1
|
Wang X, Campbell B, Bodogai M, McDevitt RA, Patrikeev A, Gusev F, Ragonnaud E, Kumaraswami K, Shirenova S, Vardy K, Alameh MG, Weissman D, Ishikawa-Ankerhold H, Okun E, Rogaev E, Biragyn A. CD8 + T cells exacerbate AD-like symptoms in mouse model of amyloidosis. Brain Behav Immun 2024; 122:444-455. [PMID: 39191349 PMCID: PMC11409913 DOI: 10.1016/j.bbi.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Alzheimer's disease (AD) is linked to toxic Aβ plaques in the brain and activation of innate responses. Recent findings however suggest that the disease may also depend on the adaptive immunity, as B cells exacerbate and CD8+ T cells limit AD-like pathology in mouse models of amyloidosis. Here, by artificially blocking or augmenting CD8+ T cells in the brain of 5xFAD mice, we provide evidence that AD-like pathology is promoted by pathogenic, proinflammatory cytokines and exhaustion markers expressing CXCR6+ CD39+CD73+/- CD8+ TRM-like cells. The CD8+ T cells appear to act by targeting disease associated microglia (DAM), as we find them in tight complexes with microglia around Aβ plaques in the brain of mice and humans with AD. We also report that these CD8+ T cells are induced by B cells in the periphery, further underscoring the pathogenic importance of the adaptive immunity in AD. We propose that CD8+ T cells and B cells should be considered as therapeutic targets for control of AD, as their ablation at the onset of AD is sufficient to decrease CD8+ T cells in the brain and block the amyloidosis-linked neurodegeneration.
Collapse
Affiliation(s)
- Xin Wang
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Britney Campbell
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Monica Bodogai
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Ross A McDevitt
- Mouse Phenotyping Unit, Comparative Medicine Section, National Institute on Aging, Baltimore, MD, USA
| | - Anton Patrikeev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fedor Gusev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Emeline Ragonnaud
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Konda Kumaraswami
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Sophie Shirenova
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | - Karin Vardy
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | | | - Drew Weissman
- Institute of RNA Innovation, University of Pennsylvania, Philadelphia, PA, USA
| | - Hellen Ishikawa-Ankerhold
- Department of Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | - Evgeny Rogaev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA.
| |
Collapse
|
2
|
Lu W, Shue F, Kurti A, Jeevaratnam S, Macyczko JR, Roy B, Izhar T, Wang N, Bu G, Kanekiyo T, Li Y. Amyloid pathology and cognitive impairment in hAβ-KI and APP SAA-KI mouse models of Alzheimer's disease. Neurobiol Aging 2024; 145:13-23. [PMID: 39447490 DOI: 10.1016/j.neurobiolaging.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The hAβ-KI and APPSAA-KI are two amyloid models that harbor mutations in the endogenous mouse App gene. Both hAβ-KI and APPSAA-KI mice contain a humanized Aβ sequence, and APPSAA-KI mice carry three additional familial AD mutations. We herein report that the Aβ levels and Aβ42/Aβ40 ratio in APPSAA-KI homozygotes are dramatically higher than those in hAβ-KI homozygotes at 14 months of age. In addition, APPSAA-KI mice display a widespread distribution of amyloid plaques in the brain, whereas the plaques are undetectable in hAβ-KI mice. Moreover, there are no sex differences in amyloid pathology in APPSAA-KI mice. Both APPSAA-KI and hAβ-KI mice exhibit cognitive impairments, wherein no significant differences are found between these two models, although APPSAA KI mice show a trend towards worse cognitive function. Notably, female hAβ-KI and APPSAA-KI mice have a more pronounced cognitive impairments compared to their respective males. Our findings suggest that Aβ humanization contributes to cognitive deficits in APPSAA-KI mice, and that amyloid deposition might not be closely associated with cognitive impairments in APPSAA-KI mice.
Collapse
Affiliation(s)
- Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Suren Jeevaratnam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jesse R Macyczko
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bhaskar Roy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Taha Izhar
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ni Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
3
|
Ramos A, Ishizuka K, Hayashida A, Namkung H, Hayes LN, Srivastava R, Zhang M, Kariya T, Elkins N, Palen T, Carloni E, Tsujimura T, Calva C, Ikemoto S, Rais R, Slusher BS, Niwa M, Saito A, Saitoh T, Takimoto E, Sawa A. Nuclear GAPDH in cortical microglia mediates cellular stress-induced cognitive inflexibility. Mol Psychiatry 2024; 29:2967-2978. [PMID: 38615102 PMCID: PMC11449656 DOI: 10.1038/s41380-024-02553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
We report a mechanism that underlies stress-induced cognitive inflexibility at the molecular level. In a mouse model under subacute cellular stress in which deficits in rule shifting tasks were elicited, the nuclear glyceraldehyde dehydrogenase (N-GAPDH) cascade was activated specifically in microglia in the prelimbic cortex. The cognitive deficits were normalized with a pharmacological intervention with a compound (the RR compound) that selectively blocked the initiation of N-GAPDH cascade without affecting glycolytic activity. The normalization was also observed with a microglia-specific genetic intervention targeting the N-GAPDH cascade. At the mechanistic levels, the microglial secretion of High-Mobility Group Box (HMGB), which is known to bind with and regulate the NMDA-type glutamate receptors, was elevated. Consequently, the hyperactivation of the prelimbic layer 5 excitatory neurons, a neural substrate for cognitive inflexibility, was also observed. The upregulation of the microglial HMGB signaling and neuronal hyperactivation were normalized by the pharmacological and microglia-specific genetic interventions. Taken together, we show a pivotal role of cortical microglia and microglia-neuron interaction in stress-induced cognitive inflexibility. We underscore the N-GAPDH cascade in microglia, which causally mediates stress-induced cognitive alteration.
Collapse
Affiliation(s)
- Adriana Ramos
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koko Ishizuka
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arisa Hayashida
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- International Collaborative Research Administration, Juntendo University, Tokyo, Japan
| | - Ho Namkung
- Departments of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindsay N Hayes
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rupali Srivastava
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manling Zhang
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taro Kariya
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noah Elkins
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Trexy Palen
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elisa Carloni
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tsuyoshi Tsujimura
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Coleman Calva
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Satoshi Ikemoto
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Rana Rais
- Departments of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minae Niwa
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Saito
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Eiki Takimoto
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
4
|
Pan J, Yao Q, Wang Y, Chang S, Li C, Wu Y, Shen J, Yang R. The role of PI3K signaling pathway in Alzheimer's disease. Front Aging Neurosci 2024; 16:1459025. [PMID: 39399315 PMCID: PMC11466886 DOI: 10.3389/fnagi.2024.1459025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating progressively neurodegenerative disease. The best-characterized hallmark of AD, which is marked by behavioral alterations and cognitive deficits, is the aggregation of deposition of amyloid-beta (Aβ) and hyper-phosphorylated microtubule-associated protein Tau. Despite decades of experimental progress, the control rate of AD remains poor, and more precise deciphering is needed for potential therapeutic targets and signaling pathways involved. In recent years, phosphoinositide 3-kinase (PI3K) and Akt have been recognized for their role in the neuroprotective effect of various agents, and glycogen synthase kinase 3 (GSK3), a downstream enzyme, is also crucial in the tau phosphorylation and Aβ deposition. An overview of the function of PI3K/Akt pathway in the pathophysiology of AD is provided in this review, along with a discussion of recent developments in the pharmaceuticals and herbal remedies that target the PI3K/Akt signaling pathway. In conclusion, despite the challenges and hurdles, cumulative findings of novel targets and agents in the PI3K/Akt signaling axis are expected to hold promise for advancing AD prevention and treatment.
Collapse
Affiliation(s)
- Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yankai Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Suyan Chang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Chenlong Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongjiang Wu
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
5
|
Li S, Li X, Ma L, Luo Z, Yin F, Zhang Y, Chen Y, Wan S, Zhou H, Wang X, Kong L. Polypharmacological Drug Design Guided by Integrating Phenotypic and Restricted Fragment Docking Strategies. J Med Chem 2024. [PMID: 39300597 DOI: 10.1021/acs.jmedchem.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Polypharmacological drugs are of great value for treating complex human diseases by the combinative modulation of several biological targets. However, multitarget drug design with more than two targets is challenging and generally discovered by serendipity. Herein, a restricted fragment docking (RFD) computational method combined with a phenotypic discovery approach was developed for rational polypharmacological drug design. Via genetic and drug combination studies in a microglial phenotype, we first identified novel synergistic effects by triple target modulation toward RIPK1, MAP4K4, and ALK. Drawing on the RFD method to explore virtual chemical spaces in three target pockets, we identified a lead compound, LP-10d, that precisely modulated RIPK1/MAP4K4/ALK for synergistic microglial protection with low nanomolar potency. LP-10d showed polypharmacology against multiple neuropathologies in the 3xTg Alzheimer's disease mouse model. Our study revealed a potential application of the RFD method, which is valuable to further polypharmacological drug discovery involved in clinical studies for treating complex human diseases.
Collapse
Affiliation(s)
- Shang Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xinxin Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Liangliang Ma
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhongwen Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fucheng Yin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yonglei Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yifan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Siyuan Wan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Han Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
6
|
Johnston KG, Grieco SF, Nie Q, Theis FJ, Xu X. Small data methods in omics: the power of one. Nat Methods 2024; 21:1597-1602. [PMID: 39174710 DOI: 10.1038/s41592-024-02390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
Over the last decade, biology has begun utilizing 'big data' approaches, resulting in large, comprehensive atlases in modalities ranging from transcriptomics to neural connectomics. However, these approaches must be complemented and integrated with 'small data' approaches to efficiently utilize data from individual labs. Integration of smaller datasets with major reference atlases is critical to provide context to individual experiments, and approaches toward integration of large and small data have been a major focus in many fields in recent years. Here we discuss progress in integration of small data with consortium-sized atlases across multiple modalities, and its potential applications. We then examine promising future directions for utilizing the power of small data to maximize the information garnered from small-scale experiments. We envision that, in the near future, international consortia comprising many laboratories will work together to collaboratively build reference atlases and foundation models using small data methods.
Collapse
Affiliation(s)
- Kevin G Johnston
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| | - Fabian J Theis
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.
