1
|
Chen JC, Gong ZL, Li ZQ, Zhao YY, Tang K, Ma DX, Xu FF, Zhong YW. Vaporchromic Domino Transformation and Polarized Photonic Heterojunctions of Organoplatinum Microrods. Angew Chem Int Ed Engl 2024; 63:e202412651. [PMID: 39030810 DOI: 10.1002/anie.202412651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Photonic heterostructures with codable properties have shown great values as versatile information carriers at the micro- and nanoscale. These heterostructures are typically prepared by a step-by-step growth or post-functionalization method to achieve varied emission colors with different building blocks. In order to realize high-throughput and multivariate information loading, we report here a strategy to integrate polarization signals into photonic heterojunctions. A U-shaped di-Pt(II) complex has been assembled into highly polarized yellow-phosphorescent crystalline microrods (Y-rod) by strong intermolecular Pt⋅⋅⋅Pt interaction. Upon end-initiated desorption of the incorporated CH2Cl2 solvents, the Y-rod is transformed in a domino fashion into tri-block polarized photonic heterojunctions (PPHs) with alternate red-yellow-red emissions or red-phosphorescent microrods (R-rods). The red emissions of these structures are also highly polarized; however, their polarization directions are just orthogonal to those of the yellow phosphorescence of the Y-rod. With the aid of a patterned mask, the R-rod can be further programmed into multi-block PPHs with precisely controlled block sizes by side-allowed adsorption of CH2Cl2 vapor. X-ray diffraction analysis and theoretical calculations suggest that the solvent-regulated modulation of the crystal packing and excited-state property is critical for the construction of these PPHs.
Collapse
Affiliation(s)
- Jian-Cheng Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Liang Gong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhong-Qiu Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuan-Yuan Zhao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Tang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dian-Xue Ma
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fa-Feng Xu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Zhou C, Liang S, Qi B, Liu C, Cho NJ. One-pot microfluidic fabrication of micro ceramic particles. Nat Commun 2024; 15:8862. [PMID: 39406710 PMCID: PMC11480503 DOI: 10.1038/s41467-024-53016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
In the quest for miniaturization across technical disciplines, microscale ceramic blocks emerge as pivotal components, with performance critically dependent on precise scales and intricate shapes. Sharp-edged ceramic microparticles, applied from micromachining to microelectronics, require innovative fabrication techniques for high-throughput production while maintaining structural complexity and mechanical integrity. This study introduces a "one-pot microfluidic fabrication" system incorporating two device fabrication strategies, "groove & tongue" and sliding assembling, achieving an unprecedented array of microparticles with diverse, complex shapes and refined precision, outperforming traditional methods in production rate and quality. Optimally designed sintering profiles based on derivative thermogravimetry enhance microparticles' shape retention and structural strength. Compression and scratch tests validate the superiority of microparticles, suggesting their practicability for diverse applications, such as precise micromachining, sophisticated microrobotics and delicate microsurgical tools. This advancement marks a shift in microscale manufacturing, offering a scalable solution to meet the demanding specifications of miniaturized technology components.
Collapse
Affiliation(s)
- Chenchen Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, Singapore, 637551, Singapore
| | - Shuaishuai Liang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Bin Qi
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Chenxu Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
- Centre for Cross Economy, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
3
|
Xiao G, Wang X, Fang X, Du J, Jiang Y, Miao D, Yan D, Xu C. Simplifying complexity: integrating color science for predictable full-color and on-demand persistent luminescence using industrial disperse dyes. Chem Sci 2024:d4sc05741d. [PMID: 39364075 PMCID: PMC11446313 DOI: 10.1039/d4sc05741d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
Developing color-tunable ultralong room temperature phosphorescence (RTP) materials with variable afterglow is essential for applications in displays, sensors, information encryption, and optoelectronic devices. However, designing full-color ultralong RTP for persistent luminescence remains a significant challenge. Here, we propose a straightforward strategy to achieve predictable full-color afterglow using readily available disperse dyes in polymeric systems, via the phosphorescence resonance energy transfer (PRET) process. We incorporated the unconventional luminophore tetraacetylethylenediamine (TAED) into polyurethane (PU) to create a polymer host with green afterglow. By adding three typical disperse dyes as guests, we achieved a modulated afterglow covering the full visible light spectrum. Leveraging PRET processes between TAED and the disperse dyes, we achieved a prediction accuracy of 88.89% for afterglow color, surpassing well-developed coloration dye systems. This work thus introduces a novel method to obtain easily predictable ultralong RTP emission and establishes an on-demand design strategy for constructing disperse dye-based full-color afterglow, effectively linking fundamental color science to practical customization.
Collapse
Affiliation(s)
- Guowei Xiao
- College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
| | - Xiaoyan Wang
- College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jinmei Du
- College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
| | - Yang Jiang
- College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
| | - Dagang Miao
- College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Changhai Xu
- College of Textiles & Clothing, Qingdao University Qingdao Shandong 266071 China
| |
Collapse
|
4
|
Yang C, Liu X, Song X, Zhang L. Design and batch fabrication of anisotropic microparticles toward small-scale robots using microfluidics: recent advances. LAB ON A CHIP 2024; 24:4514-4535. [PMID: 39206574 DOI: 10.1039/d4lc00566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Small-scale robots with shape anisotropy have garnered significant scientific interest due to their enhanced mobility and precise control in recent years. Traditionally, these miniature robots are manufactured using established techniques such as molding, 3D printing, and microfabrication. However, the advent of microfluidics in recent years has emerged as a promising manufacturing technology, capitalizing on the precise and dynamic manipulation of fluids at the microscale to fabricate various complex-shaped anisotropic particles. This offers a versatile and controlled platform, enabling the efficient fabrication of small-scale robots with tailored morphologies and advanced functionalities from the microfluidic-derived anisotropic microparticles at high throughput. This review highlights the recent advances in the microfluidic fabrication of anisotropic microparticles and their potential applications in small-scale robots. In this review, the term 'small-scale robots' broadly encompasses micromotors endowed with capabilities for locomotion and manipulation. Firstly, the fundamental strategies for liquid template formation and the methodologies for generating anisotropic microparticles within the microfluidic system are briefly introduced. Subsequently, the functionality of shape-anisotropic particles in forming components for small-scale robots and actuation mechanisms are emphasized. Attention is then directed towards the diverse applications of these microparticle-derived microrobots in a variety of fields, including pollution remediation, cell microcarriers, drug delivery, and biofilm eradication. Finally, we discuss future directions for the fabrication and development of miniature robots from microfluidics, shedding light on the evolving landscape of this field.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xurui Liu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xin Song
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| |
Collapse
|
5
|
Sun C, Li D, Dan W, Yin J, Fei H. Mixed-Layered Lead Halide Frameworks with High Stability and Efficient Room-Temperature Phosphorescence. J Phys Chem Lett 2024; 15:8451-8458. [PMID: 39121497 DOI: 10.1021/acs.jpclett.4c01880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Room-temperature phosphorescent (RTP) materials play a crucial role in optical anticounterfeiting science and information security technologies. Ionically bonded organic metal halides have emerged as promising RTP material systems due to their excellent self-assembly and unique photophysical property, but their intrinsic instability largely hinders their advanced practical applications. Herein, we employ a coordination-driven synthetic strategy utilizing organocarboxylates for the synthesis of two isostructural layered lead halide frameworks. The frameworks adopt a new mixed-layered topology, consisting of alternating [Pb10X9]11+ (X = Cl-/Br-) layers and [Pb6XO3]11+ (X = Cl-/Br-) layers that are coordinatively sandwiched by organocarboxylate layers. The frameworks exhibit long-lived green afterglow emission with the long lifetime of up to 45.89 ms and the photoluminescence quantum yield (PLQY) of up to 43.13%. The Pb2+-carboxylate coordination accelerates the metal-to-ligand charge transfer from the light-harvesting lead halide layers to the phosphorescent organic component, promoting efficient spin-orbit coupling and intersystem crossing. Moreover, the coordination networks exhibit good structural robustness under ambient conditions for at least 12 months, as well as stability in boiling water, acidic and basic aqueous environments. The highly efficient afterglow and high structural integrity enable multiple anticounterfeiting applications across diverse chemical environments.
Collapse
Affiliation(s)
- Chen Sun
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Dongyang Li
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Wenyan Dan
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Jinlin Yin
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
6
|
Ghosh R, Arnheim A, van Zee M, Shang L, Soemardy C, Tang RC, Mellody M, Baghdasarian S, Sanchez Ochoa E, Ye S, Chen S, Williamson C, Karunaratne A, Di Carlo D. Lab on a Particle Technologies. Anal Chem 2024; 96:7817-7839. [PMID: 38650433 PMCID: PMC11112544 DOI: 10.1021/acs.analchem.4c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Rajesh Ghosh
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Alyssa Arnheim
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Mark van Zee
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Lily Shang
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Citradewi Soemardy
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Rui-Chian Tang
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Michael Mellody
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Sevana Baghdasarian
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Edwin Sanchez Ochoa
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Shun Ye
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Siyu Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Cayden Williamson
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Amrith Karunaratne
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Sahin MA, Shehzad M, Destgeer G. Stopping Microfluidic Flow. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307956. [PMID: 38143295 DOI: 10.1002/smll.202307956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/13/2023] [Indexed: 12/26/2023]
Abstract
A cross-comparison of three stop-flow configurations-such as low-pressure (LSF), high-pressure open-circuit (OC-HSF), and high-pressure short-circuit (SC-HSF) stop-flow-is presented to rapidly bring a high velocity flow O(m s-1) within a microchannel to a standstill O(µm s-1). The performance of three stop-flow configurations is assessed by measuring residual flow velocities within microchannels having three orders of magnitude different flow resistances. The LSF configuration outperforms the OC-HSF and SC-HSF configurations within a high flow resistance microchannel and results in a residual velocity of <10 µm s-1. The OC-HSF configuration results in a residual velocity of <150 µm s-1 within a low flow resistance microchannel. The SC-HSF configuration results in a residual velocity of <200 µm s-1 across the three orders-of-magnitude different flow resistance microchannels, and <100 µm s-1 for the low flow resistance channel. It is hypothesized that residual velocity results from compliance in fluidic circuits, which is further investigated by varying the elasticity of microchannel walls and connecting tubing. A numerical model is developed to estimate the expanded volumes of the compliant microchannel and connecting tubings under a pressure gradient and to calculate the distance traveled by the sample fluid. A comparison of the numerically and experimentally obtained traveling distances confirms the hypothesis that the residual velocities are an outcome of the compliance in the fluidic circuit.
