal (Jagn). Knockdown of Jagn in the compound Drosophila eye displays a pleotropic rough eye phenotype in 48% of the progeny. To identify genes involved in Jagn dependent ER partitioning pathway, we performed a dominant modifier screen of the 3rd chromosome for enhancers and suppressors of this Jagn-RNAi-induced rough eye phenotype. We screened through 181 deficiency lines covering the 3L and 3R chromosomes and identified 12 suppressors and 10 enhancers of the Jagn-RNAi phenotype. Based on the functions of the genes covered by the deficiencies, we identified genes that displayed a suppression or enhancement of the Jagn-RNAi phenotype. These include Division Abnormally Delayed (Dally), a heparan sulfate proteoglycan, the γ-secretase subunit Presenilin, and the ER resident protein Sec63. Based on our understanding of the function of these targets, there is a connection between Jagn and the Notch signaling pathway. Further studies will elucidate the role of Jagn and identified interactors within the mechanisms of ER partitioning during mitosis.
Collapse
Affiliation(s)
- Gerson Ascencio
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Matthew A de Cruz
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Judy Abuel
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Sydney Alvarado
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Yuma Arriaga
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Emily Conrad
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Alonso Castro
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Katharine Eichelberger
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Laura Galvan
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Grace Gundy
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | | | - Alyssa Jimenez
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Nhien Tuyet Lu
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Catharine Lugar
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Ronald Marania
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Tserendavaa Mendsaikhan
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Jose Ortega
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Natasha Nand
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Nicole S Rodrigues
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Khayla Shabazz
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Cynnie Tam
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Emmanuel Valenciano
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Clive Hayzelden
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Anthony S Eritano
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| | - Blake Riggs
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 4132, USA
| |
Collapse
|
13
|
Spoor J, Farajifard H, Keshavarz-Fathi M, Rezaei N. Historical Cohort of Severe Congenital Neutropenia in Iran: Clinical Course, Laboratory Evaluation, Treatment, and Survival. J Pediatr Hematol Oncol 2023; 45:e643-e649. [PMID: 37053506 DOI: 10.1097/mph.0000000000002670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/01/2023] [Indexed: 04/15/2023]
Abstract
INTRODUCTION Severe congenital neutropenia (SCN) is one of the primary immunodeficiency diseases developed by genetic alterations. Mutations in several genes including HAX-1 , G6PC3 , jagunal , and VPS45 account for autosomal recessive SCN. PATIENTS AND METHODS Patients with SCN registered in the Iranian Primary Immunodeficiency Registry and referred to our clinic at the Children's Medical Center were reviewed. RESULTS Thirty-seven eligible patients with a mean age of 28.51 ± 24.38 months at the time of diagnosis were included. Nineteen cases had consanguineous parents and 10 cases had confirmed or unconfirmed positive family history. The most prevalent infectious symptoms were oral infections followed by respiratory infections. We identified HAX-1 mutation in 4, ELANE mutation in 4 cases, G6PC3 mutation in 1, and WHIM syndrome in 1 case. Other patients remained genetically unclassified. After the median follow-up of 36 months from the time of diagnosis, the overall survival was 88.88%. The mean event-free survival was 185.84 months (95% CI: 161.02, 210.66). DISCUSSION Autosomal recessive SCN is more common in countries with high rates of consanguinity like Iran. The genetic classification was possible only for a few patients in our study. This might suggest that there are other autosomal recessive genes causative of neutropenia that have yet to be described.
Collapse
Affiliation(s)
- Jonathan Spoor
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center
- Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Hamid Farajifard
- Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences
- Immunology‑Microbiology Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mahsa Keshavarz-Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center
- Cancer Immunology Project (CIP)
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran
| |
Collapse
|
14
|
Kuehnle N, Osborne SM, Liang Z, Manzano M, Gottwein E. CRISPR screens identify novel regulators of cFLIP dependency and ligand-independent, TRAIL-R1-mediated cell death. Cell Death Differ 2023; 30:1221-1234. [PMID: 36801923 PMCID: PMC10154404 DOI: 10.1038/s41418-023-01133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes primary effusion lymphoma (PEL). PEL cell lines require expression of the cellular FLICE inhibitory protein (cFLIP) for survival, although KSHV encodes a viral homolog of this protein (vFLIP). Cellular and viral FLIP proteins have several functions, including, most importantly, the inhibition of pro-apoptotic caspase 8 and modulation of NF-κB signaling. To investigate the essential role of cFLIP and its potential redundancy with vFLIP in PEL cells, we first performed rescue experiments with human or viral FLIP proteins known to affect FLIP target pathways differently. The long and short isoforms of cFLIP and molluscum contagiosum virus MC159L, which are all strong caspase 8 inhibitors, efficiently rescued the loss of endogenous cFLIP activity in PEL cells. KSHV vFLIP was unable to fully rescue the loss of endogenous cFLIP and is therefore functionally distinct. Next, we employed genome-wide CRISPR/Cas9 synthetic rescue screens to identify loss of function perturbations that can compensate for cFLIP knockout. Results from these screens and our validation experiments implicate the canonical cFLIP target caspase 8 and TRAIL receptor 1 (TRAIL-R1 or TNFRSF10A) in promoting constitutive death signaling in PEL cells. However, this process was independent of TRAIL receptor 2 or TRAIL, the latter of which is not detectable in PEL cell cultures. The requirement for cFLIP is also overcome by inactivation of the ER/Golgi resident chondroitin sulfate proteoglycan synthesis and UFMylation pathways, Jagunal homolog 1 (JAGN1) or CXCR4. UFMylation and JAGN1, but not chondroitin sulfate proteoglycan synthesis or CXCR4, contribute to TRAIL-R1 expression. In sum, our work shows that cFLIP is required in PEL cells to inhibit ligand-independent TRAIL-R1 cell death signaling downstream of a complex set of ER/Golgi-associated processes that have not previously been implicated in cFLIP or TRAIL-R1 function.
Collapse
Affiliation(s)
- Neil Kuehnle
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Scout Mask Osborne
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Ziyan Liang
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Mark Manzano
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eva Gottwein
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA.
| |
Collapse
|
15
|
Hojabri M, Farsi Y, Jamee M, Abolhassani H, Khani HHK, Karimi A, Mesdaghi M, Chavoshzadeh Z, Sharafian S. JAGN1 mutation with distinct clinical features; two case reports and literature review. BMC Pediatr 2023; 23:206. [PMID: 37120535 PMCID: PMC10148515 DOI: 10.1186/s12887-023-04024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Jagunal homolog 1 (JAGN1) has been recognized as an essential protein in neutrophil function. The mutated JAGN1 is responsible for immunodeficiency related to innate and humoral defense mechanisms. This deficiency impairs neutrophil development and function, leading to recurrent infections and facial dysmorphism as phenotypic consequences of severe congenital neutropenia (SCN). We report two siblings having the reported JAGN1 mutation with different clinical manifestations. Recurrent abscess formation unresponsive to antibiotic therapy, a history of delayed umbilical separation, frequent bacterial or fungal infection, dysmorphic face, failure to thrive, and other coexisting organ abnormalities should prompt physicians to syndromic immunodeficiencies involving neutrophils. Genetic investigations to elucidate the responsible mutation is critical as clinical management varies. Once the diagnosis is confirmed, a multi-disciplinary team should perform further workups to investigate other coexisting malformations and neurodevelopmental evaluation.
Collapse
Affiliation(s)
- Mahsa Hojabri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Farsi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Abdollah Karimi
- Pediatric Infections Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mesdaghi
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Sharafian
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Linder MI, Mizoguchi Y, Hesse S, Csaba G, Tatematsu M, Łyszkiewicz M, Ziȩtara N, Jeske T, Hastreiter M, Rohlfs M, Liu Y, Grabowski P, Ahomaa K, Maier-Begandt D, Schwestka M, Pazhakh V, Isiaku AI, Briones Miranda B, Blombery P, Saito MK, Rusha E, Alizadeh Z, Pourpak Z, Kobayashi M, Rezaei N, Unal E, Hauck F, Drukker M, Walzog B, Rappsilber J, Zimmer R, Lieschke GJ, Klein C. Human genetic defects in SRP19 and SRPRA cause severe congenital neutropenia with distinctive proteome changes. Blood 2023; 141:645-658. [PMID: 36223592 PMCID: PMC10651786 DOI: 10.1182/blood.2022016783] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of coordinated changes in proteome composition and their relevance for the differentiation of neutrophil granulocytes are not well studied. Here, we discover 2 novel human genetic defects in signal recognition particle receptor alpha (SRPRA) and SRP19, constituents of the mammalian cotranslational targeting machinery, and characterize their roles in neutrophil granulocyte differentiation. We systematically study the proteome of neutrophil granulocytes from patients with variants in the SRP genes, HAX1, and ELANE, and identify global as well as specific proteome aberrations. Using in vitro differentiation of human induced pluripotent stem cells and in vivo zebrafish models, we study the effects of SRP deficiency on neutrophil granulocyte development. In a heterologous cell-based inducible protein expression system, we validate the effects conferred by SRP dysfunction for selected proteins that we identified in our proteome screen. Thus, SRP-dependent protein processing, intracellular trafficking, and homeostasis are critically important for the differentiation of neutrophil granulocytes.
