1
|
Mignini I, Blasi V, Termite F, Esposto G, Borriello R, Laterza L, Scaldaferri F, Ainora ME, Gasbarrini A, Zocco MA. Fibrostenosing Crohn's Disease: Pathogenetic Mechanisms and New Therapeutic Horizons. Int J Mol Sci 2024; 25:6326. [PMID: 38928032 PMCID: PMC11204249 DOI: 10.3390/ijms25126326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Bowel strictures are well recognized as one of the most severe complications in Crohn's disease, with variable impacts on the prognosis and often needing surgical or endoscopic treatment. Distinguishing inflammatory strictures from fibrotic ones is of primary importance due to the different therapeutic approaches required. Indeed, to better understand the pathogenesis of fibrosis, it is crucial to investigate molecular processes involving genetic factors, cytokines, alteration of the intestinal barrier, and epithelial and endothelial damage, leading to an increase in extracellular matrix synthesis, which ultimately ends in fibrosis. In such a complex mechanism, the gut microbiota also seems to play a role. A better comprehension of molecular processes underlying bowel fibrosis, in addition to radiological and histopathological findings, has led to the identification of high-risk patients for personalized follow-up and testing of new therapies, primarily in preclinical models, targeting specific pathways involving Transforming Growth Factor-β, interleukins, extracellular matrix balance, and gut microbiota. Our review aims to summarize current evidence about molecular factors involved in intestinal fibrosis' pathogenesis, paving the way for potential diagnostic biomarkers or anti-fibrotic treatments for stricturing Crohn's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (V.B.); (G.E.); (R.B.); (L.L.); (F.S.); (M.E.A.); (A.G.)
| |
Collapse
|
2
|
Curvino EJ, Roe EF, Freire Haddad H, Anderson AR, Woodruff ME, Votaw NL, Segura T, Hale LP, Collier JH. Engaging natural antibody responses for the treatment of inflammatory bowel disease via phosphorylcholine-presenting nanofibres. Nat Biomed Eng 2024; 8:628-649. [PMID: 38012308 PMCID: PMC11128482 DOI: 10.1038/s41551-023-01139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Inflammatory bowel disease lacks a long-lasting and broadly effective therapy. Here, by taking advantage of the anti-infection and anti-inflammatory properties of natural antibodies against the small-molecule epitope phosphorylcholine (PC), we show in multiple mouse models of colitis that immunization of the animals with self-assembling supramolecular peptide nanofibres bearing PC epitopes induced sustained levels of anti-PC antibodies that were both protective and therapeutic. The strength and type of immune responses elicited by the nanofibres could be controlled through the relative valency of PC epitopes and exogenous T-cell epitopes on the nanofibres and via the addition of the adjuvant CpG. The nanomaterial-assisted induction of the production of therapeutic antibodies may represent a durable therapy for inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Emily F Roe
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Alexa R Anderson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mia E Woodruff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicole L Votaw
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Laura P Hale
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Zhang Y, Jia Z, Gao X, Zhao J, Zhang H. Polystyrene nanoparticles induced mammalian intestine damage caused by blockage of BNIP3/NIX-mediated mitophagy and gut microbiota alteration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168064. [PMID: 37884137 DOI: 10.1016/j.scitotenv.2023.168064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Nanoplastics possess the capacity for cellular internalization, and consequentially disrupt mitochondrial functionality, precipitating aberrations in energy metabolism. Given this, the potential accumulation of nanoplastics in alimentary sources presents a considerable hazard to the mammalian gastrointestinal system. While mitophagy serves as a cytoprotective mechanism that sustains redox homeostasis through the targeted removal of compromised mitochondria, the regulatory implications of mitophagy in nanoplastic-induced toxicity remain an underexplored domain. In the present investigation, polystyrene (PS) nanoparticles, with a diameter of 80 nm employed as a representative model to assess their toxicological impact and propensity to instigate mitophagy in intestinal cells both in vitro and in vivo. Data indicated that PS nanoparticles elicited BNIP3/NIX-mediated mitophagy within the intestinal milieu. Strikingly, the impediment of this degradation process at elevated concentrations was correlated with exacerbated pathological ramifications. In vitro assays corroborated that high-dosage cellular uptake of PS nanoparticles obstructed the mitophagy pathway. Furthermore, treatment with PS nanoparticles engendered alterations in gut microbiota composition and manifested a proclivity to modulate nutritional metabolism. Collectively, these findings elucidate that oral exposure to PS nanoparticles culminates in the inhibition of mitophagy and induces perturbations in the intestinal microbiota. This contributes valuable insights into the toxicological repercussions of nanoplastics on mammalian gastrointestinal health.
Collapse
Affiliation(s)
- Yilun Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xianlei Gao
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Juan Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
4
|
Moriki D, Koumpagioti D, Francino MP, Rufián-Henares JÁ, Kalogiannis M, Priftis KN, Douros K. How Different Are the Influences of Mediterranean and Japanese Diets on the Gut Microbiome? Endocr Metab Immune Disord Drug Targets 2024; 24:1733-1745. [PMID: 38243975 DOI: 10.2174/0118715303261069231124092259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 01/22/2024]
Abstract
The gut microbiome is a complex ecosystem, mainly composed of bacteria, that performs essential functions for the host. Its composition is determined by many factors; however, diet has emerged as a key regulator. Both the Mediterranean (MD) and Japanese (JD) diets have been associated with significant health benefits and are therefore considered healthy dietary patterns. Both are plant-based diets and although they have much in common, they also have important differences mainly related to total calorie intake and the consumption of specific foods and beverages. Thus, it has been hypothesized that they exert their beneficial properties through different nutrients and bioactive compounds that interact with gut microbes and induce specific changes on gut metabolic pathways. In this review, we present current data on the effects of the MD and JD on the gut microbiome. Furthermore, we aim to examine whether there are differences or shared effects on the gut microbiome of people who adhere to these dietary patterns.
Collapse
Affiliation(s)
- Dafni Moriki
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Despoina Koumpagioti
- Department of Nursing, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Pilar Francino
- Department of Genomics and Health, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valencia (FISABIO), 46020 Valencia, Spain
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Michalis Kalogiannis
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Kostas N Priftis
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Douros
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
5
|
Kalayci FNC, Ozen S. Possible Role of Dysbiosis of the Gut Microbiome in SLE. Curr Rheumatol Rep 2023; 25:247-258. [PMID: 37737528 DOI: 10.1007/s11926-023-01115-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE OF REVIEW The resident gut microbiota serves as a double-edged sword that aids the host in multiple ways to preserve a healthy equilibrium and serve as early companions and boosters for the gradual evolution of our immune defensive layers; nevertheless, the perturbation of the symbiotic resident intestinal communities has a profound impact on autoimmunity induction, particularly in systemic lupus erythematosus (SLE). Herein, we seek to critically evaluate the microbiome research in SLE with a focus on intestinal dysbiosis. RECENT FINDINGS SLE is a complex and heterogeneous disorder with self-attack due to loss of tolerance, and there is aberrant excessive immune system activation. There is mounting evidence suggesting that intestinal flora disturbances may accelerate the formation and progression of SLE, presumably through a variety of mechanisms, including intestinal barrier dysfunction and leaky gut, molecular mimicry, bystander activation, epitope spreading, gender bias, and biofilms. Gut microbiome plays a critical role in SLE pathogenesis, and additional studies are warranted to properly define the impact of gut microbiome in SLE, which can eventually lead to new and potentially safer management approaches for this debilitating disease.
Collapse
Affiliation(s)
| | - Seza Ozen
- Department of Paediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
6
|
Yao K, Xie Y, Wang J, Lin Y, Chen X, Zhou T. Gut microbiota: a newly identified environmental factor in systemic lupus erythematosus. Front Immunol 2023; 14:1202850. [PMID: 37533870 PMCID: PMC10390700 DOI: 10.3389/fimmu.2023.1202850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that predominantly affects women of childbearing age and is characterized by the damage to multiple target organs. The pathogenesis of SLE is complex, and its etiology mainly involves genetic and environmental factors. At present, there is still a lack of effective means to cure SLE. In recent years, growing evidence has shown that gut microbiota, as an environmental factor, triggers autoimmunity through potential mechanisms including translocation and molecular mimicry, leads to immune dysregulation, and contributes to the development of SLE. Dietary intervention, drug therapy, probiotics supplement, fecal microbiome transplantation and other ways to modulate gut microbiota appear to be a potential treatment for SLE. In this review, the dysbiosis of gut microbiota in SLE, potential mechanisms linking gut microbiota and SLE, and immune dysregulation associated with gut microbiota in SLE are summarized.