Collapse
Affiliation(s)
- Mehmet Akif Sahin
- Control and Manipulation of Microscale Living Objects, Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| | - Muhammad Shehzad
- Control and Manipulation of Microscale Living Objects, Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| | - Ghulam Destgeer
- Control and Manipulation of Microscale Living Objects, Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| |
Collapse
|
8
|
Cheng H, Qu J, Mao W, Chen S, Dong H. Continuous-Wave Pumped Monolayer WS 2 Lasing for Photonic Barcoding. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:614. [PMID: 38607148 PMCID: PMC11013185 DOI: 10.3390/nano14070614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Micro/nano photonic barcoding has emerged as a promising technology for information security and anti-counterfeiting applications owing to its high security and robust tamper resistance. However, the practical application of conventional micro/nano photonic barcodes is constrained by limitations in encoding capacity and identification verification (e.g., broad emission bandwidth and the expense of pulsed lasers). Herein, we propose high-capacity photonic barcode labels by leveraging continuous-wave (CW) pumped monolayer tungsten disulfide (WS2) lasing. Large-area, high-quality monolayer WS2 films were grown via a vapor deposition method and coupled with external cavities to construct optically pumped microlasers, thus achieving an excellent CW-pumped lasing with a narrow linewidth (~0.39 nm) and a low threshold (~400 W cm-2) at room temperature. Each pixel within the photonic barcode labels consists of closely packed WS2 microlasers of varying sizes, demonstrating high-density and nonuniform multiple-mode lasing signals that facilitate barcode encoding. Notably, CW operation and narrow-linewidth lasing emission could significantly simplify detection. As proof of concept, a 20-pixel label exhibits a high encoding capacity (2.35 × 10108). This work may promote the advancement of two-dimensional materials micro/nanolasers and offer a promising platform for information encoding and security applications.
Collapse
Affiliation(s)
- Haodong Cheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.C.); (J.Q.)
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Junyu Qu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.C.); (J.Q.)
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Wangqi Mao
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.C.); (J.Q.)
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Hongxing Dong
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Hangzhou Institute for Advanced Study, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
9
|
Wu S, Huang Y, Wen J, Huang J, Ma G, Liu Y, Tan H. Multiplex Aptamer-Based Fluorescence Assay Using Magnetism-Encoded Nanoparticles for Simultaneous Detection of Multiple Pathogenic Bacteria. Anal Chem 2024; 96:2341-2350. [PMID: 38300877 DOI: 10.1021/acs.analchem.3c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Multiplex assay has emerged as a robust and versatile method for the simultaneous detection of multiple analytes in a single test. However, challenges in terms of poor accuracy and complexity remained. In this work, we developed a multiplex aptamer-based fluorescence assay using magnetism-encoded nanoparticles for the simultaneous detection of multiple pathogenic bacteria. The encapsulation of different amounts of Fe3O4 nanoparticles in zeolitic imidazolate framework-90 (ZIF-90) leads to the formation of Fe3O4@ZIF-90 (FZ) composites with distinct magnetism strengths. By functionalizing a specific aptamer on the surface of the FZ composites, target bacteria can be specifically and precisely separated from a mixed sample in a sequential manner. This property allows for the simultaneous quantitative analysis of multiple target bacteria by using a single-color fluorescence label, thereby resulting in minimal spectral crosstalk interference and improved accuracy. The successful determination of multiple bacteria in contaminated milk samples demonstrates the applicability of this multiplex assay in complex biological matrices. Compared to conventional multiplex fluorescence assays, this approach offers distinct advantages of simplicity, efficiency, and implementation. We believe that this study can provide valuable insights into the development of the multiplex assay while introducing a new method for the simultaneous detection of multiple bacteria.
Collapse
Affiliation(s)
- Sixuan Wu
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yingjie Huang
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jin Wen
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jiang Huang
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Guangran Ma
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yongjun Liu
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Hongliang Tan
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
10
|
Xie Y, Tong Z, Xia T, Worch JC, Rho JY, Dove AP, O'Reilly RK. 2D Hierarchical Microbarcodes with Expanded Storage Capacity for Optical Multiplex and Information Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308154. [PMID: 38014933 DOI: 10.1002/adma.202308154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/16/2023] [Indexed: 11/29/2023]
Abstract
The design of nanosegregated fluorescent tags/barcodes by geometrical patterning with precise dimensions and hierarchies could integrate multilevel optical information within one carrier and enhance microsized barcoding techniques for ultrahigh-density optical data storage and encryption. However, precise control of the spatial distribution in micro/nanosized matrices intrinsically limits the accessible barcoding applications in terms of material design and construction. Here, crystallization forces are leveraged to enable a rapid, programmable molecular packing and rapid epitaxial growth of fluorescent units in 2D via crystallization-driven self-assembly. The fluorescence encoding density, scalability, information storage capacity, and decoding techniques of the robust 2D polymeric barcoding platform are explored systematically. These results provide both a theoretical and an experimental foundation for expanding the fluorescence storage capacity, which is a longstanding challenge in state-of-the-art microbarcoding techniques and establish a generalized and adaptable coding platform for high-throughput analysis and optical multiplexing.
Collapse
Affiliation(s)
- Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zaizai Tong
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tianlai Xia
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joshua C Worch
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Julia Y Rho
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
11
|
Sandberg E, Demirbay B, Kulkarni A, Liu H, Piguet J, Widengren J. Fluorescence Bar-Coding and Flowmetry Based on Dark State Transitions in Fluorescence Emitters. J Phys Chem B 2024; 128:125-136. [PMID: 38127267 PMCID: PMC10788918 DOI: 10.1021/acs.jpcb.3c06905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Reversible dark state transitions in fluorophores represent a limiting factor in fluorescence-based ultrasensitive spectroscopy, are a necessary basis for fluorescence-based super-resolution imaging, but may also offer additional, largely orthogonal fluorescence-based readout parameters. In this work, we analyzed the blinking kinetics of Cyanine5 (Cy5) as a bar-coding feature distinguishing Cy5 from rhodamine fluorophores having largely overlapping emission spectra. First, fluorescence correlation spectroscopy (FCS) solution measurements on mixtures of free fluorophores and fluorophore-labeled small unilamellar vesicles (SUVs) showed that Cy5 could be readily distinguished from the rhodamines by its reversible, largely excitation-driven trans-cis isomerization. This was next confirmed by transient state (TRAST) spectroscopy measurements, determining the fluorophore dark state kinetics in a more robust manner, from how the time-averaged fluorescence intensity varies upon modulation of the applied excitation light. TRAST was then combined with wide-field imaging of live cells, whereby Cy5 and rhodamine fluorophores could be distinguished on a whole cell level as well as in spatially resolved, multiplexed images of the cells. Finally, we established a microfluidic TRAST concept and showed how different mixtures of free Cy5 and rhodamine fluorophores and corresponding fluorophore-labeled SUVs could be distinguished on-the-fly when passing through a microfluidic channel. In contrast to FCS, TRAST does not rely on single-molecule detection conditions or a high time resolution and is thus broadly applicable to different biological samples. Therefore, we expect that the bar-coding concept presented in this work can offer an additional useful strategy for fluorescence-based multiplexing that can be implemented on a broad range of both stationary and moving samples.
Collapse
Affiliation(s)
- Elin Sandberg
- Royal Institute of Technology
(KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Baris Demirbay
- Royal Institute of Technology
(KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Abhilash Kulkarni
- Royal Institute of Technology
(KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Haichun Liu
- Royal Institute of Technology
(KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Joachim Piguet
- Royal Institute of Technology
(KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Jerker Widengren
- Royal Institute of Technology
(KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
12
|
Leulmi Pichot S, Vemulkar T, Verheyen J, Wallis L, Jones JO, Stewart AP, Welsh SJ, Stewart GD, Cowburn RP. Lithographically defined encoded magnetic heterostructures for the targeted screening of kidney cancer. NANOSCALE ADVANCES 2023; 6:276-286. [PMID: 38125591 PMCID: PMC10729922 DOI: 10.1039/d3na00701d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
Renal cell carcinoma (RCC) is the 7th commonest cancer in the UK and the most lethal urological malignancy; 50% of all RCC patients will die from the condition. However, if identified early enough, small RCCs are usually cured by surgery or percutaneous procedures, with 95% 10 year survival. This study describes a newly developed non-invasive urine-based assay for the early detection of RCC. Our approach uses encoded magnetically controllable heterostructures as a substrate for immunoassays. These heterostructures have molecular recognition abilities and embedded patterned codes for a rapid identification of RCC biomarkers. The magnetic heterostructures developed for this study have a magnetic configuration designed for a remote multi axial control of their orientation by external magnetic fields, this control facilitates the code readout when the heterostructures are in liquid. Furthermore, the optical encoding of each set of heterostructures provides a multiplexed analyte capture platform, as different sets of heterostructures, specific to different biomarkers can be mixed together in a patient sample. Our results show a precise magnetic control of the heterostructures with an efficient code readout during liquid immunoassays. The use of functionalised magnetic heterostructures as a substrate for immunoassay is validated for urine specimen spiked with recombinant RCC biomarkers. Initial results of the newly proposed screening method on urine samples from RCC patients, and controls with no renal disorders are presented in this study. Comprehensive optimisation cycles are in progress to validate the robustness of this technology as a novel, non-invasive screening method for RCC.
