1
|
Guo W, Wang X, Wang B, Zhang Y, Zhao F, Qu Y, Yao L, Yun J. In vitro digestion and fecal fermentation behaviors of exopolysaccharide from Morchella esculenta and its impacts on hypoglycemic activity via PI3K/Akt signaling and gut microbiota modulation. Food Chem X 2024; 24:101870. [PMID: 39431209 PMCID: PMC11490802 DOI: 10.1016/j.fochx.2024.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
This study aimed to evaluate the effects of gastrointestinal digestion on the physicochemical properties and hypoglycemic activity of extracellular polysaccharides from Morchella esculenta (MEPS). The results showed that the MEPS digestibility was 22.57 % after saliva-gastrointestinal digestion and only partial degradation had occurred. Contrarily, after 48 h of fecal fermentation, its molecular weight and molar ratios of the monosaccharide composition varied significantly due to being utilized by human gut microbiota, and the final fermentation rate was 76.89 %. Furthermore, the MEPS-I, the final product of saliva-gastrointestinal digestion still retained significant hypoglycemic activity, it alleviated insulin resistance and increased the IR cells glucose consumption by activating PI3K/AKT signaling pathway. MEPS-I treatment reduced the proportion of Firmicutes to Bacteroidetes, and the relative abundance of beneficial bacteria that enhanced insulin sensitivity and glucose uptake was promoted. This research can provide a theoretical basis for the further development of Morchella esculenta as a health functional food.
Collapse
Affiliation(s)
- Weihong Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Xuerui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Biao Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yajie Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Fengyun Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yuling Qu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Liang Yao
- Gannong Moli (Qingyang) Agricultural Development Co., Ltd, Qingyang 745000, Gansu, China
| | - Jianmin Yun
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| |
Collapse
|
2
|
Wang J, Ma Y, Xu X, Huang G, Zhang R, Jia X, Dong L, Deng M, Zhang M, Huang F. Comparison of different longan polysaccharides during gut Bacteroides fermentation. Food Chem 2024; 461:140840. [PMID: 39154462 DOI: 10.1016/j.foodchem.2024.140840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
The bioactivity of polysaccharide was closely related to its fermentation utilization by gut Bacteroides, and its utilization degree was determined by various gut Bacteroides species and different polysaccharides characteristics. The effects of longan polysaccharide (LP) and LP treated by ultrasonic-assisted hydrogen peroxide for 8 h (DLP-8) on gut Bacteroides growth, and their fermentation utilization were compared. The results of LP and DLP-8 on the proliferation of six Bacteroides species showed that Bacteroides uniformis had the highest proliferation index. In fermentation by B. uniformis, DLP-8 (with a lower molecular weight), the viable count of which was higher than that of LP, was degraded more and especially utilized more glucose and glucuronic acid. The microstructure of the two polysaccharides changed differently during fermentation. Moreover, DLP-8 promoted greater short-chain fatty acids production than LP. These results indicated that the fermentation properties of DLP-8 by B. uniformis were superior to those of LP.
Collapse
Affiliation(s)
- Jidongtian Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yongxuan Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiang Xu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Guitao Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
3
|
Chen T, Deng C, Li S, Li B, Liang Y, Zhang Y, Li J, Xu N, Yu K. Multi-omics illuminates the functional significance of previously unknown species in a full-scale landfill leachate treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135669. [PMID: 39208627 DOI: 10.1016/j.jhazmat.2024.135669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Landfill leachate treatment plants (LLTPs) harbor a vast reservoir of uncultured microbes, yet limited studies have systematically unraveled their functional potentials within LLTPs. Combining 36 metagenomic and 18 metatranscriptomic datasets from a full-scale LLTP, we unveiled a double-edged sword role of unknown species in leachate biotreatment and environmental implication. We identified 655 species-level genome bins (SGBs) spanning 47 bacterial and 3 archaeal phyla, with 75.9 % unassigned to any known species. Over 90 % of up-regulated functional genes in biotreatment units, compared to the leachate influent, were carried by unknown species and actively participated in carbon, nitrogen, and sulfur cycles. Approximately 79 % of the 37,366 carbohydrate active enzymes (CAZymes), with ∼90 % novelty and high expression, were encoded by unknown species, exhibiting great potential in biodegrading carbohydrate compounds linked to human meat-rich diets. Unknown species offered a valuable genetic resource of thousands of versatile, abundant, and actively expressed metabolic gene clusters (MGCs) and biosynthetic gene clusters (BGCs) for enhancing leachate treatment. However, unknown species may contribute to the emission of hazardous N2O/H2S and represented significant reservoirs for antibiotic-resistant pathogens that posed environmental safety risks. This study highlighted the significance of considering both positive and adverse effects of LLTP microbes to optimize LLTP performance.
Collapse
Affiliation(s)
- Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Chunfang Deng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China.
| | - Shaoyang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuanmei Liang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Yuanyan Zhang
- Jiangxi Academy of Eco-Environmental Sciences & Planning, Nanchang 330029, PR China
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Nan Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| |
Collapse
|
4
|
Wu J, Wang Z, Zeng M, He Z, Chen Q, Chen J. Comprehensive Understanding of Laboratory Evolution for Food Enzymes: From Design to Screening Innovations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39495102 DOI: 10.1021/acs.jafc.4c08453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
In the field of food processing, enzymes play a pivotal role in improving product quality and flavor, and extending shelf life. However, the exposure of traditional food enzymes to high temperatures during processing often leads to a decrease in activity or even inactivation, limiting the effectiveness of their application under high-temperature conditions. Therefore, the modification of thermostability and activity of enzymes to adapt to extreme conditions through protein engineering has become a key way to improve the efficiency and economic benefits of industrial production. Directed evolution and semirational design strategies in the laboratory have proven to be broadly applicable frameworks for biochemical researchers in the food field, including those who are beginners. In this review, we systematically summarize semirational design strategies and high-throughput screening strategies, and introduce some intuitive computer simulation software to improve the thermostability and enzyme activity of food enzymes. The application of these strategies and techniques provides a comprehensive guide for the optimization of food enzymes. In addition, the latest hot topics of genetically engineered food enzymes in the field of application are discussed.
Collapse
Affiliation(s)
- Junhao Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
5
|
Ma C, Zhang S, Renaud SJ, Zhang Q, Qi H, Zhou H, Jin Y, Yu H, Xu Y, Huang H, Hong Y, Li H, Liao Q, Ding F, Qin M, Wang P, Xie Z. Structural elucidation of a capsular polysaccharide from Bacteroides uniformis and its ameliorative impact on DSS-induced colitis in mice. Int J Biol Macromol 2024; 279:135119. [PMID: 39208897 DOI: 10.1016/j.ijbiomac.2024.135119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Capsular polysaccharides derived from Bacteroides species have emerged as potential mitigators of intestinal inflammation in murine models. However, research on capsular polysaccharides from B. uniformis, a Bacteroides species with reduced abundance in colons of patients with ulcerative colitis, remains scarce. In this study, we extracted a neutral polysaccharide component from B. uniformis ATCC8492, termed BUCPS1B, using ultrasonic disruption, ethanol precipitation, and anion exchange chromatography. Structural characterization revealed BUCPS1B as a water-soluble polysaccharide with an α-1,4-glucan main chain adorned with minor substituent sugar residues. BUCPS1B alleviated intestinal inflammation in a mouse model of colitis and induced polarization of macrophages into M2-type. Furthermore, BUCPS1B modulated the gut microbiota composition, increased the abundance of the probiotic Akkermansia muciniphila and altered the gut metabolic profile to promote phenylalanine and short chain fatty acids metabolism. BUCPS1B is therefore a promising candidate to prevent inflammation and augment intestinal health.
Collapse
Affiliation(s)
- Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Shaobao Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Stephen James Renaud
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Huiyuan Qi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Haiyun Zhou
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yibao Jin
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China
| | - Hansheng Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Houshuang Huang
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Meirong Qin
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China
| | - Ping Wang
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China.
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Liu Y, Miao Q, Liu Y, Jiang M. Effects of chitosan guanidine on blood glucose regulation and gut microbiota in T2DM. Int J Biol Macromol 2024; 279:135422. [PMID: 39245098 DOI: 10.1016/j.ijbiomac.2024.135422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia. Type 2 diabetes mellitus (T2DM) represents approximately 90 % of all DM cases and is primarily caused by an imbalance in blood glucose homeostasis due to inadequate insulin secretion or insulin resistance. This study explores the potential therapeutic effects of chitosan guanidine (CSG) on a T2DM mouse model. The findings reveal that CSG significantly enhances oral glucose tolerance (OGTT) and insulin sensitivity (ITT), reduces fasting blood glucose (FBG) levels, and suppresses the expression of proinflammatory cytokines in T2DM mice. These changes improve insulin resistance and diminish inflammation. Additionally, CSG markedly ameliorates lipid metabolism disorders, lowers total cholesterol (TC) and triglyceride (TG) levels, and inhibits hepatic fat accumulation. 16S rRNA and Spearman correlation analyses indicate that CSG promotes the relative abundance of probiotic genera such as Bacteroidota, Patescibacteria, Actinobacteria, and Cyanobacteria. These bacteria are positively correlated with short-chain fatty acids (SCFAs) and high-density lipoprotein cholesterol (HDLC) levels. Conversely, CSG reduces the relative abundance of pathogenic bacteria, including Proteobacteria and Ralstonia, leading to an improved intestinal microbial community composition in T2DM mice and alleviating T2DM symptoms. These results suggest that CSG holds significant potential as a non-insulin therapeutic agent for diabetes management.
Collapse
Affiliation(s)
- Yuancheng Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Qingya Miao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Mengmeng Jiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
7
|
Couture G, Cheang SE, Suarez C, Chen Y, Bacalzo NP, Jiang J, Weng CYC, Stacy A, Castillo JJ, Delannoy-Bruno O, Webber DM, Barratt MJ, Gordon JI, Mills DA, German JB, Fukagawa NK, Lebrilla CB. A multi-glycomic platform for the analysis of food carbohydrates. Nat Protoc 2024; 19:3321-3359. [PMID: 39026121 DOI: 10.1038/s41596-024-01017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/30/2024] [Indexed: 07/20/2024]
Abstract
Carbohydrates comprise the largest fraction of most diets and exert a profound impact on health. Components such as simple sugars and starch supply energy, while indigestible components, deemed dietary fiber, reach the colon to provide food for the tens of trillions of microbes that make up the gut microbiota. The interactions between dietary carbohydrates, our gastrointestinal tracts, the gut microbiome and host health are dictated by their structures. However, current methods for analysis of food glycans lack the sensitivity, specificity and throughput needed to quantify and elucidate these myriad structures. This protocol describes a multi-glycomic approach to food carbohydrate analysis in which the analyte might be any food item or biological material such as fecal and cecal samples. The carbohydrates are extracted by ethanol precipitation, and the resulting samples are subjected to rapid-throughput liquid chromatography (LC)-tandem mass spectrometry (LC-MS/MS) methods. Quantitative analyses of monosaccharides, glycosidic linkages, polysaccharides and alcohol-soluble carbohydrates are performed in 96-well plates at the milligram scale to reduce the biomass of sample required and enhance throughput. Detailed stepwise processes for sample preparation, LC-MS/MS and data analysis are provided. We illustrate the application of the protocol to a diverse set of foods as well as different apple cultivars and various fermented foods. Furthermore, we show the utility of these methods in elucidating glycan-microbe interactions in germ-free and colonized mice. These methods provide a framework for elucidating relationships between dietary fiber, the gut microbiome and human physiology. These structures will further guide nutritional and clinical feeding studies that enhance our understanding of the role of diet in nutrition and health.
