1
|
Yang L, Huang Y, Peng Y, Sun Q, Zhang D, Yang S, Song J, Sun X, Lv C, Zhang X, Fang Z. Chaperone-mediated autophagy (CMA) confers neuroprotection of HBO preconditioning against stroke. Brain Res 2024; 1846:149315. [PMID: 39522743 DOI: 10.1016/j.brainres.2024.149315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Previous attempts to identify neuroprotective targets for acute ischemic stroke by studying ischemic cascades and devising ways to suppress these pathways have failed in translational research. We hypothesized that studying the molecular determinants of endogenous neuroprotection, namely, the tolerance against ischemic stroke conferred by hyperbaric oxygen (HBO) preconditioning, via a well-established paradigm would reveal new neuroprotective targets. By a combination of proteomics, KEGG pathway analysis, lysosome fraction and western blot analysis, we found that chaperone-mediated autophagy (CMA) was activated by HBO preconditioning. In addition, LAMP2A is uniquely decreased in cortical neurons in the early stage of stroke. Suppression of CMA with recombinant adeno-associated viral vector (rAAV)-mediated delivery of short hairpin RNAs (shRNAs) targeting the LAMP2A transcript increased the neuronal susceptibility of apoptosis and abolished the neuroprotection induced by HBO preconditioning. Administration of the clinically utilized FDA-approved drug mycophenolate mofetil induced long-term neuroprotection post-stroke in a CMA-dependent manner. In summary, HBO preconditioning confers neuroprotection against ischemia by inducing CMA, which is a promising translational treatment target for stroke.
Collapse
Affiliation(s)
- Lin Yang
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, PR China
| | - Yuan Huang
- Department of Critical Care Medicine, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China
| | - Yuliang Peng
- Department of Critical Care Medicine, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China
| | - Qingyu Sun
- Department of Critical Care Medicine, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China
| | - Ding Zhang
- Department of Critical Care Medicine, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China
| | - Shulin Yang
- Department of Critical Care Medicine, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China
| | - Jian Song
- Department of Critical Care Medicine, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China
| | - Xiaoxiao Sun
- Department of Critical Care Medicine, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China
| | - Chuan Lv
- Department of Plastic and Reconstructive Surgery, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China
| | - Xijing Zhang
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, PR China
| | - Zongping Fang
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi, PR China; Department of Critical Care Medicine, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, PR China.
| |
Collapse
|
2
|
Wang Z, Yang L, Feng Y, Duan B, Zhang H, Tang Y, Zhang C, Yang J. Isoorientin Alleviates DSS-Treated Acute Colitis in Mice by Regulating Intestinal Epithelial P-Glycoprotein (P-gp) Expression. DNA Cell Biol 2024; 43:520-536. [PMID: 39180442 DOI: 10.1089/dna.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024] Open
Abstract
Isoorientin (ISO) is a naturally occurring flavonoid with diverse functional properties that mitigate the risk of diseases stemming from oxidation, inflammation, and cancer cell proliferation. P-glycoprotein (P-gp) is a vital component of the intestinal epithelium and may play a role in the onset of intestinal inflammatory conditions, such as inflammatory bowel disease (IBD). Recent studies have suggested that short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) produced by the gut microbiota stimulate the increase of P-gp expression, alleviating excessive inflammation and thereby preservation of intestinal homeostasis. ISO has been shown to improve colon health and modulate the gut microbiota. In this study, we aimed to explore whether ISO can modulate the microbes and their metabolites to influence P-gp expression to alleviate IBD. First, the impact of ISO on dextran sulfate sodium (DSS)-treated colitis in mice was investigated. Second, 16S rRNA gene sequencing was conducted. The present study indicated that ISO mitigated the symptoms and pathological damage associated with DSS-treated colitis in mice. Western blot analysis revealed ISO upregulated P-gp in colon tissues, suggesting the critical role of P-gp protein in intestinal epithelial cells. 16S microbial diversity sequencing revealed ISO restored the richness and variety of intestinal microorganisms in colitis-bearing mice and enriched SCFA-producing bacteria, such as Lachnospiraceae_NK4A136_group. The experiments also revealed that the ISO fecal microbiota transplantation (FMT) inoculation of DSS-treated mice had similarly beneficial results. FMT mice showed a reduction in colitis symptoms, which was more pronounced in ISO-FMT than in CON-FMT mice. Meanwhile, ISO-FMT expanded the abundance of beneficial microorganisms, increased the expression of metabolites, such as SCFAs and total SBAs, and significantly upregulated the expression of P-gp protein. In addition, Spearman's correlation analysis demonstrated a positive correlation between the production of SCFAs and SBAs and the expression of P-gp. The present study identified that ISO increases the expression of P-gp in the intestinal epithelium by regulating intestinal microorganisms and their metabolites, which maintains colonic homeostasis, improves the integrity of the colonic epithelium, and alleviates colitis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lanzhu Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yun Feng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bensong Duan
- Department of Gastroenterology Shanghai East Hospital, School of Medicine, Endoscopy Center, Tongji University, Shanghai, China
| | - Haibin Zhang
- Department of Gastroenterology Shanghai East Hospital, School of Medicine, Endoscopy Center, Tongji University, Shanghai, China
| | - Yanru Tang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Caihang Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingya Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| |
Collapse
|
3
|
Beard DJ, Brown LS, Morris GP, Couch Y, Adriaanse BA, Karali CS, Schneider AM, Howells DW, Redzic ZB, Sutherland BA, Buchan AM. Rapamycin Treatment Reduces Brain Pericyte Constriction in Ischemic Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01298-x. [PMID: 39331260 DOI: 10.1007/s12975-024-01298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The contraction and subsequent death of brain pericytes may play a role in microvascular no-reflow following the reopening of an occluded artery during ischemic stroke. Mammalian target of rapamycin (mTOR) inhibition has been shown to reduce motility/contractility of various cancer cell lines and reduce neuronal cell death in stroke. However, the effects of mTOR inhibition on brain pericyte contraction and death during ischemia have not yet been investigated. Cultured pericytes exposed to simulated ischemia for 12 h in vitro contracted after less than 1 h, which was about 7 h prior to cell death. Rapamycin significantly reduced the rate of pericyte contraction during ischemia; however, it did not have a significant effect on pericyte viability at any time point. Rapamycin appeared to reduce pericyte contraction through a mechanism that is independent of changes in intracellular calcium. Using a mouse model of middle cerebral artery occlusion, we showed that rapamycin significantly increased the diameter of capillaries underneath pericytes and increased the number of open capillaries 30 min following recanalisation. Our findings suggest that rapamycin may be a useful adjuvant therapeutic to reduce pericyte contraction and improve cerebral reperfusion post-stroke.
Collapse
Affiliation(s)
- Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
| | - Lachlan S Brown
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Gary P Morris
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Anna M Schneider
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - David W Howells
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Zoran B Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia.
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Chen Y, Zhang Y, Wu Q, Chen J, Deng Y. The neuroprotective effect of Chinese herbal medicine for cerebral ischemia reperfusion injury through regulating mitophagy. Front Pharmacol 2024; 15:1378358. [PMID: 38895624 PMCID: PMC11183336 DOI: 10.3389/fphar.2024.1378358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
The incidence of ischemic stroke has been increasing annually with an unfavorable prognosis. Cerebral ischemia reperfusion injury can exacerbate nerve damage. Effective mitochondrial quality control including mitochondrial fission, fusion and autophagy, is crucial for maintaining cellular homeostasis. Several studies have revealed the critical role of mitophagy in Cerebral ischemia reperfusion injury. Cerebral ischemia and hypoxia induce mitophagy, and mitophagy exhibits positive and negative effects in cerebral ischemia reperfusion injury. Studies have shown that Chinese herbal medicine can alleviate Cerebral ischemia reperfusion injury and serve as a neuroprotective agent by inhibiting or promoting mitophagy-mediated pathways. This review focuses on the mitochondrial dynamics and mitophagy-related pathways, as well as the role of mitophagy in ischemia reperfusion injury. Additionally, it discusses the therapeutic potential and benefits of Chinese herbal monomers and decoctions in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yanling Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yanan Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qin Wu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yihui Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Abu-Baih RH, Abu-Baih DH, Abdel-Hafez SMN, Fathy M. Activation of SIRT1/Nrf2/HO-1 and Beclin-1/AMPK/mTOR autophagy pathways by eprosartan ameliorates testicular dysfunction induced by testicular torsion in rats. Sci Rep 2024; 14:12566. [PMID: 38822026 PMCID: PMC11143266 DOI: 10.1038/s41598-024-62740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Testicular torsion carries the ominous prospect of inducing acute scrotal distress and the perilous consequence of testicular atrophy, necessitating immediate surgical intervention to reinstate vital testicular perfusion, notwithstanding the paradoxical detrimental impact of reperfusion. Although no drugs have secured approval for this urgent circumstance, antioxidants emerge as promising candidates. This study aspires to illustrate the influence of eprosartan, an AT1R antagonist, on testicular torsion in rats. Wistar albino rats were meticulously separated into five groups, (n = 6): sham group, eprosartan group, testicular torsion-detorsion (T/D) group, and two groups of T/D treated with two oral doses of eprosartan (30 or 60 mg/kg). Serum testosterone, sperm analysis and histopathological examination were done to evaluate spermatogenesis. Oxidative stress markers were assessed. Bax, BCL-2, SIRT1, Nrf2, HO-1 besides cleaved caspase-3 testicular contents were estimated using ELISA or qRT-PCR. As autophagy markers, SQSTM-1/p62, Beclin-1, mTOR and AMPK were investigated. Our findings highlight that eprosartan effectively improved serum testosterone levels, testicular weight, and sperm count/motility/viability, while mitigating histological irregularities and sperm abnormalities induced by T/D. This recovery in testicular function was underpinned by the activation of the cytoprotective SIRT1/Nrf2/HO-1 axis, which curtailed testicular oxidative stress, indicated by lowering the MDA content and increasing GSH content. In terms of apoptosis, eprosartan effectively countered apoptotic processes by decreasing cleaved caspase-3 content, suppressing Bax and stimulating Bcl-2 gene expression. Simultaneously, it reactivated impaired autophagy by increasing Beclin-1 expression, decreasing the expression of SQSTM-1/p62 and modulate the phosphorylation of AMPK and mTOR proteins. Eprosartan hold promise for managing testicular dysfunction arising from testicular torsion exerting antioxidant, pro-autophagic and anti-apoptotic effect via the activation of SIRT1/Nrf2/HO-1 as well as Beclin-1/AMPK/mTOR pathways.
Collapse
Affiliation(s)
- Rania H Abu-Baih
- Faculty of Pharmacy, Drug Information Center, Minia University, Minia, 61519, Egypt
| | - Dalia H Abu-Baih
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
- Deraya Center for Scientific Research, Deraya University, Minia, 61111, Egypt
| | | | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
6
|
Wang X, Li A, Fan H, Li Y, Yang N, Tang Y. Astrocyte-Derived Extracellular Vesicles for Ischemic Stroke: Therapeutic Potential and Prospective. Aging Dis 2024; 15:1227-1254. [PMID: 37728588 PMCID: PMC11081164 DOI: 10.14336/ad.2023.0823-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Stroke is a leading cause of death and disability in the world. Astrocytes are special glial cells within the central nervous system and play important roles in mediating neuroprotection and repair processes during stroke. Extracellular vesicles (EVs) are lipid bilayer particles released from cells that facilitate intercellular communication in stroke by delivering proteins, lipids, and RNA to target cells. Recently, accumulating evidence suggested that astrocyte-derived EVs (ADEVs) are actively involved in mediating numerous biological processes including neuroprotection and neurorepair in stroke and they are realized as an excellent therapeutic approach for treating stroke. In this review we systematically summarize the up-to-date research on ADEVs in stroke, and prospects for its potential as a novel therapeutic target for stroke. We also provide an overview of the effects and functions of ADEVs on stroke recovery, which may lead to developing clinically relevant therapies for stroke.
