1
|
Murray M, Wetmore S. Unlocking precision in aptamer engineering: a case study of the thrombin binding aptamer illustrates why modification size, quantity, and position matter. Nucleic Acids Res 2024; 52:10823-10835. [PMID: 39217472 PMCID: PMC11472061 DOI: 10.1093/nar/gkae729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The thrombin binding aptamer (TBA) is a prototypical platform used to understand the impact of chemically-modified nucleotides on aptamer stability and target affinity. To provide structural insight into the experimentally-observed effects of modification size, location, and number on aptamer performance, long time-scale molecular dynamics (MD) simulations were performed on multiple binding orientations of TBA-thrombin complexes that contain a large, flexible tryptophan thymine derivative (T-W) or a truncated analogue (T-K). Depending on modification position, T-W alters aptamer-target binding orientations, fine-tunes aptamer-target interactions, strengthens networks of nucleic acid-protein contacts, and/or induces target conformational changes to enhance binding. The proximity and 5'-to-3' directionality of nucleic acid structural motifs also play integral roles in the behavior of the modifications. Modification size can differentially influence target binding by promoting more than one aptamer-target binding pose. Multiple modifications can synergistically strengthen aptamer-target binding by generating novel nucleic acid-protein structural motifs that are unobtainable for single modifications. By studying a diverse set of modified aptamers, our work uncovers design principles that must be considered in the future development of aptamers containing chemically-modified nucleotides for applications in medicine and biotechnology, highlighting the value of computational studies in nucleic acids research.
Collapse
Affiliation(s)
- Makay T Murray
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
2
|
Sha L, Zhao Y, Li S, Wei D, Tao Y, Wang Y. Insights to Ang/Tie signaling pathway: another rosy dawn for treating retinal and choroidal vascular diseases. J Transl Med 2024; 22:898. [PMID: 39367441 PMCID: PMC11451039 DOI: 10.1186/s12967-024-05441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 10/06/2024] Open
Abstract
Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.
Collapse
Affiliation(s)
- Lulu Sha
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Yange Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
3
|
Jamal SZ, Dieckmann BW, McCollum GW, Penn JS, Jayagopal A, Uddin MDI. Imaging Hypoxia to Predict Primary Neuronal Cell Damage in Branch Retinal Artery Occlusion. Microcirculation 2024; 31:e12883. [PMID: 39213162 PMCID: PMC11471370 DOI: 10.1111/micc.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To develop a reliable method to generate a mouse model of branch retinal artery occlusion (BRAO) using laser-induced thrombosis of a major artery in the mouse retina. Also, to develop a reliable method to detect retinal hypoxia as predictive biomarker for the risk of neuronal cell damage in BRAO. METHODS A reliable and reproducible model of laser-induced BRAO was developed in mouse retina using Rose Bengal. To characterize retinal hypoxia in BRAO, pimonidazole immunostaining and HYPOX-4 molecular imaging methods were used. Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) was used to characterize neuronal cell damage in the BRAO retina. Expression of mRNA in retinal tissues from BRAO and age-matched control retinas were analyzed using qRT-PCR. RESULTS Occlusion of a branch retinal artery near the optic nerve head (ONH) caused a pattern of retinal tissue hypoxia covering about 12.5% of the entire retina. TUNEL-positive cells were localized in all layers in BRAO retinal tissue cross sections. In addition, qRT-PCR data analysis suggests that BRAO is associated with both inflammation and hypoxia. CONCLUSIONS This study provides a reliable method for BRAO in mouse retina and demonstrates the utility of molecular imaging method to detect retinal hypoxia as predictive biomarker for the risk of neuronal cell damage in BRAO. In addition, our data suggest that BRAO retinas are associated with inflammation and also associated with hypoxia-related neuronal cell damage. PERSPECTIVES Imaging areas of retinal hypoxia may provide accurate diagnosis, evaluating retinal tissue injury from BRAO.
Collapse
Affiliation(s)
- Sara Z. Jamal
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Blake W. Dieckmann
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gary W. McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John S. Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | | | - MD Imam Uddin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
4
|
Agura T, Shin S, Jo H, Jeong S, Ahn H, Pang SY, Lee J, Park JH, Kim Y, Kang JS. Aptamin C enhances anti-cancer activity NK cells through the activation of STAT3: a comparative study with vitamin C. Anat Cell Biol 2024; 57:408-418. [PMID: 39048513 PMCID: PMC11424563 DOI: 10.5115/acb.24.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 07/27/2024] Open
Abstract
Vitamin C is a well-known antioxidant with antiviral, anticancer, and anti-inflammatory properties based on its antioxidative function. Aptamin C, a complex of vitamin C with its specific aptamer, has been reported to maintain or even enhance the efficacy of vitamin C while increasing its stability. To investigate in vivo distribution of Aptamin C, Gulo knockout mice, which, like humans, cannot biosynthesize vitamin C, were administered Aptamin C orally for 2 and 4 weeks. The results showed higher vitamin C accumulation in all tissues when administered Aptamin C, especially in the spleen. Next, the activity of natural killer (NK) cells were conducted. CD69, a marker known for activating for NK cells, which had decreased due to vitamin C deficiency, did not recover with vitamin C treatment but showed an increasing with Aptamin C. Furthermore, the expression of CD107a, a cell surface marker that increases during the killing process of target cells, also did not recover with vitamin C but increased with Aptamin C. Based on these results, when cultured with tumor cells to measure the extent of tumor cell death, an increase in tumor cell death was observed. To investigate the signaling mechanisms and related molecules involved in the proliferation and activation of NK cells by Aptamin C showed that Aptamin C treatment led to an increase in intracellular STAT3 activation. In conclusion, Aptamin C has a higher capability to activate NK cells and induce tumor cell death compared to vitamin C and it is mediated through the activation of STAT3.
Collapse
Affiliation(s)
- Tomoyo Agura
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Seulgi Shin
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Research and Development, N Therapeutics Co., Ltd., Seoul, Korea
| | - Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Seoyoun Jeong
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Hyovin Ahn
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - So Young Pang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
5
|
Tsai HJ, Cheng KW, Li JC, Ruan TX, Chang TH, Wang JR, Tseng CP. Identification of Podoplanin Aptamers by SELEX for Protein Detection and Inhibition of Platelet Aggregation Stimulated by C-Type Lectin-like Receptor 2. BIOSENSORS 2024; 14:464. [PMID: 39451677 PMCID: PMC11506057 DOI: 10.3390/bios14100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Tumor cell-induced platelet aggregation (TCIPA) is a mechanism for the protection of tumor cells in the bloodstream and the promotion of tumor progression and metastases. The platelet C-type lectin-like receptor 2 (CLEC-2) can bind podoplanin (PDPN) on a cancer cell surface to facilitate TCIPA. Selective blockage of PDPN-mediated platelet-tumor cell interaction is a plausible strategy for inhibiting metastases. In this study, we aimed to screen for aptamers, which are the single-stranded DNA oligonucleotides that form a specific three-dimensional structure, bind to specific molecular targets with high affinity and specificity, bind to PDPN, and interfere with PDPN/CLEC-2 interactions. The systematic evolution of ligands by exponential enrichment (SELEX) was employed to enrich aptamers that recognize PDPN. The initial characterization of ssDNA pools enriched by SELEX revealed a PDPN aptamer designated as A1 displaying parallel-type G-quadruplexes and long stem-and-loop structures and binding PDPN with a material with a dissociation constant (Kd) of 1.3 ± 1.2 nM. The A1 aptamer recognized both the native and denatured form of PDPN. Notably, the A1 aptamer was able to quantitatively detect PDPN proteins in Western blot analysis. The A1 aptamer could interfere with the interaction between PDPN and CLEC-2 and inhibit PDPN-induced platelet aggregation in a concentration-dependent manner. These findings indicated that the A1 aptamer is a candidate for the development of biosensors in detecting the levels of PDPN expression. The action by A1 aptamer could result in the prevention of tumor cell metastases, and if so, could become an effective pharmacological agent in treating cancer patients.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kai-Wen Cheng
- Department of Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jou-Chen Li
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsai-Xiang Ruan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Hsin Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jin-Ru Wang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 33302, Taiwan
| |
Collapse
|
6
|
Zhang K, Shi Y, Jin Z, He J. Advances in tumor vascular growth inhibition. Clin Transl Oncol 2024; 26:2084-2096. [PMID: 38504070 DOI: 10.1007/s12094-024-03432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Tumor growth and metastasis require neovascularization, which is dependent on a complex array of factors, such as the production of various pro-angiogenic factors by tumor cells, intercellular signaling, and stromal remodeling. The hypoxic, acidic tumor microenvironment is not only conducive to tumor cell proliferation, but also disrupts the equilibrium of angiogenic factors, leading to vascular heterogeneity, which further promotes tumor development and metastasis. Anti-angiogenic strategies to inhibit tumor angiogenesis has, therefore, become an important focus for anti-tumor therapy. The traditional approach involves the use of anti-angiogenic drugs to inhibit tumor neovascularization by targeting upstream and downstream angiogenesis-related pathways or pro-angiogenic factors, thereby inhibiting tumor growth and metastasis. This review explores the mechanisms involved in tumor angiogenesis and summarizes currently used anti-angiogenic drugs, including monoclonal antibody, and small-molecule inhibitors, as well as the progress and challenges associated with their use in anti-tumor therapy. It also outlines the opportunities and challenges of treating tumors using more advanced anti-angiogenic strategies, such as immunotherapy and nanomaterials.
