1
|
Nishitsuji R, Nakashima T, Hisamoto H, Endo T. Simultaneous Recognition and Detection of Adenosine Phosphates by Machine Learning Analysis for Surface-Enhanced Raman Scattering Spectral Data. SENSORS (BASEL, SWITZERLAND) 2024; 24:6648. [PMID: 39460128 PMCID: PMC11511347 DOI: 10.3390/s24206648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Adenosine phosphates (adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), and adenosine 5'-triphosphate (ATP)) play important roles in energy storage and signal transduction in the human body. Thus, a measurement method that simultaneously recognizes and detects adenosine phosphates is necessary to gain insight into complex energy-relevant biological processes. Surface-enhanced Raman scattering (SERS) is a powerful technique for this purpose. However, the similarities in size, charge, and structure of adenosine phosphates (APs) make their simultaneous recognition and detection difficult. Although approaches that combine SERS and machine learning have been studied, they require massive quantities of training data. In this study, limited AP spectral data were obtained using fabricated gold nanostructures for SERS measurements. The training data were created by feature selection and data augmentation after preprocessing the small amount of acquired spectral data. The performances of several machine learning models trained on these generated training data were compared. Multilayer perceptron model successfully detected the presence of AMP, ADP, and ATP with an accuracy of 0.914. Consequently, this study establishes a new measurement system that enables the highly accurate recognition and detection of adenosine phosphates from limited SERS spectral data.
Collapse
Affiliation(s)
- Ryosuke Nishitsuji
- Department of Information Networking, Graduate School of Information Science and Technology, Osaka University, 2-8 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Tomoharu Nakashima
- Department of Interdisciplinary Informatics, Graduate School of Informatics, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai 599-8531, Osaka, Japan;
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai 599-8531, Osaka, Japan;
| | - Tatsuro Endo
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai 599-8531, Osaka, Japan;
| |
Collapse
|
2
|
Liu Z, Fu Q, Shao Y, Duan X. The role of mitochondrial DNA copy number in autoimmune disease: a bidirectional two sample mendelian randomization study. Front Immunol 2024; 15:1409969. [PMID: 39464879 PMCID: PMC11502960 DOI: 10.3389/fimmu.2024.1409969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Background Mitochondrial DNA (mtDNA) plays an important role in autoimmune diseases (AD), yet the relationship between mitochondria and autoimmune disease is controversial. This study employed bidirectional Mendelian randomization (MR) to explore the causal relationship between mtDNA copy number and 13 ADs (including ankylosing spondylitis [AS], Crohn's disease [CD], juvenile rheumatoid arthritis [JRA], polymyalgia rheumatica [PMR], psoriasis [PSO], rheumatoid arthritis [RA], Sjogren's syndrome [SS], systemic lupus erythematosus [SLE], thyrotoxicosis, type 1 diabetes mellitus [T1DM], ulcerative colitis [UC], and vitiligo). Methods A two-sample MR analysis was performed to assess the causal relationship between mtDNA copy number and AD. Genome-wide association study (GWAS) for mtDNA copy number were obtained from the UK Biobank (UKBB), while those associated with AD were sourced from the FinnGen Biobank. Inverse variance weighting (IVW) was the primary analysis method, complemented by three sensitivity analyses (MR-Egger, weighted median, weighted mode) to validate the results. Results IVW MR analysis identified significant associations between mtDNA copy number and CD (OR=2.51, 95% CI 1.56-4.22, P<0.001), JRA (OR=1.87, 95% CI 1.17-7.65, P=0.022), RA (OR=1.71, 95%CI 1.18-2.47, P=0.004), thyrotoxicosis (OR=0.51, 95% CI0.27-0.96, P=0.038), and T1DM (OR=0.51, 95% CI 0.27-0.96, P=0.038). Sensitivity analyses indicated no horizontal pleiotropy. Conclusions Our study revealed a potential causal relationship between mtDNA copy number and ADs, indicating that these markers may be relevant in exploring new therapeutic approaches.
Collapse
Affiliation(s)
- Zhekang Liu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingan Fu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yijia Shao
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinwang Duan
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Djavani-Tabrizi I, Lindkvist TT, Langeland J, Kjær C, Graham M, Kjaergaard HG, Nielsen SB. Tautomer-Selective Fluorescence Spectroscopy of Oxyluciferin Anions. J Am Chem Soc 2024; 146:26975-26982. [PMID: 39298372 DOI: 10.1021/jacs.4c08596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Bioluminescence in fireflies and related insects arises as emission from the fluorophore oxyluciferin, yet the color of the emission in these insects can range from red to green. The chromophore's microenvironment or multiple tautomeric forms may be responsible for the color tuning; however, these effects are difficult to separate in condensed phases. To investigate the role of oxyluciferin tautomerization in the color tuning mechanism, gas-phase spectroscopy eliminates solvent effects and allows us to study the fluorescence from individual tautomers. Using a home-built mass-spectrometry setup with a cylindrical ion trap cooled with liquid nitrogen, we measure fluorescence from the enol-locked form of oxyluciferin in the gas phase and characterize the photophysics of both keto and enol forms. At 100 K, the enol-locked form has an emission maximum of 564 ± 1 nm, coinciding with a previously reported assignment in oxyluciferin. We measure the absorption spectrum and find a maximum at 560.5 ± 0.5 nm, which implies a Stokes shift of 110 cm-1. The absorption spectrum is compared to Franck-Condon simulated spectra that identify one dominant vibrational mode in the transition. Additionally, we ultimately separated the emission by the enol and keto forms present in the trap by selectively exciting each form. We demonstrate that fluorescence measured close to the 0-0 transition limits the reheating of the ions, thereby providing the coldest ions and therefore the narrowest emission spectra. These experimental data are also crucial benchmarks for computational studies, offering actual emission spectra in the gas phase for both tautomeric forms. Thus, our findings serve as essential reference points for excited-state calculations aimed at understanding the color tuning mechanism of bioluminescence computationally.
Collapse
Affiliation(s)
- Iden Djavani-Tabrizi
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Thomas Toft Lindkvist
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Marlowe Graham
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Steen Brøndsted Nielsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| |
Collapse
|
4
|
Tau S, Chamberlin MD, Yang H, Marotti JD, Roberts AM, Carmichael MM, Cressey L, Dragnev C, Demidenko E, Hampsch RA, Soucy SM, Kolling F, Samkoe KS, Alvarez JV, Kettenbach AN, Miller TW. Endocrine persistence in ER+ breast cancer is accompanied by metabolic vulnerability in oxidative phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615177. [PMID: 39386444 PMCID: PMC11463551 DOI: 10.1101/2024.09.26.615177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite adjuvant treatment with endocrine therapies, estrogen receptor-positive (ER+) breast cancers recur in a significant proportion of patients. Recurrences are attributable to clinically undetectable endocrine-tolerant persister cancer cells that retain tumor-forming potential. Therefore, strategies targeting such persister cells may prevent recurrent disease. Using CRISPR-Cas9 genome-wide knockout screening in ER+ breast cancer cells, we identified a survival mechanism involving metabolic reprogramming with reliance upon mitochondrial respiration in endocrine-tolerant persister cells. Quantitative proteomic profiling showed reduced levels of glycolytic proteins in persisters. Metabolic tracing of glucose revealed an energy-depleted state in persisters where oxidative phosphorylation was required to generate ATP. A phase II clinical trial was conducted to evaluate changes in mitochondrial markers in primary ER+/HER2-breast tumors induced by neoadjuvant endocrine therapy ( NCT04568616 ). In an analysis of tumor specimens from 32 patients, tumors exhibiting residual cell proliferation after aromatase inhibitor-induced estrogen deprivation with letrozole showed increased mitochondrial content. Genetic profiling and barcode lineage tracing showed that endocrine-tolerant persistence occurred stochastically without genetic predisposition. Mice bearing cell line- and patient-derived xenografts were used to measure the anti-tumor effects of mitochondrial complex I inhibition in the context of endocrine therapy. Pharmacological inhibition of complex I suppressed the tumor-forming potential of persisters and synergized with the anti-estrogen fulvestrant to induce regression of patient-derived xenografts. These findings indicate that mitochondrial metabolism is essential in endocrine-tolerant persister ER+ breast cancer cells and warrant the development of treatment strategies to leverage this vulnerability in the context of endocrine-sensitive disease. Statement of Significance Endocrine-tolerant persister cancer cells that survive endocrine therapy can cause recurrent disease. Persister cells exhibit increased energetic dependence upon mitochondria for survival and tumor re-growth potential.
Collapse
|
5
|
Hong Y, Yang Y, Wang C, Huang Y, Shen W, Shen Z, Lun Z, Zhang J, Wang C, Yuan Y. Luciferase-Loaded Calcium Phosphate Nanoparticles for Persistent Bioluminescence Imaging of Orthotopic Breast Tumors. Anal Chem 2024; 96:14320-14325. [PMID: 39208257 DOI: 10.1021/acs.analchem.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioluminescence imaging (BLI) is an important noninvasive optical imaging technique that has been widely used to monitor many biological processes due to its high sensitivity, resolution, and signal-to-noise ratio. However, the BLI technique based on the firefly luciferin-luciferase system is limited by the expression of exogenous luciferase and the short half-life of firefly luciferin, which pose challenges for long-term tracking in vivo. To solve the problems, here we rationally designed an intelligent strategy for persistent BLI in tumors by combining luciferase-loaded calcium phosphate nanoparticles (Luc@CaP NPs) to provide luciferase and the probe Cys(SEt)-Lys-CBT (CKCBT) to slowly produce the luciferase substrate amino luciferin (Am-luciferin). Luc@CaP NPs constructed with CaP as a carrier could enable luciferase activity to be maintained in vivo for at least 12 h. And compared to the conventional substrate luciferin, CKCBT apparently prolonged the BL time by up to 2 h through GSH-induced intracellular self-assembly and subsequent protease degradation-induced release of Am-luciferin. We anticipate that this strategy could be applied for clinical translation in more disease diagnosis and treatment in the near future.