Collapse
Affiliation(s)
- Xianghui Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Aihua Li
- Department of rehabilitation medicine, Jinan Hospital, Jinan, China
| | - Huaju Fan
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
| | - Yanyan Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yaohui Tang
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Stanzione R, Pietrangelo D, Cotugno M, Forte M, Rubattu S. Role of autophagy in ischemic stroke: insights from animal models and preliminary evidence in the human disease. Front Cell Dev Biol 2024; 12:1360014. [PMID: 38590779 PMCID: PMC10999556 DOI: 10.3389/fcell.2024.1360014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Stroke represents a main cause of death and permanent disability worldwide. The molecular mechanisms underlying cerebral injury in response to the ischemic insults are not completely understood. In this article, we summarize recent evidence regarding the role of autophagy in the pathogenesis of ischemic stroke by reviewing data obtained in murine models of either transient or permanent middle cerebral artery occlusion, and in the stroke-prone spontaneously hypertensive rat. Few preliminary observational studies investigating the role of autophagy in subjects at high cerebrovascular risk and in cohorts of stroke patients were also reviewed. Autophagy plays a dual role in neuronal and vascular cells by exerting both protective and detrimental effects depending on its level, duration of stress and type of cells involved. Protective autophagy exerts adaptive mechanisms which reduce neuronal loss and promote survival. On the other hand, excessive activation of autophagy leads to neuronal cell death and increases brain injury. In conclusion, the evidence reviewed suggests that a proper manipulation of autophagy may represent an interesting strategy to either prevent or reduce brain ischemic injury.
Collapse
Affiliation(s)
| | - Donatella Pietrangelo
- Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Mergenthaler P, Balami JS, Neuhaus AA, Mottahedin A, Albers GW, Rothwell PM, Saver JL, Young ME, Buchan AM. Stroke in the Time of Circadian Medicine. Circ Res 2024; 134:770-790. [PMID: 38484031 DOI: 10.1161/circresaha.124.323508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Time-of-day significantly influences the severity and incidence of stroke. Evidence has emerged not only for circadian governance over stroke risk factors, but also for important determinants of clinical outcome. In this review, we provide a comprehensive overview of the interplay between chronobiology and cerebrovascular disease. We discuss circadian regulation of pathophysiological mechanisms underlying stroke onset or tolerance as well as in vascular dementia. This includes cell death mechanisms, metabolism, mitochondrial function, and inflammation/immunity. Furthermore, we present clinical evidence supporting the link between disrupted circadian rhythms and increased susceptibility to stroke and dementia. We propose that circadian regulation of biochemical and physiological pathways in the brain increase susceptibility to damage after stroke in sleep and attenuate treatment effectiveness during the active phase. This review underscores the importance of considering circadian biology for understanding the pathology and treatment choice for stroke and vascular dementia and speculates that considering a patient's chronotype may be an important factor in developing precision treatment following stroke.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Department of Neurology with Experimental Neurology (P.M.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Joyce S Balami
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Ain A Neuhaus
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, United Kingdom (A.A.N.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Amin Mottahedin
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Gregory W Albers
- Department of Neurology, Stanford Hospital, Palo Alto, CA (G.W.A.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Peter M Rothwell
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences (P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, Geffen School of Medicine, University of Los Angeles, CA (J.L.S.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham (M.E.Y.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Alastair M Buchan
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| |
Collapse
|
9
|
Li YY, Qin ZH, Sheng R. The Multiple Roles of Autophagy in Neural Function and Diseases. Neurosci Bull 2024; 40:363-382. [PMID: 37856037 PMCID: PMC10912456 DOI: 10.1007/s12264-023-01120-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 10/20/2023] Open
Abstract
Autophagy involves the sequestration and delivery of cytoplasmic materials to lysosomes, where proteins, lipids, and organelles are degraded and recycled. According to the way the cytoplasmic components are engulfed, autophagy can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy. Recently, many studies have found that autophagy plays an important role in neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, neuronal excitotoxicity, and cerebral ischemia. Autophagy maintains cell homeostasis in the nervous system via degradation of misfolded proteins, elimination of damaged organelles, and regulation of apoptosis and inflammation. AMPK-mTOR, Beclin 1, TP53, endoplasmic reticulum stress, and other signal pathways are involved in the regulation of autophagy and can be used as potential therapeutic targets for neurological diseases. Here, we discuss the role, functions, and signal pathways of autophagy in neurological diseases, which will shed light on the pathogenic mechanisms of neurological diseases and suggest novel targets for therapies.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Zeylan M, Senyuz S, Picón-Pagès P, García-Elías A, Tajes M, Muñoz FJ, Oliva B, Garcia-Ojalvo J, Barbu E, Vicente R, Nattel S, Ois A, Puig-Pijoan A, Keskin O, Gursoy A. Shared Proteins and Pathways of Cardiovascular and Cognitive Diseases: Relation to Vascular Cognitive Impairment. J Proteome Res 2024; 23:560-573. [PMID: 38252700 PMCID: PMC10846560 DOI: 10.1021/acs.jproteome.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
One of the primary goals of systems medicine is the detection of putative proteins and pathways involved in disease progression and pathological phenotypes. Vascular cognitive impairment (VCI) is a heterogeneous condition manifesting as cognitive impairment resulting from vascular factors. The precise mechanisms underlying this relationship remain unclear, which poses challenges for experimental research. Here, we applied computational approaches like systems biology to unveil and select relevant proteins and pathways related to VCI by studying the crosstalk between cardiovascular and cognitive diseases. In addition, we specifically included signals related to oxidative stress, a common etiologic factor tightly linked to aging, a major determinant of VCI. Our results show that pathways associated with oxidative stress are quite relevant, as most of the prioritized vascular cognitive genes and proteins were enriched in these pathways. Our analysis provided a short list of proteins that could be contributing to VCI: DOLK, TSC1, ATP1A1, MAPK14, YWHAZ, CREB3, HSPB1, PRDX6, and LMNA. Moreover, our experimental results suggest a high implication of glycative stress, generating oxidative processes and post-translational protein modifications through advanced glycation end-products (AGEs). We propose that these products interact with their specific receptors (RAGE) and Notch signaling to contribute to the etiology of VCI.
Collapse
Affiliation(s)
- Melisa
E. Zeylan
- Computational
Sciences and Engineering, Graduate School of Science and Engineering, Koç University, Istanbul 34450, Türkiye
| | - Simge Senyuz
- Computational
Sciences and Engineering, Graduate School of Science and Engineering, Koç University, Istanbul 34450, Türkiye
| | - Pol Picón-Pagès
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Anna García-Elías
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Marta Tajes
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Francisco J. Muñoz
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Baldomero Oliva
- Laboratory
of Structural Bioinformatics (GRIB), Department of Medicine and Life
Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Jordi Garcia-Ojalvo
- Laboratory
of Dynamical Systems Biology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Eduard Barbu
- Institute
of Computer Science, University of Tartu, Tartu, 50090, Estonia
| | - Raul Vicente
- Institute
of Computer Science, University of Tartu, Tartu, 50090, Estonia
| | - Stanley Nattel
- Department
of Medicine and Research Center, Montreal Heart Institute and Université
de Montréal; Institute of Pharmacology, West German Heart and
Vascular Center, University Duisburg-Essen,
Germany; IHU LIRYC and Fondation Bordeaux Université, Bordeaux 33000, France
| | - Angel Ois
- Department
of Neurology, Hospital Del Mar. Hospital
Del Mar - Medical Research Institute and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Albert Puig-Pijoan
- Department
of Neurology, Hospital Del Mar. Hospital
Del Mar - Medical Research Institute and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Ozlem Keskin
- Department
of Chemical and Biological Engineering, Koç University, Istanbul 34450, Türkiye
| | - Attila Gursoy
- Department
of Computer Engineering, Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
11
|
Huang Y, Han M, Shi Q, Li X, Mo J, Liu Y, Chu Z, Li W. Li, P HY-021068 alleviates cerebral ischemia-reperfusion injury by inhibiting NLRP1 inflammasome and restoring autophagy function in mice. Exp Neurol 2024; 371:114583. [PMID: 37884189 DOI: 10.1016/j.expneurol.2023.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a severe pathological condition that involves oxidative stress, inflammatory response, and neuronal damage. HY-021068 belongs to a new drug of chemical class 1, which is a potential thromboxane synthase inhibitor. Our preliminary experiment found that HY-021068 has significant anti-neuroinflammatory and neuroprotective effects. However, the protective effect and mechanism of HY-021068 in CIRI remain unclear. To investigate the protective effect and mechanism of HY-021068 in CIRI mice. In mice, CIRI was induced by bilateral common carotid artery occlusion and reperfusion. Mice were treated with HY-021068 or LV-NLRP1-shRNA (lentivirus-mediated shRNA transfection to knock down NLRP1 expression). The locomotor activity, neuronal damage, pathological changes, postsynaptic density protein-95 (PSD-95) expression, NLRP1 inflammasome activation, autophagy markers, and apoptotic proteins were assessed in CIRI mice. In this study, treatment with HY-021065 and LV-NLRP1-shRNA significantly improved motor dysfunction and neuronal damage after CIRI in mice. HY-021065 and NLRP1 knockdown significantly ameliorated the pathological damage and increased PSD-95 expression in the cortex and hippocampus CA1 and CA3 regions. The further studies showed that compared with the CIRI model group, HY-021065 and NLRP1 knockdown treatment inhibited the expressions of NLRP1, ASC, caspase-1, and IL-1β, restored the expressions of p-AMPK/AMPK, Beclin1, LC3II/LC3I, p-mTOR/m-TOR and P62, and regulated the expressions of BCL-2, Caspase3, and BAX in brain tissues of CIRI mice in CIRI mice. These results suggest that HY-021068 exerts a protective role in CIRI mice by inhibiting NLRP1 inflammasome activation and regulating autophagy function and neuronal apoptosis. HY-021068 is expected to become a new therapeutic drug for CIRI.
Collapse
Affiliation(s)
- Ye Huang
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Min Han
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Qifeng Shi
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Xuewang Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Jiajia Mo
- Hefei Industrial and Pharmaceutical Co., Ltd, Hefei 230200, Anhui, China
| | - Yan Liu
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Zhaoxing Chu
- Hefei Industrial and Pharmaceutical Co., Ltd, Hefei 230200, Anhui, China.
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
12
|
Walther J, Kirsch EM, Hellwig L, Schmerbeck SS, Holloway PM, Buchan AM, Mergenthaler P. Reinventing the Penumbra - the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Transl Stroke Res 2023; 14:643-666. [PMID: 36219377 PMCID: PMC10444697 DOI: 10.1007/s12975-022-01090-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
The concept of the ischemic penumbra was originally defined as the area around a necrotic stroke core and seen as the tissue at imminent risk of further damage. Today, the penumbra is generally considered as time-sensitive hypoperfused brain tissue with decreased oxygen and glucose availability, salvageable tissue as treated by intervention, and the potential target for neuroprotection in focal stroke. The original concept entailed electrical failure and potassium release but one short of neuronal cell death and was based on experimental stroke models, later confirmed in clinical imaging studies. However, even though the basic mechanisms have translated well, conferring brain protection, and improving neurological outcome after stroke based on the pathophysiological mechanisms in the penumbra has yet to be achieved. Recent findings shape the modern understanding of the penumbra revealing a plethora of molecular and cellular pathophysiological mechanisms. We now propose a new model of the penumbra, one which we hope will lay the foundation for future translational success. We focus on the availability of glucose, the brain's central source of energy, and bioenergetic failure as core pathophysiological concepts. We discuss the relation of mitochondrial function in different cell types to bioenergetics and apoptotic cell death mechanisms, autophagy, and neuroinflammation, to glucose metabolism in what is a dynamic ischemic penumbra.