Collapse
Affiliation(s)
- Selma Leulmi Pichot
- The Cavendish Laboratory, Department of Physics, University of Cambridge Cambridge CB3 0HE UK
| | | | | | - Lauren Wallis
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus Cambridge CB2 0QQ UK
| | - James O Jones
- Department of Oncology, University of Cambridge, Cambridge Biomedical Campus Cambridge CB2 0QQ UK
| | - Andrew P Stewart
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology Cambridge Biomedical Campus Cambridge CB2 0QQ UK
| | - Sarah J Welsh
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus Cambridge CB2 0QQ UK
| | - Grant D Stewart
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus Cambridge CB2 0QQ UK
| | - Russell P Cowburn
- The Cavendish Laboratory, Department of Physics, University of Cambridge Cambridge CB3 0HE UK
| |
Collapse
|
13
|
Reichstein J, Müssig S, Wintzheimer S, Mandel K. Communicating Supraparticles to Enable Perceptual, Information-Providing Matter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306728. [PMID: 37786273 DOI: 10.1002/adma.202306728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Indexed: 10/04/2023]
Abstract
Materials are the fundament of the physical world, whereas information and its exchange are the centerpieces of the digital world. Their fruitful synergy offers countless opportunities for realizing desired digital transformation processes in the physical world of materials. Yet, to date, a perfect connection between these worlds is missing. From the perspective, this can be achieved by overcoming the paradigm of considering materials as passive objects and turning them into perceptual, information-providing matter. This matter is capable of communicating associated digitally stored information, for example, its origin, fate, and material type as well as its intactness on demand. Herein, the concept of realizing perceptual, information-providing matter by integrating customizable (sub-)micrometer-sized communicating supraparticles (CSPs) is presented. They are assembled from individual nanoparticulate and/or (macro)molecular building blocks with spectrally differentiable signals that are either robust or stimuli-susceptible. Their combination yields functional signal characteristics that provide an identification signature and one or multiple stimuli-recorder features. This enables CSPs to communicate associated digital information on the tagged material and its encountered stimuli histories upon signal readout anywhere across its life cycle. Ultimately, CSPs link the materials and digital worlds with numerous use cases thereof, in particular fostering the transition into an age of sustainability.
Collapse
Affiliation(s)
- Jakob Reichstein
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Stephan Müssig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| |
Collapse
|
14
|
Juska VB, Maxwell G, Estrela P, Pemble ME, O'Riordan A. Silicon microfabrication technologies for biology integrated advance devices and interfaces. Biosens Bioelectron 2023; 237:115503. [PMID: 37481868 DOI: 10.1016/j.bios.2023.115503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
Miniaturization is the trend to manufacture ever smaller devices and this process requires knowledge, experience, understanding of materials, manufacturing techniques and scaling laws. The fabrication techniques used in semiconductor industry deliver an exceptionally high yield of devices and provide a well-established platform. Today, these miniaturized devices are manufactured with high reproducibility, design flexibility, scalability and multiplexed features to be used in several applications including micro-, nano-fluidics, implantable chips, diagnostics/biosensors and neural probes. We here provide a review on the microfabricated devices used for biology driven science. We will describe the ubiquity of the use of micro-nanofabrication techniques in biology and biotechnology through the fabrication of high-aspect-ratio devices for cell sensing applications, intracellular devices, probes developed for neuroscience-neurotechnology and biosensing of the certain biomarkers. Recently, the research on micro and nanodevices for biology has been progressing rapidly. While the understanding of the unknown biological fields -such as human brain- has been requiring more research with advanced materials and devices, the development protocols of desired devices has been advancing in parallel, which finally meets with some of the requirements of biological sciences. This is a very exciting field and we aim to highlight the impact of micro-nanotechnologies that can shed light on complex biological questions and needs.
Collapse
Affiliation(s)
- Vuslat B Juska
- Tyndall National Institute, University College Cork, T12R5CP, Ireland.
| | - Graeme Maxwell
- Tyndall National Institute, University College Cork, T12R5CP, Ireland
| | - Pedro Estrela
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, United Kingdom; Centre for Bioengineering & Biomedical Technologies (CBio), University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Alan O'Riordan
- Tyndall National Institute, University College Cork, T12R5CP, Ireland
| |
Collapse
|
15
|
Choi JH, Jang W, Lim YJ, Mun SJ, Bong KW. Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles. ACS Sens 2023; 8:3158-3166. [PMID: 37489756 DOI: 10.1021/acssensors.3c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previous related studies have found the use of plain particles as data to be disadvantageous for accurate analyses of HMPs loaded with functional nanomaterials. Furthermore, the manual data annotation method used in existing approaches is highly labor-intensive and time-consuming. In this study, we present an efficient deep-learning-based analysis of encoded HMPs with diverse graphical codes and functional nanomaterials, utilizing the auto-annotation and synthetic data mixing methods for model training. The auto-annotation enhanced the throughput of dataset preparation up to 0.11 s/image. Using synthetic data mixing, a mean average precision of 0.88 was achieved in the analysis of encoded HMPs with magnetic nanoparticles, representing an approximately twofold improvement over the standard method. To evaluate the practical applicability of the proposed automatic analysis strategy, a single-image analysis was performed after the triplex immunoassay for the preeclampsia-related protein biomarkers. Finally, we accomplished a processing throughput of 0.353 s per sample for analyzing the result image.
Collapse
Affiliation(s)
- Jun Hee Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Yong Jun Lim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
16
|
Feng J, Shu Y, An Y, Niu Q, Fan Q, Lei Y, Gong Y, Hu X, Zhang P, Liu Y, Yang C, Wu L. Encoded Fusion-Mediated MicroRNA Signature Profiling of Tumor-Derived Extracellular Vesicles for Pancreatic Cancer Diagnosis. Anal Chem 2023; 95:7743-7752. [PMID: 37147770 DOI: 10.1021/acs.analchem.3c00929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
MicroRNAs (miRNAs) in tumor-derived extracellular vesicles (tEVs) are important cancer biomarkers for cancer screening and early diagnosis. Multiplex detection of miRNAs in tEVs facilitates accurate diagnosis but remains a challenge. Herein, we propose an encoded fusion strategy to profile the miRNA signature in tEVs for pancreatic cancer diagnosis. A panel of encoded-targeted-fusion beads was fabricated for the selective recognition and fusion of tEVs, with the turn-on fluorescence signals of molecule beacons for miRNA quantification and barcode signals for miRNA identification using readily accessible flow cytometers. Using this strategy, six types of pancreatic-cancer-associated miRNAs can be profiled in tEVs from 2 μL plasma samples (n = 36) in an isolation-free and lysis-free manner with only 2 h of processing, offering a high accuracy (98%) to discriminate pancreatic cancer, pancreatitis, and healthy donors. This encoded fusion strategy exhibits great potential for multiplex profiling of miRNA in tEVs, offering new avenues for cancer diagnosis and screening.
Collapse
Affiliation(s)
- Jianzhou Feng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yu An
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qi Niu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qian Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanmei Lei
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanli Gong
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Peng Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingbin Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
17
|
Liu Y, Lin G, Medina-Sánchez M, Guix M, Makarov D, Jin D. Responsive Magnetic Nanocomposites for Intelligent Shape-Morphing Microrobots. ACS NANO 2023; 17:8899-8917. [PMID: 37141496 DOI: 10.1021/acsnano.3c01609] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With the development of advanced biomedical theragnosis and bioengineering tools, smart and soft responsive microstructures and nanostructures have emerged. These structures can transform their body shape on demand and convert external power into mechanical actions. Here, we survey the key advances in the design of responsive polymer-particle nanocomposites that led to the development of smart shape-morphing microscale robotic devices. We overview the technological roadmap of the field and highlight the emerging opportunities in programming magnetically responsive nanomaterials in polymeric matrixes, as magnetic materials offer a rich spectrum of properties that can be encoded with various magnetization information. The use of magnetic fields as a tether-free control can easily penetrate biological tissues. With the advances in nanotechnology and manufacturing techniques, microrobotic devices can be realized with the desired magnetic reconfigurability. We emphasize that future fabrication techniques will be the key to bridging the gaps between integrating sophisticated functionalities of nanoscale materials and reducing the complexity and footprints of microscale intelligent robots.