Collapse
Affiliation(s)
- Yajian Hong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanyun Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chenchen Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yifan Huang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weicheng Shen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Shen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiyou Lun
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jia Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Congxiao Wang
- Department of the Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Yue Yuan
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Mu X, Evans TD, Zhang F. ATP biosensor reveals microbial energetic dynamics and facilitates bioproduction. Nat Commun 2024; 15:5299. [PMID: 38906854 PMCID: PMC11192931 DOI: 10.1038/s41467-024-49579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Adenosine-5'-triphosphate (ATP), the primary energy currency in cellular processes, drives metabolic activities and biosynthesis. Despite its importance, understanding intracellular ATP dynamics' impact on bioproduction and exploiting it for enhanced bioproduction remains largely unexplored. Here, we harness an ATP biosensor to dissect ATP dynamics across different growth phases and carbon sources in multiple microbial strains. We find transient ATP accumulations during the transition from exponential to stationary growth phases in various conditions, coinciding with fatty acid (FA) and polyhydroxyalkanoate (PHA) production in Escherichia coli and Pseudomonas putida, respectively. We identify carbon sources (acetate for E. coli, oleate for P. putida) that elevate steady-state ATP levels and boost FA and PHA production. Moreover, we employ ATP dynamics as a diagnostic tool to assess metabolic burden, revealing bottlenecks that limit limonene bioproduction. Our results not only elucidate the relationship between ATP dynamics and bioproduction but also showcase its value in enhancing bioproduction in various microbial species.
Collapse
Affiliation(s)
- Xinyue Mu
- Department of Energy Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Trent D Evans
- Department of Energy Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Fuzhong Zhang
- Department of Energy Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
7
|
Capuano GE, Corso D, Farina R, Pezzotti Escobar G, Screpis GA, Coniglio MA, Libertino S. Miniaturizable Chemiluminescence System for ATP Detection in Water. SENSORS (BASEL, SWITZERLAND) 2024; 24:3921. [PMID: 38931704 PMCID: PMC11207618 DOI: 10.3390/s24123921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
We present the design, fabrication, and testing of a low-cost, miniaturized detection system that utilizes chemiluminescence to measure the presence of adenosine triphosphate (ATP), the energy unit in biological systems, in water samples. The ATP-luciferin chemiluminescent solution was faced to a silicon photomultiplier (SiPM) for highly sensitive real-time detection. This system can detect ATP concentrations as low as 0.2 nM, with a sensitivity of 79.5 A/M. Additionally, it offers rapid response times and can measure the characteristic time required for reactant diffusion and mixing within the reaction volume, determined to be 0.3 ± 0.1 s. This corresponds to a diffusion velocity of approximately 44 ± 14 mm2/s.
Collapse
Affiliation(s)
- Giuseppe E. Capuano
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| | - Domenico Corso
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| | - Roberta Farina
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Gianni Pezzotti Escobar
- URT “LabSens of Beyond Nano” of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR-DSFTM-ME), Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy;
| | - Giuseppe A. Screpis
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Maria Anna Coniglio
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Sebania Libertino
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| |
Collapse
|
8
|
Mesa D, Barbieri E, Raimondi A, Freddi S, Miloro G, Jendrisek G, Caldieri G, Quarto M, Schiano Lomoriello I, Malabarba MG, Bresci A, Manetti F, Vernuccio F, Abdo H, Scita G, Lanzetti L, Polli D, Tacchetti C, Pinton P, Bonora M, Di Fiore PP, Sigismund S. A tripartite organelle platform links growth factor receptor signaling to mitochondrial metabolism. Nat Commun 2024; 15:5119. [PMID: 38879572 PMCID: PMC11180189 DOI: 10.1038/s41467-024-49543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/08/2024] [Indexed: 06/19/2024] Open
Abstract
One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s). Here, we show that an EGFR endocytic mechanism, non-clathrin endocytosis (NCE), which is activated only at high ligand concentrations and targets receptor to degradation, requires a tripartite organelle platform involving the plasma membrane (PM), endoplasmic reticulum (ER) and mitochondria. At these contact sites, EGFR-dependent, ER-generated Ca2+ oscillations are sensed by mitochondria, leading to increased metabolism and ATP production. Locally released ATP is required for cortical actin remodeling and EGFR-NCE vesicle fission. The same biochemical circuitry is also needed for an effector function of EGFR, i.e., collective motility. The multiorganelle signaling platform herein described mediates direct communication between EGFR signaling and mitochondrial metabolism, and is predicted to have a broad impact on cell physiology as it is activated by another growth factor receptor, HGFR/MET.
Collapse
Affiliation(s)
- Deborah Mesa
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Stefano Freddi
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Gorana Jendrisek
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Micaela Quarto
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Irene Schiano Lomoriello
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Grazia Malabarba
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | | | - Hind Abdo
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Scita
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR Institute for Photonics and Nanotechnology (CNR-IFN), Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Pier Paolo Di Fiore
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Sara Sigismund
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
9
|
Ghiasi SM, Christensen NM, Pedersen PA, Skovhøj EZ, Novak I. Imaging of extracellular and intracellular ATP in pancreatic beta cells reveals correlation between glucose metabolism and purinergic signalling. Cell Signal 2024; 117:111109. [PMID: 38373668 DOI: 10.1016/j.cellsig.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Adenosine triphosphate (ATP) is a universal energy molecule and yet cells release it and extracellular ATP is an important signalling molecule between cells. Monitoring of ATP levels outside of cells is important for our understanding of physiological and pathophysiological processes in cells/tissues. Here, we focus on pancreatic beta cells (INS-1E) and test the hypothesis that there is an association between intra- and extracellular ATP levels which depends on glucose provision. We imaged real-time changes in extracellular ATP in pancreatic beta cells using two sensors tethered to extracellular aspects of the plasma membrane (eATeam3.10, iATPSnFR1.0). Increase in glucose induced fast micromolar ATP release to the cell surface, depending on glucose concentrations. Chronic pre-treatment with glucose increased the basal ATP signal. In addition, we co-expressed intracellular ATP sensors (ATeam1.30, PercevalHR) in the same cultures and showed that glucose induced fast increases in extracellular and intracellular ATP. Glucose and extracellular ATP stimulated glucose transport monitored by the glucose sensor (FLII12Pglu-700uDelta6). In conclusion, we propose that in beta cells there is a dynamic relation between intra- and extracellular ATP that depends on glucose transport and metabolism and these processes may be tuned by purinergic signalling. Future development of ATP sensors for imaging may aid development of novel approaches to target extracellular ATP in, for example, type 2 diabetes mellitus therapy.
Collapse
Affiliation(s)
- Seyed M Ghiasi
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Nynne M Christensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Per A Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Emil Z Skovhøj
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
10
|
Coulson SZ, Duffy BM, Staples JF. Mitochondrial techniques for physiologists. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110947. [PMID: 38278207 DOI: 10.1016/j.cbpb.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Mitochondria serve several important roles in maintaining cellular homeostasis, including adenosine triphosphate (ATP) synthesis, apoptotic signalling, and regulation of both reactive oxygen species (ROS) and calcium. Therefore, mitochondrial studies may reveal insights into metabolism at higher levels of physiological organization. The apparent complexity of mitochondrial function may be daunting to researchers new to mitochondrial physiology. This review is aimed, therefore, at such researchers to provide a brief, yet approachable overview of common techniques used to assess mitochondrial function. Here we discuss the use of high-resolution respirometry in mitochondrial experiments and common analytical platforms used for this technique. Next, we compare the use of common mitochondrial preparation techniques, including adherent cells, tissue homogenate, permeabilized fibers and isolated mitochondria. Finally, we outline additional techniques that can be used in tandem with high-resolution respirometry to assess additional aspects of mitochondrial metabolism, including ATP synthesis, calcium uptake, membrane potential and reactive oxygen species emission. We also include limitations to each of these techniques and outline recommendations for experimental design and interpretation. With a general understanding of methodologies commonly used to study mitochondrial physiology, experimenters may begin contributing to our understanding of this organelle, and how it affects other physiological phenotypes.
Collapse
Affiliation(s)
- Soren Z Coulson
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada.
| | - Brynne M Duffy
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada. https://twitter.com/BrynneDuffy
| | - James F Staples
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada
| |
Collapse
|
11
|
Dunuweera AN, Dunuweera SP, Ranganathan K. A Comprehensive Exploration of Bioluminescence Systems, Mechanisms, and Advanced Assays for Versatile Applications. Biochem Res Int 2024; 2024:8273237. [PMID: 38347947 PMCID: PMC10861286 DOI: 10.1155/2024/8273237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Bioluminescence has been a fascinating natural phenomenon of light emission from living creatures. It happens when the enzyme luciferase facilitates the oxidation of luciferin, resulting in the creation of an excited-state species that emits light. Although there are many bioluminescent systems, few have been identified. D-luciferin-dependent systems, coelenterazine-dependent systems, Cypridina luciferin-based systems, tetrapyrrole-based luciferins, bacterial bioluminescent systems, and fungal bioluminescent systems are natural bioluminescent systems. Since different bioluminescence systems, such as various combinations of luciferin-luciferase pair reactions, have different light emission wavelengths, they benefit industrial applications such as drug discovery, protein-protein interactions, in vivo imaging in small animals, and controlling neurons. Due to the expression of luciferase and easy permeation of luciferin into most cells and tissues, bioluminescence assays are applied nowadays with modern technologies in most cell and tissue types. It is a versatile technique in a variety of biomedical research. Furthermore, there are some investigated blue-sky research projects, such as bioluminescent plants and lamps. This review article is mainly based on the theory of diverse bioluminescence systems and their past, present, and future applications.