- School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
- Department of Mathematics, Technical University of Munich, Munich, Germany.
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
7
|
Fernandes S, Revanna J, Pratt J, Hayes N, Marchetto MC, Gage FH. Modeling Alzheimer's disease using human cell derived brain organoids and 3D models. Front Neurosci 2024; 18:1434945. [PMID: 39156632 PMCID: PMC11328153 DOI: 10.3389/fnins.2024.1434945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Age-related neurodegenerative diseases, like Alzheimer's disease (AD), are challenging diseases for those affected with no cure and limited treatment options. Functional, human derived brain tissues that represent the diverse genetic background and cellular subtypes contributing to sporadic AD (sAD) are limited. Human stem cell derived brain organoids recapitulate some features of human brain cytoarchitecture and AD-like pathology, providing a tool for illuminating the relationship between AD pathology and neural cell dysregulation leading to cognitive decline. In this review, we explore current strategies for implementing brain organoids in the study of AD as well as the challenges associated with investigating age-related brain diseases using organoid models.
Collapse
Affiliation(s)
- Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Jasmin Revanna
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joshua Pratt
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Nicholas Hayes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, California State University, San Marcos, CA, United States
| | - Maria C. Marchetto
- Department of Anthropology, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, United States
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
8
|
Zhang Y, Bi K, Zhou L, Wang J, Huang L, Sun Y, Peng G, Wu W. Advances in Blood Biomarkers for Alzheimer's Disease: Ultra-Sensitive Detection Technologies and Impact on Clinical Diagnosis. Degener Neurol Neuromuscul Dis 2024; 14:85-102. [PMID: 39100640 PMCID: PMC11297492 DOI: 10.2147/dnnd.s471174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease has escalated into a critical public health concern, marked by its neurodegenerative nature that progressively diminishes cognitive abilities. Recognized as a continuously advancing and presently incurable condition, AD underscores the necessity for early-stage diagnosis and interventions aimed at delaying the decline in mental function. Despite the proven efficacy of cerebrospinal fluid and positron emission tomography in diagnosing AD, their broader utility is constrained by significant costs and the invasive nature of these procedures. Consequently, the innovation of blood biomarkers such as Amyloid-beta, phosphorylated-tau, total-tau et al, distinguished by their high sensitivity, minimal invasiveness, accessibility, and cost-efficiency, emerges as a promising avenue for AD diagnosis. The advent of ultra-sensitive detection methodologies, including single-molecule enzyme-linked immunosorbent assay and immunoprecipitation-mass spectrometry, has revolutionized the detection of AD plasma biomarkers, supplanting previous low-sensitivity techniques. This rapid advancement in detection technology facilitates the more accurate quantification of pathological brain proteins and AD-associated biomarkers in the bloodstream. This manuscript meticulously reviews the landscape of current research on immunological markers for AD, anchored in the National Institute on Aging-Alzheimer's Association AT(N) research framework. It highlights a selection of forefront ultra-sensitive detection technologies now integral to assessing AD blood immunological markers. Additionally, this review examines the crucial pre-analytical processing steps for AD blood samples that significantly impact research outcomes and addresses the practical challenges faced during clinical testing. These discussions are crucial for enhancing our comprehension and refining the diagnostic precision of AD using blood-based biomarkers. The review aims to shed light on potential avenues for innovation and improvement in the techniques employed for detecting and investigating AD, thereby contributing to the broader field of neurodegenerative disease research.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Linfu Zhou
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Lingtong Huang
- Department of Critical Care Units, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
9
|
Aishwarya R, Abdullah CS, Remex NS, Bhuiyan MAN, Lu XH, Dhanesha N, Stokes KY, Orr AW, Kevil CG, Bhuiyan MS. Diastolic dysfunction in Alzheimer's disease model mice is associated with Aβ-amyloid aggregate formation and mitochondrial dysfunction. Sci Rep 2024; 14:16715. [PMID: 39030247 PMCID: PMC11271646 DOI: 10.1038/s41598-024-67638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease caused by the deposition of Aβ aggregates or neurofibrillary tangles. AD patients are primarily diagnosed with the concurrent development of several cardiovascular dysfunctions. While few studies have indicated the presence of intramyocardial Aβ aggregates, none of the studies have performed detailed analyses for pathomechanism of cardiac dysfunction in AD patients. This manuscript used aged APPSWE/PS1 Tg and littermate age-matched wildtype (Wt) mice to characterize cardiac dysfunction and analyze associated pathophysiology. Detailed assessment of cardiac functional parameters demonstrated the development of diastolic dysfunction in APPSWE/PS1 Tg hearts compared to Wt hearts. Muscle function evaluation showed functional impairment (decreased exercise tolerance and muscle strength) in APPSWE/PS1 Tg mice. Biochemical and histochemical analysis revealed Aβ aggregate accumulation in APPSWE/PS1 Tg mice myocardium. APPSWE/PS1 Tg mice hearts also demonstrated histopathological remodeling (increased collagen deposition and myocyte cross-sectional area). Additionally, APPSWE/PS1 Tg hearts showed altered mitochondrial dynamics, reduced antioxidant protein levels, and impaired mitochondrial proteostasis compared to Wt mice. APPSWE/PS1 Tg hearts also developed mitochondrial dysfunction with decreased OXPHOS and PDH protein complex expressions, altered ETC complex dynamics, decreased complex activities, and reduced mitochondrial respiration. Our results indicated that Aβ aggregates in APPSWE/PS1 Tg hearts are associated with defects in mitochondrial respiration and complex activities, which may collectively lead to cardiac diastolic dysfunction and myocardial pathological remodeling.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Medicine, Division of Clinical Informatics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
10
|
Illouz T, Ascher LAB, Madar R, Okun E. Unbiased analysis of spatial learning strategies in a modified Barnes maze using convolutional neural networks. Sci Rep 2024; 14:15944. [PMID: 38987437 PMCID: PMC11237060 DOI: 10.1038/s41598-024-66855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Assessment of spatial learning abilities is central to behavioral neuroscience and a useful tool for animal model validation and drug development. However, biases introduced by the apparatus, environment, or experimentalist represent a critical challenge to the test validity. We have recently developed the Modified Barnes Maze (MBM) task, a spatial learning paradigm that overcomes inherent behavioral biases of animals in the classical Barnes maze. The specific combination of spatial strategies employed by mice is often considered representative of the level of cognitive resources used. Herein, we have developed a convolutional neural network-based classifier of exploration strategies in the MBM that can effectively provide researchers with enhanced insights into cognitive traits in mice. Following validation, we compared the learning performance of female and male C57BL/6J mice, as well as that of Ts65Dn mice, a model of Down syndrome, and 5xFAD mice, a model of Alzheimer's disease. Male mice exhibited more effective navigation abilities than female mice, reflected in higher utilization of effective spatial search strategies. Compared to wildtype controls, Ts65Dn mice exhibited delayed usage of spatial strategies despite similar success rates in completing this spatial task. 5xFAD mice showed increased usage of non-spatial strategies such as Circling that corresponded to higher latency to reach the target and lower success rate. These data exemplify the need for deeper strategy classification tools in dissecting complex cognitive traits. In sum, we provide a machine-learning-based strategy classifier that extends our understanding of mice's spatial learning capabilities while enabling a more accurate cognitive assessment.
Collapse
Affiliation(s)
- Tomer Illouz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Lyn Alice Becker Ascher
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Ravit Madar
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel.
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel.
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, 5290002, Ramat Gan, Israel.
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Building 901, Room 312, 5290002, Ramat Gan, Israel.
| |
Collapse
|
11
|
O’Hare N, Millican K, Ebong EE. Unraveling neurovascular mysteries: the role of endothelial glycocalyx dysfunction in Alzheimer's disease pathogenesis. Front Physiol 2024; 15:1394725. [PMID: 39027900 PMCID: PMC11254711 DOI: 10.3389/fphys.2024.1394725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
While cardiovascular disease, cancer, and human immunodeficiency virus (HIV) mortality rates have decreased over the past 20 years, Alzheimer's Disease (AD) deaths have risen by 145% since 2010. Despite significant research efforts, effective AD treatments remain elusive due to a poorly defined etiology and difficulty in targeting events that occur too downstream of disease onset. In hopes of elucidating alternative treatment pathways, now, AD is commonly being more broadly defined not only as a neurological disorder but also as a progression of a variety of cerebrovascular pathologies highlighted by the breakdown of the blood-brain barrier. The endothelial glycocalyx (GCX), which is an essential regulator of vascular physiology, plays a crucial role in the function of the neurovascular system, acting as an essential vascular mechanotransducer to facilitate ultimate blood-brain homeostasis. Shedding of the cerebrovascular GCX could be an early indication of neurovascular dysfunction and may subsequently progress neurodegenerative diseases like AD. Recent advances in in vitro modeling, gene/protein silencing, and imaging techniques offer new avenues of scrutinizing the GCX's effects on AD-related neurovascular pathology. Initial studies indicate GCX degradation in AD and other neurodegenerative diseases and have begun to demonstrate a possible link to GCX loss and cerebrovascular dysfunction. This review will scrutinize the GCX's contribution to known vascular etiologies of AD and propose future work aimed at continuing to uncover the relationship between GCX dysfunction and eventual AD-associated neurological deterioration.