Collapse
|
7
|
Zhang M, Zhang M, Kou G, Li Y. The relationship between gut microbiota and inflammatory response, learning and memory in mice by sleep deprivation. Front Cell Infect Microbiol 2023; 13:1159771. [PMID: 37293204 PMCID: PMC10244646 DOI: 10.3389/fcimb.2023.1159771] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Objective Sleep deprivation has developed into a common phenomenon, which can lead to inflammatory responses and cognitive impairment, but the underlying mechanism is ambiguous. Emerging evidence shows that gut microbiota plays a crucial role in theoccurrence and development of inflammatory and psychiatric diseases, possibly through neuroinflammation and the brain-gut axis. The current study investigated the influence of sleep deprivation on gut microbiota composition, pro-inflammatory cytokines, learning and memory in mice. Further, it explored whether changes in gut microbiota increase pro-inflammatory cytokine and induce learning and memory impairment. Methods Healthy 8-week-old male C57BL/6J mice were randomly divided into the regular control group (RC), environmental control group (EC), and sleep deprivation group (SD). The sleep deprivation model was established by the Modified Multiple Platform Method. The experimental mice were subjected to sleep deprivation for 6h/d (8:00 am∼14:00 pm) in a sleep deprivation chamber, and the duration of sleep deprivation was 8 weeks. Morris water maze test to assess learning and memory in mice. Enzyme-Linked Immunosorbent Assay determined the concentrations of inflammatory cytokines. The changes in gut microbiota in mice were analyzed by 16S rRNA sequencing. Results We found that SD mice had elevated latency of exploration to reach the hidden platform (p>0.05) and significantly decreased traversing times, swimming distance, and swimming time in the target zone when the hidden platform was removed (p<0.05). Sleep deprivation caused dysregulated expression in serum IL-1β, IL-6, and TNF-α in mice, and the difference was significant (all p<0.001). Tannerellaceae, Rhodospirillales, Alistipes, and Parabacteroides were significantly increased in SD mice. Correlation analysis showed IL-1β was positively correlated with the abundance of Muribaculaceae (r=0.497, p<0.05) and negatively correlated with the abundance of Lachnospiraceae (r=-0.583, p<0.05). The TNF-α was positively correlated with the abundances of Erysipelotrichaceae, Burkholderiaceae, and Tannerellaceae (r=0.492, r=0.646, r=0.726, all p<0.05). Conclusion Sleep deprivation can increase pro-inflammatory cytokine responses and learning and memory impairment in mice and may be caused by the disorder of the microbiota. These findings of this study may open avenues for potential interventions that can relieve the detrimental consequences of sleep loss.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Mengying Zhang
- Zhengzhou University, Zhengzhou, China
- Synergetic Innovation Center of Kinesis and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Guangning Kou
- Centre of Sport Nutrition and Health, School of Physical Education, Zhengzhou University, Zhengzhou, China
| | - Yan Li
- Zhengzhou University, Zhengzhou, China
- Synergetic Innovation Center of Kinesis and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Huang C, Tan H, Song M, Liu K, Liu H, Wang J, Shi Y, Hou F, Zhou Q, Huang R, Shen B, Lin X, Qin X, Zhi F. Maternal Western diet mediates susceptibility of offspring to Crohn's-like colitis by deoxycholate generation. MICROBIOME 2023; 11:96. [PMID: 37131223 PMCID: PMC10155335 DOI: 10.1186/s40168-023-01546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/07/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The Western dietary pattern, characterized by high consumption of fats and sugars, has been strongly associated with an increased risk of developing Crohn's disease (CD). However, the potential impact of maternal obesity or prenatal exposure to a Western diet on offspring's susceptibility to CD remains unclear. Herein, we investigated the effects and underlying mechanisms of a maternal high-fat/high-sugar Western-style diet (WD) on offspring's susceptibility to 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced Crohn's-like colitis. METHODS Maternal dams were fed either a WD or a normal control diet (ND) for eight weeks prior to mating and continued throughout gestation and lactation. Post-weaning, the offspring were subjected to WD and ND to create four groups: ND-born offspring fed a normal diet (N-N) or Western diet (N-W), and WD-born offspring fed a normal (W-N) or Western diet (W-W). At eight weeks of age, they were administered TNBS to induce a CD model. RESULTS Our findings revealed that the W-N group exhibited more severe intestinal inflammation than the N-N group, as demonstrated by a lower survival rate, increased weight loss, and a shorter colon length. The W-N group displayed a significant increase in Bacteroidetes, which was accompanied by an accumulation of deoxycholic acid (DCA). Further experimentation confirmed an increased generation of DCA in mice colonized with gut microbes from the W-N group. Moreover, DCA administration aggravated TNBS-induced colitis by promoting Gasdermin D (GSDMD)-mediated pyroptosis and IL-1beta (IL-1β) production in macrophages. Importantly, the deletion of GSDMD effectively restrains the effect of DCA on TNBS-induced colitis. CONCLUSIONS Our study demonstrates that a maternal Western-style diet can alter gut microbiota composition and bile acid metabolism in mouse offspring, leading to an increased susceptibility to CD-like colitis. These findings highlight the importance of understanding the long-term consequences of maternal diet on offspring health and may have implications for the prevention and management of Crohn's disease. Video Abstract.
Collapse
Affiliation(s)
- Chongyang Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengyao Song
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbin Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanqiang Shi
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Fengyi Hou
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Binghai Shen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinlong Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoming Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Jarmakiewicz-Czaja S, Gruszecka J, Filip R. What Do NAFLD, Liver Fibrosis, and Inflammatory Bowel Disease Have in Common? Review of the Current Literature. Metabolites 2023; 13:metabo13030378. [PMID: 36984818 PMCID: PMC10051776 DOI: 10.3390/metabo13030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Liver disease is one of the most common extraintestinal manifestations of inflammatory bowel disease (IBD). Often the course of liver disease is associated with an exacerbation of the underlying disease (Crohn’s Disease/Ulcerative Colitis). Nonalcoholic steatohepatitis encompasses a wide spectrum of liver damage. The most common form is nonalcoholic fatty liver disease (NAFLD) (75–80%), and the less common but more dangerous form is nonalcoholic steatohepatitis (NASH). NAFLD is now the most common cause of chronic liver disease in developed countries and the leading indication for liver transplantation in the United States. Genetic, demographic, clinical, and environmental factors can play a role in the pathogenesis of NAFLD. The increasing prevalence of NAFLD is associated with a widespread obesity epidemic, metabolic complications, including hypertension, type 2 diabetes, and dyslipidaemia. Some of the most common manifestations of IBD are liver, biliary tract, and gallbladder diseases. The liver fibrosis process has a complex pathophysiology and is often dependent on exogenous factors such as the treatment used and endogenous factors such as the gut microbiome. However, the factors that link IBD and liver fibrosis are not yet clear. The main purpose of the review is to try to find links between IBD and selected liver diseases and to identify knowledge gaps that will inform further research.
Collapse
Affiliation(s)
| | - Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Clinical Microbiology, Clinical Hospital No. 2, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-959 Rzeszow, Poland
- Correspondence:
| |
Collapse
|
10
|
Yao H, Yang H, Wang Y, Xing Q, Yan L, Chai Y. Gut microbiome and fecal metabolic alteration in systemic lupus erythematosus patients with depression. Front Cell Infect Microbiol 2022; 12:1040211. [PMID: 36506019 PMCID: PMC9732533 DOI: 10.3389/fcimb.2022.1040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Mental health disorders in systemic lupus erythematosus (SLE) are gradually getting recognized; however, less is known regarding the actual structure and compositional alterations in gut microbiome and metabolism and the mechanisms of how they affect depression development in SLE patients. Methods Twenty-one SLE patients with depression (SLE-d), 17 SLE patients without depression (SLE-nd), and 32 healthy controls (HC) were included in this study. Fecal samples were collected for 16S rRNA gene sequencing and ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) based metabolomics. Results The structure of gut microbiome in the SLE-d group changed compared with that in the other two groups. The microbiome composition of SLE-d group showed decreased species richness indices, characterized by low ACE and Chao1 indices, a decrease in the ratio of phylum Firmicutes to Bacteroidetes, genus Faecalibacterium and Roseburia. A downregulation of the metabolite fexofenadine involved in bile secretion was positively correlated with the genus Faecalibacterium, Subdoligranulum and Agathobacter. Compared with the SLE-nd group, the SLE-d group had elevated serum levels of IL-2 and IL-6 and decreased BDNF. Interestingly, abundance of the genus Faecalibacterium and Roseburia was negatively correlated with IL-6, abundance of the genus Roseburia was negatively correlated with IL-2, and abundance of the genus Bacteroides was positively correlated with IL-2. Conclusion This study identified specific fecal microbes and their metabolites that may participate in the development of SLE-d. Our findings provide a new perspective for improving depression in SLE patients by regulating the gut-brain axis.
Collapse
Affiliation(s)
- Han Yao
- Department of Immunology and Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Hao Yang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yueying Wang
- Department of Immunology and Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Qian Xing
- Department of Immunology and Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China,*Correspondence: Qian Xing,
| | - Lin Yan
- School of Clinical Medicine, Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Yaru Chai
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
11
|
Efficacy of Selected Live Biotherapeutic Candidates to Inhibit the Interaction of an Adhesive-Invasive Escherichia coli Strain with Caco-2, HT29-MTX Cells and Their Co-Culture. Biomedicines 2022; 10:biomedicines10092245. [PMID: 36140346 PMCID: PMC9496071 DOI: 10.3390/biomedicines10092245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) has been implicated as a microbiological factor in the pathogenesis of inflammatory bowel disease (IBD). We evaluated the ability of six live biotherapeutic products (LBPs) to inhibit the interaction of an AIEC strain to three cell lines representing human gut epithelium. Co-inoculation of LBPs with AIEC showed a reduction in adhesion (up to 73%) and invasion of AIEC (up to 89%). Pre-inoculation of LBPs in HT-29-MTX and Caco-2 cells before challenging with AIEC further reduced the adhesion and invasion of the AIEC, with three LBPs showing significantly (p < 0.0001) higher efficiency in reducing the adhesion of AIEC. In co-inoculation experiments, the highest reduction in adhesion (73%) of AIEC was observed in HT-29-MTX cells, whereas the highest reduction in invasion (89%) was seen in HT-29-MTX and the co-culture of cells. Pre-inoculation of LBPs further reduced the invasion of AIEC with highest reduction (97%) observed in co-culture of cells. Our results indicated that whilst there were differences in the efficacy of LBPs, they all reduced interaction of AIEC with cell lines representing gut epithelium. Their efficiency was higher when they were pre-inoculated onto the cells, suggesting their potential as candidates for alleviating pathogenesis of AIEC in patients with IBD.
Collapse
|
12
|
Xu J, Li S, Yang X, Wang H, Ma L, Shen Y, Yu J. Mechanism of nonylphenol induced gastric inflammation through NF-κB/NLRP3 signaling pathway. Toxicology 2022; 479:153294. [PMID: 35998786 DOI: 10.1016/j.tox.2022.153294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Studies have found that the intake of environmental endocrine disruptors was positively correlated with the occurrence of gastric diseases. The aim of this study was to determine whether nonylphenol (NP) exposure can induce gastric inflammation and whether its mechanism was related to NF-κB/NLRP3 signaling pathway. In vivo, male SD rats were randomly divided into 4 groups (12 rats/group): control group (corn oil), NP low (0.4mg/kg), medium (4mg/kg), and high (40mg/kg) dose groups. After 33 weeks of NP chronic exposure, it was found pathological changes in gastric tissues, increase the release of inflammatory factors, and effects expressions of genes related to the NF-κB/NLRP3 signaling pathway. In vitro, the GES-1 cell experiments, which included four groups: control (0 µmol/L NP), L (2.5 µmol/L NP), M (40 µmol/L NP), and H (60 µmol/L NP), confirmed that NP increased the release of inflammatory factors in the cells, and up-regulated the expression of proteins related to NF-κB/NLRP3 signaling pathway. Furthermore, when pyrrolidinedithiocarbamate ammonium (PDTC) blocked the NF-κB signaling pathway, it was found that the expression of related proteins in the NF-κB/NLRP3 signaling pathway was decreased, and the release of inflammatory factors in GES-1 cells caused by NP was also attenuated. The results of this study indicated that NP can induce inflammation in the stomach in vivo and in vitro, and its mechanism was related to the NF-κB/NLRP3 signaling pathway. These findings provided a new perspective on the mechanism of inflammatory response induced by exposure to environmental endocrine disruptors. Also, these findings indicated that therapeutic strategies for the NF-κB/NLRP3 signaling pathway may be new methods to treat inflammatory diseases.