Collapse
Affiliation(s)
- Monika I. Linder
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Yoko Mizoguchi
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Department of Pediatrics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Sebastian Hesse
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Gergely Csaba
- Department of Informatics, Institute of Bioinformatics, LMU, Munich, Germany
| | - Megumi Tatematsu
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Marcin Łyszkiewicz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Natalia Ziȩtara
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Tim Jeske
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Maximilian Hastreiter
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Yanshan Liu
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Piotr Grabowski
- Bioanalytics, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
| | - Kaarin Ahomaa
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Daniela Maier-Begandt
- Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Planegg-Martinsried, and Walter Brendel Centre of Experimental Medicine, University Hospital, LMU, Munich, Germany
| | - Marko Schwestka
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Abdulsalam I. Isiaku
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ejona Rusha
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, Neuherberg, Germany
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Teheran, Iran
| | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Teheran, Iran
| | - Masao Kobayashi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ekrem Unal
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, Neuherberg, Germany
| | - Barbara Walzog
- Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Planegg-Martinsried, and Walter Brendel Centre of Experimental Medicine, University Hospital, LMU, Munich, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
| | - Ralf Zimmer
- Department of Informatics, Institute of Bioinformatics, LMU, Munich, Germany
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| |
Collapse
|
17
|
Abou-El-Naga IF, Mogahed NMFH. Potential roles of Toxocara canis larval excretory secretory molecules in immunomodulation and immune evasion. Acta Trop 2023; 238:106784. [PMID: 36502886 DOI: 10.1016/j.actatropica.2022.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
Toxocara canis larvae invade various tissues of different vertebrate species without developing into adults in paratenic host. The long-term survival of the larvae despite exposure to the well-armed immune response is a notable achievement. The larvae modulate the immune response to help the survival of both the host and the larvae. They skew the immune response to type 2/regulatory phenotype. The outstanding ability of the larvae to modulate the host immune response and to evade the immune arms is attributed to the secretion of Toxocara excretory-secretory products (TESPs). TESPs are complex mixture of differing molecules. The present review deals with the molecular composition of the TESPs, their interaction with the host molecules, their effect on the innate immune response, the receptor recognition, the downstream signals the adaptive immunity and the repair of tissues. This review also addresses the role of TESPs molecules in the immune evasion strategy and the potential effect of the induced immunomodulation in some diseases. Identification of parasite components that influence the nematode-host interactions could enhance understanding the molecular basis of nematode pathogenicity. Furthermore, the identification of helminths molecules with immunomodulatory potential could be used in immunotherapies for some diseases.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt.
| | - Nermine M F H Mogahed
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt
| |
Collapse
|
18
|
Erdős M, Boyarchuk O, Maródi L. Case Report: Association between cyclic neutropenia and SRP54 deficiency. Front Immunol 2022; 13:975017. [PMID: 36159802 PMCID: PMC9493107 DOI: 10.3389/fimmu.2022.975017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant mutations in the signal recognition particle (SRP) 54 gene were recently described in patients with severe congenital neutropenia (SCN). SRP54 deficiency cause a chronic and profound neutropenia with maturation arrest at the promyelocyte stage, occurring in the first months of life. Nearly all reported patients with SRP54 mutations had neutropenia without a cyclic pattern and showed a poor or no response to granulocyte colony-stimulating factor (G-CSF) therapy. We report here an 11-year-old female patient with cyclic neutropenia and recurrent heterozygous p.T117del (c.349_351del) in-frame deletion mutation in SRP54, who showed remarkable therapeutic response to G-CSF treatment. The diagnosis of cyclic pattern of neutropenia was established by acceptable standards. ELANE gene mutation was excluded by using various genetic approaches. The patient described here also had dolichocolon which has not been described before in association with SCN.
Collapse
Affiliation(s)
- Melinda Erdős
- Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States
| | - Oksana Boyarchuk
- Department of Children’s Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - László Maródi
- Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States
- *Correspondence: László Maródi,
| |
Collapse
|
19
|
Gilad O, Dgany O, Noy-Lotan S, Krasnov T, Yacobovich J, Rabinowicz R, Goldberg T, Kuperman AA, Abu-Quider A, Miskin H, Kapelushnik N, Mandel-Shorer N, Shimony S, Harlev D, Ben-Ami T, Adam E, Levin C, Aviner S, Elhasid R, Berger-Achituv S, Chaitman-Yerushalmi L, Kodman Y, Oniashvilli N, Hameiri-Grosman M, Izraeli S, Tamary H, Steinberg-Shemer O. Syndromes predisposing to leukemia are a major cause of inherited cytopenias in children. Haematologica 2022; 107:2081-2095. [PMID: 35295078 PMCID: PMC9425329 DOI: 10.3324/haematol.2021.280116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Prolonged cytopenias are a non-specific sign with a wide differential diagnosis. Among inherited disorders, cytopenias predisposing to leukemia require a timely and accurate diagnosis to ensure appropriate medical management, including adequate monitoring and stem cell transplantation prior to the development of leukemia. We aimed to define the types and prevalences of the genetic causes leading to persistent cytopenias in children. The study comprises children with persistent cytopenias, myelodysplastic syndrome, aplastic anemia, or suspected inherited bone marrow failure syndromes, who were referred for genetic evaluation from all pediatric hematology centers in Israel during 2016-2019. For variant detection, we used Sanger sequencing of commonly mutated genes and a custom-made targeted next-generation sequencing panel covering 226 genes known to be mutated in inherited cytopenias; the minority subsequently underwent whole exome sequencing. In total, 189 children with persistent cytopenias underwent a genetic evaluation. Pathogenic and likely pathogenic variants were identified in 59 patients (31.2%), including 47 with leukemia predisposing syndromes. Most of the latter (32, 68.1%) had inherited bone marrow failure syndromes, nine (19.1%) had inherited thrombocytopenia predisposing to leukemia, and three each (6.4%) had predisposition to myelodysplastic syndrome or congenital neutropenia. Twelve patients had cytopenias with no known leukemia predisposition, including nine children with inherited thrombocytopenia and three with congenital neutropenia. In summary, almost one third of 189 children referred with persistent cytopenias had an underlying inherited disorder; 79.7% of whom had a germline predisposition to leukemia. Precise diagnosis of children with cytopenias should direct follow-up and management programs and may positively impact disease outcome.
Collapse
Affiliation(s)
- Oded Gilad
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Sharon Noy-Lotan
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Joanne Yacobovich
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Ron Rabinowicz
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Tracie Goldberg
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Amir A Kuperman
- Blood Coagulation Service and Pediatric Hematology Clinic, Galilee Medical Center, Nahariya, Israel; Azrieli Faculty of Medicine, Bar-Ilan University, Safed
| | - Abed Abu-Quider
- Pediatric Hematology, Soroka University Medical Center, Ben-Gurion University, Beer Sheva
| | - Hagit Miskin
- Pediatric Hematology Unit, Shaare Zedek Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University, Jerusalem
| | - Noa Kapelushnik
- Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Goldschleger Eye Institute, Sheba Medical Center, Hashomer
| | - Noa Mandel-Shorer
- Department of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus; Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa
| | - Shai Shimony
- Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Rabin Medical Center, Institute of Hematology, Davidoff Cancer Centre, Beilinson Hospital, Petach-Tikva, Israel; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Dan Harlev
- Pediatric Hematology-Oncology Department, Hadassah University Medical Center, Jerusalem
| | - Tal Ben-Ami
- Pediatric Hematology Unit, Kaplan Medical Center, Rehovot, Israel; Faculty of Medicine, Hebrew University of Jerusalem
| | - Etai Adam
- Pediatric Hematology-Oncology Department, Sheba Medical Center, Hashomer
| | - Carina Levin
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel; Pediatric Hematology Unit and Research Laboratory, Emek Medical Center, Afula
| | - Shraga Aviner
- Department of Pediatrics, Barzilai University Medical Center, Ashkelon, affiliated to Ben Gurion University, Beer-Sheva
| | - Ronit Elhasid
- Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Department of Pediatric Hemato-Oncology, Aviv Medical Center
| | - Sivan Berger-Achituv
- Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Department of Pediatric Hemato-Oncology, Aviv Medical Center
| | | | - Yona Kodman
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva
| | - Nino Oniashvilli
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva
| | - Michal Hameiri-Grosman
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva
| | - Shai Izraeli
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv
| | - Hannah Tamary
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva.