Collapse
Affiliation(s)
- Yuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055 Guangdong Province, P. R. China
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069 Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062 Dresden, Germany
| | - Maria Guix
- Universitat de Barcelona, Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional Barcelona, 08028 Barcelona, Spain
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
18
|
Yang S, Feng X, Xu B, Lin R, Xu Y, Chen S, Wang Z, Wang X, Meng X, Gao Z. Directional Self-Assembly of Facet-Aligned Organic Hierarchical Super-Heterostructures for Spatially Resolved Photonic Barcodes. ACS NANO 2023; 17:6341-6349. [PMID: 36951368 DOI: 10.1021/acsnano.2c10659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic multicolor heterostructures with spatially resolved luminescent colors and identifiable patterns have exhibited considerable potential for achieving micro-/nanoscale photonic barcodes. Nevertheless, such types of barcodes reported thus far are exclusively based on a single heterostructure with limited coding elements. Here, a directional self-assembly strategy is proposed to achieve high-coding-capacity spatially resolved photonic barcodes through rationally constructing organic hierarchical super-heterostructures, where numerous subheterostructure blocks with flat hexagonal facets are precisely oriented with their specific facets via a reconfigurable capillary force. The building blocks were prepared through a one-pot sequential heteroepitaxial growth, which enables the effective modulation of the structural and color characteristics in coding structures. Significantly, a directional facet-to-facet attraction between particles via facet registration leads to the formation of well-defined 1D super-heterostructures, which contain multiple coding elements, thus providing a good platform for constructing the high-coding-capacity photonic barcodes. The results may be useful in fabricating organic hierarchical hybrid super-heterostructures for security labels and optical data recording.
Collapse
Affiliation(s)
- Shuo Yang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong Province, People's Republic of China
| | - Xingwei Feng
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong Province, People's Republic of China
| | - Baoyuan Xu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong Province, People's Republic of China
| | - Ru Lin
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong Province, People's Republic of China
| | - Yuyu Xu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong Province, People's Republic of China
| | - Shunwei Chen
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong Province, People's Republic of China
| | - Zifei Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong Province, People's Republic of China
| | - Xue Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong Province, People's Republic of China
| | - Xiangeng Meng
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong Province, People's Republic of China
| | - Zhenhua Gao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong Province, People's Republic of China
| |
Collapse
|
19
|
Wang M, Nie C, Liu J, Wu S. Organic‒inorganic semi-interpenetrating networks with orthogonal light- and magnetic-responsiveness for smart photonic gels. Nat Commun 2023; 14:1000. [PMID: 36813808 PMCID: PMC9946997 DOI: 10.1038/s41467-023-36706-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Living matter has the ability to perceive multiple stimuli and respond accordingly. However, the integration of multiple stimuli-responsiveness in artificial materials usually causes mutual interference, which makes artificial materials work improperly. Herein, we design composite gels with organic‒inorganic semi-interpenetrating network structures, which are orthogonally responsive to light and magnetic fields. The composite gels are prepared by the co-assembly of a photoswitchable organogelator (Azo-Ch) and superparamagnetic inorganic nanoparticles (Fe3O4@SiO2). Azo-Ch assembles into an organogel network, which shows photoinduced reversible sol-gel transitions. In gel or sol state, Fe3O4@SiO2 nanoparticles reversibly form photonic nanochains via magnetic control. Light and magnetic fields can orthogonally control the composite gel because Azo-Ch and Fe3O4@SiO2 form a unique semi-interpenetrating network, which allows them to work independently. The orthogonal photo- and magnetic-responsiveness enables the fabrication of smart windows, anti-counterfeiting labels, and reconfigurable materials using the composite gel. Our work presents a method to design orthogonally stimuli-responsive materials.
Collapse
Affiliation(s)
- Minghao Wang
- grid.59053.3a0000000121679639CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| | - Chen Nie
- grid.59053.3a0000000121679639CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| | - Junbang Liu
- grid.59053.3a0000000121679639CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, 230026 Hefei, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
20
|
Shen Y, Yuan L, Wu G, Yuan W, Cheng Z, Yan J, Zhang J, Tao Y, Yu Z. Microdroplet-Facilitated Assembly of Thermally Activated Delayed Fluorescence-Encoded Microparticles with Non-interfering Color Signals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:591-598. [PMID: 36542734 DOI: 10.1021/acsami.2c18870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Encoded microparticles (EMPs) have shown demonstrative value for multiplexed high-throughput bioassays such as drug discovery and diagnostics. Herein, we propose for the first time the incorporation of thermally activated delayed fluorescence (TADF) dyes with low-cost, heavy metal-free, and long-lived luminescence properties into polymer matrices via a microfluidic droplet-facilitated assembly technique. Benefiting from the uniform droplet template sizes and polymer-encapsulated structures, the resulting composite EMPs are highly monodispersed, efficiently shield TADF dyes from singlet oxygen, well preserve TADF emission, and greatly increase the delayed fluorescence lifetime. Furthermore, by combining with phase separation of polymer blends in the drying droplets, TADF dyes with distinct luminescent colors can be spatially separated within each EMP. It eliminates optical signal interference and generates multiple fluorescence colors in a compact system. Additionally, in vitro studies reveal that the resulting EMPs show good biocompatibility and allow cells to adhere and grow on the surface, thereby making them promising optically EMPs for biolabeling.
Collapse
Affiliation(s)
- Yu Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Lingfeng Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Guanfu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Wenbo Yuan
- Key Lab for Flexible Electronics & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Zhengxiang Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Jing Yan
- Holosensor Medical Ltd., Building 12, 1798 West Zhonghuayuan Road, Suzhou City, Jiangsu 215300, China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Youtian Tao
- Key Lab for Flexible Electronics & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| |
Collapse
|
21
|
Lee S, Lee W, Lee AC, Nam J, Lee J, Kim H, Jeong Y, Yeom H, Kim N, Song SW, Kwon S. I-LIFT (image-based laser-induced forward transfer) platform for manipulating encoded microparticles. BIOMICROFLUIDICS 2022; 16:061101. [PMID: 36483021 PMCID: PMC9726220 DOI: 10.1063/5.0131733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Encoded microparticles have great potential in small-volume multiplexed assays. It is important to link the micro-level assays to the macro-level by indexing and manipulating the microparticles to enhance their versatility. There are technologies to actively manipulate the encoded microparticles, but none is capable of directly manipulating the encoded microparticles with homogeneous physical properties. Here, we report the image-based laser-induced forward transfer system for active manipulation of the graphically encoded microparticles. By demonstrating the direct retrieval of the microparticles of interest, we show that this system has the potential to expand the usage of encoded microparticles.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Wooseok Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Amos Chungwon Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Juhong Nam
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - JinYoung Lee
- Division of Engineering Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hamin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunjin Jeong
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Huiran Yeom
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Namphil Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Woo Song
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Kwon
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
22
|
Bacchetti A, Lloyd P, Taccola S, Fakhoury E, Cochran S, Harris RA, Valdastri P, Chandler JH. Optimization and fabrication of programmable domains for soft magnetic robots: A review. Front Robot AI 2022; 9:1040984. [PMID: 36504496 PMCID: PMC9729867 DOI: 10.3389/frobt.2022.1040984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Driven by the aim of realizing functional robotic systems at the milli- and submillimetre scale for biomedical applications, the area of magnetically driven soft devices has received significant recent attention. This has resulted in a new generation of magnetically controlled soft robots with patterns of embedded, programmable domains throughout their structures. This type of programmable magnetic profiling equips magnetic soft robots with shape programmable memory and can be achieved through the distribution of discrete domains (voxels) with variable magnetic densities and magnetization directions. This approach has produced highly compliant, and often bio-inspired structures that are well suited to biomedical applications at small scales, including microfluidic transport and shape-forming surgical catheters. However, to unlock the full potential of magnetic soft robots with improved designs and control, significant challenges remain in their compositional optimization and fabrication. This review considers recent advances and challenges in the interlinked optimization and fabrication aspects of programmable domains within magnetic soft robots. Through a combination of improvements in the computational capacity of novel optimization methods with advances in the resolution, material selection and automation of existing and novel fabrication methods, significant further developments in programmable magnetic soft robots may be realized.
Collapse
Affiliation(s)
- Alistair Bacchetti
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom,Science and Technologies of Robotics in Medicine Laboratory, School of Electronic and Electrical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Peter Lloyd
- Science and Technologies of Robotics in Medicine Laboratory, School of Electronic and Electrical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Silvia Taccola
- Future Manufacturing Processes Research Group, University of Leeds, Leeds, United Kingdom
| | - Evan Fakhoury
- Industrial and Mechanical Engineering Department, Lebanese American University, Byblos, Lebanon
| | - Sandy Cochran
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Russell A. Harris
- Future Manufacturing Processes Research Group, University of Leeds, Leeds, United Kingdom
| | - Pietro Valdastri
- Science and Technologies of Robotics in Medicine Laboratory, School of Electronic and Electrical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - James H. Chandler
- Science and Technologies of Robotics in Medicine Laboratory, School of Electronic and Electrical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom,*Correspondence: James H. Chandler,
| |
Collapse
|
23
|
Zath GK, Sperling RA, Hoffman CW, Bikos DA, Abbasi R, Abate AR, Weitz DA, Chang CB. Rapid parallel generation of a fluorescently barcoded drop library from a microtiter plate using the plate-interfacing parallel encapsulation (PIPE) chip. LAB ON A CHIP 2022; 22:4735-4745. [PMID: 36367139 PMCID: PMC10016142 DOI: 10.1039/d2lc00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In drop-based microfluidics, an aqueous sample is partitioned into drops using individual pump sources that drive water and oil into a drop-making device. Parallelization of drop-making devices is necessary to achieve high-throughput screening of multiple experimental conditions, especially in time-sensitive studies. Here, we present the plate-interfacing parallel encapsulation (PIPE) chip, a microfluidic chip designed to generate 50 to 90 μm diameter drops of up to 96 different conditions in parallel by interfacing individual drop makers with a standard 384-well microtiter plate. The PIPE chip is used to generate two types of optically barcoded drop libraries consisting of two-color fluorescent particle combinations: a library of 24 microbead barcodes and a library of 192 quantum dot barcodes. Barcoded combinations in the drop libraries are rapidly measured within a microfluidic device using fluorescence detection and distinct barcoded populations in the fluorescence drop data are identified using DBSCAN data clustering. Signal analysis reveals that particle size defines the source of dominant noise present in the fluorescence intensity distributions of the barcoded drop populations, arising from Poisson loading for microbeads and shot noise for quantum dots. A barcoded population from a drop library is isolated using fluorescence-activated drop sorting, enabling downstream analysis of drop contents. The PIPE chip can improve multiplexed high-throughput assays by enabling simultaneous encapsulation of barcoded samples stored in a microtiter plate and reducing sample preparation time.