Collapse
Affiliation(s)
- Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Shixu Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Haibo Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Lina Ma
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Yuan Shen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, P.R. of China.
| |
Collapse
|
13
|
Lu L, Dong J, Liu Y, Qian Y, Zhang G, Zhou W, Zhao A, Ji G, Xu H. New insights into natural products that target the gut microbiota: Effects on the prevention and treatment of colorectal cancer. Front Pharmacol 2022; 13:964793. [PMID: 36046819 PMCID: PMC9420899 DOI: 10.3389/fphar.2022.964793] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant carcinomas. CRC is characterized by asymptomatic onset, and most patients are already in the middle and advanced stages of disease when they are diagnosed. Inflammatory bowel disease (IBD) and the inflammatory-cancer transformation of advanced colorectal adenoma are the main causes of CRC. There is an urgent need for effective prevention and intervention strategies for CRC. In recent years, rapid research progress has increased our understanding of gut microbiota. Meanwhile, with the deepening of research on the pathogenesis of colorectal cancer, gut microbiota has been confirmed to play a direct role in the occurrence and treatment of colorectal cancer. Strategies to regulate the gut microbiota have potential value for application in the prevention and treatment of CRC. Regulation of gut microbiota is one of the important ways for natural products to exert pharmacological effects, especially in the treatment of metabolic diseases and tumours. This review summarizes the role of gut microbiota in colorectal tumorigenesis and the mechanism by which natural products reduce tumorigenesis and improve therapeutic response. We point out that the regulation of gut microbiota by natural products may serve as a potential means of treatment and prevention of CRC.
Collapse
Affiliation(s)
- Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahuan Dong
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufan Qian
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Toumi E, Goutorbe B, Plauzolles A, Bonnet M, Mezouar S, Militello M, Mege JL, Chiche L, Halfon P. Gut microbiota in systemic lupus erythematosus patients and lupus mouse model: a cross species comparative analysis for biomarker discovery. Front Immunol 2022; 13:943241. [PMID: 35983031 PMCID: PMC9378784 DOI: 10.3389/fimmu.2022.943241] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
An increasing number of studies have provided strong evidence that gut microbiota interact with the immune system and stimulate various mechanisms involved in the pathogenesis of auto-immune diseases such as Systemic Lupus Erythematosus (SLE). Indeed, gut microbiota could be a source of diagnostic and prognostic biomarkers but also hold the promise to discover novel therapeutic strategies. Thus far, specific SLE microbial signatures have not yet been clearly identified with alteration patterns that may vary between human and animal studies. In this study, a comparative analysis of a clinically well-characterized cohort of adult patients with SLE showed reduced biodiversity, a lower Firmicutes/Bacteroidetes (F/B) ratio, and six differentially abundant taxa compared with healthy controls. An unsupervised clustering of patients with SLE patients identified a subgroup of patients with a stronger alteration of their gut microbiota. Interestingly, this clustering was strongly correlated with the disease activity assessed with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score (p = 0.03, odd ratio = 15) and the identification of specific alterations involving the F/B ratio and some different taxa. Then, the gut microbiota of pristane-induced lupus and control mice were analyzed for comparison with our human data. Among the six differentially abundant taxa of the human disease signature, five were common with our murine model. Finally, an exhaustive cross-species comparison between our data and previous human and murine SLE studies revealed a core-set of gut microbiome species that might constitute biomarker panels relevant for future validation studies.
Collapse
Affiliation(s)
- Eya Toumi
- Aix-Marseille Univ, Microbes, Evolution, Phylogénie et infection (MEPHI), Institut de recherche pour le développement (IRD), Assistance Publique-Hopitaux de Marseille (APHM), Marseille, France
- Institut Hospitalo-universaire (IHU)-Méditerranée Infection, Marseille, France
- Laboratoire Alphabio, Clinical Research and R&D Department, Marseille, France
- *Correspondence: Eya Toumi,
| | - Benoit Goutorbe
- Laboratoire Alphabio, Clinical Research and R&D Department, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix‐Marseille Univ U105, Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Marseille, France
- Université Paris-Saclay, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Mathématiques et Informatique Appliquées du Génome à l’Environnement (MaIAGE), Jouy-en-Josas, France
| | - Anne Plauzolles
- Laboratoire Alphabio, Clinical Research and R&D Department, Marseille, France
| | - Marion Bonnet
- Laboratoire Alphabio, Clinical Research and R&D Department, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, Microbes, Evolution, Phylogénie et infection (MEPHI), Institut de recherche pour le développement (IRD), Assistance Publique-Hopitaux de Marseille (APHM), Marseille, France
- Institut Hospitalo-universaire (IHU)-Méditerranée Infection, Marseille, France
| | - Muriel Militello
- Aix-Marseille Univ, Microbes, Evolution, Phylogénie et infection (MEPHI), Institut de recherche pour le développement (IRD), Assistance Publique-Hopitaux de Marseille (APHM), Marseille, France
- Institut Hospitalo-universaire (IHU)-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, Microbes, Evolution, Phylogénie et infection (MEPHI), Institut de recherche pour le développement (IRD), Assistance Publique-Hopitaux de Marseille (APHM), Marseille, France
- Institut Hospitalo-universaire (IHU)-Méditerranée Infection, Marseille, France
- Hopital de la Conception, Immunology Department, Marseille, France
| | - Laurent Chiche
- Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| | - Philippe Halfon
- Aix-Marseille Univ, Microbes, Evolution, Phylogénie et infection (MEPHI), Institut de recherche pour le développement (IRD), Assistance Publique-Hopitaux de Marseille (APHM), Marseille, France
- Institut Hospitalo-universaire (IHU)-Méditerranée Infection, Marseille, France
- Laboratoire Alphabio, Clinical Research and R&D Department, Marseille, France
- Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| |
Collapse
|
15
|
Watanabe D, Kamada N. Contribution of the Gut Microbiota to Intestinal Fibrosis in Crohn's Disease. Front Med (Lausanne) 2022; 9:826240. [PMID: 35198577 PMCID: PMC8859331 DOI: 10.3389/fmed.2022.826240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
In Crohn's disease (CD), intestinal fibrosis is a critical determinant of a patient's prognosis. Although inflammation may be a prerequisite for the initiation of intestinal fibrosis, research shows that the progression or continuation of intestinal fibrosis can occur independently of inflammation. Thus, once initiated, intestinal fibrosis may persist even if medical treatment controls inflammation. Clearly, an understanding of the pathophysiological mechanisms of intestinal fibrosis is required to diminish its occurrence. Accumulating evidence suggests that the gut microbiota contributes to the pathogenesis of intestinal fibrosis. For example, the presence of antibodies against gut microbes can predict which CD patients will have intestinal complications. In addition, microbial ligands can activate intestinal fibroblasts, thereby inducing the production of extracellular matrix. Moreover, in various animal models, bacterial infection can lead to the development of intestinal fibrosis. In this review, we summarize the current knowledge of the link between intestinal fibrosis in CD and the gut microbiota. We highlight basic science and clinical evidence that the gut microbiota can be causative for intestinal fibrosis in CD and provide valuable information about the animal models used to investigate intestinal fibrosis.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
16
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
17
|
Chen L, Wang Z, Wang P, Yu X, Ding H, Wang Z, Feng J. Effect of Long-Term and Short-Term Imbalanced Zn Manipulation on Gut Microbiota and Screening for Microbial Markers Sensitive to Zinc Status. Microbiol Spectr 2021; 9:e0048321. [PMID: 34730437 PMCID: PMC8567254 DOI: 10.1128/spectrum.00483-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Zinc (Zn) imbalance is a common single-nutrient disorder worldwide, but little is known about the short-term and long-term effects of imbalanced dietary zinc in the intestinal microbiome. Here, 3-week-old C57BL/6 mice were fed diets supplemented with Zn at the doses of 0 (low Zn), 30 (control Zn), 150 (high Zn), and 600 mg/kg of body weight (excess Zn) for 4 weeks (short term) and 8 weeks (long term). The gut bacterial composition at the phyla, genus, and species levels were changed as the result of the imbalanced Zn diet (e.g., Lactobacillus reuteri and Akkermansia muciniphila). Moreover, pathways including carbohydrate, glycan, and nucleotide metabolism were decreased by a short-term low-Zn diet. Valeriate production was suppressed by a long-term low-Zn diet. Pathways such as drug resistance and infectious diseases were upregulated in high- and excess-Zn diets over 4-week and 8-week intervals. Long-term zinc fortification doses, especially at the high-Zn level, suppressed the abundance of short-chain fatty acids (SCFAs)-producing genera as well as the concentrations of metabolites. Finally, Melainabacteria (phylum) and Desulfovibrio sp. strain ABHU2SB (species) were identified to be potential markers for Zn status with high accuracy (area under the curve [AUC], >0.8). Collectively, this study identified significant changes in gut microbial composition and its metabolite concentration in altered Zn-fed mice and the relevant microbial markers for Zn status. IMPORTANCE Zn insufficiency is an essential health problem in developing countries. To prevent the occurrence of zinc deficit, zinc fortification and supplementation are widely used. However, in developed countries, the amounts of Zn consumed often exceed the tolerable upper intake limit. Our results demonstrated that dietary Zn is an essential mediator of microbial community structure and that both Zn deficiency and Zn overdose can generate a dysbiosis in the gut microbiota. Moreover, specific microbial biomarkers of Zn status were identified and correlated with serum Zn level. Our study found that a short-term low-Zn diet (0 mg/kg) and a long-term high-zinc diet (150 mg/kg) had obvious negative effects in a mouse model. Thus, these results indicate that the provision and duration of supplemental Zn should be approached with caution.
Collapse
Affiliation(s)
- Lingjun Chen
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhonghang Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Peng Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaonan Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Haoxuan Ding
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zinan Wang
- Elpida Institute of Life Sciences, Hangzhou, Zhejiang, China
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Guo X, Yang X, Li Q, Shen X, Zhong H, Yang Y. The Microbiota in Systemic Lupus Erythematosus: An Update on the Potential Function of Probiotics. Front Pharmacol 2021; 12:759095. [PMID: 34887760 PMCID: PMC8650621 DOI: 10.3389/fphar.2021.759095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a kind of chronic diffuse connective tissue illness characterized by multisystem and multiorgan involvement, repeated recurrence and remission, and the presence of a large pool of autoantibodies in the body. Although the exact cause of SLE is not thoroughly revealed, accumulating evidence has manifested that intake of probiotics alters the composition of the gut microbiome, regulating the immunomodulatory and inflammatory response, which may be linked to the disease pathogenesis. Particularly, documented experiments demonstrated that SLE patients have remarkable changes in gut microbiota compared to healthy controls, indicating that the alteration of microbiota may be implicated in different phases of SLE. In this review, the alteration of microbiota in the development of SLE is summarized, and the mechanism of intestinal microbiota on the progression of immune and inflammatory responses in SLE is also discussed. Due to limited reports on the effects of probiotics supplementation in SLE patients, we emphasize advancements made in the last few years on the function and mechanisms of probiotics in the development of SLE animal models. Besides, we follow through literature to survey whether probiotics supplements can be an adjuvant therapy for comprehensive treatment of SLE. Research has indicated that intake of probiotics alters the composition of the gut microbiome, contributing to prevent the progression of SLE. Adjustment of the gut microbiome through probiotics supplementation seems to alleviate SLE symptoms and their cardiovascular and renal complications in animal models, marking this treatment as a potentially novel approach.