| | - Orna Steinberg-Shemer
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Aviv University, Aviv, Israel; Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| |
Collapse
|
20
|
Lymphocyte cytosolic protein 1 (L-plastin) I232F mutation impairs granulocytic proliferation and causes neutropenia. Blood Adv 2022; 6:2581-2594. [PMID: 34991157 PMCID: PMC9043934 DOI: 10.1182/bloodadvances.2021006398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Neutrophils migrate into inflamed tissue, engage in phagocytosis, and clear pathogens or apoptotic cells. These processes require well-coordinated events involving the actin cytoskeleton. We describe a child with severe neutropenia and episodes of soft tissue infections and pneumonia. Bone marrow examination showed granulocytic hypoplasia with dysplasia. Whole-exome sequencing revealed a de novo heterozygous missense mutation in LCP1, which encodes the F-actin-binding protein Lymphocyte Cytosolic Protein 1. To determine its pathophysiological significance, we stably transduced cells with doxycycline-inducible wild-type LCP1 and LCP1 I232F lentiviral constructs. We observed dysplastic granulocytic 32D cells expressing LCP1 I232F cells. These cells showed decreased proliferation without a block in differentiation. In addition, expression of LCP1 I232F resulted in a cell cycle arrest at the G2/M phase, but it did not lead to increased levels of genes involved in apoptosis or the unfolded protein response. Both 32D and HeLa cells expressing mutant LCP1 displayed impaired cell motility and invasiveness. Flow cytometry showed increased F-actin. However, mutant LCP1-expressing 32D cells exhibited normal oxidative burst upon stimulation. Confocal imaging and subcellular fractionation revealed diffuse intracellular localization of LCP1, but only the mutant form was found in the nucleus. We conclude that LCP1 is a new gene involved in granulopoiesis, and the missense variant LCP1 I232F leads to neutropenia and granulocytic dysplasia with aberrant actin dynamics. Our work supports a model of neutropenia due to aberrant actin regulation.
Collapse
|
21
|
Walkovich K. Understanding neutropenia secondary to intrinsic or iatrogenic immune dysregulation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:504-513. [PMID: 34889406 PMCID: PMC8791120 DOI: 10.1182/hematology.2021000285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a key member of the innate and adaptive immune response, neutrophils provide insights into the hematopoietic and inflammatory manifestations of inborn errors of immunity (IEI) and the consequences of immunotherapy. The facile recognition of IEI presenting with neutropenia provides an avenue for hematologists to facilitate early diagnosis and expedite biologically rationale care. Moreover, enhancing the understanding of the molecular mechanisms driving neutropenia in IEI-decreased bone marrow reserves, diminished egress from the bone marrow, and decreased survival-offers an opportunity to further dissect the pathophysiology driving neutropenia secondary to iatrogenic immune dysregulation, eg, immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy.
Collapse
Affiliation(s)
- Kelly Walkovich
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Correspondence Kelly Walkovich, Department of Pediatrics, University of Michigan, 1540 E Medical Center Dr, Ann Arbor, MI 48109; e-mail:
| |
Collapse
|
22
|
Fadeel B, Garwicz D, Carlsson G, Sandstedt B, Nordenskjöld M. Kostmann disease and other forms of severe congenital neutropenia. Acta Paediatr 2021; 110:2912-2920. [PMID: 34160857 DOI: 10.1111/apa.16005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
Congenital neutropenia with autosomal recessive inheritance was first described by the Swedish paediatrician Rolf Kostmann who coined the term 'infantile genetic agranulocytosis'. The condition is now commonly referred to as Kostmann disease. These patients display a maturation arrest of the myelopoiesis in the bone marrow and reduced neutrophil numbers and suffer from recurrent, often life-threatening infections. The molecular mechanism underlying congenital neutropenia has been intensively investigated, and mutations in genes that impinge on programmed cell death have been identified. The present review provides an overview of these studies.
Collapse
Affiliation(s)
- Bengt Fadeel
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Daniel Garwicz
- Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Göran Carlsson
- Department of Woman and Child Health Karolinska University Hospital Stockholm Sweden
| | - Bengt Sandstedt
- Department of Woman and Child Health Karolinska University Hospital Stockholm Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
- Department of Clinical Genetics Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
23
|
Donadieu J, Frenz S, Merz L, Sicre De Fontbrune F, Rotulo GA, Beaupain B, Biosse-Duplan M, Audrain M, Croisille L, Ancliff P, Klein C, Bellanné-Chantelot C. Chronic neutropenia: how best to assess severity and approach management? Expert Rev Hematol 2021; 14:945-960. [PMID: 34486458 DOI: 10.1080/17474086.2021.1976634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Neutropenia is a relatively common finding in medical practice and the medical approach requires a gradual and pertinent diagnostic procedure as well as adapted management. AREAS COVERED The area of chronic neutropenia remains fragmented between diverse diseases or situations. Here physicians involved in different aspects of chronic neutropenia gather both the data from medical literature till the end of May 2021 and their experience to offer a global approach for the diagnosis of chronic neutropenia as well as their medical care. EXPERT OPINION In most cases, the neutropenia is transient, frequently related to a viral infection, and not harmful. However, neutropenia can be chronic (i.e. >3 months) and related to a number of etiologies, some clinically benign, such as so-called 'ethnic' neutropenia. Autoimmune neutropenia is the common form in young children, whereas idiopathic/immune neutropenia is a frequent etiology in young females. Inherited neutropenia (or congenital neutropenia) is exceptional, with approximately 30 new cases per 106 births and 30 known subtypes. Such patients have a high risk of invasive bacterial infections, and oral infections. Supportive therapy, which is primarily based on daily administration of an antibiotic prophylaxis and/or treatment with granulocyte-colony stimulating factor (G-CSF), contributes to avoiding recurrent infections.
Collapse
Affiliation(s)
- Jean Donadieu
- Centre De Référence Des Neutropénies Chroniques, Registre National Des Neutropénies Congénitales, Service d'Hémato-oncologie Pédiatrique, Hôpital Armand Trousseau Aphp, Paris, France
| | - Stephanie Frenz
- Dr. Von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lauren Merz
- Brigham and Women's Hospital, Department of Internal Medicine, Boston, MA, USA
| | | | - Gioacchino Andrea Rotulo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa, Italy
| | - Blandine Beaupain
- Centre De Référence Des Neutropénies Chroniques, Registre National Des Neutropénies Congénitales, Service d'Hémato-oncologie Pédiatrique, Hôpital Armand Trousseau Aphp, Paris, France
| | | | - Marie Audrain
- Service d'Immunologie Laboratoire De Biologie Chu De Nantes 9 Quai Moncousu
| | | | - Phil Ancliff
- Pediatric Hematology, Great Ormond Street Hospital London, UK
| | - Christoph Klein
- Dr. Von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
24
|
Identification of Toxocara canis Antigen-Interacting Partners by Yeast Two-Hybrid Assay and a Putative Mechanism of These Host-Parasite Interactions. Pathogens 2021; 10:pathogens10080949. [PMID: 34451413 PMCID: PMC8398310 DOI: 10.3390/pathogens10080949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023] Open
Abstract
Toxocara canis is a zoonotic roundworm that infects humans and dogs all over the world. Upon infection, larvae migrate to various tissues leading to different clinical syndromes. The host–parasite interactions underlying the process of infection remain poorly understood. Here, we describe the application of a yeast two-hybrid assay to screen a human cDNA library and analyse the interactome of T. canis larval molecules. Our data identifies 16 human proteins that putatively interact with the parasite. These molecules were associated with major biological processes, such as protein processing, transport, cellular component organisation, immune response and cell signalling. Some of these identified interactions are associated with the development of a Th2 response, neutrophil activity and signalling in immune cells. Other interactions may be linked to neurodegenerative processes observed during neurotoxocariasis, and some are associated with lung pathology found in infected hosts. Our results should open new areas of research and provide further data to enable a better understanding of this complex and underestimated disease.