Collapse
Affiliation(s)
| | | | - K. Ranganathan
- Department of Botany, University of Jaffna, Jaffna 40000, Sri Lanka
| |
Collapse
|
12
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
13
|
Anbu S, Kenning L, Stasiuk GJ. ATP-responsive Mn(II)-based T1 contrast agent for MRI. Chem Commun (Camb) 2023; 59:13623-13626. [PMID: 37902503 PMCID: PMC10644988 DOI: 10.1039/d3cc03430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
A novel diacetylpyridylcarbohydrazide-DAPyCOHz-based manganese(II) chelate with dipicolylamine/zinc(II) (DPA/Zn2+) arms (MnLDPA-Zn2) was developed for adenosine triphosphate (ATP) responsive magnetic resonance imaging (MRI) T1 contrast applications. Compound 2 shows enhanced relaxivity (r1 = 11.52 mM-1 s-1) upon selective ATP binding over other phosphates.
Collapse
Affiliation(s)
- Sellamuthu Anbu
- Departments of Chemistry and Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lawerence Kenning
- MRI Centre, Royal Infirmary Hospital NHS Trust, Anlaby Road, Hull, HU3 2JZ, UK
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Fourth Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
14
|
Xu R, Zhang W, Xi X, Chen J, Wang Y, Du G, Li J, Chen J, Kang Z. Engineering sulfonate group donor regeneration systems to boost biosynthesis of sulfated compounds. Nat Commun 2023; 14:7297. [PMID: 37949843 PMCID: PMC10638397 DOI: 10.1038/s41467-023-43195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Sulfonation as one of the most important modification reactions in nature is essential for many biological macromolecules to function. Development of green sulfonate group donor regeneration systems to efficiently sulfonate compounds of interest is always attractive. Here, we design and engineer two different sulfonate group donor regeneration systems to boost the biosynthesis of sulfated compounds. First, we assemble three modules to construct a 3'-phosphoadenosine-5'-phosphosulfate (PAPS) regeneration system and demonstrate its applicability for living cells. After discovering adenosine 5'-phosphosulfate (APS) as another active sulfonate group donor, we engineer a more simplified APS regeneration system that couples specific sulfotransferase. Next, we develop a rapid indicating system for characterizing the activity of APS-mediated sulfotransferase to rapidly screen sulfotransferase variants with increased activity towards APS. Eventually, the active sulfonate group equivalent values of the APS regeneration systems towards trehalose and p-coumaric acid reach 3.26 and 4.03, respectively. The present PAPS and APS regeneration systems are environmentally friendly and applicable for scaling up the biomanufacturing of sulfated products.
Collapse
Affiliation(s)
- Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Weijao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xintong Xi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jiamin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
15
|
Matte A, Wilson AB, Gevi F, Federti E, Recchiuti A, Ferri G, Brunati AM, Pagano MA, Russo R, Leboeuf C, Janin A, Timperio AM, Iolascon A, Gremese E, Dang L, Mohandas N, Brugnara C, De Franceschi L. Mitapivat reprograms the RBC metabolome and improves anemia in a mouse model of hereditary spherocytosis. JCI Insight 2023; 8:e172656. [PMID: 37676741 PMCID: PMC10619498 DOI: 10.1172/jci.insight.172656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023] Open
Abstract
Hereditary spherocytosis (HS) is the most common, nonimmune, hereditary, chronic hemolytic anemia after hemoglobinopathies. The genetic defects in membrane function causing HS lead to perturbation of the RBC metabolome, with altered glycolysis. In mice genetically lacking protein 4.2 (4.2-/-; Epb42), a murine model of HS, we showed increased expression of pyruvate kinase (PK) isoforms in whole and fractioned RBCs in conjunction with abnormalities in the glycolytic pathway and in the glutathione (GSH) system. Mitapivat, a PK activator, metabolically reprogrammed 4.2-/- mouse RBCs with amelioration of glycolysis and the GSH cycle. This resulted in improved osmotic fragility, reduced phosphatidylserine positivity, amelioration of RBC cation content, reduction of Na/K/Cl cotransport and Na/H-exchange overactivation, and decrease in erythroid vesicles release in vitro. Mitapivat treatment significantly decreased erythrophagocytosis and beneficially affected iron homeostasis. In mild-to-moderate HS, the beneficial effect of splenectomy is still controversial. Here, we showed that splenectomy improves anemia in 4.2-/- mice and that mitapivat is noninferior to splenectomy. An additional benefit of mitapivat treatment was lower expression of markers of inflammatory vasculopathy in 4.2-/- mice with or without splenectomy, indicating a multisystemic action of mitapivat. These findings support the notion that mitapivat treatment should be considered for symptomatic HS.
Collapse
Affiliation(s)
- Alessandro Matte
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Anand B. Wilson
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Enrica Federti
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Antonio Recchiuti
- Department of Medical, Oral, and Biotechnology Science, “G.d’Annunzio” University of Chieti – Pescara, Center for Advanced Studies and Technology, Chieti, Italy
| | - Giulia Ferri
- Department of Medical, Oral, and Biotechnology Science, “G.d’Annunzio” University of Chieti – Pescara, Center for Advanced Studies and Technology, Chieti, Italy
| | | | | | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Christophe Leboeuf
- INSERM, Paris, France
- Université Paris 7 — Denis Diderot, Paris, France
- Assistance Publique — Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France
| | - Anne Janin
- INSERM, Paris, France
- Université Paris 7 — Denis Diderot, Paris, France
- Assistance Publique — Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Elisa Gremese
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli–Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, Rome, Italy
- Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli–IRCCS, Rome, Italy
| | - Lenny Dang
- Agios Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | | | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lucia De Franceschi
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
16
|
Wei X, Guo H, Yu J, Liu Y, Zhao Y, He X. Multi-target reconstruction based on subspace decision optimization for bioluminescence tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107711. [PMID: 37451228 DOI: 10.1016/j.cmpb.2023.107711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Bioluminescence tomography (BLT) is a noninvasive optical imaging technique that provides qualitative and quantitative information on the spatial distribution of tumors in living animals. Researchers have proposed a list of algorithms and strategies for BLT reconstruction to improve its reconstruction quality. However, multi-target BLT reconstruction remains challenging in practical clinical applications due to the mutual interference of optical signals and difficulty in source separation. METHODS To solve this problem, this study proposes the subspace decision optimization (SDO) approach based on the traditional iterative permissible region strategy. The SDO approach transforms a single permissible region into multiple subspaces by clustering analysis. These subspaces are shrunk based on subspace shrinking optimization to achieve spatial continuity of the permissible regions. In addition, these subspaces are merged to construct a new permissible region and then the next iteration of reconstruction is carried out to ensure the stability of the results. Finally, all the iterative results are optimized based on the normal distribution model and the distribution properties of the targets to ensure the sparsity of each target and the non-biasing of the overall results. RESULTS Experimental results show that the SDO approach can automatically identify and separate different targets, ensuring the accuracy and quality of multi-target BLT reconstruction results. Meanwhile, SDO can combine various types of reconstruction algorithms and provide stable and high-quality reconstruction results independent of the algorithm parameters. CONCLUSIONS The SDO approach provides an integrated solution to the multi-target BLT reconstruction problem, realizing the whole process including target recognition, separation, reconstruction, and result enhancement, which can extend the application domain of BLT.
Collapse
Affiliation(s)
- Xiao Wei
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China
| | - Hongbo Guo
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China.
| | - Jingjing Yu
- The School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Yanqiu Liu
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China
| | - Yingcheng Zhao
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China
| | - Xiaowei He
- The School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an 710127, China.
| |
Collapse
|
17
|
Qu R, Chen M, Liu J, Xie Q, Liu N, Ge F. Blockage of ATPase-mediated energy supply inducing metabolic disturbances in algal cells under silver nanoparticles stress. J Environ Sci (China) 2023; 131:141-150. [PMID: 37225375 DOI: 10.1016/j.jes.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 05/26/2023]
Abstract
Adenosine triphosphate (ATP) generation of aquatic organisms is often subject to nanoparticles (NPs) stress, involving extensive reprogramming of gene expression and changes in enzyme activity accompanied by metabolic disturbances. However, little is known about the mechanism of energy supply by ATP to regulate the metabolism of aquatic organisms under NPs stress. Here, we selected extensively existing silver nanoparticles (AgNPs) to investigate their implications on ATP generation and relevant metabolic pathways in alga (Chlorella vulgaris). Results showed that ATP content significantly decreased by 94.2% of the control (without AgNPs) in the algal cells at 0.20 mg/L AgNPs, which was mainly attributed to the reduction of chloroplast ATPase activity (81.4%) and the downregulation of ATPase-coding genes atpB and atpH (74.5%-82.8%) in chloroplast. Molecular dynamics simulations demonstrated that AgNPs competed with the binding sites of substrates adenosine diphosphate and inorganic phosphate by forming a stable complex with ATPase subunit beta, potentially resulting in the reduced binding efficiency of substrates. Furthermore, metabolomics analysis proved that the ATP content positively correlated with the content of most differential metabolites such as D-talose, myo-inositol, and L-allothreonine. AgNPs remarkably inhibited ATP-involving metabolic pathways, including inositol phosphate metabolism, phosphatidylinositol signaling system, glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis, and glutathione metabolism. These results could provide a deep understanding of energy supply in regulating metabolic disturbances under NPs stress.