Collapse
Affiliation(s)
- Xirui Guo
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huiyun Zhong
- Department of Pharmacy, Sichuan Vocational College of Health and Rehabilitation, Zigong, China.,Department of Pharmacy, The First People's Hospital of Zigong, Zigong, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Zheng Y, Jiang X, Gao Y, Yuan L, Wang X, Wu S, Xia Y, Yao L, Yan J, Liu L, Wei Y, Song Z, Yu L, Chen Y. Microbial Profiles of Patients With Antipsychotic-Related Constipation Treated With Electroacupuncture. Front Med (Lausanne) 2021; 8:737713. [PMID: 34722577 PMCID: PMC8551555 DOI: 10.3389/fmed.2021.737713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Antipsychotic-related constipation (APRC) is one of the most common side effects of taking antipsychotic medication. APRC can seriously impact patient quality of life and is potentially fatal, though the efficacy of current APRC treatments is low for most patients. In this study, we conducted a controlled, pilot randomized, sham-electroacupuncture (SEA) study to assess the efficacy of electroacupuncture (EA) in patients with APRC. We used 16S rRNA gene sequencing to assess the microbial profiles of these patients and analyze how EA treatments affected their bacteria. Methods: We treated 133 APRC patients with randomly assigned EA treatments or SEA treatments for 4 consecutive weeks, fully evaluating the patients 8 weeks after treatment. The participants, outcome assessors, and statistics were all blind to the EA and SEA treatments. Outcomes assessed included changes in spontaneous bowel movements (SBMs) and the frequency of rescue measures. We detected assessed the microbial diversity of stool specimens both before and after EA treatment using 16S rRNA gene sequencing. Results: Both EA and SEA treatments reduced the need for constipation rescue measures and did not have serious side effects. EA treatments were better than SEA treatments at increasing SBMs and reducing rescue measures. The diversity of gut microbiota changed after EA treatment. LEfSe analysis indicated changes in the genus (belonging to phylum Proteobacteria) of gut microbiota in patients following EA treatment. Conclusions: This study found that EA treatment is effective and safe for patients with APRC, and could be associated with changes in their microbial profiles. Further study, with larger sample sizes, is needed to explore the efficacy of EA intervention as a clinical treatment for APRC. Trial Registration: ChiCTR, ChiCTR-ONC-17010842, http://www.chictr.org.cn/showproj.aspx?proj=18420.
Collapse
Affiliation(s)
- Yuanjia Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiumin Jiang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yacen Gao
- Rehabilitation Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lexin Yuan
- Department of Traditional Chinese Medicine, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiaotong Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengwei Wu
- Department of Traditional Chinese Medicine, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yucen Xia
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinglan Yan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lanying Liu
- Department of Psychosomatics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yingdong Wei
- Medical Administration Division, Shenyang Anning Hospital, Shenyang, China
| | - Zhiqiang Song
- The Third People's Hospital of Qinghai Province, Xining, China
| | - Lin Yu
- Department of Traditional Chinese Medicine, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|
20
|
Altered Profile of Fecal Microbiota in Newly Diagnosed Systemic Lupus Erythematosus Egyptian Patients. Int J Microbiol 2021; 2021:9934533. [PMID: 34257666 PMCID: PMC8249152 DOI: 10.1155/2021/9934533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/16/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Dysbiosis of gut microbiota could promote autoimmune disorders including systemic lupus erythematosus (SLE). Clarifying this point would be of great importance in understanding the pathogenesis and hence the development of new strategies for SLE treatment. Aim This study aimed to determine the fecal microbiota profile in newly diagnosed SLE patients compared to healthy subjects and to investigate the correlation of this profile with disease activity. Methods Newly diagnosed SLE patients who fulfilled at least four of the American College of Rheumatology (ACR) criteria were enrolled during the study period. Patients with lupus were matched to healthy subjects. SLE activity was evaluated using the Systemic Lupus Disease Activity Index (SLEDAI-2K). Fresh fecal samples were collected from each subject. Genomic DNA was extracted from fecal samples. Quantitative real-time PCR was applied for quantitation of Firmicutes phylum, Bacteroidetes phylum, and Lactobacillus genus in comparison to the total fecal microbiota. Results of patients' samples were compared to those of healthy subjects and were correlated to patients' SLEDAI-2K score. Results Twenty SLE patients' samples were compared with 20 control samples. There was a significant alteration in SLE patients' gut microbiota. A significantly lower (p ≤ 0.001) Firmicutes/Bacteroidetes (F/B) ratio in SLE patients (mean ratio: 0.66%) compared to healthy subjects (mean ratio: 1.79%) was found. Lactobacillus showed a significant decrease in SLE patients (p=0.006) in comparison to healthy controls. An inverse significant correlation between SLEDAI-2K scores for disease activity and F/B ratio (r = -0.451; p=0.04) was found. However, an inverse nonsignificant correlation between SLEDAI-2K scores for disease activity and Lactobacillus (r = -0.155; p=0.51) was detected. Conclusion Compared to healthy controls, recently diagnosed SLE Egyptian patients have an altered fecal microbiota profile with significant lowering of both F/B ratio and Lactobacillus abundance, which is weakly correlated with disease activity.
Collapse
|
21
|
Maldonado-Arriaga B, Sandoval-Jiménez S, Rodríguez-Silverio J, Lizeth Alcaráz-Estrada S, Cortés-Espinosa T, Pérez-Cabeza de Vaca R, Licona-Cassani C, Gámez-Valdez JS, Shaw J, Mondragón-Terán P, Hernández-Cortez C, Suárez-Cuenca JA, Castro-Escarpulli G. Gut dysbiosis and clinical phases of pancolitis in patients with ulcerative colitis. Microbiologyopen 2021; 10:e1181. [PMID: 33970546 PMCID: PMC8087925 DOI: 10.1002/mbo3.1181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Ulcerative colitis (UC) is a frequent type of inflammatory bowel disease, characterized by periods of remission and exacerbation. Gut dysbiosis may influence pathophysiology and clinical response in UC. The purpose of this study was to evaluate whether gut microbiota is related to the active and remission phases of pancolitis in patients with UC as well as in healthy participants. Fecal samples were obtained from 18 patients with UC and clinical‐endoscopic evidenced pancolitis (active phase n = 9 and remission phase n = 9), as well as 15 healthy participants. After fecal DNA extraction, the 16S rRNA gene was amplified and sequenced (Illumina MiSeq), operational taxonomic units were analyzed with the QIIME software. Gut microbiota composition revealed a higher abundance of the phyla Proteobacteria and Fusobacteria in active pancolitis, as compared with remission and healthy participants. Likewise, a marked abundance of the genus Bilophila and Fusobacteria were present in active pancolitis, whereas a higher abundance of Faecalibacterium characterized both remission and healthy participants. LEfSe analysis showed that the genus Roseburia and Faecalibacterium were enriched in remission pancolitis, and genera Bilophila and Fusobacterium were enriched in active pancolitis. The relative abundance of Fecalibacterium and Roseburia showed a higher correlation with fecal calprotectin, while Bilophila and Fusobacterium showed AUCs (area under the curve) of 0.917 and 0.988 for active vs. remission pancolitis. The results of our study highlight the relation of gut dysbiosis with clinically relevant phases of pancolitis in patients with UC. Particularly, Fecalibacterium, Roseburia, Bilophila, and Fusobacterium were identified as genera highly related to the different clinical phases of pancolitis.
Collapse
Affiliation(s)
- Brenda Maldonado-Arriaga
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. "20 de Noviembre", ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México.,Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Sandoval-Jiménez
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. "20 de Noviembre", ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | | | - Tomás Cortés-Espinosa
- Clínica de Enfermedad Inflamatoria Intestinal, Servicio de Gastroenterología, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - Rebeca Pérez-Cabeza de Vaca
- Coordinación de Investigación y División de Investigación Biomédica, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - Cuauhtémoc Licona-Cassani
- Laboratorio de Genómica Industrial, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - July Stephany Gámez-Valdez
- Laboratorio de Genómica Industrial, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Jonathan Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Paul Mondragón-Terán
- Coordinación de Investigación y División de Investigación Biomédica, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Juan Antonio Suárez-Cuenca
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. "20 de Noviembre", ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
22
|
Sazal M, Stebliankin V, Mathee K, Yoo C, Narasimhan G. Causal effects in microbiomes using interventional calculus. Sci Rep 2021; 11:5724. [PMID: 33707536 PMCID: PMC7970971 DOI: 10.1038/s41598-021-84905-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Causal inference in biomedical research allows us to shift the paradigm from investigating associational relationships to causal ones. Inferring causal relationships can help in understanding the inner workings of biological processes. Association patterns can be coincidental and may lead to wrong conclusions about causality in complex systems. Microbiomes are highly complex, diverse, and dynamic environments. Microbes are key players in human health and disease. Hence knowledge of critical causal relationships among the entities in a microbiome, and the impact of internal and external factors on microbial abundance and their interactions are essential for understanding disease mechanisms and making appropriate treatment recommendations. In this paper, we employ causal inference techniques to understand causal relationships between various entities in a microbiome, and to use the resulting causal network to make useful computations. We introduce a novel pipeline for microbiome analysis, which includes adding an outcome or "disease" variable, and then computing the causal network, referred to as a "disease network", with the goal of identifying disease-relevant causal factors from the microbiome. Internventional techniques are then applied to the resulting network, allowing us to compute a measure called the causal effect of one or more microbial taxa on the outcome variable or the condition of interest. Finally, we propose a measure called causal influence that quantifies the total influence exerted by a microbial taxon on the rest of the microiome. Our pipeline is robust, sensitive, different from traditional approaches, and able to predict interventional effects without any controlled experiments. The pipeline can be used to identify potential eubiotic and dysbiotic microbial taxa in a microbiome. We validate our results using synthetic data sets and using results on real data sets that were previously published.