Collapse
Affiliation(s)
- Jakob Walther
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena Marie Kirsch
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lina Hellwig
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah S Schmerbeck
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul M Holloway
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alastair M Buchan
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
13
|
Deng C, Dong K, Liu Y, Chen K, Min C, Cao Z, Wu P, Luo G, Cheng G, Qing L, Tang J. Hypoxic mesenchymal stem cell-derived exosomes promote the survival of skin flaps after ischaemia-reperfusion injury via mTOR/ULK1/FUNDC1 pathways. J Nanobiotechnology 2023; 21:340. [PMID: 37735391 PMCID: PMC10514998 DOI: 10.1186/s12951-023-02098-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Flap necrosis, the most prevalent postoperative complication of reconstructive surgery, is significantly associated with ischaemia-reperfusion injury. Recent research indicates that exosomes derived from bone marrow mesenchymal stem cells (BMSCs) hold potential therapeutic applications in several diseases. Traditionally, BMSCs are cultured under normoxic conditions, a setting that diverges from their physiological hypoxic environment in vivo. Consequently, we propose a method involving the hypoxic preconditioning of BMSCs, aimed at exploring the function and the specific mechanisms of their exosomes in ischaemia-reperfusion skin flaps. This study constructed a 3 × 6 cm2 caudal superficial epigastric skin flap model and subjected it to ischaemic conditions for 6 h. Our findings reveal that exosomes from hypoxia-pretreated BMSCs significantly promoted flap survival, decrease MCP-1, IL-1β, and IL-6 levels in ischaemia-reperfusion injured flap, and reduce oxidative stress injury and apoptosis. Moreover, results indicated that Hypo-Exo provides protection to vascular endothelial cells from ischaemia-reperfusion injury both in vivo and in vitro. Through high-throughput sequencing and bioinformatics analysis, we further compared the differential miRNA expression profiles between Hypo-Exo and normoxic exosomes. Results display the enrichment of several pathways, including autophagy and mTOR. We have also elucidated a mechanism wherein Hypo-Exo promotes the survival of ischaemia-reperfusion injured flaps. This mechanism involves carrying large amounts of miR-421-3p, which target and regulate mTOR, thereby upregulating the expression of phosphorylated ULK1 and FUNDC1, and subsequently further activating autophagy. In summary, hypoxic preconditioning constitutes an effective and promising method for optimizing the therapeutic effects of BMSC-derived exosomes in the treatment of flap ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Chao Deng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Kangkang Dong
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yongjun Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ken Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Chuwei Min
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zheming Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Panfeng Wu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Gaojie Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Gechang Cheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liming Qing
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
| | - Juyu Tang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
14
|
Pluta R. The Dual Role of Autophagy in Postischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy. Int J Mol Sci 2023; 24:13793. [PMID: 37762096 PMCID: PMC10530906 DOI: 10.3390/ijms241813793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy is a self-defense and self-degrading intracellular system involved in the recycling and elimination of the payload of cytoplasmic redundant components, aggregated or misfolded proteins and intracellular pathogens to maintain cell homeostasis and physiological function. Autophagy is activated in response to metabolic stress or starvation to maintain homeostasis in cells by updating organelles and dysfunctional proteins. In neurodegenerative diseases, such as cerebral ischemia, autophagy is disturbed, e.g., as a result of the pathological accumulation of proteins associated with Alzheimer's disease and their structural changes. Postischemic brain neurodegeneration, such as Alzheimer's disease, is characterized by the accumulation of amyloid and tau protein. After cerebral ischemia, autophagy was found to be activated in neuronal, glial and vascular cells. Some studies have shown the protective properties of autophagy in postischemic brain, while other studies have shown completely opposite properties. Thus, autophagy is now presented as a double-edged sword with possible therapeutic potential in brain ischemia. The exact role and regulatory pathways of autophagy that are involved in cerebral ischemia have not been conclusively elucidated. This review aims to provide a comprehensive look at the advances in the study of autophagy behavior in neuronal, glial and vascular cells for ischemic brain injury. In addition, the importance of autophagy in neurodegeneration after cerebral ischemia has been highlighted. The review also presents the possibility of modulating the autophagy machinery through various compounds on the development of neurodegeneration after cerebral ischemia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
15
|
Melanis K, Stefanou MI, Themistoklis KM, Papasilekas T. mTOR pathway - a potential therapeutic target in stroke. Ther Adv Neurol Disord 2023; 16:17562864231187770. [PMID: 37576547 PMCID: PMC10413897 DOI: 10.1177/17562864231187770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Stroke is ranked as the second leading cause of death worldwide and a major cause of long-term disability. A potential therapeutic target that could offer favorable outcomes in stroke is the mammalian target of rapamycin (mTOR) pathway. mTOR is a serine/threonine kinase that composes two protein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), and is regulated by other proteins such as the tuberous sclerosis complex. Through a significant number of signaling pathways, the mTOR pathway can modulate the processes of post-ischemic inflammation and autophagy, both of which play an integral part in the pathophysiological cascade of stroke. Promoting or inhibiting such processes under ischemic conditions can lead to apoptosis or instead sustained viability of neurons. The purpose of this review is to examine the pathophysiological role of mTOR in acute ischemic stroke, while highlighting promising neuroprotective agents such as hamartin for therapeutic modulation of this pathway. The therapeutic potential of mTOR is also discussed, with emphasis on implicated molecules and pathway steps that warrant further elucidation in order for their neuroprotective properties to be efficiently tested in future clinical trials.
Collapse
Affiliation(s)
- Konstantinos Melanis
- Second Department of Neurology, School of Medicine and ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Rimini 1 Chaidari, Athens 12462, Greece
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine and ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos M. Themistoklis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Neurosurgery, ‘Korgialenio, Benakio, H.R.C’. General Hospital of Athens, Athens, Greece
| | - Themistoklis Papasilekas
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Neurosurgery, ‘Korgialenio, Benakio, H.R.C’. General Hospital of Athens, Athens, Greece
| |
Collapse
|
16
|
Singh A, Chen R. The Duration of Oxygen and Glucose Deprivation (OGD) Determines the Effects of Subsequent Reperfusion on Rat Pheochromocytoma (PC12) Cells and Primary Cortical Neurons. Int J Mol Sci 2023; 24:7106. [PMID: 37108268 PMCID: PMC10138834 DOI: 10.3390/ijms24087106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Reperfusion is the fundamental treatment for ischaemic stroke; however, many ischaemic stroke patients cannot undergo reperfusion treatment. Furthermore, reperfusion can cause ischaemic reperfusion injuries. This study aimed to determine the effects of reperfusion in an in vitro ischaemic stroke model-oxygen and glucose deprivation (OGD) (0.3% O2)-with rat pheochromocytoma (PC12) cells and cortical neurons. In PC12 cells, OGD resulted in a time-dependent increase in cytotoxicity and apoptosis, and reduction in MTT activity from 2 h onwards. Reperfusion following shorter periods (4 and 6 h) of OGD recovered apoptotic PC12 cells, whereas after 12 h, OGD increased LDH release. In primary neurons, 6 h OGD led to significant increase in cytotoxicity, reduction in MTT activity and dendritic MAP2 staining. Reperfusion following 6 h OGD increased the cytotoxicity. HIF-1a was stabilised by 4 and 6 h OGD in PC12 cells and 2 h OGD onwards in primary neurons. A panel of hypoxic genes were upregulated by the OGD treatments depending on the duration. In conclusion, the duration of OGD determines the mitochondrial activity, cell viability, HIF-1a stabilization, and hypoxic gene expression in both cell types. Reperfusion following OGD of short duration is neuroprotective, whereas OGD of long duration is cytotoxic.
Collapse
Affiliation(s)
| | - Ruoli Chen
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
17
|
Zhou Z, Zhang Y, Han F, Chen Z, Zheng Y. Umbelliferone protects against cerebral ischemic injury through selective autophagy of mitochondria. Neurochem Int 2023; 165:105520. [PMID: 36933866 DOI: 10.1016/j.neuint.2023.105520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Effective therapeutic treatments for ischemic stroke are limited. Previous studies suggest selective activation of mitophagy alleviates cerebral ischemic injury while excessive autophagy is detrimental. However, few compounds are available to selectively activate mitophagy without affecting autophagy flux. Here, we found that acute administration of Umbelliferone (UMB) upon reperfusion exerted neuroprotective effects against ischemic injury in mice subjected to transient middle cerebral artery occlusion (tMCAO) and suppressed oxygen-glucose deprivation reperfusion (OGD-R)-induced apoptosis in SH-SY5Y cells. Interestingly, UMB promoted the translocation of mitophagy adaptor SQSTM1 to mitochondria and further reduced the mitochondrial content as well as the expression of SQSTM1 in SHSY5Y cells after OGD-R. Importantly, both the mitochondrial loss and reduction of SQSTM1 expression after UMB incubation can be reversed by autophagy inhibitor chloroquine and wortmannin, proving the mitophagy activation by UMB. Nevertheless, UMB failed to further affect neither LC3 lipidation nor the number of autophagosomes after cerebral ischemia in vivo and in vitro. Furthermore, UMB facilitated OGD-R-induced mitophagy in a Parkin-dependent manner. Inhibition of autophagy/mitophagy either pharmaceutically or genetically abolished the neuroprotective effects of UMB. Taken all, these results suggest that UMB protects against cerebral ischemic injury, both in vivo and in vitro, via promoting mitophagy without increasing the autophagic flux. UMB might serve as a potential leading compound for selectively activating mitophagy and the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feng Han
- Key Lab of Cardiovascular and Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 210023, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
18
|
Zhang Y, Liu L, Hou X, Zhang Z, Zhou X, Gao W. Role of Autophagy Mediated by AMPK/DDiT4/mTOR Axis in HT22 Cells Under Oxygen and Glucose Deprivation/Reoxygenation. ACS OMEGA 2023; 8:9221-9229. [PMID: 36936290 PMCID: PMC10018509 DOI: 10.1021/acsomega.2c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Background: cerebral ischemia/reperfusion (I/R) injury is an important complication of ischemic stroke, and autophagy is one of the mechanisms of it. In this study, we aimed to determine the role and mechanism of autophagy in cerebral I/R injury. Methods: the oxygen and glucose deprivation/reoxygenation (OGD/R) method was used to model cerebral I/R injury in HT22 cells. CCK-8 and LDH were conducted to detect viability and damage of the cells, respectively. Apoptosis was measured by flow cytometry and Tunel staining. Autophagic vesicles of HT22 cells were assessed by transmission electron microscopy. Western blotting analysis was used to examine the protein expression involving AMPK/DDiT4/mTOR axis and autophagy-related proteins. 3-Methyladenine and rapamycin were, respectively, used to inhibit and activate autophagy, compound C and AICAR acted as AMPK inhibitor and activator, respectively, and were used to control the starting link of AMPK/DDiT4/mTOR axis. Results: autophagy was activated in HT22 cells after OGD/R was characterized by an increased number of autophagic vesicles, the expression of Beclin1 and LC3II/LC3I, and a decrease in the expression of P62. Rapamycin could increase the viability, reduce LDH leakage rate, and alleviate cell apoptosis in OGD/R cells by activating autophagy. 3-Methyladenine played an opposite role to rapamycin in OGD/R cells. The expression of DDiT4 and the ratio of p-AMPK/AMPK were increased after OGD/R in HT22 cells. While the ratio of p-mTOR/mTOR was reduced by OGD/R, AICAR effectively increased the number of autophagic vesicles, improved viability, reduced LDH leakage rate, and alleviated apoptosis in HT22 cells which suffered OGD/R. However, the effects of compound C in OGD/R HT22 cells were opposite to that of AICAR. Conclusions: autophagy is activated after OGD/R; autophagy activator rapamycin significantly enhanced the protective effect of autophagy on cells of OGD/R. AMPK/DDiT4/mTOR axis is an important pathway to activate autophagy, and AMPK/DDiT4/mTOR-mediated autophagy significantly alleviates cell damage caused by OGD/R.