Collapse
|
25
|
Meng L, Li J, Meng X, Zhou Y, Wang J, Liu S, Zhao Y. Sanguisorba parviflora (Maxim.) Takeda alleviates cyclophosphamide-induced leukopenia by regulating haematopoietic cell-specific protein 1-associated protein X-1 gene expression. J Clin Pharm Ther 2021; 46:1373-1381. [PMID: 34101878 DOI: 10.1111/jcpt.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE We have previously shown that the saponins of Sanguisorba parviflora (Maxim.) Takeda (Sp. T) relieved cyclophosphamide-induced myelosuppression in leukopenic mice. Haematopoietic cell-specific protein 1-associated protein X-1 (HAX-1) participated in the survival of neutrophils through the regulation of mitochondrial function. The aim of the present study was to comprehensively identify the role of HAX-1 in the mechanism of leukopenia alleviation by Sp. T. METHODS HAX-1 gene and protein expression levels in peripheral blood neutrophils were examined using real-time quantitative reverse transcription-polymerase chain reaction, western blot and immunohistochemical assays. Neutrophil apoptosis was measured using flow cytometry. Mitochondrial function was determined via assessments of the reactive oxygen species (ROS) generation and mitochondrial membrane potential (ΔΨm) integrity levels. RESULTS AND DISCUSSION The HAX-1 gene expression level in the peripheral blood neutrophils was significantly lower in patients with leukopenia than in healthy donors. The saponins of Sp. T induced HAX-1 expression and promoted myeloid progenitor cell (mEB8-ER cell) viability. HAX-1 overexpression reduced the production of ROS and maintained ΔΨm integrity. Cyclophosphamide-induced mitochondrial dysfunction and apoptosis could be abrogated by treatment with Sp. T or metformin. WHAT IS NEW AND CONCLUSION Our data suggest a mechanism through which Sp. T protects against chemotherapy-induced leukopenia by regulating HAX-1 gene expression in a mitochondrial-dependent manner.
Collapse
Affiliation(s)
- Lingkai Meng
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, China
| | - Jie Li
- Department of Hematology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Xiangli Meng
- Department of Pharmacy, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Yang Zhou
- Department of Pharmacy, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jingxin Wang
- Department of Pharmacy, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Shijuan Liu
- Department of Pharmacy, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Yujia Zhao
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
26
|
Meng L, Li J, Meng X, Zhou Y, Wang J, Liu S, Zhao Y. Sanguisorba parviflora (Maxim) Takeda alleviates cyclophosphamide-induced leukopenia via regulating the hematopoietic cell-specific protein 1-associated protein X-1 gene. J Clin Pharm Ther 2021; 46:1334-1342. [PMID: 34075619 DOI: 10.1111/jcpt.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
WHAT IS KNOWN AND THE OBJECTIVE Our previous studies have shown that saponins of Sanguisorba parviflora (Maxim) Takeda (Sp. T) relieved cyclophosphamide-induced myelosuppression in mice with leukopenia. The hematopoietic cell-specific protein 1-associated protein X-1 (HAX-1) participated in the survival of neutrophils through the regulation of mitochondrial function. This study aimed to comprehensively identify the role of HAX-1 in Sp. T to alleviate leukopenia. METHODS HAX-1 expression was examined in the peripheral blood neutrophils using real-time polymerase chain reaction (PCR), Western blot analysis and immunohistochemical staining. Neutrophil apoptosis was measured by flow cytometry. Mitochondrial function was evaluated via reactive oxygen species (ROS) generation and mitochondrial membrane potential (ΔΨm) integrity. RESULTS AND DISCUSSION Our study indicated that the expression of the HAX-1 gene was significantly decreased in the peripheral blood neutrophils of leukopenia patients compared with healthy donors. The saponins of Sp. T induced HAX-1 expression and promoted myeloid progenitor cell (mEB8-ER cell) viability, while overexpression of HAX-1 reduced the production of reactive oxygen species (ROS) and maintained the integrity of the mitochondrial membrane potential. Cyclophosphamide-induced mitochondrial dysfunction and apoptosis could be abrogated by treatment with Sp. T or the addition of metformin. WHAT IS NEW AND OUR CONCLUSION Our data support a mechanism where Sp. T protects against chemotherapy-induced leukopenia by regulating HAX-1 gene expression in a mitochondrial-dependent manner.
Collapse
Affiliation(s)
- Lingkai Meng
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, China
| | - Jie Li
- Department of Hematology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Xiangli Meng
- Department of Pharmacy, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Yang Zhou
- Department of Pharmacy, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jingxin Wang
- Department of Pharmacy, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Shijuan Liu
- Department of Pharmacy, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Yujia Zhao
- School of Pharmacy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
27
|
Associating physiological functions with genomic variability in hibernating bats. Evol Ecol 2021. [DOI: 10.1007/s10682-020-10096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Pisani C, Onori A, Gabanella F, Di Certo MG, Passananti C, Corbi N. Identification of protein/mRNA network involving the PSORS1 locus gene CCHCR1 and the PSORS4 locus gene HAX1. Exp Cell Res 2021; 399:112471. [PMID: 33417922 DOI: 10.1016/j.yexcr.2021.112471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023]
Abstract
CCHCR1 (Coiled-Coil alpha-Helical Rod 1), maps to chromosomal region 6p21.3, within the major psoriasis susceptibility locus PSORS1. CCHCR1 itself is a plausible psoriasis candidate gene, however its role in psoriasis pathogenesis remains unclear. We previously demonstrated that CCHCR1 protein acts as a cytoplasmic docking site for RNA polymerase II core subunit 3 (RPB3) in cycling cells, suggesting a role for CCHCR1 in vesicular trafficking between cellular compartments. Here, we report a novel interaction between CCHCR1 and the RNA binding protein HAX1. HAX1 maps to chromosomal region 1q21.3 within the PSORS4 locus and is over-expressed in psoriasis. Both CCHCR1 and HAX1 share subcellular co-localization with mitochondria, nuclei and cytoplasmic vesicles as P-bodies. By a series of ribonucleoprotein immunoprecipitation (RIP) assays, we isolated a pool of mRNAs complexed with HAX1 and/or CCHCR1 proteins. Among the mRNAs complexed with both CCHCR1 and HAX1 proteins, there are Vimentin mRNA, previously described to be bound by HAX1, and CAMP/LL37 mRNA, whose gene product is over-expressed in psoriasis.
Collapse
Affiliation(s)
- Cinzia Pisani
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| | - Annalisa Onori
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| | - Francesca Gabanella
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy; CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Italy.
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Italy.
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| |
Collapse
|
29
|
Hagelkruys A, Wirnsberger G, Stadlmann J, Wöhner M, Horrer M, Vilagos B, Jonsson G, Kogler M, Tortola L, Novatchkova M, Bönelt P, Hoffmann D, Koglgruber R, Steffen U, Schett G, Busslinger M, Bergthaler A, Klein C, Penninger JM. A crucial role for Jagunal homolog 1 in humoral immunity and antibody glycosylation in mice and humans. J Exp Med 2021; 218:e20200559. [PMID: 32930709 PMCID: PMC7953624 DOI: 10.1084/jem.20200559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/17/2020] [Accepted: 08/18/2020] [Indexed: 12/28/2022] Open
Abstract
Jagunal homolog 1 (JAGN1) has been identified as a critical regulator of neutrophil biology in mutant mice and rare-disease patients carrying JAGN1 mutations. Here, we report that Jagn1 deficiency results in alterations in the endoplasmic reticulum (ER) of antibody-producing cells as well as decreased antibody production and secretion. Consequently, mice lacking Jagn1 in B cells exhibit reduced serum immunoglobulin (Ig) levels at steady state and fail to mount an efficient humoral immune response upon immunization with specific antigens or when challenged with viral infections. We also demonstrate that Jagn1 deficiency in B cells results in aberrant IgG N-glycosylation leading to enhanced Fc receptor binding. Jagn1 deficiency in particular affects fucosylation of IgG subtypes in mice as well as rare-disease patients with loss-of-function mutations in JAGN1. Moreover, we show that ER stress affects antibody glycosylation. Our data uncover a novel and key role for JAGN1 and ER stress in antibody glycosylation and humoral immunity in mice and humans.
Collapse
Affiliation(s)
- Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Gerald Wirnsberger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Apeiron Biologics AG, Vienna, Austria
| | - Johannes Stadlmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Biochemistry, University of Natural Resource and Life Sciences, Vienna, Austria
| | - Miriam Wöhner
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Marion Horrer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Bojan Vilagos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Melanie Kogler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Luigi Tortola
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Maria Novatchkova
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Peter Bönelt
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - David Hoffmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Rubina Koglgruber
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Ulrike Steffen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich, Germany
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
Zhou J, Sun C, Huang H, Zhu Q, Wen F, Dong Y, Wang H. Efficacy of Low-Dose rhGM-CSF Treatment in a Patient With Severe Congenital Neutropenia Due to CSF3R Deficiency: Case Report of a Novel Biallelic CSF3R Mutation and Literature Review. Front Pediatr 2021; 9:746159. [PMID: 34778134 PMCID: PMC8585998 DOI: 10.3389/fped.2021.746159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
This study reports the clinical manifestations, genetics, and efficacy of treatment with the efficacy of recombinant human granulocyte macrophage colony-stimulating factor (rhGM-GSF) of a 2-year-old female patient with severe congenital neutropenia (SCN) type 7 (SCN7) caused by novel biallelic mutations in the colony-stimulating factor 3 receptor (CSF3R) gene. Genetic diagnosis of the patient was performed by whole-exome and Sanger sequencing. Expression of the CSF3R gene in the peripheral neutrophils of the patient was detected by real-time PCR and Western blotting. The patient presented with recurrent suppurative tonsillitis and decreased absolute neutrophil count <0.5 × 109/L. Novel heterozygous mutations were found to be inherited from each parent (maternal c.690delC [p.met231Cysfs*32] and paternal c.64+5G>A). The patient's neutrophils had lower CSF3R mRNA and protein levels than those of the parents. Low-dose rhGM-CSF (3 μg/kg/day once a week) prevented recurrent infection in the patient. These results demonstrate that the clinical manifestations of SCN7 with biallelic CSF3R mutations and downregulated CSF3R can be effectively treated with rhGM-CSF.