Collapse
Affiliation(s)
- Ruohua Qu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mi Chen
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiting Xie
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China..
| |
Collapse
|
18
|
Lim H, Oh C, Park MS, Park HB, Ahn C, Bae WK, Yoo KH, Hong S. Hint from an Enzymatic Reaction: Superoxide Dismutase Models Efficiently Suppress Colorectal Cancer Cell Proliferation. J Am Chem Soc 2023. [PMID: 37441741 DOI: 10.1021/jacs.3c04414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Superoxide dismutases (SODs) are essential antioxidant enzymes that prevent massive superoxide radical production and thus protect cells from damage induced by free radicals. However, this concept has rarely been applied to directly impede the function of driver oncogenes, thus far. Here, leveraging efforts from SOD model complexes, we report the novel finding of biomimetic copper complexes that efficiently scavenge intracellularly generated free radicals and, thereby, directly access the core consequence of colorectal cancer suppression. We conceived four structurally different SOD-mimicking copper complexes that showed distinct disproportionation reaction rates of intracellular superoxide radical anions. By replenishing SOD models, we observed a dramatic reduction of intracellular reactive oxygen species (ROS) and adenine 5'-triphosphate (ATP) concentrations that led to cell cycle arrest at the G2/M stage and induced apoptosis in vitro and in vivo. Our results showcase how nature-mimicking models can be designed and fine-tuned to serve as a viable chemotherapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Hanae Lim
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Chaeun Oh
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Myong-Suk Park
- Division of Hemato-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Korea
| | - Hyung-Bin Park
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Chaewon Ahn
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Woo Kyun Bae
- Division of Hemato-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Korea
| | - Seungwoo Hong
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
19
|
Molcak H, Jiang K, Campbell CJ, Matsubara JA. Purinergic signaling via P2X receptors and mechanisms of unregulated ATP release in the outer retina and age-related macular degeneration. Front Neurosci 2023; 17:1216489. [PMID: 37496736 PMCID: PMC10366617 DOI: 10.3389/fnins.2023.1216489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Age-related macular degeneration (AMD) is a chronic and progressive inflammatory disease of the retina characterized by photoceptor loss and significant central visual impairment due to either choroidal neovascularization or geographic atrophy. The pathophysiology of AMD is complex and multifactorial, driven by a combination of modifiable and non-modifiable risk factors, molecular mechanisms, and cellular processes that contribute to overall disease onset, severity, and progression. Unfortunately, due to the structural, cellular, and pathophysiologic complexity, therapeutic discovery is challenging. While purinergic signaling has been investigated for its role in the development and treatment of ocular pathologies including AMD, the potential crosstalk between known contributors to AMD, such as the complement cascade and inflammasome activation, and other biological systems, such as purinergic signaling, have not been fully characterized. In this review, we explore the interactions between purinergic signaling, ATP release, and known contributors to AMD pathogenesis including complement dysregulation and inflammasome activation. We begin by identifying what is known about purinergic receptors in cell populations of the outer retina and potential sources of extracellular ATP required to trigger purinergic receptor activation. Next, we examine evidence in the literature that the purinergic system accelerates AMD pathogenesis leading to apoptotic and pyroptotic cell death in retinal cells. To fully understand the potential role that purinergic signaling plays in AMD, more research is needed surrounding the expression, distribution, functions, and interactions of purinergic receptors within cells of the outer retina as well as potential crosstalk with other systems. By determining how these processes are affected in the context of purinergic signaling, it will improve our understanding of the mechanisms that drive AMD pathogenesis which is critical in developing treatment strategies that prevent or slow progression of the disease.
Collapse
Affiliation(s)
- Haydn Molcak
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| | - Kailun Jiang
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| | | | - Joanne A. Matsubara
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| |
Collapse
|
20
|
Gooz M, Maldonado EN. Fluorescence microscopy imaging of mitochondrial metabolism in cancer cells. Front Oncol 2023; 13:1152553. [PMID: 37427141 PMCID: PMC10326048 DOI: 10.3389/fonc.2023.1152553] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Mitochondrial metabolism is an important contributor to cancer cell survival and proliferation that coexists with enhanced glycolytic activity. Measuring mitochondrial activity is useful to characterize cancer metabolism patterns, to identify metabolic vulnerabilities and to identify new drug targets. Optical imaging, especially fluorescent microscopy, is one of the most valuable tools for studying mitochondrial bioenergetics because it provides semiquantitative and quantitative readouts as well as spatiotemporal resolution of mitochondrial metabolism. This review aims to acquaint the reader with microscopy imaging techniques currently used to determine mitochondrial membrane potential (ΔΨm), nicotinamide adenine dinucleotide (NADH), ATP and reactive oxygen species (ROS) that are major readouts of mitochondrial metabolism. We describe features, advantages, and limitations of the most used fluorescence imaging modalities: widefield, confocal and multiphoton microscopy, and fluorescent lifetime imaging (FLIM). We also discus relevant aspects of image processing. We briefly describe the role and production of NADH, NADHP, flavins and various ROS including superoxide and hydrogen peroxide and discuss how these parameters can be analyzed by fluorescent microscopy. We also explain the importance, value, and limitations of label-free autofluorescence imaging of NAD(P)H and FAD. Practical hints for the use of fluorescent probes and newly developed sensors for imaging ΔΨm, ATP and ROS are described. Overall, we provide updated information about the use of microscopy to study cancer metabolism that will be of interest to all investigators regardless of their level of expertise in the field.
Collapse
Affiliation(s)
- Monika Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Eduardo N. Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
21
|
Yin Q, Zhao D, Chang Y, Liu B, Liu Y, Liu M. Functional DNA Superstructures Exhibit Positive Homotropic Allostery in Ligand Binding. Angew Chem Int Ed Engl 2023; 62:e202303838. [PMID: 37071541 DOI: 10.1002/anie.202303838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/19/2023]
Abstract
Inspired by intrinsically disordered proteins in nature, DNA aptamers can be engineered to display strongly homotropic allosteric (or cooperative) ligand binding, representing a unique feature that could be of great utility in applications such as biosensing, imaging and drug delivery. The use of an intrinsic disorder mechanism, however, comes with an inherent drawback of significantly reduced overall binding affinity. We hypothesize that it could be addressed via the design of multivalent supramolecular aptamers. We built functional DNA superstructures (denoted as 3D DNA), made of long-chain DNA containing tandem repeating DNA aptamers (or concatemeric aptamers). The 3D DNA systems exhibit highly cooperative binding to both small molecules and proteins, without loss of binding affinities of their parent aptamers. We further produced a highly responsive sensor for fluorescence imaging of glutamate stimulation-evoked adenosine triphosphate (ATP) release in neurons, as well as force stimulus-triggered ATP release in astrocytes.
Collapse
Affiliation(s)
- Qingxin Yin
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| | - Dan Zhao
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated Hospital of Dalian Medical University, Dalian, 116033, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| |
Collapse
|
22
|
Han T, Zhang J, Mu S, Li H, Wu S, Liu X, Zhang H. ATP-triggered highly sensitive probes for super-resolution mitochondrial imaging and low-dose bioimaging. J Mater Chem B 2023; 11:4776-4784. [PMID: 37183594 DOI: 10.1039/d3tb00534h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Adenosine triphosphate (ATP), mainly produced in mitochondria, plays an important role in various pathological processes such as inflammation and acute liver injury. Fluorescence imaging is a powerful tool for imaging tissue structure and function in vivo. To date, the lack of biocompatible ATP probes with bright fluorescence emission has hindered their application in basic research and clinical trials. Here, we report a method for preparing ATP probes using a ZIF-90 potting dye, which produces bright ATP probes by encapsulating a modified high fluorescence quantum yield dye into a ZIF-90 skeleton. The nanoprobe does not fluoresce due to the coating. ATP can cooperate with Zn2+ to decompose the nanoprobe structure, release the dye and restore the fluorescence. Both nanoprobes ORhBSO2@ZIF-90 and SiRhBSO2@ZIF-90 showed higher sensitivity than the reported ATP nanoprobes with detection limits of 7.56 μM and 6.6 μM, and with lower doses (10 μg mL-1) of probes for cell imaging. In addition, SiRhBSO2@ZIF-90 has also been successfully used in the liver injury model. The ZIF-90 encapsulation strategy can retain the high fluorescence quantum yield and improve the biocompatibility of the dye.
Collapse
Affiliation(s)
- Taihe Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jinlong Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Shuai Mu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Science, Hainan University, Haikou 570228, P. R. China
| | - Shuangtong Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
23
|
Wu Y, Walker JR, Westberg M, Ning L, Monje M, Kirkland TA, Lin MZ, Su Y. Kinase-Modulated Bioluminescent Indicators Enable Noninvasive Imaging of Drug Activity in the Brain. ACS CENTRAL SCIENCE 2023; 9:719-732. [PMID: 37122464 PMCID: PMC10141594 DOI: 10.1021/acscentsci.3c00074] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Indexed: 05/03/2023]
Abstract
Aberrant kinase activity contributes to the pathogenesis of brain cancers, neurodegeneration, and neuropsychiatric diseases, but identifying kinase inhibitors that function in the brain is challenging. Drug levels in blood do not predict efficacy in the brain because the blood-brain barrier prevents entry of most compounds. Rather, assessing kinase inhibition in the brain requires tissue dissection and biochemical analysis, a time-consuming and resource-intensive process. Here, we report kinase-modulated bioluminescent indicators (KiMBIs) for noninvasive longitudinal imaging of drug activity in the brain based on a recently optimized luciferase-luciferin system. We develop an ERK KiMBI to report inhibitors of the Ras-Raf-MEK-ERK pathway, for which no bioluminescent indicators previously existed. ERK KiMBI discriminates between brain-penetrant and nonpenetrant MEK inhibitors, reveals blood-tumor barrier leakiness in xenograft models, and reports MEK inhibitor pharmacodynamics in native brain tissues and intracranial xenografts. Finally, we use ERK KiMBI to screen ERK inhibitors for brain efficacy, identifying temuterkib as a promising brain-active ERK inhibitor, a result not predicted from chemical characteristics alone. Thus, KiMBIs enable the rapid identification and pharmacodynamic characterization of kinase inhibitors suitable for treating brain diseases.