Collapse
Affiliation(s)
- Keyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuanyuan Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ze Jin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Ye Z, Chen H, Weinans H, van der Wal B, Rios JL. Novel Aptamer Strategies in Combating Bacterial Infections: From Diagnostics to Therapeutics. Pharmaceutics 2024; 16:1140. [PMID: 39339177 PMCID: PMC11435160 DOI: 10.3390/pharmaceutics16091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and antimicrobial resistance are posing substantial difficulties to the worldwide healthcare system. The constraints of conventional diagnostic and therapeutic approaches in dealing with continuously changing infections highlight the necessity for innovative solutions. Aptamers, which are synthetic oligonucleotide ligands with a high degree of specificity and affinity, have demonstrated significant promise in the field of bacterial infection management. This review examines the use of aptamers in the diagnosis and therapy of bacterial infections. The scope of this study includes the utilization of aptasensors and imaging technologies, with a particular focus on their ability to detect conditions at an early stage. Aptamers have shown exceptional effectiveness in suppressing bacterial proliferation and halting the development of biofilms in therapeutic settings. In addition, they possess the capacity to regulate immune responses and serve as carriers in nanomaterial-based techniques, including radiation and photodynamic therapy. We also explore potential solutions to the challenges faced by aptamers, such as nuclease degradation and in vivo instability, to broaden the range of applications for aptamers to combat bacterial infections.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Huaizhi Chen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands
| | - Bart van der Wal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jaqueline Lourdes Rios
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
8
|
Li T, Liu X, Qian H, Zhang S, Hou Y, Zhang Y, Luo G, Zhu X, Tao Y, Fan M, Wang H, Sha C, Lin A, Qin J, Gu K, Chen W, Fu T, Wang Y, Wei Y, Wu Q, Tan W. Blocker-SELEX: a structure-guided strategy for developing inhibitory aptamers disrupting undruggable transcription factor interactions. Nat Commun 2024; 15:6751. [PMID: 39117705 PMCID: PMC11310338 DOI: 10.1038/s41467-024-51197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.
Collapse
Affiliation(s)
- Tongqing Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Xueying Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Haifeng Qian
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Sheyu Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yu Hou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yuchao Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Guoyan Luo
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Xun Zhu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Mengyang Fan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Hong Wang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Chulin Sha
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Ailan Lin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Jingjing Qin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Kedan Gu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Weichang Chen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Ting Fu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yajun Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yong Wei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
| | - Qin Wu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Weihong Tan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
9
|
Cossu J, Ravelet C, Martel-Frachet V, Peyrin E, Boturyn D. Peptide-based CE-SELEX enables convenient isolation of aptamers specifically recognizing CD20-expressing cells. Bioorg Med Chem 2024; 110:117831. [PMID: 39004051 DOI: 10.1016/j.bmc.2024.117831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The CD20 antigen is a key target for several diseases including lymphoma and autoimmune diseases. For over 20 years, several monoclonal antibodies were developed to treat CD20-related disorders. As many therapeutic proteins, their clinical use is however limited due to their nature with a costly biotechnological procedure and side effects such as the production of anti-drug neutralizing antibodies. Nucleic acid aptamers have some advantages over mAbs and are currently investigated for clinical use. We herein report the selection of DNA aptamer by using a peptide-based CE-SELEX (Capillary Electrophoresis-Systematic Evolution of Ligands by Exponential Enrichment) method. It was demonstrated that these aptamers bind specifically a CD20-expressing human cell line, with Kd estimated from isothermal titration calorimetry experiments in the micromolar range. This study demonstrates that the CE-SELEX is suitable as alternative method to the conventional Cell-SELEX to discover new cell-targeting compounds.
Collapse
Affiliation(s)
- Jordan Cossu
- University Grenoble Alpes, CNRS, DCM UMR 5250, 38058 Grenoble Cedex 9, France; University Grenoble Alpes, CNRS, DPM UMR 5063, 38041 Grenoble Cedex 9, France
| | - Corinne Ravelet
- University Grenoble Alpes, CNRS, DPM UMR 5063, 38041 Grenoble Cedex 9, France
| | - Véronique Martel-Frachet
- University Grenoble Alpes, IAB CNRS UMR5309, INSERM U1209, Allée des Alpes 38700, La Tronche, France; University PSL Research, EPHE, 5014 Paris, France
| | - Eric Peyrin
- University Grenoble Alpes, CNRS, DPM UMR 5063, 38041 Grenoble Cedex 9, France.
| | - Didier Boturyn
- University Grenoble Alpes, CNRS, DCM UMR 5250, 38058 Grenoble Cedex 9, France.
| |
Collapse
|
10
|
Troisi R, Sica F. Structural overview of DNA and RNA G-quadruplexes in their interaction with proteins. Curr Opin Struct Biol 2024; 87:102846. [PMID: 38848656 DOI: 10.1016/j.sbi.2024.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
Since the discovery of G-quadruplex (G4) participation in vital cellular processes, the regulation of the interaction of naturally occurring G4s with the relative target proteins has emerged as a promising approach for therapeutic development. Additionally, a synthetic strategy has produced several oligonucleotide aptamers, embodying a G4 module, which exhibit relevant biological activity by binding selectively to a target protein. In this context, the G4-protein structures available in the Protein Data Bank represent a valuable molecular view of the different G4 topologies involved in protein interaction. Interestingly, recent results have shown the co-existence of G4s with other structural domains such as duplexes. Overall, these findings allow a better understanding of the mechanisms that regulate intricate biological functions and suggest new design for innovative medical treatments.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126 Naples, Italy; Institute of Biostructures and Bioimaging, CNR, via Pietro Castellino 111, 80131 Naples, Italy. https://twitter.com/TroRom
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126 Naples, Italy.
| |
Collapse
|
11
|
Nasaev SS, Mukanov AR, Mishkorez IV, Kuznetsov II, Leibin IV, Dolgusheva VA, Pavlyuk GA, Manasyan AL, Veselovsky AV. Molecular Modeling Methods in the Development of Affine and Specific Protein-Binding Agents. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1451-1473. [PMID: 39245455 DOI: 10.1134/s0006297924080066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
High-affinity and specific agents are widely applied in various areas, including diagnostics, scientific research, and disease therapy (as drugs and drug delivery systems). It takes significant time to develop them. For this reason, development of high-affinity agents extensively utilizes computer methods at various stages for the analysis and modeling of these molecules. The review describes the main affinity and specific agents, such as monoclonal antibodies and their fragments, antibody mimetics, aptamers, and molecularly imprinted polymers. The methods of their obtaining as well as their main advantages and disadvantages are briefly described, with special attention focused on the molecular modeling methods used for their analysis and development.
Collapse
Affiliation(s)
| | - Artem R Mukanov
- Research & Development Department, Xelari Ltd., Moscow, 121601, Russia
| | - Ivan V Mishkorez
- Research & Development Department, Xelari Ltd., Moscow, 121601, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Ivan I Kuznetsov
- Research & Development Department, Xelari Ltd., Moscow, 121601, Russia
| | - Iosif V Leibin
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, 121205, Russia
| | | | - Gleb A Pavlyuk
- Research & Development Department, Xelari Ltd., Moscow, 121601, Russia
| | - Artem L Manasyan
- Research & Development Department, Xelari Ltd., Moscow, 121601, Russia
| | | |
Collapse
|
12
|
Genna V, Reyes-Fraile L, Iglesias-Fernandez J, Orozco M. Nucleic acids in modern molecular therapies: A realm of opportunities for strategic drug design. Curr Opin Struct Biol 2024; 87:102838. [PMID: 38759298 DOI: 10.1016/j.sbi.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
RNA vaccines have made evident to society what was already known by the scientific community: nucleic acids will be the "drugs of the future." By modifying the genome, interfering in transcription or translation, and by introducing new catalysts into the cell or by mimicking antibody effects, nucleic acids can generate therapeutic activities that are not accessible by any other therapeutic agents. There are, however, challenges that need to be solved in the next few years to make nucleic acids usable in a wide range of therapeutic scenarios. This review illustrates how simulation methods can help achieve this goal.
Collapse
Affiliation(s)
- Vito Genna
- NBD|Nostrum Biodiscovery, Josep Tarradellas 8-10, Barcelona 08019, Spain. https://twitter.com/_VitoGenna_
| | - Laura Reyes-Fraile
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Sixfold Bioscience Ltd, Translational & Innovation Hub, 84 Wood Ln, London W12 0BZ, United Kingdom
| | | | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
13
|
Śpiewak D, Drzyzga Ł, Dorecka M, Wyględowska-Promieńska D. Summary of the Therapeutic Options for Patients with Dry and Neovascular AMD. J Clin Med 2024; 13:4227. [PMID: 39064267 PMCID: PMC11278184 DOI: 10.3390/jcm13144227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness worldwide and a severe medical and social problem. The steadily increasing number of patients is related to the aging of the population. So far, many factors affecting the development of AMD have been identified, which can be divided into non-modifiable, including genetic factors, age, and sex, and modifiable or environmental factors, such as smoking, poor diet, and hypertension. Early stages of age-related macular degeneration are characterized by fundus drusen and abnormalities in the retinal pigment epithelium. In late stages, geographic atrophy and choroidal neovascularization (CNV) are observed. The treatment of AMD, especially its advanced forms, is very challenging. Intensive research has made it possible to treat advanced stages of the dry form of AMD with pegcetacoplan and avacincaptad pegol, new drugs approved for use in the US. Pegcetacoplan targets the C3 and avacincaptad pegol targets the C5, the pivotal proteins of the complement cascade. The drugs are administered by intravitreal injection. The gold standard for neovascular AMD (nAMD) consists of intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) drugs such as bevacizumab, ranibizumab, aflibercept, brolucizumab, and faricimab. Treatment can be administered according to the fixed, pro-re-nata, and treat-and-extend regimens. The latter seems to have the best effect on improving visual acuity (VA) and the maximum therapeutic benefit. The search continues for the best ways to deliver intravitreal drugs. Current methods include sustained-release implants and hydrogel platforms for drug release, while the most promising future pathways for treating dry and nAMD are stem cell and gene therapy.