Collapse
Affiliation(s)
- Nicholas O’Hare
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Karina Millican
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Eno E. Ebong
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Díaz M. Multifactor Analyses of Frontal Cortex Lipids in the APP/PS1 Model of Familial Alzheimer's Disease Reveal Anomalies in Responses to Dietary n-3 PUFA and Estrogenic Treatments. Genes (Basel) 2024; 15:810. [PMID: 38927745 PMCID: PMC11202691 DOI: 10.3390/genes15060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Brain lipid homeostasis is an absolute requirement for proper functionality of nerve cells and neurological performance. Current evidence demonstrates that lipid alterations are linked to neurodegenerative diseases, especially Alzheimer's disease (AD). The complexity of the brain lipidome and its metabolic regulation has hampered the identification of critical processes associated with the onset and progression of AD. While most experimental studies have focused on the effects of known factors on the development of pathological hallmarks in AD, e.g., amyloid deposition, tau protein and neurofibrillary tangles, neuroinflammation, etc., studies addressing the causative effects of lipid alterations remain largely unexplored. In the present study, we have used a multifactor approach combining diets containing different amounts of polyunsaturated fatty acids (PUFAs), estrogen availabilities, and genetic backgrounds, i.e., wild type (WT) and APP/PS1 (FAD), to analyze the lipid phenotype of the frontal cortex in middle-aged female mice. First, we observed that severe n-3 PUFA deficiency impacts the brain n-3 long-chain PUFA (LCPUFA) composition, yet it was notably mitigated by hepatic de novo synthesis. n-6 LCPUFAs, ether-linked fatty acids, and saturates were also changed by the dietary condition, but the extent of changes was dependent on the genetic background and hormonal condition. Likewise, brain cortex phospholipids were mostly modified by the genotype (FAD>WT) with nuanced effects from dietary treatment. Cholesterol (but not sterol esters) was modified by the genotype (WT>FAD) and dietary condition (higher in DHA-free conditions, especially in WT mice). However, the effects of estrogen treatment were mostly observed in relation to phospholipid remodeling in a genotype-dependent manner. Analyses of lipid-derived variables indicate that nerve cell membrane biophysics were significantly affected by the three factors, with lower membrane microviscosity (higher fluidity) values obtained for FAD animals. In conclusion, our multifactor analyses revealed that the genotype, diet, and estrogen status modulate the lipid phenotype of the frontal cortex, both as independent factors and through their interactions. Altogether, the outcomes point to potential strategies based on dietary and hormonal interventions aimed at stabilizing the brain cortex lipid composition in Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Mario Díaz
- Membrane Physiology and Biophysics, Department of Physics, School of Sciences, University of La Laguna, 38206 Tenerife, Spain; or
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, 38206 Tenerife, Spain
| |
Collapse
|
13
|
Guo J, Cao Y, Zhang T, Xu C, Liu Z, Li W, Wang Q. Multisensory Fusion Training and 7, 8-Dihydroxyflavone Improve Amyloid-β-Induced Cognitive Impairment, Anxiety, and Depression-Like Behavior in Mice Through Multiple Mechanisms. Neuropsychiatr Dis Treat 2024; 20:1247-1270. [PMID: 38883414 PMCID: PMC11180438 DOI: 10.2147/ndt.s459891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Background There is growing interest in the role of physical activity in patients with of Alzheimer's disease (AD), particularly regarding its impact of cognitive function, gut microbiota, metabolites, and neurotrophic factors. Objective To investigate the impact of multisensory fusion training (MSFT) combined with 7, 8-dihydroxyflavone (DHF) on the behavioral characteristics, protein expression, microbiome, and serum metabolome using the AD model in mice induced with amyloid-β (Aβ). Methods We assessed cognitive ability, anxiety-like and depression-like behaviors in Aβ mice using behavioral measures. Western blotting was employed to detect the expression of relevant proteins. The 16S rRNA gene sequencing and metabolomics were used to analyze changes in the intestinal microbial composition and serum metabolic profile, respectively, of Aβ mice. Results The behavioral outcomes indicated that a 4-week intervention combining DHF and MSFT yielded remarkable improvements in cognitive function and reduced anxiety and depression-like behaviors in Aβ mice. In the hippocampus of Aβ mice, the combined intervention increased the levels of BDNF, VGF, PSD-95, Nrf2, p-GSK3β and p-CREB proteins. Analyses of sequence and metabolomic data revealed that Bacteroides and Ruminococcaceae were remarkably more abundant following the combined intervention, influencing the expression of specific metabolites directly linked to the maintenance of neuronal and neurobehavioral functions. These metabolites play a crucial role in vital processes, such as amino acid metabolism, lipid metabolism, and neurotransmitter metabolism in mice. Conclusion Our study highlighted that MSFT combined with DHF improves cognitive impairment, anxiety, and depression-like behavior in Aβ mice through multiple mechanisms, and further validated the correlation between the gut microbiome and serum metabolome. These findings open up a promising avenue for future investigations into potential treatment strategies for AD.
Collapse
Affiliation(s)
- Jiejie Guo
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Taizhou, People's Republic of China
- Department of Neurology, The First People's Hospital of Wenling, Taizhou, People's Republic of China
| | - Yanzi Cao
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
| | - Ting Zhang
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Taizhou, People's Republic of China
| | - Chunshuang Xu
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
| | - Zhitao Liu
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
- Fujian Normal University, Fuzhou, People's Republic of China
| | - Wanyi Li
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
| | - Qinwen Wang
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
14
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
15
|
Guo X, Li J, Qi Y, Chen J, Jiang M, Zhu L, Liu Z, Wang H, Wang G, Wang X. Telomere length and micronuclei trajectories in APP/PS1 mouse model of Alzheimer's disease: Correlating with cognitive impairment and brain amyloidosis in a sexually dimorphic manner. Aging Cell 2024; 23:e14121. [PMID: 38450924 PMCID: PMC11113262 DOI: 10.1111/acel.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/31/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Although studies have demonstrated that genome instability is accumulated in patients with Alzheimer's disease (AD), the specific types of genome instability linked to AD pathogenesis remain poorly understood. Here, we report the first characterization of the age- and sex-related trajectories of telomere length (TL) and micronuclei in APP/PS1 mice model and wild-type (WT) controls (C57BL/6). TL was measured in brain (prefrontal cortex, cerebellum, pituitary gland, and hippocampus), colon and skin, and MN was measured in bone marrow in 6- to 14-month-old mice. Variation in TL was attributable to tissue type, age, genotype and, to a lesser extent, sex. Compared to WT, APP/PS1 had a significantly shorter baseline TL across all examined tissues. TL was inversely associated with age in both genotypes and TL shortening was accelerated in brain of APP/PS1. Age-related increase of micronuclei was observed in both genotypes but was accelerated in APP/PS1. We integrated TL and micronuclei data with data on cognition performance and brain amyloidosis. TL and micronuclei were linearly correlated with cognition performance or Aβ40 and Aβ42 levels in both genotypes but to a greater extent in APP/PS1. These associations in APP/PS1 mice were dominantly driven by females. Together, our findings provide foundational knowledge to infer the TL and micronuclei trajectories in APP/PS1 mice during disease progression, and strongly support that TL attrition and micronucleation are tightly associated with AD pathogenesis in a female-biased manner.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Jianfei Li
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Yanmei Qi
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Juanlin Chen
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Minyan Jiang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Lina Zhu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Zetong Liu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Han Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Gongwu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
- Yeda Institute of Gene and Cell TherapyTaizhouZhejiangChina
| |
Collapse
|
16
|
Krut' VG, Kalinichenko AL, Maltsev DI, Jappy D, Shevchenko EK, Podgorny OV, Belousov VV. Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo. Prog Neurobiol 2024; 235:102600. [PMID: 38548126 DOI: 10.1016/j.pneurobio.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.
Collapse
Affiliation(s)
- Viktoriya G Krut'
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Andrei L Kalinichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry I Maltsev
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Evgeny K Shevchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Oleg V Podgorny
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow 143025, Russia.
| |
Collapse
|
17
|
Zhong MZ, Peng T, Duarte ML, Wang M, Cai D. Updates on mouse models of Alzheimer's disease. Mol Neurodegener 2024; 19:23. [PMID: 38462606 PMCID: PMC10926682 DOI: 10.1186/s13024-024-00712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the United States (US). Animal models, specifically mouse models have been developed to better elucidate disease mechanisms and test therapeutic strategies for AD. A large portion of effort in the field was focused on developing transgenic (Tg) mouse models through over-expression of genetic mutations associated with familial AD (FAD) patients. Newer generations of mouse models through knock-in (KI)/knock-out (KO) or CRISPR gene editing technologies, have been developed for both familial and sporadic AD risk genes with the hope to more accurately model proteinopathies without over-expression of human AD genes in mouse brains. In this review, we summarized the phenotypes of a few commonly used as well as newly developed mouse models in translational research laboratories including the presence or absence of key pathological features of AD such as amyloid and tau pathology, synaptic and neuronal degeneration as well as cognitive and behavior deficits. In addition, advantages and limitations of these AD mouse models have been elaborated along with discussions of any sex-specific features. More importantly, the omics data from available AD mouse models have been analyzed to categorize molecular signatures of each model reminiscent of human AD brain changes, with the hope to guide future selection of most suitable models for specific research questions to be addressed in the AD field.
Collapse
Affiliation(s)
- Michael Z Zhong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, College of Arts and Science, Boston University, Boston, MA, 02215, USA
| | - Thomas Peng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Science Research Program, Scarsdale High School, New York, NY, 10583, USA
| | - Mariana Lemos Duarte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
- Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, The University of Minnesota, Minneapolis, MN, 55455, USA.
- Geriatric Research Education & Clinical Center (GRECC), The Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
| |
Collapse
|
18
|
Meneghetti N, Vannini E, Mazzoni A. Rodents' visual gamma as a biomarker of pathological neural conditions. J Physiol 2024; 602:1017-1048. [PMID: 38372352 DOI: 10.1113/jp283858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Neural gamma oscillations (indicatively 30-100 Hz) are ubiquitous: they are associated with a broad range of functions in multiple cortical areas and across many animal species. Experimental and computational works established gamma rhythms as a global emergent property of neuronal networks generated by the balanced and coordinated interaction of excitation and inhibition. Coherently, gamma activity is strongly influenced by the alterations of synaptic dynamics which are often associated with pathological neural dysfunctions. We argue therefore that these oscillations are an optimal biomarker for probing the mechanism of cortical dysfunctions. Gamma oscillations are also highly sensitive to external stimuli in sensory cortices, especially the primary visual cortex (V1), where the stimulus dependence of gamma oscillations has been thoroughly investigated. Gamma manipulation by visual stimuli tuning is particularly easy in rodents, which have become a standard animal model for investigating the effects of network alterations on gamma oscillations. Overall, gamma in the rodents' visual cortex offers an accessible probe on dysfunctional information processing in pathological conditions. Beyond vision-related dysfunctions, alterations of gamma oscillations in rodents were indeed also reported in neural deficits such as migraine, epilepsy and neurodegenerative or neuropsychiatric conditions such as Alzheimer's, schizophrenia and autism spectrum disorders. Altogether, the connections between visual cortical gamma activity and physio-pathological conditions in rodent models underscore the potential of gamma oscillations as markers of neuronal (dys)functioning.