Collapse
Affiliation(s)
| | | | | | | | | | - Weijuan Gao
- . Phone: 86 311 89926007. Fax: (86) 311 89926000
| |
Collapse
|
19
|
Liao Y, Wang JY, Pan Y, Zou X, Wang C, Peng Y, Ao YL, Lam MF, Zhang X, Zhang XQ, Shi L, Zhang S. The Protective Effect of (-)-Tetrahydroalstonine against OGD/R-Induced Neuronal Injury via Autophagy Regulation. Molecules 2023; 28:molecules28052370. [PMID: 36903613 PMCID: PMC10005631 DOI: 10.3390/molecules28052370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Here, (-)-Tetrahydroalstonine (THA) was isolated from Alstonia scholaris and investigated for its neuroprotective effect towards oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced neuronal damage. In this study, primary cortical neurons were pre-treated with THA and then subjected to OGD/R induction. The cell viability was tested by the MTT assay, and the states of the autophagy-lysosomal pathway and Akt/mTOR pathway were monitored by Western blot analysis. The findings suggested that THA administration increased the cell viability of OGD/R-induced cortical neurons. Autophagic activity and lysosomal dysfunction were found at the early stage of OGD/R, which were significantly ameliorated by THA treatment. Meanwhile, the protective effect of THA was significantly reversed by the lysosome inhibitor. Additionally, THA significantly activated the Akt/mTOR pathway, which was suppressed after OGD/R induction. In summary, THA exhibited promising protective effects against OGD/R-induced neuronal injury by autophagy regulation through the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yumei Liao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jun-Ya Wang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yan Pan
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xueyi Zou
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chaoqun Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yun-Lin Ao
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mei Fong Lam
- Centro Hospitalar Conde de São Januário, Macau, China
| | - Xiaoshen Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Xiao-Qi Zhang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, China
- NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, China
- Correspondence: (X.-Q.Z.); (S.Z.)
| | - Lei Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Correspondence: (X.-Q.Z.); (S.Z.)
| |
Collapse
|
20
|
Gao J, Ma C, Xia D, Chen N, Zhang J, Xu F, Li F, He Y, Gong Q. Icariside II preconditioning evokes robust neuroprotection against ischaemic stroke, by targeting Nrf2 and the OXPHOS/NF-κB/ferroptosis pathway. Br J Pharmacol 2023; 180:308-329. [PMID: 36166825 DOI: 10.1111/bph.15961] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Astrocytic nuclear factor erythroid-derived 2-related factor 2 (Nrf2) is a potential therapeutic target of ischaemic preconditioning (IPC). Icariside II (ICS II) is a naturally occurring flavonoid derived from Herba Epimedii with Nrf2 induction potency. This study was designed to clarify if exposure to ICS II mimicks IPC neuroprotection and if Nrf2 from astrocytes contributes to ICS II preconditioning against ischaemic stroke. EXPERIMENTAL APPROACH Mice with transient middle cerebral artery occlusion (MCAO)-induced focal cerebral ischaemia and primary astrocytes challenged with oxygen-glucose deprivation (OGD) were used to explore the neuroprotective effect of ICS II preconditioning. Additionally, Nrf2-deficient mice were pretreated with ICS II to determine whether ICS II exerts its neuroprotection by activating Nrf2. KEY RESULTS ICS II pretreatment mitigated cerebral injury in the mouse model of ischaemic stroke along with improving long-term recovery. Furthermore, proteomics screening identified Nrf2 as a crucial gene evoked by ICS II treatment and required for the anti-oxidative effect and anti-inflammatory effect of ICS II. Also, ICS II directly bound to Nrf2 and reinforced the transcriptional activity of Nrf2 after MCAO. Moreover, ICS II pretreatment exerted cytoprotective effects on astrocyte cultures following lethal OGD exposure, by promoting Nrf2 nuclear translocation and activating the OXPHOS/NF-κB/ferroptosis axis, while neuroprotection was decreased in Nrf2-deficient mice and Nrf2 siRNA blocked effects of ICS II. CONCLUSION AND IMPLICATIONS ICS II preconditioning provides robust neuroprotection against ischaemic stroke via the astrocytic Nrf2-mediated OXPHOS/NF-κB/ferroptosis axis. Thus, ICS II could be a promising Nrf2 activator to treat ischaemic stroke.
Collapse
Affiliation(s)
- Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Congjian Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Dianya Xia
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Nana Chen
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jianyong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Fan Xu
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fei Li
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
21
|
Beccari S, Sierra-Torre V, Valero J, Pereira-Iglesias M, García-Zaballa M, Soria FN, De Las Heras-Garcia L, Carretero-Guillen A, Capetillo-Zarate E, Domercq M, Huguet PR, Ramonet D, Osman A, Han W, Dominguez C, Faust TE, Touzani O, Pampliega O, Boya P, Schafer D, Mariño G, Canet-Soulas E, Blomgren K, Plaza-Zabala A, Sierra A. Microglial phagocytosis dysfunction in stroke is driven by energy depletion and induction of autophagy. Autophagy 2023:1-30. [PMID: 36622892 DOI: 10.1080/15548627.2023.2165313] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Microglial phagocytosis of apoptotic debris prevents buildup damage of neighbor neurons and inflammatory responses. Whereas microglia are very competent phagocytes under physiological conditions, we report their dysfunction in mouse and preclinical monkey models of stroke (macaques and marmosets) by transient occlusion of the medial cerebral artery (tMCAo). By analyzing recently published bulk and single cell RNA sequencing databases, we show that the phagocytosis dysfunction was not explained by transcriptional changes. In contrast, we demonstrate that the impairment of both engulfment and degradation was related to energy depletion triggered by oxygen and nutrient deprivation (OND), which led to reduced process motility, lysosomal exhaustion, and the induction of a protective macroautophagy/autophagy response in microglia. Basal autophagy, in charge of removing and recycling intracellular elements, was critical to maintain microglial physiology, including survival and phagocytosis, as we determined both in vivo and in vitro using pharmacological and transgenic approaches. Notably, the autophagy inducer rapamycin partially prevented the phagocytosis impairment induced by tMCAo in vivo but not by OND in vitro, where it even had a detrimental effect on microglia, suggesting that modulating microglial autophagy to optimal levels may be a hard to achieve goal. Nonetheless, our results show that pharmacological interventions, acting directly on microglia or indirectly on the brain environment, have the potential to recover phagocytosis efficiency in the diseased brain. We propose that phagocytosis is a therapeutic target yet to be explored in stroke and other brain disorders and provide evidence that it can be modulated in vivo using rapamycin.Abbreviations: AIF1/IBA1: allograft inflammatory factor 1; AMBRA1: autophagy/beclin 1 regulator 1; ATG4B: autophagy related 4B, cysteine peptidase; ATP: adenosine triphosphate; BECN1: beclin 1, autophagy related; CASP3: caspase 3; CBF: cerebral blood flow; CCA: common carotid artery; CCR2: chemokine (C-C motif) receptor 2; CIR: cranial irradiation; Csf1r/v-fms: colony stimulating factor 1 receptor; CX3CR1: chemokine (C-X3-C motif) receptor 1; DAPI: 4',6-diamidino-2-phenylindole; DG: dentate gyrus; GO: Gene Ontology; HBSS: Hanks' balanced salt solution; HI: hypoxia-ischemia; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MCA: medial cerebral artery; MTOR: mechanistic target of rapamycin kinase; OND: oxygen and nutrient deprivation; Ph/A coupling: phagocytosis-apoptosis coupling; Ph capacity: phagocytic capacity; Ph index: phagocytic index; SQSTM1: sequestosome 1; RNA-Seq: RNA sequencing; TEM: transmission electron microscopy; tMCAo: transient medial cerebral artery occlusion; ULK1: unc-51 like kinase 1.
Collapse
Affiliation(s)
- Sol Beccari
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Virginia Sierra-Torre
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Jorge Valero
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain.,Neural Plasticity and Neurorepair Group, Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), and Institute for Biomedical Research of Salamanca, University of Salamanca, 37007, Salamanca, Spain
| | - Marta Pereira-Iglesias
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Mikel García-Zaballa
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Federico N Soria
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain.,Ikerbasque Foundation, 48009, Bilbao, Bizkaia, Spain
| | - Laura De Las Heras-Garcia
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Alejandro Carretero-Guillen
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain
| | - Estibaliz Capetillo-Zarate
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain.,Ikerbasque Foundation, 48009, Bilbao, Bizkaia, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Maria Domercq
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Paloma R Huguet
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - David Ramonet
- INSERM U1060 CarMeN, Université Claude Bernard Lyon 1 - IRIS team, CarMeN, bat. B13, gpt hosp. Est, 59 bld Pinel, 69500, Bron, Auvergne-Rhône-Alpes, France
| | - Ahmed Osman
- Department of Women and Children´s Health, Karolisnka Institute, 17164, Stockholm, Södermanland and Uppland, Sweden
| | - Wei Han
- Department of Women and Children´s Health, Karolisnka Institute, 17164, Stockholm, Södermanland and Uppland, Sweden
| | - Cecilia Dominguez
- Department of Women and Children´s Health, Karolisnka Institute, 17164, Stockholm, Södermanland and Uppland, Sweden
| | - Travis E Faust
- Department of Neurobiology, University of Massachusetts Medical School, 01605, Worcester, MA, USA
| | - Omar Touzani
- Normandie-Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000, Caen, Normandie, France
| | - Olatz Pampliega
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Patricia Boya
- Laboratory of Autophagy, Centro de Investigaciones Biológicas Margarita Salas, Madrid 28040, Spain.,Department of Medicine, University of Fribourg, 1700, Freiburg, Switzerland
| | - Dorothy Schafer
- Department of Neurobiology, University of Massachusetts Medical School, 01605, Worcester, MA, USA
| | - Guillermo Mariño
- Department of Medicine, University of Fribourg, 1700, Freiburg, Switzerland.,Department of Functional Biology, University of Oviedo, 33003, Oviedo, Asturias, Spain
| | - Emmanuelle Canet-Soulas
- INSERM U1060 CarMeN, Université Claude Bernard Lyon 1 - IRIS team, CarMeN, bat. B13, gpt hosp. Est, 59 bld Pinel, 69500, Bron, Auvergne-Rhône-Alpes, France
| | - Klas Blomgren
- Department of Women and Children´s Health, Karolisnka Institute, 17164, Stockholm, Södermanland and Uppland, Sweden.,Department of Pediatric Oncology, Karolinska University Hospital, 171 64, Stockholm, Södermanland and Uppland, Sweden
| | - Ainhoa Plaza-Zabala
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Pharmacology, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain
| | - Amanda Sierra
- Glial Cell Biology Labb, Department of Biochemistry and Molecular Biology, Achucarro Basque Center for Neuroscience, 48940, Leioa, Bizkaia, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Bizkaia, Spain.,Ikerbasque Foundation, 48009, Bilbao, Bizkaia, Spain
| |
Collapse
|
22
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
23
|
Morleo M, Vieira HL, Pennekamp P, Palma A, Bento-Lopes L, Omran H, Lopes SS, Barral DC, Franco B. Crosstalk between cilia and autophagy: implication for human diseases. Autophagy 2023; 19:24-43. [PMID: 35613303 PMCID: PMC9809938 DOI: 10.1080/15548627.2022.2067383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Macroautophagy/autophagy is a self-degradative process necessary for cells to maintain their energy balance during development and in response to nutrient deprivation. Autophagic processes are tightly regulated and have been found to be dysfunctional in several pathologies. Increasing experimental evidence points to the existence of an interplay between autophagy and cilia. Cilia are microtubule-based organelles protruding from the cell surface of mammalian cells that perform a variety of motile and sensory functions and, when dysfunctional, result in disorders known as ciliopathies. Indeed, selective autophagic degradation of ciliary proteins has been shown to control ciliogenesis and, conversely, cilia have been reported to control autophagy. Moreover, a growing number of players such as lysosomal and mitochondrial proteins are emerging as actors of the cilia-autophagy interplay. However, some of the published data on the cilia-autophagy axis are contradictory and indicate that we are just starting to understand the underlying molecular mechanisms. In this review, the current knowledge about this axis and challenges are discussed, as well as the implication for ciliopathies and autophagy-associated disorders.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Helena L.A. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital - IRCCS, Rome, Italy
| | - Liliana Bento-Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy,Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy,CONTACT Brunella Franco CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| |
Collapse
|
24
|
Kostiuchenko O, Lushnikova I, Kowalczyk M, Skibo G. mTOR/α-ketoglutarate-mediated signaling pathways in the context of brain neurodegeneration and neuroprotection. BBA ADVANCES 2022; 2:100066. [PMID: 37082603 PMCID: PMC10074856 DOI: 10.1016/j.bbadva.2022.100066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebral disorders are largely associated with impaired cellular metabolism, despite the regulatory mechanisms designed to ensure cell viability and adequate brain function. Mechanistic target of rapamycin (mTOR) signaling is one of the most crucial factors in the regulation of energy homeostasis and its imbalance is linked with a variety of neurodegenerative diseases. Recent advances in the metabolic pathways' modulation indicate the role of α-ketoglutarate (AKG) as a major signaling hub, additionally highlighting its anti-aging and neuroprotective properties, but the mechanisms of its action are not entirely clear. In this review, we analyzed the physiological and pathophysiological aspects of mTOR in the brain. We also discussed AKG's multifunctional properties, as well as mTOR/AKG-mediated functional communications in cellular metabolism. Thus, this article provides a broad overview of the mTOR/AKG-mediated signaling pathways, in the context of neurodegeneration and endogenous neuroprotection, with the aim to find novel therapeutic strategies.