Collapse
Affiliation(s)
- Musfiqur Sazal
- grid.65456.340000 0001 2110 1845Bioinformatics Research Group (BioRG), Florida International University, Miami, 33199 USA
| | - Vitalii Stebliankin
- grid.65456.340000 0001 2110 1845Bioinformatics Research Group (BioRG), Florida International University, Miami, 33199 USA
| | - Kalai Mathee
- grid.65456.340000 0001 2110 1845Herbert Wertheim College of Medicine, Florida International University, Miami, 33199 USA ,grid.65456.340000 0001 2110 1845Biomolecular Sciences Institute, Florida International University, Miami, 33199 USA
| | - Changwon Yoo
- grid.65456.340000 0001 2110 1845Department of Biostatistics, Florida International University, Miami, 33199 USA
| | - Giri Narasimhan
- grid.65456.340000 0001 2110 1845Bioinformatics Research Group (BioRG), Florida International University, Miami, 33199 USA ,grid.65456.340000 0001 2110 1845Biomolecular Sciences Institute, Florida International University, Miami, 33199 USA
| |
Collapse
|
23
|
Ponnapalli KK, Kawade SK, Adak AK, Wu H, Lin C. Synthesis of biologically important
4‐Phenyl‐
C
‐glycosyl‐1,2,3‐triazole derivatives by Cu(I)‐catalyzed azide–alkyne cycloaddition. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Sachin K. Kawade
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Avijit K. Adak
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| | - Hsin‐Ru Wu
- Instrumentation Center National Tsing Hua University Hsinchu Taiwan
| | - Chun‐Cheng Lin
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| |
Collapse
|
24
|
Gut Microbiota-Host Interactions in Inborn Errors of Immunity. Int J Mol Sci 2021; 22:ijms22031416. [PMID: 33572538 PMCID: PMC7866830 DOI: 10.3390/ijms22031416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Inborn errors of immunity (IEI) are a group of disorders that are mostly caused by genetic mutations affecting immune host defense and immune regulation. Although IEI present with a wide spectrum of clinical features, in about one third of them various degrees of gastrointestinal (GI) involvement have been described and for some IEI the GI manifestations represent the main and peculiar clinical feature. The microbiome plays critical roles in the education and function of the host's innate and adaptive immune system, and imbalances in microbiota-immunity interactions can contribute to intestinal pathogenesis. Microbial dysbiosis combined to the impairment of immunosurveillance and immune dysfunction in IEI, may favor mucosal permeability and lead to inflammation. Here we review how immune homeostasis between commensals and the host is established in the gut, and how these mechanisms can be disrupted in the context of primary immunodeficiencies. Additionally, we highlight key aspects of the first studies on gut microbiome in patients affected by IEI and discuss how gut microbiome could be harnessed as a therapeutic approach in these diseases.
Collapse
|
25
|
Daugé V, Philippe C, Mariadassou M, Rué O, Martin JC, Rossignol MN, Dourmap N, Svilar L, Tourniaire F, Monnoye M, Jardet D, Bangratz M, Holowacz S, Rabot S, Naudon L. A Probiotic Mixture Induces Anxiolytic- and Antidepressive-Like Effects in Fischer and Maternally Deprived Long Evans Rats. Front Behav Neurosci 2020; 14:581296. [PMID: 33312120 PMCID: PMC7708897 DOI: 10.3389/fnbeh.2020.581296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
A role of the gut microbiota in psychiatric disorders is supported by a growing body of literature. The effects of a probiotic mixture of four bacterial strains were studied in two models of anxiety and depression, naturally stress-sensitive Fischer rats and Long Evans rats subjected to maternal deprivation. Rats chronically received either the probiotic mixture (1.109 CFU/day) or the vehicle. Anxiety- and depressive-like behaviors were evaluated in several tests. Brain monoamine levels and gut RNA expression of tight junction proteins (Tjp) and inflammatory markers were quantified. The gut microbiota was analyzed in feces by 16S rRNA gene sequencing. Untargeted metabolite analysis reflecting primary metabolism was performed in the cecal content and in serum. Fischer rats treated with the probiotic mixture manifested a decrease in anxiety-like behaviors, in the immobility time in the forced swimming test, as well as in levels of dopamine and its major metabolites, and those of serotonin metabolites in the hippocampus and striatum. In maternally deprived Long Evans rats treated with the probiotic mixture, the number of entries into the central area in the open-field test was increased, reflecting an anxiolytic effect. The probiotic mixture increased Tjp1 and decreased Ifnγ mRNA levels in the ileum of maternally deprived rats. In both models, probiotic supplementation changed the proportions of several Operational Taxonomic Units (OTU) in the gut microbiota, and the levels of certain cecal and serum metabolites were correlated with behavioral changes. Chronic administration of the tested probiotic mixture can therefore beneficially affect anxiety- and depressive-like behaviors in rats, possibly owing to changes in the levels of certain metabolites, such as 21-deoxycortisol, and changes in brain monoamines.
Collapse
Affiliation(s)
- Valérie Daugé
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, Jouy-en-Josas, France
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Mahendra Mariadassou
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, France
| | | | | | - Nathalie Dourmap
- UNIROUEN, UFR Médecine-Pharmacie, Inserm U 1245 Team 4, Rouen, France
| | | | | | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Deborah Jardet
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | | | | | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
26
|
Teng G, Liu Y, Wu T, Wang W, Wang H, Hu F. Efficacy of Sucralfate-Combined Quadruple Therapy on Gastric Mucosal Injury Induced by Helicobacter pylori and Its Effect on Gastrointestinal Flora. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4936318. [PMID: 32934960 PMCID: PMC7479470 DOI: 10.1155/2020/4936318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/15/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND This study explored the therapeutic efficacy of standard triple therapy combined with sucralfate suspension gel as well as the mechanisms of action in mouse models of H. pylori infection. MATERIALS AND METHODS C57BL/6J mice were randomly divided into 5 groups: NC (natural control), HP (H. pylori infection), RAC (rabeprazole, amoxicillin, and clarithromycin), RACS (RAC and sucralfate suspension gel), and RACB (RAC and bismuth potassium citrate). HE staining and electron microscopy were performed to estimate histological and ultrastructural damages. The IL-8, IL-10, and TNF-α of gastric antrum tissues were measured by immunohistochemistry and qRT-PCR. ZO-1 and Occludin were also detected with immunohistochemistry. The genomes of gastric and fecal microbiota were sequenced. RESULTS The eradication rate of H. pylori in the RACS group was higher than the RAC group. RACS therapy had protective effects on H. pylori-induced histological and ultrastructural damages, which were superior to the RAC group. RACS therapy reduced the protein and mRNA levels of IL-8 compared with the RAC group. The expression of Occludin in the RACS group was significantly higher than that of the RAC group. The composition of gastric and fecal microbiota for RACS was similar to the RACB group according to PCA. CONCLUSIONS The RACS regimen eradicated H. pylori infection effectively and showed RACS had protective effects against H. pylori-induced histological and ultrastructural damage. The mechanisms of RACS effects included decreasing IL-8, enhancing Occludin, and transforming gastric microbiota. Moreover, RACS and RACB have a similar effect on gastrointestinal flora.
Collapse
Affiliation(s)
- Guigen Teng
- Departments of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Yun Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Ting Wu
- Departments of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Weihong Wang
- Departments of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Huahong Wang
- Departments of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Fulian Hu
- Departments of Gastroenterology, Peking University First Hospital, Beijing, China
| |
Collapse
|
27
|
Broutin L, Deroche L, Michaud A, Le Moal G, Burucoa C, Gayet LE, Plouzeau C, Pichon M. First description of bacteremia caused by Oscillibacter valericigenes in a patient hospitalized for leg amputation. Anaerobe 2020; 64:102244. [PMID: 32712374 DOI: 10.1016/j.anaerobe.2020.102244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
Initially isolated from the alimentary canal of a Japanese corbicula clam, Oscillibacter valericigenes is a Gram-negative rod, of which culture remains very difficult. Herein we present the first case of bacteremia due to Oscillibacter valericigenes, in humans. A 55-year-old man was hospitalized for clinical management of multiple neglected leg wounds (colonized with maggots) that had occurred during a motorcycle accident. Following radiological confirmation of the bone infection, a transfemoral amputation was performed to limit the risk of extended infection. During hospitalization, before the amputation, the patient experienced fever, biological inflammation justifying the sampling of multiple blood cultures. Anaerobic blood culture was positive after 34 hours, without identification by routine procedure (MALDI-TOF), justifying identification by 16S DNA sequencing. In the absence of possible subculture, antibiotic sensitivity testing could not be performed. A pre-emptive treatment by piperacillin-tazobactam was introduced for 14 days. The evolution was good, except for a local disunion. Complete phylogenic analysis of the clinical strain showed that it significantly differed from the reference strain, which is distantly related to the Clostridia cluster IV. Due to the culture conditions and specialized identification method by sequencing, prevalence of O. valericigenes may be underestimated. Optimization of blood culture procedures and utilization of 16S rRNA gene sequencing are tools needed for identification of rare pathogens that could help to optimize clinical management of infected patients.
Collapse
Affiliation(s)
- Lauranne Broutin
- University Hospital of Poitiers, Bacteriology and Infection Control Laboratory, Infectious Agents Department, Poitiers, France
| | - Luc Deroche
- University Hospital of Poitiers, Bacteriology and Infection Control Laboratory, Infectious Agents Department, Poitiers, France
| | - Anthony Michaud
- University Hospital of Poitiers, Bacteriology and Infection Control Laboratory, Infectious Agents Department, Poitiers, France
| | - Gwenaël Le Moal
- University Hospital of Poitiers, Department of Infectious Diseases, CHU, Poitiers, France
| | - Christophe Burucoa
- University Hospital of Poitiers, Bacteriology and Infection Control Laboratory, Infectious Agents Department, Poitiers, France
| | - Louis-Etienne Gayet
- University Hospital of Poitiers, Department of Orthopedic Surgery and Traumatology, CHU, Poitiers, France
| | - Chloé Plouzeau
- University Hospital of Poitiers, Bacteriology and Infection Control Laboratory, Infectious Agents Department, Poitiers, France
| | - Maxime Pichon
- University Hospital of Poitiers, Bacteriology and Infection Control Laboratory, Infectious Agents Department, Poitiers, France.
| |
Collapse
|
28
|
The link “Cancer and autoimmune diseases” in the light of microbiota: Evidence of a potential culprit. Immunol Lett 2020; 222:12-28. [DOI: 10.1016/j.imlet.2020.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
|
29
|
Zeng L, Tan J, Xue M, Liu L, Wang M, Liang L, Deng J, Chen W, Chen Y. An engineering probiotic producing defensin-5 ameliorating dextran sodium sulfate-induced mice colitis via Inhibiting NF-kB pathway. J Transl Med 2020; 18:107. [PMID: 32122364 PMCID: PMC7053090 DOI: 10.1186/s12967-020-02272-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Human defensin-5 (HD-5) is a key antimicrobial peptide which plays an important role in host immune defense, while the short half-life greatly limits its clinical application. The purpose of this study was to investigate the effects of an engineering probiotic producing HD-5 on intestinal barrier and explore its underlying mechanism Methods We constructed the pN8148-SHD-5 vector, and transfected this plasmid into Lactococcus lactis (L. lactis) to create the recombinant NZ9000SHD-5 strain, which continuously produces mature HD-5. NZ9000SHD-5 was administrated appropriately in a dextran sodium sulfate (DSS)-induced colitis model. Alterations in the wounded intestine were analyzed by hematoxylin–eosin staining. The changes of intestinal permeability were detected by FITC-dextran permeability test, the tight junction (TJ) proteins ZO-1 and occludin and cytokines were analyzed by western blotting or enzyme linked immunosorbent assay. In Caco-2 cell monolayers, the permeability were analyzed by transepithelial electrical resistance, and the TJ proteins were detected by western blotting and immunofluorescence. In addition, NF-κB signaling pathway was investigated to further analyze the molecular mechanism of NZ9000SHD-5 treatment on inducing intestinal protection in vitro. Results We found oral administration with NZ9000SHD-5 significantly reduced colonic glandular structure destruction and inflammatory cell infiltration, downregulated expression of several inflammation-related molecules and preserved epithelial barrier integrity. The same protective effects were observed in in vitro experiments, and pretreatment of macrophages with NZ9000SHD-5 culture supernatants prior to LPS application significantly reduced the expression of phosphorylated nuclear transcription factor-kappa B (NF-κB) p65 and its inhibitor IκBα. Conclusions These results indicate the NZ9000SHD-5 can alleviate DSS-induced mucosal damage by suppressing NF-κB signaling pathway, and NZ9000SHD-5 may be a novel therapeutic means for ulcerative colitis.