Collapse
Affiliation(s)
- Yan Wu
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| | - Joel R. Walker
- Promega
Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Michael Westberg
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Lin Ning
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| | - Michelle Monje
- Department
of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
- Howard Hughes
Medical Institute, Stanford University, Stanford, California 94305, United States
| | - Thomas A. Kirkland
- Promega
Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Michael Z. Lin
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department
of Pediatrics, Stanford University, Stanford, California 94305, United States
- Department
of Chemical and Systems Biology, Stanford
University, Stanford, California 94305, United States
| | - Yichi Su
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Fan J, Feng J, Xu D, Li X, Xu F, Li H, Shen C. Extended lag phase indicates the dormancy of biphenyl degrading Rhodococcus biphenylivorans TG9 under heat stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121248. [PMID: 36764375 DOI: 10.1016/j.envpol.2023.121248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Microbial remediation is a green and sustainable technology, but harsh environmental conditions could lead to microbial dormancy, such as entering a viable but non-culturable (VBNC) state. However, the evidence of VBNC is controversial and limited. In this study, heat stress (60 °C), one of the leading challenges for mesophilic degrading bacteria, was mimicked to investigate the physiological response of Rhodococcus biphenylivorans TG9. After 2 h of heat stress, the culturable TG9 cell count decreased from 108 cells/mL to undetectable while the viable cell count was still 105 cells/mL. The biphenyl degradation efficiency of stressed TG9 dropped by 50% compared to that of cells at logarithmic phase. During heat stress, the respiratory activity of TG9 declined dramatically while the intracellular ATP level initially increased and then decreased. Notably, the corresponding indicators recovered when restored to 30 °C. These characteristics were in consistent with bacteria entering into VBNC state. Furthermore, fluorescence activated cell sorting together with single cell as seed culture detection verified the unculturability and viability of VBNC state of TG9 cells. Also, we found that single cells in VBNC state could resuscitate and regrowth with significantly extended lag phase (LP). Our results highlight the potential of TG9 for microbial remediation and hint LP duration as an indicator for survival state of bacteria.
Collapse
Affiliation(s)
- Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Jinsong Feng
- Department of Food Science, College of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Dongdong Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyi Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Fengjun Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Haoming Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Furuta K, Onishi H, Ikada Y, Masaki K, Tanaka S, Kaito C. ATP and its metabolite adenosine cooperatively upregulate the antigen-presenting molecules on dendritic cells leading to IFN-γ production by T cells. J Biol Chem 2023; 299:104587. [PMID: 36889584 PMCID: PMC10124915 DOI: 10.1016/j.jbc.2023.104587] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Dendritic cells (DCs) present foreign antigens to T cells via the major histocompatibility complex (MHC), thereby inducing acquired immune responses. ATP accumulates at sites of inflammation or in tumor tissues, which triggers local inflammatory responses. However, it remains to be clarified how ATP modulates the functions of DCs. In this study, we investigated the effects of extracellular ATP on mouse bone marrow-derived dendritic cells (BMDCs), as well as the potential for subsequent T cell activation. We found that high concentrations of ATP (1 mM) upregulated the cell surface expression levels of MHC-I, MHC-II, and co-stimulatory molecules CD80 and CD86, but not those of co-inhibitory molecules PD-L1 and PD-L2 in BMDCs. Increased surface expression of MHC-I, MHC-II, CD80, and CD86 was inhibited by a pan-P2 receptor antagonist. In addition, the upregulation of MHC-I and MHC-II expression was inhibited by an adenosine P1 receptor antagonist and by inhibitors of CD39 and CD73, which metabolize ATP to adenosine. These results suggest that adenosine is required for the ATP-induced upregulation of MHC-I and MHC-II. In the mixed leukocyte reaction assay, ATP-stimulated BMDCs activated CD4 and CD8 T cells and induced interferon-gamma (IFN-γ) production by these T cells. Collectively, these results suggest that high concentrations of extracellular ATP upregulate the expression of antigen-presenting and co-stimulatory molecules but not that of co-inhibitory molecules in BMDCs. Cooperative stimulation of ATP and its metabolite adenosine was required for the upregulation of MHC-I and MHC-II. These ATP-stimulated BMDCs induced the activation of IFN-γ-producing T cells upon antigen presentation.
Collapse
Affiliation(s)
- Kazuyuki Furuta
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan.
| | - Hiroka Onishi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yuki Ikada
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Kento Masaki
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
26
|
Roy T, Chatterjee A, Swarnakar S. Rotenone induced neurodegeneration is mediated via cytoskeleton degradation and necroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119417. [PMID: 36581087 DOI: 10.1016/j.bbamcr.2022.119417] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022]
Abstract
Rotenone has widespread beneficial effects in agriculture, fisheries and animal husbandries; however prolonged exposure causes a detrimental effect on the health of personnel working in such industries. Rotenone during its extraction, formulation or usage may cross the blood brain barrier leading to neurodegeneration and the development of Parkinson's disease like symptoms. It is a known inhibitor of the mitochondrial ETC complex I and responsible for impairing the OXPHOS system. Our study showed that rotenone exposure results in an increased production of ROS and decreased ATP level along with a conspicuous loss of mitochondrial membrane potential in N2A cells. The transcription and expression pattern of cofilin, a key component of actin cytoskeleton, was also altered after rotenone exposure; leading to the actin cytoskeleton degradation. We further observed an increased expression, as well as activity of matrix metalloproteinase9 (MMP9) in rotenone exposed N2A cells; suggesting the involvement of inflammation upon rotenone exposure. Simultaneously, an opposite pattern was noticed for the tissue inhibitors of metalloproteinases-1 (TIMP-1) protein, which is a known modulator of MMP9 activity. Additionally, the localization of MMP9 along with alpha-synuclein, UCHL1 and cofilin suggested their close proximity and cross interaction upon rotenone treatment. Furthermore, we observed significant increase in the level of TNF-α upon rotenone exposure along with the phosphorylation of RIPK1, RIPK3 and MLKL that has been identified as the necroptosis markers leading to programmed necroptotic death.
Collapse
Affiliation(s)
- Tapasi Roy
- CSIR-Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, Kolkata, West Bengal, India
| | - Abhishek Chatterjee
- CSIR-Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, Kolkata, West Bengal, India
| | - Snehasikta Swarnakar
- CSIR-Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, Kolkata, West Bengal, India.
| |
Collapse
|
27
|
Real-Time Visualization of Cytosolic and Mitochondrial ATP Dynamics in Response to Metabolic Stress in Cultured Cells. Cells 2023; 12:cells12050695. [PMID: 36899830 PMCID: PMC10000496 DOI: 10.3390/cells12050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Adenosine 5' triphosphate (ATP) is the energy currency of life, which is produced in mitochondria (~90%) and cytosol (less than 10%). Real-time effects of metabolic changes on cellular ATP dynamics remain indeterminate. Here we report the design and validation of a genetically encoded fluorescent ATP indicator that allows for real-time, simultaneous visualization of cytosolic and mitochondrial ATP in cultured cells. This dual-ATP indicator, called smacATPi (simultaneous mitochondrial and cytosolic ATP indicator), combines previously described individual cytosolic and mitochondrial ATP indicators. The use of smacATPi can help answer biological questions regarding ATP contents and dynamics in living cells. As expected, 2-deoxyglucose (2-DG, a glycolytic inhibitor) led to substantially decreased cytosolic ATP, and oligomycin (a complex V inhibitor) markedly decreased mitochondrial ATP in cultured HEK293T cells transfected with smacATPi. With the use of smacATPi, we can also observe that 2-DG treatment modestly attenuates mitochondrial ATP and oligomycin reduces cytosolic ATP, indicating the subsequent changes of compartmental ATP. To evaluate the role of ATP/ADP carrier (AAC) in ATP trafficking, we treated HEK293T cells with an AAC inhibitor, Atractyloside (ATR). ATR treatment attenuated cytosolic and mitochondrial ATP in normoxia, suggesting AAC inhibition reduces ADP import from the cytosol to mitochondria and ATP export from mitochondria to cytosol. In HEK293T cells subjected to hypoxia, ATR treatment increased mitochondrial ATP along with decreased cytosolic ATP, implicating that ACC inhibition during hypoxia sustains mitochondrial ATP but may not inhibit the reversed ATP import from the cytosol. Furthermore, both mitochondrial and cytosolic signals decrease when ATR is given in conjunction with 2-DG in hypoxia. Thus, real-time visualization of spatiotemporal ATP dynamics using smacATPi provides novel insights into how cytosolic and mitochondrial ATP signals respond to metabolic changes, providing a better understanding of cellular metabolism in health and disease.
Collapse
|
28
|
Sheng G, Gao Y, Ding Q, Zhang R, Wang T, Jing S, Zhao H, Ma T, Wu H, Yang Y. P2RX7 promotes osteosarcoma progression and glucose metabolism by enhancing c-Myc stabilization. J Transl Med 2023; 21:132. [PMID: 36803784 PMCID: PMC9940387 DOI: 10.1186/s12967-023-03985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Osteosarcoma is the most common malignant tumor in bone and its prognosis has reached a plateau in the past few decades. Recently, metabolic reprogramming has attracted increasing attention in the field of cancer research. In our previous study, P2RX7 has been identified as an oncogene in osteosarcoma. However, whether and how P2RX7 promotes osteosarcoma growth and metastasis through metabolic reprogramming remains unexplored. METHODS We used CRISPR/Cas9 genome editing technology to establish P2RX7 knockout cell lines. Transcriptomics and metabolomics were performed to explore metabolic reprogramming in osteosarcoma. RT-PCR, western blot and immunofluorescence analyses were used to determine gene expression related to glucose metabolism. Cell cycle and apoptosis were examined by flowcytometry. The capacity of glycolysis and oxidative phosphorylation were assessed by seahorse experiments. PET/CT was carried out to assess glucose uptake in vivo. RESULTS We demonstrated that P2RX7 significantly promotes glucose metabolism in osteosarcoma via upregulating the expression of genes related to glucose metabolism. Inhibition of glucose metabolism largely abolishes the ability of P2RX7 to promote osteosarcoma progression. Mechanistically, P2RX7 enhances c-Myc stabilization by facilitating nuclear retention and reducing ubiquitination-dependent degradation. Furthermore, P2RX7 promotes osteosarcoma growth and metastasis through metabolic reprogramming in a predominantly c-Myc-dependent manner. CONCLUSIONS P2RX7 plays a key role in metabolic reprogramming and osteosarcoma progression via increasing c-Myc stability. These findings provide new evidence that P2RX7 might be a potential diagnostic and/or therapeutic target for osteosarcoma. Novel therapeutic strategies targeting metabolic reprogramming appear to hold promise for a breakthrough in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Gaohong Sheng
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030 China
| | - Yuan Gao
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qing Ding
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030 China
| | - Ruizhuo Zhang
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030 China
| | - Tianqi Wang
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030 China
| | - Shaoze Jing
- grid.470966.aShanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hongqi Zhao
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030 China
| | - Tian Ma
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030 China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| |
Collapse
|
29
|
Ley-Ngardigal S, Bertolin G. Approaches to monitor ATP levels in living cells: where do we stand? FEBS J 2022; 289:7940-7969. [PMID: 34437768 DOI: 10.1111/febs.16169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
ATP is the most universal and essential energy molecule in cells. This is due to its ability to store cellular energy in form of high-energy phosphate bonds, which are extremely stable and readily usable by the cell. This energy is key for a variety of biological functions such as cell growth and division, metabolism, and signaling, and for the turnover of biomolecules. Understanding how ATP is produced and hydrolyzed with a spatiotemporal resolution is necessary to understand its functions both in physiological and in pathological contexts. In this review, first we will describe the organization of the electron transport chain and ATP synthase, the main molecular motor for ATP production in mitochondria. Second, we will review the biochemical assays currently available to estimate ATP quantities in cells, and we will compare their readouts, strengths, and weaknesses. Finally, we will explore the palette of genetically encoded biosensors designed for microscopy-based approaches, and show how their spatiotemporal resolution opened up the possibility to follow ATP levels in living cells.