Collapse
Affiliation(s)
- Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
19
|
Luo YG, Zhang XW, Zhao H, Li JG, Tsauo JW, Gong T, Ou AX, Cong TH, Kang WD, Li X. A Novel Rat Model to Simulate the Benign Esophageal Stricture Induced by Endoscopic Submucosal Dissection. Clin Exp Gastroenterol 2024; 17:41-50. [PMID: 38404929 PMCID: PMC10891275 DOI: 10.2147/ceg.s435690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Objective This study aimed to establish a rat model that simulates benign esophageal strictures induced by endoscopic submucosal dissection (ESD). Materials and Methods Sixteen male Sprague-Dawley rats were randomly divided into mucosal resection (n = 8) and sham-operated groups (n = 8). The rats in the mucosal resection group underwent a 5-mm three-fourths mucosal resection by way of a 3-mm incision in the distal esophagus under direct visualization via laparotomy. Rats in the sham-operated group underwent a 3-mm incision of the muscularis propria layer in the distal esophagus via laparotomy without mucosal resection. Dysphagia score, weight gain, mucosal constriction rate, and histology were evaluated 2 weeks after surgery. Results Technical success was achieved in all the animals. One rat in the mucosal resection group died of infection, and no other complications were observed. Weight gain (P < 0.001) and luminal diameter derived from the esophagograms (P < 0.001) were significantly lower in the mucosal resection group than those in the sham-operated group. Dysphagia score (P < 0.001) and mucosal constriction rate (P < 0.001) were significantly higher in the mucosal resection group than those in the sham-operated group. The inflammation grade (P = 0.002), damage to the muscularis propria (P < 0.001), number of nascent microvessels (P = 0.006), and degree of α-SMA positive deposition (P = 0.006) were significantly higher in the mucosal resection group. Conclusion A rat model of benign esophageal stricture induced by ESD was successfully and safely established by mucosal resection.
Collapse
Affiliation(s)
- Yin-Gen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiao-Wu Zhang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - He Zhao
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jin-Gui Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiay-Wei Tsauo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tao Gong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ai-Xin Ou
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tian-Hao Cong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wen-Di Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
20
|
Wrzesień A, Andrzejewski K, Jampolska M, Kaczyńska K. Respiratory Dysfunction in Alzheimer's Disease-Consequence or Underlying Cause? Applying Animal Models to the Study of Respiratory Malfunctions. Int J Mol Sci 2024; 25:2327. [PMID: 38397004 PMCID: PMC10888758 DOI: 10.3390/ijms25042327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disease that is the most common cause of dementia among the elderly. In addition to dementia, which is the loss of cognitive function, including thinking, remembering, and reasoning, and behavioral abilities, AD patients also experience respiratory disturbances. The most common respiratory problems observed in AD patients are pneumonia, shortness of breath, respiratory muscle weakness, and obstructive sleep apnea (OSA). The latter is considered an outcome of Alzheimer's disease and is suggested to be a causative factor. While this narrative review addresses the bidirectional relationship between obstructive sleep apnea and Alzheimer's disease and reports on existing studies describing the most common respiratory disorders found in patients with Alzheimer's disease, its main purpose is to review all currently available studies using animal models of Alzheimer's disease to study respiratory impairments. These studies on animal models of AD are few in number but are crucial for establishing mechanisms, causation, implementing potential therapies for respiratory disorders, and ultimately applying these findings to clinical practice. This review summarizes what is already known in the context of research on respiratory disorders in animal models, while pointing out directions for future research.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.W.); (K.A.); (M.J.)
| |
Collapse
|
21
|
Alcantara-Gonzalez D, Kennedy M, Criscuolo C, Botterill J, Scharfman HE. Increased excitability of dentate gyrus mossy cells occurs early in life in the Tg2576 model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579729. [PMID: 38645244 PMCID: PMC11027210 DOI: 10.1101/2024.02.09.579729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Hyperexcitability in Alzheimer's disease (AD) emerge early and contribute to disease progression. The dentate gyrus (DG) is implicated in hyperexcitability in AD. We hypothesized that mossy cells (MCs), regulators of DG excitability, contribute to early hyperexcitability in AD. Indeed, MCs generate hyperexcitability in epilepsy. METHODS Using the Tg2576 model and WT mice (∼1month-old), we compared MCs electrophysiologically, assessed c-Fos activity marker, Aβ expression and mice performance in a hippocampal-dependent memory task. RESULTS Tg2576 MCs exhibit increased spontaneous excitatory events and decreased inhibitory currents, increasing the charge transfer excitation/inhibition ratio. Tg2576 MC intrinsic excitability was enhanced, and showed higher c-Fos, intracellular Aβ expression, and axon sprouting. Granule cells only showed changes in synaptic properties, without intrinsic changes. The effects occurred before a memory task is affected. DISCUSSION Early electrophysiological and morphological alterations in Tg2576 MCs are consistent with enhanced excitability, suggesting an early role in DG hyperexcitability and AD pathophysiology. HIGHLIGHTS ∘ MCs from 1 month-old Tg2576 mice had increased spontaneous excitatory synaptic input. ∘ Tg2576 MCs had reduced spontaneous inhibitory synaptic input. ∘ Several intrinsic properties were abnormal in Tg2576 MCs. ∘ Tg2576 GCs had enhanced synaptic excitation but no changes in intrinsic properties. ∘ Tg2576 MCs exhibited high c-Fos expression, soluble Aβ and axonal sprouting.
Collapse
|
22
|
Papazoglou A, Henseler C, Weickhardt S, Teipelke J, Papazoglou P, Daubner J, Schiffer T, Krings D, Broich K, Hescheler J, Sachinidis A, Ehninger D, Scholl C, Haenisch B, Weiergräber M. Sex- and region-specific cortical and hippocampal whole genome transcriptome profiles from control and APP/PS1 Alzheimer's disease mice. PLoS One 2024; 19:e0296959. [PMID: 38324617 PMCID: PMC10849391 DOI: 10.1371/journal.pone.0296959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
A variety of Alzheimer's disease (AD) mouse models has been established and characterized within the last decades. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome studies turned out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex and hippocampus of age-matched, eight months old male and female APP/PS1 AD mice and control animals to perform sex- and brain region specific analysis of transcriptome profiles. The results of our studies reveal novel, detailed insight into differentially expressed signature genes and related fold changes in the individual APP/PS1 subgroups. Gene ontology and Venn analysis unmasked that intersectional, upregulated genes were predominantly involved in, e.g., activation of microglial, astrocytic and neutrophilic cells, innate immune response/immune effector response, neuroinflammation, phagosome/proteasome activation, and synaptic transmission. The number of (intersectional) downregulated genes was substantially less in the different subgroups and related GO categories included, e.g., the synaptic vesicle docking/fusion machinery, synaptic transmission, rRNA processing, ubiquitination, proteasome degradation, histone modification and cellular senescence. Importantly, this is the first study to systematically unravel sex- and brain region-specific transcriptome fingerprints/signature genes in APP/PS1 mice. The latter will be of central relevance in future preclinical and clinical AD related studies, biomarker characterization and personalized medicinal approaches.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Sandra Weickhardt
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jenni Teipelke
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Panagiota Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Teresa Schiffer
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Damian Krings
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Catharina Scholl
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Zheng H, Liu Q, Zhou S, Luo H, Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol 2024; 15:1345625. [PMID: 38370420 PMCID: PMC10869479 DOI: 10.3389/fimmu.2024.1345625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
The P2X7 receptor (P2X7R), a non-selective cation channel modulated by adenosine triphosphate (ATP), localizes to microglia, astrocytes, oligodendrocytes, and neurons in the central nervous system, with the most incredible abundance in microglia. P2X7R partake in various signaling pathways, engaging in the immune response, the release of neurotransmitters, oxidative stress, cell division, and programmed cell death. When neurodegenerative diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R. This activation induces the release of biologically active molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen species, and excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation, which exacerbates neuronal involvement. The P2X7R is essential in the development of neurodegenerative diseases. This implies that it has potential as a drug target and could be treated using P2X7R antagonists that are able to cross the blood-brain barrier. This review will comprehensively and objectively discuss recent research breakthroughs on P2X7R genes, their structural features, functional properties, signaling pathways, and their roles in neurodegenerative diseases and possible therapies.
Collapse
Affiliation(s)
- Huiyong Zheng
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Liu
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siwei Zhou
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Miao X, Wu Q, Du S, Xiang L, Zhou S, Zhu J, Chen Z, Wang H, Pan X, Fan Y, Zhang L, Qian J, Xing Y, Xie Y, Hu L, Xu H, Wang W, Wang Y, Huang Z. SARM1 Promotes Neurodegeneration and Memory Impairment in Mouse Models of Alzheimer's Disease. Aging Dis 2024; 15:390-407. [PMID: 37307837 PMCID: PMC10796105 DOI: 10.14336/ad.2023.0516-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
Neuroinflammation plays a crucial role in the pathogenesis and progression of Alzheimer's disease (AD). The Sterile Alpha and Toll Interleukin Receptor Motif-containing protein 1 (SARM1) has been shown to promote axonal degeneration and is involved in neuroinflammation. However, the role of SARM1 in AD remains unclear. In this study, we found that SARM1 was reduced in hippocampal neurons of AD model mice. Interestingly, conditional knockout (CKO) of SARM1 in the central nervous system (CNS, SARM1Nestin-CKO mice) delayed the cognitive decline in APP/PS1 AD model mice. Furthermore, SARM1 deletion reduced the Aβ deposition and inflammatory infiltration in the hippocampus and inhibited neurodegeneration in APP/PS1 AD model mice. Further investigation into the underlying mechanisms revealed that the signaling of tumor necrosis factor-α (TNF-α) was downregulated in the hippocampus tissues of APP/PS1;SARM1Nestin-CKO mice, thereby alleviating the cognitive decline, Aβ deposition and inflammatory infiltration. These findings identify unrecognized functions of SARM1 in promoting AD and reveal the SARM1-TNF-α pathway in AD model mice.