Collapse
Affiliation(s)
- Dorota Śpiewak
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-514 Katowice, Poland
- Clinical Ophthalmology Center Okolux, 40-754 Katowice, Poland
| | - Łukasz Drzyzga
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-514 Katowice, Poland
- Clinical Ophthalmology Center Okolux, 40-754 Katowice, Poland
| | - Mariola Dorecka
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-514 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-287 Katowice, Poland
| | - Dorota Wyględowska-Promieńska
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-514 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-287 Katowice, Poland
| |
Collapse
|
14
|
Jin B, Yang G, Guo Z, Chen Z, Liu Y, Li S, Chen H, Fang Y, Deng Y, He N. Cell-SELEX and application research of a DNA aptamer against esophageal squamous cell carcinoma (ESCC) cell line TE-1. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4683-4690. [PMID: 38958106 DOI: 10.1039/d4ay00895b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Esophageal cancer is a common cancer with high morbidity and mortality that severely threatens the safety and quality of human life. The strong metastatic nature of esophageal cancer enables it to metastasize more quickly and covertly, making it difficult for current diagnostic and treatment methods to achieve efficient early screening, as well as timely and effective treatment. As a promising solution, nucleic acid aptamers, a kind of special single-stranded DNA or RNA oligonucleotide selected by the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology, can specifically bind with different molecular targets. In this paper, random DNA single-stranded oligonucleotides were used as the initial library. Using TE-1 cells and HEEC cells as targets, specific binding sequences were selected by 15 rounds of the cell-SELEX method, and the aptamer sequence that binds to TE-1 cells with the most specificity was obtained and named Te4. The Te4 aptamer was further validated for binding specificity, binding affinity, type of target, in vitro cytotoxicity when conjugated with DOX(Te4-DOX), and in vivo distribution. Results of in vitro validation showed that Te4 has outstanding binding specificity with a Kd value of 51.16 ± 5.52 nM, and the target type of Te4 was preliminarily identified as a membrane protein. Furthermore, the cytotoxicity experiment showed that Te4-DOX has specific cytotoxicity towards cultured TE-1 cells. Finally, the results of the in vivo distribution experiment showed that the Te4 aptamer is able to specifically target tumor regions in nude mice, showing great potential to be applied in future diagnosis and targeted therapy of esophageal cancer.
Collapse
Affiliation(s)
- Baijiang Jin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Gaojian Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhukang Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Zhu Chen
- School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Yuan Liu
- School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China
| | - Song Li
- School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China
| | - Hui Chen
- School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China
| | - Yile Fang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Yan Deng
- School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China.
| |
Collapse
|
15
|
Zheng L, Li J, Li Y, Sun W, Ma L, Qu F, Tan W. Empowering Exosomes with Aptamers for Precision Theranostics. SMALL METHODS 2024:e2400551. [PMID: 38967170 DOI: 10.1002/smtd.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Indexed: 07/06/2024]
Abstract
As information messengers for cell-to-cell communication, exosomes, typically small membrane vesicles (30-150 nm), play an imperative role in the physiological and pathological processes of living systems. Accumulating studies have demonstrated that exosomes are potential biological candidates for theranostics, including liquid biopsy-based diagnosis and drug delivery. However, their clinical applications are hindered by several issues, especially their unspecific detection and insufficient targeting ability. How to upgrade the accuracy of exosome-based theranostics is being widely explored. Aptamers, benefitting from their admirable characteristics, are used as excellent molecular recognition elements to empower exosomes for precision theranostics. With high affinity against targets and easy site-specific modification, aptamers can be incorporated with platforms for the specific detection of exosomes, thus providing opportunities for advancing disease diagnostics. Furthermore, aptamers can be tailored and functionalized on exosomes to enable targeted therapeutics. Herein, this review emphasizes the empowering of exosomes by aptamers for precision theranostics. A brief introduction of exosomes and aptamers is provided, followed by a discussion of recent progress in aptamer-based exosome detection for disease diagnosis, and the emerging applications of aptamer-functionalized exosomes for targeted therapeutics. Finally, current challenges and opportunities in this research field are presented.
Collapse
Affiliation(s)
- Liyan Zheng
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Jin Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - LeLe Ma
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fengli Qu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Weihong Tan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
16
|
Vinjamuri BP, Pan J, Peng P. A Review on Commercial Oligonucleotide Drug Products. J Pharm Sci 2024; 113:1749-1768. [PMID: 38679232 DOI: 10.1016/j.xphs.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Oligonucleotide drug products commercially approved in the US and the EU are reviewed. A total of 20 products that includes 1 aptamer, 12 antisense oligonucleotides (ASOs), 6 small interfering ribonucleic acids (siRNAs), and 1 mixture of single-stranded and double-stranded polydeoxyribonucleotides have been identified. A typical oligonucleotide formulation is composed of an oligonucleotide with buffering agent(s), pH adjusting agents, and a tonicity adjusting agent. All the products are presented as 2.1 - 200 mg/mL solutions at pH between 6 and 8.7. Majority of the products are approved for intravenous (IV) and subcutaneous (SC) routes, with two for intravitreal (IVT), two for intrathecal (IT), and one for intramuscular (IM) routes. The primary packaging includes vials and prefilled syringes (PFS). Products approved for IV and IT administration routes and requiring >1.5 mL dose volumes are supplied in vials, while those approved for SC, IM, and IVT and requiring ≤1.5 mL dose volume are supplied in PFS. Based on the compiled dataset, we propose a generalized starting point for an oligonucleotide formulation during early phase development for IV, SC, and IT administration routes. Overall, we believe this harmonized evaluation and understanding of various oligonucleotide drug product attributes will help derive platform generalizations and allows for accelerated early phase development for first-in-human studies.
Collapse
Affiliation(s)
- Bhavani Prasad Vinjamuri
- Pharmaceutical Operations & Technology, Biogen, 225 Binney Street, Cambridge, MA 02142, United States.
| | - Jiayi Pan
- Pharmaceutical Operations & Technology, Biogen, 225 Binney Street, Cambridge, MA 02142, United States
| | - Paul Peng
- Pharmaceutical Operations & Technology, Biogen, 225 Binney Street, Cambridge, MA 02142, United States.
| |
Collapse
|
17
|
Kumar S, Mohan A, Sharma NR, Kumar A, Girdhar M, Malik T, Verma AK. Computational Frontiers in Aptamer-Based Nanomedicine for Precision Therapeutics: A Comprehensive Review. ACS OMEGA 2024; 9:26838-26862. [PMID: 38947800 PMCID: PMC11209897 DOI: 10.1021/acsomega.4c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
In the rapidly evolving landscape of nanomedicine, aptamers have emerged as powerful molecular tools, demonstrating immense potential in targeted therapeutics, diagnostics, and drug delivery systems. This paper explores the computational features of aptamers in nanomedicine, highlighting their advantages over antibodies, including selectivity, low immunogenicity, and a simple production process. A comprehensive overview of the aptamer development process, specifically the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process, sheds light on the intricate methodologies behind aptamer selection. The historical evolution of aptamers and their diverse applications in nanomedicine are discussed, emphasizing their pivotal role in targeted drug delivery, precision medicine and therapeutics. Furthermore, we explore the integration of artificial intelligence (AI), machine learning (ML), Internet of Things (IoT), Internet of Medical Things (IoMT), and nanotechnology in aptameric development, illustrating how these cutting-edge technologies are revolutionizing the selection and optimization of aptamers for tailored biomedical applications. This paper also discusses challenges in computational methods for advancing aptamers, including reliable prediction models, extensive data analysis, and multiomics data incorporation. It also addresses ethical concerns and restrictions related to AI and IoT use in aptamer research. The paper examines progress in computer simulations for nanomedicine. By elucidating the importance of aptamers, understanding their superiority over antibodies, and exploring the historical context and challenges, this review serves as a valuable resource for researchers and practitioners aiming to harness the full potential of aptamers in the rapidly evolving field of nanomedicine.
Collapse
Affiliation(s)
- Shubham Kumar
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| | - Anand Mohan
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| | - Neeta Raj Sharma
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| | - Anil Kumar
- Gene
Regulation Laboratory, National Institute
of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Madhuri Girdhar
- Division
of Research and Development, Lovely Professional
University, Phagwara 144401, Punjab, India
| | - Tabarak Malik
- Department
of Biomedical Sciences, Institute of Health, Jimma University, MVJ4+R95 Jimma, Ethiopia
| | - Awadhesh Kumar Verma
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144001, India
| |
Collapse
|
18
|
Santarpia G, Carnes E. Therapeutic Applications of Aptamers. Int J Mol Sci 2024; 25:6742. [PMID: 38928448 PMCID: PMC11204156 DOI: 10.3390/ijms25126742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Affinity reagents, or target-binding molecules, are quite versatile and are major workhorses in molecular biology and medicine. Antibodies are the most famous and frequently used type and they have been used for a wide range of applications, including laboratory techniques, diagnostics, and therapeutics. However, antibodies are not the only available affinity reagents and they do have significant drawbacks, including laborious and costly production. Aptamers are one potential alternative that have a variety of unique advantages. They are single stranded DNA or RNA molecules that can be selected for binding to many targets including proteins, carbohydrates, and small molecules-for which antibodies typically have low affinity. There are also a variety of cost-effective methods for producing and modifying nucleic acids in vitro without cells, whereas antibodies typically require cells or even whole animals. While there are also significant drawbacks to using aptamers in therapeutic applications, including low in vivo stability, aptamers have had success in clinical trials for treating a variety of diseases and two aptamer-based drugs have gained FDA approval. Aptamer development is still ongoing, which could lead to additional applications of aptamer therapeutics, including antitoxins, and combinatorial approaches with nanoparticles and other nucleic acid therapeutics that could improve efficacy.