Collapse
Affiliation(s)
- Junli Zhou
- Departments of Cardiology, Endocrine, Hematology and Nephrology, Children's Hospital of Fudan University at Xiamen, Xiamen Children's Hospital, Xiamen, China
| | - Chengjun Sun
- Department of Endocrinology and Inherited Metabolic Diseases, National Children's Medical Center Children's Hospital of Fudan University, Shanghai, China
| | - Honglin Huang
- Departments of Cardiology, Endocrine, Hematology and Nephrology, Children's Hospital of Fudan University at Xiamen, Xiamen Children's Hospital, Xiamen, China
| | - Qiguo Zhu
- Departments of Cardiology, Endocrine, Hematology and Nephrology, Children's Hospital of Fudan University at Xiamen, Xiamen Children's Hospital, Xiamen, China
| | - Fengyun Wen
- Departments of Cardiology, Endocrine, Hematology and Nephrology, Children's Hospital of Fudan University at Xiamen, Xiamen Children's Hospital, Xiamen, China
| | - Ying Dong
- Departments of Cardiology, Endocrine, Hematology and Nephrology, Children's Hospital of Fudan University at Xiamen, Xiamen Children's Hospital, Xiamen, China
| | - Hongsheng Wang
- Department of Hematology, National Children's Medical Center Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
31
|
Liu S, Li S, Yang Y, Li W. Termini restraining of small membrane proteins enables structure determination at near-atomic resolution. SCIENCE ADVANCES 2020; 6:eabe3717. [PMID: 33355146 PMCID: PMC11205269 DOI: 10.1126/sciadv.abe3717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Small membrane proteins are difficult targets for structural characterization. Here, we stabilize their folding by restraining their amino and carboxyl termini with associable protein entities, exemplified by the two halves of a superfolder GFP. The termini-restrained proteins are functional and show improved stability during overexpression and purification. The reassembled GFP provides a versatile scaffold for membrane protein crystallization, enables diffraction to atomic resolution, and facilitates crystal identification, phase determination, and density modification. This strategy gives rise to 14 new structures of five vertebrate proteins from distinct functional families, bringing a substantial expansion to the structural database of small membrane proteins. Moreover, a high-resolution structure of bacterial DsbB reveals that this thiol oxidoreductase is activated through a catalytic triad, similar to cysteine proteases. Overall, termini restraining proves exceptionally effective for stabilization and structure determination of small membrane proteins.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yihu Yang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Urban CF, Backman E. Eradicating, retaining, balancing, swarming, shuttling and dumping: a myriad of tasks for neutrophils during fungal infection. Curr Opin Microbiol 2020; 58:106-115. [DOI: 10.1016/j.mib.2020.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022]
|
33
|
McDermott DH, Malech HL. JAGN1 mutations in severe congenital neutropenia. Br J Haematol 2020; 192:9-10. [PMID: 33207009 DOI: 10.1111/bjh.17135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David H McDermott
- Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Khandagale A, Holmlund T, Entesarian M, Nilsson D, Kalwak K, Klaudel-Dreszler M, Carlsson G, Henter JI, Nordenskjöld M, Fadeel B. Severe congenital neutropenia-associated JAGN1 mutations unleash a calpain-dependent cell death programme in myeloid cells. Br J Haematol 2020; 192:200-211. [PMID: 33206996 PMCID: PMC7839451 DOI: 10.1111/bjh.17137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Severe congenital neutropenia (SCN) of autosomal recessive inheritance, also known as Kostmann disease, is characterised by a lack of neutrophils and a propensity for life-threatening infections. Using whole-exome sequencing, we identified homozygous JAGN1 mutations (p.Gly14Ser and p.Glu21Asp) in three patients with Kostmann-like SCN, thus confirming the recent attribution of JAGN1 mutations to SCN. Using the human promyelocytic cell line HL-60 as a model, we found that overexpression of patient-derived JAGN1 mutants, but not silencing of JAGN1, augmented cell death in response to the pro-apoptotic stimuli, etoposide, staurosporine, and thapsigargin. Furthermore, cells expressing mutant JAGN1 were remarkably susceptible to agonists that normally trigger degranulation and succumbed to a calcium-dependent cell death programme. This mode of cell death was completely prevented by pharmacological inhibition of calpain but unaffected by caspase inhibition. In conclusion, our results confirmed the association between JAGN1 mutations and SCN and showed that SCN-associated JAGN1 mutations unleash a calcium- and calpain-dependent cell death in myeloid cells.
Collapse
Affiliation(s)
- Avinash Khandagale
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Holmlund
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Entesarian
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Krzysztof Kalwak
- Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Maja Klaudel-Dreszler
- Department of Gastroenterology, Hepatology, Nutritional Disorders, and Paediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Göran Carlsson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan-Inge Henter
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
McNulty SN, Evenson MJ, Riley M, Yoest JM, Corliss MM, Heusel JW, Duncavage EJ, Pfeifer JD. A Next-Generation Sequencing Test for Severe Congenital Neutropenia: Utility in a Broader Clinicopathologic Spectrum of Disease. J Mol Diagn 2020; 23:200-211. [PMID: 33217554 DOI: 10.1016/j.jmoldx.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 10/24/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a collection of diverse disorders characterized by chronically low absolute neutrophil count in the peripheral blood, increased susceptibility to infection, and a significant predisposition to the development of myeloid malignancies. SCN can be acquired or inherited. Inherited forms have been linked to variants in a group of diverse genes involved in the neutrophil-differentiation process. Variants that promote resistance to treatment have also been identified. Thus, genetic testing is important for the diagnosis, prognosis, and management of SCN. Herein we describe clinically validated assay developed for assessing patients with suspected SCN. The assay is performed from a whole-exome backbone. Variants are called across all coding exons, and results are filtered to focus on 48 genes that are clinically relevant to SCN. Validation results indicated 100% analytical sensitivity and specificity for the detection of constitutional variants among the 48 reportable genes. To date, 34 individuals have been referred for testing (age range: birth to 67 years). Several pathogenic and likely pathogenic variants have been identified, including one in a patient with late-onset disease. The pattern of cases referred for testing suggests that this assay has clinical utility in a broader spectrum of patients beyond those in the pediatric population who have classic early-onset symptoms characteristic of SCN.
Collapse
Affiliation(s)
- Samantha N McNulty
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Evenson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Meaghan Riley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; Summit Pathology, Loveland, Colorado
| | - Jennifer M Yoest
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Meagan M Corliss
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan W Heusel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - John D Pfeifer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
36
|
Novel Frameshift Autosomal Recessive Loss-of-Function Mutation in SMARCD2 Encoding a Chromatin Remodeling Factor Mediates Granulopoiesis. J Clin Immunol 2020; 41:59-65. [PMID: 33025377 DOI: 10.1007/s10875-020-00878-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE Recently, a new form of congenital neutropenia that is caused by germline biallelic loss-of-function mutations in the SMARCD2 gene was described in four patients. Given the rarity of the condition, the clinical spectrum of the disease has remained elusive. We here report a new patient with a novel frameshift mutation and compare our patient with the previously reported SMARCD2-mutant patients, aiming to provide a more comprehensive understanding of the natural course of the disease. METHODS Clinical and laboratory findings of all reported patients were reviewed. Next-generation sequencing was performed to identify the causative genetic defect. Data on the hematopoietic stem cell transplantation including stem cell sources, conditioning regimen, engraftment, graft-versus-host disease, and infections were also collected. RESULTS An 11-year-old female patient had a variety of infections including sepsis, deep tissue abscesses, otitis, pneumonia, gingivitis, and diarrhea since infancy. A novel homozygous mutation in SMARCD2 (c.93delG, p.Ala32Argfs*80) was detected. Bone marrow examination showed hypocellularity and decreased neutrophils with diminished granules and myeloid dysplasia, but no blast excess as in previously reported patients. The neutropenia was non-responsive even to higher doses of granulocyte colony-stimulating factor (G-CSF); therefore, the patient was transplanted at 10 years of age from a HLA-A allele-mismatched unrelated donor using a reduced toxicity conditioning regimen and recovered successfully. Compared with the previous four cases, our patient showed longer survival before transplantation without blastic transformation. CONCLUSION Distinctive myeloid features and long-term follow-up including therapy options are presented for the newly described case of SMARCD2 deficiency. This disorder is apparent at infancy and requires early transplantation due to the unrelenting disease course despite conventional therapy.