Collapse
Affiliation(s)
- Seyta Ley-Ngardigal
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France.,LVMH Research Perfumes and Cosmetics, Saint-Jean-de-Braye, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France
| |
Collapse
|
30
|
Bommakanti V, Banerjee M, Shah D, Manisha K, Sri K, Banerjee S. An overview of synthesis, characterization, applications and associated adverse effects of bioactive nanoparticles. ENVIRONMENTAL RESEARCH 2022; 214:113919. [PMID: 35863448 DOI: 10.1016/j.envres.2022.113919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
A particle with a diameter ranging from 1 to 100 nm is considered a nanoparticle (NP). Owing to their small size and high surface area, NPs possess unique physical, chemical and biological properties as compared to their bulkier counterparts. This paper describes various physico-chemical as well as green methods that can be used to synthesize different types of NPs including carbon-based, ceramic, metal, semiconductor, polymeric and lipid-based NPs. These methods can be categorized into either top-down or bottom-up approaches. Electron microscopy, atomic force microscopy, dynamic light scattering, X-ray diffraction, zeta-potential instrument, liquid chromatography-mass spectrometry, fourier transform infrared spectroscopy and thermogravimetric analysis are the techniques discussed in the characterization of NPs. This review provides an insight into the extraordinary properties of NPs that have opened the doors for endless biomedical applications like drug delivery, photo-ablation therapy, biosensors, bio-imaging and hyperthermia. In addition, NPs are also involved in improving crop growth, making protective clothing, cosmetics and energy reserves. This review also specifies adverse health effects associated with NPs such as hepatotoxicity, genotoxicity, neurotoxicity, etc., and inhibitory effects on plant growth and aquatic life. Further, in-vitro toxicity assessment assays for cell proliferation, apoptosis, necrosis and oxidative stress, as well as in-vivo toxicity assessment like biodistribution, clearance, hematological, serological and histological studies, are discussed here. Lastly, the authors have mentioned various measures that can be adopted to minimize the toxicity associated with NPs such as green synthesis, use of stabilizers, gene gun, polymer shell, microneedle capsule, etc.
Collapse
Affiliation(s)
- Vaishnavi Bommakanti
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Madhura Banerjee
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Divik Shah
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Kowdi Manisha
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Kavya Sri
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
31
|
Jo Y, Woo JS, Lee AR, Lee SY, Shin Y, Lee LP, Cho ML, Kang T. Inner-Membrane-Bound Gold Nanoparticles as Efficient Electron Transfer Mediators for Enhanced Mitochondrial Electron Transport Chain Activity. NANO LETTERS 2022; 22:7927-7935. [PMID: 36137175 DOI: 10.1021/acs.nanolett.2c02957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electron transfer through the mitochondrial electron transport chain (ETC) can be critically blocked by the dysfunction of protein complexes. Redox-active molecules have been used to mediate the electron transfer in place of the dysfunctional complexes; however, they are limited to replacing complex I and are known to be toxic. Here we report artificial mitochondrial electron transfer pathways that enhance ETC activity by exploiting inner-membrane-bound gold nanoparticles (GNPs) as efficient electron transfer mediators. The hybridization of mitochondria with GNPs, driven by electrostatic interaction, is successfully visualized in real time at the level of a single mitochondrion. By observing quantized quenching dips via plasmon resonance energy transfer, we reveal that the hybridized GNPs are bound to the inner membrane of mitochondria irrespective of the presence of the outer membrane. The ETC activity of mitochondria with GNPs such as membrane potential, oxygen consumption, and ATP production is remarkably increased in vitro.
Collapse
Affiliation(s)
- Yuseung Jo
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Jin Seok Woo
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - A Ram Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Korea
| | - Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Luke P Lee
- Harvard Medical School, Harvard University; Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Bioengineering, and Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, California 94720, United States
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Mi-La Cho
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Life Scieneces, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|
32
|
Tsai CW, Rodriguez MX, Van Keuren AM, Phillips CB, Shushunov HM, Lee JE, Garcia AM, Ambardekar AV, Cleveland JC, Reisz JA, Proenza C, Chatfield KC, Tsai MF. Mechanisms and significance of tissue-specific MICU regulation of the mitochondrial calcium uniporter complex. Mol Cell 2022; 82:3661-3676.e8. [PMID: 36206740 PMCID: PMC9557913 DOI: 10.1016/j.molcel.2022.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 05/16/2022] [Accepted: 09/07/2022] [Indexed: 12/29/2022]
Abstract
Mitochondrial Ca2+ uptake, mediated by the mitochondrial Ca2+ uniporter, regulates oxidative phosphorylation, apoptosis, and intracellular Ca2+ signaling. Previous studies suggest that non-neuronal uniporters are exclusively regulated by a MICU1-MICU2 heterodimer. Here, we show that skeletal-muscle and kidney uniporters also complex with a MICU1-MICU1 homodimer and that human/mouse cardiac uniporters are largely devoid of MICUs. Cells employ protein-importation machineries to fine-tune the relative abundance of MICU1 homo- and heterodimers and utilize a conserved MICU intersubunit disulfide to protect properly assembled dimers from proteolysis by YME1L1. Using the MICU1 homodimer or removing MICU1 allows mitochondria to more readily take up Ca2+ so that cells can produce more ATP in response to intracellular Ca2+ transients. However, the trade-off is elevated ROS, impaired basal metabolism, and higher susceptibility to death. These results provide mechanistic insights into how tissues can manipulate mitochondrial Ca2+ uptake properties to support their unique physiological functions.
Collapse
Affiliation(s)
- Chen-Wei Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Madison X Rodriguez
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna M Van Keuren
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Charles B Phillips
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah M Shushunov
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jessica E Lee
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anastacia M Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joseph C Cleveland
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ming-Feng Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
33
|
Quintero H, Shiga Y, Belforte N, Alarcon-Martinez L, El Hajji S, Villafranca-Baughman D, Dotigny F, Di Polo A. Restoration of mitochondria axonal transport by adaptor Disc1 supplementation prevents neurodegeneration and rescues visual function. Cell Rep 2022; 40:111324. [PMID: 36103832 DOI: 10.1016/j.celrep.2022.111324] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Deficits in mitochondrial transport are a common feature of neurodegenerative diseases. We investigated whether loss of components of the mitochondrial transport machinery impinge directly on metabolic stress, neuronal death, and circuit dysfunction. Using multiphoton microscope live imaging, we showed that ocular hypertension, a major risk factor in glaucoma, disrupts mitochondria anterograde axonal transport leading to energy decline in vulnerable neurons. Gene- and protein-expression analysis revealed loss of the adaptor disrupted in schizophrenia 1 (Disc1) in retinal neurons subjected to high intraocular pressure. Disc1 gene delivery was sufficient to rescue anterograde transport and replenish axonal mitochondria. A genetically encoded ATP sensor combined with longitudinal live imaging showed that Disc1 supplementation increased ATP production in stressed neurons. Disc1 gene therapy promotes neuronal survival, reverses abnormal single-cell calcium dynamics, and restores visual responses. Our study demonstrates that enhancing anterograde mitochondrial transport is an effective strategy to alleviate metabolic stress and neurodegeneration.