Collapse
Affiliation(s)
- Geoffrey K Zath
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Ralph A Sperling
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Fraunhofer Institute for Microengineering and Microsystems IMM, Mainz, Germany
| | - Carter W Hoffman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Dimitri A Bikos
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Reha Abbasi
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - David A Weitz
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Connie B Chang
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Yin B, Jia H, Wang H, Chen R, Xu L, Zhao YS, Zhang C, Yao J. Magnetic-Field-Driven Reconfigurable Microsphere Arrays for Laser Display Pixels. ACS NANO 2022; 17:1187-1195. [PMID: 36410359 DOI: 10.1021/acsnano.2c08766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reconfigurable microlaser arrays are essential to the construction of display panels where the individual pixel should be highly tunable in resonance mode, optical polarization, and lasing wavelength upon external control signals. Here we demonstrate a facile yet reliable approach to fabrication of organic microlaser pixels, in which the assembly of microsphere arrays on each pixel is controlled according to the near-field magnetostatic confinement. The geometrical configuration of diamagnetic microspheres could be readily modulated with the near-field potential traps by using the external field to alternate the saturation magnetization of the underneath micromagnet. The motion of microspheres can be modulated among several states upon applied field, and the reconfigurable microsphere array is thus achieved with high spatial precision and rapid temporal response. Moreover, both isolated and coupled spheres serve as low-threshold microlasers with tunable optical resonance modes, whereas the switching between the vertical and horizontal alignments of coupled spheres manipulates the polarization of lasing outputs. By repeating the magnetostatic confinement on the same substrate, the full-color laser display pixels with magnetically tunable color expression capability are successfully achieved.
Collapse
Affiliation(s)
- Baipeng Yin
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Jia
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Xu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing. Nat Commun 2022; 13:7095. [DOI: 10.1038/s41467-022-34866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract3D photonic crystals (PCs) have attracted extensive attention due to their unique optical properties. However, fabricating 3D PCs structure by 3D printing colloidal particles is limited by control of assembly under a fast-printing speed. Here, we employ continuous digital light processing (DLP) 3D printing strategy with hydrogen bonds assisted colloidal inks for fabricating well-assembled 3D PCs structures. Stable dispersion of colloidal particles inside UV-curable system induced by hydrogen bonding and suction force induced by continuous curing manner cooperatively realize the simultaneous macroscopic printing and microscopic particle assembly, which endows volumetric color property. Structural color can be well regulated by controlling the particle diameter and printing speed, through which various complex 3D structures with desired structural color distribution and optical light-guide properties are acquired. This 3D color construction approach shows great potential in customized jewelry accessories, decoration and optical device preparation, and will innovate the development of structural color.
Collapse
|
26
|
Shimizu I, Yamashita K, Tokunaga E. Development of a Simple Fabrication Method for Magnetic Micro Stir Bars and Induction of Rotational Motion in Chlamydomonas reinhardtii. MICROMACHINES 2022; 13:1842. [PMID: 36363863 PMCID: PMC9695637 DOI: 10.3390/mi13111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
A magnetic micro stirrer bar (MMSB) is used in the mixing operation of microfluidic devices. We have established a low-cost and easy method to make MMSBs using magnetic (neodymium magnets, magnet sheets) or non-magnetic powders (SUS304) as materials. We demonstrated three kinds of MMSB have respective advantages. To confirm the practical use of this MMSB, a cell suspension of the motile unicellular green alga Chlamydomonas reinhardtii was stirred in microwells. As a result, the number of rotating cells increased with only one of the two flagella mechanically removed by the shear force of the rotating bar, which facilitates the kinetic analysis of the flagellar motion of the cell. The rotational motion of the monoflagellate cell was modeled as translational (orbital) + spinning motion of a sphere in a viscous fluid and the driving force per flagellum was confirmed to be consistent with previous literature. Since the present method does not use genetic manipulations or chemicals to remove a flagellum, it is possible to obtain cells in a more naturally viable state quickly and easily than before. However, since the components eluted from the powder material harm the health of cells, it was suggested that MMSB coated with resin for long-term use would be suitable for more diverse applications.
Collapse
|
27
|
Sahin MA, Werner H, Udani S, Di Carlo D, Destgeer G. Flow lithography for structured microparticles: fundamentals, methods and applications. LAB ON A CHIP 2022; 22:4007-4042. [PMID: 35920614 DOI: 10.1039/d2lc00421f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Structured microparticles, with unique shapes, customizable sizes, multiple materials, and spatially-defined chemistries, are leading the way for emerging 'lab on a particle' technologies. These microparticles with engineered designs find applications in multiplexed diagnostics, drug delivery, single-cell secretion assays, single-molecule detection assays, high throughput cytometry, micro-robotics, self-assembly, and tissue engineering. In this article we review state-of-the-art particle manufacturing technologies based on flow-assisted photolithography performed inside microfluidic channels. Important physicochemical concepts are discussed to provide a basis for understanding the fabrication technologies. These photolithography technologies are compared based on the structural as well as compositional complexity of the fabricated particles. Particles are categorized, from 1D to 3D particles, based on the number of dimensions that can be independently controlled during the fabrication process. After discussing the advantages of the individual techniques, important applications of the fabricated particles are reviewed. Lastly, a future perspective is provided with potential directions to improve the throughput of particle fabrication, realize new particle shapes, measure particles in an automated manner, and adopt the 'lab on a particle' technologies to other areas of research.
Collapse
Affiliation(s)
- Mehmet Akif Sahin
- Control and Manipulation of Microscale Living Objects, Central Institute for Translational Cancer Research (TranslaTUM), Department of Electrical and Computer Engineering, Technical University of Munich, Einsteinstraße 25, Munich 81675, Germany.
| | - Helen Werner
- Control and Manipulation of Microscale Living Objects, Central Institute for Translational Cancer Research (TranslaTUM), Department of Electrical and Computer Engineering, Technical University of Munich, Einsteinstraße 25, Munich 81675, Germany.
| | - Shreya Udani
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
- Department of Mechanical and Aerospace Engineering, California NanoSystems Institute and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, USA
| | - Ghulam Destgeer
- Control and Manipulation of Microscale Living Objects, Central Institute for Translational Cancer Research (TranslaTUM), Department of Electrical and Computer Engineering, Technical University of Munich, Einsteinstraße 25, Munich 81675, Germany.
| |
Collapse
|
28
|
Liu S, Lin Y, Yan D. Colorful ultralong room-temperature phosphorescence in dual-ligand metal-organic framework. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Influence of molecular packing on the color-tunable emissive behavior of viologen derivatives. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Bae S, Lee D, Na H, Jang J, Kwon S. One-step assembly of barcoded planar microparticles for efficient readout of multiplexed immunoassay. LAB ON A CHIP 2022; 22:2090-2096. [PMID: 35579061 DOI: 10.1039/d2lc00174h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Barcoded planar microparticles are suitable for developing cost-efficient multiplexed assays, but the robustness and efficiency of the readout process still needs improvement. Here, we designed a one-step microparticle assembling chip that produces efficient and accurate multiplex immunoassay readout results. Our design was also compatible with injection molding for mass production.
Collapse
Affiliation(s)
- Sangwook Bae
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, South Korea.
| | - Daewon Lee
- Education and Research Program for Future ICT Pioneers, Seoul National University, Seoul 08826, South Korea
- SOFT Foundry Institute, Seoul National University, Seoul 08826, South Korea
| | - Hunjong Na
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
- QuantaMatrix Inc., Medical Innovation Center, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Jisung Jang
- QuantaMatrix Inc., Medical Innovation Center, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Sunghoon Kwon
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, South Korea.