Collapse
Affiliation(s)
- Garret Couture
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Shawn Ehlers Cheang
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Christopher Suarez
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Ye Chen
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Nikita P Bacalzo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Jiani Jiang
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Cheng-Yu Charlie Weng
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Aaron Stacy
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Juan J Castillo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Omar Delannoy-Bruno
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel M Webber
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - David A Mills
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, USA
| | - J Bruce German
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Naomi K Fukagawa
- USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
- Foods for Health Institute, University of California, Davis, Davis, CA, USA.
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
8
|
Zhang N, Zhang C, Zhang Y, Ma Z, Li L, Liu W. Distinct prebiotic effects of polysaccharide fractions from Polygonatum kingianum on gut microbiota. Int J Biol Macromol 2024; 279:135568. [PMID: 39270897 DOI: 10.1016/j.ijbiomac.2024.135568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
This study investigated the physicochemical properties, digestive stability, and in vitro fermentation behavior of Polygonatum kingianum polysaccharide (PKP) fractions (PKP60, PKP70, PKP80) obtained through graded ethanol precipitation. High-performance gel permeation chromatography revealed significant molecular weight differences among the fractions, while reverse-phase high-performance liquid chromatography indicated consistent monosaccharide types with variations in their proportions. Uronic acid analysis confirmed that all polysaccharide fractions met the criteria for neutral polysaccharides. Congo red staining confirmed the presence of a triple-helix structure in all PKP fractions. Comprehensive analysis demonstrated that these fractions remained stable during in vitro digestion, as evidenced by consistent molecular weights and total carbohydrate content, with no significant production of free monosaccharides or reducing sugars. All PKP fractions were fermented by gut microbiota, resulting in the production of short-chain fatty acids. Beta diversity and structural analyses of gut microbiota revealed distinct modulatory effects associated with each PKP fraction. The PKP fractions promoted probiotic growth, especially PKP70, which significantly enhanced Bifidobacterium proliferation, indicating strong prebiotic potential. These findings underscore the importance of isolation and purification methods in determining the functionality and gut microbiota-modulating effects of plant-derived polysaccharides, emphasizing the need for in-depth research that extends beyond merely evaluating their source.
Collapse
Affiliation(s)
- Nan Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhongshuai Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
9
|
Favero F, Re A, Dason MS, Gravina T, Gagliardi M, Mellai M, Corazzari M, Corà D. Characterization of gut microbiota dynamics in an Alzheimer's disease mouse model through clade-specific marker-based analysis of shotgun metagenomic data. Biol Direct 2024; 19:100. [PMID: 39478626 PMCID: PMC11524029 DOI: 10.1186/s13062-024-00541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder significantly impairing cognitive faculties, memory, and physical abilities. To characterize the modulation of the gut microbiota in an in vivo AD model, we performed shotgun metagenomics sequencing on 3xTgAD mice at key time points (i.e., 2, 6, and 12 months) of AD progression. Fecal samples from both 3xTgAD and wild-type mice were collected, DNA extracted, and sequenced. Quantitative taxon abundance assessment using MetaPhlAn 4 ensured precise microbial community representation. The analysis focused on species-level genome bins (SGBs) including both known and unknown SGBs (kSGBs and uSGBs, respectively) and also comprised higher taxonomic categories such as family-level genome bins (FGBs), class-level genome bins (CGBs), and order-level genome bins (OGBs). Our bioinformatic results pinpointed the presence of extensive gut microbial diversity in AD mice and showed that the largest proportion of AD- and aging-associated microbiome changes in 3xTgAD mice concern SGBs that belong to the Bacteroidota and Firmicutes phyla, along with a large set of uncharacterized SGBs. Our findings emphasize the need for further advanced bioinformatic studies for accurate classification and functional analysis of these elusive microbial species in relation to their potential bridging role in the gut-brain axis and AD pathogenesis.
Collapse
Affiliation(s)
- Francesco Favero
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
| | - Angela Re
- Department of Applied Science and Technology (DISAT) - Politecnico di Torino, C.so Duca degli Abruzzi, 24, I-10129, Torino, Italy
| | - Mohammed Salim Dason
- Department of Applied Science and Technology (DISAT) - Politecnico di Torino, C.so Duca degli Abruzzi, 24, I-10129, Torino, Italy
| | - Teresa Gravina
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
| | - Mara Gagliardi
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy
| | - Marta Mellai
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy
| | - Marco Corazzari
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy.
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy.
| | - Davide Corà
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy.
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy.
| |
Collapse
|
10
|
Xiao X, Singh A, Giometto A, Brito IL. Segatella clades adopt distinct roles within a single individual's gut. NPJ Biofilms Microbiomes 2024; 10:114. [PMID: 39465298 PMCID: PMC11514259 DOI: 10.1038/s41522-024-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Segatella is a prevalent genus within individuals' gut microbiomes worldwide, especially in non-Western populations. Although metagenomic assembly and genome isolation have shed light on its genetic diversity, the lack of available isolates from this genus has resulted in a limited understanding of how members' genetic diversity translates into phenotypic diversity. Within the confines of a single gut microbiome, we have isolated 63 strains from diverse lineages of Segatella. We performed comparative analyses that exposed differences in cellular morphologies, preferences in polysaccharide utilization, yield of short-chain fatty acids, and antibiotic resistance across isolates. We further show that exposure to Segatella isolates either evokes strong or muted transcriptional responses in human intestinal epithelial cells. Our study exposes large phenotypic differences within related Segatella isolates, extending this to host-microbe interactions.
Collapse
Affiliation(s)
- Xieyue Xiao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Adarsh Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrea Giometto
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
Li F, Jia M, Chen H, Chen M, Su R, Usman S, Ding Z, Hao L, Franco M, Guo X. Responses of microbial community composition and CAZymes encoding gene enrichment in ensiled Elymus nutans to altitudinal gradients in alpine region. Appl Environ Microbiol 2024; 90:e0098624. [PMID: 39324818 DOI: 10.1128/aem.00986-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
High-throughput metagenomic sequence technology was employed to evaluate changes in microbial community composition and carbohydrate-active enzymes encoding gene enrichment status in Elymus nutans silages to altitudinal gradients in the world's highest alpine region of Qinghai-Tibetan Plateau (QTP). E. nutans were collected from three different altitudes in QTP: 2,600 m (low altitude), 3600 m (moderate altitude), and 4,600 m [high (H) altitude], and ensiled for 7, 14, 30, and 60 d. Results indicated an improvement in silage quality with the increasing altitude, although the acetic acid concentration and dry matter loss were greater in H altitude silages after 30 d of ensiling. Harmful bacteria or potential pathogens predominated in the microbial community on d 7 and 14 of fermentation, while genera belonging to lactic acid bacteria gradually became the main microorganisms with the increasing altitude on d 30 and 60 of ensiling. The abundance of carbohydrate-active enzymes genes responsible for macromolecular carbohydrate degradation in silage increased with increasing altitude, and those genes were mainly carried by Lactiplantibacillus and Pediococcus at 30 and 60 d of ensiling. The abundance of key enzymatic genes associated with glycolysis and organic acid production in carbohydrate metabolism pathway was higher in H altitude silages, and Lactiplantibacillus and Pediococcus were also the main hosts after 30 d of silage fermentation, except for the fact that acetic acid production was also related to genera Leuconostoc, Latilactobacillus, and Levilactobacillus. IMPORTANCE The fermentation quality of Elymus nutans silage was getting better with the increase of altitude in the Qinghai-Tibetan Plateau. The abundance of hosts carrying carbohydrate-active enzymes genes and key enzyme genes related to organic acid production increased with increasing altitude during the later stages of fermentation. Lactiplantibacillus and Pediococcus were the core microorganisms responsible for both polysaccharide hydrolysis and silage fermentation in the late stage of ensiling. This study provided insights on the influence of different altitudes on the composition and function of silage microbiome in the Qinghai-Tibetan Plateau, and provided a reference approach for improving the quality and controllability of silage production in high altitude areas of the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Fuhou Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mengya Jia
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hu Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mengyan Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rina Su
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Samaila Usman
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zitong Ding
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Marcia Franco
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Xusheng Guo
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Kastner K, Bitter J, Pfeiffer M, Grininger C, Oberdorfer G, Pavkov-Keller T, Weber H, Nidetzky B. Enzyme Machinery for Bacterial Glucoside Metabolism through a Conserved Non-hydrolytic Pathway. Angew Chem Int Ed Engl 2024; 63:e202410681. [PMID: 39041709 DOI: 10.1002/anie.202410681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The flexible acquisition of substrates from nutrient pools is critical for microbes to prevail in competitive environments. To acquire glucose from diverse glycoside and disaccharide substrates, many free-living and symbiotic bacteria have developed, alongside hydrolysis, a non-hydrolytic pathway comprised of four biochemical steps and conferred from a single glycoside utilization gene locus (GUL). Mechanistically, this pathway integrates within the framework of oxidation and reduction at the glucosyl/glucose C3, the eliminative cleavage of the glycosidic bond and the addition of water in two consecutive lyase-catalyzed reactions. Here, based on study of enzymes from the phytopathogen Agrobacterium tumefaciens, we reveal a conserved Mn2+ metallocenter active site in both lyases and identify the structural requirements for specific catalysis to elimination of 3-keto-glucosides and water addition to the resulting 2-hydroxy-3-keto-glycal product, yielding 3-keto-glucose. Extending our search of GUL-encoded putative lyases to the human gut commensal Bacteroides thetaiotaomicron, we discover a Ca2+ metallocenter active site in a putative glycoside hydrolase-like protein and demonstrate its catalytic function in the eliminative cleavage of 3-keto-glucosides of opposite (α) anomeric configuration as preferred by the A. tumefaciens enzyme (β). Structural and biochemical comparisons reveal the molecular-mechanistic origin of 3-keto-glucoside lyase stereo-complementarity. Our findings identify a basic set of GUL-encoded lyases for glucoside metabolism and assign physiological significance to GUL genetic diversity in the bacterial domain of life.
Collapse
Affiliation(s)
- Klara Kastner
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Johannes Bitter
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Christoph Grininger
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010, Graz, Austria
| | - Gustav Oberdorfer
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, A-8010, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, A-8010, Graz, Austria
- BioHealth Field of Excellence, University of Graz, Humboldtstraße 50, A-8010, Graz, Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, A-8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria
| |
Collapse
|
13
|
Connolly D, Minj J, Murphy KM, Solverson PM, Rust BM, Carbonero F. Impact of quinoa and food processing on gastrointestinal health: a narrative review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39422522 DOI: 10.1080/10408398.2024.2416476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Due to exceptional nutritional quality, quinoa is an ideal candidate to solve food insecurity in many countries. Quinoa's profile of polyphenols, essential amino acids, and lipids make it ideal for digestive health. How the nutrient profile and bioavailability of quinoa metabolites differs across cooking methods such as heat, pressure, and time employed has yet to be elucidated. The objective of this review is to compile available research pertaining to the impact of various cooking methods on quinoa's nutritional properties with specific emphasis on how those properties affect gut health. Replacing small percentages of wheat flour with quinoa flour in baked bread increases the antioxidant activity, essential amino acids, fiber, minerals, and polyphenols. Extruding quinoa flour reduces amino acid, lipid, and polyphenol content of the raw seed, however direct quinoa and cereal grain extrudate comparisons are absent. Boiling quinoa leads to an increase of dietary fiber as well as exceptional retention of amino acids, lipids, and polyphenols. Baking and extruding with quinoa flour results in less optimal texture due to higher density, however minor substitutions can retain acceptable texture and even improve taste. Future research on quinoa's substitution in common processing methods will create equally desirable, yet more nutritious food products.