Collapse
|
25
|
Park SK, Cho JM, Mookherjee S, Pires PW, David Symons J. Recent Insights Concerning Autophagy and Endothelial Cell Nitric Oxide Generation. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Blok LER, Boon M, van Reijmersdal B, Höffler KD, Fenckova M, Schenck A. Genetics, molecular control and clinical relevance of habituation learning. Neurosci Biobehav Rev 2022; 143:104883. [PMID: 36152842 DOI: 10.1016/j.neubiorev.2022.104883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Habituation is the most fundamental form of learning. As a firewall that protects our brain from sensory overload, it is indispensable for cognitive processes. Studies in humans and animal models provide increasing evidence that habituation is affected in autism and related monogenic neurodevelopmental disorders (NDDs). An integrated application of habituation assessment in NDDs and their animal models has unexploited potential for neuroscience and medical care. With the aim to gain mechanistic insights, we systematically retrieved genes that have been demonstrated in the literature to underlie habituation. We identified 258 evolutionarily conserved genes across species, describe the biological processes they converge on, and highlight regulatory pathways and drugs that may alleviate habituation deficits. We also summarize current habituation paradigms and extract the most decisive arguments that support the crucial role of habituation for cognition in health and disease. We conclude that habituation is a conserved, quantitative, cognition- and disease-relevant process that can connect preclinical and clinical work, and hence is a powerful tool to advance research, diagnostics, and treatment of NDDs.
Collapse
Affiliation(s)
- Laura Elisabeth Rosalie Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Marina Boon
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Kira Daniela Höffler
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands; Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| |
Collapse
|
27
|
Tiedt S, Buchan AM, Dichgans M, Lizasoain I, Moro MA, Lo EH. The neurovascular unit and systemic biology in stroke - implications for translation and treatment. Nat Rev Neurol 2022; 18:597-612. [PMID: 36085420 DOI: 10.1038/s41582-022-00703-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Ischaemic stroke is a leading cause of disability and death for which no acute treatments exist beyond recanalization. The development of novel therapies has been repeatedly hindered by translational failures that have changed the way we think about tissue damage after stroke. What was initially a neuron-centric view has been replaced with the concept of the neurovascular unit (NVU), which encompasses neuronal, glial and vascular compartments, and the biphasic nature of neural-glial-vascular signalling. However, it is now clear that the brain is not the private niche it was traditionally thought to be and that the NVU interacts bidirectionally with systemic biology, such as systemic metabolism, the peripheral immune system and the gut microbiota. Furthermore, these interactions are profoundly modified by internal and external factors, such as ageing, temperature and day-night cycles. In this Review, we propose an extension of the concept of the NVU to include its dynamic interactions with systemic biology. We anticipate that this integrated view will lead to the identification of novel mechanisms of stroke pathophysiology, potentially explain previous translational failures, and improve stroke care by identifying new biomarkers of and treatment targets in stroke.
Collapse
Affiliation(s)
- Steffen Tiedt
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), . .,Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Alastair M Buchan
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Martin Dichgans
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ignacio Lizasoain
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Department of Pharmacology and Toxicology, Complutense Medical School, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Maria A Moro
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Eng H Lo
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), . .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Possible Involvement of DNA Methylation in TSC1 Gene Expression in Neuroprotection Induced by Hypoxic Preconditioning. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9306097. [PMID: 36120601 PMCID: PMC9481362 DOI: 10.1155/2022/9306097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022]
Abstract
Background. It has been reported that ischemia and ischemic preconditioning (IPC) have different effects on the expression of tuberous sclerosis complex 1 (TSC1), which may contribute to the tolerance to ischemia/hypoxia with the increase of autophagy. The mechanisms of TSC1 differential expression are still unclear under ischemia/IPC conditions in hippocampal Cornu Ammon 1 (CA1) and Cornu Ammon 3 (CA3) area neuronal cells. While we have shown that 5-Aza-CdR, a DNA methyltransferase inhibitor, can upregulate TSC1 and increase hypoxic tolerance by autophagy in vivo and in vitro, in this study, we examined whether DNA methylation was involved in the differential expression of TSC1 in the CA1 and CA3 regions induced by hypoxic preconditioning (HPC). Methods. Level of rapamycin (mTOR) autophagy, a downstream molecular pathway of TSC1/TSC2 complex, was detected in HPC mouse hippocampal CA1 and CA3 areas as well as in the HPC model of mouse hippocampal HT22 cells. DNA methylation level of TSC1 promoter (-720 bp~ -360 bp) was determined in CA1 and CA3 areas by bisulfite-modified DNA sequencing (BMDS). At the same time, autophagy was detected in HT22 cells transfected with GFP-LC3 plasmid. The role of TSC1 in neuroprotection was measured by cell viability and apoptosis, and the role of TSC1 in metabolism was checked by ATP assay and ROS assay in HT22 cells that overexpressed/knocked down TSC1. Results. HPC upregulated the expression of TSC1, downregulated the level of P-mTOR (Ser2448) and P-p70S6K (Thr389), and enhanced the activity of autophagy in both in vivo and in vitro. The increased expression of TSC1 in HPC may depend on its DNA hypomethylation in the promoter region in vivo. HPC also could reduce energy consumption in HT22 cells. Overexpression and knockdown of TSC1 can affect cell viability, cell apoptosis, and metabolism in HT22 cells exposed to hypoxia. Conclusion. TSC1 expression induced by HPC may relate to the downregulation of its DNA methylation level with the increase of autophagy and the decrease of energy demand.
Collapse
|
29
|
Neuroprotection of everolimus against focal cerebral ischemia-reperfusion injury in rats. J Stroke Cerebrovasc Dis 2022; 31:106576. [PMID: 35633587 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates cell growth and metabolism and integrates various signals under physiological and pathological conditions. Altered signaling of mTOR has been shown to play pathogenic roles in ischemic stroke. In the present study, the protective effect of everolimus, the selective mTOR inhibitor, in the middle cerebral artery occlusion (MCAO) model of ischemic stroke was evaluated. METHODS Wistar rats were exposed to MCAO (30 min) followed by reperfusion for 24 h. Everolimus (100, and 500 µg/kg) was administered at the time of reperfusion, intraperitoneally. 24 h post operation, the neurological function, infarct volume, histopathological alterations and the markers of oxidative stress including superoxide dismutase (SOD) activity, malondialdehyde (MDA), and total thiol levels were analyzed in the peri-infarct region. RESULTS In the rats subjected to MCAO, everolimus ameliorated neurological deficits, neuronal cell loss, and infarct volume, as compared to the stroke group. Also, everolimus significantly increased SOD activity and total thiol content, while markedly decreased the MDA level, as compared to MCAO group. CONCLUSION Single-dose administration of everolimus significantly improved neurological deficits and inhibited cortical cell loss by enhancing redox status, subsequently protected cerebral ischemia-reperfusion injury in rats.
Collapse
|
30
|
Growth Hormone Increases BDNF and mTOR Expression in Specific Brain Regions after Photothrombotic Stroke in Mice. Neural Plast 2022; 2022:9983042. [PMID: 35465399 PMCID: PMC9033347 DOI: 10.1155/2022/9983042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Aims We have shown that growth hormone (GH) treatment poststroke increases neuroplasticity in peri-infarct areas and the hippocampus, improving motor and cognitive outcomes. We aimed to explore the mechanisms of GH treatment by investigating how GH modulates pathways known to induce neuroplasticity, focusing on association between brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) in the peri-infarct area, hippocampus, and thalamus. Methods Recombinant human growth hormone (r-hGH) or saline was delivered (0.25 μl/hr, 0.04 mg/day) to mice for 28 days, commencing 48 hours after photothrombotic stroke. Protein levels of pro-BDNF, total-mTOR, phosphorylated-mTOR, total-p70S6K, and phosporylated-p70S6K within the peri-infarct area, hippocampus, and thalamus were evaluated by western blotting at 30 days poststroke. Results r-hGH treatment significantly increased pro-BDNF in peri-infarct area, hippocampus, and thalamus (p < 0.01). r-hGH treatment significantly increased expression levels of total-mTOR in the peri-infarct area and thalamus (p < 0.05). r-hGH treatment significantly increased expression of total-p70S6K in the hippocampus (p < 0.05). Conclusion r-hGH increases pro-BDNF within the peri-infarct area and regions that are known to experience secondary neurodegeneration after stroke. Upregulation of total-mTOR protein expression in the peri-infarct and thalamus suggests that this might be a pathway that is involved in the neurorestorative effects previously reported in these animals and warrants further investigation. These findings suggest region-specific mechanisms of action of GH treatment and provide further understanding for how GH treatment promotes neurorestorative effects after stroke.
Collapse
|
31
|
Mitochondrial Quality and Quantity Control: Mitophagy Is a Potential Therapeutic Target for Ischemic Stroke. Mol Neurobiol 2022; 59:3110-3123. [PMID: 35266113 DOI: 10.1007/s12035-022-02795-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/05/2022] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a cerebrovascular disease with high mortality and disability, which seriously affects the health and lives of people around the world. Effective treatment for ischemic stroke has been limited by its complex pathological mechanisms. Increasing evidence has indicated that mitochondrial dysfunction plays an essential role in the occurrence, development, and pathological processes of ischemic stroke. Therefore, strict control of the quality and quantity of mitochondria via mitochondrial fission and fusion as well as mitophagy is beneficial to the survival and normal function maintenance of neurons. Under certain circumstances, excessive mitophagy also could induce cell death. This review discusses the dynamic changes and double-edged roles of mitochondria and related signaling pathways of mitophagy in the pathophysiology of ischemic stroke. Furthermore, we focus on the possibility of modulating mitophagy as a potential therapy for the prevention and prognosis of ischemic stroke. Notably, we reviewed recent advances in the studies of natural compounds, which could modulate mitophagy and exhibit neuroprotective effects, and discussed their potential application in the treatment of ischemic stroke.
Collapse
|
32
|
Mo Y, Sun YY, Yue E, Liu Y, Liu KY. MicroRNA-379-5p targets MAP3K2 to reduce autophagy and alleviate neuronal injury following cerebral ischemia via the JNK/c-Jun signaling pathway. Kaohsiung J Med Sci 2022; 38:230-243. [PMID: 34931755 DOI: 10.1002/kjm2.12488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/26/2021] [Accepted: 11/07/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are abundant in neurons and play key roles in the function and development of the nervous system. This study focuses on the function of miR-379-5p in neurological function recovery during ischemic stroke. The expression of miR-379-5p in the serum of patients with ischemic stroke was determined. Human cerebral cortical neuron cells (HCN-2) were subjected to oxygen/glucose deprivation (OGD) to mimic an ischemic stroke in vitro, whereas mice subjected to middle cerebral artery occlusion (MCAO) were used as an animal model. The serum of patients with ischemic stroke and OGD-treated HCN-2 cells displayed a poor expression of miR-379-5p. Upregulation of miR-379-5p reduced the OGD-induced cell damage and decreased the expression of the autophagy marker protein Beclin1 in cells. Rapamycin, an autophagy activator, blocked the protective functions of miR-379-5p. Further, miR-379-5p directly bound to MAP3K2. MAP3K2 activated the JNK/c-Jun signaling pathway and suppressed the neuroprotective events mediated by miR-379-5p. The in vitro results were reproduced in vivo, where upregulation of miR-379-5p reduced neurological impairment and infarct size in MCAO-induced mice. This study suggested that miR-379-5p showed a neuroprotective effect on ischemic stroke and reduced autophagy of neurons through the suppression of MAP3K2 and the JNK/c-Jun axis.