- Education and Research Program for Future ICT Pioneers, Seoul National University, Seoul 08826, South Korea
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
- QuantaMatrix Inc., Medical Innovation Center, Seoul National University Hospital, Seoul, 03080, South Korea
| |
Collapse
|
31
|
Liu H, Wang H, Wang H, Deng J, Ruan Q, Zhang W, Abdelraouf OAM, Ang NSS, Dong Z, Yang JKW, Liu H. High-Order Photonic Cavity Modes Enabled 3D Structural Colors. ACS NANO 2022; 16:8244-8252. [PMID: 35533374 DOI: 10.1021/acsnano.2c01999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It remains a challenge to directly print arbitrary three-dimensional shapes that exhibit structural colors at the micrometer scale. Woodpile photonic crystals (WPCs) fabricated via two-photon lithography (TPL) are elementary building blocks to produce 3D geometries that generate structural colors due to their ability to exhibit either omnidirectional or anisotropic photonic stop bands. However, existing approaches produce structural colors on WPCs when illuminating from the top, requiring print resolutions beyond the limit of commercial TPL, which necessitates postprocessing techniques. Here, we devised a strategy to support high-order photonic cavity modes upon side illumination on WPCs that surprisingly generate prominent reflectance peaks in the visible spectrum. Based on that, we demonstrate one-step printing of 3D photonic structural colors without requiring postprocessing or subwavelength features. Vivid colors with reflectance peaks exhibiting a full width at half-maximum of ∼25 nm, a maximum reflectance of 50%, a gamut of ∼85% of sRGB, and large viewing angles were achieved. In addition, we also demonstrated voxel-level manipulation and control of colors in arbitrary-shaped 3D objects constituted with WPCs as unit cells, which has potential for applications in dynamic color displays, colorimetric sensing, anti-counterfeiting, and light-matter interaction platforms.
Collapse
Affiliation(s)
- Hailong Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Hongtao Wang
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Hao Wang
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jie Deng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Wang Zhang
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Omar A M Abdelraouf
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Norman Soo Seng Ang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Joel K W Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
32
|
Zhang H, Lu M, Xiong Z, Yang J, Tan M, Huang L, Zhu X, Lu Z, Liang Z, Liu H. Rapid trapping and tagging of microparticles in controlled flow by in situ digital projection lithography. LAB ON A CHIP 2022; 22:1951-1961. [PMID: 35377378 DOI: 10.1039/d2lc00186a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Real-time and fast trapping and tagging of microfeatures, such as microparticles and cells, are of great significance for biomedical research. In this work, we propose a novel in situ digital projection lithography technology that integrates real-time, in situ generation of digital masks for particle processing and fluid control into conventional DMD-based projection lithography. With the help of image recognition technology, we rapidly resolve the information of the microparticle profile or channel location, combining the selection of existing masks of different shapes, thus enabling in situ generation of user-customized micro-trap arrays and microfilter arrays for particle trapping and tagging. The success in trapping and filtering single particles, particle arrays, and cells has indicated the promising prospects of this novel technology for broad applications in microfluidics, single-cell analysis, and early-stage disease diagnostics.
Collapse
Affiliation(s)
- Han Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and, Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.
| | - Meiying Lu
- Center for Advanced Optoelectronic Functional Materials Research, and, Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.
| | - Zheng Xiong
- Department of Biomedical Engineering and Chemical Engineering, Syracuse University, Syracuse, New York 13244, USA
| | - Jing Yang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Mingyue Tan
- Center for Advanced Optoelectronic Functional Materials Research, and, Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.
| | - Long Huang
- Center for Advanced Optoelectronic Functional Materials Research, and, Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Zifeng Lu
- Center for Advanced Optoelectronic Functional Materials Research, and, Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.
| | - Zhongzhu Liang
- Center for Advanced Optoelectronic Functional Materials Research, and, Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.
| | - Hua Liu
- Center for Advanced Optoelectronic Functional Materials Research, and, Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.
| |
Collapse
|
33
|
Xiao G, Fang X, Ma Y, Yan D. Multi-Mode and Dynamic Persistent Luminescence from Metal Cytosine Halides through Balancing Excited-State Proton Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200992. [PMID: 35398992 PMCID: PMC9165479 DOI: 10.1002/advs.202200992] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Persistent luminescence has attracted great attention due to the unique applications in molecular imaging, photodynamic therapy, and information storage, among many others. However, tuning the dynamic persistent luminescence through molecular design and materials engineering remains a challenge. In this work, the first example of excitation-dependent persistent luminescence in a reverse mode for smart optical materials through tailoring the excited-state proton transfer process of metal cytosine halide hybrids is reported. This approach enables ultralong phosphorescence and thermally activated delayed fluorescence emission colors highly tuned by modulation of excitation wavelength, time evolution, and temperature, which realize multi-mode dynamic color adjustment from green to blue or cyan to yellow-green. At the single crystal level, the 2D excitation/space/time-resolved optical waveguides with triple color conversion have been constructed on the organic-metal halide microsheets, which represent a new strategy for multi-dimensional information encryption and optical logic gate applications.
Collapse
Affiliation(s)
- Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of Chemistryand Key Laboratory of Radiopharmaceuticals, Ministry of EducationBeijing Normal UniversityBeijing100875P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of Chemistryand Key Laboratory of Radiopharmaceuticals, Ministry of EducationBeijing Normal UniversityBeijing100875P. R. China
| | - Yu‐Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of Chemistryand Key Laboratory of Radiopharmaceuticals, Ministry of EducationBeijing Normal UniversityBeijing100875P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage MaterialsCollege of Chemistryand Key Laboratory of Radiopharmaceuticals, Ministry of EducationBeijing Normal UniversityBeijing100875P. R. China
| |
Collapse
|
34
|
Li G, Luo W, Che Z, Pu Y, Deng P, Shi L, Ma H, Guan J. Lipophilic Magnetic Photonic Nanochains for Practical Anticounterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200662. [PMID: 35460197 DOI: 10.1002/smll.202200662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Magnetic photonic crystals (PCs) possess attractive magnetic orientation, flexible pattern designability, and abundant angle-dependent colors, providing immense potential in anticounterfeiting field. However, all-solid magnetic PCs-based labels generally suffer from incompatibility with screen printing techniques, and inferior environmental endurance and mechanical properties. Herein, by developing a selective concentration polymerization method under magnetic field (H) in microheterogenous dimethyl sulfoxide-water binary solvents, individual tens-of-micrometer-length lipophilic magnetic photonic nanochains (PNCs) of full-width at half-maxima below 30 nm are fabricated, which, after simply dispersed in solvent-free cycloaliphatic epoxy resin, can be formulated as photonic inks to print robust anticounterfeiting labels through an H-assisted screen-printing technology. The as-printed labels possess vivid optically variable effects (OVEs) associated with the spatial distribution of H directionality, which are easy to identify by the naked eye but difficult to imitate and duplicate, while they show excellent environmental resistance and mechanical properties, promising practical applications in banknotes and high-grade commodities. The polymerization mechanism of the lipophilic PNCs is elucidated, and the OVEs are deciphered in numerical simulation. Besides an efficient way to build organic-inorganic hybrid nanostructures, the work provides advanced structural color pigments to achieve the practical application of magnetic PCs in such an anticounterfeiting field.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| | - Wei Luo
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| | - Zhiyuan Che
- Department of Physics, Fudan University, 220 Handan road, Shanghai, 200433, P. R. China
| | - YuYang Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| | - Peng Deng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| | - Lei Shi
- Department of Physics, Fudan University, 220 Handan road, Shanghai, 200433, P. R. China
| | - Huiru Ma
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| |
Collapse
|
35
|
Guo J, Yang C, Zhao Y. Long-Lived Organic Room-Temperature Phosphorescence from Amorphous Polymer Systems. Acc Chem Res 2022; 55:1160-1170. [PMID: 35394748 DOI: 10.1021/acs.accounts.2c00038] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long-lived organic room-temperature phosphorescence (RTP) materials have recently drawn extensive attention because of their promising applications in information security, biological imaging, optoelectronic devices, and intelligent sensors. In contrast to conventional fluorescence, the RTP phenomenon originates from the slow radiative transition of triplet excitons. Thus, enhancing the intersystem crossing (ISC) rate from the lowest excited singlet state (S1) to the excited triplet state and suppressing the nonradiative relaxation channels of the lowest excited triplet state (T1) are reasonable methods for realizing highly efficient RTP in purely organic materials. Over the past few decades, many strategies have been designed on the basis of the above two crucial factors. The introduction of heavy atoms, aromatic carbonyl groups, and other heteroatoms with abundant lone-pair electrons has been demonstrated to strengthen the spin-orbit coupling, thereby successfully facilitating the ISC process. Furthermore, the rigid environment is commonly constructed through crystal engineering to restrict intramolecular motions and intermolecular collisions to decrease excited-state energy dissipation. However, most crystal-based organic RTP materials suffer from poor processability, flexibility, and reproducibility, becoming a thorny obstacle to their practical application.Amorphous organic polymers with long-lived RTP characteristics are more competitive in materials science. The intertwined structures and long chains of polymers not only ensure the rigid environment with multiple interactions but also protect triplet excitons from the surroundings, which are conducive to realizing ultralong and bright RTP emission. Exploring the fabrication strategies, intrinsic mechanisms, and practical applications of organic long-lived RTP polymers is highly desirable but remains a formidable challenge. In particular, intelligent organic RTP polymer systems that are capable of dynamically responding to external stimuli (e.g., light, temperature, oxygen, and humidity) have been rarely reported. To develop multifunctional RTP materials and expand their potential applications, a great amount of effort has been expended.This Account gives a summary of the significant advances in amorphous organic RTP polymer systems, especially smart stimulus-responsive ones, focusing on the construction of a rigid environment to suppress nonradiative deactivation by abundant inter/intramolecular interactions. The typical interactions in RTP polymer systems mainly include hydrogen bonding, ionic bonding, and covalent bonding, which can change the molecular electronic structures and affect the energy dissipation channels of the excited states. An in-depth understanding of intrinsic mechanisms and an extensive exploration of potential applications for excitation-dependent color-tunable, ultraviolet (UV) irradiation-activated, temperature-dependent, water-responsive, and circularly polarized RTP polymer systems are distinctly illustrated in this Account. Furthermore, we propose some detailed perspectives in terms of materials design, mechanism exploration, and promising application potential with the hope to provide helpful guidance for the future development of amorphous organic RTP polymers.