Collapse
Affiliation(s)
- George Santarpia
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eric Carnes
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
19
|
Kawamoto Y, Wu Y, Park S, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y. Multivalent dendritic DNA aptamer molecules for the enhancement of therapeutic effects. Chem Commun (Camb) 2024; 60:6256-6259. [PMID: 38768325 DOI: 10.1039/d4cc00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dendritic DNA molecules, referred to as DNA dendrons, consist of multiple covalently linked strands and are expected to improve the cellular uptake and potency of therapeutic oligonucleotides because of their multivalency. In this study, we developed an efficient synthetic method for producing DNA dendrons using strain-promoted azide-alkyne cycloaddition. Integration of the antitumor aptamer AS1411 into DNA dendrons enhanced cellular uptake and antiproliferative activity in cancer cells. These findings demonstrate that the incorporation of multivalent aptamers into DNA dendrons can effectively boost their therapeutic effects.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Soyoung Park
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
20
|
Mili M, Bachu V, Kuri PR, Singh NK, Goswami P. Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophys Chem 2024; 309:107218. [PMID: 38547671 DOI: 10.1016/j.bpc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.
Collapse
Affiliation(s)
- Malaya Mili
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Pooja Rani Kuri
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India.
| |
Collapse
|
21
|
Zhou H, Li Y, Wu W. Aptamers: Promising Reagents in Biomedicine Application. Adv Biol (Weinh) 2024; 8:e2300584. [PMID: 38488739 DOI: 10.1002/adbi.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/13/2024] [Indexed: 06/16/2024]
Abstract
Nucleic acid aptamers, often termed "chemical antibodies," are short, single-stranded DNA or RNA molecules, which are selected by SELEX. In addition to their high specificity and affinity comparable to traditional antibodies, aptamers have numerous unique advantages such as wider identification of targets, none or low batch-to-batch variations, versatile chemical modifications, rapid mass production, and lack of immunogenicity. These characteristics make aptamers a promising recognition probe for scientific research or even clinical application. Aptamer-functionalized nanomaterials are now emerged as a promising drug delivery system for various diseases with decreased side-effects and improved efficacy. In this review, the technological strategies for generating high-affinity and biostable aptamers are introduced. Moreover, the development of aptamers for their application in biomedicine including aptamer-based biosensors, aptamer-drug conjugates and aptamer functionalized nanomaterials is comprehensively summarized.
Collapse
Affiliation(s)
- Hongxin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
| | - Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
22
|
Liu CC, Hsiao YC, Lai WJ, Chiou CC, Chu LJ, Lin YT, Liu JC, Yu JS. Development and optimization of a DNA aptamer to delay β-bungarotoxin-induced lethality in a rodent model. Int J Biol Macromol 2024; 270:132240. [PMID: 38744360 DOI: 10.1016/j.ijbiomac.2024.132240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Current treatment of snakebite relies on immunoglobulin-rich antivenoms. However, production of these antivenoms is complicated and costly. Aptamers - single-stranded DNAs or RNAs with specific folding structures that bind to specific target molecules - represent excellent alternatives or complements to antibody-based therapeutics. However, no studies have systematically assessed the feasibility of using aptamers to mitigate venom-induced toxicity in vivo. β-bungarotoxin is the predominant protein responsible for the toxicity of the venom of Bungarus multicinctus, a prominent venomous snake inhabiting Taiwan. In this study, we reported the screening and optimization of a DNA aptamer against β-bungarotoxin and tested its utility in a mouse model. After 14 rounds of directed evolution of ligands by exponential enrichment, an aptamer, called BB3, displaying remarkable binding affinity and specificity for β-bungarotoxin was obtained. Following structural prediction and point-modification experiments, BB3 underwent truncation and was modified with 2'-O-methylation and a 3'-inverted dT. This optimized aptamer showed sustained, high-affinity binding for β-bungarotoxin and exhibited remarkable nuclease resistance in plasma. Importantly, administration of this optimized aptamer extended the survival time of mice treated with a lethal dose of β-bungarotoxin. Collectively, our data provide a compelling illustration of the potential of aptamers as promising candidates for development of recombinant antivenom therapies.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Wan-Jing Lai
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chiuan-Chian Chiou
- Master & PhD Program in Biotechnology Industry, Chang Gung University, Taoyuan 33302, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Yu-Tsun Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jo-Chuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan.
| |
Collapse
|
23
|
Santos LC, Oliveira VQ, Teixeira SC, Correia TML, Andrade LOSB, Polloni L, Marques LM, Clissa PB, Baldo C, Ferro EAV, Gusmão ACMDM, Silva MJB, Sanabani SS, Ávila VDMR, Lopes DS. PLA 2-MjTX-II from Bothrops moojeni snake venom exhibits antimetastatic and antiangiogenic effects on human lung cancer cells. Toxicon 2024; 243:107742. [PMID: 38705486 DOI: 10.1016/j.toxicon.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Phospholipases A2 (PLA2s) from snake venom possess antitumor and antiangiogenic properties. In this study, we evaluated the antimetastatic and antiangiogenic effects of MjTX-II, a Lys49 PLA2 isolated from Bothrops moojeni venom, on lung cancer and endothelial cells. Using in vitro and ex vivo approaches, we demonstrated that MjTX-II reduced cell proliferation and inhibited fundamental processes for lung cancer cells (A549) growth and metastasis, such as adhesion, migration, invasion, and actin cytoskeleton decrease, without significantly interfering with non-tumorigenic lung cells (BEAS-2B). Furthermore, MjTX-II caused cell cycle alterations, increased reactive oxygen species production, modulated the expression of pro- and antiangiogenic genes, and decreased vascular endothelial growth factor (VEGF) expression in HUVECs. Finally, MjTX-II inhibited ex vivo angiogenesis processes in an aortic ring model. Therefore, we conclude that MjTX-II exhibits antimetastatic and antiangiogenic effects in vitro and ex vivo and represents a molecule that hold promise as a pharmacological model for antitumor therapy.
Collapse
Affiliation(s)
- Luísa Carregosa Santos
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Vinícius Queiroz Oliveira
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | | | - Lorena Polloni
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, (UFU), Uberlândia, MG, Brazil
| | - Lucas Miranda Marques
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | | | - Cristiani Baldo
- Department of Biochemistry and Biotechnology, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation in Dermatology and Immunodeficiency, São Paulo Institute of Tropical Medicine, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, (UFU), Uberlândia, MG, Brazil.
| | - Daiana Silva Lopes
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil.
| |
Collapse
|
24
|
Saw PE, Song E. Advancements in clinical RNA therapeutics: Present developments and prospective outlooks. Cell Rep Med 2024; 5:101555. [PMID: 38744276 PMCID: PMC11148805 DOI: 10.1016/j.xcrm.2024.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
RNA molecules have emerged as promising clinical therapeutics due to their ability to target "undruggable" proteins or molecules with high precision and minimal side effects. Nevertheless, the primary challenge in RNA therapeutics lies in rapid degradation and clearance from systemic circulation, the inability to traverse cell membranes, and the efficient intracellular delivery of bioactive RNA molecules. In this review, we explore the implications of RNAs in diseases and provide a chronological overview of the development of RNA therapeutics. Additionally, we summarize the technological advances in RNA-screening design, encompassing various RNA databases and design platforms. The paper then presents an update on FDA-approved RNA therapeutics and those currently undergoing clinical trials for various diseases, with a specific emphasis on RNA medicine and RNA vaccines.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan 528200, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
25
|
Oliveira R, Pinho E, Barros MM, Azevedo NF, Almeida C. In vitro selection of DNA aptamers against staphylococcal enterotoxin A. Sci Rep 2024; 14:11345. [PMID: 38762575 PMCID: PMC11102521 DOI: 10.1038/s41598-024-61094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/30/2024] [Indexed: 05/20/2024] Open
Abstract
Staphylococcal enterotoxin A (SEA) is the most frequently reported in staphylococcal food poisoning (SFP) outbreaks. Aptamers are single-stranded nucleic acids that are seen as promising alternatives to antibodies in several areas, including diagnostics. In this work, systematic evolution of ligands by exponential enrichment (SELEX) was used to select DNA aptamers against SEA. The SELEX protocol employed magnetic beads as an immobilization matrix for the target molecule and real-time quantitative PCR (qPCR) for monitoring and optimizing sequence enrichment. After 10 selection cycles, the ssDNA pool with the highest affinity was sequenced by next generation sequencing (NGS). Approximately 3 million aptamer candidates were identified, and the most representative cluster sequences were selected for further characterization. The aptamer with the highest affinity showed an experimental dissociation constant (KD) of 13.36 ± 18.62 nM. Increased temperature negatively affected the affinity of the aptamer for the target. Application of the selected aptamers in a lateral flow assay demonstrated their functionality in detecting samples containing 100 ng SEA, the minimum amount capable of causing food poisoning. Overall, the applicability of DNA aptamers in SEA recognition was demonstrated and characterized under different conditions, paving the way for the development of diagnostic tools.