Collapse
Affiliation(s)
- Heberto Quintero
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Yukihiro Shiga
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Nicolas Belforte
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Deborah Villafranca-Baughman
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Florence Dotigny
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
34
|
Pan Y, Luan X, Zeng F, Xu Q, Li Z, Gao Y, Liu X, Li X, Han X, Shen J, Song Y. Hollow covalent organic framework-sheltering CRISPR/Cas12a as an in-vivo nanosensor for ATP imaging. Biosens Bioelectron 2022; 209:114239. [DOI: 10.1016/j.bios.2022.114239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022]
|
35
|
Li Y, Ma Y, Dang QY, Fan XR, Han CT, Xu SZ, Li PY. Assessment of mitochondrial dysfunction and implications in cardiovascular disorders. Life Sci 2022; 306:120834. [PMID: 35902031 DOI: 10.1016/j.lfs.2022.120834] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Mitochondria play a pivotal role in cellular function, not only acting as the powerhouse of the cell, but also regulating ATP synthesis, reactive oxygen species (ROS) production, intracellular Ca2+ cycling, and apoptosis. During the past decade, extensive progress has been made in the technology to assess mitochondrial functions and accumulating evidences have shown that mitochondrial dysfunction is a key pathophysiological mechanism for many diseases including cardiovascular disorders, such as ischemic heart disease, cardiomyopathy, hypertension, atherosclerosis, and hemorrhagic shock. The advances in methodology have been accelerating our understanding of mitochondrial molecular structure and function, biogenesis and ROS and energy production, which facilitates new drug target identification and therapeutic strategy development for mitochondrial dysfunction-related disorders. This review will focus on the assessment of methodologies currently used for mitochondrial research and discuss their advantages, limitations and the implications of mitochondrial dysfunction in cardiovascular disorders.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qing-Ya Dang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xin-Rong Fan
- Department of Cardiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chu-Ting Han
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shang-Zhong Xu
- Academic Diabetes, Endocrinology and Metabolism, Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom.
| | - Peng-Yun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
36
|
Mu X, Wang X, Qin Y, Huang Y, Tian J, Zhao S. A novel label-free universal biosensing platform based on CRISPR/Cas12a for biomarker detection. Talanta 2022; 251:123795. [DOI: 10.1016/j.talanta.2022.123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
|
37
|
White D, Yang Q. Genetically Encoded ATP Biosensors for Direct Monitoring of Cellular ATP Dynamics. Cells 2022; 11:1920. [PMID: 35741049 PMCID: PMC9221525 DOI: 10.3390/cells11121920] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/06/2022] Open
Abstract
Adenosine 5'-triphosphate, or ATP, is the primary molecule for storing and transferring energy in cells. ATP is mainly produced via oxidative phosphorylation in mitochondria, and to a lesser extent, via glycolysis in the cytosol. In general, cytosolic glycolysis is the primary ATP producer in proliferative cells or cells subjected to hypoxia. On the other hand, mitochondria produce over 90% of cellular ATP in differentiated cells under normoxic conditions. Under pathological conditions, ATP demand rises to meet the needs of biosynthesis for cellular repair, signaling transduction for stress responses, and biochemical processes. These changes affect how mitochondria and cytosolic glycolysis function and communicate. Mitochondria undergo remodeling to adapt to the imbalanced demand and supply of ATP. Otherwise, a severe ATP deficit will impair cellular function and eventually cause cell death. It is suggested that ATP from different cellular compartments can dynamically communicate and coordinate to adapt to the needs in each cellular compartment. Thus, a better understanding of ATP dynamics is crucial to revealing the differences in cellular metabolic processes across various cell types and conditions. This requires innovative methodologies to record real-time spatiotemporal ATP changes in subcellular regions of living cells. Over the recent decades, numerous methods have been developed and utilized to accomplish this task. However, this is not an easy feat. This review evaluates innovative genetically encoded biosensors available for visualizing ATP in living cells, their potential use in the setting of human disease, and identifies where we could improve and expand our abilities.
Collapse
Affiliation(s)
- Donnell White
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
- Department of Pharmacology and Experimental Therapeutics, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Qinglin Yang
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
- Department of Pharmacology and Experimental Therapeutics, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
38
|
Xu Y, Zou B, Fan B, Li B, Yu J, Wang L, Zhang J. NcRNAs-mediated P2RX1 expression correlates with clinical outcomes and immune infiltration in patients with breast invasive carcinoma. Aging (Albany NY) 2022; 14:4471-4485. [PMID: 35585027 PMCID: PMC9186779 DOI: 10.18632/aging.204087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022]
Abstract
The development of novel treatments for breast invasive carcinoma (BC) has been stagnant. P2RX1, a member of the purinergic receptor family, has been found to have a prognostic impact in several tumors. Therefore, we analyzed the expression pattern of P2RX1 in pan-cancers including BC and its impact on survival and found that the expression level of P2RX1 was lower in BC compared with para-cancerous tissues, and higher P2RX1 expression indicated better prognoses. But real-time quantitative reverse transcription PCR (RT-qPCR) and Western blot detected that the P2RX1 expression in normal mammary epithelial cells was lower than that in tumor cells. Then we comprehensively analyzed the regulatory mechanism and protein-protein interaction network, and found that P2RX1 was significantly positively linked with immune cell infiltration and immune checkpoints.
Collapse
Affiliation(s)
- Yiyue Xu
- 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Tianjin, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China.,Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P.R. China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Bing Zou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Bingjie Fan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Butuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Jin Zhang
- 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Tianjin, P.R. China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China.,Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, P.R. China
| |
Collapse
|
39
|
Michaličková D, Kübra Öztürk H, Hroudová J, Ľupták M, Kučera T, Hrnčíř T, Kutinová Canová N, Šíma M, Slanař O. Edaravone attenuates disease severity of experimental auto-immune encephalomyelitis and increases gene expression of Nrf2 and HO-1. Physiol Res 2022; 71:147-157. [PMID: 35043649 DOI: 10.33549/physiolres.934800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to evaluate therapeutic potential of edaravone in the murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) and to expand the knowledge of its mechanism of action. Edaravone (6 mg/kg/day) was administered intraperitoneally from the onset of clinical symptoms until the end of the experiment (28 days). Disease progression was assessed daily using severity scores. At the peak of the disease, histological analyses, markers of oxidative stress (OS) and parameters of mitochondrial function in the brains and spinal cords (SC) of mice were determined. Gene expression of inducible nitric oxide synthase (iNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha was determined at the end of the experiment. Edaravone treatment ameliorated EAE severity and attenuated inflammation in the SC of the EAE mice, as verified by histological analysis. Moreover, edaravone treatment decreased OS, increased the gene expression of the Nrf2 and HO-1, increased the activity of the mitochondrial complex II/III, reduced the activity of the mitochondrial complex IV and preserved ATP production in the SC of the EAE mice. In conclusion, findings in this study provide additional evidence of edaravone potential for the treatment of multiple sclerosis and expand our knowledge of the mechanism of action of edaravone in the EAE model.
Collapse
Affiliation(s)
- Danica Michaličková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mihajlovic M, Vinken M. Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. Int J Mol Sci 2022; 23:ijms23063315. [PMID: 35328737 PMCID: PMC8951158 DOI: 10.3390/ijms23063315] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
One of the major mechanisms of drug-induced liver injury includes mitochondrial perturbation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism. Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as drugs. Despite the fact that many methods have been developed for studying mitochondrial function, there is still a need for advanced and integrative models and approaches more closely resembling liver physiology, which would take into account predisposing factors. This could reduce the costs of drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests and, especially, prevent serious complications observed in clinical settings.
Collapse
|
41
|
Critical Considerations in Bioluminescence Imaging of Transplanted Islets: Dynamic Signal Change in Early Posttransplant Phase and Signal Absorption by Tissues. Pancreas 2022; 51:234-242. [PMID: 35584380 DOI: 10.1097/mpa.0000000000002004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES In pancreatic islet transplantation studies, bioluminescence imaging enables quantitative and noninvasive tracking of graft survival. Amid the recent heightened interest in extrahepatic sites for islet and stem cell-derived beta-like cell transplantations, proper understanding the nature of bioluminescence imaging in these sites is important. METHODS Islets isolated from Firefly rats ubiquitously expressing luciferase reporter gene in Lewis rats were transplanted into subcutaneous or kidney capsule sites of wild-type Lewis rats or immunodeficient mice. Posttransplant changes of bioluminescence signal curves and absorption of bioluminescence signal in transplantation sites were examined. RESULTS The bioluminescence signal curve dynamically changed in the early posttransplantation phase; the signal was low within the first 5 days after transplantation. A substantial amount of bioluminescence signal was absorbed by tissues surrounding islet grafts, correlating to the depth of the transplanted site from the skin surface. Grafts in kidney capsules were harder to image than those in the subcutaneous site. Within the kidney capsule, locations that minimized depth from the skin surface improved the graft detectability. CONCLUSIONS Posttransplant phase and graft location/depth critically impact the bioluminescence images captured in islet transplantation studies. Understanding these parameters is critical for reducing experimental biases and proper interpretation of data.
Collapse
|
42
|
Zhao P, Liu Y, He C, Duan C. Synthesis of a Lanthanide Metal-Organic Framework and Its Fluorescent Detection for Phosphate Group-Based Molecules Such as Adenosine Triphosphate. Inorg Chem 2022; 61:3132-3140. [PMID: 35144384 DOI: 10.1021/acs.inorgchem.1c03412] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine triphosphate (ATP) is an important kind of metabolized biological molecule that is formed in organisms, especially in mitochondria, is used universally as energy, and is one of the most significant multifunctional biological molecules. Metal-organic frameworks (MOFs) have been widely used in many applications such as gas storage and separation, drug delivery, heterogeneous catalysis, chemical sensors, etc. Remarkably, lanthanide MOFs (Ln-MOFs), which display large pores, multiple dimensions, and unique lanthanide luminescence properties, are widely used as chemical sensors. A novel three-dimensional probe, Eu2(sbdc)3(H2O)3 (Eu-sbdc), was successfully self-assembled with Eu(NO3)3·6H2O and 5,5-dioxo-5H-dibenzo[b,d]thiophene-3,7-dicarboxylic acid (H2sbdc). The Ln-MOF Eu-sbdc can quickly and effectively optically detect ATP via a luminescent quenching mechanism. The Ksv value of Eu-sbdc is 1.02 × 104 M-1, and the lower detection limit of Eu-sbdc for ATP is 20 μM, which is more sensitive to ATP. Its mechanism of monitoring ATP might be a dynamic or static quenching process. Eu-sbdc could effectively and quickly recognize ATP with high sensitivity.