Collapse
Affiliation(s)
- Xuemeng Miao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Qian Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Siyu Du
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Ludan Xiang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Siyao Zhou
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Junzhe Zhu
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Zirun Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Hui Wang
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Xuyi Pan
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Yiren Fan
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Lihan Zhang
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Jingkang Qian
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Yuxuan Xing
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Yiyang Xie
- School of the First Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325205, China.
| | - Lixin Hu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Haiyun Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Ying Wang
- Clinical Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Zhihui Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
25
|
Rudisch DM, Krasko MN, Barnett DGS, Mueller KD, Russell JA, Connor NP, Ciucci MR. Early ultrasonic vocalization deficits and related thyroarytenoid muscle pathology in the transgenic TgF344-AD rat model of Alzheimer's disease. Front Behav Neurosci 2024; 17:1294648. [PMID: 38322496 PMCID: PMC10844490 DOI: 10.3389/fnbeh.2023.1294648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurologic disease and the most common cause of dementia. Classic pathology in AD is characterized by inflammation, abnormal presence of tau protein, and aggregation of β-amyloid that disrupt normal neuronal function and lead to cell death. Deficits in communication also occur during disease progression and significantly reduce health, well-being, and quality of life. Because clinical diagnosis occurs in the mid-stage of the disease, characterizing the prodrome and early stages in humans is currently challenging. To overcome these challenges, we use the validated TgF344-AD (F344-Tg(Prp-APP, Prp-PS1)19/Rrrc) transgenic rat model that manifests cognitive, behavioral, and neuropathological dysfunction akin to AD in humans. Objectives The overarching goal of our work is to test the central hypothesis that pathology and related behavioral deficits such as communication dysfunction in part manifest in the peripheral nervous system and corresponding target tissues already in the early stages. The primary aims of this study are to test the hypotheses that: (1) changes in ultrasonic vocalizations (USV) occur in the prodromal stage at 6 months of age and worsen at 9 months of age, (2) inflammation as well as AD-related pathology can be found in the thyroarytenoid muscle (TA) at 12 months of age (experimental endpoint tissue harvest), and to (3) demonstrate that the TgF344-AD rat model is an appropriate model for preclinical investigations of early AD-related vocal deficits. Methods USVs were collected from male TgF344-AD (N = 19) and wildtype (WT) Fischer-344 rats (N = 19) at 6 months (N = 38; WT: n = 19; TgF344-AD: n = 19) and 9 months of age (N = 18; WT: n = 10; TgF344-AD: n = 8) and acoustically analyzed for duration, mean power, principal frequency, low frequency, high frequency, peak frequency, and call type. RT-qPCR was used to assay peripheral inflammation and AD-related pathology via gene expressions in the TA muscle of male TgF344-AD rats (n = 6) and WT rats (n = 6) at 12 months of age. Results This study revealed a significant reduction in mean power of ultrasonic calls from 6 to 9 months of age and increased peak frequency levels over time in TgF344-AD rats compared to WT controls. Additionally, significant downregulation of AD-related genes Uqcrc2, Bace2, Serpina3n, and Igf2, as well as downregulation of pro-inflammatory gene Myd88 was found in the TA muscle of TgF344-AD rats at 12 months of age. Discussion Our findings demonstrate early and progressive vocal deficits in the TgF344-AD rat model. We further provide evidence of dysregulation of AD-pathology-related genes as well as inflammatory genes in the TA muscles of TgF344-AD rats in the early stage of the disease, confirming this rat model for early-stage investigations of voice deficits and related pathology.
Collapse
Affiliation(s)
- Denis Michael Rudisch
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- UW Institute for Clinical and Translational Research, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Maryann N Krasko
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - David G S Barnett
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Kimberly D Mueller
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - John A Russell
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Nadine P Connor
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Michelle R Ciucci
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
26
|
De Bastiani MA, Bellaver B, Carello-Collar G, Zimmermann M, Kunach P, Lima-Filho RA, Forner S, Martini AC, Pascoal TA, Lourenco MV, Rosa-Neto P, Zimmer ER. Cross-species comparative hippocampal transcriptomics in Alzheimer's disease. iScience 2024; 27:108671. [PMID: 38292167 PMCID: PMC10824791 DOI: 10.1016/j.isci.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/11/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial pathology, with most cases having a sporadic origin. Recently, knock-in (KI) mouse models, such as the novel humanized amyloid-β (hAβ)-KI, have been developed to better resemble sporadic human AD. METHODS Here, we compared hippocampal publicly available transcriptomic profiles of transgenic (5xFAD and APP/PS1) and KI (hAβ-KI) mouse models with early- (EOAD) and late- (LOAD) onset AD patients. RESULTS The three mouse models presented more Gene Ontology biological processes terms and enriched signaling pathways in common with LOAD than with EOAD individuals. Experimental validation of consistently dysregulated genes revealed five altered in mice (SLC11A1, S100A6, CD14, CD33, and C1QB) and three in humans (S100A6, SLC11A1, and KCNK). Finally, we identified 17 transcription factors potentially acting as master regulators of AD. CONCLUSION Our cross-species analyses revealed that the three mouse models presented a remarkable similarity to LOAD, with the hAβ-KI being the more specific one.
Collapse
Affiliation(s)
- Marco Antônio De Bastiani
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, State of Rio Grande do Sul 90035-003, Brazil
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Giovanna Carello-Collar
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, State of Rio Grande do Sul 90035-003, Brazil
| | - Maria Zimmermann
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec H3A 1A1, Canada
- Translational Neuroimaging Laboratory, McGill University, Montréal, Québec H4H 1R3, Canada
| | - Peter Kunach
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec H3A 1A1, Canada
- Translational Neuroimaging Laboratory, McGill University, Montréal, Québec H4H 1R3, Canada
- Douglas Hospital Research Centre, Montreal, Québec H4H 1R3, Canada
| | - Ricardo A.S. Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro 21941-902, Brazil
| | - Stefania Forner
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA 92697, USA
| | - Alessandra Cadete Martini
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Tharick A. Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Mychael V. Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro 21941-902, Brazil
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec H3A 1A1, Canada
- Translational Neuroimaging Laboratory, McGill University, Montréal, Québec H4H 1R3, Canada
- Douglas Hospital Research Centre, Montreal, Québec H4H 1R3, Canada
| | - Eduardo R. Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, State of Rio Grande do Sul 90035-003, Brazil
- Department of Pharmacology, ICBS, UFRGS, Porto Alegre, State of Rio Grande do Sul 90035-003, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Department of Pharmacology, ICBS, UFRGS, Porto Alegre, State of Rio Grande do Sul 90035-003, Brazil
- Brain Institute of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, State of Rio Grande do Sul 90610-000, Brazil
| |
Collapse
|
27
|
Chen Y, Fernandez Z, Scheel N, Gifani M, Zhu DC, Counts SE, Dorrance AM, Razansky D, Yu X, Qian W, Qian C. Novel inductively coupled ear-bars (ICEs) to enhance restored fMRI signal from susceptibility compensation in rats. Cereb Cortex 2024; 34:bhad479. [PMID: 38100332 PMCID: PMC10793587 DOI: 10.1093/cercor/bhad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Functional magnetic resonance imaging faces inherent challenges when applied to deep-brain areas in rodents, e.g. entorhinal cortex, due to the signal loss near the ear cavities induced by susceptibility artifacts and reduced sensitivity induced by the long distance from the surface array coil. Given the pivotal roles of deep brain regions in various diseases, optimized imaging techniques are needed. To mitigate susceptibility-induced signal losses, we introduced baby cream into the middle ear. To enhance the detection sensitivity of deep brain regions, we implemented inductively coupled ear-bars, resulting in approximately a 2-fold increase in sensitivity in entorhinal cortex. Notably, the inductively coupled ear-bar can be seamlessly integrated as an add-on device, without necessitating modifications to the scanner interface. To underscore the versatility of inductively coupled ear-bars, we conducted echo-planner imaging-based task functional magnetic resonance imaging in rats modeling Alzheimer's disease. As a proof of concept, we also demonstrated resting-state-functional magnetic resonance imaging connectivity maps originating from the left entorhinal cortex-a central hub for memory and navigation networks-to amygdala hippocampal area, Insular Cortex, Prelimbic Systems, Cingulate Cortex, Secondary Visual Cortex, and Motor Cortex. This work demonstrates an optimized procedure for acquiring large-scale networks emanating from a previously challenging seed region by conventional magnetic resonance imaging detectors, thereby facilitating improved observation of functional magnetic resonance imaging outcomes.
Collapse
Affiliation(s)
- Yi Chen
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen 72076, Germany
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Zachary Fernandez
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Norman Scheel
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Mahsa Gifani
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Scott E Counts
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Family Medicine, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI 49508, United States
- Michigan Alzheimer’s Disease Research Center, Ann Arbor, MI 48105, United States
| | - Anne M Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich 8006, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Institute for Biomedical Engineering, , Zurich 8092, Switzerland
- Zurich Neuroscience Center, Zurich 8057, Switzerland
| | - Xin Yu
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02114, United States
| | - Wei Qian
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - Chunqi Qian
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
28
|
Valentin-Escalera J, Leclerc M, Calon F. High-Fat Diets in Animal Models of Alzheimer's Disease: How Can Eating Too Much Fat Increase Alzheimer's Disease Risk? J Alzheimers Dis 2024; 97:977-1005. [PMID: 38217592 PMCID: PMC10836579 DOI: 10.3233/jad-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
High dietary intake of saturated fatty acids is a suspected risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). To decipher the causal link behind these associations, high-fat diets (HFD) have been repeatedly investigated in animal models. Preclinical studies allow full control over dietary composition, avoiding ethical concerns in clinical trials. The goal of the present article is to provide a narrative review of reports on HFD in animal models of AD. Eligibility criteria included mouse models of AD fed a HFD defined as > 35% of fat/weight and western diets containing > 1% cholesterol or > 15% sugar. MEDLINE and Embase databases were searched from 1946 to August 2022, and 32 preclinical studies were included in the review. HFD-induced obesity and metabolic disturbances such as insulin resistance and glucose intolerance have been replicated in most studies, but with methodological variability. Most studies have found an aggravating effect of HFD on brain Aβ pathology, whereas tau pathology has been much less studied, and results are more equivocal. While most reports show HFD-induced impairment on cognitive behavior, confounding factors may blur their interpretation. In summary, despite conflicting results, exposing rodents to diets highly enriched in saturated fat induces not only metabolic defects, but also cognitive impairment often accompanied by aggravated neuropathological markers, most notably Aβ burden. Although there are important variations between methods, particularly the lack of diet characterization, these studies collectively suggest that excessive intake of saturated fat should be avoided in order to lower the incidence of AD.