Collapse
Affiliation(s)
- Ricardo Oliveira
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Vairão, 4485-655, Vila do Conde, Portugal.
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
- AliCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Eva Pinho
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Vairão, 4485-655, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- AliCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria Margarida Barros
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Vairão, 4485-655, Vila do Conde, Portugal
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- AliCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Carina Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Vairão, 4485-655, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- AliCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
26
|
Li Y, Zhang C, Fu T, Wang XQ, Tan W. Polyfluoroalkyl Tag Decoration Enables Significantly Enhanced Tumor Penetration Ability of a PTK7 Targeting Aptamer. Bioconjug Chem 2024; 35:674-681. [PMID: 38695582 DOI: 10.1021/acs.bioconjchem.4c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Aptamers are widely used molecular recognition tools in targeted therapy, but their ability to effectively penetrate deep into solid tumors remains a significant challenge, leading to suboptimal treatment efficacy. Here, we developed a polyfluoroalkyl (PFA) decoration strategy to enhance aptamer recognition, cell internalization, and solid tumor penetration. Our results indicate that PFA with around 11 fluorine atoms significantly improves aptamer internalization both in vitro and in vivo settings. However, we also observed that the use of PFA tags containing 19 and 23 fluorine atoms on aptamers resulted in nonspecific cell anchoring in control cell lines, affecting the specificity of aptamers. Overall, we found that using a chemical modification strategy could enhance the deep tumor penetration ability of aptamers and validate their effectiveness in vivo. This approach has significant practical applications in targeted drug delivery for cancer treatment.
Collapse
Affiliation(s)
- Yingying Li
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chi Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xue-Qiang Wang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
27
|
Xu C, Tan Y, Zhang LY, Luo XJ, Wu JF, Ma L, Deng F. The Application of Aptamer and Research Progress in Liver Disease. Mol Biotechnol 2024; 66:1000-1018. [PMID: 38305844 PMCID: PMC11087326 DOI: 10.1007/s12033-023-01030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
Aptamers, as a kind of small-molecule nucleic acid, have attracted much attention since their discovery. Compared with biological reagents such as antibodies, aptamers have the advantages of small molecular weight, low immunogenicity, low cost, and easy modification. At present, aptamers are mainly used in disease biomarker discovery, disease diagnosis, treatment, and targeted drug delivery vectors. In the process of screening and optimizing aptamers, it is found that there are still many problems need to be solved such as the design of the library, optimization of screening conditions, the truncation of screened aptamer, and the stability and toxicity of the aptamer. In recent years, the incidence of liver-related diseases is increasing year by year and the treatment measures are relatively lacking, which has attracted the people's attention in the application of aptamers in liver diseases. This article mainly summarizes the research status of aptamers in disease diagnosis and treatment, especially focusing on the application of aptamers in liver diseases, showing the crucial significance of aptamers in the diagnosis and treatment of liver diseases, and the use of Discovery Studio software to find the binding target and sequence of aptamers, and explore their possible interaction sites.
Collapse
Affiliation(s)
- Cheng Xu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li-Ye Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Lan Ma
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.
| | - Fei Deng
- Department of Oncology, The Second People's Hospital of China Three Gorges University, Yichang, 443000, China.
| |
Collapse
|
28
|
Croft LV, Fisher M, Barbhuiya TK, El-Kamand S, Beard S, Rajapakse A, Gamsjaeger R, Cubeddu L, Bolderson E, O'Byrne K, Richard D, Gandhi NS. Sequence- and Structure-Dependent Cytotoxicity of Phosphorothioate and 2'- O-Methyl Modified Single-Stranded Oligonucleotides. Nucleic Acid Ther 2024; 34:143-155. [PMID: 38648015 DOI: 10.1089/nat.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Single-stranded oligonucleotides (SSOs) are a rapidly expanding class of therapeutics that comprises antisense oligonucleotides, microRNAs, and aptamers, with ten clinically approved molecules. Chemical modifications such as the phosphorothioate backbone and the 2'-O-methyl ribose can improve the stability and pharmacokinetic properties of therapeutic SSOs, but they can also lead to toxicity in vitro and in vivo through nonspecific interactions with cellular proteins, gene expression changes, disturbed RNA processing, and changes in nuclear structures and protein distribution. In this study, we screened a mini library of 277 phosphorothioate and 2'-O-methyl-modified SSOs, with or without mRNA complementarity, for cytotoxic properties in two cancer cell lines. Using circular dichroism, nucleic magnetic resonance, and molecular dynamics simulations, we show that phosphorothioate- and 2'-O-methyl-modified SSOs that form stable hairpin structures through Watson-Crick base pairing are more likely to be cytotoxic than those that exist in an extended conformation. In addition, moderate and highly cytotoxic SSOs in our dataset have a higher mean purine composition than pyrimidine. Overall, our study demonstrates a structure-cytotoxicity relationship and indicates that the formation of stable hairpins should be a consideration when designing SSOs toward optimal therapeutic profiles.
Collapse
Affiliation(s)
- Laura V Croft
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Mark Fisher
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Tabassum Khair Barbhuiya
- School of Chemistry and Physics, Centre for Genomics and Personalised Health, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Serene El-Kamand
- School of Science, Western Sydney University, Penrith, Australia
| | - Samuel Beard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Aleksandra Rajapakse
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | | | - Liza Cubeddu
- School of Science, Western Sydney University, Penrith, Australia
| | - Emma Bolderson
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Ken O'Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Princess Alexandra Hospital, Woolloongabba, Australia
| | - Derek Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Neha S Gandhi
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- School of Chemistry and Physics, Centre for Genomics and Personalised Health, Faculty of Science, Queensland University of Technology, Brisbane, Australia
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, India
| |
Collapse
|
29
|
Assefa M, Gepfert A, Zaheer M, Hum JM, Skinner BW. Casimersen (AMONDYS 45™): An Antisense Oligonucleotide for Duchenne Muscular Dystrophy. Biomedicines 2024; 12:912. [PMID: 38672266 PMCID: PMC11048227 DOI: 10.3390/biomedicines12040912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Casimersen (AMONDYS 45TM) is an antisense oligonucleotide of the phosphorodiamidate morpholino oligomer subclass developed by Sarepta therapeutics. It was approved by the Food and Drug Administration (FDA) in February 2021 to treat Duchenne muscular dystrophy (DMD) in patients whose DMD gene mutation is amenable to exon 45 skipping. Administered intravenously, casimersen binds to the pre-mRNA of the DMD gene to skip a mutated region of an exon, thereby producing an internally truncated yet functional dystrophin protein in DMD patients. This is essential in maintaining the structure of a myocyte membrane. While casimersen is currently continuing in phase III of clinical trials in various countries, it was granted approval by the FDA under the accelerated approval program due to its observed increase in dystrophin production. This article discusses the pathophysiology of DMD, summarizes available treatments thus far, and provides a full drug review of casimersen (AMONDYS 45TM).
Collapse
Affiliation(s)
- Milyard Assefa
- School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Addison Gepfert
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA; (A.G.); (M.Z.)
| | - Meesam Zaheer
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA; (A.G.); (M.Z.)
| | - Julia M. Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
| | - Brian W. Skinner
- Division of Clinical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA;
| |
Collapse
|
30
|
Isaac AH, Recalde Phillips SY, Ruben E, Estes M, Rajavel V, Baig T, Paleti C, Landsgaard K, Lee RH, Guda T, Criscitiello MF, Gregory C, Alge DL. Impact of PEG sensitization on the efficacy of PEG hydrogel-mediated tissue engineering. Nat Commun 2024; 15:3283. [PMID: 38637507 PMCID: PMC11026400 DOI: 10.1038/s41467-024-46327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/22/2024] [Indexed: 04/20/2024] Open
Abstract
While poly(ethylene glycol) (PEG) hydrogels are generally regarded as biologically inert blank slates, concerns over PEG immunogenicity are growing, and the implications for tissue engineering are unknown. Here, we investigate these implications by immunizing mice against PEG to stimulate anti-PEG antibody production and evaluating bone defect regeneration after treatment with bone morphogenetic protein-2-loaded PEG hydrogels. Quantitative analysis reveals that PEG sensitization increases bone formation compared to naive controls, whereas histological analysis shows that PEG sensitization induces an abnormally porous bone morphology at the defect site, particularly in males. Furthermore, immune cell recruitment is higher in PEG-sensitized mice administered the PEG-based treatment than their naive counterparts. Interestingly, naive controls that were administered a PEG-based treatment also develop anti-PEG antibodies. Sex differences in bone formation and immune cell recruitment are also apparent. Overall, these findings indicate that anti-PEG immune responses can impact tissue engineering efficacy and highlight the need for further investigation.
Collapse
Affiliation(s)
- Alisa H Isaac
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Elizabeth Ruben
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Matthew Estes
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Varsha Rajavel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Talia Baig
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Carol Paleti
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, USA
| | - Kirsten Landsgaard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ryang Hwa Lee
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Carl Gregory
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, USA
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
31
|
Brown A, Brill J, Amini R, Nurmi C, Li Y. Development of Better Aptamers: Structured Library Approaches, Selection Methods, and Chemical Modifications. Angew Chem Int Ed Engl 2024; 63:e202318665. [PMID: 38253971 DOI: 10.1002/anie.202318665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) has been used to discover thousands of aptamers since its development in 1990. Aptamers are short single-stranded oligonucleotides capable of binding to targets with high specificity and selectivity through structural recognition. While aptamers offer advantages over other molecular recognition elements such as their ease of production, smaller size, extended shelf-life, and lower immunogenicity, they have yet to show significant success in real-world applications. By analyzing the importance of structured library designs, reviewing different SELEX methodologies, and the effects of chemical modifications, we provide a comprehensive overview on the production of aptamers for applications in drug delivery systems, therapeutics, diagnostics, and molecular imaging.