Collapse
Affiliation(s)
- Lishan Zeng
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jiasheng Tan
- Department of Gastroenterology, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, People's Republic of China
| | - Meng Xue
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Le Liu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Mingming Wang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Liping Liang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jun Deng
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
30
|
Attenuation of DSS induced colitis by Dictyophora indusiata polysaccharide (DIP) via modulation of gut microbiota and inflammatory related signaling pathways. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103641] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Zhang L, Li YY, Tang X, Zhao X. Faecal microbial dysbiosis in children with Wiskott-Aldrich syndrome. Scand J Immunol 2019; 91:e12805. [PMID: 31267543 DOI: 10.1111/sji.12805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disease caused by a mutation in the WAS gene that encodes the WAS protein (WASp); up to 5-10% of these patients develop inflammatory bowel disease (IBD). The mechanisms by which WASp deficiency causes IBD are unclear. Intestinal microbial dysbiosis and imbalances in host immune responses play important roles in the pathogenesis of polygenetic IBD; however, few studies have conducted detailed examination of the microbial alterations and their relationship with IBD in WAS. Here, we collected faecal samples from 19 children (all less than 2 years old) with WAS and samples from WASp-KO mice with IBD and subjected them to 16S ribosomal RNA sequencing. We found that microbial community richness and structure in WAS children were different from those in controls; WAS children revealed reduced microbial community richness and diversity. Relative abundance of Bacteroidetes and Verrucomicrobiain in WAS children was significantly lower, while that of Proteobacteria was markedly higher. WASp-KO mice revealed a significantly decreased abundance of Firmicutes. Faecal microbial dysbiosis caused by WASp deficiency is similar to that observed for polygenetic IBD, suggesting that WASp may play crucial function in microbial homoeostasis and that microbial dysbiosis may contribute to IBD in WAS. These microbial alterations may be useful targets for monitoring and therapeutically managing intestinal inflammation in WAS.
Collapse
Affiliation(s)
- Liang Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Ying Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Chandra N, Srivastava A, Kumar S. Bacterial biofilms in human gastrointestinal tract: An intricate balance between health and inflammatory bowel diseases. World J Pharmacol 2019; 8:26-40. [DOI: 10.5497/wjp.v8.i3.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) has been a worldwide health problem. It is characterized by severe intestinal inflammation due to immune responses against the gut microbes in genetically susceptible individuals. The understanding of gut microbiota for its composition and complex interaction in normal and diseased conditions has been assisted by the use of molecular, metagenomics and meta transcriptomics studies. The alteration of intestinal microbiota is the key determinant in the degree of inflammation caused and the prolonged course of disease. The relationship between luminal gut bacteria and innate immunity is also of prime significance. Such developments have further led to the search of specific (including bacteria and fungi) as a causative agent of IBD. Although detailed research has been done for the role of gut microbiota in IBD, molecular mechanisms and related gene expression are still not well understood in this disease, which hampers the generation of effective therapeutic agents for IBD. This paper assessed various factors contributing to IBD, genetic dysbiosis and pathogenic influence in the gut microbiota, interactions such as microbiome-host immune system interaction and microbe-microbe interactions involved in IBD, currently available IBD therapies, followed by a detailed review on bacterial infections that might be involved in IBD, globally and specifically in India.
Collapse
Affiliation(s)
- Niharika Chandra
- Faculty of Biotechnology, Institute of Bio-Sciences and Technology, Shri Ramswaroop Memorial University, Uttar Pradesh 225003, India
| | - Ankita Srivastava
- Faculty of Bio-Sciences, Institute of Bio-Sciences and Technology, Shri Ramswaroop Memorial University, Uttar Pradesh 225003, India
| | - Sunil Kumar
- Faculty of Bio-Sciences, Institute of Bio-Sciences and Technology, Shri Ramswaroop Memorial University, Uttar Pradesh 225003, India
| |
Collapse
|
33
|
In vivo evaluation of the effect of arsenite on the intestinal epithelium and associated microbiota in mice. Arch Toxicol 2019; 93:2127-2139. [DOI: 10.1007/s00204-019-02510-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
|
34
|
Dietary Composition and Effects in Inflammatory Bowel Disease. Nutrients 2019; 11:nu11061398. [PMID: 31234325 PMCID: PMC6628370 DOI: 10.3390/nu11061398] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Dramatic changes in the environment and human lifestyle have been associated with the rise of various chronic complex diseases, such as inflammatory bowel disease (IBD). A dysbiotic gut microbiota has been proposed as a crucial pathogenic element, contributing to immune imbalances and fostering a proinflammatory milieu, which may be associated with disease relapses or even the initiation of IBD. In addition to representing important regulators of the mucosal immunity and the composition of the gut microbiota, food components have been shown to be potential environmental triggers of epigenetic modifications. In the context of chronic intestinal inflammation, dietary habits and specific food components have been implicated as important modulators of epigenetic mechanisms, including DNA methylation, which may predispose a person to the increased risk of the initiation and evolution of IBD. This review provides novel insights about how dietary factors may interact with the intestinal mucosa and modulate immune homeostasis by shaping the intestinal ecosystem, as well as the potential influence of diet in the etiopathogenesis and management of IBD.
Collapse
|
35
|
Xiao L, Chen B, Feng D, Yang T, Li T, Chen J. TLR4 May Be Involved in the Regulation of Colonic Mucosal Microbiota by Vitamin A. Front Microbiol 2019; 10:268. [PMID: 30873131 PMCID: PMC6401601 DOI: 10.3389/fmicb.2019.00268] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives: To investigate the specific role of Toll-like receptor 4 (TLR4) in the regulation of the intestinal mucosa-associated microbiota by vitamin A (VA). Methods: Both TLR4-/- (knockout, KO) and wild-type (WT) female mice were randomly fed a VA normal (VAN) or VA deficient (VAD) diet for 4 weeks to establish the following four mouse model groups: TLR4-/- mice fed a VAN diet (KO VAN), TLR4-/- mice fed a VAD diet (KO VAD), WT mice fed a VAN diet (WT VAN), and WT mice fed a VAD diet (WT VAD). Then, the mice from each experimental group were mated with male mice with the same genetic background. The pups in the KO VAD and WT VAD groups were subsequently fed the VAD diet after weaning, while the pups in the KO VAN and WT VAN groups were fed the VAN diet continuously after weaning. The serum retinol levels of 7-week-old offspring were determined using high-performance liquid chromatography, and colons were collected from mice in each group and analyzed via 16S rRNA gene sequencing using an Illumina MiSeq platform to characterize the overall microbiota of the samples. Results: The abundance and evenness of the colon mucosa-associated microbiota were unaffected by dietary VA and TLR4 KO. VAD decreased the abundance of Anaerotruncus (Firmicutes), Oscillibacter (Firmicutes), Lachnospiraceae _NK4A136 _group (Firmicutes) and Mucispirillum (Deferribacteres) and increased the abundance of Parasutterella (Proteobacteria). TLR4 KO decreased the abundance of Bacteroides (Bacteroidetes) and Alloprevotella (Bacteroidetes). However, the abundance of Allobaculum (Firmicutes), Ruminiclostridium_9 (Firmicutes), Alistipes (Bacteroidetes), and Rikenellaceae_RC9 (Bacteroidetes) impacted the interaction between VA and TLR4. Conclusion: TLR4 may play a pivotal role in regulation of the intestinal mucosa-associated microbiota by VA to maintain the intestinal microecology.
Collapse
Affiliation(s)
- Lu Xiao
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Baolin Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Di Feng
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| |
Collapse
|
36
|
Han J, Meng J, Chen S, Li C, Wang S. Rice straw biochar as a novel niche for improved alterations to the cecal microbial community in rats. Sci Rep 2018; 8:16426. [PMID: 30401962 PMCID: PMC6219602 DOI: 10.1038/s41598-018-34838-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/27/2018] [Indexed: 12/19/2022] Open
Abstract
Biochar as additive has been shown positive effect in animal production, which may be linked to the role of gastrointestinal microbial modulation. This study aimed to assess the effects of biochar on the gut microbial communities in terms of their structure and diversity. Illumina high-throughput technology was utilized to evaluate the cecal microbial community in Wistar rats received oral rice straw biochar (RSB) at 1120 mg/kg of body weight for 5 weeks. RSB improved the gut mucosal structure and epithelial integrity. More importantly, principal coordinate analysis of UniFrac distances based on a 97% operational taxonomic unit composition and abundance indicated that the bacterial community was ameliorated after RSB addition (P < 0.05). Firmicutes and Bacteroidetes were found to be the prevalent phyla accounting for approximately 90% of the sequences and their ratio of relative abundance was increased by RSB addition (P < 0.05). Improved bacterial proportion of unclassified Lachnospiraceae (P < 0.001), Oscillibacter (P = 0.02), and Clostridium IV (P = 0.02) and XIVa (P = 0.02) as well as decreased abundances of Prevotella (P < 0.001) and Bacteroides (P = 0.03) were also detected at genus level following RSB treatment. These results revealed that RSB altered and improved the cecal microbial community, which may contribute to the affected growth and gut status in rats.
Collapse
Affiliation(s)
- Jie Han
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China
- Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China
| | - Jun Meng
- Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China.
| | - Shuya Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China
| | - Chuang Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China
| | - Shuo Wang
- Testing and Analysis Center, Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning Province, 110866, P.R. China
| |
Collapse
|
37
|
Yao Y, Jin Z, Lee JH. An improved statistical model for taxonomic assignment of metagenomics. BMC Genet 2018; 19:98. [PMID: 30373533 PMCID: PMC6206629 DOI: 10.1186/s12863-018-0680-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND With the advances in the next-generation sequencing technologies, researchers can now rapidly examine the composition of samples from humans and their surroundings. To enhance the accuracy of taxonomy assignments in metagenomic samples, we developed a method that allows multiple mismatch probabilities from different genomes. RESULTS We extended the algorithm of taxonomic assignment of metagenomic sequence reads (TAMER) by developing an improved method that can set a different mismatch probability for each genome rather than imposing a single parameter for all genomes, thereby obtaining a greater degree of accuracy. This method, which we call TADIP (Taxonomic Assignment of metagenomics based on DIfferent Probabilities), was comprehensively tested in simulated and real datasets. The results support that TADIP improved the performance of TAMER especially in large sample size datasets with high complexity. CONCLUSIONS TADIP was developed as a statistical model to improve the estimate accuracy of taxonomy assignments. Based on its varying mismatch probability setting and correlated variance matrix setting, its performance was enhanced for high complexity samples when compared with TAMER.