Collapse
Affiliation(s)
- Josue Valentin-Escalera
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada)
| |
Collapse
|
29
|
Leinenga G, Padmanabhan P, Götz J. Improving Cognition Without Clearing Amyloid: Effects of Tau and Ultrasound Neuromodulation. J Alzheimers Dis 2024; 100:S211-S222. [PMID: 39058447 DOI: 10.3233/jad-240616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Alzheimer's disease is characterized by progressive impairment of neuronal functions culminating in neuronal loss and dementia. A universal feature of dementia is protein aggregation, a process by which a monomer forms intermediate oligomeric assembly states and filaments that develop into end-stage hallmark lesions. In Alzheimer's disease, this is exemplified by extracellular amyloid-β (Aβ) plaques which have been placed upstream of tau, found in intracellular neurofibrillary tangles and dystrophic neurites. This implies causality that can be modeled as a linear activation cascade. When Aβ load is reduced, for example, in response to an anti-Aβ immunotherapy, cognitive functions improve in plaque-forming mice. They also deteriorate less in clinical trial cohorts although real-world clinical benefits remain to be demonstrated. Given the existence of aged humans with unimpaired cognition despite a high plaque load, the central role of Aβ has been challenged. A counter argument has been that clinical symptoms would eventually develop if these aged individuals were to live long enough. Alternatively, intrinsic mechanisms that protect the brain in the presence of pathology may exist. In fact, Aβ toxicity can be abolished by either reducing or manipulating tau (through which Aβ signals), at least in preclinical models. In addition to manipulating steps in this linear pathocascade model, mechanisms of restoring brain reserve can also counteract Aβ toxicity. Low-intensity ultrasound is a neuromodulatory modality that can improve cognitive functions in Aβ-depositing mice without the need for removing Aβ. Together, this highlights a dissociation of Aβ and cognition, with important implications for therapeutic interventions.
Collapse
Affiliation(s)
- Gerhard Leinenga
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Ren W, Ni R. Noninvasive Visualization of Amyloid-Beta Deposits in Alzheimer's Amyloidosis Mice via Fluorescence Molecular Tomography Using Contrast Agent. Methods Mol Biol 2024; 2785:271-285. [PMID: 38427199 DOI: 10.1007/978-1-0716-3774-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease is pathologically featured by the accumulation of amyloid-beta (Aβ) plaque and neurofibrillary tangles. Compared to small animal positron emission tomography, optical imaging features nonionizing radiation, low cost, and logistic convenience. Optical detection of Aβ deposits is typically implemented by 2D macroscopic imaging and various microscopic techniques assisted with Aβ-targeted contrast agents. Here, we introduce fluorescence molecular tomography (FMT), a macroscopic 3D fluorescence imaging technique, convenient for in vivo longitudinal monitoring of the animal brain without the involvement of cranial window opening operation. This chapter aims to provide the protocols for FMT in vivo imaging of Aβ deposits in the brain of rodent model of Alzheimer's disease. The materials, stepwise method, notes, limitations of FMT, and emerging opportunities for FMT techniques are presented.
Collapse
Affiliation(s)
- Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Chang WL, Hen R. Adult Neurogenesis, Context Encoding, and Pattern Separation: A Pathway for Treating Overgeneralization. ADVANCES IN NEUROBIOLOGY 2024; 38:163-193. [PMID: 39008016 DOI: 10.1007/978-3-031-62983-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In mammals, the subgranular zone of the dentate gyrus is one of two brain regions (with the subventricular zone of the olfactory bulb) that continues to generate new neurons throughout adulthood, a phenomenon known as adult hippocampal neurogenesis (AHN) (Eriksson et al., Nat Med 4:1313-1317, 1998; García-Verdugo et al., J Neurobiol 36:234-248, 1998). The integration of these new neurons into the dentate gyrus (DG) has implications for memory encoding, with unique firing and wiring properties of immature neurons that affect how the hippocampal network encodes and stores attributes of memory. In this chapter, we will describe the process of AHN and properties of adult-born cells as they integrate into the hippocampal circuit and mature. Then, we will discuss some methodological considerations before we review evidence for the role of AHN in two major processes supporting memory that are performed by the DG. First, we will discuss encoding of contextual information for episodic memories and how this is facilitated by AHN. Second, will discuss pattern separation, a major role of the DG that reduces interference for the formation of new memories. Finally, we will review clinical and translational considerations, suggesting that stimulation of AHN may help decrease overgeneralization-a common endophenotype of mood, anxiety, trauma-related, and age-related disorders.
Collapse
Affiliation(s)
- Wei-Li Chang
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Rene Hen
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA.
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
32
|
Kozin SA, Kechko OI, Adzhubei AA, Makarov AA, Mitkevich VA. Switching On/Off Amyloid Plaque Formation in Transgenic Animal Models of Alzheimer's Disease. Int J Mol Sci 2023; 25:72. [PMID: 38203242 PMCID: PMC10778642 DOI: 10.3390/ijms25010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A hallmark of Alzheimer's disease (AD) are the proteinaceous aggregates formed by the amyloid-beta peptide (Aβ) that is deposited inside the brain as amyloid plaques. The accumulation of aggregated Aβ may initiate or enhance pathologic processes in AD. According to the amyloid hypothesis, any agent that has the capability to inhibit Aβ aggregation and/or destroy amyloid plaques represents a potential disease-modifying drug. In 2023, a humanized IgG1 monoclonal antibody (lecanemab) against the Aβ-soluble protofibrils was approved by the US FDA for AD therapy, thus providing compelling support to the amyloid hypothesis. To acquire a deeper insight on the in vivo Aβ aggregation, various animal models, including aged herbivores and carnivores, non-human primates, transgenic rodents, fish and worms were widely exploited. This review is based on the recent data obtained using transgenic animal AD models and presents experimental verification of the critical role in Aβ aggregation seeding of the interactions between zinc ions, Aβ with the isomerized Asp7 (isoD7-Aβ) and the α4β2 nicotinic acetylcholine receptor.
Collapse
Affiliation(s)
- Sergey A. Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| | | | | | | | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| |
Collapse
|
33
|
Lee SH, Son HJ. Second Wave, Late-Stage Neuroinflammation in Cleared Brains of Aged 5xFAD Alzheimer's Mice Detected by Macrolaser Light Sheet Microscopy Imaging. Int J Mol Sci 2023; 24:17058. [PMID: 38069392 PMCID: PMC10707588 DOI: 10.3390/ijms242317058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
This study leverages the innovative imaging capabilities of macrolaser light-sheet microscopy to elucidate the 3D spatial visualization of AD-associated neuropathologic networks in the transparent brains of 44-week-old 5xFAD mice. Brain samples from ten AD and seven control mice were prepared through a hydrophilic tissue-clearing pipeline and immunostained with thioflavin S (β-amyloid), anti-CD11b antibody (microglia), and anti-ACSA-2 antibody (astrocytes). The 5xFAD group exhibited significantly higher average total surface volumes of β-amyloid accumulation than the control group (AD, 898,634,368 µm3 [383,355,488-1,324,986,752]; control, 33,320,178 µm3 [11,156,785-65,390,988], p = 0.0006). Within the AD group, there was significant interindividual and interindividual variability concerning the number and surface volume of individual amyloid particles throughout the entire brain. In the context of neuroinflammation, the 5xFAD group showed significantly higher average total surface volumes of anti-ACSA-2-labeled astrocytes (AD, 59,064,360 µm3 [27,815,500-222,619,280]; control, 20,272,722 µm3 [9,317,288-27,223,352], p = 0.0047) and anti-CD11b labeled microglia (AD, 51,210,100 µm3 [15,309,118-135,532,144]; control, 23,461,593 µm3 [14,499,170-27,924,110], p = 0.0162) than the control group. Contrary to the long-standing finding that early-stage neuroinflammation precedes the subsequent later-stage of neurodegeneration, our data reveal that the second wave, late-stage active neuroinflammation persists in the aged AD brains, even as they continue to show signs of ongoing neurodegeneration and significant amyloid accumulation.
Collapse
Affiliation(s)
- Suk Hyun Lee
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hye Joo Son
- Department of Nuclear Medicine, Dankook University Medical Center, Dankook University College of Medicine, Cheonan 31116, Republic of Korea
| |
Collapse
|
34
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
35
|
Reyna NC, Clark BJ, Hamilton DA, Pentkowski NS. Anxiety and Alzheimer's disease pathogenesis: focus on 5-HT and CRF systems in 3xTg-AD and TgF344-AD animal models. Front Aging Neurosci 2023; 15:1251075. [PMID: 38076543 PMCID: PMC10699143 DOI: 10.3389/fnagi.2023.1251075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 02/12/2024] Open
Abstract
Dementia remains one of the leading causes of morbidity and mortality in older adults. Alzheimer's disease (AD) is the most common type of dementia, affecting over 55 million people worldwide. AD is characterized by distinct neurobiological changes, including amyloid-beta protein deposits and tau neurofibrillary tangles, which cause cognitive decline and subsequent behavioral changes, such as distress, insomnia, depression, and anxiety. Recent literature suggests a strong connection between stress systems and AD progression. This presents a promising direction for future AD research. In this review, two systems involved in regulating stress and AD pathogenesis will be highlighted: serotonin (5-HT) and corticotropin releasing factor (CRF). Throughout the review, we summarize critical findings in the field while discussing common limitations with two animal models (3xTg-AD and TgF344-AD), novel pharmacotherapies, and potential early-intervention treatment options. We conclude by highlighting promising future pharmacotherapies and translational animal models of AD and anxiety.