Collapse
Affiliation(s)
- Devin Connolly
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Jagrani Minj
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Kevin M Murphy
- Department of Crop and Soil Science, Washington State University, Pullman, Washington, USA
| | - Patrick M Solverson
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Bret M Rust
- Department of Applied Health Science, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, Washington, USA
- School of Food Science, Washington State University, Spokane, Washington, USA
| |
Collapse
|
14
|
Wang Y, Wang L, Li D, Chen Z, Luo Y, Zhou J, Luo B, Yan R, Liu H, Wang L. Advancements in the Impact of Insect Gut Microbiota on Host Feeding Behaviors. Genes (Basel) 2024; 15:1320. [PMID: 39457444 PMCID: PMC11507998 DOI: 10.3390/genes15101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
With the application and development of high-throughput sequencing technology, the structure and function of insect gut microbiota have been analysed, which lays a foundation for further exploring the intricate relationships between gut microbiota and host feeding behaviour. The microbial community in the insect gut, as an important ecological factor, affects the host's food selection and nutritional metabolic processes through various mechanisms, which play a key role in population dynamics and ecosystems. The implications of these interactions are profound, affecting agricultural practices, biodiversity, and the broader environment, such as pollination and pest control. In-depth exploration of the molecular mechanism of the interaction between gut microbiota and hosts contributes to the grasp of insect biology and evolution and offers novel avenues for manipulating insect behaviour for practical applications in agriculture and environmental management. This paper focuses on the possible mechanisms of insect gut microbiota regulating host feeding behaviour. It inspires further research on the interaction between gut microbiota and insects affecting host behaviour.
Collapse
Affiliation(s)
- Yikang Wang
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Liang Wang
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Di Li
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Zhenfu Chen
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Yang Luo
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Juan Zhou
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Bo Luo
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Rong Yan
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Hui Liu
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Lingjun Wang
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai 200025, China
| |
Collapse
|
15
|
Wang XY, Hao M, Li YP, Zhang J, Xu QS, Yang F, Yang ZC, Xiong YR, Gong ES, Luo JH, Zou Q. Structural characteristics of a purified Evodiae fructus polysaccharide and its gastroprotection and relevant mechanism against alcohol-induced gastric lesions in rats. Int J Biol Macromol 2024; 281:136410. [PMID: 39395514 DOI: 10.1016/j.ijbiomac.2024.136410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Evodiae fructus polysaccharide (EFP) has been previously shown to protect against alcohol-induced gastric lesions. However, which and how active fractions in EFP exert gastroprotection remains unclear. This study aimed to characterize the structure of the purified fraction (EFP-2-1) of EFP, and investigate its gastroprotection and underlying mechanisms. EFP-2-1 was obtained through column chromatography, and was characterized using instrumental analytical techniques. Gastroprotective effect of EFP-2-1 was evaluated using alcohol-induced gastric lesions in rats, and its mechanism was explored through proteomics, metabolomics and diversity sequencing. Results showed that EFP-2-1 had a molecular weight of 7.3 kDa, and consisted mainly of rhamnose, galacturonic acid, galactose and arabinose. Its backbone contained HG and RG-I domains, and branched with →5)-α-l-Araf-(1→, α-l-Araf-(1→ and →4)-β-d-Galp-(1→ residues. EFP-2-1 reduced gastric lesions and the levels of MDA, TNF-α and IL-6, activated PPARγ, primarily altered protein digestion and absorption and bile secretion metabolic pathways, regulated gut microbiota like Faecalibaculum and Lachnoclostridium, and increased short-chain fatty acids production. Correlations were observed among the gut microbiota, metabolites and biochemical indexes influenced by EFP-2-1. These findings suggest that EFP-2-1 is an active fraction of EFP for protecting against alcohol-induced gastric lesions, which may be linked to PPARγ activation, gut microbiota and serum metabolism.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Ming Hao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Yan-Ping Li
- Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| | - Jun Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Quan-Sheng Xu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Fan Yang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Zi-Chao Yang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Yu-Rou Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
16
|
Delzenne NM, Bindels LB, Neyrinck AM, Walter J. The gut microbiome and dietary fibres: implications in obesity, cardiometabolic diseases and cancer. Nat Rev Microbiol 2024:10.1038/s41579-024-01108-z. [PMID: 39390291 DOI: 10.1038/s41579-024-01108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Dietary fibres constitute a heterogeneous class of nutrients that are key in the prevention of various chronic diseases. Most dietary fibres are fermented by the gut microbiome and may, thereby, modulate the gut microbial ecology and metabolism, impacting human health. Dietary fibres may influence the occurrence of specific bacterial taxa, with this effect varying between individuals. The effect of dietary fibres on microbial diversity is a matter of debate. Most intervention studies with dietary fibres in the context of obesity and related metabolic disorders reveal the need for an accurate assessment of the microbiome to better understand the variable response to dietary fibres. Epidemiological studies confirm that a high dietary fibre intake is strongly associated with a reduced occurrence of many types of cancer. However, there is a need to determine the impact of intervention with specific dietary fibres on cancer risk, therapy efficacy and toxicity, as well as in cancer cachexia. In this Review, we summarize the mechanisms by which the gut microbiome can mediate the physiological benefits of dietary fibres in the contexts of obesity, cardiometabolic diseases and cancer, their incidence being clearly linked to low dietary fibre intake.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Tong M, Xu J, Li W, Jiang K, Yang Y, Chen Z, Jiao X, Meng X, Wang M, Hong J, Long H, Liu SJ, Lim B, Gao X. A highly conserved SusCD transporter determines the import and species-specific antagonism of Bacteroides ubiquitin homologues. Nat Commun 2024; 15:8794. [PMID: 39389974 PMCID: PMC11467351 DOI: 10.1038/s41467-024-53149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Efficient interbacterial competitions and diverse defensive strategies employed by various bacteria play a crucial role in acquiring a hold within a dense microbial community. The gut symbiont Bacteroides fragilis secretes an antimicrobial ubiquitin homologue (BfUbb) that targets an essential periplasmic PPIase to drive intraspecies bacterial competition. However, the mechanisms by which BfUbb enters the periplasm and its potential for interspecies antagonism remain poorly understood. Here, we employ transposon mutagenesis and identify a highly conserved TonB-dependent transporter SusCD (designated as ButCD) in B. fragilis as the BfUbb transporter. As a putative protein-related nutrient utilization system, ButCD is widely distributed across diverse Bacteroides species with varying sequence similarity, resulting in distinct import efficiency of Bacteroides ubiquitin homologues (BUbb) and thereby determining the species-specific toxicity of BUbb. Cryo-EM structural and functional investigations of the BfUbb-ButCD complex uncover distinctive structural features of ButC that are crucial for its targeting by BfUbb. Animal studies further demonstrate the specific and efficient elimination of enterotoxigenic B. fragilis (ETBF) in the murine gut by BfUbb, suggesting its potential as a therapeutic against ETBF-associated inflammatory bowel disease and colorectal cancer. Our findings provide a comprehensive elucidation of the species-specific toxicity exhibited by BUbb and explore its potential applications.
Collapse
Affiliation(s)
- Ming Tong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jinghua Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Weixun Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Kun Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yan Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xuyao Jiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jie Hong
- NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bentley Lim
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
18
|
Kim S, Kang JY, Nguyen QA, Lee JS. Effects of Prebiotic Dietary Fibers on the Stimulation of the Mucin Secretion in Host Cells by In Vitro Gut Microbiome Consortia. Foods 2024; 13:3194. [PMID: 39410228 PMCID: PMC11475894 DOI: 10.3390/foods13193194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
The gastrointestinal microbiota are important for human health. Dietary intake may modulate the composition and metabolic function of the gut microbiome. We examined how the breakdown of prebiotic dietary fibers by the gut microbiome affects mucin secretion by intestinal epithelial cells. Metagenomic analyses of in vitro gut microbiome consortia revealed taxonomic profiles and genetic diversity of carbohydrate-active enzymes that digest polysaccharides. Two independent consortia exhibited different abilities to produce acetic acid, propionic acid, and butyric acid via the fermentation of polysaccharides derived from dietary fibers of grains and mushrooms. Although acetic acid generally had the highest concentration, the ratios of butyric acid and propionic acid to acetic acid varied depending on the polysaccharide source. These short-chain fatty acids affected morphological differentiation and mucin secretion in HT-29 human intestinal epithelial cells. These results suggest that prebiotic dietary fibers can be digested and metabolized by the gut microbiome to short-chain fatty acids, which can affect gut epithelial cells both directly and indirectly via the modulation of the gut microbiota and their enzymes.
Collapse
Affiliation(s)
- Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup 56212, Republic of Korea;
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea;
| | - Ji Young Kang
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup 56212, Republic of Korea;
| | - Quang Anh Nguyen
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea;
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup 56212, Republic of Korea;
| |
Collapse
|
19
|
Dong Y, Wang Y, Zhang F, Ma J, Li M, Liu W, Yao J, Sun M, Cao Y, Liu Y, Ying L, Yang Y, Yang Y, She G. Polysaccharides from Gaultheria leucocarpa var. yunnanensis (DBZP) alleviates rheumatoid arthritis through ameliorating gut microbiota. Int J Biol Macromol 2024:136250. [PMID: 39482128 DOI: 10.1016/j.ijbiomac.2024.136250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Gaultheria leucocarpa var. yunnanensis (Dianbaizhu) is a traditional Chinese herb for rheumatoid arthritis (RA). However, its macromolecular components have always been overlooked. This study aimed to investigate the chemical composition and effect on improving RA of polysaccharides from Dianbaizhu (DBZP). The results showed the yield of DBZP was 4.07 % ± 0.03 %, and it was composed of Mannose (6.63 %), ribose (1.33 %), rhamnose (4.53 %), glucuronic acid (2.95 %), galacturonic acid (32.29 %), glucose (13.78 %), galactose (22.97 %), xylose (3.94 %) and arabinose (11.59 %), with a large molecular weight distribution range. DBZP treatment could reduce the paws thickness and arthritis scores of collagen-induced arthritis (CIA) mice, and improve inflammatory cell infiltration, synovial hyperplasia, bone erosion, and deterioration. The abundance of several specific bacteria, such as Lactobacillus, Bacteroides, Alistipes, Mucispirillum, and Candidatus_Saccharimonas, and some metabolites in feces or urine, such as 11beta-hydroxytestosterone, pregnanediol 3-O-glucuronide, p-cresol sulfate and several amino acids and peptides, was also altered. The process of DBZP alleviating RA through gut microbiota involves affecting the digestion and metabolism of carbohydrates and protein, altering sex hormones levels, and regulating intestinal immune function, such as the differentiation and signaling of Th17 cells. These findings suggest that DBZP possesses a protective effect on CIA in mice via modulating gut microbiota.
