1
|
Paul JK, Azmal M, Haque ANMSNB, Meem M, Talukder OF, Ghosh A. Unlocking the secrets of the human gut microbiota: Comprehensive review on its role in different diseases. World J Gastroenterol 2025; 31:99913. [DOI: 10.3748/wjg.v31.i5.99913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
The human gut microbiota, a complex and diverse community of microorganisms, plays a crucial role in maintaining overall health by influencing various physiological processes, including digestion, immune function, and disease susceptibility. The balance between beneficial and harmful bacteria is essential for health, with dysbiosis - disruption of this balance - linked to numerous conditions such as metabolic disorders, autoimmune diseases, and cancers. This review highlights key genera such as Enterococcus, Ruminococcus, Bacteroides, Bifidobacterium, Escherichia coli, Akkermansia muciniphila, Firmicutes (including Clostridium and Lactobacillus), and Roseburia due to their well-established roles in immune regulation and metabolic processes, but other bacteria, including Clostridioides difficile, Salmonella, Helicobacter pylori, and Fusobacterium nucleatum, are also implicated in dysbiosis and various diseases. Pathogenic bacteria, including Escherichia coli and Bacteroides fragilis, contribute to inflammation and cancer progression by disrupting immune responses and damaging tissues. The potential for microbiota-based therapies, such as probiotics, prebiotics, fecal microbiota transplantation, and dietary interventions, to improve health outcomes is examined. Future research directions in the integration of multi-omics, the impact of diet and lifestyle on microbiota composition, and advancing microbiota engineering techniques are also discussed. Understanding the gut microbiota’s role in health and disease is essential for formulating personalized, efficacious treatments and preventive strategies, thereby enhancing health outcomes and progressing microbiome research.
Collapse
Affiliation(s)
- Jibon Kumar Paul
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahir Azmal
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - ANM Shah Newaz Been Haque
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Meghla Meem
- Faculty of Medicine, Dhaka University, Dhaka 1000, Bangladesh
| | - Omar Faruk Talukder
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Ajit Ghosh
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
2
|
Yadav S, Prasannan A, Venkatachalam K, Binesh A. Exploring the mechanism and crosstalk between IL-6 and IL- 1β on M2 macrophages under metabolic stress conditions. Cytokine 2025; 186:156852. [PMID: 39765025 DOI: 10.1016/j.cyto.2024.156852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/14/2025]
Abstract
Macrophages are highly variable immune cells that are important in controlling inflammation and maintaining tissue balance. The ability to polarize into two major types-M1, promoting inflammation, and M2, resolving inflammation and contributing to tissue repair-determines their specific roles in health and disease. M2 macrophages are particularly important for reducing inflammation and promoting tissue regeneration, but their function is shaped mainly by surrounding cells. This is evident in obesity, diabetes, and chronic inflammation. Although many cytokines regulate macrophage polarization, interleukin-6 (IL-6) and interleukin-1β (IL-1β) are major players, but their effects on M2 macrophage behavior under metabolic stress remain unclear. This study describes the intricacies within M2 macrophages concerning IL-6 and IL-1β signaling when under metabolic stress. Though, more frequently than not, IL-6 is labelled as pro-inflammatory, it can also behave as an anti-inflammatory mediator. On the other hand, IL-1β is the main pro-inflammatory agent, particularly in metabolic disorders. The relationship between these cytokines and the macrophages is mediated through important pathways such as JAK/STAT and NFκB, which get perturbed by metabolic stress. Therefore, metabolic stress also alters the functional parameters of macrophages, including alterations in mitochondrial metabolism, glycolytic and oxidative metabolism. Phosphorylation alters the kinetics involved in energy consumption and affects their polarization and their function. However, it has been suggested that IL-6 and IL-1β may work in concert or competition when inducing M2 polarization and, importantly, implicate cytokine release, phagocytic activity, and tissue repair processes. In this review, we discuss the recent literature on the participation of IL-6 and IL-1β cytokines in macrophage polarization and how metabolic stress changes cytokine functions and synergistic relations. A better understanding of these cytokines would serve as an important step toward exploring alternative antiviral strategies directed against metabolic disturbance and, hence, approve further endeavors.
Collapse
Affiliation(s)
- Shawna Yadav
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Anusha Prasannan
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India
| | - Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India.
| |
Collapse
|
3
|
Malvezzi H, Cestari BA, Mendes H, Hernandes C, Podgaec S. Peritoneal fluid microbiota profile of patients with deep endometriosis. Microb Pathog 2025; 199:107244. [PMID: 39708979 DOI: 10.1016/j.micpath.2024.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Endometriosis is a chronic gynecological disease that affects 10 % of reproductive-aged women and characterized by the presence of endometrial tissue outside the uterus. The disease is linked to a pro-inflammatory environment in the peritoneal fluid of patients, with high levels of cytokines, growth factors, and reactive oxygen species. Changes in the peritoneal fluid, such as altered immune cells and cytokines, can be linked to the immune balance in endometriosis. Immunological changes may be related to the presence of microorganisms in the peritoneal fluid that can activate Toll-like receptor (TLR) signaling and trigger an inflammatory response. A high diversity of TLRs has been found in women with endometriosis, and the presence of specific microorganisms in the fluid is suggested to be responsible for the activation of inflammasomes and inflammatory cytokines involved in the development of endometriosis. The present study was conducted at a hospital in southeastern Brazil to test this hypothesis, using a case-control design. Peritoneal fluid from 50 patients was used in this study. The case group consisted of 27 patients with endometriosis and the control group consisted of 23 patients without endometriosis. The samples were stored in a microbiome transport solution, and DNA was extracted and sent for genetic sequencing to identify the microorganisms present. The obtained sequencing reads were processed using a bioinformatics pipeline involving demultiplexing with the Illumina proprietary software, primer detection and removal, error evaluation, quality filtering, error removal using the Deblur software, amplicon sequence variants grouping, and chimera detection using the VSEARCH software. The sheer abundance of the microbiome made it challenging to discern any notable differences between the two groups. Nevertheless, we highlighted the prevalence of three primary bacteria in the peritoneal fluid from patients with endometriosis: Flavobacterium, Pseudomonas, and Bacillus. The results were established after a rigorous experimental design to eliminate potential contamination from extraction kits and handling. Our findings provide valuable insight into the pathogenesis of this disease and can be useful to understand how microbiota and immune system works in endometriosis.
Collapse
Affiliation(s)
- Helena Malvezzi
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, São Paulo, 05651-901, Brazil.
| | - Bruna Azevedo Cestari
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, São Paulo, 05651-901, Brazil
| | - Helen Mendes
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, São Paulo, 05651-901, Brazil
| | - Camila Hernandes
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, São Paulo, 05651-901, Brazil
| | - Sergio Podgaec
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, São Paulo, 05651-901, Brazil; Departamento de Obstetricia e Ginecologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Pratt ML, Plumb AN, Manjrekar A, Cardona LM, Chan CK, John JM, Sadler KE. Microbiome contributions to pain: a review of the preclinical literature. Pain 2025; 166:262-281. [PMID: 39258679 PMCID: PMC11723818 DOI: 10.1097/j.pain.0000000000003376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/28/2024] [Indexed: 09/12/2024]
Abstract
ABSTRACT Over the past 2 decades, the microbiome has received increasing attention for the role that it plays in health and disease. Historically, the gut microbiome was of particular interest to pain scientists studying nociplastic visceral pain conditions given the anatomical juxtaposition of these microorganisms and the neuroimmune networks that drive pain in such diseases. More recently, microbiomes both inside and across the surface of the body have been recognized for driving sensory symptoms in a broader set of diseases. Microbiomes have never been a more popular topic in pain research, but to date, there has not been a systematic review of the preclinical microbiome pain literature. In this article, we identified all animal studies in which both the microbiome was manipulated and pain behaviors were measured. Our analysis included 303 unique experiments across 97 articles. Microbiome manipulation methods and behavioral outcomes were recorded for each experiment so that field-wide trends could be quantified and reported. This review specifically details the animal species, injury models, behavior measures, and microbiome manipulations used in preclinical pain research. From this analysis, we were also able to conclude how manipulations of the microbiome alter pain thresholds in naïve animals and persistent pain intensity and duration in cutaneous and visceral pain models. This review summarizes by identifying existing gaps in the literature and providing recommendations for how to best plan, implement, and interpret data collected in preclinical microbiome pain experiments.
Collapse
Affiliation(s)
- McKenna L Pratt
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | | | | | | | | | | | | |
Collapse
|
5
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
6
|
Dall'Olio FG, Zrafi W, Roelants V, Ambrosini V, Fourquet A, Mitea C, Passiglia F, Bauckneht M, Bonardel G, Conci N, Benitez JC, Arena V, Namour C, Naigeon M, Monnet I, Beshiri K, Hoton D, Dursun S, Danlos FX, Argalia G, Aldea M, Rovera G, Derosa L, Iebba V, Gietema HA, Gounant V, Lacroix V, Remon J, Gautheret D, Chaput N, Job B, Kannouche PL, Velasco-Nuño M, Zitvogel L, Cella E, Chícharo de Freitas JR, Vasseur D, Bettaieb MA, Tagliamento M, Hendriks L, Italiano A, Planchard D, Marabelle A, Barlesi F, Novello S, De Andreis D, Aboubakar Nana F, Ardizzoni A, Zalcman G, Garcia C, Besse B. Metabolic Tumor Volume Assessed by 18F FDG-PET CT Scan as a Predictive Biomarker for Immune Checkpoint Blockers in Advanced NSCLC and Its Biological Correlates. Clin Cancer Res 2025; 31:352-364. [PMID: 39437011 DOI: 10.1158/1078-0432.ccr-24-1993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This study aimed to explore metabolic tumor volume (MTV) as assessed by 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG-PET/CT) and understand its biological meaning in patients with non-small cell lung cancer (NSCLC) exposed to immune checkpoint blockers (ICB). EXPERIMENTAL DESIGN In this study, patients with advanced NSCLC and a positive PET scan within 42 days of first-line treatment were enrolled in 11 institutions across four countries. Total MTV (tMTV) was analyzed, with a 42% maximum standardized uptake value threshold. Survival was analyzed according to high tMTV (≥median). Plasma proteomic profile, whole exome, transcriptome, and other analyses were performed on monocentric cohorts to explore its biological correlates. RESULTS Of the 518 patients included, 167 received ICBs, 257 had chemotherapy plus ICBs, and 94 had chemotherapy. Median tMTV was 99 cm3. Median overall survival (OS) for patients with high tMTV treated with ICBs was 11.4 vs. 29.6 months (P < 0.0012) for those with low tMTV. In patients who received chemotherapy-ICB, tMTV did not correlate with OS (P = 0.099). In patients with programmed death-ligand 1 (PD-L1) ≥1% and high tMTV, chemotherapy-ICB combination was associated with longer OS compared with ICBs alone (20 vs. 11.4 months; P = 0.026), while no survival differences were observed in the low tMTV group. High tMTV correlated (and its detrimental effect seems to be driven) with a specific proteomic profile and increase in genomic instability. CONCLUSIONS Our analysis indicates high tMTV is linked to an increase in systemic inflammation, specific cytokines production, and chromosomal instability. tMTV may serve as one of the biomarkers to select the best upfront strategy in patients with PD-L1-positive advanced NSCLC.