Collapse
Affiliation(s)
- Alex Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Jake Brill
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Connor Nurmi
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| |
Collapse
|
32
|
Wen X, Huang Z, Yang X, He X, Li L, Chen H, Wang K, Guo Q, Liu J. Development of an aptamer capable of multidrug resistance reversal for tumor combination chemotherapy. Proc Natl Acad Sci U S A 2024; 121:e2321116121. [PMID: 38557176 PMCID: PMC11009676 DOI: 10.1073/pnas.2321116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Multidrug resistance (MDR) is a major factor in the failure of many forms of tumor chemotherapy. Development of a specific ligand for MDR-reversal would enhance the intracellular accumulation of therapeutic agents and effectively improve the tumor treatments. Here, an aptamer was screened against a doxorubicin (DOX)-resistant human hepatocellular carcinoma cell line (HepG2/DOX) via cell-based systematic evolution of ligands by exponential enrichment. A 50 nt truncated sequence termed d3 was obtained with high affinity and specificity for HepG2/DOX cells. Multidrug resistance protein 1 (MDR1) is determined to be a possible recognition target of the selected aptamer. Aptamer d3 binding was revealed to block the MDR of the tumor cells and increase the accumulation of intracellular anticancer drugs, including DOX, vincristine, and paclitaxel, which led to a boost to the cell killing of the anticancer drugs and lowering their survival of the tumor cells. The aptamer d3-mediated MDR-reversal for effective chemotherapy was further verified in an in vivo animal model, and combination of aptamer d3 with DOX significantly improved the suppression of tumor growth by treating a xenograft HepG2/DOX tumor in vivo. This work demonstrates the feasibility of a therapeutic DNA aptamer as a tumor MDR-reversal agent, and combination of the selected aptamer with chemotherapeutic drugs shows great potential for liver cancer treatments.
Collapse
Affiliation(s)
- Xiaohong Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
| | - Zhixiang Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
- College of Biology, Hunan University, Changsha410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
- College of Biology, Hunan University, Changsha410082, China
| | - Lie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
- College of Biology, Hunan University, Changsha410082, China
| | - Haiyan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
- College of Biology, Hunan University, Changsha410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
- College of Biology, Hunan University, Changsha410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha410082, China
| |
Collapse
|
33
|
Teng M, Xia ZJ, Lo N, Daud K, He HH. Assembling the RNA therapeutics toolbox. MEDICAL REVIEW (2021) 2024; 4:110-128. [PMID: 38680684 PMCID: PMC11046573 DOI: 10.1515/mr-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
From the approval of COVID-19 mRNA vaccines to the 2023 Nobel Prize awarded for nucleoside base modifications, RNA therapeutics have entered the spotlight and are transforming drug development. While the term "RNA therapeutics" has been used in various contexts, this review focuses on treatments that utilize RNA as a component or target RNA for therapeutic effects. We summarize the latest advances in RNA-targeting tools and RNA-based technologies, including but not limited to mRNA, antisense oligos, siRNAs, small molecules and RNA editors. We focus on the mechanisms of current FDA-approved therapeutics but also provide a discussion on the upcoming workforces. The clinical utility of RNA-based therapeutics is enabled not only by the advances in RNA technologies but in conjunction with the significant improvements in chemical modifications and delivery platforms, which are also briefly discussed in the review. We summarize the latest RNA therapeutics based on their mechanisms and therapeutic effects, which include expressing proteins for vaccination and protein replacement therapies, degrading deleterious RNA, modulating transcription and translation efficiency, targeting noncoding RNAs, binding and modulating protein activity and editing RNA sequences and modifications. This review emphasizes the concept of an RNA therapeutic toolbox, pinpointing the readers to all the tools available for their desired research and clinical goals. As the field advances, the catalog of RNA therapeutic tools continues to grow, further allowing researchers to combine appropriate RNA technologies with suitable chemical modifications and delivery platforms to develop therapeutics tailored to their specific clinical challenges.
Collapse
Affiliation(s)
- Mona Teng
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ziting Judy Xia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nicholas Lo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kashif Daud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
34
|
Mahmoudian F, Ahmari A, Shabani S, Sadeghi B, Fahimirad S, Fattahi F. Aptamers as an approach to targeted cancer therapy. Cancer Cell Int 2024; 24:108. [PMID: 38493153 PMCID: PMC10943855 DOI: 10.1186/s12935-024-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Conventional cancer treatments can cause serious side effects because they are not specific to cancer cells and can damage healthy cells. Aptamers often are single-stranded oligonucleotides arranged in a unique architecture, allowing them to bind specifically to target sites. This feature makes them an ideal choice for targeted therapeutics. They are typically produced through the systematic evolution of ligands by exponential enrichment (SELEX) and undergo extensive pharmacological revision to modify their affinity, specificity, and therapeutic half-life. Aptamers can act as drugs themselves, directly inhibiting tumor cells. Alternatively, they can be used in targeted drug delivery systems to transport drugs directly to tumor cells, minimizing toxicity to healthy cells. In this review, we will discuss the latest and most advanced approaches to using aptamers for cancer treatment, particularly targeted therapy overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azin Ahmari
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Radiation Oncology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shiva Shabani
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Infectious Diseases, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Bahman Sadeghi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Fahimeh Fattahi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Li Y, Jia B, Song P, Long N, Shi L, Li P, Wang J, Zhou L, Kong W. Precision-SELEX aptamer screening for the colorimetric and fluorescent dual-readout aptasensing of AFB 1 in food. Food Chem 2024; 436:137661. [PMID: 37826895 DOI: 10.1016/j.foodchem.2023.137661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
As nucleic acid-based affinity elements, aptamers have attracted significant attention for a wide range of analytical applications. Although several aflatoxin B1 (AFB1) aptamers have been identified, they are unsuitable for overcoming the unavoidable cross-reactions from interferents in complex food matrices due to their poor binding affinities and specificities. Herein, a novel precision-systematic evolution of ligands by exponential enrichment (P-SELEX) strategy through introducing the counter (matrix without target AFB1) and positive (with AFB1) screening steps was implemented to accurately identify AFB1 aptamers. A DNA aptamer A-42-2 at a 24-nt length was selected finally, which possessed nanomolar-level affinity of 5.55 nM, high specificity to other interferents, and strong anti-cross-reactivity ability for matrix components. Then, an A-42-2 aptamer-based ultra-sensitive colorimetric and fluorescent dual-readout aptasensor was fabricated for AFB1 detection in three kinds of complex food samples rich in starch without cross-reactions. The aptasensor displayed outstanding detection capacity with a wide liner range of 0.25-30 nM (1.95-234.4 μg/kg), while the detection limit for colorimetric measurement as low as 0.22 nM (1.72 μg/kg) and 0.048 nM (0.20 μg/kg) for fluorescent determination. P-SELEX is ideal for screening and applying aptamers in complex food matrices, creating more opportunities for the efficient and cost-effective development of high-quality aptamers and aptasensors for other targets.
Collapse
Affiliation(s)
- Ying Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Pengyue Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Nan Long
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
36
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
- Ki Sung Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Tae-In Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Jae Eon Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Seo-Yeong Hwang
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Anna Choi
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
37
|
Li C, Li T, Tian X, An W, Wang Z, Han B, Tao H, Wang J, Wang X. Research progress on the PEGylation of therapeutic proteins and peptides (TPPs). Front Pharmacol 2024; 15:1353626. [PMID: 38523641 PMCID: PMC10960368 DOI: 10.3389/fphar.2024.1353626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
With the rapid advancement of genetic and protein engineering, proteins and peptides have emerged as promising drug molecules for therapeutic applications. Consequently, there has been a growing interest in the field of chemical modification technology to address challenges associated with their clinical use, including rapid clearance from circulation, immunogenicity, physical and chemical instabilities (such as aggregation, adsorption, deamination, clipping, oxidation, etc.), and enzymatic degradation. Polyethylene glycol (PEG) modification offers an effective solution to these issues due to its favorable properties. This review presents recent progress in the development and application of PEGylated therapeutic proteins and peptides (TPPs). For this purpose, firstly, the physical and chemical properties as well as classification of PEG and its derivatives are described. Subsequently, a detailed summary is provided on the main sites of PEGylated TPPs and the factors that influence their PEGylation. Furthermore, notable instances of PEG-modified TPPs (including antimicrobial peptides (AMPs), interferon, asparaginase and antibodies) are highlighted. Finally, we propose the chemical modification of TPPs with PEG, followed by an analysis of the current development status and future prospects of PEGylated TPPs. This work provides a comprehensive literature review in this promising field while facilitating researchers in utilizing PEG polymers to modify TPPs for disease treatment.