Collapse
Affiliation(s)
- Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yunzi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Letian Ying
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuqing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongqi Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
20
|
Zhang L, Li Z, Kong H, Ban X, Gu Z, Hong Y, Cheng L, Li C. Advances in microbial exopolysaccharides as α-amylase inhibitors: Effects, structure-activity relationships, and anti-diabetic effects in vivo. Int J Biol Macromol 2024; 281:136174. [PMID: 39366595 DOI: 10.1016/j.ijbiomac.2024.136174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
The rapid digestion of starch, as the main source of energy in the human diet, causes an acute increase in blood sugar levels that will affect blood glucose homeostasis. The inhibition of α-amylase activity is an effective way of reducing starch digestibility, thereby controlling postprandial glycemia. As a class of carbohydrate polymers, microbial exopolysaccharides (EPSs) have garnered widespread attention for their inhibitory effects on α-amylase, but there is a lack of comprehensive review in this area. This paper aimed to review the inhibitory activity of microbial EPSs on α-amylase and their interaction mechanisms, and the effect of microbial EPSs on lowering blood glucose levels and regulating glycolipid metabolism in vivo were also discussed. Numerous studies have reported that EPSs with α-amylase inhibition activity are primarily produced by lactic acid bacteria. Microbial EPSs with an appropriate range of molecular weight, high proportion of glucose or mannose or arabinose residues, and high uronic acid content might be acceptable to inhibit α-amylase activity. Additionally, microbial EPSs exhibited potential anti-diabetic effects in mice, reducing blood glucose levels, and regulating glycolipid metabolism and gut microbiota. The information covered in this review may enhance the development and application of EPSs in functional food and pharmaceutical research.
Collapse
Affiliation(s)
- Lan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
21
|
Dai N, Yang X, Pan P, Zhang G, Sheng K, Wang J, Liang X, Wang Y. Bacillus paralicheniformis, an acetate-producing probiotic, alleviates ulcerative colitis via protecting the intestinal barrier and regulating the NLRP3 inflammasome. Microbiol Res 2024; 287:127856. [PMID: 39079268 DOI: 10.1016/j.micres.2024.127856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Ulcerative colitis (UC) presents a challenging scenario in digestive health, characterized by recurrent inflammation that is often hard to manage. Bacteria capable of producing short-chain fatty acids (SCFAs) play a pivotal role in mitigating UC symptoms, rendering them promising candidates for probiotic therapy. In this investigation, we assessed the impact of Bacillus paralicheniformis HMPM220325 on dextran sodium sulfate (DSS)-induced UC in mice. Genomic analysis of the strain revealed the presence of protease genes associated with acetate and butyrate synthesis, with acetic acid detected in its fermentation broth. Administration of B. paralicheniformis HMPM220325 to UC mice ameliorated pathological manifestations of the condition and restored intestinal barrier function. Furthermore, B. paralicheniformis HMPM220325 suppressed the activation of the NLRP3 inflammasome signaling pathway and modulated the composition of the intestinal microbiota. These findings shed significant light on the potential of B. paralicheniformis as a probiotic candidate, offering a novel avenue for the prevention and therapeutic intervention of colitis.
Collapse
Affiliation(s)
- Nini Dai
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Xinting Yang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Peilong Pan
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China.
| |
Collapse
|
22
|
Yersin S, Vonaesch P. Small intestinal microbiota: from taxonomic composition to metabolism. Trends Microbiol 2024; 32:970-983. [PMID: 38503579 DOI: 10.1016/j.tim.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
The small intestinal microbiota (SIM) is essential for gastrointestinal health, influencing digestion, immune modulation, and nutrient metabolism. Unlike the colonic microbiota, the SIM has been poorly characterized due to sampling challenges and ethical considerations. Current evidence suggests that the SIM consists of five core genera and additional segment-specific taxa. These bacteria closely interact with the human host, regulating nutrient absorption and metabolism. Recent work suggests the presence of two forms of small intestinal bacterial overgrowth, one dominated by oral bacteria (SIOBO) and a second dominated by coliform bacteria. Less invasive sampling techniques, omics approaches, and mechanistic studies will allow a more comprehensive understanding of the SIM, paving the way for interventions engineering the SIM towards better health.
Collapse
Affiliation(s)
- Simon Yersin
- Department of Fundamental Microbiology, Université de Lausanne, Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, Université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
23
|
Zhou H, Balint D, Shi Q, Vartanian T, Kriegel MA, Brito I. Lupus and inflammatory bowel disease share a common set of microbiome features distinct from other autoimmune disorders. Ann Rheum Dis 2024:ard-2024-225829. [PMID: 39299726 DOI: 10.1136/ard-2024-225829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVES This study aims to elucidate the microbial signatures associated with autoimmune diseases, particularly systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), compared with colorectal cancer (CRC), to identify unique biomarkers and shared microbial mechanisms that could inform specific treatment protocols. METHODS We analysed metagenomic datasets from patient cohorts with six autoimmune conditions-SLE, IBD, multiple sclerosis, myasthenia gravis, Graves' disease and ankylosing spondylitis-contrasting these with CRC metagenomes to delineate disease-specific microbial profiles. The study focused on identifying predictive biomarkers from species profiles and functional genes, integrating protein-protein interaction analyses to explore effector-like proteins and their targets in key signalling pathways. RESULTS Distinct microbial signatures were identified across autoimmune disorders, with notable overlaps between SLE and IBD, suggesting shared microbial underpinnings. Significant predictive biomarkers highlighted the diverse microbial influences across these conditions. Protein-protein interaction analyses revealed interactions targeting glucocorticoid signalling, antigen presentation and interleukin-12 signalling pathways, offering insights into possible common disease mechanisms. Experimental validation confirmed interactions between the host protein glucocorticoid receptor (NR3C1) and specific gut bacteria-derived proteins, which may have therapeutic implications for inflammatory disorders like SLE and IBD. CONCLUSIONS Our findings underscore the gut microbiome's critical role in autoimmune diseases, offering insights into shared and distinct microbial signatures. The study highlights the potential importance of microbial biomarkers in understanding disease mechanisms and guiding treatment strategies, paving the way for novel therapeutic approaches based on microbial profiles. TRIAL REGISTRATION NUMBER NCT02394964.
Collapse
Affiliation(s)
- Hao Zhou
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Diana Balint
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | | | - Martin A Kriegel
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, Münster, Germany
- Section of Rheumatology and Clinical Immunology, University Hospital Münster, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ilana Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Zhang S, Lu J, Jin Z, Xu H, Zhang D, Chen J, Wang J. Gut microbiota metabolites: potential therapeutic targets for Alzheimer's disease? Front Pharmacol 2024; 15:1459655. [PMID: 39355779 PMCID: PMC11442227 DOI: 10.3389/fphar.2024.1459655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function, which significantly increases pain and social burden. However, few therapeutic interventions are effective in preventing or mitigating the progression of AD. An increasing number of recent studies support the hypothesis that the gut microbiome and its metabolites may be associated with upstream regulators of AD pathology. Methods In this review, we comprehensively explore the potential mechanisms and currently available interventions targeting the microbiome for the improvement of AD. Our discussion is structured around modern research advancements in AD, the bidirectional communication between the gut and brain, the multi-target regulatory effects of microbial metabolites on AD, and therapeutic strategies aimed at modulating gut microbiota to manage AD. Results The gut microbiota plays a crucial role in the pathogenesis of AD through continuous bidirectional communication via the microbiota-gut-brain axis. Among these, microbial metabolites such as lipids, amino acids, bile acids and neurotransmitters, especially sphingolipids and phospholipids, may serve as central components of the gut-brain axis, regulating AD-related pathogenic mechanisms including β-amyloid metabolism, Tau protein phosphorylation, and neuroinflammation. Additionally, interventions such as probiotic administration, fecal microbiota transplantation, and antibiotic use have also provided evidence supporting the association between gut microbiota and AD. At the same time, we propose an innovative strategy for treating AD: a healthy lifestyle combined with targeted probiotics and other potential therapeutic interventions, aiming to restore intestinal ecology and microbiota balance. Conclusion Despite previous efforts, the molecular mechanisms by which gut microbes act on AD have yet to be fully described. However, intestinal microorganisms may become an essential target for connecting the gut-brain axis and improving the symptoms of AD. At the same time, it requires joint exploration by multiple centers and multiple disciplines.
Collapse
Affiliation(s)
- Shanshan Zhang
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziqi Jin
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Chen
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
25
|
Akagbosu CO, McCauley KE, Namasivayam S, Romero-Soto HN, O’Brien W, Bacorn M, Bohrnsen E, Schwarz B, Mistry S, Burns AS, Perez-Chaparro PJ, Chen Q, LaPoint P, Patel A, Krausfeldt LE, Subramanian P, Sellers BA, Cheung F, Apps R, Douagi I, Levy S, Nadler EP, Hourigan SK. Gut microbiome shifts in adolescents after sleeve gastrectomy with increased oral-associated taxa and pro-inflammatory potential. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.16.24313738. [PMID: 39371172 PMCID: PMC11451705 DOI: 10.1101/2024.09.16.24313738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Bariatric surgery is highly effective in achieving weight loss in children and adolescents with severe obesity, however the underlying mechanisms are incompletely understood, and gut microbiome changes are unknown. Objectives 1) To comprehensively examine gut microbiome and metabolome changes after laparoscopic vertical sleeve gastrectomy (VSG) in adolescents and 2) to assess whether the microbiome/metabolome changes observed with VSG influence phenotype using germ-free murine models. Design 1) A longitudinal observational study in adolescents undergoing VSG with serial stool samples undergoing shotgun metagenomic microbiome sequencing and metabolomics (polar metabolites, bile acids and short chain fatty acids) and 2) a human-to-mouse fecal transplant study. Results We show adolescents exhibit significant gut microbiome and metabolome shifts several months after VSG, with increased alpha diversity and notably with enrichment of oral-associated taxa. To assess causality of the microbiome/metabolome changes in phenotype, pre-VSG and post-VSG stool was transplanted into germ-free mice. Post-VSG stool was not associated with any beneficial outcomes such as adiposity reduction compared pre-VSG stool. However, post-VSG stool exhibited an inflammatory phenotype with increased intestinal Th17 and decreased regulatory T cells. Concomitantly, we found elevated fecal calprotectin and an enrichment of proinflammatory pathways in a subset of adolescents post-VSG. Conclusion We show that in some adolescents, microbiome changes post-VSG may have inflammatory potential, which may be of importance considering the increased incidence of inflammatory bowel disease post-VSG.