Collapse
Affiliation(s)
- Filippo G Dall'Olio
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- METSY Laboratory Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, UMR 9018 CNRS and Université Paris-Saclay, Villejuif, France
| | - Wael Zrafi
- Department of Biostatistics and Bioinformatics, Gustave Roussy, Villejuif, France
| | - Veronique Roelants
- Nuclear Medicine Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Valentina Ambrosini
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Aloyse Fourquet
- Department of Nuclear Medicine, Hôpital Bichat-Claude Bernard, AP-HP.Nord, Univesité Paris Cité, Paris, France
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | - Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gerald Bonardel
- Department of Nuclear Medicine, Centre Cardiologique du Nord, Saint-Denis, France
| | - Nicole Conci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Jose Carlos Benitez
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Malaga, Spain
- Research Biomedical Institute of Malaga (IBIMA), Malaga, Spain
| | - Vincenzo Arena
- Nuclear Medicine Division, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Céline Namour
- Thoracic Oncology Department-Early Phases Unit CIC-1425 Inserm, Institut du Cancer AP-HP.Nord, Hôpital Bichat-Claude Bernard, Paris, France
| | - Marie Naigeon
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Isabelle Monnet
- Pneumology Department, Intercommunal Hospital of Creteil (CHI), Creteil, France
| | - Kristi Beshiri
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejui, France
| | - Delphine Hoton
- Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Safiye Dursun
- Department of Pulmonary Diseases, GROW-School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - François Xavier Danlos
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy, Villejuif, France
| | - Giulia Argalia
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Mihaela Aldea
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Guido Rovera
- Nuclear Medicine Division, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lisa Derosa
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale Contre le Cancer, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicetre, France
| | - Valerio Iebba
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Hester A Gietema
- GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
- Maastricht University Medical Centre, Maastricht University, Maastricht, the Netherlands
| | - Valerie Gounant
- Thoracic Oncology Department-Early Phases Unit CIC-1425 Inserm, Institut du Cancer AP-HP.Nord, Hôpital Bichat-Claude Bernard, Paris, France
| | - Valérie Lacroix
- Department of Cardiovascular and Thoracic Surgery, IREC, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jordi Remon
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - Daniel Gautheret
- Department of Biostatistics and Bioinformatics, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Bastien Job
- Department of Biostatistics and Bioinformatics, Gustave Roussy, Villejuif, France
| | | | - Monica Velasco-Nuño
- Department of Nuclear Medicine Hospital HM Nou Delfos, HM Hospitales, Barcelona, Spain
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale Contre le Cancer, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicetre, France
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Villejuif, France
| | - Eugenia Cella
- Dipartimento di Medicina Interna e Specialità Mediche (DiMI), Università degli Studi di Genova, Genoa, Italy
| | | | - Damien Vasseur
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | | | - Marco Tagliamento
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Dipartimento di Medicina Interna e Specialità Mediche (DiMI), Università degli Studi di Genova, Genoa, Italy
| | - Lizza Hendriks
- Department of Pulmonary Diseases, GROW-School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Antoine Italiano
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejui, France
| | - David Planchard
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Fabrice Barlesi
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | | | | | - Andrea Ardizzoni
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gerard Zalcman
- Thoracic Oncology Department-Early Phases Unit CIC-1425 Inserm, Institut du Cancer AP-HP.Nord, Hôpital Bichat-Claude Bernard, Paris, France
| | - Camilo Garcia
- Nuclear Medicine Department, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| |
Collapse
|
7
|
Kern L, Mastandrea I, Melekhova A, Elinav E. Mechanisms by which microbiome-derived metabolites exert their impacts on neurodegeneration. Cell Chem Biol 2025; 32:25-45. [PMID: 39326420 DOI: 10.1016/j.chembiol.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Recent developments in microbiome research suggest that the gut microbiome may remotely modulate central and peripheral neuronal processes, ranging from early brain development to age-related changes. Dysbiotic microbiome configurations have been increasingly associated with neurological disorders, such as neurodegeneration, but causal understanding of these associations remains limited. Most mechanisms explaining how the microbiome may induce such remote neuronal effects involve microbially modulated metabolites that influx into the 'sterile' host. Some metabolites are able to cross the blood-brain barrier (BBB) to reach the central nervous system, where they can impact a variety of cells and processes. Alternatively, metabolites may directly signal to peripheral nerves to act as neurotransmitters or exert modulatory functions, or impact immune responses, which, in turn, modulate neuronal function and associated disease propensity. Herein, we review the current knowledge highlighting microbiome-modulated metabolite impacts on neuronal disease, while discussing unknowns, controversies and prospects impacting this rapidly evolving research field.
Collapse
Affiliation(s)
- Lara Kern
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ignacio Mastandrea
- Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Melekhova
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Jones K, de Brito CB, Byndloss MX. Metabolic tug-of-war: Microbial metabolism shapes colonization resistance against enteric pathogens. Cell Chem Biol 2025; 32:46-60. [PMID: 39824157 DOI: 10.1016/j.chembiol.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 11/06/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
A widely recognized benefit of gut microbiota is that it provides colonization resistance against enteric pathogens. The gut microbiota and their products can protect the host from invading microbes directly via microbe-pathogen interactions and indirectly by host-microbiota interactions, which regulate immune system function. In contrast, enteric pathogens have evolved mechanisms to utilize microbiota-derived metabolites to overcome colonization resistance and increase their pathogenic potential. This review will focus on recent studies of metabolism-mediated mechanisms of colonization resistance and virulence strategies enteric pathogens use to overcome them, along with how induction of inflammation by pathogenic bacteria changes the landscape of the gut and enables alternative metabolic pathways. We will focus on how intestinal pathogens counteract the protective effects of microbiota-derived metabolites to illustrate the growing appreciation of how metabolic factors may serve as crucial virulence determinants and overcome colonization resistance.
Collapse
Affiliation(s)
- Katerina Jones
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Camila Bernardo de Brito
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mariana Xavier Byndloss
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Govender P, Ghai M. Population-specific differences in the human microbiome: Factors defining the diversity. Gene 2025; 933:148923. [PMID: 39244168 DOI: 10.1016/j.gene.2024.148923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Differences in microbial communities at different body habitats define the microbiome composition of the human body. The gut, oral, skin vaginal fluid and tissue microbiome, are pivotal for human development and immune response and cross talk between these microbiomes is evident. Population studies reveal that various factors, such as host genetics, diet, lifestyle, aging, and geographical location are strongly associated with population-specific microbiome differences. The present review discusses the factors that shape microbiome diversity in humans, and microbiome differences in African, Asian and Caucasian populations. Gut microbiome studies show that microbial species Bacteroides is commonly found in individuals living in Western countries (Caucasian populations), while Prevotella is prevalent in non-Western countries (African and Asian populations). This association is mainly due to the high carbohydrate, high fat diet in western countries in contrast to high fibre, low fat diets in African/ Asian regions. Majority of the microbiome studies focus on the bacteriome component; however, interesting findings reveal that increased bacteriophage richness, which makes up the virome component, correlates with decreased bacterial diversity, and causes microbiome dysbiosis. An increase of Caudovirales (bacteriophages) is associated with a decrease in enteric bacteria in inflammatory bowel diseases. Future microbiome studies should evaluate the interrelation between bacteriome and virome to fully understand their significance in the pathogenesis and progression of human diseases. With ethnic health disparities becoming increasingly apparent, studies need to emphasize on the association of population-specific microbiome differences and human diseases, to develop microbiome-based therapeutics. Additionally, targeted phage therapy is emerging as an attractive alternative to antibiotics for bacterial infections. With rapid rise in microbiome research, focus should be on standardizing protocols, advanced bioinformatics tools, and reducing sequencing platform related biases. Ultimately, integration of multi-omics data (genomics, transcriptomics, proteomics and metabolomics) will lead to precision models for personalized microbiome therapeutics advancement.
Collapse
Affiliation(s)
- Priyanka Govender
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| |
Collapse
|
10
|
Lee PK, Co VA, Yang Y, Wan MLY, El-Nezami H, Zhao D. Bioavailability and interactions of schisandrin B with 5-fluorouracil in a xenograft mouse model of colorectal cancer. Food Chem 2025; 463:141371. [PMID: 39332376 DOI: 10.1016/j.foodchem.2024.141371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Schisandrin B (Sch B) is a predominant bioactive lignan from the fruit of a Chinese medicine food homology plant, Schisandra chinensis. Previously, we observed potent anti-tumor effect of Sch-B in colorectal cancer (CRC) and enhanced chemotherapy efficacy with fluorouracil (5-FU). However, their bioavailability and reciprocal interactions under CRC conditions are unclear. In this study, we first compared the bioavailability, metabolism and tissue distribution of Sch-B between non-tumor-bearing and xenograft CRC tumor-bearing mice. Next, we examined SchB-5-FU interactions via investigating alterations in drug metabolism and multidrug resistance. Using a validated targeted metabolomics approach, five active metabolites, including Sch-B and fluorodeoxyuridine triphosphate, were found tumor-accumulative. Co-treatment resulted in higher levels of Sch-B and 5-FU metabolites, showing improved phytochemical and drug bioavailability. Multidrug resistance gene (MDR1) was significantly downregulated upon co-treatment. Overall, we demonstrated the potential of Sch-B to serve as a promising chemotherapy adjuvant via improving drug bioavailability and metabolism, and attenuating MDR.
Collapse
Affiliation(s)
- Pui-Kei Lee
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| | - Vanessa Anna Co
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China; Department of Microbiology, The University of Hong Kong, and Centre for Virology, Vaccinology and Therapeutics, Hong Kong, SAR, China.
| | - Yang Yang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| | - Murphy Lam Yim Wan
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom; Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund 221 84, Sweden.
| | - Hani El-Nezami
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio FI-70211, Finland.
| | - Danyue Zhao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| |
Collapse
|
11
|
Kunasol C, Chattipakorn N, Chattipakorn SC. Impact of calcineurin inhibitors on gut microbiota: Focus on tacrolimus with evidence from in vivo and clinical studies. Eur J Pharmacol 2025; 987:177176. [PMID: 39637933 DOI: 10.1016/j.ejphar.2024.177176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Calcineurin Inhibitors (CNIs), including tacrolimus and cyclosporine A, are the most widely used immunosuppressive drugs in solid organ transplantation. Those drugs play a pivotal role in preventing graft rejection and reducing autoimmunity. However, recent studies indicate that CNIs can disrupt the composition of gut microbiota or result in "gut dysbiosis". This dysbiosis has been shown to be a significant factor in reducing host immunity by decreasing innate immune cells and impairing metabolic regulation, leading to lipid and glucose accumulation. Several in vivo and clinical studies have demonstrated a mechanistic link between gut dysbiosis and the side effects of CNI. Those studies have unveiled that gut dysbiosis induced by CNIs contributes to adverse effects such as hyperglycemia, nephrotoxicity, and diarrhea. These adverse effects of the induced gut dysbiosis require interventions to restore microbial balance. Probiotics and dietary supplements have emerged as potential interventions to mitigate the side effects of gut dysbiosis caused by CNIs. In this complex relationship between CNI treatment, gut dysbiosis, and interventions, several types of gut microbiota and host immunity are involved. However, the mechanisms underlying these relationships remain elusive. Therefore, the aim of this review is to comprehensively summarize and discuss the major findings from in vivo and clinical data regarding the impact of treatment with CNIs on gut microbiota. This review also explores interventions to mitigate dysbiosis for therapeutic approaches of the side effects of CNIs. The possible underlying mechanisms of CNIs-induced gut dysbiosis with or without interventions are also presented and discussed.