Collapse
|
37
|
VanWinkle PE, Parish F, Edwards YJK, Sztul E. JAGN1, tetraspanins, and Erv proteins: is common topology indicative of common function in cargo sorting? Am J Physiol Cell Physiol 2020; 319:C667-C674. [PMID: 32783652 DOI: 10.1152/ajpcell.00436.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The endoplasmic reticulum protein Jagunal (JAGN1) was first identified as a requirement for Drosophila melanogaster oocyte development. Subsequent studies in human patients linked mutations in JAGN1 to severe congenital neutropenia, as well as a broad range of additional symptoms, suggesting that JAGN1 function is required in many tissues. Moreover, JAGN1 orthologs are found throughout animal and plant phylogeny, suggesting that JAGN1 supports fundamental cellular processes not restricted to egg development or neutrophil function. JAGN1 lacks sequence similarity or recognizable domains other than a coatomer protein complex I-binding motif, and its cellular function is currently unknown. JAGN1 shares a tetraspanning membrane topology with two families of known cargo transporters: the tetraspanins and the endoplasmic reticulum vesicle (Erv) proteins. Herein, we discuss the similarities between JAGN1, tetraspanins, and Ervs and, based on those, suggest a role for JAGN1 in facilitating the traffic of cell-restricted and ubiquitously expressed proteins at the endoplasmic reticulum-Golgi interface.
Collapse
Affiliation(s)
- Peyton E VanWinkle
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Felicia Parish
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yvonne J K Edwards
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
38
|
Mangaonkar AA, Patnaik MM. Hereditary Predisposition to Hematopoietic Neoplasms: When Bloodline Matters for Blood Cancers. Mayo Clin Proc 2020; 95:1482-1498. [PMID: 32571604 DOI: 10.1016/j.mayocp.2019.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
With the advent of precision genomics, hereditary predisposition to hematopoietic neoplasms- collectively known as hereditary predisposition syndromes (HPS)-are being increasingly recognized in clinical practice. Familial clustering was first observed in patients with leukemia, which led to the identification of several germline variants, such as RUNX1, CEBPA, GATA2, ANKRD26, DDX41, and ETV6, among others, now established as HPS, with tendency to develop myeloid neoplasms. However, evidence for hereditary predisposition is also apparent in lymphoid and plasma--cell neoplasms, with recent discoveries of germline variants in genes such as IKZF1, SH2B3, PAX5 (familial acute lymphoblastic leukemia), and KDM1A/LSD1 (familial multiple myeloma). Specific inherited bone marrow failure syndromes-such as GATA2 haploinsufficiency syndromes, short telomere syndromes, Shwachman-Diamond syndrome, Diamond-Blackfan anemia, severe congenital neutropenia, and familial thrombocytopenias-also have an increased predisposition to develop myeloid neoplasms, whereas inherited immune deficiency syndromes, such as ataxia-telangiectasia, Bloom syndrome, Wiskott Aldrich syndrome, and Bruton agammaglobulinemia, are associated with an increased risk for lymphoid neoplasms. Timely recognition of HPS is critical to ensure safe choice of donors and/or conditioning-regimen intensity for allogeneic hematopoietic stem-cell transplantation and to enable direction of appropriate genomics-driven personalized therapies. The purpose of this review is to provide a comprehensive overview of HPS and serve as a useful reference for clinicians to recognize relevant signs and symptoms among patients to enable timely screening and referrals to pursue germline assessment. In addition, we also discuss our institutional approach toward identification of HPS and offer a stepwise diagnostic and management algorithm.
Collapse
Affiliation(s)
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
39
|
Nonsense Suppression Therapy: New Hypothesis for the Treatment of Inherited Bone Marrow Failure Syndromes. Int J Mol Sci 2020; 21:ijms21134672. [PMID: 32630050 PMCID: PMC7369780 DOI: 10.3390/ijms21134672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a group of cancer-prone genetic diseases characterized by hypocellular bone marrow with impairment in one or more hematopoietic lineages. The pathogenesis of IBMFS involves mutations in several genes which encode for proteins involved in DNA repair, telomere biology and ribosome biogenesis. The classical IBMFS include Shwachman–Diamond syndrome (SDS), Diamond–Blackfan anemia (DBA), Fanconi anemia (FA), dyskeratosis congenita (DC), and severe congenital neutropenia (SCN). IBMFS are associated with high risk of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and solid tumors. Unfortunately, no specific pharmacological therapies have been highly effective for IBMFS. Hematopoietic stem cell transplantation provides a cure for aplastic or myeloid neoplastic complications. However, it does not affect the risk of solid tumors. Since approximately 28% of FA, 24% of SCN, 21% of DBA, 20% of SDS, and 17% of DC patients harbor nonsense mutations in the respective IBMFS-related genes, we discuss the use of the nonsense suppression therapy in these diseases. We recently described the beneficial effect of ataluren, a nonsense suppressor drug, in SDS bone marrow hematopoietic cells ex vivo. A similar approach could be therefore designed for treating other IBMFS. In this review we explain in detail the new generation of nonsense suppressor molecules and their mechanistic roles. Furthermore, we will discuss strengths and limitations of these molecules which are emerging from preclinical and clinical studies. Finally we discuss the state-of-the-art of preclinical and clinical therapeutic studies carried out for IBMFS.
Collapse
|
40
|
Jung S, Gies V, Korganow AS, Guffroy A. Primary Immunodeficiencies With Defects in Innate Immunity: Focus on Orofacial Manifestations. Front Immunol 2020; 11:1065. [PMID: 32625202 PMCID: PMC7314950 DOI: 10.3389/fimmu.2020.01065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
The field of primary immunodeficiencies (PIDs) is rapidly evolving. Indeed, the number of described diseases is constantly increasing thanks to the rapid identification of novel genetic defects by next-generation sequencing. PIDs are now rather referred to as “inborn errors of immunity” due to the association between a wide range of immune dysregulation-related clinical features and the “prototypic” increased infection susceptibility. The phenotypic spectrum of PIDs is therefore very large and includes several orofacial features. However, the latter are often overshadowed by severe systemic manifestations and remain underdiagnosed. Patients with impaired innate immunity are predisposed to a variety of oral manifestations including oral infections (e.g., candidiasis, herpes gingivostomatitis), aphthous ulcers, and severe periodontal diseases. Although less frequently, they can also show orofacial developmental abnormalities. Oral lesions can even represent the main clinical manifestation of some PIDs or be inaugural, being therefore one of the first features indicating the existence of an underlying immune defect. The aim of this review is to describe the orofacial features associated with the different PIDs of innate immunity based on the new 2019 classification from the International Union of Immunological Societies (IUIS) expert committee. This review highlights the important role played by the dentist, in close collaboration with the multidisciplinary medical team, in the management and the diagnostic of these conditions.
Collapse
Affiliation(s)
- Sophie Jung
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), Pôle de Médecine et de Chirurgie Bucco-Dentaires, Strasbourg, France.,Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France
| | - Vincent Gies
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Université de Strasbourg, Faculté de Pharmacie, Illkirch-Graffenstaden, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France
| | - Anne-Sophie Korganow
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Aurélien Guffroy
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| |
Collapse
|
41
|
Van Nieuwenhove E, Barber JS, Neumann J, Smeets E, Willemsen M, Pasciuto E, Prezzemolo T, Lagou V, Seldeslachts L, Malengier-Devlies B, Metzemaekers M, Haßdenteufel S, Kerstens A, van der Kant R, Rousseau F, Schymkowitz J, Di Marino D, Lang S, Zimmermann R, Schlenner S, Munck S, Proost P, Matthys P, Devalck C, Boeckx N, Claessens F, Wouters C, Humblet-Baron S, Meyts I, Liston A. Defective Sec61α1 underlies a novel cause of autosomal dominant severe congenital neutropenia. J Allergy Clin Immunol 2020; 146:1180-1193. [PMID: 32325141 PMCID: PMC7649975 DOI: 10.1016/j.jaci.2020.03.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022]
Abstract
Background The molecular cause of severe congenital neutropenia (SCN) is unknown in 30% to 50% of patients. SEC61A1 encodes the α-subunit of the Sec61 complex, which governs endoplasmic reticulum protein transport and passive calcium leakage. Recently, mutations in SEC61A1 were reported to be pathogenic in common variable immunodeficiency and glomerulocystic kidney disease. Objective Our aim was to expand the spectrum of SEC61A1-mediated disease to include autosomal dominant SCN. Methods Whole exome sequencing findings were validated, and reported mutations were compared by Western blotting, Ca2+ flux assays, differentiation of transduced HL-60 cells, in vitro differentiation of primary CD34 cells, quantitative PCR for unfolded protein response (UPR) genes, and single-cell RNA sequencing on whole bone marrow. Results We identified a novel de novo missense mutation in SEC61A1 (c.A275G;p.Q92R) in a patient with SCN who was born to nonconsanguineous Belgian parents. The mutation results in diminished protein expression, disturbed protein translocation, and an increase in calcium leakage from the endoplasmic reticulum. In vitro differentiation of CD34+ cells recapitulated the patient’s clinical arrest in granulopoiesis. The impact of Q92R-Sec61α1 on neutrophil maturation was validated by using HL-60 cells, in which transduction reduced differentiation into CD11b+CD16+ cells. A potential mechanism for this defect is the uncontrolled initiation of the unfolded protein stress response, with single-cell analysis of primary bone marrow revealing perturbed UPR in myeloid precursors and in vitro differentiation of primary CD34+ cells revealing upregulation of CCAAT/enhancer-binding protein homologous protein and immunoglobulin heavy chain binding protein UPR-response genes. Conclusion Specific mutations in SEC61A1 cause SCN through dysregulation of the UPR.