Collapse
Affiliation(s)
- Cynthia O Akagbosu
- Department of Gastroenterology. Weill Cornell Medicine. New York, New York, United States
| | - Kathryn E McCauley
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Sivaranjani Namasivayam
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Hector N Romero-Soto
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Wade O’Brien
- Dartmouth Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States
| | - Mickayla Bacorn
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Eric Bohrnsen
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States
| | - Benjamin Schwarz
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States
| | - Shreni Mistry
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Andrew S Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - P. Juliana Perez-Chaparro
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Qing Chen
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Phoebe LaPoint
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Anal Patel
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Lauren E Krausfeldt
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Brian A Sellers
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, United States
| | - Foo Cheung
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, United States
| | - Richard Apps
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, United States
| | - Iyadh Douagi
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, Maryland, United States
| | - Shira Levy
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Evan P Nadler
- Evan P Nadler. ProCare Consultants, Washington DC, Washington DC, United States
| | - Suchitra K Hourigan
- Clinical Microbiome Unit. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
26
|
Yüksel E, Voragen AGJ, Kort R. The pectin metabolizing capacity of the human gut microbiota. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39264366 DOI: 10.1080/10408398.2024.2400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The human gastrointestinal microbiota, densely populated with a diverse array of microorganisms primarily from the bacterial phyla Bacteroidota, Bacillota, and Actinomycetota, is crucial for maintaining health and physiological functions. Dietary fibers, particularly pectin, significantly influence the composition and metabolic activity of the gut microbiome. Pectin is fermented by gut bacteria using carbohydrate-active enzymes (CAZymes), resulting in the production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, which provide various health benefits. The gastrointestinal microbiota has evolved to produce CAZymes that target different pectin components, facilitating cross-feeding within the microbial community. This review explores the fermentation of pectin by various gut bacteria, focusing on the involved transport systems, CAZyme families, SCFA synthesis capacity, and effects on microbial ecology in the gut. It addresses the complexities of the gut microbiome's response to pectin and highlights the importance of microbial cross-feeding in maintaining a balanced and diverse gut ecosystem. Through a systematic analysis of pectinolytic CAZyme production, this review provides insights into the enzymatic mechanisms underlying pectin degradation and their broader implications for human health, paving the way for more targeted and personalized dietary strategies.
Collapse
Affiliation(s)
- Ecem Yüksel
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alphons G J Voragen
- Keep Food Simple, Driebergen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Luo W, Diao Q, Lv L, Li T, Ma P, Song D. A novel NIR fluorescent probe for enhanced β-galactosidase detection and tumor imaging in ovarian cancer models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124411. [PMID: 38728851 DOI: 10.1016/j.saa.2024.124411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The advancement of biological imaging techniques critically depends on the development of novel near-infrared (NIR) fluorescent probes. In this study, we introduce a designed NIR fluorescent probe, NRO-βgal, which exhibits a unique off-on response mechanism to β-galactosidase (β-gal). Emitting a fluorescence peak at a wavelength of 670 nm, NRO-βgal showcases a significant Stokes shift of 85 nm, which is indicative of its efficient energy transfer and minimized background interference. The probe achieves a remarkably low in vitro detection limit of 0.2 U/L and demonstrates a rapid response within 10 min, thereby underscoring its exceptional sensitivity, selectivity, and operational swiftness. Such superior analytical performance broadens the horizon for its application in intricate biological imaging studies. To validate the practical utility of NRO-βgal in bio-imaging, we employed ovarian cancer cell and mouse models, where the probe's efficacy in accurately delineating tumor cells was examined. The results affirm NRO-βgal's capability to provide sharp, high-contrast images of tumor regions, thereby significantly enhancing the precision of surgical tumor resection. Furthermore, the probe's potential for real-time monitoring of enzymatic activity in living tissues underscores its utility as a powerful tool for diagnostics in oncology and beyond.
Collapse
Affiliation(s)
- Weiwei Luo
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Quanping Diao
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China.
| | - Linlin Lv
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Tiechun Li
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| |
Collapse
|
28
|
Yao H, Flanagan BM, Williams BA, Wu X, Mikkelsen D, Gidley MJ. Differential effects of pectin-based dietary fibre type and gut microbiota composition on in vitro fermentation outcomes. Carbohydr Polym 2024; 339:122284. [PMID: 38823935 DOI: 10.1016/j.carbpol.2024.122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Interactions between human gut microbiota and dietary fibres (DF) are influenced by the complexity and diversity of both individual microbiota and sources of DF. Based on 480 in vitro fermentations, a full factorial experiment was performed with six faecal inocula representing two enterotypes and three DF sources with nanometer, micrometer, and millimeter length-scales (apple pectin, apple cell walls and apple particles) at two concentrations. Increasing DF size reduced substrate disappearance and fermentation rates but not biomass growth. Concentrated DF enhanced butyrate production and lactate cross-feeding. Enterotype differentiated final microbial compositions but not biomass or fermentation metabolite profiles. Individual donor microbiota differences did not influence DF type or concentration effects but were manifested in the promotion of different functional microbes within each population with the capacity to degrade the DF substrates. Overall, consistent effects (independent of donor microbiota variation) of DF type and concentration on kinetics of substrate degradation, microbial biomass production, gas kinetics and metabolite profiles were found, which can form the basis for informed design of DF for desired rates/sites and consequences of gut fermentation. These results add further evidence to the concept that, despite variations between individuals, the human gut microbiota represents a community with conserved emergent properties.
Collapse
Affiliation(s)
- Hong Yao
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bernadine M Flanagan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Barbara A Williams
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Deirdre Mikkelsen
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia; School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
29
|
Wang M, Zhu Z, Wu X, Cheong K, Li X, Yu W, Yao Y, Wu J, Cao Z. Bioactive Polysaccharides from Gracilaria lemaneiformis: Preparation, Structures, and Therapeutic Insights. Foods 2024; 13:2782. [PMID: 39272547 PMCID: PMC11395005 DOI: 10.3390/foods13172782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Gracilaria lamaneiformis, a red seaweed, is an abundant source of bioactive polysaccharides with significant health-promoting properties. Nevertheless, the broad application of G. lamaneiformis in the nutraceutical and pharmaceutical sectors remains constrained due to the absence of comprehensive data. This review provides a detailed examination of the preparation methods, structural characteristics, and biological activities of G. lamaneiformis polysaccharides (GLPs). We explore both conventional and advanced extraction techniques, highlighting the efficiency and yield improvements achieved through methods such as microwave-, ultrasonic-, and enzyme-assisted extraction. The structural elucidation of GLPs using modern analytical techniques, including high-performance liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy, is discussed, providing comprehensive insights into their molecular composition and configuration. Furthermore, we critically evaluate the diverse biological activities of GLPs, including their antioxidant, anti-inflammatory, antitumor, and gut microbiota modulation properties. This review underscores the therapeutic potential of GLPs and suggests future research directions to fully harness their health benefits.
Collapse
Affiliation(s)
- Min Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen Zhu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaocheng Wu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kitleong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohua Li
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wanli Yu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yinlin Yao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiang Wu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhanhui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
30
|
Ye Z, Yu L, Zhang C, Gao Y, Zhao J, Narbad A, Chen W, Zhai Q, Tian F. Modulation of gut microbiota and metabolites by Flammulina velutipes polysaccharides during in vitro human fecal fermentation: Unveiling Bacteroides as a potential primary degrader. Food Chem 2024; 450:139309. [PMID: 38631200 DOI: 10.1016/j.foodchem.2024.139309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Flammulina velutipes, a widely cultivated species of edible fungus, exhibits diverse functional activities attributed to its polysaccharides. In this study, we employed an in vitro model to investigate the impact of F. velutipes polysaccharides (FVP) fermentation on gut microbiota, with a particular focus on Bacteroides. FVP fermentation resulted in the proliferation of microbiota associated with short-chain fatty acid (SCFA) metabolism and suppression of Escherichia-Shigella. Bacteroides emerged as potential primary degraders of FVP, with species-level analysis identifying the preference of B. thetaiotaomicron and B. intestinalis in FVP degradation. Metabolomics analysis revealed significant increases in hypoxanthine and 7-methyladenine contents, with histidine metabolism emerging as the most enriched pathway. B. nordii and B. xylanisolvens exhibited the most influence on amino acid and SCFA metabolism. Understanding the mechanisms by which gut microbiota metabolize FVP can provide valuable insights into the potential of FVP to promote intestinal health and disease prevention.
Collapse
Affiliation(s)
- Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Chuan Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuhang Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu 214122, China; Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
31
|
Huo W, Cui L, Yan P, He X, Zhang L, Liu Y, Dai L, Qi P, Hu S, Qiao T, Li J. Diversity and Composition of Fungicolous Fungi Residing in Macrofungi from the Qinling Mountains. J Fungi (Basel) 2024; 10:601. [PMID: 39330361 PMCID: PMC11432919 DOI: 10.3390/jof10090601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
Sporocarps of macrofungi support other diverse fungal species that are termed fungicolous fungi. However, the external environmental factors that affect the diversity and composition of fungicolous fungal communities remains largely unknown. In this study, the diversities, composition, and trophic modes of fungicolous fungal communities residing in host macrofungi from diverse habitats in the Qinling Mountains were analyzed. Additionally, the number of carbohydrate-active enzymes (CAZymes) encoded by saprophytic, pathogenic, and symbiotic fungi was also quantified and compared. The results revealed that the diversity and composition of fungicolous fungal communities varied with months of collection and the habitats of host fungi, and saprophytic fungi were more abundant on wood than on the ground. Meanwhile, it was also found that saprophytic fungi possessed higher abundances of cell-wall-degrading enzymes than pathogenic or symbiotic fungi. Based on the above findings, it was hypothesized that the greater abundance of saprophytic fungi on wood compared to the ground may be due to their possession of a more diverse array of enzymes capable of degrading wood cell walls, thereby allowing for more efficient nutrient acquisition from decaying wood.
Collapse
Affiliation(s)
- Wenyan Huo
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an 710043, China; (W.H.); (Y.L.)
| | - Langjun Cui
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Pengdong Yan
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Xuelian He
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an 710043, China; (W.H.); (Y.L.)
| | - Liguang Zhang
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an 710043, China; (W.H.); (Y.L.)
| | - Yu Liu
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an 710043, China; (W.H.); (Y.L.)
| | - Lu Dai
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an 710043, China; (W.H.); (Y.L.)
| | - Peng Qi
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an 710043, China; (W.H.); (Y.L.)
| | - Suying Hu
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an 710043, China; (W.H.); (Y.L.)
| | - Ting Qiao
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an 710043, China; (W.H.); (Y.L.)
| | - Junzhi Li
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an 710043, China; (W.H.); (Y.L.)
| |
Collapse
|
32
|
Jensen N, Maldonado-Gomez M, Krishnakumar N, Weng CY, Castillo J, Razi D, Kalanetra K, German JB, Lebrilla CB, Mills DA, Taft DH. Dietary fiber monosaccharide content alters gut microbiome composition and fermentation. Appl Environ Microbiol 2024; 90:e0096424. [PMID: 39007602 PMCID: PMC11337808 DOI: 10.1128/aem.00964-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Members of the mammalian gut microbiota metabolize diverse complex carbohydrates that are not digested by the host, which are collectively labeled "dietary fiber." While the enzymes and transporters that each strain uses to establish a nutrient niche in the gut are often exquisitely specific, the relationship between carbohydrate structure and microbial ecology is imperfectly understood. The present study takes advantage of recent advances in complex carbohydrate structure determination to test the effects of fiber monosaccharide composition on microbial fermentation. Fifty-five fibers with varied monosaccharide composition were fermented by a pooled feline fecal inoculum in a modified MiniBioReactor array system over a period of 72 hours. The content of the monosaccharides glucose and xylose was significantly associated with the reduction of pH during fermentation, which was also predictable from the concentrations of the short-chain fatty acids lactic acid, propionic acid, and the signaling molecule indole-3-acetic acid. Microbiome diversity and composition were also predictable from monosaccharide content and SCFA concentration. In particular, the concentrations of lactic acid and propionic acid correlated with final alpha diversity and were significantly associated with the relative abundance of several of the genera, including Lactobacillus and Dubosiella. Our results suggest that monosaccharide composition offers a generalizable method to compare any dietary fiber of interest and uncover links between diet, gut microbiota, and metabolite production. IMPORTANCE The survival of a microbial species in the gut depends on the availability of the nutrients necessary for that species to survive. Carbohydrates in the form of non-host digestible fiber are of particular importance, and the set of genes possessed by each species for carbohydrate consumption can vary considerably. Here, differences in the monosaccharides that are the building blocks of fiber are considered for their impact on both the survival of different species of microbes and on the levels of microbial fermentation products produced. This work demonstrates that foods with similar monosaccharide content will have consistent effects on the survival of microbial species and on the production of microbial fermentation products.