Collapse
Affiliation(s)
- Chanon Kunasol
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
12
|
Fahur Bottino G, Bonham KS, Patel F, McCann S, Zieff M, Naspolini N, Ho D, Portlock T, Joos R, Midani FS, Schüroff P, Das A, Shennon I, Wilson BC, O'Sullivan JM, Britton RA, Murray DM, Kiely ME, Taddei CR, Beltrão-Braga PCB, Campos AC, Polanczyk GV, Huttenhower C, Donald KA, Klepac-Ceraj V. Early life microbial succession in the gut follows common patterns in humans across the globe. Nat Commun 2025; 16:660. [PMID: 39809768 PMCID: PMC11733223 DOI: 10.1038/s41467-025-56072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life. Using 3154 samples from 1827 infants across 12 countries, we trained a random forest model, achieving a root mean square error of 2.56 months. We identified key taxonomic predictors of age, including declines in Bifidobacterium spp. and increases in Faecalibacterium prausnitzii and Lachnospiraceae. Microbial succession patterns are conserved across infants from diverse human populations, suggesting universal developmental trajectories. Functional analysis confirmed trends in key microbial genes involved in feeding transitions and dietary exposures. This model provides a normative benchmark of "microbiome age" for assessing early gut maturation that may be used alongside other measures of child development.
Collapse
Affiliation(s)
| | - Kevin S Bonham
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Fadheela Patel
- University of Cape Town, Cape Town, Western Cape, South Africa
| | - Shelley McCann
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Michal Zieff
- University of Cape Town, Cape Town, Western Cape, South Africa
| | - Nathalia Naspolini
- School of Arts, Sciences and Humanity, University of São Paulo, São Paulo, SP, Brazil
| | - Daniel Ho
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Theo Portlock
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Raphaela Joos
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Firas S Midani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Paulo Schüroff
- School of Arts, Sciences and Humanity, University of São Paulo, São Paulo, SP, Brazil
| | - Anubhav Das
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Inoli Shennon
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Brooke C Wilson
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- INFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Mairead E Kiely
- INFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Carla R Taddei
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, São Paulo, SP, Brazil
| | - Patrícia C B Beltrão-Braga
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, São Paulo, SP, Brazil
| | - Alline C Campos
- Pharmacology of Neuroplasticity Lab- Department of Pharmacology, Ribeirão Preto Medical School- University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme V Polanczyk
- Division of Child & Adolescent Psychiatry, Department & Institute of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.
| |
Collapse
|
13
|
Seguí-Pérez A, Castillo-González R, Sancho-Temiño L, Cruz-Adalia A. Newly identified cell types crucial for gut commensal tolerance. Trends Cell Biol 2025:S0962-8924(24)00273-3. [PMID: 39814617 DOI: 10.1016/j.tcb.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
The generation of regulatory T cells (Tregs) through interactions with antigen-presenting cells (APCs) is essential for establishing tolerance to gut commensals. Recent findings highlight the critical role of RORγt-lineage APCs, especially in gut-associated lymphoid tissues, in the induction of microbiota-specific peripheral Tregs and maintaining gut immune homeostasis.
Collapse
Affiliation(s)
- Alba Seguí-Pérez
- Department of Immunology, Ophthalmology, and ENT, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Raquel Castillo-González
- Department of Immunology, Ophthalmology, and ENT, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Lucía Sancho-Temiño
- Department of Immunology, Ophthalmology, and ENT, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Aránzazu Cruz-Adalia
- Department of Immunology, Ophthalmology, and ENT, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain.
| |
Collapse
|
14
|
Zheng ZL, Zheng QF, Wang LQ, Liu Y. Bowel preparation before colonoscopy: Consequences, mechanisms, and treatment of intestinal dysbiosis. World J Gastroenterol 2025; 31:100589. [PMID: 39811511 PMCID: PMC11684204 DOI: 10.3748/wjg.v31.i2.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The term "gut microbiota" primarily refers to the ecological community of various microorganisms in the gut, which constitutes the largest microbial community in the human body. Although adequate bowel preparation can improve the results of colonoscopy, it may interfere with the gut microbiota. Bowel preparation for colonoscopy can lead to transient changes in the gut microbiota, potentially affecting an individual's health, especially in vulnerable populations, such as patients with inflammatory bowel disease. However, measures such as oral probiotics may ameliorate these adverse effects. We focused on the bowel preparation-induced changes in the gut microbiota and host health status, hypothesized the factors influencing these changes, and attempted to identify measures that may reduce dysbiosis, thereby providing more information for individualized bowel preparation for colonoscopy in the future.
Collapse
Affiliation(s)
- Ze-Long Zheng
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Qing-Fan Zheng
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Li-Qiang Wang
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yi Liu
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
15
|
Cai X, Ren F, Yao Y. Gut microbiota and their metabolites in the immune response of rheumatoid arthritis: Therapeutic potential and future directions. Int Immunopharmacol 2025; 147:114034. [PMID: 39805176 DOI: 10.1016/j.intimp.2025.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent joint inflammation, damage, and loss of function. In recent years, the role of gut microbiota and its metabolites in immune regulation has attracted increasing attention. The gut microbiota influences the host immune system's homeostasis through various mechanisms, regulating the differentiation, function, and immune tolerance of immune cells. Dysbiosis of the gut microbiota in RA patients is closely associated with abnormal activation of immune cells and excessive secretion of inflammatory cytokines. Metabolites produced by the gut microbiota, such as short-chain fatty acids (SCFAs), tryptophan metabolites, bile acids, and amino acid metabolites, play a critical role in immune responses, regulating the functions of immune cells like T cells, B cells, and macrophages, and inhibiting the release of pro-inflammatory cytokines. Restoring the balance of the gut microbiota and optimizing the production of metabolic products may become a new strategy for RA treatment. This review discusses the role of gut microbiota and its metabolites in the immune response of RA, exploring how they influence the immunopathological process of RA through the regulation of immune cells and key immune factors. It also provides a theoretical basis for future therapeutic strategies based on gut microbiota modulation.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Department of Pharmacy Hangzhou First People's Hospital Hangzhou China.
| | - Fujia Ren
- Department of Pharmacy Hangzhou Women's Hospital Hangzhou China
| | - Yao Yao
- Department of Pharmacy Women's Hospital School of Medicine Zhejiang University Hangzhou China
| |
Collapse
|
16
|
Bolen ML, Gomes BN, Gill B, Menees KB, Staley H, Jernigan J, McFarland NR, Zimmermann EM, Forsmark CE, Tansey MG. Peripheral blood immune cells from individuals with Parkinson's disease or inflammatory bowel disease share deficits in iron storage and transport that are modulated by non-steroidal anti-inflammatory drugs. Neurobiol Dis 2025:106794. [PMID: 39805368 DOI: 10.1016/j.nbd.2025.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/09/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025] Open
Abstract
Parkinson's Disease (PD) is a multisystem disorder in which dysregulated neuroimmune crosstalk and inflammatory relay via the gut-blood-brain axis have been implicated in PD pathogenesis. Although alterations in circulating inflammatory cytokines and reactive oxygen species (ROS) have been associated with PD, no biomarkers have been identified that predict clinical progression or disease outcome. Gastrointestinal (GI) dysfunction, which involves perturbation of the underlying immune system, is an early and often-overlooked symptom that affects up to 80 % of individuals living with PD. Interestingly, 50-70 % of individuals with inflammatory bowel disease (IBD), a GI condition that has been epidemiologically linked to PD, display chronic illness-induced anemia - which drives toxic accumulation of iron in the gut. Ferroptotic (or iron loaded) cells have small and dysmorphic mitochondria-suggesting that mitochondrial dysfunction is a consequence of iron accumulation. In pro-inflammatory environments, iron accumulates in immune cells, suggesting a possible connection and/or synergy between iron dysregulation and immune cell dysfunction. Peripheral blood mononuclear cells (PBMCs) recapitulate certain PD-associated neuropathological and inflammatory signatures and can act as communicating messengers in the gut-brain axis. Additionally, this communication can be modulated by several environmental factors; specifically, our data further support existing literature demonstrating a role for non-steroidal anti-inflammatory drugs (NSAIDs) in modulating immune transcriptional states in inflamed individuals. A mechanism linking chronic gut inflammation to iron dysregulation and mitochondrial function within peripheral immune cells has yet to be identified in conferring risk for PD. To that end, we isolated PBMCs and simultaneously evaluated their directed transcriptome and bioenergetic status, to investigate if iron dysregulation and mitochondrial sensitization are linked in individuals living with PD or IBD because of chronic underlying remittent immune activation. We have identified shared features of peripheral inflammation and immunometabolism in individuals living with IBD or PD that may contribute to the epidemiological association reported between IBD and risk for PD.
Collapse
Affiliation(s)
- MacKenzie L Bolen
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Beatriz Nuñes Gomes
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Blake Gill
- Department of Surgery, Northwestern University, USA.
| | - Kelly B Menees
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Hannah Staley
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Janna Jernigan
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Nikolaus R McFarland
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Ellen M Zimmermann
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Christopher E Forsmark
- Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Su D, Li M, Xie Y, Xu Z, Lv G, Jiu Y, Lin J, Chang CJ, Chen H, Cheng F. Gut commensal bacteria Parabacteroides goldsteinii-derived outer membrane vesicles suppress skin inflammation in psoriasis. J Control Release 2025; 377:127-145. [PMID: 39532207 DOI: 10.1016/j.jconrel.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Despite gut microbiota-derived extracellular vesicles (EVs) serving as pivotal mediators in bacteria-host cell interactions, their potential role in modulating skin inflammation remains poorly understood. Here, we developed strategies for mass production of Parabacteroides goldsteinii-derived outer membrane vesicles (Pg OMVs), commonly known as EVs. We found that orally administered Pg OMVs can reach the colon, traverse the intestinal barrier, and circulate to the inflamed skin of psoriasis-like mice, resulting in reduced epidermal hyperplasia, suppressed infiltration of inflammatory cells in the skin lesions, and effective amelioration of both skin and systemic inflammation. Additionally, subcutaneous injection of thermosensitive PF-127 hydrogel loaded with Pg OMVs exerts similar immunomodulatory effects, allowing sustained release of Pg OMVs into skin cells, effectively suppressing skin inflammation and ameliorating symptoms of psoriasis. This study unveils the importance of gut microbiota-derived OMVs, which can target inflamed skin via both the gut-skin axis and local skin administration, providing a promising alternative to live bacteria therapy for the treatment of skin inflammatory diseases.
Collapse
Affiliation(s)
- Dandan Su
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Manchun Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuedong Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhanxue Xu
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Guowen Lv
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Jingxiong Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chih-Jung Chang
- Medical Research Center and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen 361028, China; School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
18
|
Heckmann ND, Culler M, Mont MA, Lieberman JR, Parvizi J. Emerging Concepts in Periprosthetic Joint Infection Research: The Human Microbiome. J Arthroplasty 2025:S0883-5403(25)00001-4. [PMID: 39798621 DOI: 10.1016/j.arth.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/26/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Microorganisms, including bacteria, fungi, and viruses, that reside on and within the human body are collectively known as the human microbiome. Dysbiosis, or disruption in the microbiome, has been implicated in several disease processes, including asthma, obesity, autoimmune diseases, and numerous other conditions. While the Human Microbiome Project (HMP) and the generation of descriptive studies it inspired established correlations between characteristic patterns in the composition of the microbiome and specific disease phenotypes, current research has begun to focus on elucidating the causal role of the microbiome in disease pathogenesis. Within the field of orthopaedic surgery, researchers have proposed the concept of a "gut-joint axis" by which the intestinal microbiome influences joint health and the development of diseases such as osteoarthritis and periprosthetic joint infection (PJI). It is theorized that intestinal dysbiosis increases gut permeability, leading to the translocation of bacteria and their metabolic products into the systemic circulation and the stimulation of proinflammatory response cascades throughout the body, including within the joints. While correlative studies have identified patterns of dysbiotic derangement associated with osteoarthritis and PJI, translational research is needed to clarify the precise mechanisms by which these changes influence disease processes. Additionally, an emerging body of literature has challenged the previously held belief that certain body sites are sterile and do not possess a microbiome, with studies identifying distinct microbial genomic signatures and a core microbiome that varies between anatomic sites. A more thorough characterization of the joint microbiome may have profound implications for our understanding of PJI pathogenesis and our ability to stratify patients based on risk. The purpose of this review was to outline our current understanding of the human microbiome, to describe the gut-joint axis and its role in specific pathologies, including PJI, and to highlight the potential of microbiome-based therapeutic interventions in the field of orthopaedics.