Collapse
Affiliation(s)
- Jingjing Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chaolong Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
36
|
Yang H, Liu H, Shen Y, Zhang ST, Zhang Q, Song Q, Lv C, Zhang C, Yang B, Ma Y, Zhang Y. Multicolour Fluorescence Based on Excitation-Dependent Electron Transfer Processes in o-Carborane Dyads. Angew Chem Int Ed Engl 2022; 61:e202115551. [PMID: 34989081 DOI: 10.1002/anie.202115551] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Organic materials with excitation wavelength-dependent (Ex-de) emission are highly attractive for anticounterfeiting, optoelectronics and bioassay applications; however, the realization of Ex-de fluorescence, independent of aggregation states, remains a challenge. We herein report a photoinduced electron transfer (PeT) strategy to design Ex-de fluorescence materials by manipulating the relaxation pathways of multiple excited states. As expected, the o-carborane dyad presents a clear Ex-de fluorescence colour in the aggregated states, resulting from the tunable relative intensity of the dual-fluorescence spectra. Taking TP[1]B as an example, the amorphous powders emitted bright blue-violet, white and yellow colours under 390 nm, 365 nm and 254 nm UV illumination, respectively. Importantly, multicolour, flexible and transparent films as well as an anticounterfeiting application using this o-carborane dyad are demonstrated.
Collapse
Affiliation(s)
- Heyi Yang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China.,College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Yunxia Shen
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Qing Zhang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China
| | - Qingbao Song
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China
| | - Cheng Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Yujian Zhang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China
| |
Collapse
|
37
|
Zhou C, Jia H, Liang S, Li Y, Li J, Chen H. Tailoring
3D
shapes of polyhedral milliparticles by adjusting orthogonal projection in a microfluidic channel. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Tribology Tsinghua University Beijing China
| | - He Jia
- School of Mechanical Engineering University of Science and Technology Beijing Beijing China
| | - Shuaishuai Liang
- School of Mechanical Engineering University of Science and Technology Beijing Beijing China
| | - Yongjian Li
- State Key Laboratory of Tribology Tsinghua University Beijing China
| | - Jiang Li
- School of Mechanical Engineering University of Science and Technology Beijing Beijing China
| | - Haosheng Chen
- State Key Laboratory of Tribology Tsinghua University Beijing China
| |
Collapse
|
38
|
Bae SW, Kim J, Kwon S. Recent Advances in Polymer Additive Engineering for Diagnostic and Therapeutic Hydrogels. Int J Mol Sci 2022; 23:2955. [PMID: 35328375 PMCID: PMC8955662 DOI: 10.3390/ijms23062955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are hydrophilic polymer materials that provide a wide range of physicochemical properties as well as are highly biocompatible. Biomedical researchers are adapting these materials for the ever-increasing range of design options and potential applications in diagnostics and therapeutics. Along with innovative hydrogel polymer backbone developments, designing polymer additives for these backbones has been a major contributor to the field, especially for expanding the functionality spectrum of hydrogels. For the past decade, researchers invented numerous hydrogel functionalities that emerge from the rational incorporation of additives such as nucleic acids, proteins, cells, and inorganic nanomaterials. Cases of successful commercialization of such functional hydrogels are being reported, thus driving more translational research with hydrogels. Among the many hydrogels, here we reviewed recently reported functional hydrogels incorporated with polymer additives. We focused on those that have potential in translational medicine applications which range from diagnostic sensors as well as assay and drug screening to therapeutic actuators as well as drug delivery and implant. We discussed the growing trend of facile point-of-care diagnostics and integrated smart platforms. Additionally, special emphasis was given to emerging bioinformatics functionalities stemming from the information technology field, such as DNA data storage and anti-counterfeiting strategies. We anticipate that these translational purpose-driven polymer additive research studies will continue to advance the field of functional hydrogel engineering.
Collapse
Affiliation(s)
- Sang-Wook Bae
- Bio-MAX/N-Bio, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 08826, Korea
| | - Jiyun Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
- Center for Multidimensional Programmable Matter, Ulsan 44919, Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
39
|
Ma W, Li B, Jiang L, Sun Y, Wu Y, Zhao P, Chen G. A bioinspired, electroactive colorable and additive manufactured photonic artificial muscle. SOFT MATTER 2022; 18:1617-1627. [PMID: 35108350 DOI: 10.1039/d1sm01691a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structural coloration in biomimetic nanostructures has remarkable application potential in vivid display devices, but their color change effect is still insufficiently competitive towards biology. Inspired by the feather color change of a hummingbird, a new methodology for coloration is proposed. A structure-colorable flexural artificial muscle (FlexAM) is developed by integrating a view-angle dependent photonic diffraction grating pattern and voltage-actuated dielectric elastomers as an electroactive entity via laminated object additive manufacturing. A multi-physics model is developed which guides the FlexAM to harness the view-angle dependence for the new coloration strategy. The electro-mechanochromic performances are experimentally characterized to verify the prediction of the multi-physics model. An ultrafast coloration in the FlexAM with an advancing figure-of-merit at a color-shift rate of 2.814 nm ms-1 is realized, in addition to an excellent fatigue resistance up to 10 000 cycles. A photonic display with arrayed FlexAM elements is designed, which can be used to display numbers and letters. The current research offers an advanced artificial muscle towards active photonic and visible strain sensing.
Collapse
Affiliation(s)
- Wentao Ma
- Shaanxi Key Lab for Intelligent Robots, School of Mechanical and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Bo Li
- Shaanxi Key Lab for Intelligent Robots, School of Mechanical and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Lei Jiang
- Shaanxi Key Lab for Intelligent Robots, School of Mechanical and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Ya Sun
- Shaanxi Key Lab for Intelligent Robots, School of Mechanical and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Yehui Wu
- Shaanxi Key Lab for Intelligent Robots, School of Mechanical and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Pengfei Zhao
- Department of Mechanical and Engineering, Taiyuan Institute of Technology, Taiyuan 030008, People's Republic of China
| | - Guimin Chen
- Shaanxi Key Lab for Intelligent Robots, School of Mechanical and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
40
|
Kaban B, Bagatur S, Soter M, Hillmer H, Fuhrmann-Lieker T. Reversible Photo-Induced Reshaping of Imprinted Microstructures Using a Low Molecular Azo Dye. Polymers (Basel) 2022; 14:586. [PMID: 35160576 PMCID: PMC8838706 DOI: 10.3390/polym14030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
A blend of low molecular azo glass (AZOPD) and polystyrene (PS) were used for the systematic investigation of photo-induced stretching and recovery of nanoimprinted structures. For this purpose, light and heat was used as recovery stimuli. The AZOPD/PS microstructures, fabricated with thermal nanoimprint lithography (tNIL), comprises three different shapes (circles, crosses and squares) and various concentrations of AZOPD fractions. The results show a concentration-dependent reshaping. Particularly the sample with 43 w-% of the AZOPD fraction have shown the best controllable recovery for the used parameters. A possible explanation for shape recovery might be the stabilizing effect of the PS-matrix.
Collapse
Affiliation(s)
- Burhan Kaban
- Institute of Nanostructure Technologies and Analytics (INA) and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany; (B.K.); (M.S.); (H.H.)
| | - Sekvan Bagatur
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany;
| | - Marcus Soter
- Institute of Nanostructure Technologies and Analytics (INA) and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany; (B.K.); (M.S.); (H.H.)
| | - Hartmut Hillmer
- Institute of Nanostructure Technologies and Analytics (INA) and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany; (B.K.); (M.S.); (H.H.)
| | - Thomas Fuhrmann-Lieker
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany;
| |
Collapse
|
41
|
Yang H, Liu H, Shen Y, Zhang S, Zhang Q, Song Q, Lv C, Zhang C, Yang B, Ma Y, Zhang Y. Multicolour Fluorescence Based on Excitation‐Dependent Electron Transfer Processes in
o
‐Carborane Dyads. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Heyi Yang
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Yunxia Shen
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Shi‐tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Qing Zhang
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
| | - Qingbao Song
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
| | - Cheng Zhang
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou Guangdong P. R. China
| | - Yujian Zhang
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
| |
Collapse
|
42
|
Yu B, Li Y, Wang Y, Li N, Xiao P, Liu D, Geng L. Stable Tunable Luminescence of Hetero-valent Eu Ion Activated Ba2InTaO6 Phosphors Synthesized by Defect-Induced Self-Reduction in the Molten-Salt Method. Inorg Chem 2022; 61:2463-2475. [DOI: 10.1021/acs.inorgchem.1c03312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Yu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Yuchan Li
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, P.R. China
| | - Yunjian Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Niya Li
- College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223000, P.R. China
| | - Peipei Xiao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Dong Liu
- College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223000, P.R. China
| | - Lei Geng
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P.R. China
| |
Collapse
|
43
|
Gao Z, Yang S, Xu B, Zhang T, Chen S, Zhang W, Sun X, Wang Z, Wang X, Meng X, Zhao YS. Laterally Engineering Lanthanide-MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angew Chem Int Ed Engl 2021; 60:24519-24525. [PMID: 34339093 DOI: 10.1002/anie.202109336] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Metal-organic frameworks (MOFs) heterostructures with domain-controlled emissive colors have shown great potential for achieving high-throughput sensing, anti-counterfeit and information security. Here, a strategy based on steric-hindrance effect is proposed to construct lateral lanthanide-MOFs (Ln-MOFs) epitaxial heterostructures, where the channel-directed guest molecules are introduced to rebalance in-plane and out-of-plane growth rates of the Ln-MOFs microrods and eventually generate lateral MOF epitaxial heterostructures with controllable aspect ratios. A library of lateral Ln-MOFs heterostructures are acquired through a stepwise epitaxial growth procedure, from which rational modulation of each domain with specific lanthanide doping species allows for definition of photonic barcodes in a two-dimensional (2D) domain with remarkably enlarged encoding capacity. The results provide molecular-level insight into the use of modulators in governing crystallite morphology for spatially assembling multifunctional heterostructures.