Collapse
Affiliation(s)
- Erika Van Nieuwenhove
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - John S Barber
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Julika Neumann
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Elien Smeets
- Department of Cellular and Molecular Medicine, Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium
| | - Mathijs Willemsen
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Emanuela Pasciuto
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Teresa Prezzemolo
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Vasiliki Lagou
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Laura Seldeslachts
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Department of Microbiology and Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sarah Haßdenteufel
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Axelle Kerstens
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; VIB Bio Imaging Core & Department for Neuroscience, KU Leuven, Leuven, Belgium
| | - Rob van der Kant
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine, Switch Laboratory, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine, Switch Laboratory, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine, Switch Laboratory, KU Leuven, Leuven, Belgium
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center, Polytechnic University of Marche, Ancona, Italy
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Susan Schlenner
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
| | - Sebastian Munck
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; VIB Bio Imaging Core & Department for Neuroscience, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology and Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Christine Devalck
- Department of Hemato-Oncology, Hôpital Universitaire Des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Nancy Boeckx
- Department of Oncology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Frank Claessens
- Department of Cellular and Molecular Medicine, Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology and Immunology, Immunobiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium; ERN-RITA Executive Board, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven, Belgium; ERN-RITA Core Center, Leuven, Belgium.
| | - Adrian Liston
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.
| |
Collapse
|
42
|
Yilmaz Karapinar D, Özdemir HH, Akinci B, Yaşar AŞ, Siviş ZÖ, Onay H, Özkinay F. Management of a Patient With Congenital Biallelic CSF3R Mutation With GM-CSF. J Pediatr Hematol Oncol 2020; 42:e164-e166. [PMID: 30499904 DOI: 10.1097/mph.0000000000001359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Severe Congenital Neutropenia (SCN) is a rare inherited disease characterized by an absolute neutrophil count (ANC) lower than 500/μL. Genetic heterogeneity and biallelic CSF3R mutation has rarely been identified as an underlying genetic defect in SCN. The majority of SCN patients respond to granulocyte colony stimulating factor treatment; however, in patients with inherited CSF3R mutation, ANC cannot generally be increased with granulocyte colony stimulating factor treatment. In such cases, granulocyte macrophage colony stimulating factor presents as an effective treatment option. Herein, we report a case of a 5-year-old SCN girl with homozygous c610-611 del ins AG (p.Q204R) mutation in the CSF3R gene, who was successfully treated with granulocyte macrophage colony stimulating factor.
Collapse
Affiliation(s)
| | | | | | | | | | - Hüseyin Onay
- Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ferda Özkinay
- Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
43
|
Abstract
The technological advances in diagnostics and therapy of primary immunodeficiency are progressing at a fast pace. This review examines recent developments in the field of inborn errors of immunity, from their definition to their treatment. We will summarize the challenges posed by the growth of next-generation sequencing in the clinical setting, touch briefly on the expansion of the concept of inborn errors of immunity beyond the classic immune system realm, and finally review current developments in targeted therapies, stem cell transplantation, and gene therapy.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| |
Collapse
|
44
|
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19:253-275. [DOI: 10.1038/s41573-019-0054-z] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
45
|
Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Francisco
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiago Ferro
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, Department of Development and Regeneration, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
46
|
Arunachalam AK, Suresh H, Edison ES, Korula A, Aboobacker FN, George B, Shaji RV, Mathews V, Balasubramanian P. Screening of genetic variants in ELANE mutation negative congenital neutropenia by next generation sequencing. J Clin Pathol 2019; 73:322-327. [PMID: 31732620 DOI: 10.1136/jclinpath-2019-206306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
AIMS Congenital neutropenia (CN) is a rare inherited disease that results in recurrent, life-threatening bacterial infections due to a deficiency of mature neutrophils. They are usually caused by heterozygous ELANE mutations although mutations in other genes like HAX-1, G6PC3 and GFI1 have also been reported. Identifying the causative mutation aids in the establishment of diagnosis and rules out other secondary causes of neutropenia like autoimmune cytopenia and evolving aplasia. We aimed to identify the molecular defects in CN patients who had no mutations in ELANE gene, by next generation sequencing (NGS) targeting a customised panel of genes. METHODS DNA samples were sequenced with an Illumina NextSeq sequencer using an in-house customised panel of genes at ≥100× depth. Bioinformatics analysis was carried out and the pathogenic variants were identified using a stepwise filtering and analysis strategy. Specific mutations identified were subsequently validated by Sanger sequencing. RESULTS The pathogenic variants identified in the study includes previously reported variants in SBDS (compound heterozygous c.258+2T>C and c.1A>T), GATA2 (heterozygous c.1186C>T) and novel variants in WAS (hemizygous c.812T>C), JAGN1 (homozygous c.70G>A) and RTEL1 (heterozygous c.2893G>C) genes. CONCLUSION This study highlights that the absence of ELANE mutations does not rule out the diagnosis of CN and this NGS based approach with a customised panel will help in diagnostic confirmation in such patients. The early onset of the disease, clinical severity and associated high risk of malignant transformation in CN strongly suggests the need for early diagnosis and therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Anu Korula
- Clinical Haematology, Christian Medical College, Vellore, India
| | | | - Biju George
- Clinical Haematology, Christian Medical College, Vellore, India
| | | | - Vikram Mathews
- Clinical Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
47
|
Duroy PO, Bosshard S, Schmid-Siegert E, Neuenschwander S, Arib G, Lemercier P, Masternak J, Roesch L, Buron F, Girod PA, Xenarios I, Mermod N. Characterization and mutagenesis of Chinese hamster ovary cells endogenous retroviruses to inactivate viral particle release. Biotechnol Bioeng 2019; 117:466-485. [PMID: 31631325 PMCID: PMC7003738 DOI: 10.1002/bit.27200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
The Chinese hamster ovary (CHO) cells used to produce biopharmaceutical proteins are known to contain type‐C endogenous retrovirus (ERV) sequences in their genome and to release retroviral‐like particles. Although evidence for their infectivity is missing, this has raised safety concerns. As the genomic origin of these particles remained unclear, we characterized type‐C ERV elements at the genome, transcriptome, and viral particle RNA levels. We identified 173 type‐C ERV sequences clustering into three functionally conserved groups. Transcripts from one type‐C ERV group were full‐length, with intact open reading frames, and cognate viral genome RNA was loaded into retroviral‐like particles, suggesting that this ERV group may produce functional viruses. CRISPR‐Cas9 genome editing was used to disrupt the gag gene of the expressed type‐C ERV group. Comparison of CRISPR‐derived mutations at the DNA and RNA level led to the identification of a single ERV as the main source of the release of RNA‐loaded viral particles. Clones bearing a Gag loss‐of‐function mutation in this ERV showed a reduction of RNA‐containing viral particle release down to detection limits, without compromising cell growth or therapeutic protein production. Overall, our study provides a strategy to mitigate potential viral particle contaminations resulting from ERVs during biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Pierre-Olivier Duroy
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Present address: Selexis SA, Plan-les-Ouates, Switzerland
| | - Sandra Bosshard
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Present address: Lonza AG, Visp, Switzerland
| | | | | | | | - Philippe Lemercier
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Jacqueline Masternak
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Lucien Roesch
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Flavien Buron
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Ioannis Xenarios
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Present address: Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Mermod
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
48
|
Yılmaz Karapınar D, Patıroğlu T, Metin A, Çalışkan Ü, Celkan T, Yılmaz B, Karakaş Z, Karapınar TH, Akıncı B, Özkınay F, Onay H, Yeşilipek MA, Akar HH, Tüysüz G, Tokgöz H, Özdemir GN, Aslan Kıykım A, Karaman S, Kılınç Y, Oymak Y, Küpesiz A, Olcay L, Keskin Yıldırım Z, Aydoğan G, Gökçe M, İleri T, Aral YZ, Bay A, Atabay B, Kaya Z, Söker M, Özdemir Karadaş N, Özbek U, Özsait Selçuk B, Özdemir HH, Uygun V, Tezcan Karasu G, Yılmaz Ş. Homozygous c.130-131 ins A (pW44X) mutation in the HAX1 gene as the most common cause of congenital neutropenia in Turkey: Report from the Turkish Severe Congenital Neutropenia Registry. Pediatr Blood Cancer 2019; 66:e27923. [PMID: 31321910 DOI: 10.1002/pbc.27923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Severe congenital neutropenia is a rare disease, and autosomal dominantly inherited ELANE mutation is the most frequently observed genetic defect in the registries from North America and Western Europe. However, in eastern countries where consanguineous marriages are common, autosomal recessive forms might be more frequent. METHOD Two hundred and sixteen patients with severe congenital neutropenia from 28 different pediatric centers in Turkey were registered. RESULTS The most frequently observed mutation was HAX1 mutation (n = 78, 36.1%). A heterozygous ELANE mutation was detected in 29 patients (13.4%) in our cohort. Biallelic mutations of G6PC3 (n = 9, 4.3%), CSF3R (n = 6, 2.9%), and JAGN1 (n = 2, 1%) were also observed. Granulocyte colony-stimulating factor treatment was given to 174 patients (80.6%). Two patients died with infectious complications, and five patients developed myelodysplastic syndrome/acute myeloblastic leukemia. The mean (± mean standard error) follow-up period was 129.7 ± 76.3 months, and overall survival was 96.8% (CI, 94.4-99.1%) at the age of 15 years. In Turkey, severe congenital neutropenia mostly resulted from the p W44X mutation in the HAX1 gene. CONCLUSION In Turkey, mutation analysis should be started with HAX1, and if this is negative, ELANE and G6PC3 should be checked. Because of the very high percentage of consanguineous marriage, rare mutations should be tested in patients with a negative mutation screen.