Collapse
Affiliation(s)
- Nathanael D Heckmann
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.
| | - McKenzie Culler
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Michael A Mont
- LifeBridge Health, Sinai Hospital of Baltimore, The Rubin Institute for Advanced Orthopaedics, Baltimore, MD, United States
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Javad Parvizi
- International Joint Center, Acibadem University Hospital, Istanbul, Turkey
| |
Collapse
|
19
|
Pellon A, Palacios A, Abecia L, Rodríguez H, Anguita J. Friends to remember: innate immune memory regulation by the microbiota. Trends Microbiol 2025:S0966-842X(24)00318-4. [PMID: 39794207 DOI: 10.1016/j.tim.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
Innate immune memory (IIM) is the process by which, upon a primary challenge, innate immune cells alter their epigenetic, transcriptional, and immunometabolic profiles, resulting in modified secondary responses. Unlike infections or other immune-system-related diseases, the role of IIM in nonpathogenic contexts is less understood. An increasing body of research has shown that normal microbiota members or their metabolic byproducts induce alternative memory phenotypes, suggesting that memory cells contribute to homeostasis in mucosal areas. In this review, we discuss the newest insights in the emerging field of IIM to the microbiota and the potential of manipulating these long-term responses to promote better mucosal health.
Collapse
Affiliation(s)
- Aize Pellon
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain.
| | - Ainhoa Palacios
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Present address: Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza; Galdakao, Spain and Cell Therapy, Stem Cells and Tissues Group, BioBizkaia Health Research Institute; Barakaldo, Spain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Department of Immunology, Microbiology, and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Héctor Rodríguez
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
20
|
Pribyl AL, Hugenholtz P, Cooper MA. A decade of advances in human gut microbiome-derived biotherapeutics. Nat Microbiol 2025:10.1038/s41564-024-01896-3. [PMID: 39779879 DOI: 10.1038/s41564-024-01896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Microbiome science has evolved rapidly in the past decade, with high-profile publications suggesting that the gut microbiome is a causal determinant of human health. This has led to the emergence of microbiome-focused biotechnology companies and pharmaceutical company investment in the research and development of gut-derived therapeutics. Despite the early promise of this field, the first generation of microbiome-derived therapeutics (faecal microbiota products) have only recently been approved for clinical use. Next-generation therapies based on readily culturable and as-yet-unculturable colonic bacterial species (with the latter estimated to comprise 63% of all detected species) have not yet progressed to pivotal phase 3 trials. This reflects the many challenges involved in developing a new class of drugs in an evolving field. Here we discuss the evolution of the live biotherapeutics field over the past decade, from the development of first-generation products to the emergence of rationally designed second- and third-generation live biotherapeutics. Finally, we present our outlook for the future of this field.
Collapse
Affiliation(s)
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia.
| | | |
Collapse
|
21
|
Peng S, Yu L, Jiang M, Cao S, Wang H, Lu X, Tao Y, Zhou J, Sun L, Zuo D. Canthaxanthin ameliorates atopic dermatitis in mice by suppressing Th2 immune response. Int Immunopharmacol 2025; 147:113975. [PMID: 39787760 DOI: 10.1016/j.intimp.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disorder characterized by intense pruritus and complex immunopathogenic mechanisms. Recent evidence has highlighted the critical link between dysregulated intestinal microecology and altered immune responses in AD progression. As essential components of the intestinal microenvironment, metabolites play pivotal roles in various physiological processes. Through metabolomic profiling in an AD mouse model, we identified a significant reduction in canthaxanthin (CTX), a bacterial-derived metabolite naturally present in many foods, in AD mice compared to healthy controls. To investigate the therapeutic potential of CTX, we established an AD model by repeatedly applying 2,4-dinitrochlorobenzene (DNCB) to the ears and dorsal skin of mice, successfully inducing AD-like symptoms and lesions. Notably, oral administration of CTX significantly attenuated skin inflammation and reduced serum IgE levels in this DNCB-induced AD model. Both in vivo and in vitro studies demonstrated that CTX treatment effectively suppressed Th2 immune responses. Mechanistically, we found that CTX significantly inhibited the activation of the JAK2-STAT6 signaling pathway in Th2-polarized T cells. Our findings not only demonstrate the therapeutic efficacy of CTX in AD but also elucidate its molecular mechanism in modulating T helper cell subset balance. These insights suggest that CTX could serve as a promising therapeutic agent for AD and potentially other Th2 response-mediated immune disorders.
Collapse
Affiliation(s)
- Shuying Peng
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lu Yu
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Blood Transfusion, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Mingxin Jiang
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Sihang Cao
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hong Wang
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China
| | - Xiao Lu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yihao Tao
- Veritas Collegiate Academy, 935 23rd St S, Arlington, VA 22202-2422, United States
| | - Jia Zhou
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ledong Sun
- Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China.
| | - Daming Zuo
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
22
|
Xu Y, Wang Z, Li C, Tian S, Du W. Droplet microfluidics: unveiling the hidden complexity of the human microbiome. LAB ON A CHIP 2025. [PMID: 39775305 DOI: 10.1039/d4lc00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The human body harbors diverse microbial communities essential for maintaining health and influencing disease processes. Droplet microfluidics, a precise and high-throughput platform for manipulating microscale droplets, has become vital in advancing microbiome research. This review introduces the foundational principles of droplet microfluidics, its operational capabilities, and wide-ranging applications. We emphasize its role in enhancing single-cell sequencing technologies, particularly genome and RNA sequencing, transforming our understanding of microbial diversity, gene expression, and community dynamics. We explore its critical function in isolating and cultivating traditionally unculturable microbes and investigating microbial activity and interactions, facilitating deeper insight into community behavior and metabolic functions. Lastly, we highlight its broader applications in microbial analysis and its potential to revolutionize human health research by driving innovations in diagnostics, therapeutic development, and personalized medicine. This review provides a comprehensive overview of droplet microfluidics' impact on microbiome research, underscoring its potential to transform our understanding of microbial dynamics and their relevance to health and disease.
Collapse
Affiliation(s)
- Yibin Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhiyi Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuiquan Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Abavisani M, Faraji S, Ebadpour N, Karav S, Sahebkar A. Beyond the Hayflick limit: How microbes influence cellular aging. Ageing Res Rev 2025; 104:102657. [PMID: 39788433 DOI: 10.1016/j.arr.2025.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Cellular senescence, a complex biological process resulting in permanent cell-cycle arrest, is central to aging and age-related diseases. A key concept in understanding cellular senescence is the Hayflick Limit, which refers to the limited capacity of normal human cells to divide, after which they become senescent. Senescent cells (SC) accumulate with age, releasing pro-inflammatory and tissue-remodeling factors collectively known as the senescence-associated secretory phenotype (SASP). The causes of senescence are multifaceted, including telomere attrition, oxidative stress, and genotoxic damage, and they extend to influences from microbial sources. Research increasingly emphasizes the role of the microbiome, especially gut microbiota (GM), in modulating host senescence processes. Beneficial microbial metabolites, such as short-chain fatty acids (SCFAs), support host health by maintaining antioxidant defenses and reducing inflammation, potentially mitigating senescence onset. Conversely, pathogenic bacteria like Pseudomonas aeruginosa and Helicobacter pylori introduce factors that damage host DNA or increase ROS, accelerating senescence via pathways such as NF-κB and p53-p21. This review explores the impact of bacterial factors on cellular senescence, highlighting the role of specific bacterial toxins in promoting senescence. Additionally, it discusses how dysbiosis and the loss of beneficial microbial species further contribute to age-related cellular deterioration. Modulating the gut microbiome to delay cellular senescence opens a path toward targeted anti-aging strategies. This work underscores the need for deeper investigation into microbial influence on aging, supporting innovative interventions to manage and potentially reverse cellular senescence.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Faraji
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Kellogg TD, Ceglia S, Mortzfeld BM, Tanna TM, Zeamer AL, Mancini MR, Foley SE, Ward DV, Bhattarai SK, McCormick BA, Reboldi A, Bucci V. Succinate-producing microbiota drives tuft cell hyperplasia to protect against Clostridioides difficile. J Exp Med 2025; 222:e20232055. [PMID: 39589553 PMCID: PMC11602550 DOI: 10.1084/jem.20232055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
The role of microbes and their metabolites in modulating tuft cell (TC) dynamics in the large intestine and the relevance of this pathway to infections is unknown. Here, we uncover that microbiome-driven colonic TC hyperplasia protects against Clostridioides difficile infection. Using selective antibiotics, we demonstrate increased type 2 cytokines and TC hyperplasia in the colon but not in the ileum. We demonstrate the causal role of the microbiome in modulating this phenotype using fecal matter transplantation and administration of consortia of succinate-producing bacteria. Administration of succinate production-deficient microbes shows a reduced response in a Pou2f3-dependent manner despite similar intestinal colonization. Finally, antibiotic-treated mice prophylactically administered with succinate-producing bacteria show increased protection against C. difficile-induced morbidity and mortality. This effect is nullified in Pou2f3-/- mice, confirming that the protection occurs via the TC pathway. We propose that activation of TCs by the microbiota in the colon is a mechanism evolved by the host to counterbalance microbiome-derived cues that facilitate invasion by pathogens.
Collapse
Affiliation(s)
- Tasia D. Kellogg
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| | - Simona Ceglia
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
| | - Benedikt M. Mortzfeld
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| | - Tanvi M. Tanna
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
| | - Abigail L. Zeamer
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Matthew R. Mancini
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Sage E. Foley
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
| | - Doyle V. Ward
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Shakti K. Bhattarai
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| | - Beth A. McCormick
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| | - Andrea Reboldi
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
| | - Vanni Bucci
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
25
|
Evans SE, Valentine ME, Gallimore F, Meka Y, Koehler SI, Yu HD, Valentovic MA, Long TE. Perturbations in the gut microbiome of C57BL/6 mice by the sobriety aid Antabuse® (disulfiram). J Appl Microbiol 2025; 136:lxae305. [PMID: 39701818 PMCID: PMC11704607 DOI: 10.1093/jambio/lxae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
AIMS Disulfiram (Antabuse®) is an oral alcohol sobriety medication that exhibits antimicrobial activity against Gram-positive facultative anaerobes. The aims of this study were to measure the antimicrobial activity against anaerobic bacteria of the gut human microbiome and establish the extent that disulfiram alters the microbial composition of the ileum, cecum, and feces using C57BL/6 mice. METHODS AND RESULTS Antimicrobial susceptibility testing by the microdilution method revealed that disulfiram inhibits the in vitro growth of gut anaerobic species of Bacteroides, Clostridium, Peptostreptococcus, and Porphyromonas. Differential sequencing of 16S rRNA isolated from the ileum, cecum, and feces contents of treated vs. untreated mice showed that disulfiram enriches the Gram-negative enteric population. In female mice, the enrichment was greatest in the ileum, whereas the feces composition in male mice was the most heavily altered. CONCLUSIONS Daily administration of oral disulfiram depletes the enteric Gram-positive anaerobe population as predicted by the minimum inhibitory concentration data for isolates from the human gut microbiota.