Collapse
Affiliation(s)
- Nicole C. Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | | | | | | |
Collapse
|
36
|
Gao Y, Wang Y, Lei H, Xu Z, Li S, Yu H, Xie J, Zhang Z, Liu G, Zhang Y, Zheng J, Wang JZ. A novel transgenic mouse line with hippocampus-dominant and inducible expression of truncated human tau. Transl Neurodegener 2023; 12:51. [PMID: 37950283 PMCID: PMC10637005 DOI: 10.1186/s40035-023-00379-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/20/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Intraneuronal accumulation of hyperphosphorylated tau is a defining hallmark of Alzheimer's disease (AD). However, mouse models imitating AD-exclusive neuronal tau pathologies are lacking. METHODS We generated a new tet-on transgenic mouse model expressing truncated human tau N1-368 (termed hTau368), a tau fragment increased in the brains of AD patients and aged mouse brains. Doxycycline (dox) was administered in drinking water to induce hTau368 expression. Immunostaining and Western blotting were performed to measure the tau level. RNA sequencing was performed to evaluate gene expression, and several behavioral tests were conducted to evaluate mouse cognitive functions, emotion and locomotion. RESULTS Dox treatment for 1-2 months at a young age induced overt and reversible human tau accumulation in the brains of hTau368 transgenic mice, predominantly in the hippocampus. Meanwhile, the transgenic mice exhibited AD-like high level of tau phosphorylation, glial activation, loss of mature neurons, impaired hippocampal neurogenesis, synaptic degeneration and cognitive deficits. CONCLUSIONS This study developed a well-characterized and easy-to-use tool for the investigations and drug development for AD and other tauopathies.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yuying Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiyang Lei
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhendong Xu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shihong Li
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haitao Yu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiazhao Xie
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430030, China
| | - Gongping Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yao Zhang
- Key Laboratory of Ministry of Education for Neurological Disorders, Department of Endocrine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
37
|
Yuan J, He M, Dai X, Huo Q, Chang P, Zhang J, Wang S, Sun Y. 3,6'-Disinapoyl sucrose alleviates cognitive deficits in APP/PS1 transgenic mice. J Neurophysiol 2023; 130:1174-1182. [PMID: 37702542 DOI: 10.1152/jn.00067.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with insidious onset and progressive development. There is an urgent need to find drugs that prevent and slow AD progression. We focus our attention on 3,6'-disinapoyl sucrose (DISS), an oligosaccharide with antidepressant and antioxidant activities. In this work, APP/PS1 transgenic mice were used to explore the neuroprotective impact of DISS to provide new applications for prevention and therapy of AD. This study aims to assess DISS's neuroprotective impact on learning and memory deficits in APP/PS1 transgenic mice using behavioral tests (Morris water maze, novel object recognition test, and passive avoidance test). Morphological alterations of hippocampus neurons were observed by Nissl staining and neuronal apoptosis was assessed by TUNEL assay. By using ELISA, the expressions of inflammatory factors were evaluated, and Western blotting was used to measure the protein expressions of neuron-related regulators in the hippocampus. DISS significantly ameliorated the cognitive disorder in APP/PS1 transgenic mice, reduced apoptosis by decreasing the ratio of Bax/B-cell lymphoma/leukemia-2 (Bcl-2) in hippocampal neurons, and restored the abnormal secretion of inflammatory factors (IL-2, TNF-α, IL-1β, and IL-6). Moreover, the gavage of high-dose DISS can boost the expressions of CREB/brain-derived neurotrophic factor (BDNF). Overall, our results indicate that DISS improves cognitive function in APP/PS1 transgenic mice by inhibiting neural apoptosis and activating the CREB/BDNF signal pathway.NEW & NOTEWORTHY In this study, for the first time, DISS was used in APP/PS1 transgenic mice to explore its neuroprotective effect. After gavage DISS for 1 mo, the impairment of learning and spatial memory ability and the loss of neurons in APP/PS1 mice were alleviated. DISS reduced a neuroprotective effect in AD mice via decreasing neuronal apoptosis, enhancing the expressions of CREB phosphorylation and BDNF, pointing to DISS as a new therapeutic target for AD.
Collapse
Affiliation(s)
- Jiaqi Yuan
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Mengjie He
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Qing Huo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Ping Chang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| |
Collapse
|
38
|
Dejean C, Dupont T, Verpy E, Gonçalves N, Coqueran S, Michalski N, Pucheu S, Bourgeron T, Gourévitch B. Detecting Central Auditory Processing Disorders in Awake Mice. Brain Sci 2023; 13:1539. [PMID: 38002499 PMCID: PMC10669832 DOI: 10.3390/brainsci13111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Mice are increasingly used as models of human-acquired neurological or neurodevelopmental conditions, such as autism, schizophrenia, and Alzheimer's disease. All these conditions involve central auditory processing disorders, which have been little investigated despite their potential for providing interesting insights into the mechanisms behind such disorders. Alterations of the auditory steady-state response to 40 Hz click trains are associated with an imbalance between neuronal excitation and inhibition, a mechanism thought to be common to many neurological disorders. Here, we demonstrate the value of presenting click trains at various rates to mice with chronically implanted pins above the inferior colliculus and the auditory cortex for obtaining easy, reliable, and long-lasting access to subcortical and cortical complex auditory processing in awake mice. Using this protocol on a mutant mouse model of autism with a defect of the Shank3 gene, we show that the neural response is impaired at high click rates (above 60 Hz) and that this impairment is visible subcortically-two results that cannot be obtained with classical protocols for cortical EEG recordings in response to stimulation at 40 Hz. These results demonstrate the value and necessity of a more complete investigation of central auditory processing disorders in mouse models of neurological or neurodevelopmental disorders.
Collapse
Affiliation(s)
- Camille Dejean
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
- Cilcare Company, F-34080 Montpellier, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant, F-75005 Paris, France
| | - Typhaine Dupont
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
| | - Elisabeth Verpy
- Institut Pasteur, Université Paris Cité, CNRS, IUF, Human Genetics and Cognitive Functions, F-75015 Paris, France
| | - Noémi Gonçalves
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
| | - Sabrina Coqueran
- Institut Pasteur, Université Paris Cité, CNRS, IUF, Human Genetics and Cognitive Functions, F-75015 Paris, France
| | - Nicolas Michalski
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
| | | | - Thomas Bourgeron
- Institut Pasteur, Université Paris Cité, CNRS, IUF, Human Genetics and Cognitive Functions, F-75015 Paris, France
| | - Boris Gourévitch
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l’Audition, Plasticity of Central Auditory Circuits, F-75012 Paris, France
- CNRS, F-75016 Paris, France
| |
Collapse
|
39
|
Jorfi M, Park J, Hall CK, Lin CCJ, Chen M, von Maydell D, Kruskop JM, Kang B, Choi Y, Prokopenko D, Irimia D, Kim DY, Tanzi RE. Infiltrating CD8 + T cells exacerbate Alzheimer's disease pathology in a 3D human neuroimmune axis model. Nat Neurosci 2023; 26:1489-1504. [PMID: 37620442 PMCID: PMC11184920 DOI: 10.1038/s41593-023-01415-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/18/2023] [Indexed: 08/26/2023]
Abstract
Brain infiltration of peripheral immune cells and their interactions with brain-resident cells may contribute to Alzheimer's disease (AD) pathology. To examine these interactions, in the present study we developed a three-dimensional human neuroimmune axis model comprising stem cell-derived neurons, astrocytes and microglia, together with peripheral immune cells. We observed an increase in the number of T cells (but not B cells) and monocytes selectively infiltrating into AD relative to control cultures. Infiltration of CD8+ T cells into AD cultures led to increased microglial activation, neuroinflammation and neurodegeneration. Using single-cell RNA-sequencing, we identified that infiltration of T cells into AD cultures led to induction of interferon-γ and neuroinflammatory pathways in glial cells. We found key roles for the C-X-C motif chemokine ligand 10 (CXCL10) and its receptor, CXCR3, in regulating T cell infiltration and neuronal damage in AD cultures. This human neuroimmune axis model is a useful tool to study the effects of peripheral immune cells in brain disease.
Collapse
Affiliation(s)
- Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Joseph Park
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Clare K Hall
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Chih-Chung Jerry Lin
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Meng Chen
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Djuna von Maydell
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jane M Kruskop
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Byunghoon Kang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Younjung Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Dmitry Prokopenko
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Irimia
- Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Charlestown, MA, USA
- Shriners Burns Hospital, Boston, MA, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Illes P, Ulrich H, Chen JF, Tang Y. Purinergic receptors in cognitive disturbances. Neurobiol Dis 2023; 185:106229. [PMID: 37453562 DOI: 10.1016/j.nbd.2023.106229] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Purinergic receptors (Rs) of the ATP/ADP, UTP/UDP (P2X, P2Y) and adenosine (A1, A2A)-sensitive classes broadly interfere with cognitive processes both under quasi normal and disease conditions. During neurodegenerative illnesses, high concentrations of ATP are released from the damaged neuronal and non-neuronal cells of the brain; then, this ATP is enzymatically degraded to adenosine. Thus, the primary injury in neurodegenerative diseases appears to be caused by various protein aggregates on which a superimposed damage mediated by especially P2X7 and A2AR activation develops; this can be efficiently prevented by small molecular antagonists in animal models of the above diseases, or are mitigated in the respective knockout mice. Dementia is a leading symptom in Alzheimer's disease (AD), and accompanies Parkinson's disease (PD) and Huntington's disease (HD), especially in the advanced states of these illnesses. Animal experimentation suggests that P2X7 and A2ARs are also involved in a number of psychiatric diseases, such as major depressive disorder (MDD), obsessive compulsive behavior, and attention deficit hyperactivity disorder. In conclusion, small molecular antagonists of purinergic receptors are expected to supply us in the future with pharmaceuticals which are able to combat in a range of neurological/psychiatric diseases the accompanying cognitive deterioration.
Collapse
Affiliation(s)
- Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Henning Ulrich
- International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry and Molecular Biology, Chemistry Institute, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Whenzhou 325000, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
41
|
Cozachenco D, Zimmer ER, Lourenco MV. Emerging concepts towards a translational framework in Alzheimer's disease. Neurosci Biobehav Rev 2023; 152:105246. [PMID: 37236385 DOI: 10.1016/j.neubiorev.2023.105246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Over the past decades, significant efforts have been made to understand the precise mechanisms underlying the pathogenesis of Alzheimer's disease (AD), the most common cause of dementia. However, clinical trials targeting AD pathological hallmarks have consistently failed. Refinement of AD conceptualization, modeling, and assessment is key to developing successful therapies. Here, we review critical findings and discuss emerging ideas to integrate molecular mechanisms and clinical approaches in AD. We further propose a refined workflow for animal studies incorporating multimodal biomarkers used in clinical studies - delineating critical paths for drug discovery and translation. Addressing unresolved questions with the proposed conceptual and experimental framework may accelerate the development of effective disease-modifying strategies for AD.