Collapse
Affiliation(s)
| | - Türkan Patıroğlu
- Department of Pediatric Immunology, Erciyes University Faculty of Medicine, İzmir, Turkey
| | - Ayşe Metin
- Department of Pediatric Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Ümran Çalışkan
- Department of Pediatric Hematology-Oncology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Tiraje Celkan
- Department of Pediatric Hematology, Cerrahpaşa Medical Faculty, İstanbul University, Istanbul, Turkey
| | - Barış Yılmaz
- Department of Pediatric Hematology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Zeynep Karakaş
- Department of Pediatric Hematology-Oncology, İstanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Tuba H Karapınar
- Department of Pediatric Hematology-Oncology, Dr. Behçet Uz Children Research and Training Hospital, İzmir, Turkey
| | - Burcu Akıncı
- Department of Pediatric Hematology, Ege University Faculty of Medicine, İzmir, Turkey
| | - Ferda Özkınay
- Department of Pediatric Genetic, Ege University Faculty of Medicine, İzmir, Turkey
| | - Hüseyin Onay
- Department of Medical Genetic, Ege University Faculty of Medicine, İzmir, Turkey
| | - Mehmet Akif Yeşilipek
- Pediatric Bone Marrow Transplantation Unit, Medical Park Göztepe Hospital, Istanbul, Turkey
| | - Himmet Haluk Akar
- Department of Pediatric Immunology, Erciyes University Faculty of Medicine, İzmir, Turkey
| | - Gülen Tüysüz
- Department of Pediatric Hematology, Akdeniz University Medical School, Antalya, Turkey
| | - Hüseyin Tokgöz
- Department of Pediatric Hematology-Oncology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Gül Nihal Özdemir
- Department of Pediatric Hematology, Cerrahpaşa Medical Faculty, İstanbul University, Istanbul, Turkey
| | - Ayça Aslan Kıykım
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Serap Karaman
- Department of Pediatric Hematology-Oncology, İstanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Yurdanur Kılınç
- Department of Pediatric Hematology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Yeşim Oymak
- Department of Pediatric Hematology-Oncology, Dr. Behçet Uz Children Research and Training Hospital, İzmir, Turkey
| | - Alphan Küpesiz
- Department of Pediatric Hematology, Akdeniz University Medical School, Antalya, Turkey
| | - Lale Olcay
- Department of Pediatric Hematology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Zuhal Keskin Yıldırım
- Department of Pediatric Hematology, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Gönül Aydoğan
- Department of Pediatric Hematology, Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey
| | - Müge Gökçe
- Department of Pediatric Bone marrow Transplantation Unit, Yeni Yüzyıl Üniversitesi, Gaziosmanpaşa Hastanesi, Istanbul, Turkey
| | - Talia İleri
- Department of Pediatric Hematology, Ankara University Medical Faculty, Ankara, Turkey
| | - Yusuf Ziya Aral
- Department of Pediatric Hematology, Adnan Menderes University Faculty of Medicine, Aydın, Turkey
| | - Ali Bay
- Department of Pediatric Hematology, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Berna Atabay
- Department of Pediatric Hematology, Tepecik Teaching and Research Hospital, İzmir, Turkey
| | - Zuhre Kaya
- Department of Pediatric Hematology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Murat Söker
- Department of Pediatric Hematology, Dicle University Faculty of Medicine, Diyarbakır, Turkey
| | | | - Uğur Özbek
- Department of Genetics, İstanbul University Faculty of Medicine, Istanbul, Turkey
| | - Bilge Özsait Selçuk
- Department of Genetics, İstanbul University Faculty of Medicine, Istanbul, Turkey
| | - Hamiyet Hekimci Özdemir
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Vedat Uygun
- Pediatric Bone Marrow Transplantation Unit, Medical Park Antalya Hospital, Antalya, Turkey
| | - Gülsün Tezcan Karasu
- Pediatric Bone Marrow Transplantation Unit, Medical Park Antalya Hospital, Antalya, Turkey
| | - Şebnem Yılmaz
- Department of Pediatric Hematology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
49
|
Soehnlein O. Neutrophil Research, Quo Vadis? Trends Immunol 2019; 40:561-564. [PMID: 31133465 DOI: 10.1016/j.it.2019.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/12/2023]
Abstract
In recent years, great progress has been made to understand how neutrophils contribute to homeostatic regulation, tumor progression, and chronic inflammation. Here, I highlight a few salient basic questions to be addressed in the field. Ideally, future investigations along these lines can contribute to identifying possible means of therapeutically interfering with neutrophil effector functions to fine-tune innate immunity.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Department of Physiology and Pharmacology and Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Institute for Cardiovascular Prevention (IPEK), Klinikum der LMU München, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich, Munich, Germany.
| |
Collapse
|
50
|
Cifaldi C, Serafinelli J, Petricone D, Brigida I, Di Cesare S, Di Matteo G, Chiriaco M, De Vito R, Palumbo G, Rossi P, Palma P, Cancrini C, Aiuti A, Finocchi A. Next-Generation Sequencing Reveals A JAGN1 Mutation in a Syndromic Child With Intermittent Neutropenia. J Pediatr Hematol Oncol 2019; 41:e266-e269. [PMID: 30044346 DOI: 10.1097/mph.0000000000001256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Jagunal homolog 1 (JAGN1) gene was identified as a novel responsible for severe congenital neutropenia. The protein encoded by this gene is required for neutrophil differentiation, survival and function in microbial activity. JAGN1-deficient human neutrophils are characterized by alterations in trafficking within the endoplasmic reticulum and golgi compartments because of ultrastructural defects in endoplasmic reticulum and susceptibility to apoptosis. OBSERVATIONS We report a patient exhibiting an intermittent neutropenia, for which a next-generation sequencing revealed a homozygous mutation in the JAGN1 gene. CONCLUSIONS The patient extends the clinical variability associated to JAGN1 mutations, and this case highlights the importance of genetic investigations in patients with suspected neutropenia.
Collapse
Affiliation(s)
- Cristina Cifaldi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù
| | - Jessica Serafinelli
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù
| | - Davide Petricone
- Department of Systems Medicine, "University of Rome Tor Vergata," Rome
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute
| | - Silvia Di Cesare
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù
| | | | - Maria Chiriaco
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù
| | - Rita De Vito
- Department of Pathology and Molecular Histopathology, Bambino Gesù Children's Hospital IRCCS
| | - Giuseppe Palumbo
- University Department of Pediatrics, Unit of Hematology and Oncology, Bambino Gesù Children's Hospital
| | - Paolo Rossi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù.,Department of Systems Medicine, "University of Rome Tor Vergata," Rome
| | - Paolo Palma
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù
| | - Caterina Cancrini
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù.,Department of Systems Medicine, "University of Rome Tor Vergata," Rome
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute.,Vita Salute San Raffaele University.,Pediatric Immunohematology, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Finocchi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù.,Department of Systems Medicine, "University of Rome Tor Vergata," Rome
| |
Collapse
|