Collapse
Affiliation(s)
- Sarah E Evans
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Meagan E Valentine
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Fallon Gallimore
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Yogesh Meka
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV 25755, United States
| | - Samuel I Koehler
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Hongwei D Yu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Timothy E Long
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV 25755, United States
| |
Collapse
|
26
|
Bongiovanni T, Santiago M, Zielinska K, Scheiman J, Barsa C, Jäger R, Pinto D, Rinaldi F, Giuliani G, Senatore T, Kostic AD. A Lactobacillus consortium provides insights into the sleep-exercise-microbiome nexus in proof of concept studies of elite athletes and in the general population. MICROBIOME 2025; 13:1. [PMID: 39748236 PMCID: PMC11697739 DOI: 10.1186/s40168-024-01936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/18/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND The complex relationship among sleep, exercise, and the gut microbiome presents a unique opportunity to improve health and wellness. Here, we conducted the first large-scale investigation into the influence of a novel elite athlete-derived probiotic, consisting of a multi-strain Lactobacillus consortium, on sleep quality, exercise recovery, and gut microbiome composition in both elite athletes (n = 11) and the general population (n = 257). RESULTS Our two-phase study design, which included an open-label study followed by a controlled longitudinal study in a professional soccer team, allowed us to identify key interactions between probiotics, the gut microbiome, and the host. In the placebo-controlled study, we observed significant improvements in self-reported sleep quality by 69%, energy levels by 31%, and bowel movements by 37% after probiotic intervention relative to after placebo. These improvements were associated with a significant decrease in D-ROMS (a marker of oxidative stress) and a significantly higher free-testosterone/cortisol ratio. Multi-omics analyses revealed specific changes in microbiome composition and function, potentially providing mechanistic insights into these observed effects. CONCLUSION This study provides novel insights into how a multi-strain Lactobacillus probiotic modulates sleep quality, exercise recovery, and gut microbiome composition in both the general population and elite athletes, and introduces potential mechanisms through which this probiotic could be influencing overall health. Our results emphasize the untapped potential of tailored probiotic interventions derived from extremely fit and healthy individuals in improving several aspects of health and performance directly in humans. Video Abstract.
Collapse
Affiliation(s)
- Tindaro Bongiovanni
- Player Health and Performance, Palermo Football Club, Palermo, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | - Tullio Senatore
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
27
|
Wang YH, Liao JM, Jan MS, Wang M, Su HH, Tsai WH, Liu PH, Tsuei YS, Huang SS. Prophylactic use of probiotics as an adjunctive treatment for ischemic stroke via the gut-spleen-brain axis. Brain Behav Immun 2025; 123:784-798. [PMID: 39442634 DOI: 10.1016/j.bbi.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
A growing body of research has focused on the role of spleen in orchestrating brain injury through the peripheral immune system following stroke, highlighting the brain-spleen axis as a potential target for mitigating neuronal damage during stroke. The gut microbiota plays a pivotal role in the bidirectional communication between the gut and the brain. Several studies have suggested that probiotic supplements hold promise as a strategic approach to maintaining a balanced intestinal microecology, reducing the apoptosis of intestinal epithelial cells, protecting the intestinal mucosal and blood-brain barrier (BBB), enhancing both intestinal and systemic immune functions, and thereby potentially affecting the pathogenesis and progression of ischemic stroke. In this study, we aimed to clarify the neuroprotective effects of supplementation with Lactobacillus, specifically Limosilactobacillus reuteri GMNL-89 (G89) and Lacticaseibacillus paracasei GMNL-133 (G133) on ischemic stroke and investigate how G89 and G133 modulate the communication mechanisms between the gut, brain, and spleen following ischemic stroke. We explored the neuroprotection and the underlying mechanisms of Lactobacillus supplementation in C57BL/6 mice subjected to permanent middle cerebral artery occlusion. Our results revealed that oral treatment with G89 or G133 alone, as well as oral administration combining G89 and G133, significantly decreased the infarct volume and improved the neurological function in mice with ischemic stroke. Moreover, G89 treatment alone preserved the tight junction integrity of gut barrier, while G133 alone and the combined treatment of G89 and G133 would significantly decreased the BBB permeability, and thereby significantly attenuated stroke-induced local and systemic inflammatory responses. Both G89 and G133 regulated cytotoxic T cells, and the balance between T helper 1 cells and T helper 2 cells in the spleen following ischemic stroke. Additionally, the combined administration of G89 and G133 improved the gut dysbiosis and significantly increased the concentration of short-chain fatty acids. In conclusion, our findings suggest that G89 and G133 may be used as nutrient supplements, holding promise as a prospective approach to combat ischemic stroke by modulating the gut-spleen-brain axis.
Collapse
Affiliation(s)
- Yi-Hsin Wang
- Department of Physiology, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jiuan-Miaw Liao
- Department of Physiology, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Shiou Jan
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsing-Hui Su
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan
| | - Pei-Hsun Liu
- Department & Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuang-Seng Tsuei
- College of Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Surgical Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Neurosurgery, Taichung Verterans General Hospital, Taichung, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
28
|
Ghosh A, Gorain B. Mechanistic insight of neurodegeneration due to micro/nano-plastic-induced gut dysbiosis. Arch Toxicol 2025; 99:83-101. [PMID: 39370473 DOI: 10.1007/s00204-024-03875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Despite offering significant conveniences, plastic materials contribute substantially in developing environmental hazards and pollutants. Plastic trash that has not been adequately managed may eventually break down into fragments caused by human or ecological factors. Arguably, the crucial element for determining the biological toxicities of plastics are micro/nano-forms of plastics (MPs/NPs), which infiltrate the mammalian tissue through different media and routes. Infiltration of MPs/NPs across the intestinal barrier leads to microbial architectural dysfunction, which further modulates the population of gastrointestinal microbes. Thereby, it triggers inflammatory mediators (e.g., IL-1α/β, TNF-α, and IFN-γ) by activating specific receptors located in the gut barrier. Mounting evidence indicates that MPs/NPs disrupt host pathophysiological function through modification of junctional proteins and effector cells. Moreover, the alteration of microbial diversity by MPs/NPs causes the breakdown of the blood-brain barrier and translocation of metabolites (e.g., SCFAs, LPS) through the vagus nerve. Potent penetration affects the neuronal networks, neuronal protein accumulation, acceleration of oxidative stress, and alteration of neurofibrillary tangles, and hinders distinctive communicating pathways. Conclusively, alterations of these neurotoxic factors are possibly responsible for the associated neurodegenerative disorders due to the exposure of MPs/NPs. In this review, the hypothesis on MPs/NPs associated with gut microbial dysbiosis has been interlinked to the distinct neurological impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
29
|
Lin J, Li S, Li C. Targeting gut microbiota by starch molecular size and chain-length distribution to produce various short-chain fatty acids. Carbohydr Polym 2025; 347:122707. [PMID: 39486948 DOI: 10.1016/j.carbpol.2024.122707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 11/04/2024]
Abstract
The detailed relationships among starch fine molecular structures, gut microbiota, and short-chain fatty acids (SCFAs) are not fully understood. We hypothesized that specific starch molecular size and chain-length distribution are favored by gut bacteria for the secretion of SCFAs. To investigate this, different types of starches with diverse molecular size and chain-length distributions (e.g., amylose content ranging from about 1 % to 38 %) were subjected to in vitro fermentation with human fecal inocula. Tapioca and waxy maize starches were notably more effective at producing acetate and propionate compared to lentil, wheat, and pea starches (p < 0.05). Correlation analysis revealed, for the first time, that the number of amylose chains with a degree of polymerization between 500 and 5000 was positively correlated with the abundance of Bacteroides_coprocola_DSM_17136 and Bacteroides_plebeius, possibly relating to the higher production of acetate and propionate. These results indicate that starches with certain fine molecular structures could be used to target gut bacteria to produce various types of SCFAs, thereby amplifying beneficial effects on human health.
Collapse
Affiliation(s)
- Jiakang Lin
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
30
|
Nielsen OH, Hammerhøj A, Ainsworth MA, Gubatan J, D'Haens G. Immunogenicity of Therapeutic Antibodies Used for Inflammatory Bowel Disease: Treatment and Clinical Considerations. Drugs 2025; 85:67-85. [PMID: 39532820 DOI: 10.1007/s40265-024-02115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The introduction of tumor necrosis factor inhibitors has led to a paradigm shift in the management of inflammatory bowel disease (IBD). The subsequent introduction of both anti-integrins and cytokine blockers has since expanded the biologic armamentarium. However, immunogenicity, defined as the production of anti-drug antibodies (ADAs) to the prescribed biopharmaceutical, means a significant fraction of patients exposed to biologic agents will experience a secondary loss of response to one or more of the drugs. In clinical settings, immunogenicity may be caused by several factors, both patient related (e.g., underlying chronic disease, systemic immune burden, including previous biologic therapy failure, and [epi]genetic background) and treatment related (e.g., dose and administration regimens, drug physical structure, photostability, temperature, and agitation). Here, we outline these elements in detail to enhance biopharmaceutical delivery and therapy for patients with IBD. Moreover, concurrent immunomodulator medication may reduce the risks of ADA generation, especially when using the chimeric drug infliximab. Summarizing the latest developments and knowledge in the field, this review aims to provide strategies to prevent ADA production and information on managing non-responsiveness or loss of response to biologics. Better understanding of the molecular mechanisms underlying the formation of ADAs and the critical factors influencing the immunogenicity of biopharmaceuticals may lead to improved health outcomes in the IBD community that may benefit both the individual patient and society through lower healthcare expenses.
Collapse
Affiliation(s)
- Ole Haagen Nielsen
- Department of Gastroenterology D112, Herlev Hospital, University of Copenhagen, Borgmester Ib Juuls Vej 1, 2730 Herlev, Copenhagen, Denmark.
| | - Alexander Hammerhøj
- Department of Gastroenterology D112, Herlev Hospital, University of Copenhagen, Borgmester Ib Juuls Vej 1, 2730 Herlev, Copenhagen, Denmark
| | - Mark Andrew Ainsworth
- Department of Gastroenterology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - John Gubatan
- Department of Gastroenterology & Hepatology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Geert D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Li Y, Sun K, Shao Y, Wang C, Xue F, Chu C, Gu Z, Chen Z, Bai J. Next-Generation Approaches for Biomedical Materials Evaluation: Microfluidics and Organ-on-a-Chip Technologies. Adv Healthc Mater 2025; 14:e2402611. [PMID: 39440635 DOI: 10.1002/adhm.202402611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Biological evaluation of biomedical materials faces constraints imposed by the limitations of traditional in vitro and animal experiments. Currently, miniaturized and biomimetic microfluidic technologies and organ-on-chip systems have garnered widespread attention in the field of drug development. However, their exploration in the context of biomedical material evaluation and medical device development remains relatively limited. In this review, a summary of existing biological evaluation methods, highlighting their respective advantages and drawbacks is provided. The application of microfluidic technologies in the evaluation of biomedical materials, emphasizing the potential of organ-on-chip systems as highly biomimetic in vitro models in material evaluation is then focused. Finally, the challenges and opportunities associated with utilizing organ-on-chip systems to evaluate biomedical materials in the field of material evaluation are discussed. In conclusion, the integration of advanced microfluidic technologies and organ-on-chip systems presents a potential paradigm shift in the biological assessment of biomedical materials, offering the prospective of more accurate and predictive in vitro models in the development of medical devices.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| | - Ke Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| | - Yi Shao
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| | - Cheng Wang
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing, Jiangsu, 211189, China
| | - Zhongze Gu
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zaozao Chen
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, Jiangsu, 215163, China
| |
Collapse
|
32
|
Yilmaz B, Macpherson AJ. Delving the depths of 'terra incognita' in the human intestine - the small intestinal microbiota. Nat Rev Gastroenterol Hepatol 2025; 22:71-81. [PMID: 39443711 DOI: 10.1038/s41575-024-01000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
The small intestinal microbiota has a crucial role in gastrointestinal health, affecting digestion, immune function, bile acid homeostasis and nutrient metabolism. The challenges of accessibility at this site mean that our knowledge of the small intestinal microbiota is less developed than of the colonic or faecal microbiota. Here, we summarize the features and fluctuations of the microbiota along the small intestinal tract, focusing on humans, and discuss physicochemical factors and assessment methods, including the technical challenges of investigating the low microbial biomass of the proximal small bowel. We highlight the essential protective mechanisms of the small intestine, including motility, the paracellular barrier and mucus, and secretory immunity, to show their roles in limiting excessive exposure of host tissues to microbial metabolites. We address current knowledge gaps, particularly the variability among individuals, the effects of dysbiosis of the small intestinal microbiota on health and how different taxa in small intestinal microbiota could compensate for each other functionally.