Collapse
Affiliation(s)
- Yun Mo
- Department of Neurology, Guizhou Medical University, Guiyang, China
| | - Yin-Yi Sun
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erli Yue
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yuan Liu
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Kang-Yong Liu
- Department of Neurology, Guizhou Medical University, Guiyang, China
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
33
|
Gerzson MFB, Pacheco SM, Soares MSP, Bona NP, Oliveira PS, Azambuja JH, da Costa P, Gutierres JM, Carvalho FB, Morsch VM, Spanevello RM, Stefanello FM. Effects of tannic acid in streptozotocin-induced sporadic Alzheimer's Disease: insights into memory, redox status, Na +, K +-ATPase and acetylcholinesterase activity. Arch Physiol Biochem 2022; 128:223-230. [PMID: 31595805 DOI: 10.1080/13813455.2019.1673430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the ability of tannic acid (TA) in preventing memory deficits and neurochemical alterations observed in a model for Sporadic Dementia of Alzheimer's Type. Rats were treated with TA (30 mg/kg) daily for 21 days, and subsequently received intracerebroventricular injection of streptozotocin (STZ). We observed that STZ induced learning and memory impairments; however, treatment with TA was able to prevent these effects. In cerebral cortex and hippocampus, STZ induced an increase in acetylcholinesterase activity, reduced Na+, K+-ATPase activity and induced oxidative stress increasing thiobarbituric acid-reactive substances, nitrites and reactive oxygen species levels and reducing the activity of antioxidant enzymes. Treatment with TA was able in prevent the major of these neurochemical alterations. In conclusion, TA prevented memory deficits, alterations in brain enzyme activities, and oxidative damage induced by STZ. Thus, TA can be an interesting strategy in the prevention of Sporadic Alzheimer's Disease.
Collapse
Affiliation(s)
- Mariana F B Gerzson
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Simone M Pacheco
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara S P Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natália P Bona
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pathise S Oliveira
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliana H Azambuja
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pauline da Costa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jessié M Gutierres
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fabiano B Carvalho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera M Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Roselia M Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
34
|
Talebi M, Mohammadi Vadoud SA, Haratian A, Talebi M, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The interplay between oxidative stress and autophagy: focus on the development of neurological diseases. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:3. [PMID: 35093121 PMCID: PMC8799983 DOI: 10.1186/s12993-022-00187-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Regarding the epidemiological studies, neurological dysfunctions caused by cerebral ischemia or neurodegenerative diseases (NDDs) have been considered a pointed matter. Mount-up shreds of evidence support that both autophagy and reactive oxygen species (ROS) are involved in the commencement and progression of neurological diseases. Remarkably, oxidative stress prompted by an increase of ROS threatens cerebral integrity and improves the severity of other pathogenic agents such as mitochondrial damage in neuronal disturbances. Autophagy is anticipated as a cellular defending mode to combat cytotoxic substances and damage. The recent document proposes that the interrelation of autophagy and ROS creates a crucial function in controlling neuronal homeostasis. This review aims to overview the cross-talk among autophagy and oxidative stress and its molecular mechanisms in various neurological diseases to prepare new perceptions into a new treatment for neurological disorders. Furthermore, natural/synthetic agents entailed in modulation/regulation of this ambitious cross-talk are described.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Ali Mohammadi Vadoud
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Haratian
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
- Viatris Pharmaceuticals Inc, 3300 Research Plaza, San Antonio, TX, 78235, USA
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
35
|
Su L, Liu Y, Ma H, Zheng F, Daia Y, Wang T, Wang G, Li F, Zhang Y, Yu B, Gong S, Kou J. YiQiFuMai lyophilized injection attenuates cerebral ischemic injury with inhibition of neuronal autophagy through intervention in the NMMHC IIA-actin-ATG9A interaction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153882. [PMID: 34968897 DOI: 10.1016/j.phymed.2021.153882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND YiQiFuMai lyophilized injection (YQFM) is derived from a traditional Chinese medicine prescription termed Shengmai San.YQFM is clinically applied to the treatment of cardiovascular and cerebrovascular diseases. It has been found that critical components of YQFM affect non-muscle myosin heavy chain IIA (NMMHC IIA), but its regulation in the excessive autophagy and the underlying mechanism has yet to be clarified. PURPOSE To evaluate whether YQFM has neuroprotective effects on cerebral ischemia/reperfusion-induced injury by inhibiting NMMHC IIA-actin-ATG9A interaction for autophagosome formation. METHODS The neuroprotective effects of YQFM were investigated in vivo in mice with middle cerebral artery occlusion/reperfusion (MCAO/R) (n = 6) by detecting neurological deficits, infarct volume, and histopathological changes. The NMMHC IIA-actin-ATG9A interaction was determined using immunofluorescence co-localization, co-immunoprecipitation, and proximity ligation assay. Rat pheochromocytoma (PC12) cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) were used to mimic neurons in in vitro experiments. RESULTS In MCAO/R model mice, YQFM (1.342 g/kg) attenuated brain ischemia/reperfusion-induced injury by regulating NMMHC IIA-actin-mediated ATG9A trafficking. YQFM (400 μg/ml) also exerted similar effects on OGD/R-induced PC12 cells. Furthermore, RNAi of NMMHC IIA weakened the NMMHC IIA-F-actin-dependent ATG9A trafficking and, therefore, attenuated the neuroprotective activities of YQFM in vitro. CONCLUSION These findings demonstrated that YQFM exerted neuroprotective effects by regulating the NMMHC IIA-actin-ATG9A interaction for autophagosome formation. This evidence sheds new light on the potential mechanism of YQFM in the treatment of cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Linjie Su
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Yining Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Huifen Ma
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Fan Zheng
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Yujie Daia
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Tiezheng Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Guangyun Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Resource and Developmemt of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Shuaishuai Gong
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China.
| |
Collapse
|
36
|
Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN. The role of SLC transporters for brain health and disease. Cell Mol Life Sci 2021; 79:20. [PMID: 34971415 PMCID: PMC11071821 DOI: 10.1007/s00018-021-04074-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
The brain exchanges nutrients and small molecules with blood via the blood-brain barrier (BBB). Approximately 20% energy intake for the body is consumed by the brain. Glucose is known for its critical roles for energy production and provides substrates for biogenesis in neurons. The brain takes up glucose via glucose transporters GLUT1 and 3, which are expressed in several neural cell types. The brain is also equipped with various transport systems for acquiring amino acids, lactate, ketone bodies, lipids, and cofactors for neuronal functions. Unraveling the mechanisms by which the brain takes up and metabolizes these nutrients will be key in understanding the nutritional requirements in the brain. This could also offer opportunities for therapeutic interventions in several neurological disorders. For instance, emerging evidence suggests a critical role of lactate as an alternative energy source for neurons. Neuronal cells express monocarboxylic transporters to acquire lactate. As such, treatment of GLUT1-deficient patients with ketogenic diets to provide the brain with alternative sources of energy has been shown to improve the health of the patients. Many transporters are present in the brain, but only a small number has been characterized. In this review, we will discuss about the roles of solute carrier (SLC) transporters at the blood brain barrier (BBB) and neural cells, in transport of nutrients and metabolites in the brain.
Collapse
Affiliation(s)
- Yen T K Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Hoa T T Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Tra H Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
- SLING/Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Translational and Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
37
|
Jia T, Wang M, Yan W, Wu W, Shen R. Upregulation of miR-489-3p attenuates cerebral ischemia/reperfusion injury by targeting histone deacetylase 2 (HDAC2). Neuroscience 2021; 484:16-25. [PMID: 34914969 DOI: 10.1016/j.neuroscience.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/31/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury is the continuation and deterioration of ischemic injury, and there are no effective treatment strategies for this condition. It has been reported that microRNAs (miRNAs) are considered as potential targets to protect the brain against I/R injury. Previous studies have shown that miR-489-3p plays a vital role in regulating apoptosis of neurons. miR-489-3p is considered as a potential target to protect the brain against I/R injury-induced neuron apoptosis. This study aimed to explore the molecular mechanism of miR-489-3p in protection against cerebral I/R injury. A rat model with cerebral I/R injury was established using the MCAO method. The cell model was constructed using the oxygen‑glucose deprivation (OGD) method. The expression of miR-489-3p was detected by qRT-PCR. The expression of HDAC2 was detected by western blot assay and immunofluorescence assay. Cell apoptosis was evaluated by flow cytometry and TUNEL staining assay. The relationship between miR-489-3p and HDAC2 was determined by bioinformatics analysis and luciferase reporter assay. Rescue experiments were performed to investigate the mechanism of the miR-489-3p/HDAC2 axis. miR-489-39 was significantly downregulated, while HDAC2 was upregulated during cerebral I/R injury both in vitro and in vivo. Upregulation of miR-489-3p obviously attenuated cerebral I/R injury by increasing PC12 cell viability, reducing LDH release, and inhibiting cell apoptosis. HDAC2 was identified as a direct target of miR-489-3p. Silencing of HDAC2 showed a neuroprotective effect against OGD/R injury in vitro. Overexpression of HDAC2 significantly attenuated the protective effects of miR-489-3p mimics on cell injury in vitro. Our results revealed that the upregulation of miR-489-3p attenuated cerebral I/R injury by negatively regulating HDAC2.
Collapse
Affiliation(s)
- Tianxia Jia
- Department of neurology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of science and Technology, Luoyang City, Henan Province,471003, PR. China
| | - Mengjie Wang
- Department of neurology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of science and Technology, Luoyang City, Henan Province,471003, PR. China
| | - Wenjun Yan
- Department of neurology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of science and Technology, Luoyang City, Henan Province,471003, PR. China
| | - Wenjuan Wu
- Department of neurology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of science and Technology, Luoyang City, Henan Province,471003, PR. China
| | - Ruile Shen
- Department of neurology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of science and Technology, Luoyang City, Henan Province,471003, PR. China.
| |
Collapse
|
38
|
Beard DJ, Hadley G, Sutherland BA, Buchan AM. Commentary: Rapalink-1 Increased Infarct Size in Early Cerebral Ischemia-Reperfusion With Increased Blood-Brain Barrier Disruption. Front Physiol 2021; 12:761556. [PMID: 34630168 PMCID: PMC8493210 DOI: 10.3389/fphys.2021.761556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daniel J Beard
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Laboratory of Cerebral Ischaemia, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gina Hadley
- Laboratory of Cerebral Ischaemia, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Alastair M Buchan
- Laboratory of Cerebral Ischaemia, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Wang Y, Zhang S, Ni H, Zhang Y, Yan X, Gao Y, He B, Wang W, Liu C, Guo M. Autophagy is involved in the neuroprotective effect of nicotiflorin. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114279. [PMID: 34087402 DOI: 10.1016/j.jep.2021.114279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nicotiflorin is a flavonoid glycoside derived from the traditional Chinese medicine FlosCarthami, dried petals of Carthamus tinctorius L., and has been confirmed to be a promising novel drug candidate for ischemic stroke. Yet, the exact role of nicotiflorin in cerebral I/R injury is uncharacterized and the possible mechanisms have not been clearly expounded. AIM OF THE STUDY The present study was designed to determine the effect of nicotiflorin on cerebral ischemia/reperfusion (I/R) injury and its relationship with autophagy. MATERIALS AND METHODS Middle cerebral artery occlusion (MCAO) in rats and oxygen-glucose deprivation and reintroduction (OGD/R) in SH-SY5Y cells were established in in vivo and in vitro models, respectively. The severity of MCAO was assessed by brain infarct size, neurological scores and survival rate. The severity of OGD/R was evaluated by cell viability, lactate dehydrogenase (LDH) release and cell apoptosis. The level of autophagy was evaluated both in vivo and in vitro. Autophagosomes were observed using transmission electron microscopy and autophagic flux was measured using mRFP-GFP-tandem fluorescent LC3 adenovirus. Autophagy-related proteins (LC3-II/I, SQSTM1, beclin-1, Phospho-mTOR/mTOR) were measured by immunoblot. Autophagy-related mRNA levels (Becn1, Atg7) were detected by Real-Time PCR. Inhibition of autophagy was implemented by 3-Methyladenine (3-MA) or chloroquine in vitro. RESULTS In vivo, nicotiflorin treatment alleviated brain damage and neurological deficit while it dramatically increased 72 h survival rate in rats. In vitro, nicotiflorin treatment also ameliorated the severity of OGD/R. Moreover, nicotiflorin treatment increased ischemic penumbra autophagy (autophagosomes, BECN1, LC3-II/I ratio, SQSTM1, Phospho-mTOR/mTOR, Atg7). In vitro, nicotiflorin likewise enhanced autophagy and promoted autophagy flux. Furthermore, the blockade of autophagy by 3-MA or chloroquine disabled the efficacic of nicotiflorin in preventing cell damage upon OGD/R insult. CONCLUSION These findings suggest that autophagy plays a significant role in the protective effect of nicotiflorin against ischemic stroke.