Collapse
Affiliation(s)
- Peiran Zhao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yuqian Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
43
|
Vultaggio-Poma V, Falzoni S, Salvi G, Giuliani AL, Di Virgilio F. Signalling by extracellular nucleotides in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119237. [PMID: 35150807 DOI: 10.1016/j.bbamcr.2022.119237] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023]
Abstract
Nucleotides are released from all cells through regulated pathways or as a result of plasma membrane damage or cell death. Outside the cell, nucleotides act as signalling molecules triggering multiple responses via specific plasma membrane receptors of the P2 family. In the nervous system, purinergic signalling has a key function in neurotransmission. Outside the nervous system, purinergic signalling is one of the major modulators of basal tissue homeostasis, while its dysregulation contributes to the pathogenesis of various disease, including inflammation and cancer. Pre-clinical and clinical evidence shows that selective P2 agonists or antagonists are effective treatments for many pathologies, thus highlighting the relevance of extracellular nucleotides and P2 receptors as therapeutic targets.
Collapse
Affiliation(s)
| | | | - Giada Salvi
- Department of Medical Sciences, University of Ferrara, Italy
| | | | | |
Collapse
|
44
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
45
|
Optimized HPLC method to elucidate the complex purinergic signaling dynamics that regulate ATP, ADP, AMP, and adenosine levels in human blood. Purinergic Signal 2022; 18:223-239. [DOI: 10.1007/s11302-022-09842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022] Open
|
46
|
Extracellular ATP and Macropinocytosis: Their Interactive and Mutually Supportive Roles in Cell Growth, Drug Resistance, and EMT in Cancer. Subcell Biochem 2022; 98:61-83. [PMID: 35378703 PMCID: PMC9825817 DOI: 10.1007/978-3-030-94004-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Macropinocytosis is one of the major mechanisms by which cancer cells uptake extracellular nutrients from tumor microenvironment (TME) and plays very important roles in various steps of tumorigenesis. We previously reported the unexpected finding that intratumoral and extracellular ATP (eATP), as one of the major drastically upregulated extracellular nutrients and messengers in tumors, is taken up by cancer cells through macropinocytosis in large quantities and significantly contributing to cancer cell growth, survival, and increased resistance to chemo and target drugs. Inhibition of macropinocytosis substantially reduced eATP uptake by cancer cells and slowed down tumor growth in vivo. More recently, we have found the eATP also plays a very important role in inducing epithelial-to-mesenchymal transition (EMT), and that macropinocytosis is an essential facilitator in the induction. Thus, macropinocytosis and eATP, working in coordination, appear to play some previously unrecognized but very important roles in EMT and metastasis. As a result, they are likely to be interactive and communicative with each other, regulating each other's activity for various needs of host tumor cells. They are also likely to be an integral part of the future new anticancer therapeutic strategies. Moreover, it is undoubted that we have not identified all the important activities coordinated by ATP and macropinocytosis. This review describes our findings in how eATP and macropinocytosis work together to promote cancer cell growth, resistance, and EMT. We also list scientific challenges facing eATP research and propose to target macropinocytosis and eATP to reduce drug resistance and slow down metastasis.
Collapse
|
47
|
Cheng N, Zhang L, Liu L. Understanding the Role of Purinergic P2X7 Receptors in the Gastrointestinal System: A Systematic Review. Front Pharmacol 2021; 12:786579. [PMID: 34987401 PMCID: PMC8721002 DOI: 10.3389/fphar.2021.786579] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The role of purinergic P2X7 receptor (P2X7R) is of interest due to its involvement in inflammation and mediating immune cell responses. P2X7R is particularly implicated in the development of inflammatory bowel disease (IBD). However, the extent of the actions of P2X7R in the gastrointestinal (GI) system under physiological and pathophysiological conditions remains to be elucidated. This systematic review aimed to identify, summarize and evaluate the evidence for a critical role of P2X7R in the GI system. Methods: We searched PubMed, Embase and Scopus with search terms pertained to P2X7R in the GI system in disease or physiological state, including “P2X7 or P2X7 receptor or purinergic signaling” in combination with any of the terms “intestine or colon or gut or gastrointestinal,” “pathology or inflammation or disease or disorder,” and “physiology or expression.” Titles and abstracts were screened for potentially eligible full texts, and animal and human studies published in English were included in this study. Data were extracted from papers meeting inclusion criteria. Meta-analysis was not feasible given the study diversity. Results: There were 48 papers included in this review. We identified 14 experimental colitis models, three sepsis models and one ischemia-reperfusion injury model. Among them, 11 studies examined P2X7R in GI infections, six studies on immune cell regulation, four studies on GI inflammation, two studies on GI malignancies, three studies involving intestinal injury due to various causes, two studies on ATP-activated P2X7R in the GI system and two studies on metabolic regulation. Conclusion: Evidence supports P2X7R mediating inflammation and immune cell responses in GI inflammation, infections and injury due to IBD and other challenges to the intestinal wall. P2X7R inhibition by gene knockout or by application of P2X7R antagonists can reduce tissue damage by suppressing inflammation. P2X7R is also implicated in GI malignancies and glucose and lipid homeostasis. P2X7R blockade, however, did not always lead to beneficial outcomes in the various pathological models of study.
Collapse
Affiliation(s)
- Nathalie Cheng
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Lu Liu,
| |
Collapse
|
48
|
Cykowiak M, Kleszcz R, Kucińska M, Paluszczak J, Szaefer H, Plewiński A, Piotrowska-Kempisty H, Murias M, Krajka-Kuźniak V. Attenuation of Pancreatic Cancer In Vitro and In Vivo via Modulation of Nrf2 and NF-κB Signaling Pathways by Natural Compounds. Cells 2021; 10:3556. [PMID: 34944062 PMCID: PMC8700195 DOI: 10.3390/cells10123556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a disease in which deregulation of signaling pathways plays a key role, thus searching for their novel modulators is a promising therapeutic strategy. Hence, in this study, the effect of phytochemical combinations on the canonical and non-canonical activation of Nrf2 and its interaction with the NF-κB pathway was evaluated in extensively proliferating pancreatic cancer cell line, PSN-1, in comparison to non-cancerous MS1 cells. The activation of Nrf2 and NF-κB, expression of their target genes, and effect on cell survival were assessed in PSN-1 cells. The tumor burden was evaluated in mice carrying xenografts. PSN-1 cells were more sensitive to the tested compounds as compared to the MS1 cell line. Combination of xanthohumol and phenethyl isothiocyanate was more effective than single compounds at decreasing the canonical and non-canonical activation of Nrf2 in PSN-1 cancer cells. Decreased activation of NF-κB, and subsequent reduced cytosolic COX-2 and nuclear STAT3 level indicated their anti-inflammatory and pro-apoptotic activities. In vivo studies showed the partial response in groups treated with xanthohumol or the combination of xanthohumol and phenethyl isothiocyanate. Overall, these results suggest that the combination of xanthohumol and phenethyl isothiocyanate may be a promising therapeutic candidate against pancreatic cancer.
Collapse
Affiliation(s)
- Marta Cykowiak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (J.P.); (H.S.)
| | - Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (J.P.); (H.S.)
| | - Małgorzata Kucińska
- Department of Toxicology, Poznan University of Medical Sciences, 30, Dojazd Street, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (J.P.); (H.S.)
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (J.P.); (H.S.)
| | - Adam Plewiński
- Centre for Advanced Technologies, Adam Mickiewicz University, 10, Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30, Dojazd Street, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, 30, Dojazd Street, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (J.P.); (H.S.)
| |
Collapse
|
49
|
Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci 2021; 23:4-22. [PMID: 34782781 DOI: 10.1038/s41583-021-00535-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Synaptic activity imposes large energy demands that are met by local adenosine triphosphate (ATP) synthesis through glycolysis and mitochondrial oxidative phosphorylation. ATP drives action potentials, supports synapse assembly and remodelling, and fuels synaptic vesicle filling and recycling, thus sustaining synaptic transmission. Given their polarized morphological features - including long axons and extensive branching in their terminal regions - neurons face exceptional challenges in maintaining presynaptic energy homeostasis, particularly during intensive synaptic activity. Recent studies have started to uncover the mechanisms and signalling pathways involved in activity-dependent and energy-sensitive regulation of presynaptic energetics, or 'synaptoenergetics'. These conceptual advances have established the energetic regulation of synaptic efficacy and plasticity as an exciting research field that is relevant to a range of neurological disorders associated with bioenergetic failure and synaptic dysfunction.
Collapse
|
50
|
Möller S, Laskay T. Purinergic Enhancement of Anti-Leishmanial Effector Functions of Neutrophil Granulocytes. Front Immunol 2021; 12:747049. [PMID: 34733282 PMCID: PMC8558537 DOI: 10.3389/fimmu.2021.747049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022] Open
Abstract
Although macrophages are considered for host cells for the multiplication of Leishmania, recent studies indicate the important role of neutrophil granulocytes as host cells for these intracellular parasites. Neutrophils have been shown to be massively and rapidly recruited to the site of Leishmania infection where they represent the first cells to encounter the parasites. Exposure to ATP and UTP have been shown to enhance anti-Leishmania activity of macrophages and intralesional injection of UTP led to strongly reduced parasite load in vivo. Since the in vivo anti-leishmanial effect of extracellular UTP correlated with enhanced neutrophil recruitment and enhanced ROS production at the site of Leishmania infection we hypothesized that exposure to extracellular nucleotides can directly enhance the killing of Leishmania by neutrophils. Since purinergic signaling is an essential mechanism of neutrophil activation the aim of the present study was to assess whether purinergic exposure results in the activation of anti-leishmanial neutrophil functions and, therefore, represent an essential component of enhanced anti-leishmanial defense in leishmaniasis. We could show that exposure to ATP and UTP led to activation and enhanced CD11b expression of primary human neutrophils in vitro. Leishmania-induced ROS production was strongly enhanced by extracellular ATP and UTP. Importantly, exposure to ATP and UTP resulted in enhanced killing of Leishmania donovani by neutrophils. In addition, ATP strongly enhanced the secretion of IL-8 and IL-1β by Leishmania-exposed neutrophils. Our results suggest that signaling via the P2 receptor and phosphorylation of Erk1/2, Akt and p38 are involved in the purinergic enhancement of anti-leishmanial functions of neutrophils.
Collapse
Affiliation(s)
- Sonja Möller
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|