Collapse
Affiliation(s)
- Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland.
| | - Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland.
| |
Collapse
|
33
|
An R, Zhou X, Zhang J, Lyu C, Wang D. Responses of intestinal microbiota to inulin was initial microbiota context dependent and affected by the supplementation dosage. Food Res Int 2025; 200:115498. [PMID: 39779139 DOI: 10.1016/j.foodres.2024.115498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Intestinal microbiota could respond to dietary fibres that are fermented by the gut microbiota, like prebiotics. Nevertheless, the dynamics of intestinal microbial community longitudinally after prebiotics intake, are still largely unknown. The current study unrevealed the successional process of intestinal microbial community after inulin supplementation, and the effect of supplementation dosage thereof, based on analysis of 16S rRNA gene sequences in C57BL/6 mice. We found that independent of supplementation dosage, intake of inulin could affect the intestinal microbial community within a day. Thereafter, the intestinal microbial community kept evolving until the last day of the supplementation (day 14) as a successional process, which was represented by the succession between intermediate and sluggish inulin responders. Remarkably, the successional process was initial microbial community context dependent and affected by the supplementation dosage. Specifically, the supplementation dosage affected the successional speed and the composition of the intermediate and sluggish inulin responders. Decreasing the relative abundance of previously identified intermediate responders, altered the successional process during inulin supplementation. Collectively, independent of supplementation dosage, the response of intestinal microbial community was rapid and the inulin induced temporal dynamics was represented by the succession between the intermediate and sluggish inulin responders. Nevertheless, the inulin induced successional process was initial microbial community context dependent and affected by the supplementation dosage. Findings of the current study would aid in the understanding of intestinal microbes' assembly during inulin supplementation and provide valuable support for dietary recommendations regarding to the use of prebiotics from the intestinal microbiota point of view.
Collapse
Affiliation(s)
- Ran An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xilong Zhou
- State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food, Shanghai, China
| | - Jing Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenang Lyu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dapeng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
34
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
35
|
DeCandia AL, Lu J, Hamblen EE, Brenner LJ, King JL, Gagorik CN, Schamel JT, Baker SS, Ferrara FJ, Booker M, Bridges A, Carrasco C, vonHoldt BM, Koepfli KP, Maldonado JE. Phylosymbiosis and Elevated Cancer Risk in Genetically Depauperate Channel Island Foxes. Mol Ecol 2025; 34:e17610. [PMID: 39655703 DOI: 10.1111/mec.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Examination of the host-associated microbiome in wildlife can provide critical insights into the eco-evolutionary factors driving species diversification and response to disease. This is particularly relevant for isolated populations lacking genomic variation, a phenomenon that is increasingly common as human activities create habitat 'islands' for wildlife. Here, we characterised the gut and otic microbial communities of one such species: Channel Island foxes (Urocyon littoralis). The gut microbiome provided evidence of phylosymbiosis by reflecting the host phylogeny, geographic proximity, history of island colonisation and contemporary ecological differences, whereas the otic microbiome primarily reflected geography and disease. Santa Catalina Island foxes are uniquely predisposed to ceruminous gland tumours following infection with Otodectes cynotis ear mites, while San Clemente and San Nicolas Island foxes exhibit ear mite infections without evidence of tumours. Comparative analyses of otic microbiomes revealed that mite-infected Santa Catalina and San Clemente Island foxes exhibited reduced bacterial diversity, skewed abundance towards the opportunistic pathogen Staphylococcus pseudintermedius and disrupted microbial community networks. However, Santa Catalina Island foxes uniquely harboured Fusobacterium and Prevotella bacteria as potential keystone taxa. These bacteria have previously been associated with colorectal cancer and may predispose Santa Catalina Island foxes to an elevated cancer risk. In contrast, mite-infected San Nicolas Island foxes maintained high bacterial diversity and robust microbial community networks, suggesting that they harbour more resilient microbiomes. Considered together, our results highlight the diverse eco-evolutionary factors influencing commensal microbial communities and their hosts and underscore how the microbiome can contribute to disease outcomes.
Collapse
Affiliation(s)
- Alexandra L DeCandia
- Department of Biology, Georgetown University, Washington, DC, USA
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Jasmine Lu
- Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | - Julie L King
- Catalina Island Conservancy, Avalon, California, USA
- Santa Clara Valley Habitat Agency, Morgan Hill, California, USA
| | - Calypso N Gagorik
- Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA
| | | | | | - Francesca J Ferrara
- Environmental Division - Environmental Planning and Conservation Branch, Naval Base Ventura County, Point Mugu, California, USA
| | - Melissa Booker
- Environmental Division, Naval Base Coronado, San Diego, California, USA
| | - Andrew Bridges
- Institute for Wildlife Studies, San Diego, California, USA
| | - Cesar Carrasco
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Bridgett M vonHoldt
- Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, Virginia, USA
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
36
|
Yao M, Qu Y, Zheng Y, Guo H. The effect of exercise on depression and gut microbiota: Possible mechanisms. Brain Res Bull 2025; 220:111130. [PMID: 39557221 DOI: 10.1016/j.brainresbull.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Exercise can effectively prevent and treat depression and anxiety, with gut microbiota playing a crucial role in this process. Studies have shown that exercise can influence the diversity and composition of gut microbiota, which in turn affects depression through immune, endocrine, and neural pathways in the gut-brain axis. The effectiveness of exercise varies based on its type, intensity, and duration, largely due to the different changes in gut microbiota. This article summarizes the possible mechanisms by which exercise affects gut microbiota and how gut microbiota influences depression. Additionally, we reviewed literature on the effects of exercise on depression at different intensities, types, and durations to provide a reference for future exercise-based therapies for depression.
Collapse
Affiliation(s)
- Mingchen Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yaqi Qu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yalin Zheng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Hao Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
37
|
Callejas BE, Sousa JA, Flannigan KL, Wang A, Higgins E, Herik AI, Li S, Rajeev S, Rosentreter R, Panaccione R, McKay DM. Calcitonin gene-related peptide promotes epithelial reparative and anticolitic functions of IL-4 educated human macrophages. Am J Physiol Gastrointest Liver Physiol 2025; 328:G1-G16. [PMID: 39378308 DOI: 10.1152/ajpgi.00159.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Interleukin-4 activated human macrophages [M(IL4)s] promote epithelial wound healing and exert an anticolitic effect in a murine model. Blood monocyte-derived M(IL4)s from healthy donors and individuals with Crohn's disease had increased mRNA expression of the calcitonin gene-related peptide (CGRP) receptor chain, receptor activity modifying protein-1 (RAMP1), raising the issue of neural modulation of the M(IL4)s reparative function. Thus, human M(IL4)s were treated with CGRP and the cells' phagocytotic, epithelial wound repair and anticolitic functions were assessed. Initial studies confirmed upregulation of expression of the CGRP receptor, which was localized to the cell surface and was functional as determined by CGRP-evoked increases in cAMP. M(IL4,CGRP)s had increased mannose receptor (CD206) and FcγRIIa (CD32a) mRNA expression, a subtle, but significant, increase in phagocytosis and decreased chemokine production following the exposure to Escherichia coli. When delivered systemically (106 cells IP) to oxazolone-treated rag1-/- mice, M(IL4,CGRP) had an anticolitic effect superior to M(IL4)s from the same blood donor. Conditioned medium (CM) from M(IL4,CGRP) had increased amounts of transforming growth factor (TGF)-β and increased wound-healing capacity compared with matched M(IL4)-CM in the human CaCo2 epithelial cell line in-vitro wounding assay. Moreover, M(IL4,CGRP)s displayed increased cyclooxygenase (COX)-1 and prostaglandin D2 (PGD2), and CM from M(IL4,CGRP)s treated with indomethacin or SC-560 to inhibit COX-1 activity failed to promote repair of wounded CaCo2 cell monolayers. These data confirm the human M(IL4)s' anticolitic effect that was enhanced by CGRP and may be partially dependent on macrophage COX-1/PGD2 activity. Thus, input from neurone-derived molecules is a local modifier capable of boosting the anticolitic effect of autologous M(IL4) transfer.NEW & NOTEWORTHY A novel pathway is identified whereby interleukin-4-educated human macrophages [M(IL4)s] exposed to calcitonin gene-related peptide (CGRP) reduce oxazolone-induced colitis and promote epithelial wound healing in vitro through COX1-dependent signaling. Support is provided for the concept of macrophage transfer to treat enteric inflammation where neuroimmune interaction, in this case CGRP neuropeptide, produced under inflammatory conditions will reinforce the anticolitic and wound repair capacity of M(IL4) autologous-based therapy for IBD treatment.
Collapse
Affiliation(s)
- Blanca E Callejas
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James A Sousa
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kyle L Flannigan
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eve Higgins
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aydin I Herik
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shuhua Li
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ryan Rosentreter
- Division of Gastroenterology and Hepatology, Gastrointestinal Research Group, Department of Medicine, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Remo Panaccione
- Division of Gastroenterology and Hepatology, Gastrointestinal Research Group, Department of Medicine, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group, Inflammation Research Network and Host-Parasite Interactions Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Barbosa IG, Miranda AS, Berk M, Teixeira AL. The involvement of the microbiota-gut-brain axis in the pathophysiology of mood disorders and therapeutic implications. Expert Rev Neurother 2025; 25:85-99. [PMID: 39630000 DOI: 10.1080/14737175.2024.2438646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION There is a growing body of evidence implicating gut-brain axis dysfunction in the pathophysiology of mood disorders. Accordingly, gut microbiota has become a promising target for the development of biomarkers and novel therapeutics for bipolar and depressive disorders. AREAS COVERED We describe the observed changes in the gut microbiota of patients with mood disorders and discuss the available studies assessing microbiota-based strategies for their treatment. EXPERT OPINION Microbiota-targeted interventions, such as symbiotics, prebiotics, paraprobiotics, and fecal microbiota transplants seem to attenuate the severity of depressive symptoms. The available results must be seen as preliminary and need to be replicated and/or confirmed in larger and independent studies, also considering the pathophysiological and clinical heterogeneity of mood disorders.