Collapse
Affiliation(s)
- Nick Jensen
- Department of Food Science and Technology, University of California, Davis, California, USA
- Foods for Health Institute, University of California, Davis, California, USA
| | - Maria Maldonado-Gomez
- Department of Food Science and Technology, University of California, Davis, California, USA
- Foods for Health Institute, University of California, Davis, California, USA
| | - Nithya Krishnakumar
- Department of Food Science and Technology, University of California, Davis, California, USA
- Foods for Health Institute, University of California, Davis, California, USA
| | - Cheng-Yu Weng
- Department of Chemistry, University of California, Davis, California, USA
| | - Juan Castillo
- Department of Chemistry, University of California, Davis, California, USA
| | - Dale Razi
- Foods for Health Institute, University of California, Davis, California, USA
| | - Karen Kalanetra
- Department of Food Science and Technology, University of California, Davis, California, USA
- Foods for Health Institute, University of California, Davis, California, USA
| | - J. Bruce German
- Department of Food Science and Technology, University of California, Davis, California, USA
- Foods for Health Institute, University of California, Davis, California, USA
| | - Carlito B. Lebrilla
- Foods for Health Institute, University of California, Davis, California, USA
- Department of Chemistry, University of California, Davis, California, USA
| | - David A. Mills
- Department of Food Science and Technology, University of California, Davis, California, USA
- Foods for Health Institute, University of California, Davis, California, USA
| | - Diana H. Taft
- Department of Food Science and Human Nutrition, University of Florida, Gainsville, Florida, USA
| |
Collapse
|
33
|
Gaenssle ALO, Bertran-Llorens S, Deuss PJ, Jurak E. Enrichment of Aquatic Xylan-Degrading Microbial Communities. Microorganisms 2024; 12:1715. [PMID: 39203557 PMCID: PMC11356981 DOI: 10.3390/microorganisms12081715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
The transition towards a sustainable society involves the utilization of lignocellulosic biomass as a renewable feedstock for materials, fuel, and base chemicals. Lignocellulose consists of cellulose, hemicellulose, and lignin, forming a complex, recalcitrant matrix where efficient enzymatic saccharification is pivotal for accessing its valuable components. This study investigated microbial communities from brackish Lauwersmeer Lake, in The Netherlands, as a potential source of xylan-degrading enzymes. Environmental sediment samples were enriched with wheat arabinoxylan (WAX) and beechwood glucuronoxylan (BEX), with enrichment on WAX showing higher bacterial growth and complete xylan degradation compared to BEX. Metagenomic sequencing revealed communities consisting almost entirely of bacteria (>99%) and substantial shifts in composition during the enrichment. The first generation of seven-day enrichments on both xylans led to a high accumulation of Gammaproteobacteria (49% WAX, 84% BEX), which were largely replaced by Alphaproteobacteria (42% WAX, 69% BEX) in the fourth generation. Analysis of the protein function within the sequenced genomes showed elevated levels of genes associated with the carbohydrate catabolic process, specifically targeting arabinose, xylose, and xylan, indicating an adaptation to the primary monosaccharides present in the carbon source. The data open up the possibility of discovering novel xylan-degrading proteins from other sources aside from the thoroughly studied Bacteroidota.
Collapse
Affiliation(s)
- Aline Lucie Odette Gaenssle
- Department of Bioproduct Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Salvador Bertran-Llorens
- Department of Chemical Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Peter Joseph Deuss
- Department of Chemical Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Edita Jurak
- Department of Chemical Engineering, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
34
|
Tadesse BT, Gu L, Solem C, Mijakovic I, Jers C. The Probiotic Enterococcus Lactis SF68 as a Potential Food Fermentation Microorganism for Safe Food Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18089-18099. [PMID: 39102436 DOI: 10.1021/acs.jafc.4c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Due to the reports describing virulent and multidrug resistant enterococci, their use has become a topic of controversy despite most of them being safe and commonly used in traditionally fermented foods worldwide. We have characterized Enterococcus lactis SF68, a probiotic strain approved by the European Food Safety Authority (EFSA) for use in food and feed, and find that it has a remarkable potential in food fermentations. Genome analysis revealed the potential of SF68 to metabolize a multitude of carbohydrates, including lactose and sucrose, which was substantiated experimentally. Bacteriocin biosynthesis clusters were identified and SF68 was found to display a strong inhibitory effect against Listeria monocytogenes. Fermentation-wise, E. lactis SF68 was remarkably like Lactococcus lactis and displayed a clear mixed-acid shift on slowly fermented sugars. SF68 could produce the butter aroma compounds, acetoin and diacetyl, the production of which was enhanced under aerated conditions in a strain deficient in lactate dehydrogenase activity. Overall, E. lactis SF68 was found to be versatile, with a broad carbohydrate utilization capacity, a capacity for producing bacteriocins, and an ability to grow at elevated temperatures. This is key to eliminating pathogenic and spoilage microorganisms that are frequently associated with fermented foods.
Collapse
Affiliation(s)
- Belay Tilahun Tadesse
- National Food Institute, Research Group for Microbial Biotechnology and Biorefining, Technical University of Denmark, Lyngby 2800, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Lyngby 2800, Denmark
| | - Liuyan Gu
- Department of Bio- and Chemical Engineering, Aarhus University, Gustav Wieds vej 10, Aarhus 8000, Denmark
| | - Christian Solem
- National Food Institute, Research Group for Microbial Biotechnology and Biorefining, Technical University of Denmark, Lyngby 2800, Denmark
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Lyngby 2800, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Lyngby 2800, Denmark
| |
Collapse
|
35
|
Guo X, Yu L, Xiao M, Zang X, Zhang C, Narbad A, Chen W, Tian F, Zhai Q. Sporolactobacillus-a new functional genus with potential applications. Curr Res Food Sci 2024; 9:100822. [PMID: 39263204 PMCID: PMC11388179 DOI: 10.1016/j.crfs.2024.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Sporolactobacillus is a genus of lactic acid bacteria, which can be widely found in soil. According to NCBI, only 20 strains of the genus Sporolactobacillus have been identified through phenotypic and genotypic analysis, indicating their relatively low numbers compared to other lactic acid bacteria. Currently, there is a growing interest in isolating and studying Sporolactobacillus, particularly focusing on its physiological characteristics and conducting in vitro experiments. This paper provides a review of the sources and physiological characteristics of Sporolactobacillus, along with genotype analysis, carbohydrate metabolism traits, and potential antibacterial properties. It also delves into basic physiological characteristics, lactic acid production, and applications, offering insights for the future utilization of Sporolactobacillus and laying a foundation for exploring its potential applications.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xiaojie Zang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk, NR4 7UA, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| |
Collapse
|
36
|
Yang N, Ma T, Xie Y, Li Q, Li Y, Zheng L, Li Y, Xiao Q, Sun Z, Zuo K, Kwok LY, Lu N, Liu W, Zhang H. Lactiplantibacillus plantarum P9 for chronic diarrhea in young adults: a large double-blind, randomized, placebo-controlled trial. Nat Commun 2024; 15:6823. [PMID: 39122704 PMCID: PMC11315937 DOI: 10.1038/s41467-024-51094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Current treatments for chronic diarrhea have limited efficacy and several side effects. Probiotics have the potential to alleviate symptoms of diarrhea. This randomized, double-blind, placebo-controlled trial evaluates the effects of administering the probiotic Lactiplantibacillus plantarum P9 (P9) strain in young adults with chronic diarrhea (Clinical Trial Registration Number: ChiCTR2000038410). The intervention period lasts for 28 days, followed by a 14-day post-intervention period. Participants are randomized into the P9 (n = 93) and placebo (n = 96) groups, with 170 individuals completing the double-blind intervention phase (n = 85 per group). The primary endpoint is the diarrhea symptom severity score. Both intention-to-treat (n = 189) and per-protocol (n = 170) analyses reveal a modest yet statistically significant reduction in diarrhea severity compared to the placebo group (20.0%, P = 0.050; 21.4%, P = 0.048, respectively). In conclusion, the results of this study support the use of probiotics in managing chronic diarrhea in young adults. However, the lack of blood parameter assessment and the short intervention period represent limitations of this study.
Collapse
Affiliation(s)
- Ni Yang
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Teng Ma
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiong Li
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yingmeng Li
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Longjin Zheng
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yalin Li
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Qiuping Xiao
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Zhihong Sun
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Kexuan Zuo
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Wenjun Liu
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China.
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China.
| | - Heping Zhang
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
37
|
Yang J, Sun Y, Wang Q, Yu S, Li Y, Yao B, Yang X. Astragalus polysaccharides-induced gut microbiota play a predominant role in enhancing of intestinal barrier function of broiler chickens. J Anim Sci Biotechnol 2024; 15:106. [PMID: 39103958 DOI: 10.1186/s40104-024-01060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND The intestinal barrier is the first line of defense against intestinal invasion by pathogens and foreign antigens and is closely associated with the gut microbiota. Astragalus polysaccharides (APS) have a long history of use in traditional Chinese medicine owing to its protective properties against intestinal barrier function. The mechanism of APS-induced gut microbiota enhancing intestinal barrier function is urgently needed. RESULTS Dietary polysaccharide deprivation induced intestinal barrier dysfunction, decreased growth performance, altered microbial composition (Faecalibacterium, Dorea, and Coprobacillus), and reduced isobutyrate concentration. The results showed that APS facilitates intestinal barrier function in broiler chickens, including a thicker mucus layer, reduced crypt depth, and the growth of tight junction proteins. We studied the landscape of APS-induced gut microbiota and found that APS selectively promoted the growth of Parabacteroides, a commensal bacterium that plays a predominant role in enhancing intestinal barrier function. An in vitro growth assay further verified that APS selectively increased the abundance of Parabacteroides distasonis and Bacteroides uniformis. Dietary APS supplementation increased the concentrations of isobutyrate and bile acid (mainly chenodeoxycholic acid and deoxycholate acid) and activated signaling pathways related to intestinal barrier function (such as protein processing in the endoplasmic reticulum, tight junctions, and adherens junction signaling pathways). CONCLUSIONS APS intervention restored the dietary polysaccharide-induced dysfunction of the intestinal barrier by selectively promoting the abundance of Parabacteroides distasonis, and increasing the concentrations of isobutyrate and bile acids (mainly CDCA and DCA). These findings suggest that APS-induced gut microbiota and metabolic niches are promising strategies for enhancing intestinal barrier function.