Collapse
Affiliation(s)
- Chunxiao Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xinya Tian
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wei An
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
38
|
Chia SPS, Pang JKS, Soh BS. Current RNA strategies in treating cardiovascular diseases. Mol Ther 2024; 32:580-608. [PMID: 38291757 PMCID: PMC10928165 DOI: 10.1016/j.ymthe.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Cardiovascular disease (CVD) continues to impose a significant global health burden, necessitating the exploration of innovative treatment strategies. Ribonucleic acid (RNA)-based therapeutics have emerged as a promising avenue to address the complex molecular mechanisms underlying CVD pathogenesis. We present a comprehensive review of the current state of RNA therapeutics in the context of CVD, focusing on the diverse modalities that bring about transient or permanent modifications by targeting the different stages of the molecular biology central dogma. Considering the immense potential of RNA therapeutics, we have identified common gene targets that could serve as potential interventions for prevalent Mendelian CVD caused by single gene mutations, as well as acquired CVDs developed over time due to various factors. These gene targets offer opportunities to develop RNA-based treatments tailored to specific genetic and molecular pathways, presenting a novel and precise approach to address the complex pathogenesis of both types of cardiovascular conditions. Additionally, we discuss the challenges and opportunities associated with delivery strategies to achieve targeted delivery of RNA therapeutics to the cardiovascular system. This review highlights the immense potential of RNA-based interventions as a novel and precise approach to combat CVD, paving the way for future advancements in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Shirley Pei Shan Chia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| |
Collapse
|
39
|
Wang B, Kobeissy F, Golpich M, Cai G, Li X, Abedi R, Haskins W, Tan W, Benner SA, Wang KKW. Aptamer Technologies in Neuroscience, Neuro-Diagnostics and Neuro-Medicine Development. Molecules 2024; 29:1124. [PMID: 38474636 DOI: 10.3390/molecules29051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aptamers developed using in vitro Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology are single-stranded nucleic acids 10-100 nucleotides in length. Their targets, often with specificity and high affinity, range from ions and small molecules to proteins and other biological molecules as well as larger systems, including cells, tissues, and animals. Aptamers often rival conventional antibodies with improved performance, due to aptamers' unique biophysical and biochemical properties, including small size, synthetic accessibility, facile modification, low production cost, and low immunogenicity. Therefore, there is sustained interest in engineering and adapting aptamers for many applications, including diagnostics and therapeutics. Recently, aptamers have shown promise as early diagnostic biomarkers and in precision medicine for neurodegenerative and neurological diseases. Here, we critically review neuro-targeting aptamers and their potential applications in neuroscience research, neuro-diagnostics, and neuro-medicine. We also discuss challenges that must be overcome, including delivery across the blood-brain barrier, increased affinity, and improved in vivo stability and in vivo pharmacokinetic properties.
Collapse
Affiliation(s)
- Bang Wang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- The Foundation for Applied Molecular Evolution, 1501 NW 68th Terrace, Gainesville, FL 32605, USA
| | - Firas Kobeissy
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
- Center for Visual and Neurocognitive Rehabilitation (CVNR), Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Mojtaba Golpich
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Guangzheng Cai
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiaowei Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Reem Abedi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - William Haskins
- Gryphon Bio, Inc., 611 Gateway Blvd. Suite 120 #253, South San Francisco, CA 94080, USA
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou 310022, China
| | - Steven A Benner
- The Foundation for Applied Molecular Evolution, 1501 NW 68th Terrace, Gainesville, FL 32605, USA
| | - Kevin K W Wang
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
- Center for Visual and Neurocognitive Rehabilitation (CVNR), Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA 30033, USA
| |
Collapse
|
40
|
Song J, Luo N, Dong L, Peng J, Yi C. RNA base editors: The emerging approach of RNA therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1844. [PMID: 38576085 DOI: 10.1002/wrna.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
RNA-based therapeutics offer a flexible and reversible approach for treating genetic disorders, such as antisense oligonucleotides, RNA interference, aptamers, mRNA vaccines, and RNA editing. In recent years, significant advancements have been made in RNA base editing to correct disease-relevant point mutations. These achievements have significantly influenced the fields of biotechnology, biomedical research and therapeutics development. In this article, we provide a comprehensive overview of the design and performance of contemporary RNA base editors, including A-to-I, C-to-U, A-to-m6A, and U-to-Ψ. We compare recent innovative developments and highlight their applications in disease-relevant contexts. Lastly, we discuss the limitations and future prospects of utilizing RNA base editing for therapeutic purposes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Nan Luo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Liting Dong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| |
Collapse
|
41
|
Hristodorov D, Lohoff T, Luneborg N, Mulder GJ, Clark SJ. Investing in vision: Innovation in retinal therapeutics and the influence on venture capital investment. Prog Retin Eye Res 2024; 99:101243. [PMID: 38218527 DOI: 10.1016/j.preteyeres.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Since the groundbreaking approval of the first anti-VEGF therapy in 2004, the retinal therapeutics field has undergone a remarkable transformation, witnessing a surge in novel, disease-modifying therapeutics for a broad spectrum of retinal diseases, extending beyond exudative VEGF-driven conditions. The surge in scientific advancement and the pressing, unmet, medical need have captured the attention of venture capital investors, who have collectively invested close to $10 billion in research and development of new retinal therapeutics between 2004 and 2023. Notably, the field of exudative diseases has gradually shifted away from trying to outcompete anti-VEGF therapeutics towards lowering the overall treatment burden by reducing injection frequency. Simultaneously, a new era has emerged in the non-exudative field, targeting prevalent conditions like dry AMD and rare indications such as Retinitis pigmentosa. This has led to promising drug candidates in development, culminating in the landmark approval of Luxturna for a rare form of Retinitis pigmentosa. The validation of new mechanisms, such as the complement pathway in dry AMD has paved the way for the approvals of Syvovre (Apellis) and Izervay (Iveric/Astellas), marking the first two therapies for this condition. In this comprehensive review, we share our view on the cumulative lessons from the past two decades in developing retinal therapeutics, covering both positive achievements and challenges. We also contextualize the investments, strategic partnering deals, and acquisitions of biotech companies, pharmaceutical companies venture capital investors in retinal therapeutics, respectively. Finally, we provide an outlook and potentially a forward-looking roadmap on novel retinal therapeutics, highlighting the emergence of potential new intervention strategies, such as cell-based therapies, gene editing, and combination therapies. We conclude that upcoming developments have the potential to further stimulate venture capital investments, which ultimately could facilitate the development and delivery of new therapies to patients in need.
Collapse
Affiliation(s)
| | | | | | | | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany; University Eye Clinic, University Hospital Tübingen, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| |
Collapse
|
42
|
Huang C, Wang Y, Huang J, Liu H, Chen Z, Jiang Y, Chen Y, Qian F. A bioengineered anti-VEGF protein with high affinity and high concentration for intravitreal treatment of wet age-related macular degeneration. Bioeng Transl Med 2024; 9:e10632. [PMID: 38435828 PMCID: PMC10905556 DOI: 10.1002/btm2.10632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 03/05/2024] Open
Abstract
Intravitreal (IVT) injection of anti-vascular endothelial growth factor (anti-VEGF) has greatly improved the treatment of many retinal disorders, including wet age-related macular degeneration (wAMD), which is the third leading cause of blindness. However, frequent injections can be difficult for patients and may lead to various risks such as elevated intraocular pressure, infection, and retinal detachment. To address this issue, researchers have found that IVT injection of anti-VEGF proteins at their maximally viable concentration and dose can be an effective strategy. However, the intrinsic protein structure can limit the maximum concentration due to stability and solution viscosity. To overcome this challenge, we developed a novel anti-VEGF protein called nanoFc by fusing anti-VEGF nanobodies with a crystallizable fragment (Fc). NanoFc has demonstrated high binding affinity to VEGF165 through multivalency and potent bioactivity in various bioassays. Furthermore, nanoFc maintains satisfactory chemical and physical stability at 4°C over 1 month and is easily injectable at concentrations up to 200 mg/mL due to its unique architecture that yields a smaller shape factor. The design of nanoFc offers a bioengineering strategy to ensure both strong anti-VEGF binding affinity and high protein concentration, with the goal of reducing the frequency of IV injections.
Collapse
Affiliation(s)
- Chengnan Huang
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingPeople's Republic of China
- Present address:
Department of AnesthesiaUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Yuelin Wang
- Department of OphthalmologyPeking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jinliang Huang
- Quaerite Biopharm ResearchBeijingPeople's Republic of China
| | - Huiqin Liu
- Quaerite Biopharm ResearchBeijingPeople's Republic of China
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingPeople's Republic of China
| | - Yang Jiang
- Department of OphthalmologyPeking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Youxin Chen
- Department of OphthalmologyPeking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingPeople's Republic of China
| |
Collapse
|
43
|
Wang Y, Lindstam M, Hwang D, Jedlina L, Liu M. Therapeutic Effects of a Novel Aptamer on Coronaviral Infection-Induced Lung Injury and Systemic Inflammatory Responses. Cells 2024; 13:422. [PMID: 38474386 DOI: 10.3390/cells13050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Coronaviral infection-induced acute lung injury has become a major threat to public health, especially through the ongoing pandemic of COVID-19. Apta-1 is a newly discovered Aptamer that has anti-inflammatory effects on systemic septic responses. The therapeutic effects of Apta-1 on coronaviral infection-induced acute lung injury and systemic responses were evaluated in the present study. METHODS Female A/J mice (at 12-14 weeks of age) were challenged with murine hepatitis virus 1 (MHV-1), a coronavirus, at 5000 PFU intranasally, followed by Apta-1 intravenously administered (100 mg/kg, twice) 1.5 h or 2 days after viral delivery. Animals were sacrificed at Day 2 or Day 4. Lung tissues were examined with H&E, immunohistochemistry staining, and western blotting. RT-qPCR was used for cytokine gene expression. Serum and plasma were collected for laboratory assessments. RESULTS Apta-1 treatment reduced viral titers, prevented MHV-1-induced reduction of circulating blood volume and hemolysis, reduced alveolar space hemorrhage, and protease-activated receptor 1 (PAR-1) cleavage. Apta-1 treatment also significantly reduced chemokine (MKC, MCP-1, and RANTES) levels, as well as AST, ALT, total bilirubin, and reduced unconjugated bilirubin levels in the serum. CONCLUSION Apta-1 showed therapeutic benefits in coronaviral infection-induced hemorrhage and PAR-1 cleavage in the lung. It also has anti-inflammatory effects systemically.