Collapse
Affiliation(s)
- Yujing Yao
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Zhezhen Jin
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Joseph H Lee
- Sergievsky Center, Taub Institute, and Departments of Epidemiology and Neurology, Columbia University, New York, NY, USA. .,Sergievsky Center, Columbia University, 630 West 168th Street, P&S Unit 16, New York, NY, 10032, USA.
| |
Collapse
|
38
|
De Filippis F, Vitaglione P, Cuomo R, Berni Canani R, Ercolini D. Dietary Interventions to Modulate the Gut Microbiome-How Far Away Are We From Precision Medicine. Inflamm Bowel Dis 2018; 24:2142-2154. [PMID: 29668914 DOI: 10.1093/ibd/izy080] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Indexed: 02/06/2023]
Abstract
The importance of the gut microbiome in human health and disease is fully acknowledged. A perturbation in the equilibrium among the different microbial populations living in the gut (dysbiosis) has been associated with the development of several types of diseases. Modulation of the gut microbiome through dietary intervention is an emerging therapeutic and preventive strategy for many conditions. Nevertheless, interpersonal differences in response to therapeutic treatments or dietary regimens are often observed during clinical trials, and recent research has suggested that subject-specific features of the gut microbiota may be responsible. In this review, we summarize recent findings in personalized nutrition, highlighting how individualized characterization of the microbiome may assist in designing ad hoc tailored dietary intervention for disease treatment and prevention. Moreover, we discuss the limitations and challenges encountered in integrating patient-specific microbial data into clinical practice.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Rosario Cuomo
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Roberto Berni Canani
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Translational Medical Science, University of Naples Federico II, Naples, Italy.,European Laboratory for Investigation on Food Induced Diseases, University of Naples Federico II, Naples, Italy.,Ceinge Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
39
|
Gastrointestinal Pathobionts in Pediatric Crohn's Disease Patients. Int J Microbiol 2018; 2018:9203908. [PMID: 30123276 PMCID: PMC6079491 DOI: 10.1155/2018/9203908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
Crohn's disease (CD) is an inflammatory disease of the gastrointestinal tract, with a rising incidence worldwide, particularly in children. CD is thought to arise due to an immune response to environmental factors. The role of bacteria in CD has recently been highlighted, and here, we examine the prevalence of two bacterial species, enterotoxigenic Bacteroides fragilis (ETBF) and Fusobacterium nucleatum, implicated in gastrointestinal pathologies, in a pediatric CD cohort. Stool samples from 30 children with treatment-naïve CD and 30 age- and sex-matched controls were collected, and DNA was extracted. Quantitative PCR was used to determine the levels of ETBF and F. nucleatum in stool samples. Bacterial positivity and relative abundance were assessed between cases and controls and in relation to disease severity. No associations were found between colonization with ETBF and CD, or between colonization with either ETBF or F. nucleatum and disease severity or presence of C. concisus. However, a strong association was observed between positivity for F. nucleatum in the stool samples and the occurrence of CD in patients (25/30) as compared to controls (8/30) (P=0.003). F. nucleatum is more prevalent in the stool samples of pediatric CD patients, compared to healthy controls, and may have potential use as a biomarker of pediatric CD.
Collapse
|
40
|
A Synbiotic with Tumor Necrosis Factor- α Inhibitory Activity Ameliorates Experimental Jejunoileal Mucosal Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9184093. [PMID: 29862296 PMCID: PMC5971273 DOI: 10.1155/2018/9184093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/31/2018] [Indexed: 02/06/2023]
Abstract
Despite the recent development of biological modifiers for inflammatory bowel diseases (IBD), there continues to be considerable interest in fermented medicines because of its negligible adverse effects. We previously showed that the synbiotic Gut Working Tablet (GWT) alleviates experimental colitis. Here we show that GWT is capable of ameliorating jejunoileal mucosal injury, which is frequently seen with IBD. We created experimental jejunoileal mucositis in rats by injection of methotrexate (MTX) which increases intestinal permeability, a hallmark finding of IBD. Administering GWT to MTX-injected rats restored intestinal integrity by reversing villi shortening, crypt loss, and goblet cell depletion in the mucosa. Also GWT reduced activities of myeloperoxidase and lipid peroxidase and increased superoxide dismutase activity, which is critical for maintaining intestinal function. We further found that GWT suppressed mRNA expression of tumor necrosis factor-α (TNF-α) and interleukin-12 (IL-12) in macrophage and reduced TNF-α mRNA expression in specimens with experimental colitis, which is in contrast to VSL#3 that enhanced TNF-α production. Together, the current and previous animal studies clearly demonstrate the protective role of GWT in chemically induced enterocolitis. Crohn's disease, a well-known IBD, can affect any portion of the intestine, and these results suggest that GWT may be useful as a novel therapeutic or maintenance therapy for IBD.
Collapse
|
41
|
Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC. Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population. Front Microbiol 2018; 9:890. [PMID: 29867803 PMCID: PMC5949328 DOI: 10.3389/fmicb.2018.00890] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence for the interaction between gut microbiome, diet, and health. It is known that dysbiosis is related to disease and that most of the times this imbalances in gut microbial populations can be promoted through diet. Western dietary habits, which are characterized by high intakes of calories, animal proteins, saturated fats, and simple sugars have been linked with higher risk of obesity, diabetes, cancer, and cardiovascular disease. However, little is known about the impact of dietary patterns, dietary components, and nutrients on gut microbiota in healthy people. The aim of our study is to determine the effect of nutrient compounds as well as adherence to a dietary pattern, as the Mediterranean diet (MD) on the gut microbiome of healthy adults. Consequently, gut microbiota composition in healthy individuals, may be used as a potential biomarker to identify nutritional habits as well as risk of disease related to these habits. Dietary information from healthy volunteers (n = 27) was recorded using the Food Frequency Questionnaire. Adherence to the MD was measured using the PREDIMED test. Microbiota composition and diversity were obtained by 16S rRNA gene sequencing and specific quantitative polymerase chain reaction. Microbial metabolic activity was determined by quantification of short chain fatty acids (SCFA) on high performance liquid chromatography (HPLC). The results indicated that a higher ratio of Firmicutes–Bacteroidetes was related to lower adherence to the MD, and greater presence of Bacteroidetes was associated with lower animal protein intake. High consumption of animal protein, saturated fats, and sugars affected gut microbiota diversity. A significant higher presence of Christensenellaceae was found in normal-weight individuals compared to those who were overweight. This was also the case in volunteers with greater adherence to the MD compared to those with lower adherence. Butyricimonas, Desulfovibrio, and Oscillospira genera were associated with a BMI <25 and the genus Catenibacterium with a higher PREDIMED score. Higher bifidobacterial counts, and higher total SCFA were related to greater consumption of plant-based nutrients, such as vegetable proteins and polysaccharides. Better adherence to the MD was associated with significantly higher levels of total SCFA. Consequently, diet and specific dietary components could affect microbiota composition, diversity, and activity, which may have an effect on host metabolism by increasing the risk of Western diseases.
Collapse
Affiliation(s)
- Izaskun Garcia-Mantrana
- Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain
| | - Cristina Alcantara
- Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain
| | - María C Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain
| |
Collapse
|
42
|
Ma HQ, Yu TT, Zhao XJ, Zhang Y, Zhang HJ. Fecal microbial dysbiosis in Chinese patients with inflammatory bowel disease. World J Gastroenterol 2018; 24:1464-1477. [PMID: 29632427 PMCID: PMC5889826 DOI: 10.3748/wjg.v24.i13.1464] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze the alterations of fecal microbiota in Chinese patients with inflammatory bowel disease (IBD).
METHODS Fecal samples from 15 patients with Crohn’s disease (CD) (11 active CD, 4 inactive CD), 14 patients with active ulcerative colitis (UC) and 13 healthy individuals were collected and subjected to 16S ribosomal DNA (rDNA) gene sequencing. The V4 hypervariable regions of 16S rDNA gene were amplified from all samples and sequenced by the Illumina MiSeq platform. Quality control and operational taxonomic units classification of reads were calculated with QIIME software. Alpha diversity and beta diversity were displayed with R software.
RESULTS Community richness (chao) and microbial structure in both CD and UC were significantly different from those in normal controls. At the phyla level, analysis of the microbial compositions revealed a significantly greater abundance of Proteobacteria in IBD as compared to that in controls. At the genera level, 8 genera in CD and 23 genera in UC (in particular, the Escherichia genus) showed significantly greater abundance as compared to that in normal controls. The relative abundance of Bacteroidetes in the active CD group was markedly lower than that in the inactive CD group. The abundance of Proteobacteria in patients with active CD was nominally higher than that in patients with inactive CD; however, the difference was not statistically significant after correction. Furthermore, the relative abundance of Bacteroidetes showed a negative correlation with the CD activity index scores.
CONCLUSION Our study profiles specific characteristics and microbial dysbiosis in the gut of Chinese patients with IBD. Bacteroidetes may have a negative impact on inflammatory development.
Collapse
Affiliation(s)
- Hai-Qin Ma
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ting-Ting Yu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiao-Jing Zhao
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yi Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hong-Jie Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
43
|
Abstract
The microbiota, which is comprised of the collective of all microbes inhabiting the gut and its effect on the human host in which it resides, has become a growing field of interest. Various parameters of health and disease have been found to be associated with the variation in the human gut microbiome. In recent years, many studies have demonstrated an important role of gut microbes in the development of various illnesses including autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, and multiple sclerosis. Although the mechanism of the disease involves both genetic and environmental factors, lupus has been found to be affected by the composition of the microbes lining the intestines. Several recent studies have suggested that alterations of the gut microbial composition may be correlated with SLE disease manifestations, while the exact roles of either symbiotic or pathogenic microbes in this disease have yet to be explored. Elucidation of the roles of gut microbes in SLE will shed light on how this autoimmune disorder develops and provide opportunities for improved biomarkers of the disease and the potential to probe new therapies. This new knowledge, along with that enabling alteration in composition of the gut microbiome, via diet modification, antibiotic, and probiotics, may bring forward a new era in the future of lupus treatment.