Collapse
Affiliation(s)
- Jiantao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanpeng Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agriculture Science, Beijing, China
| | - Qianggang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shanglin Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanhe Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agriculture Science, Beijing, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
38
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
Affiliation(s)
- Tingting Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xi Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yunqian Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
39
|
Ma L, Lyu W, Zeng T, Wang W, Chen Q, Zhao J, Zhang G, Lu L, Yang H, Xiao Y. Duck gut metagenome reveals the microbiome signatures linked to intestinal regional, temporal development, and rearing condition. IMETA 2024; 3:e198. [PMID: 39135685 PMCID: PMC11316934 DOI: 10.1002/imt2.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
The duck gastrointestinal tract (GIT) harbors an abundance of microorganisms that play an important role in duck health and production. Here, we constructed the first relatively comprehensive duck gut microbial gene catalog (24 million genes) and 4437 metagenome-assembled genomes using 375 GIT metagenomic samples from four different duck breeds across five intestinal segments under two distinct rearing conditions. We further characterized the intestinal region-specific microbial taxonomy and their assigned functions, as well as the temporal development and maturation of the duck gut microbiome. Our metagenomic analysis revealed the similarity within the microbiota of the foregut and hindgut compartments, but distinctive taxonomic and functional differences between distinct intestinal segments. In addition, we found a significant shift in the microbiota composition of newly hatched ducks (3 days), followed by increased diversity and enhanced stability across growth stages (14, 42, and 70 days), indicating that the intestinal microbiota develops into a relatively mature and stable community as the host duck matures. Comparing the impact of different rearing conditions (with and without water) on duck cecal microbiota communities and functions, we found that the bacterial capacity for lipopolysaccharide biosynthesis was significantly increased in ducks that had free access to water, leading to the accumulation of pathogenic bacteria and antibiotic-resistance genes. Taken together, our findings expand the understanding of the microbiome signatures linked to intestinal regional, temporal development, and rearing conditions in ducks, which highlight the significant impact of microbiota on poultry health and production.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiangchao Zhao
- Department of Animal Science, Division of AgricultureUniversity of ArkansasFayettevilleArkansasUSA
| | - Guolong Zhang
- Department of Animal and Food SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
40
|
Zhang Z, Kumar Sharma A, Chen L, Zheng B. Enhancing optimal molecular interactions during food processing to design starch key structures for regulating quality and nutrition of starch-based foods: an overview from a synergistic regulatory perspective. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39078162 DOI: 10.1080/10408398.2024.2385028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Charting out personalized and/or optimized diets offers new opportunities in the field of food science, although with inherent challenges. Starch-based foods are a major component of daily energy intake in humans. In addition to being rich in starch, starchy foods also contain a multitude of bioactive substances (e.g., polyphenols, lipids). Food processing including storage affects the consistency and interactions between starch and other food components, which can affect the quality and nutritional characteristics of starch-based foods. This review describes the effects of interactions between starch and other components on the structural evolution of starch during food processing. We ponder upon how the evolution of starch molecular structure affects the quality and nutritional characteristics of starch-based foods vis-a-vis the structure-property relationship. Furthermore, we formulate best practices in processing starchy food to retain the quality and nutritional value by rationally designing starch structural domains. Interestingly, we found that inhibiting the formation of a crystalline structures while promoting the formation of short-range ordered structures and nano-aggregates can synchronously slow down its digestion and retrogradation properties, thus improving the quality and nutritional characteristics of starch-based food. This review provides theoretical guidelines for new researchers and food innovators of starch-based foods.
Collapse
Affiliation(s)
- Zengjiang Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Anand Kumar Sharma
- Institute of Food, Nutrition, and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Bo Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| |
Collapse
|
41
|
Wadop YN, Vasquez EL, Mathews JJ, Muhammad JAS, Mavarez RP, Satizabal C, Gonzales MM, Tanner J, Maestre G, Fonteh AN, Seshadri S, Kautz TF, Fongang B. Differential Patterns of Gut and Oral Microbiomes in Hispanic Individuals with Cognitive Impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605455. [PMID: 39211240 PMCID: PMC11361189 DOI: 10.1101/2024.07.27.605455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease and related dementias (ADRD) have been associated with alterations in both oral and gut microbiomes. While extensive research has focused on the role of gut dysbiosis in ADRD, the contribution of the oral microbiome remains relatively understudied. Furthermore, the potential synergistic interactions between oral and gut microbiomes in ADRD pathology are largely unexplored. This study aims to evaluate distinct patterns and potential synergistic effects of oral and gut microbiomes in a cohort of predominantly Hispanic individuals with cognitive impairment (CI) and without cognitive impairment (NC). We conducted 16S rRNA gene sequencing on stool and saliva samples from 32 participants (17 CI, 15 NC; 62.5% female, mean age = 70.4 ± 6.2 years) recruited in San Antonio, Texas, USA. Correlation analysis through MaAslin2 assessed the relationship between participants' clinical measurements (e.g., fasting glucose and blood cholesterol) and their gut and saliva microbial contents. Differential abundance analysis evaluated taxa with significant differences between CI and NC groups, and alpha and beta diversity metrics assessed within-sample and group compositional differences. Our analyses revealed no significant differences between NC and CI groups in fasting glucose or blood cholesterol levels. However, a clear association was observed between gut microbiome composition and levels of fasting glucose and blood cholesterol. While alpha and beta diversity metrics showed no significant differences between CI and NC groups, differential abundance analysis revealed an increased presence of oral genera such as Dialister , Fretibacterium , and Mycoplasma in CI participants. Conversely, CI individuals exhibited a decreased abundance of gut genera, including Shuttleworthia , Holdemania , and Subdoligranulum , which are known for their anti-inflammatory properties. No evidence was found for synergistic contributions between oral and gut microbiomes in the context of ADRD. Our findings suggest that similar to the gut microbiome, the oral microbiome undergoes significant modifications as individuals transition from NC to CI. Notably, the identified oral microbes have been previously associated with periodontal diseases and gingivitis. These results underscore the necessity for further investigations with larger sample sizes to validate our findings and elucidate the complex interplay between oral and gut microbiomes in ADRD pathogenesis.
Collapse
|
42
|
Huang Y, Lin Y, Lan W, Huang C, Zhong C. GloEC: a hierarchical-aware global model for predicting enzyme function. Brief Bioinform 2024; 25:bbae365. [PMID: 39073830 DOI: 10.1093/bib/bbae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
The annotation of enzyme function is a fundamental challenge in industrial biotechnology and pathologies. Numerous computational methods have been proposed to predict enzyme function by annotating enzyme labels with Enzyme Commission number. However, the existing methods face difficulties in modelling the hierarchical structure of enzyme label in a global view. Moreover, they haven't gone entirely to leverage the mutual interactions between different levels of enzyme label. In this paper, we formulate the hierarchy of enzyme label as a directed enzyme graph and propose a hierarchy-GCN (Graph Convolutional Network) encoder to globally model enzyme label dependency on the enzyme graph. Based on the enzyme hierarchy encoder, we develop an end-to-end hierarchical-aware global model named GloEC to predict enzyme function. GloEC learns hierarchical-aware enzyme label embeddings via the hierarchy-GCN encoder and conducts deductive fusion of label-aware enzyme features to predict enzyme labels. Meanwhile, our hierarchy-GCN encoder is designed to bidirectionally compute to investigate the enzyme label correlation information in both bottom-up and top-down manners, which has not been explored in enzyme function prediction. Comparative experiments on three benchmark datasets show that GloEC achieves better predictive performance as compared to the existing methods. The case studies also demonstrate that GloEC is capable of effectively predicting the function of isoenzyme. GloEC is available at: https://github.com/hyr0771/GloEC.
Collapse
Affiliation(s)
- Yiran Huang
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
- Key Laboratory of Parallel, Distributed and Intelligent Computing in Guangxi Universities and Colleges, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China
| | - Yufu Lin
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
| | - Wei Lan
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
- Key Laboratory of Parallel, Distributed and Intelligent Computing in Guangxi Universities and Colleges, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China
| | - Cuiyu Huang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Cheng Zhong
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
- Key Laboratory of Parallel, Distributed and Intelligent Computing in Guangxi Universities and Colleges, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
43
|
Navarro-Simarro P, Gómez-Gómez L, Ahrazem O, Rubio-Moraga Á. Food and human health applications of edible mushroom by-products. N Biotechnol 2024; 81:43-56. [PMID: 38521182 DOI: 10.1016/j.nbt.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Mushroom waste can account for up to 50% of the total mushroom mass. Spent mushroom substrate, misshapen mushrooms, and mushroom stems are examples of mushroom byproducts. In ancient cultures, fungi were prized for their medicinal properties. Aqueous extracts containing high levels of β-glucans as functional components capable of providing prebiotic polysaccharides and improved texture to foods have been widely used and new methods have been tested to improve extraction yields. Similarly, the addition of insoluble polysaccharides controls the glycemic index, counteracting the effects of increasingly high-calorie diets. Numerous studies support these benefits in vitro, but evidence in vivo is scarce. Nonetheless, many authors have created a variety of functional foods, ranging from yogurt to noodles. In this review, we focus on the pharmacological properties of edible mushroom by-products, and the possible risks derived from its consumption. By incorporating these by-products into human or animal feed formulations, mushroom producers will be able to fully optimize crop use and pave the way for the industry to move toward a zero-waste paradigm.
Collapse
Affiliation(s)
- Pablo Navarro-Simarro
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Facultad de Farmacia. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Oussama Ahrazem
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Spain.
| | - Ángela Rubio-Moraga
- Instituto Botánico. Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología. Departamento de Ciencia y Tecnología Agroforestal y Genética. Universidad de Castilla-La Mancha, Spain.
| |
Collapse
|
44
|
Xu SY, Feng XR, Zhao W, Bi YL, Diao QY, Tu Y. Rumen and hindgut microbiome regulate average daily gain of preweaning Holstein heifer calves in different ways. MICROBIOME 2024; 12:131. [PMID: 39030599 PMCID: PMC11264748 DOI: 10.1186/s40168-024-01844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/23/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND The average daily gain (ADG) of preweaning calves significantly influences their adult productivity and reproductive performance. Gastrointestinal microbes are known to exert an impact on host phenotypes, including ADG. The aim of this study was to investigate the mechanisms by which gastrointestinal microbiome regulate ADG in preweaning calves and to further validate them by isolating ADG-associated rumen microbes in vitro. RESULTS Sixteen Holstein heifer calves were selected from a cohort with 106 calves and divided into higher ADG (HADG; n = 8) and lower ADG (LADG; n = 8) groups. On the day of weaning, samples of rumen contents, hindgut contents, and plasma were collected for rumen metagenomics, rumen metabolomics, hindgut metagenomics, hindgut metabolomics, and plasma metabolomics analyses. Subsequently, rumen contents of preweaning Holstein heifer calves from the same dairy farm were collected to isolate ADG-associated rumen microbes. The results showed that the rumen microbes, including Pyramidobacter sp. C12-8, Pyramidobacter sp. CG50-2, Pyramidobacter porci, unclassified_g_Pyramidobacter, Pyramidobacter piscolens, and Acidaminococcus fermentans, were enriched in the rumen of HADG calves (LDA > 2, P < 0.05). Enrichment of these microbes in HADG calves' rumen promoted carbohydrate degradation and volatile fatty acid production, increasing proportion of butyrate in the rumen and ultimately contributing to higher preweaning ADG in calves (P < 0.05). The presence of active carbohydrate degradation in the rumen was further suggested by the negative correlation of the rumen microbes P. piscolens, P. sp. C12-8 and unclassified_g_Pyramidobacter with the rumen metabolites D-fructose (R < - 0.50, P < 0.05). Widespread positive correlations were observed between rumen microbes (such as P. piscolens, P. porci, and A. fermentans) and beneficial plasma metabolites (such as 1-pyrroline-5-carboxylic acid and 4-fluoro-L-phenylalanine), which were subsequently positively associated with the growth rate of HADG calves (R > 0.50, P < 0.05). We succeeded in isolating a strain of A. fermentans from the rumen contents of preweaning calves and named it Acidaminococcus fermentans P41. The in vitro cultivation revealed its capability to produce butyrate. In vitro fermentation experiments demonstrated that the addition of A. fermentans P41 significantly increased the proportion of butyrate in the rumen fluid (P < 0.05). These results further validated our findings. The relative abundance of Bifidobacterium pseudolongum in the hindgut of HADG calves was negatively correlated with hindgut 4-hydroxyglucobrassicin levels, which were positively correlated with plasma 4-hydroxyglucobrassicin levels, and plasma 4-hydroxyglucobrassicin levels were positively correlated with ADG (P < 0.05). CONCLUSIONS This study's findings unveil that rumen and hindgut microbes play distinctive roles in regulating the preweaning ADG of Holstein heifer calves. Additionally, the successful isolation of A. fermentans P41 not only validated our findings but also provided a valuable strain resource for modulating rumen microbes in preweaning calves. Video Abstract.