Collapse
Affiliation(s)
- Yeqing Wang
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Shanshan Zhang
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Hailai Ni
- Department of Health Care, Changhai Hospital,Naval Medical University, Shanghai, 200433, China
| | - Yanjie Zhang
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiaodong Yan
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yue Gao
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Beixuan He
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Wenzheng Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chong Liu
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Meili Guo
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
40
|
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo‐San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo M, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen E, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez‐Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera R, Piacentini M, Reggiori F, Rubinsztein DC, Ryan K, Sadoshima J, Santambrogio L, Scorrano L, Simon H, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F. Autophagy in major human diseases. EMBO J 2021; 40:e108863. [PMID: 34459017 PMCID: PMC8488577 DOI: 10.15252/embj.2021108863] [Citation(s) in RCA: 811] [Impact Index Per Article: 202.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Collapse
Affiliation(s)
| | - Giulia Petroni
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Ravi K Amaravadi
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesSection of PediatricsFederico II UniversityNaplesItaly
- Department of Molecular and Human GeneticsBaylor College of Medicine, and Jan and Dan Duncan Neurological Research InstituteTexas Children HospitalHoustonTXUSA
| | - Patricia Boya
- Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - José Manuel Bravo‐San Pedro
- Faculty of MedicineDepartment Section of PhysiologyComplutense University of MadridMadridSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of MicrobiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineNew York University Langone HealthNew YorkNYUSA
| | - Francesco Cecconi
- Cell Stress and Survival UnitCenter for Autophagy, Recycling and Disease (CARD)Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Pediatric Onco‐Hematology and Cell and Gene TherapyIRCCS Bambino Gesù Children's HospitalRomeItaly
- Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care MedicineJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
| | - Mary E Choi
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
- Division of Nephrology and HypertensionJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Charleen T Chu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Patrice Codogno
- Institut Necker‐Enfants MaladesINSERM U1151‐CNRS UMR 8253ParisFrance
- Université de ParisParisFrance
| | - Maria Isabel Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia‐Instituto de Histología y Embriología (IHEM)‐Universidad Nacional de CuyoCONICET‐ Facultad de Ciencias MédicasMendozaArgentina
| | - Ana Maria Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNYUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineBronxNYUSA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism (AIMCenter of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Ivan Dikic
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Zvulun Elazar
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Gian Maria Fimia
- Department of Molecular MedicineSapienza University of RomeRomeItaly
- Department of EpidemiologyPreclinical Research, and Advanced DiagnosticsNational Institute for Infectious Diseases ‘L. Spallanzani’ IRCCSRomeItaly
| | - David A Gewirtz
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Douglas R Green
- Department of ImmunologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery InstituteProgram of DevelopmentAging, and RegenerationLa JollaCAUSA
| | - Marja Jäättelä
- Cell Death and MetabolismCenter for Autophagy, Recycling & DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Terje Johansen
- Department of Medical BiologyMolecular Cancer Research GroupUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Gábor Juhász
- Institute of GeneticsBiological Research CenterSzegedHungary
- Department of Anatomy, Cell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | | | - Claudine Kraft
- Institute of Biochemistry and Molecular BiologyZBMZFaculty of MedicineUniversity of FreiburgFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Guido Kroemer
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéInserm U1138Institut Universitaire de FranceParisFrance
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Pôle de BiologieHôpital Européen Georges PompidouAP‐HPParisFrance
- Suzhou Institute for Systems MedicineChinese Academy of Medical SciencesSuzhouChina
- Karolinska InstituteDepartment of Women's and Children's HealthKarolinska University HospitalStockholmSweden
| | | | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSAAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Carlos Lopez‐Otin
- Departamento de Bioquímica y Biología MolecularFacultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Kay F Macleod
- The Ben May Department for Cancer ResearchThe Gordon Center for Integrative SciencesW‐338The University of ChicagoChicagoILUSA
- The University of ChicagoChicagoILUSA
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Jennifer Martinez
- Immunity, Inflammation and Disease LaboratoryNational Institute of Environmental Health SciencesNIHResearch Triangle ParkNCUSA
| | - Alicia Meléndez
- Biology Department, Queens CollegeCity University of New YorkFlushingNYUSA
- The Graduate Center Biology and Biochemistry PhD Programs of the City University of New YorkNew YorkNYUSA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Department of Medical GeneticsLife Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Rushika M Perera
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of PathologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Mauro Piacentini
- Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Laboratory of Molecular MedicineInstitute of Cytology Russian Academy of ScienceSaint PetersburgRussia
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & SystemsMolecular Cell Biology SectionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - David C Rubinsztein
- Department of Medical GeneticsCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeUK
| | - Kevin M Ryan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular MedicineCardiovascular Research InstituteRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Laura Santambrogio
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
| | - Luca Scorrano
- Istituto Veneto di Medicina MolecolarePadovaItaly
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Hans‐Uwe Simon
- Institute of PharmacologyUniversity of BernBernSwitzerland
- Department of Clinical Immunology and AllergologySechenov UniversityMoscowRussia
- Laboratory of Molecular ImmunologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussia
| | | | - Anne Simonsen
- Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Centre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University Hospital MontebelloOsloNorway
| | - Alexandra Stolz
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklion, CreteGreece
- Department of Basic SciencesSchool of MedicineUniversity of CreteHeraklion, CreteGreece
| | - Sharon A Tooze
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - Tamotsu Yoshimori
- Department of GeneticsGraduate School of MedicineOsaka UniversitySuitaJapan
- Department of Intracellular Membrane DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Zhenyu Yue
- Department of NeurologyFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationDepartment of PathophysiologyShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Lorenzo Galluzzi
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
- Department of DermatologyYale School of MedicineNew HavenCTUSA
- Université de ParisParisFrance
| | | |
Collapse
|
41
|
Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, Henninger N, Reiter RJ, Bruno A, Joshipura K, Aslkhodapasandhokmabad H, Klionsky DJ, Ren J. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol Ther 2021; 225:107848. [PMID: 33823204 PMCID: PMC8263472 DOI: 10.1016/j.pharmthera.2021.107848] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Stroke constitutes the second leading cause of death and a major cause of disability worldwide. Stroke is normally classified as either ischemic or hemorrhagic stroke (HS) although 87% of cases belong to ischemic nature. Approximately 700,000 individuals suffer an ischemic stroke (IS) in the US each year. Recent evidence has denoted a rather pivotal role for defective macroautophagy/autophagy in the pathogenesis of IS. Cellular response to stroke includes autophagy as an adaptive mechanism that alleviates cellular stresses by removing long-lived or damaged organelles, protein aggregates, and surplus cellular components via the autophagosome-lysosomal degradation process. In this context, autophagy functions as an essential cellular process to maintain cellular homeostasis and organismal survival. However, unchecked or excessive induction of autophagy has been perceived to be detrimental and its contribution to neuronal cell death remains largely unknown. In this review, we will summarize the role of autophagy in IS, and discuss potential strategies, particularly, employment of natural compounds for IS treatment through manipulation of autophagy.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, Massachusetts, USA; Department of Psychiatry, University of Massachusetts, Worcester, Massachusetts, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Askiel Bruno
- Department of Neurology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Kaumudi Joshipura
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936-5067, Puerto Rico
| | | | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor 48109, USA.
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington Seattle, Seattle, WA 98195, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
42
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
43
|
Lei L, Yang S, Lu X, Zhang Y, Li T. Research Progress on the Mechanism of Mitochondrial Autophagy in Cerebral Stroke. Front Aging Neurosci 2021; 13:698601. [PMID: 34335233 PMCID: PMC8319822 DOI: 10.3389/fnagi.2021.698601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial autophagy is an early defense and protection process that selectively clears dysfunctional or excessive mitochondria through a distinctive mechanism to maintain intracellular homeostasis. Mitochondrial dysfunction during cerebral stroke involves metabolic disbalance, oxidative stress, apoptosis, endoplasmic reticulum stress, and abnormal mitochondrial autophagy. This article reviews the research progress on the mechanism of mitochondrial autophagy in ischemic stroke to provide a theoretical basis for further research on mitochondrial autophagy and the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Li Lei
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| | - Shuaifeng Yang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| | - Xiaoyang Lu
- Translational Neurosurgery and Neurobiology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - Yongfa Zhang
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| | - Tao Li
- Department of Neurosurgery, The First People's Hospital of Yunnan Province (Kunhua Hospital/The Affiliated Hospital of Kunming University of Science and Technology), Kunming, China
| |
Collapse
|
44
|
Wang R, Zhu Y, Liu Z, Chang L, Bai X, Kang L, Cao Y, Yang X, Yu H, Shi MJ, Hu Y, Fan W, Zhao BQ. Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 2021; 138:91-103. [PMID: 33881503 PMCID: PMC8288643 DOI: 10.1182/blood.2020008913] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
Intracerebral hemorrhage associated with thrombolytic therapy with tissue plasminogen activator (tPA) in acute ischemic stroke continues to present a major clinical problem. Here, we report that infusion of tPA resulted in a significant increase in markers of neutrophil extracellular traps (NETs) in the ischemic cortex and plasma of mice subjected to photothrombotic middle cerebral artery occlusion. Peptidylarginine deiminase 4 (PAD4), a critical enzyme for NET formation, is also significantly upregulated in the ischemic brains of tPA-treated mice. Blood-brain barrier (BBB) disruption after ischemic challenge in an in vitro model of BBB was exacerbated after exposure to NETs. Importantly, disruption of NETs by DNase I or inhibition of NET production by PAD4 deficiency restored tPA-induced loss of BBB integrity and consequently decreased tPA-associated brain hemorrhage after ischemic stroke. Furthermore, either DNase I or PAD4 deficiency reversed tPA-mediated upregulation of the DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). Administration of cGAMP after stroke abolished DNase I-mediated downregulation of the STING pathway and type 1 interferon production and blocked the antihemorrhagic effect of DNase I in tPA-treated mice. We also show that tPA-associated brain hemorrhage after ischemic stroke was significantly reduced in cGas-/- mice. Collectively, these findings demonstrate that NETs significantly contribute to tPA-induced BBB breakdown in the ischemic brain and suggest that targeting NETs or cGAS may ameliorate thrombolytic therapy for ischemic stroke by reducing tPA-associated hemorrhage.
Collapse
Affiliation(s)
- Ranran Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuanbo Zhu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhongwang Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Luping Chang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaofei Bai
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lijing Kang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yongliang Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xing Yang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Huilin Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mei-Juan Shi
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Hu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wenying Fan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Luo L, Zang G, Liu B, Qin X, Zhang Y, Chen Y, Zhang H, Wu W, Wang G. Bioengineering CXCR4-overexpressing cell membrane functionalized ROS-responsive nanotherapeutics for targeting cerebral ischemia-reperfusion injury. Am J Cancer Res 2021; 11:8043-8056. [PMID: 34335979 PMCID: PMC8315061 DOI: 10.7150/thno.60785] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rationale: As a potentially life-threatening disorder, cerebral ischemia-reperfusion (I/R) injury is associated with significantly high mortality, especially the irreversible brain tissue damage associated with increased reactive oxygen radical production and excessive inflammation. Currently, the insufficiency of targeted drug delivery and “on-demand” drug release remain the greatest challenges for cerebral I/R injury therapy. Bioengineered cell membrane-based nanotherapeutics mimic and enhance natural membrane functions and represent a potentially promising approach, relying on selective interactions between receptors and chemokines and increase nanomedicine delivery efficiency into the target tissues. Methods: We employed a systematic method to synthesize biomimetic smart nanoparticles. The CXCR4-overexpressing primary mouse thoracic aorta endothelial cell (PMTAEC) membranes and RAPA@HOP were extruded through a 200 nm polycarbonate porous membrane using a mini-extruder to harvest the RAPA@BMHOP. The bioengineered CXCR4-overexpressing cell membrane-functionalized ROS-responsive nanotherapeutics, loaded with rapamycin (RAPA), were fabricated to enhance the targeted delivery to lesions with pathological overexpression of SDF-1. Results: RAPA@BMHOP exhibited a three-fold higher rate of target delivery efficacy via the CXCR4/SDF-1 axis than its non-targeting counterpart in an in vivo model. Additionally, in response to the excessive pathological ROS, nanotherapeutics could be degraded to promote “on-demand” cargo release and balance the ROS level by p-hydroxy-benzyl alcohol degradation, thereby scavenging excessive ROS and suppressing the free radical-induced focal damage and local inflammation. Also, the stealth effect of cell membrane coating functionalization on the surface resulted in extended circulation time and high stability of nanoparticles. Conclusion: The biomimetic smart nanotherapeutics with active targeting, developed in this study, significantly improved the therapeutic efficacy and biosafety profiles. Thus, these nanoparticles could be a candidate for efficient therapy of cerebral I/R injury.