Collapse
Affiliation(s)
- Izabela G Barbosa
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brasil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), MG, Brasil
| | - Aline S Miranda
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), MG, Brasil
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Michael Berk
- IMPACT- the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Antonio L Teixeira
- Neuropsychiatry Division, The Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
39
|
Ding J, Xu J, Wu H, Li M, Xiao Y, Fu J, Zhu X, Wu N, Sun Q, Liu Y. The cross-talk between the metabolome and microbiome in a double-hit neonatal rat model of bronchopulmonary dysplasia. Genomics 2025; 117:110969. [PMID: 39615804 DOI: 10.1016/j.ygeno.2024.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/15/2024] [Accepted: 11/24/2024] [Indexed: 01/13/2025]
Abstract
Bronchopulmonary dysplasia (BPD), a chronic lung disease in preterm infants, is associated with inflammation and high oxygen exposure. However, the effects of antenatal inflammation and postnatal extended hyperoxia on the metabolome and microbiome remain unclear. In this study, pregnant rats received lipopolysaccharide or saline injections on gestational day 20 and were exposed to either 21 % or 80 % oxygen for 4 weeks post-birth. Analysis revealed an increase in Firmicutes, Proteobacteria, and Actinobacteria, with a decrease in Bacteroidetes in BPD rats. Metabolomic analysis identified 78 altered metabolites, primarily lipids, enriched in pathways including arginine biosynthesis, sphingolipid metabolism, and primary bile acid biosynthesis in BPD rats. Integration analysis revealed strong correlations between intestinal microbiota and metabolites in BPD rats. These findings underscored the impact of antenatal inflammation and prolonged postnatal hyperoxia on gut microbiota and serum metabolome, suggesting their role in BPD pathogenesis.
Collapse
Affiliation(s)
- Jing Ding
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, PR China
| | - Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, PR China
| | - Hongkun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, PR China
| | - Mei Li
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, PR China
| | - Yihan Xiao
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, PR China
| | - Jie Fu
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, PR China
| | - Xiangyu Zhu
- Department of Laboratory Animal Unit, Peking University People's Hospital, Beijing 100044, PR China
| | - Na Wu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, PR China
| | - Qiang Sun
- Center for RNA Medicine, the Fourth Affilliated Hospital of School of Medicine, and International school of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, Zhejiang, PR China.
| | - Yaran Liu
- Institute of Medical Artificial Intelligence, Binzhou Medical College, Yantai 264003, Shandong, PR China.
| |
Collapse
|
40
|
Tong Q, Xu MD, Dong WJ, Long XZ, Han XY, Cui LY. Influence of wildfire ash concentration on development, survival, and skin and gut microbiota of Rana dybowskii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177718. [PMID: 39581444 DOI: 10.1016/j.scitotenv.2024.177718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Climate changes can increase wildfires and thereby endanger the habitats and survival of amphibians, but relevant research is limited. The gut and skin microbiota plays a critical role in amphibian protection. Wildfire ash may negatively impact amphibians, causing inflammation and microbiota disruption, but the impact on microbial communities is still uncertain. In this study, the impact of wildfire ash on the cutaneous and gut microbiota of Rana dybowskii was investigated over a 28-day period using five groups with aqueous extracts of ash. Polycyclic aromatic hydrocarbons in the ash were analyzed. Body mass, development, survival rates, and microbiota diversity were tested. Significant differences in body mass, development rates, and survival rates among the treatment groups were observed. The survival and development rates at lower concentrations of ash (T0 and T0_75) were more similar to those under control conditions. Analyses of alpha and beta diversity revealed significant changes in microbiota composition across ash concentrations, with specific phyla and genera affected. Linear discriminant analysis effect analysis identified distinct microbiota associated with each treatment group, demonstrating the specific influence of ash concentrations on the microbiota composition of tadpoles. BugBase analysis revealed significant differences in the same phenotypes in gut microbiota, but not in nine skin microbiota phenotypes across groups. This research underscores the sensitivity of amphibian microbiota to environmental changes and provides insights into the ecological consequences of wildfires on aquatic ecosystems.
Collapse
Affiliation(s)
- Qing Tong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China; Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi 154002, China.
| | - Ming-da Xu
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Wen-Jing Dong
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xin-Zhou Long
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Xiao-Yun Han
- School of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Li-Yong Cui
- Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi 154002, China.
| |
Collapse
|
41
|
Edo GI, Mafe AN, Razooqi NF, Umelo EC, Gaaz TS, Isoje EF, Igbuku UA, Akpoghelie PO, Opiti RA, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Advances in bio-polymer coatings for probiotic microencapsulation: chitosan and beyond for enhanced stability and controlled release. Des Monomers Polym 2024; 28:1-34. [PMID: 39777298 PMCID: PMC11703421 DOI: 10.1080/15685551.2024.2448122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
This review paper analyzes recent advancements in bio-polymer coatings for probiotic microencapsulation, with a particular emphasis on chitosan and its synergistic combinations with other materials. Probiotic microencapsulation is essential for protecting probiotics from environmental stresses, enhancing their stability, and ensuring effective delivery to the gut. The review begins with an overview of probiotic microencapsulation, highlighting its significance in safeguarding probiotics through processing, storage, and gastrointestinal transit. Advances in chitosan-based encapsulation are explored, including the integration of chitosan with other bio-polymers such as alginate, gelatin, and pectin, as well as the application of nanotechnology and innovative encapsulation techniques like spray drying and layer-by-layer assembly. Detailed mechanistic insights are integrated, illustrating how chitosan influences gut microbiota by promoting beneficial bacteria and suppressing pathogens, thus enhancing its role as a prebiotic or synbiotic. Furthermore, the review delves into chitosan's immunomodulatory effects, particularly in the context of inflammatory bowel disease (IBD) and autoimmune diseases, describing the immune signaling pathways influenced by chitosan and linking gut microbiota changes to improvements in systemic immunity. Recent clinical trials and human studies assessing the efficacy of chitosan-coated probiotics are presented, alongside a discussion of practical applications and a comparison of in vitro and in vivo findings to highlight real-world relevance. The sustainability of chitosan sources and their environmental impact are addressed, along with the novel concept of chitosan's role in the gut-brain axis. Finally, the review emphasizes future research needs, including the development of personalized probiotic therapies and the exploration of novel bio-polymers and encapsulation techniques.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Nawar. F. Razooqi
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Ebuka Chukwuma Umelo
- Department of Healthcare Organisation Management, Cyprus International University, Nicosia, Turkey
| | - Tayser Sumer Gaaz
- Department of Prosthetics and Orthotics Engineering, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Rapheal Ajiri Opiti
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S. Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| |
Collapse
|
42
|
Diallo K, Missa KF, Tuo KJ, Tiemele LS, Ouattara AF, Gboko KDT, Gragnon BG, Bla KB, Ngoi JM, Wilkinson RJ, Awandare GA, Bonfoh B. Spatiotemporal dynamics of the oropharyngeal microbiome in a cohort of Ivorian school children. Sci Rep 2024; 14:30895. [PMID: 39730689 DOI: 10.1038/s41598-024-81829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
The respiratory tract harbours microorganisms of the normal host microbiota which are also capable of causing invasive disease. Among these, Neisseria meningitidis a commensal bacterium of the oropharynx can cause meningitis, a disease with epidemic potential. The oral microbiome plays a crucial role in maintaining respiratory health. An imbalance in its composition is associated with increased risk of invasive disease. The main objective of this study was to evaluate changes in the spatio-temporal dynamics of the oropharyngeal microbiota considering meningococcal carriage in a cohort of 8-12-year-old school children within (Korhogo) and outside (Abidjan) of the meningitis belt of Côte d'Ivoire. A significant geographic difference in the oropharyngeal microbiome was identified between the two study sites in terms of bacterial abundance and diversity (p < 0.001), with greater diversity in children in Abidjan than in Korhogo. Meningococcal carriage was low in the cohort with eight Neisseria carriers identified in Korhogo (3.64%) including one Neisseria meningitidis (0.45%). No Neisseria were detected in Abidjan indicating geographical differences in carriage (p = 0.006). Negative correlations were also found between Neisseria abundance and humidity. Meningococcal carriage was very low during the study; however, Neisseria carriage differed between the two study areas, with a higher frequency in children in Korhogo. Analysis of the oropharyngeal microbiome showed significant differences between children followed in Abidjan and Korhogo with higher microbial diversity in Abidjan, which is generally associated with better health status. Significant correlations between Neisseria or other pathogens carriage and climatic variables (Temperature, Relative humidity, and Wind speed) were also demonstrated, indicating an important role of climate in the carriage of these bacteria; an important element to note in the current context of climate change.
Collapse
Affiliation(s)
- K Diallo
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire.
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Accra, Ghana.
| | - K F Missa
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny de Cocody (UFHB), Abidjan, Côte d'Ivoire
| | - K J Tuo
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
- Laboratoire de Microbiologie, Biotechnologies et Bio-informatique, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - L S Tiemele
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
| | - A F Ouattara
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
- Laboratoire de Cytologie et Biologie Animale, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - K D T Gboko
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
| | - B G Gragnon
- Laboratoire National d'Appui au Développement Agricole (LANADA), Laboratoire Régional de Korhogo, Korhogo, Côte d'Ivoire
| | - K B Bla
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny de Cocody (UFHB), Abidjan, Côte d'Ivoire
| | - J M Ngoi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Accra, Ghana
| | - R J Wilkinson
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Cape Town, 7925, Republic of South Africa
| | - G A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Accra, Ghana
| | - B Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
| |
Collapse
|
43
|
Tsuji K, Uchida N, Nakanoh H, Fukushima K, Haraguchi S, Kitamura S, Wada J. The Gut-Kidney Axis in Chronic Kidney Diseases. Diagnostics (Basel) 2024; 15:21. [PMID: 39795549 PMCID: PMC11719742 DOI: 10.3390/diagnostics15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The gut-kidney axis represents the complex interactions between the gut microbiota and kidney, which significantly impact the progression of chronic kidney disease (CKD) and overall patient health. In CKD patients, imbalances in the gut microbiota promote the production of uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, which impair renal function and contribute to systemic inflammation. Mechanisms like endotoxemia, immune activation and oxidative stress worsen renal damage by activating pro-inflammatory and oxidative pathways. Insights into these mechanisms highlight the impact of gut-derived metabolites, bacterial translocation, and immune response changes on kidney health, suggesting new potential approaches for CKD treatment. Clinical applications, such as dietary interventions, prebiotics, probiotics and fecal microbiota transplantation, are promising in adjusting the gut microbiota to alleviate CKD symptoms and slow disease progression. Current research highlights the clinical relevance of the gut-kidney axis, but further study is essential to clarify these mechanisms' diagnostic biomarkers and optimize therapeutic interventions. This review emphasizes the importance of an integrated approach to CKD management, focusing on the gut microbiota as a therapeutic target to limit kidney injury.
Collapse
Affiliation(s)
- Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Naruhiko Uchida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hiroyuki Nakanoh
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Soichiro Haraguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
- Department of Nephrology, Aoe Clinic, Okayama 700-8607, Japan
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
- Department of Nursing Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
44
|
Held NA, Krishna A, Crippa D, Battaje RR, Devaux AJ, Dragan A, Manhart M. Nutrient colimitation is a quantitative, dynamic property of microbial populations. Proc Natl Acad Sci U S A 2024; 121:e2400304121. [PMID: 39693349 DOI: 10.1073/pnas.2400304121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
Resource availability dictates how fast and how much microbial populations grow. Quantifying the relationship between microbial growth and resource concentrations makes it possible to promote, inhibit, and predict microbial activity. Microbes require many resources, including macronutrients (e.g., carbon and nitrogen), micronutrients (e.g., metals), and complex nutrients like vitamins and amino acids. When multiple resources are scarce, as frequently occurs in nature, microbes may experience resource colimitation in which more than one resource simultaneously limits growth. Despite growing evidence for colimitation, the data are difficult to interpret and compare due to a lack of quantitative measures of colimitation and systematic tests of resource conditions. We hypothesize that microbes experience a continuum of nutrient limitation states and that nutrient colimitation is common in the laboratory and in nature. To address this, we develop a quantitative theory of resource colimitation that captures the range of possible limitation states and describes how they can change dynamically with resource conditions. We apply this approach to clonal populations of Escherichia coli to show that colimitation occurs in common laboratory conditions. We also show that growth rate and growth yield are colimited differently, reflecting the different underlying biology of these traits. Finally, we analyze environmental data to provide intuition for the continuum of limitation and colimitation conditions in nature. Altogether our results provide a quantitative framework for understanding and quantifying colimitation of microbes in biogeochemical, biotechnology, and human health contexts.