Collapse
Affiliation(s)
- Sheng-Yang Xu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab On Nutrition and Metabolism of Ruminant/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Xiao-Ran Feng
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab On Nutrition and Metabolism of Ruminant/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Wei Zhao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab On Nutrition and Metabolism of Ruminant/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Yan-Liang Bi
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab On Nutrition and Metabolism of Ruminant/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Qi-Yu Diao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab On Nutrition and Metabolism of Ruminant/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Yan Tu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab On Nutrition and Metabolism of Ruminant/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
45
|
Mpeyako LA, Hart AJ, Bailey NP, Carlton JM, Henrissat B, Sullivan SA, Hirt RP. Comparative genomics between Trichomonas tenax and Trichomonas vaginalis: CAZymes and candidate virulence factors. Front Microbiol 2024; 15:1437572. [PMID: 39086644 PMCID: PMC11288935 DOI: 10.3389/fmicb.2024.1437572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The oral trichomonad Trichomonas tenax is increasingly appreciated as a likely contributor to periodontitis, a chronic inflammatory disease induced by dysbiotic microbiota, in humans and domestic animals and is strongly associated with its worst prognosis. Our current understanding of the molecular basis of T. tenax interactions with host cells and the microbiota of the oral cavity are still rather limited. One laboratory strain of T. tenax (Hs-4:NIH/ATCC 30207) can be grown axenically and two draft genome assemblies have been published for that strain, although the structural and functional annotation of these genomes is not available. Methods GenSAS and Galaxy were used to annotate two publicly available draft genomes for T. tenax, with a focus on protein-coding genes. A custom pipeline was used to annotate the CAZymes for T. tenax and the human sexually transmitted parasite Trichomonas vaginalis, the most well-characterized trichomonad. A combination of bioinformatics analyses was used to screen for homologs of T. vaginalis virulence and colonization factors within the T. tenax annotated proteins. Results Our annotation of the two T. tenax draft genome sequences and their comparison with T. vaginalis proteins provide evidence for several candidate virulence factors. These include candidate surface proteins, secreted proteins and enzymes mediating potential interactions with host cells and/or members of the oral microbiota. The CAZymes annotation identified a broad range of glycoside hydrolase (GH) families, with the majority of these being shared between the two Trichomonas species. Discussion The presence of candidate T. tenax virulence genes supports the hypothesis that this species is associated with periodontitis through direct and indirect mechanisms. Notably, several GH proteins could represent potential new virulence factors for both Trichomonas species. These data support a model where T. tenax interactions with host cells and members of the oral microbiota could synergistically contribute to the damaging inflammation characteristic of periodontitis, supporting a causal link between T. tenax and periodontitis.
Collapse
Affiliation(s)
- Lenshina A. Mpeyako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adam J. Hart
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicholas P. Bailey
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jane M. Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Lyngby, Denmark
| | - Steven A. Sullivan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Robert P. Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
46
|
Qadri H, Shah AH, Almilaibary A, Mir MA. Microbiota, natural products, and human health: exploring interactions for therapeutic insights. Front Cell Infect Microbiol 2024; 14:1371312. [PMID: 39035357 PMCID: PMC11257994 DOI: 10.3389/fcimb.2024.1371312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024] Open
Abstract
The symbiotic relationship between the human digestive system and its intricate microbiota is a captivating field of study that continues to unfold. Comprising predominantly anaerobic bacteria, this complex microbial ecosystem, teeming with trillions of organisms, plays a crucial role in various physiological processes. Beyond its primary function in breaking down indigestible dietary components, this microbial community significantly influences immune system modulation, central nervous system function, and disease prevention. Despite the strides made in microbiome research, the precise mechanisms underlying how bacterial effector functions impact mammalian and microbiome physiology remain elusive. Unlike the traditional DNA-RNA-protein paradigm, bacteria often communicate through small molecules, underscoring the imperative to identify compounds produced by human-associated bacteria. The gut microbiome emerges as a linchpin in the transformation of natural products, generating metabolites with distinct physiological functions. Unraveling these microbial transformations holds the key to understanding the pharmacological activities and metabolic mechanisms of natural products. Notably, the potential to leverage gut microorganisms for large-scale synthesis of bioactive compounds remains an underexplored frontier with promising implications. This review serves as a synthesis of current knowledge, shedding light on the dynamic interplay between natural products, bacteria, and human health. In doing so, it contributes to our evolving comprehension of microbiome dynamics, opening avenues for innovative applications in medicine and therapeutics. As we delve deeper into this intricate web of interactions, the prospect of harnessing the power of the gut microbiome for transformative medical interventions becomes increasingly tantalizing.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdullah Almilaibary
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Bahah, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
47
|
Wardman JF, Withers SG. Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening. RSC Chem Biol 2024; 5:595-616. [PMID: 38966674 PMCID: PMC11221537 DOI: 10.1039/d4cb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) constitute a diverse set of enzymes that catalyze the assembly, degradation, and modification of carbohydrates. These enzymes have been fashioned into potent, selective catalysts by millennia of evolution, and yet are also highly adaptable and readily evolved in the laboratory. To identify and engineer CAZymes for different purposes, (ultra)high-throughput screening campaigns have been frequently utilized with great success. This review provides an overview of the different approaches taken in screening for CAZymes and how mechanistic understandings of CAZymes can enable new approaches to screening. Within, we also cover how cutting-edge techniques such as microfluidics, advances in computational approaches and synthetic biology, as well as novel assay designs are leading the field towards more informative and effective screening approaches.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
48
|
Liu Y, Fachrul M, Inouye M, Méric G. Harnessing human microbiomes for disease prediction. Trends Microbiol 2024; 32:707-719. [PMID: 38246848 DOI: 10.1016/j.tim.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The human microbiome has been increasingly recognized as having potential use for disease prediction. Predicting the risk, progression, and severity of diseases holds promise to transform clinical practice, empower patient decisions, and reduce the burden of various common diseases, as has been demonstrated for cardiovascular disease or breast cancer. Combining multiple modifiable and non-modifiable risk factors, including high-dimensional genomic data, has been traditionally favored, but few studies have incorporated the human microbiome into models for predicting the prospective risk of disease. Here, we review research into the use of the human microbiome for disease prediction with a particular focus on prospective studies as well as the modulation and engineering of the microbiome as a therapeutic strategy.
Collapse
Affiliation(s)
- Yang Liu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muhamad Fachrul
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Human Genomics and Evolution Unit, St Vincent's Institute of Medical Research, Victoria, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK; British Heart Foundation Cambridge Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Medical Science, Molecular Epidemiology, Uppsala University, Uppsala, Sweden; Department of Cardiovascular Research, Translation, and Implementation, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
49
|
Hameleers L, Gaenssle LA, Bertran‐Llorens S, Pijning T, Jurak E. Polysaccharide utilization loci encoded DUF1735 likely functions as membrane-bound spacer for carbohydrate active enzymes. FEBS Open Bio 2024; 14:1133-1146. [PMID: 38735878 PMCID: PMC11216935 DOI: 10.1002/2211-5463.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Proteins featuring the Domain of Unknown Function 1735 are frequently found in Polysaccharide Utilization Loci, yet their role remains unknown. The domain and vicinity analyzer programs we developed mine the Kyoto Encyclopedia of Genes and Genomes and UniProt to enhance the functional prediction of DUF1735. Our datasets confirmed the exclusive presence of DUF1735 in Bacteroidota genomes, with Bacteroidetes thetaiotaomicron harboring 46 copies. Notably, 97.8% of DUF1735 are encoded in PULs, and 89% are N-termini of multimodular proteins featuring C-termini like Laminin_G_3, F5/8-typeC, and GH18 domains. Predominantly possessing a predicted lipoprotein signal peptide and sharing an immunoglobulin-like β-sandwich fold with the BACON domain and the N-termini of SusE/F, DUF1735 likely functions as N-terminal, membrane-bound spacer for diverse C-termini involved in PUL-mediated carbohydrate utilization.
Collapse
Affiliation(s)
- Lisanne Hameleers
- Department of Bioproduct EngineeringUniversity of GroningenThe Netherlands
| | - Lucie A. Gaenssle
- Department of Bioproduct EngineeringUniversity of GroningenThe Netherlands
| | | | - Tjaard Pijning
- Department of Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenThe Netherlands
| | - Edita Jurak
- Department of Bioproduct EngineeringUniversity of GroningenThe Netherlands
| |
Collapse
|
50
|
Lee H, Song J, Lee B, Cha J, Lee H. Food carbohydrates in the gut: structural diversity, microbial utilization, and analytical strategies. Food Sci Biotechnol 2024; 33:2123-2140. [PMID: 39130670 PMCID: PMC11315866 DOI: 10.1007/s10068-024-01648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024] Open
Abstract
Carbohydrates, which are a vital dietary component, undergo digestion and gut fermentation through microbial enzymes to produce beneficial short-chain fatty acids. Certain carbohydrates selectively modulate the gut microbiota, impacting host health. Carbohydrate-active enzymes within the gut microbiota significantly contribute to carbohydrate utilization and microbial diversity. Despite their importance, the structural complexity of carbohydrates poses analytical challenges. However, recent advancements, notably, mass spectrometry, have allowed for their characterization and functional analysis. This review examines the intricate relationship between dietary carbohydrates and the gut microbiota, highlighting the crucial role of advanced analytical techniques in understanding their diversity and implications. These advancements provide valuable insights into carbohydrate bioactivity. Integrating high-throughput analysis with next-generation sequencing provides deeper insights into gut microbial interactions, potentially revealing which carbohydrate structures are beneficial for gut health.
Collapse
Affiliation(s)
- HyunJi Lee
- Department of Applied Chemistry, Food Science and Technology, Dong-eui University, Busan, 47340 Republic of Korea
| | - JaeHui Song
- Department of Applied Chemistry, Food Science and Technology, Dong-eui University, Busan, 47340 Republic of Korea
| | - Bokyung Lee
- Department of Food Science and Nutrition, Dong-A University, Busan, 49315 Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea
| | - Jaeho Cha
- Department of Microbiology, Pusan National University, Busan, 46241 Republic of Korea
- Microbiological Resources Research Institute, Pusan National University, Busan, 46241 Republic of Korea
| | - Hyeyoung Lee
- Department of Applied Chemistry, Food Science and Technology, Dong-eui University, Busan, 47340 Republic of Korea
| |
Collapse
|