Collapse
Affiliation(s)
- Nurit Katz-Agranov
- Department of Internal Medicine, The University of Texas Houston, Health Science Center, Houston, TX, USA
| | - Gisele Zandman-Goddard
- Department of Medicine C, Wolfson Medical Center, Holon, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
44
|
Luo XM, Edwards MR, Mu Q, Yu Y, Vieson MD, Reilly CM, Ahmed SA, Bankole AA. Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus. Appl Environ Microbiol 2018; 84:e02288-17. [PMID: 29196292 PMCID: PMC5795066 DOI: 10.1128/aem.02288-17] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/24/2017] [Indexed: 01/11/2023] Open
Abstract
Gut microbiota dysbiosis has been observed in a number of autoimmune diseases. However, the role of the gut microbiota in systemic lupus erythematosus (SLE), a prototypical autoimmune disease characterized by persistent inflammation in multiple organs of the body, remains elusive. Here we report the dynamics of the gut microbiota in a murine lupus model, NZB/W F1, as well as intestinal dysbiosis in a small group of SLE patients with active disease. The composition of the gut microbiota changed markedly before and after the onset of lupus disease in NZB/W F1 mice, with greater diversity and increased representation of several bacterial species as lupus progressed from the predisease stage to the diseased stage. However, we did not control for age and the cage effect. Using dexamethasone as an intervention to treat SLE-like signs, we also found that a greater abundance of a group of lactobacilli (for which a species assignment could not be made) in the gut microbiota might be correlated with more severe disease in NZB/W F1 mice. Results of the human study suggest that, compared to control subjects without immune-mediated diseases, SLE patients with active lupus disease possessed an altered gut microbiota that differed in several particular bacterial species (within the genera Odoribacter and Blautia and an unnamed genus in the family Rikenellaceae) and was less diverse, with increased representation of Gram-negative bacteria. The Firmicutes/Bacteroidetes ratios did not differ between the SLE microbiota and the non-SLE microbiota in our human cohort.IMPORTANCE SLE is a complex autoimmune disease with no known cure. Dysbiosis of the gut microbiota has been reported for both mice and humans with SLE. In this emerging field, however, more studies are required to delineate the roles of the gut microbiota in different lupus-prone mouse models and people with diverse manifestations of SLE. Here, we report changes in the gut microbiota in NZB/W F1 lupus-prone mice and a group of SLE patients with active disease.
Collapse
Affiliation(s)
- Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Michael R Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Yang Yu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Miranda D Vieson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | | | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown cause. In recent years, with the emergence of microbiome research, changes in the gut microbiota composition have been correlated with a variety of autoimmune disorders, and several mechanisms linking these together have been suggested, including the hygiene theory, immune system activation and hormonal effects. It has therefore been suggested that gut microbiota may play a role in SLE. In this review, we summarize recent findings on the SLE-related microbiota compositions in both humans and rodents. Evidence linking microbiome with SLE opens a new avenue in researching the cause of SLE as well as improved future treatments. RECENT FINDINGS Although two studies found a lower Firmicutes/Bacteroidetes ratio in SLE patients vs. controls, there were inconsistencies regarding significant differences in the abundance of specific genera or species. Studies of mouse disease models have shown some correlations between microbial compositions and disease states, also indicating differences between males and females. SUMMARY Current data support an association between microbiota composition and SLE. Further research is needed to fully unravel this connection, potentially shedding light on mechanisms in SLE development and on the female bias of the disease, improving diagnosis and treatment.
Collapse
|
46
|
Gomes JP, Watad A, Shoenfeld Y. Nicotine and autoimmunity: The lotus' flower in tobacco. Pharmacol Res 2018; 128:101-109. [PMID: 29051105 DOI: 10.1016/j.phrs.2017.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/14/2022]
Abstract
Nicotine, the major component of cigarettes, has demonstrated conflicting impact on the immune system: some authors suggest that increases pro-inflammatory cytokines and provokes cellular apoptosis of neutrophils, releasing intracellular components that act as auto-antigens; others claimed that nicotine has a protective and anti-inflammatory effects, especially by binding to α7 subunit of nicotinic acetylcholine receptors. The cholinergic pathway contributes to an anti-inflammatory environment characterized by increasing T regulatory cells response, down-regulating of pro-inflammatory cytokines and a pro-inflammatory cells apoptosis. The effects of nicotine were studied in different autoimmune disease, as multiple sclerosis, type 1 diabetes, rheumatoid arthritis, sarcoidosis, Behçet's disease and inflammatory bowel diseases. The major problems about nicotine are the addiction and the adverse effects of related to each commercialized formulation. We sought in this review to summarize the knowledge accumulated to date concerning the relationship between nicotine and autoimmunity.
Collapse
Affiliation(s)
- João Pedro Gomes
- Department A of Internal Medicine, Hospital and University Centre of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - Abdulla Watad
- Zabludowicz Center for Autoimmune Disease, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Disease, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
47
|
Berkowitz L, Schultz BM, Salazar GA, Pardo-Roa C, Sebastián VP, Álvarez-Lobos MM, Bueno SM. Impact of Cigarette Smoking on the Gastrointestinal Tract Inflammation: Opposing Effects in Crohn's Disease and Ulcerative Colitis. Front Immunol 2018; 9:74. [PMID: 29441064 PMCID: PMC5797634 DOI: 10.3389/fimmu.2018.00074] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/11/2018] [Indexed: 01/06/2023] Open
Abstract
Cigarette smoking is a major risk factor for gastrointestinal disorders, such as peptic ulcer, Crohn’s disease (CD), and several cancers. The mechanisms proposed to explain the role of smoking in these disorders include mucosal damage, changes in gut irrigation, and impaired mucosal immune response. Paradoxically, cigarette smoking is a protective factor for the development and progression of ulcerative colitis (UC). UC and CD represent the two most important conditions of inflammatory bowel diseases, and share several clinical features. The opposite effects of smoking on these two conditions have been a topic of great interest in the last 30 years, and has not yet been clarified. In this review, we summarize the most important and well-understood effects of smoking in the gastrointestinal tract; and particularly, in intestinal inflammation, discussing available studies that have addressed the causes that would explain the opposite effects of smoking in CD and UC.
Collapse
Affiliation(s)
- Loni Berkowitz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Pardo-Roa
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P Sebastián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel M Álvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
48
|
Abstract
Inflammasome signalling is an emerging pillar of innate immunity and has a central role in the regulation of gastrointestinal health and disease. Activation of the inflammasome complex mediates both the release of the pro-inflammatory cytokines IL-1β and IL-18 and the execution of a form of inflammatory cell death known as pyroptosis. In most cases, these mediators of inflammation provide protection against bacterial, viral and protozoal infections. However, unchecked inflammasome activities perpetuate chronic inflammation, which underpins the molecular and pathophysiological basis of gastritis, IBD, upper and lower gastrointestinal cancer, nonalcoholic fatty liver disease and obesity. Studies have also highlighted an inflammasome signature in the maintenance of gut microbiota and gut-brain homeostasis. Harnessing the immunomodulatory properties of the inflammasome could transform clinical practice in the treatment of acute and chronic gastrointestinal and extragastrointestinal diseases. This Review presents an overview of inflammasome biology in gastrointestinal health and disease and describes the value of experimental and pharmacological intervention in the treatment of inflammasome-associated clinical manifestations.
Collapse
|
49
|
Enteric dysbiosis-linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice. Exp Mol Med 2017; 49:e370. [PMID: 28857085 PMCID: PMC5579512 DOI: 10.1038/emm.2017.122] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic high-salt diet-associated renal injury is a key risk factor for the development of hypertension. However, the mechanism by which salt triggers kidney damage is poorly understood. Our study investigated how high salt (HS) intake triggers early renal injury by considering the ‘gut-kidney axis’. We fed mice 2% NaCl in drinking water continuously for 8 weeks to induce early renal injury. We found that the ‘quantitative’ and ‘qualitative’ levels of the intestinal microflora were significantly altered after chronic HS feeding, which indicated the occurrence of enteric dysbiosis. In addition, intestinal immunological gene expression was impaired in mice with HS intake. Gut permeability elevation and enteric bacterial translocation into the kidney were detected after chronic HS feeding. Gut bacteria depletion by non-absorbable antibiotic administration restored HS loading-induced gut leakiness, renal injury and systolic blood pressure elevation. The fecal microbiota from mice fed chronic HS could independently cause gut leakiness and renal injury. Our current work provides a novel insight into the mechanism of HS-induced renal injury by investigating the role of the intestine with enteric bacteria and gut permeability and clearly illustrates that chronic HS loading elicited renal injury and dysfunction that was dependent on the intestine.
Collapse
|
50
|
Mu Q, Zhang H, Liao X, Lin K, Liu H, Edwards MR, Ahmed SA, Yuan R, Li L, Cecere TE, Branson DB, Kirby JL, Goswami P, Leeth CM, Read KA, Oestreich KJ, Vieson MD, Reilly CM, Luo XM. Control of lupus nephritis by changes of gut microbiota. MICROBIOME 2017; 5:73. [PMID: 28697806 PMCID: PMC5505136 DOI: 10.1186/s40168-017-0300-8] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/05/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Systemic lupus erythematosus, characterized by persistent inflammation, is a complex autoimmune disorder with no known cure. Immunosuppressants used in treatment put patients at a higher risk of infections. New knowledge of disease modulators, such as symbiotic bacteria, can enable fine-tuning of parts of the immune system, rather than suppressing it altogether. RESULTS Dysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Here we report a role of gut microbiota in the pathogenesis of renal dysfunction in lupus. Using a classical model of lupus nephritis, MRL/lpr, we found a marked depletion of Lactobacillales in the gut microbiota. Increasing Lactobacillales in the gut improved renal function of these mice and prolonged their survival. We used a mixture of 5 Lactobacillus strains (Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus johnsonii, and Lactobacillus gasseri), but L. reuteri and an uncultured Lactobacillus sp. accounted for most of the observed effects. Further studies revealed that MRL/lpr mice possessed a "leaky" gut, which was reversed by increased Lactobacillus colonization. Lactobacillus treatment contributed to an anti-inflammatory environment by decreasing IL-6 and increasing IL-10 production in the gut. In the circulation, Lactobacillus treatment increased IL-10 and decreased IgG2a that is considered to be a major immune deposit in the kidney of MRL/lpr mice. Inside the kidney, Lactobacillus treatment also skewed the Treg-Th17 balance towards a Treg phenotype. These beneficial effects were present in female and castrated male mice, but not in intact males, suggesting that the gut microbiota controls lupus nephritis in a sex hormone-dependent manner. CONCLUSIONS This work demonstrates essential mechanisms on how changes of the gut microbiota regulate lupus-associated immune responses in mice. Future studies are warranted to determine if these results can be replicated in human subjects.
Collapse
Affiliation(s)
- Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Husen Zhang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA USA
- Present Address: Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Xiaofeng Liao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Kaisen Lin
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA USA
| | - Hualan Liu
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA USA
- Present Address: Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Michael R. Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Ruoxi Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA USA
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - David B. Branson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Jay L. Kirby
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Poorna Goswami
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Caroline M. Leeth
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA USA
| | - Kaitlin A. Read
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA USA
| | - Kenneth J. Oestreich
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA USA
| | - Miranda D. Vieson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Christopher M. Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
- Edward Via College of Osteopathic Medicine, Blacksburg, VA USA
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|