Collapse
Affiliation(s)
- Noelle A Held
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
- Department of Biological Sciences, Marine & Environmental Biology Section, University of Southern California, Los Angeles, CA 90089
| | - Aswin Krishna
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
| | - Donat Crippa
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
| | - Rachana Rao Battaje
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854
| | - Alexander J Devaux
- Department of Biological Sciences, Marine & Environmental Biology Section, University of Southern California, Los Angeles, CA 90089
| | - Anastasia Dragan
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
| | - Michael Manhart
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8006, Switzerland
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
45
|
Huang KD, Müller M, Sivapornnukul P, Bielecka AA, Amend L, Tawk C, Lesker TR, Hahn A, Strowig T. Dietary selective effects manifest in the human gut microbiota from species composition to strain genetic makeup. Cell Rep 2024; 43:115067. [PMID: 39673707 DOI: 10.1016/j.celrep.2024.115067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024] Open
Abstract
Diet significantly influences the human gut microbiota, a key player in health. We analyzed shotgun metagenomic sequencing data from healthy individuals with long-term dietary patterns-vegan, flexitarian, or omnivore-and included detailed dietary surveys and blood biomarkers. Dietary patterns notably affected the bacterial community composition by altering the relative abundances of certain species but had a minimal impact on microbial functional repertoires. However, diet influenced microbial functionality at the strain level, with diet type linked to strain genetic variations. We also found molecular signatures of selective pressure in species enriched by specific diets. Notably, species enriched in omnivores exhibited stronger positive selection, such as multiple iron-regulating genes in the meat-favoring bacterium Odoribacter splanchnicus, an effect that was also validated in independent cohorts. Our findings offer insights into how diet shapes species and genetic diversity in the human gut microbiota.
Collapse
Affiliation(s)
- Kun D Huang
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mattea Müller
- Institute of Food Science and Nutrition, Leibniz University of Hannover, Hannover, Germany
| | - Pavaret Sivapornnukul
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Agata Anna Bielecka
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Caroline Tawk
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till-Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Hahn
- Institute of Food Science and Nutrition, Leibniz University of Hannover, Hannover, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School (MHH), Hannover, Germany; Centre for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
46
|
Bhosle A, Jackson MI, Walsh AM, Franzosa EA, Badri DV, Huttenhower C. Response of the gut microbiome and metabolome to dietary fiber in healthy dogs. mSystems 2024:e0045224. [PMID: 39714168 DOI: 10.1128/msystems.00452-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/21/2024] [Indexed: 12/24/2024] Open
Abstract
Dietary fiber confers multiple health benefits originating from the expansion of beneficial gut microbial activity. However, very few studies have established the metabolic consequences of interactions among specific fibers, microbiome composition, and function in either human or representative animal models. In a study design reflective of realistic population dietary variation, fecal metagenomic and metabolomic profiles were analyzed from healthy dogs fed 12 test foods containing different fiber sources and quantities (5-13% as-fed basis). Taxa and functions were identified whose abundances were associated either with overall fiber intake or with specific fiber compositions. Fourteen microbial species were significantly enriched in response to ≥1 specific fiber source; enrichment of fiber-derived metabolites was more pronounced in response to these fiber sources. Positively associated fecal metabolites, including short-chain fatty acids, acylglycerols, fiber bound sugars, and polyphenols, co-occurred with microbes enriched in specific food groups. Critically, the specific metabolite pools responsive to differential fiber intake were dependent on differences both in individual microbial community membership and in overall ecological configuration. This helps to explain, for the first time, differences in microbiome-diet associations observed in companion animal epidemiology. Thus, our study corroborates findings in human cohorts and reinforces the role of personalized microbiomes even in seemingly phenotypically homogeneous subjects. IMPORTANCE Consumption of dietary fiber changes the composition of the gut microbiome and, to a larger extent, the associated metabolites. Production of health-relevant metabolites such as short-chain fatty acids from fiber depends both on the consumption of a specific fiber and on the enrichment of beneficial metabolite-producing species in response to it. Even in a seemingly homogeneous population, the benefit received from fiber consumption is personalized and emphasizes specific fiber-microbe-host interactions. These observations are relevant for both population-wide and personalized nutrition applications.
Collapse
Affiliation(s)
- Amrisha Bhosle
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Aaron M Walsh
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Eric A Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Murugesan S, Yousif G, Djekidel MN, Gentilcore G, Grivel JC, Al Khodor S. Microbial and proteomic signatures of type 2 diabetes in an Arab population. J Transl Med 2024; 22:1132. [PMID: 39707404 DOI: 10.1186/s12967-024-05928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The rising prevalence of Type 2 diabetes mellitus (T2D) in the Qatari population presents a significant public health challenge, highlighting the need for innovative approaches to early detection and management. While most efforts are centered on using blood samples for biomarker discovery, the use of saliva remains underexplored. METHODS Using noninvasive saliva samples from 2974 Qatari subjects, we analyzed the microbial communities from diabetic, pre-diabetic, and non-diabetic participants based on their HbA1C levels. The salivary microbiota was assessed in all subjects by sequencing the V1-V3 regions of 16S rRNA gene. For the proteomics profiling, we randomly selected 50 gender and age-matched non-diabetic and diabetic subjects and compared their proteome with SOMAscan. Microbiota and proteome profiles were then integrated to reveal candidate biomarkers for T2D. RESULTS Our results indicate that the salivary microbiota of pre-diabetic and diabetic individuals differs significantly from that of non-diabetic subjects. Specifically, a significant increase in the abundance of Campylobacter, Dorea, and Bacteroidales was observed in the diabetic subjects compared to their non-diabetic controls. Metabolic pathway prediction analysis for these bacteria revealed a significant overrepresentation of genes associated with fatty acid and lipid biosynthesis, as well as aromatic amino acid metabolism in the diabetic group. Additionally, we observed distinct differences in salivary proteomic profiles between diabetic and non-diabetic subjects. Notably, levels of Haptoglobin, Plexin-C1, and MCL-1 were elevated, while Osteopontin (SPP1), Histone1H3A (HIST3H2A), and Histone H1.2 were reduced in diabetic individuals. Furthermore, integrated correlation analysis of salivary proteome and microbiota data demonstrated a strong positive correlation between HIST1H3A and HIST3H2A with Porphyromonas sp., all of which were decreased in the diabetic group. CONCLUSION This is the first study to assess the salivary microbiota in T2D patients from a large cohort of the Qatari population. We found significant differences in the salivary microbiota of pre-diabetic and diabetic individuals compared to non-diabetic controls. Our study is also the first to assess the salivary proteome using SOMAScan in diabetic and non-diabetic subjects. Integration of the microbiota and proteome profiles revealed a unique signature for T2D that can be used as potential T2D biomarkers.
Collapse
Affiliation(s)
| | - Ghada Yousif
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | | | | | |
Collapse
|
48
|
Mavrides DE, Liapi M, Ierodiakonou D, Pipis C, Malas S, Gentekaki E, Tsaousis AD. The cow GUTBIOME CY study: investigating the composition of the cattle gut microbiome in health and infectious disease transmission in cyprus. BMC Vet Res 2024; 20:566. [PMID: 39696220 DOI: 10.1186/s12917-024-04419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Recent evidence suggests that the lower gut microbiome of ruminants presents roles in their health and environment, including the development of the mucosal immune system, milk production efficiency and quality and subsequent methane emissions. However, there are proportionately fewer studies on this complex microbial community in cattle and region-focus studies are non- existent. METHODS Herein, we present the research protocol of the GUTBIOME CY project pertaining to determine the composition of the lower gut microbiome in dairy cows situated in 37 farms across five districts of the island of Cyprus. Detailed questionnaires on animal husbandry and farming practices will be gathered from each farm. Faecal, milk (individual and bulk) and water samples will also be collected from cows and their offspring. Samples will be analysed using a combination of molecular biology and bioinformatics pipelines to define microbiome profiles and antimicrobial resistance (AMR). Information collected from the questionnaires will be used to test for associations between animal husbandry or farming practices and microbiome components and AMR. DISCUSSION Collected samples will establish the first dairy cattle biobank in the country for contributing substantially towards scientific advancements in microbiome research and providing insights to all stakeholders, tailored to the unique agricultural context of Cyprus.
Collapse
Affiliation(s)
- Daphne E Mavrides
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414, Nicosia, Cyprus
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2408, Nicosia, Cyprus
| | | | - Despo Ierodiakonou
- Department of Primary Care and Population Health, University of Nicosia Medical School, 2408 , Nicosia, Cyprus
| | | | | | - Eleni Gentekaki
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414, Nicosia, Cyprus.
| | - Anastasios D Tsaousis
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2408, Nicosia, Cyprus.
- Laboratory of Molecular and Evolutionary Parasitology, RAPID group, School of Natural Sciences, University of Kent, Canterbury, UK, CT2 7NJ.
| |
Collapse
|
49
|
Chugh S, Létisse F, Neyrolles O. The exometabolome as a hidden driver of bacterial virulence and pathogenesis. Trends Microbiol 2024:S0966-842X(24)00312-3. [PMID: 39701858 DOI: 10.1016/j.tim.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
The traditional view of metabolism as merely supplying energy and biosynthetic precursors is undergoing a paradigm shift. Metabolic dynamics not only regulates gene expression but also orchestrates cellular processes with remarkable precision. Most bacterial pathogens exhibit exceptional metabolic plasticity, enabling them to adapt to diverse environments, including hostile conditions within a host. While the role of intracellular bacterial metabolism in pathogen-host interactions has been extensively studied, the contributions of the extracellularly released or secreted bacterial metabolites (referred to here as the bacterial 'exometabolome') to metabolic adaptations and disease pathogenesis remain largely unexplored. In this review, we highlight the significant and intriguing roles of bacterial exometabolomes in drug tolerance, immune suppression, and disease pathogenesis, opening a new frontier in our understanding of bacterial-host interactions.
Collapse
Affiliation(s)
- Saurabh Chugh
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fabien Létisse
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
50
|
Todorovic N, Martinelli S, Nannini G, Weiskirchen R, Amedei A. Etiology-Dependent Microbiome Differences in Hepatocellular Carcinoma Development. Int J Mol Sci 2024; 25:13510. [PMID: 39769276 PMCID: PMC11677376 DOI: 10.3390/ijms252413510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic liver disease is characterised by persistent inflammation, tissue damage, and regeneration, which leads to steatosis, fibrosis, and, lastly, cirrhosis and hepatocellular carcinoma (HCC). HCC, the most prevalent form of primary liver cancer, is one of the leading causes of cancer-related mortality worldwide. The gut microbiota plays a fundamental role in human physiology, and disturbances in its critical balance are widely recognised as contributors to various pathological conditions, including chronic liver diseases, both infectious and non-infectious in nature. Growing interest in microbiota research has recently shifted the focus towards the study of intratumoural microbiota, referred to as the "oncobiome", which can significantly impact the development and progression of HCC. In this review, we discuss existing research and provide an overview of the microbiota influence on viral hepatitis, particularly in shaping the progression of liver disease caused by the hepatitis B and hepatitis C viruses. We also explore microbial dysbiosis and its contribution to the silent and dangerous progression of non-alcoholic fatty liver disease. Additionally, we address the impact of alcohol on the liver and its interaction with the microbiota, tracing the pathway from inflammation to cirrhosis and cancer. The review emphasises the most common etiologies of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Nevena Todorovic
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
- Clinic for Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Serena Martinelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|