Collapse
Affiliation(s)
- Zhenhua Gao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Shuo Yang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Baoyuan Xu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Tongjin Zhang
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shunwei Chen
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Weiguang Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xun Sun
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Zifei Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xue Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xiangeng Meng
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
44
|
Krausz AD, Korley FK, Burns MA. A Variable Height Microfluidic Device for Multiplexed Immunoassay Analysis of Traumatic Brain Injury Biomarkers. BIOSENSORS 2021; 11:320. [PMID: 34562910 PMCID: PMC8472232 DOI: 10.3390/bios11090320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of global morbidity and mortality, partially due to the lack of sensitive diagnostic methods and efficacious therapies. Panels of protein biomarkers have been proposed as a way of diagnosing and monitoring TBI. To measure multiple TBI biomarkers simultaneously, we present a variable height microfluidic device consisting of a single channel that varies in height between the inlet and outlet and can passively multiplex bead-based immunoassays by trapping assay beads at the point where their diameter matches the channel height. We developed bead-based quantum dot-linked immunosorbent assays (QLISAs) for interleukin-6 (IL-6), glial fibrillary acidic protein (GFAP), and interleukin-8 (IL-8) using DynabeadsTM M-450, M-270, and MyOneTM, respectively. The IL-6 and GFAP QLISAs were successfully multiplexed using a variable height channel that ranged in height from ~7.6 µm at the inlet to ~2.1 µm at the outlet. The IL-6, GFAP, and IL-8 QLISAs were also multiplexed using a channel that ranged in height from ~6.3 µm at the inlet to ~0.9 µm at the outlet. Our system can keep pace with TBI biomarker discovery and validation, as additional protein biomarkers can be multiplexed simply by adding in antibody-conjugated beads of different diameters.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Department of Emergency Medicine and Michigan Medicle, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Banal JL, Shepherd TR, Berleant J, Huang H, Reyes M, Ackerman CM, Blainey PC, Bathe M. Random access DNA memory using Boolean search in an archival file storage system. NATURE MATERIALS 2021; 20:1272-1280. [PMID: 34112975 PMCID: PMC8564878 DOI: 10.1038/s41563-021-01021-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/26/2021] [Indexed: 05/03/2023]
Abstract
DNA is an ultrahigh-density storage medium that could meet exponentially growing worldwide demand for archival data storage if DNA synthesis costs declined sufficiently and if random access of files within exabyte-to-yottabyte-scale DNA data pools were feasible. Here, we demonstrate a path to overcome the second barrier by encapsulating data-encoding DNA file sequences within impervious silica capsules that are surface labelled with single-stranded DNA barcodes. Barcodes are chosen to represent file metadata, enabling selection of sets of files with Boolean logic directly, without use of amplification. We demonstrate random access of image files from a prototypical 2-kilobyte image database using fluorescence sorting with selection sensitivity of one in 106 files, which thereby enables one in 106N selection capability using N optical channels. Our strategy thereby offers a scalable concept for random access of archival files in large-scale molecular datasets.
Collapse
Affiliation(s)
- James L Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyson R Shepherd
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph Berleant
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Miguel Reyes
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Paul C Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
46
|
Gao Z, Yang S, Xu B, Zhang T, Chen S, Zhang W, Sun X, Wang Z, Wang X, Meng X, Zhao YS. Laterally Engineering Lanthanide‐MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhenhua Gao
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Shuo Yang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Baoyuan Xu
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Tongjin Zhang
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Shunwei Chen
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Weiguang Zhang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xun Sun
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Zifei Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xue Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xiangeng Meng
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
47
|
Photopatterned microswimmers with programmable motion without external stimuli. Nat Commun 2021; 12:4724. [PMID: 34354060 PMCID: PMC8342497 DOI: 10.1038/s41467-021-24996-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/08/2021] [Indexed: 11/08/2022] Open
Abstract
We introduce highly programmable microscale swimmers driven by the Marangoni effect (Marangoni microswimmers) that can self-propel on the surface of water. Previous studies on Marangoni swimmers have shown the advantage of self-propulsion without external energy source or mechanical systems, by taking advantage of direct conversion from power source materials to mechanical energy. However, current developments on Marangoni microswimmers have limitations in their fabrication, thereby hindering their programmability and precise mass production. By introducing a photopatterning method, we generated Marangoni microswimmers with multiple functional parts with distinct material properties in high throughput. Furthermore, various motions such as time-dependent direction change and disassembly of swimmers without external stimuli are programmed into the Marangoni microswimmers.
Collapse
|
48
|
Highly Magnetized Encoded Hydrogel Microparticles with Enhanced Rinsing Capabilities for Efficient microRNA Detection. Biomedicines 2021; 9:biomedicines9070848. [PMID: 34356912 PMCID: PMC8301431 DOI: 10.3390/biomedicines9070848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Encoded hydrogel microparticles mounting DNA probes are powerful tools for high-performance microRNA (miRNA) detection in terms of sensitivity, specificity, and multiplex detection capability. However, several particle rinsing steps in the assay procedure present challenges for rapid and efficient detection. To overcome this limitation, we encapsulated dense magnetic nanoparticles to reduce the rinsing steps and duration via magnetic separation. A large number of magnetic nanoparticles were encapsulated into hydrogel microparticles based on a discontinuous dewetting technique combined with degassed micromolding lithography. In addition, we attached DNA probes targeting three types of miRNAs related to preeclampsia to magnetically encoded hydrogel microparticles by post-synthesis conjugation and achieved sensitivity comparable to that of conventional nonmagnetic encoded hydrogel microparticles. To demonstrate the multiplex capability of magnetically encoded hydrogel microparticles while maintaining the advantages of the simplified rinsing process when addressing multiple samples, we conducted a triplex detection of preeclampsia-related miRNAs. In conclusion, the introduction of magnetically encoded hydrogel microparticles not only allowed efficient miRNA detection but also provided comparable sensitivity and multiplexed detectability to conventional nonmagnetic encoded hydrogel microparticles.
Collapse
|
49
|
Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Indexed: 05/24/2023]
Abstract
When analyzing biological phenomena and processes, multiplexed biodetection has many advantages over single-factor biodetection and is highly relevant to both human health issues and advancements in the life sciences. However, many key problems with current multiplexed biodetection strategies remain unresolved. Herein, the main issues are analyzed and summarized: 1) generating sufficient signal to label targets, 2) improving the signal-to-noise ratio to ensure total detection sensitivity, and 3) simplifying the detection process to reduce the time and labor costs of multiple target detection. Then, available solutions made possible by designing and controlling the properties of micro- and nanomaterials are introduced. The aim is to emphasize the role that micro-/nanomaterials can play in the improvement of multiplexed biodetection strategies. Through analyzing existing problems, introducing state-of-the-art developments regarding relevant materials, and discussing future directions of the field, it is hopeful to help promote necessary developments in multiplexed biodetection and associated scientific research.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
50
|
Lee G, Mun J, Choi H, Han S, Hahn SK. Multispectral upconversion nanoparticles for near infrared encoding of wearable devices. RSC Adv 2021; 11:21897-21903. [PMID: 35480786 PMCID: PMC9036338 DOI: 10.1039/d1ra03572j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023] Open
Abstract
Individual recognition technology such as iris recognition and bar coding has been extensively investigated for non-face-to-face authorization. However, there are still strong unmet needs for facile, rapid, and robust individual recognition. Here, we developed multispectral transparent films of upconversion nanoparticles (UCNPs) for near-infrared (NIR) encoding of wearable devices including contact lenses and patch devices. A multispectral UCNP film in a contact lens showed various luminescence colors of patterns under 980 nm NIR light irradiation and each color could be assigned to a specific code by RGB value analysis. The encoded film of UCNPs in the contact lens was successfully decoded by the RGB value analysis with a charge coupled digital (CCD) camera. Furthermore, the UCNP barcode film could be applied in the form of attachable barcode patches onto various substrates like porcine skin and paper currency. Taken together, we could confirm the feasibility of multispectral UCNP transparent films as a facile individual recognition platform for non-face-to-face authorization. Multispectral transparent films of upconversion nanoparticles are developed for near-infrared encoding of wearable devices including contact lenses and patch devices.![]()
Collapse
Affiliation(s)
- Gibum Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Jonghwan Mun
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Seulgi Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang Gyeongbuk 37673 Korea +82 54 279 2399 +82 54 279 2159
| |
Collapse
|