Collapse
|
46
|
Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B 2021; 11:1708-1720. [PMID: 34386317 PMCID: PMC8343111 DOI: 10.1016/j.apsb.2020.10.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is considered a leading cause of mortality and neurological disability, which puts a huge burden on individuals and the community. To date, effective therapy for stroke has been limited by its complex pathological mechanisms. Autophagy refers to an intracellular degrading process with the involvement of lysosomes. Autophagy plays a critical role in maintaining the homeostasis and survival of cells by eliminating damaged or non-essential cellular constituents. Increasing evidence support that autophagy protects neuronal cells from ischemic injury. However, under certain circumstances, autophagy activation induces cell death and aggravates ischemic brain injury. Diverse naturally derived compounds have been found to modulate autophagy and exert neuroprotection against stroke. In the present work, we have reviewed recent advances in naturally derived compounds that regulate autophagy and discussed their potential application in stroke treatment.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPK, 5′-adenosine monophosphate-activated protein kinase
- ATF6, activating transcription factor 6
- ATG, autophagy related genes
- Autophagy
- BCL-2, B-cell lymphoma 2
- BNIP3L, BCL2/adenovirus
- COPII, coat protein complex II
- Cerebral ischemia
- ER, endoplasmic reticulum
- FOXO, forkhead box O
- FUNDC1, FUN14 domain containing 1
- GPCR, G-protein coupled receptor
- HD, Huntington's disease
- IPC, ischemic preconditioning
- IRE1, inositol-requiring enzyme 1
- JNK, c-Jun N-terminal kinase
- LAMP, lysosomal-associated membrane protein
- LC3, light chain 3
- LKB1, liver kinase B1
- Lysosomal activation
- Mitochondria
- Mitophagy
- Natural compounds
- Neurological disorders
- Neuroprotection
- OGD/R, oxygen and glucose deprivation-reperfusion
- PD, Parkinson's disease
- PERK, protein kinase R (PKR)-like endoplasmic reticulum kinase
- PI3K, phosphatidylinositol 3-kinase
- ROS, reactive oxygen species
- SQSTM1, sequestosome 1
- TFEB, transcription factor EB
- TIGAR, TP53-induced glycolysis and apoptosis regulator
- ULK, Unc-51- like kinase
- Uro-A, urolithin A
- eIF2a, eukaryotic translation-initiation factor 2
- mTOR, mechanistic target of rapamycin
- ΔΨm, mitochondrial membrane potential
Collapse
|
47
|
Shen L, Gan Q, Yang Y, Reis C, Zhang Z, Xu S, Zhang T, Sun C. Mitophagy in Cerebral Ischemia and Ischemia/Reperfusion Injury. Front Aging Neurosci 2021; 13:687246. [PMID: 34168551 PMCID: PMC8217453 DOI: 10.3389/fnagi.2021.687246] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 02/03/2023] Open
Abstract
Ischemic stroke is a severe cerebrovascular disease with high mortality and morbidity. In recent years, reperfusion treatments based on thrombolytic and thrombectomy are major managements for ischemic stroke patients, and the recanalization time window has been extended to over 24 h. However, with the extension of the time window, the risk of ischemia/reperfusion (I/R) injury following reperfusion therapy becomes a big challenge for patient outcomes. I/R injury leads to neuronal death due to the imbalance in metabolic supply and demand, which is usually related to mitochondrial dysfunction. Mitophagy is a type of selective autophagy referring to the process of specific autophagic elimination of damaged or dysfunctional mitochondria to prevent the generation of excessive reactive oxygen species (ROS) and the subsequent cell death. Recent advances have implicated the protective role of mitophagy in cerebral ischemia is mainly associated with its neuroprotective effects in I/R injury. This review discusses the involvement of mitochondria dynamics and mitophagy in the pathophysiology of ischemic stroke and I/R injury in particular, focusing on the therapeutic potential of mitophagy regulation and the possibility of using mitophagy-related interventions as an adjunctive approach for neuroprotective time window extension after ischemic stroke.
Collapse
Affiliation(s)
- Luoan Shen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Qinyi Gan
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Youcheng Yang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Cesar Reis
- VA Loma Linda Healthcare System, Loma Linda University, Loma Linda, CA, United States
| | - Zheng Zhang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Tongyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chengmei Sun
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China.,Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
48
|
Mathew B, Chennakesavalu M, Sharma M, Torres LA, Stelman CR, Tran S, Patel R, Burg N, Salkovski M, Kadzielawa K, Seiler F, Aldrich LN, Roth S. Autophagy and post-ischemic conditioning in retinal ischemia. Autophagy 2021; 17:1479-1499. [PMID: 32452260 PMCID: PMC8205079 DOI: 10.1080/15548627.2020.1767371] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Retinal ischemia is a major cause of vision loss and a common underlying mechanism associated with diseases, such as diabetic retinopathy and central retinal artery occlusion. We have previously demonstrated the robust neuroprotection in retina induced by post-conditioning (post-C), a brief period of ischemia, 24 h, following a prolonged and damaging initial ischemia. The mechanisms underlying post-C-mediated retinal protection are largely uncharacterized. We hypothesized that macroautophagy/autophagy is a mediator of post-C-induced neuroprotection. This study employed an in vitro model of oxygen glucose deprivation (OGD) in the retinal R28 neuronal cell line, and an in vivo rat model of retinal ischemic injury. In vivo, there were significant increases in autophagy proteins, MAP1LC3-II/LC3-II, and decreases in SQSTM1/p62 (sequestosome 1) in ischemia/post-C vs. ischemia/sham post-C. Blockade of Atg5 and Atg7 in vivo decreased LC3-II, increased SQSTM1, attenuated the functional protective effect of post-C, and increased histological damage and TUNEL compared to non-silencing siRNA. TUNEL after ischemia in vivo was found in retinal ganglion, amacrine, and photoreceptor cells. Blockade of Atg5 attenuated the post-C neuroprotection by a brief period of OGD in vitro. Moreover, in vitro, post-C attenuated cell death, loss of cellular proliferation, and defective autophagic flux from prolonged OGD. Stimulating autophagy using Tat-Beclin 1 rescued retinal neurons from cell death after OGD. As a whole, our results suggest that autophagy is required for the neuroprotective effect of retinal ischemic post-conditioning and augmentation of autophagy offers promise in the treatment of retinal ischemic injury.Abbreviations: BECN1: Beclin 1, autophagy related; DAPI: 4',6-diamidino-2-phenylindole; DR: diabetic retinopathy; EdU: 5-ethynyl-2'-deoxyuridine; ERG: Electroretinogram; FITC: Fluorescein isothiocyanate; GCL: Ganglion cell layer; GFAP: Glial fibrillary acidic protein; INL: Inner nuclear layer; IPL: Inner plexiform layer; MAP1LC3/LC3: Microtubule-associated protein 1 light chain 3; OGD: Oxygen-glucose deprivation; ONL: Outer nuclear layer; OP: Oscillatory potential; PFA: Paraformaldehyde; PL: Photoreceptor layer; post-C: post-conditioning; RFP: Red fluorescent protein; RGC: Retinal ganglion cell; RPE: Retinal pigment epithelium; RT-PCR: Real-time polymerase chain reaction; SEM: Standard error of the mean; siRNA: Small interfering RNA; SQSTM1: Sequestosome 1; STR: Scotopic threshold response; Tat: Trans-activator of transcription; TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling.
Collapse
Affiliation(s)
- Biji Mathew
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Monica Sharma
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Leianne A. Torres
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Clara R. Stelman
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sophie Tran
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Raj Patel
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nathan Burg
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maryna Salkovski
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Konrad Kadzielawa
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Figen Seiler
- Electron Microscopy Core Facility, University of Illinois at Chicago, Chicago, IL, USA
| | - Leslie N. Aldrich
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven Roth
- Department of Anesthesiology, And College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
49
|
Yang D, Tan Y, Li H, Zhang X, Li X, Zhou F. Upregulation of miR-20b Protects Against Cerebral Ischemic Stroke by Targeting Thioredoxin Interacting Protein (TXNIP). Exp Neurobiol 2021; 30:170-182. [PMID: 33972468 PMCID: PMC8118756 DOI: 10.5607/en20046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is involved in abnormal development and pathophysiology in the brain. Although miR-20b plays essential roles in various human diseases, its function in cerebral ischemic stroke remains unclear. A cell model of oxygen glucose deprivation/reoxygenation (OGD/R) and A rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) were constructed. qRT-PCR and western blot were used to evaluate the expression of miR-20b and TXNIP. Cell viability was detected by MTT assay, and cell apoptosis was evaluated by flow cytometry. Targetscan and Starbase were used to predict the potential targets of miR-20b. Luciferase reporter assay was applied to determine the interaction between miR-20b and TXNIP. Rescue experiments were conducted to confirm the functions of miR-20b/TXNIP axis in cerebral ischemic stroke. MiR-20b was significantly downregulated after I/R both in vitro and in vivo. Upregulation of miR-20b inhibited OGD/R-induced neurons apoptosis and attenuated ischemic brain injury in rat model. Bioinformatic prediction suggested that TXNIP might be a target of miR-20b, and luciferase reporter assay revealed that miR-20b negatively regulated TXNIP expression by directly binding to the 3’-UTR of TXNIP. Downregulation of TXNIP inhibited OGD/R-induced neurons apoptosis in vitro and ischemic brain injury in vivo. Rescue experiments indicated that downregulation of TXNIP effectively reversed the effect of miR-20b inhibitor in neurons apoptosis after OGD/R-treatment and ischemic brain injury in a mouse model after MCAO/R-treatment. Our study demonstrated that upregulation of miR-20b protected the brain from ischemic brain injury by targeting TXNIP, extending our understanding of miRNAs in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Dejiang Yang
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Yu Tan
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Huanhuan Li
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Xiaowei Zhang
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Xinming Li
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Feng Zhou
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR. China
| |
Collapse
|
50
|
Fitzgerald E, Roberts J, Tennant DA, Boardman JP, Drake AJ. Metabolic adaptations to hypoxia in the neonatal mouse forebrain can occur independently of the transporters SLC7A5 and SLC3A2. Sci Rep 2021; 11:9092. [PMID: 33907288 PMCID: PMC8079390 DOI: 10.1038/s41598-021-88757-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/16/2021] [Indexed: 02/02/2023] Open
Abstract
Neonatal encephalopathy due to hypoxia-ischemia is associated with adverse neurodevelopmental effects. The involvement of branched chain amino acids (BCAAs) in this is largely unexplored. Transport of BCAAs at the plasma membrane is facilitated by SLC7A5/SLC3A2, which increase with hypoxia. We hypothesized that hypoxia would alter BCAA transport and metabolism in the neonatal brain. We investigated this using an organotypic forebrain slice culture model with, the SLC7A5/SLC3A2 inhibitor, 2-Amino-2-norbornanecarboxylic acid (BCH) under normoxic or hypoxic conditions. We subsequently analysed the metabolome and candidate gene expression. Hypoxia was associated with increased expression of SLC7A5 and SLC3A2 and an increased tissue abundance of BCAAs. Incubation of slices with 13C-leucine confirmed that this was due to increased cellular uptake. BCH had little effect on metabolite abundance under normoxic or hypoxic conditions. This suggests hypoxia drives increased cellular uptake of BCAAs in the neonatal mouse forebrain, and membrane mediated transport through SLC7A5 and SLC3A2 is not essential for this process. This indicates mechanisms exist to generate the compounds required to maintain essential metabolism in the absence of external nutrient supply. Moreover, excess BCAAs have been associated with developmental delay, providing an unexplored mechanism of hypoxia mediated pathogenesis in the developing forebrain.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|