Collapse
Affiliation(s)
- Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - David Hwang
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Departments of Surgery, Medicine, and Physiology, Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
44
|
Dzau VJ, Hodgkinson CP. RNA Therapeutics for the Cardiovascular System. Circulation 2024; 149:707-716. [PMID: 38408142 DOI: 10.1161/circulationaha.123.067373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
RNA therapeutics hold significant promise in the treatment of cardiovascular diseases. RNAs are biologically diverse and functionally specific and can be used for gain- or loss-of-function purposes. The effectiveness of mRNA-based vaccines in the recent COVID-19 pandemic has undoubtedly proven the benefits of an RNA-based approach. RNA-based therapies are becoming more common as a treatment modality for cardiovascular disease. This is most evident in hypertension where several small interfering RNA-based drugs have proven to be effective in managing high blood pressure in several clinical trials. As befits a rapidly burgeoning field, there is significant interest in other classes of RNA. Revascularization of the infarcted heart through an mRNA drug is under clinical investigation. mRNA technology may provide the platform for the expression of paracrine factors for myocardial protection and regeneration. Emergent technologies on the basis of microRNAs and gene editing are tackling complex diseases in a novel fashion. RNA-based gene editing offers hope of permanent cures for monogenic cardiovascular diseases, and long-term control of complex diseases such as essential hypertension, as well. Likewise, microRNAs are proving effective in regenerating cardiac muscle. The aim of this review is to provide an overview of the current landscape of RNA-based therapies for the treatment of cardiovascular disease. The review describes the large number of RNA molecules that exist with a discussion of the clinical development of each RNA type. In addition, the review also presents a number of avenues for future development.
Collapse
Affiliation(s)
- Victor J Dzau
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC (V.J.D., C.P.H.)
- National Academy of Medicine, Washington, DC (V.J.D.)
| | - Conrad P Hodgkinson
- Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC (V.J.D., C.P.H.)
| |
Collapse
|
45
|
Yang M, Li C, Ye G, Shen C, Shi H, Zhong L, Tian Y, Zhao M, Wu P, Hussain A, Zhang T, Yang H, Yang J, Weng Y, Liu X, Wang Z, Gan L, Zhang Q, Liu Y, Yang G, Huang Y, Zhao Y. Aptamers targeting SARS-CoV-2 nucleocapsid protein exhibit potential anti pan-coronavirus activity. Signal Transduct Target Ther 2024; 9:40. [PMID: 38355661 PMCID: PMC10866937 DOI: 10.1038/s41392-024-01748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Emerging and recurrent infectious diseases caused by human coronaviruses (HCoVs) continue to pose a significant threat to global public health security. In light of this ongoing threat, the development of a broad-spectrum drug to combat HCoVs is an urgently priority. Herein, we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). These aptamers have nanomolar affinity with the nucleocapsid protein (NP) of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and also show excellent binding efficiency to the N proteins of both SARS, MERS, HCoV-OC43 and -NL63 with affinity KD values of 1.31 to 135.36 nM. Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant (BA.5) with EC50 values at 2.00 nM and 41.08 nM, respectively. The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs (-229E and -HKU1). In conclusion, we have identified six aptamers with a high pan-coronavirus antiviral activity, which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat.
Collapse
Affiliation(s)
- Minghui Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Guoguo Ye
- National Clinical Research Center for infectious disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Chenguang Shen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huiping Shi
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Yuxin Tian
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyuan Zhao
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Pengfei Wu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Tian Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Xinyue Liu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhimin Wang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Qianyu Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Yingxia Liu
- National Clinical Research Center for infectious disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
46
|
Shi Y, Zhen X, Zhang Y, Li Y, Koo S, Saiding Q, Kong N, Liu G, Chen W, Tao W. Chemically Modified Platforms for Better RNA Therapeutics. Chem Rev 2024; 124:929-1033. [PMID: 38284616 DOI: 10.1021/acs.chemrev.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.
Collapse
Affiliation(s)
- Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueyan Zhen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yiming Zhang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
47
|
Yan S, Na J, Liu X, Wu P. Different Targeting Ligands-Mediated Drug Delivery Systems for Tumor Therapy. Pharmaceutics 2024; 16:248. [PMID: 38399302 PMCID: PMC10893104 DOI: 10.3390/pharmaceutics16020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Traditional tumor treatments have the drawback of harming both tumor cells and normal cells, leading to significant systemic toxic side effects. As a result, there is a pressing need for targeted drug delivery methods that can specifically target cells or tissues. Currently, researchers have made significant progress in developing targeted drug delivery systems for tumor therapy using various targeting ligands. This review aims to summarize recent advancements in targeted drug delivery systems for tumor therapy, focusing on different targeting ligands such as folic acid, carbohydrates, peptides, aptamers, and antibodies. The review also discusses the advantages, challenges, and future prospects of these targeted drug delivery systems.
Collapse
Affiliation(s)
- Shuxin Yan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
48
|
Chen P, Wei Y, Sun T, Lin J, Zhang K. Enabling safer, more potent oligonucleotide therapeutics with bottlebrush polymer conjugates. J Control Release 2024; 366:44-51. [PMID: 38145661 PMCID: PMC10922259 DOI: 10.1016/j.jconrel.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Oligonucleotide therapeutics have the unique ability to address traditionally undruggable targets through various target engagement pathways. However, despite advances in chemically modified oligonucleotides and carrier-assisted delivery systems such as lipid nanoparticles and protein/peptide conjugates, the development of oligonucleotide drugs is still plagued with lackluster potency, narrow therapeutic window, poor delivery to non-liver target sites, and/or high potential for toxicity and unwanted immune system activation. In this perspective, we discuss an unconventional delivery solution based upon bottlebrush polymers, which overcomes many key challenges in oligonucleotide drug development. We address the molecular basis of the polymer's ability to enhance tissue bioavailability and drug potency, reduce side effects, and suppress anti-carrier immunity. Furthermore, we discuss the potential of the technology in advancing oligonucleotide-based therapies for non-liver targets.
Collapse
Affiliation(s)
- Peiru Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Yun Wei
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Tingyu Sun
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jiachen Lin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering and Bioengineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Mohammadinejad A, Gaman LE, Aleyaghoob G, Gaceu L, Mohajeri SA, Moga MA, Badea M. Aptamer-Based Targeting of Cancer: A Powerful Tool for Diagnostic and Therapeutic Aims. BIOSENSORS 2024; 14:78. [PMID: 38391997 PMCID: PMC10887380 DOI: 10.3390/bios14020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Cancer is known as one of the most significant causes of death worldwide, and, in spite of novel therapeutic methods, continues to cause a considerable number of deaths. Targeted molecular diagnosis and therapy using aptamers with high affinity have become popular techniques for pathological angiogenesis and cancer therapy scientists. In this paper, several aptamer-based diagnostic and therapeutic techniques such as aptamer-nanomaterial conjugation, aptamer-drug conjugation (physically or covalently), and biosensors, which have been successfully designed for biomarkers, were critically reviewed. The results demonstrated that aptamers can potentially be incorporated with targeted delivery systems and biosensors for the detection of biomarkers expressed by cancer cells. Aptamer-based therapeutic and diagnostic methods, representing the main field of medical sciences, possess high potential for use in cancer therapy, pathological angiogenesis, and improvement of community health. The clinical use of aptamers is limited due to target impurities, inaccuracy in the systematic evolution of ligands via exponential enrichment (SELEX)stage process, and in vitro synthesis, making them unreliable and leading to lower selectivity for in vivo targets. Moreover, size, behavior, probable toxicity, low distribution, and the unpredictable behavior of nanomaterials in in vivo media make their usage in clinical assays critical. This review is helpful for the implementation of aptamer-based therapies which are effective and applicable for clinical use and the design of future studies.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Laura Elena Gaman
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Department of Chemistry, Payame Noor University, Tehran 19395-4697, Iran
| | - Liviu Gaceu
- Faculty of Food and Tourism, Transilvania University of Brasov, 500014 Brașov, Romania;
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Centre for Applied Medicine and Intervention Strategies in Medical Practice, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500019 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| |
Collapse
|
50
|
Bui NL, Chu DT. An introduction to RNA therapeutics and their potentials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:1-12. [PMID: 38359993 DOI: 10.1016/bs.pmbts.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA therapeutics is a biological term regarding the usage of RNA-based molecules for medical purposes. Thanks to the success of mRNA-vaccine production against COVID-19, RNA therapeutics has gained more and more attention and investigation from worldwide scientists. It is considered as one of the promising alternatives for conventional drugs. In this first chapter, we presented an overview of the history and perspectives of RNA therapeutics' development. This chapter also explained the underlying mechanisms of different RNA-based molecules, including antisense oligonucleotide, interfering RNA (iRNA), aptamer, and mRNA, from degrading mRNA to inactivating targeted protein. Although there are many advantages of RNA therapeutics, its challenges in designing RNA chemical structure and the delivery vehicle need to be discussed. We described advanced technologies in the development of drug delivery systems that are positively correlated to the efficacy of the drug. Our aim is to provide a general background of RNA therapeutics to the audience before introducing plenty of more detailed parts, including clinical applications in certain diseases in the following chapters of the "RNA therapeutics" book.
Collapse
Affiliation(s)
- Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|