Collapse
Affiliation(s)
- Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo R Zimmer
- Department of Pharmacology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry (PPGBioq), UFRGS, Porto Alegre, RS, Brazil; Pharmacology and Therapeutics (PPGFT), UFRGS, Porto Alegre, RS, Brazil; McGill Centre for Studies in Aging, McGill University, Montreal, Canada; Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
42
|
Jusop AS, Thanaskody K, Tye GJ, Dass SA, Wan Kamarul Zaman WS, Nordin F. Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: a glance through. Front Mol Neurosci 2023; 16:1173433. [PMID: 37602192 PMCID: PMC10435272 DOI: 10.3389/fnmol.2023.1173433] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Neurodegenerative diseases are adult-onset neurological conditions that are notoriously difficult to model for drug discovery and development because most models are unable to accurately recapitulate pathology in disease-relevant cells, making it extremely difficult to explore the potential mechanisms underlying neurodegenerative diseases. Therefore, alternative models of human or animal cells have been developed to bridge the gap and allow the impact of new therapeutic strategies to be anticipated more accurately by trying to mimic neuronal and glial cell interactions and many more mechanisms. In tandem with the emergence of human-induced pluripotent stem cells which were first generated in 2007, the accessibility to human-induced pluripotent stem cells (hiPSC) derived from patients can be differentiated into disease-relevant neurons, providing an unrivaled platform for in vitro modeling, drug testing, and therapeutic strategy development. The recent development of three-dimensional (3D) brain organoids derived from iPSCs as the best alternative models for the study of the pathological features of neurodegenerative diseases. This review highlights the overview of current iPSC-based disease modeling and recent advances in the development of iPSC models that incorporate neurodegenerative diseases. In addition, a summary of the existing brain organoid-based disease modeling of Alzheimer's disease was presented. We have also discussed the current methodologies of regional specific brain organoids modeled, its potential applications, emphasizing brain organoids as a promising platform for the modeling of patient-specific diseases, the development of personalized therapies, and contributing to the design of ongoing or future clinical trials on organoid technologies.
Collapse
Affiliation(s)
- Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | | | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Cai W, Li L, Sang S, Pan X, Zhong C. Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 2023; 39:1289-1308. [PMID: 36443453 PMCID: PMC10387033 DOI: 10.1007/s12264-022-00985-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Collapse
Affiliation(s)
- Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linxi Li
- Basic Medical College, Nanchang University, Nanchang, 330031, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
44
|
Fernández-Moncada I, Eraso-Pichot A, Tor TD, Fortunato-Marsol B, Marsicano G. An enquiry to the role of CB1 receptors in neurodegeneration. Neurobiol Dis 2023:106235. [PMID: 37481040 DOI: 10.1016/j.nbd.2023.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023] Open
Abstract
Neurodegenerative disorders are debilitating conditions that impair patient quality of life and that represent heavy social-economic burdens to society. Whereas the root of some of these brain illnesses lies in autosomal inheritance, the origin of most of these neuropathologies is scantly understood. Similarly, the cellular and molecular substrates explaining the progressive loss of brain functions remains to be fully described too. Indeed, the study of brain neurodegeneration has resulted in a complex picture, composed of a myriad of altered processes that include broken brain bioenergetics, widespread neuroinflammation and aberrant activity of signaling pathways. In this context, several lines of research have shown that the endocannabinoid system (ECS) and its main signaling hub, the type-1 cannabinoid (CB1) receptor are altered in diverse neurodegenerative disorders. However, some of these data are conflictive or poorly described. In this review, we summarize the findings about the alterations in ECS and CB1 receptors signaling in three representative brain illnesses, the Alzheimer's, Parkinson's and Huntington's diseases, and we discuss the relevance of these studies in understanding neurodegeneration development and progression, with a special focus on astrocyte function. Noteworthy, the analysis of ECS defects in neurodegeneration warrant much more studies, as our conceptual understanding of ECS function has evolved quickly in the last years, which now include glia cells and the subcellular-specific CB1 receptors signaling as critical players of brain functions.
Collapse
Affiliation(s)
| | - Abel Eraso-Pichot
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Tommaso Dalla Tor
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France; Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95124, Italy
| | | | - Giovanni Marsicano
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
45
|
Pan Y, Kagawa Y, Sun J, Lucas DSD, Takechi R, Mamo JCL, Wai DCC, Norton RS, Jin L, Nicolazzo JA. Peripheral Administration of the Kv1.3-Blocking Peptide HsTX1[R14A] Improves Cognitive Performance in Senescence Accelerated SAMP8 Mice. Neurotherapeutics 2023; 20:1198-1214. [PMID: 37226029 PMCID: PMC10457257 DOI: 10.1007/s13311-023-01387-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
Increased expression of the voltage-gated potassium channel Kv1.3 in activated microglia, and the subsequent release of pro-inflammatory mediators, are closely associated with the progression of Alzheimer's disease (AD). Studies have shown that reducing neuroinflammation through the non-selective blockade of microglial Kv1.3 has the potential to improve cognitive function in mouse models of familial AD. We have previously demonstrated that a potent and highly-selective peptide blocker of Kv1.3, HsTX1[R14A], not only entered the brain parenchyma after peripheral administration in a lipopolysaccharide (LPS)-induced mouse model of inflammation, but also significantly reduced pro-inflammatory mediator release from activated microglia. In this study, we show that microglial expression of Kv1.3 is increased in senescence accelerated mice (SAMP8), an animal model of sporadic AD, and that subcutaneous dosing of HsTX1[R14A] (1 mg/kg) every other day for 8 weeks provided a robust improvement in cognitive deficits in SAMP8 mice. The effect of HsTX1[R14A] on the whole brain was assessed using transcriptomics, which revealed that the expression of genes associated with inflammation, neuron differentiation, synapse function, learning and memory were altered by HsTX1[R14A] treatment. Further study is required to investigate whether these changes are downstream effects of microglial Kv1.3 blockade or a result of alternative mechanisms, including any potential effect of Kv1.3 blockade on other brain cell types. Nonetheless, these results collectively demonstrate the cognitive benefits of Kv1.3 blockade with HsTX1[R14A] in a mouse model of sporadic AD, demonstrating its potential as a therapeutic candidate for this neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Jiaqi Sun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Deanna S Deveson Lucas
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ryusuke Takechi
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - John C L Mamo
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
46
|
Ahn YH, Tang Y, Illes P. The neuroinflammatory astrocytic P2X7 receptor: Alzheimer's disease, ischemic brain injury, and epileptic state. Expert Opin Ther Targets 2023; 27:763-778. [PMID: 37712394 DOI: 10.1080/14728222.2023.2258281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Astrocytes have previously been considered as cells supporting neuronal functions, but they are now recognized as active players in maintaining central nervous system (CNS) homeostasis. Astrocytes can communicate with other CNS cells, i.e. through the gliotransmitter ATP and P2X7 receptors (Rs). AREAS COVERED In this review, we will discuss how the P2X7R initiates the release of gliotransmitters and proinflammatory cytokines/chemokines, thereby establishing a dialog between astrocytes and neurons and, in addition, causing neuroinflammation. In astrocytes, dysregulation of P2X7Rs has been associated with neurodegenerative illnesses such as Alzheimer's disease (AD), as well as the consequences of cerebral ischemic injury and status epilepticus (SE). EXPERT OPINION Although all CNS cells are possible sources of ATP release, the targets of this ATP are primarily at microglial cells. However, astrocytes also contain ATP-sensitive P2X7Rs and have in addition the peculiar property over microglia to continuously interact with neurons via not only inflammatory mediators but also gliotransmitters, such as adenosine 5'-triphosphate (ATP), glutamate, γ-amino butyric acid (GABA), and D-serine. Cellular damage arising during AD, cerebral ischemia, and SE via P2X7R activation is superimposed upon the original disease, and their prevention by blood-brain barrier permeable pharmacological antagonists is a valid therapeutic option.
Collapse
Affiliation(s)
- Young Ha Ahn
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
47
|
Inyang D, Saumtally T, Nnadi CN, Devi S, So PW. A Systematic Review of the Effects of Capsaicin on Alzheimer's Disease. Int J Mol Sci 2023; 24:10176. [PMID: 37373321 DOI: 10.3390/ijms241210176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterised by cognitive impairment, and amyloid-β plaques and neurofibrillary tau tangles at neuropathology. Capsaicin is a spicy-tasting compound found in chili peppers, with anti-inflammatory, antioxidant, and possible neuroprotective properties. Capsaicin intake has been associated with greater cognitive function in humans, and attenuating aberrant tau hyperphosphorylation in a rat model of AD. This systematic review discusses the potential of capsaicin in improving AD pathology and symptoms. A systematic analysis was conducted on the effect of capsaicin on AD-associated molecular changes, cognitive and behaviour resulting in 11 studies employing rodents and/or cell cultures, which were appraised with the Cochrane Risk of Bias tool. Ten studies showed capsaicin attenuated tau deposition, apoptosis, and synaptic dysfunction; was only weakly effective on oxidative stress; and had conflicting effects on amyloid processing. Eight studies demonstrated improved spatial and working memory, learning, and emotional behaviours in rodents following capsaicin treatment. Overall, capsaicin showed promise in improving AD-associated molecular, cognitive, and behavioural changes in cellular and animal models, and further investigations are recommended to test the readily available bioactive, capsaicin, to treat AD.
Collapse
Affiliation(s)
- Deborah Inyang
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Tasneem Saumtally
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Chinelo Nonyerem Nnadi
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Sharmila Devi
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| |
Collapse
|
48
|
Ding H, Liu S, Du W, Su L, Chen J, Tian Y, Pan D, Chen L, Rizzello L, Zheng X, Battaglia G, Luo K, Gong Q, Tian X. Revealing the amyloid β-protein with zinc finger protein of micronucleus during Alzheimer's disease progress by a quaternary ammonium terpyridine probe. Biosens Bioelectron 2023; 236:115446. [PMID: 37290288 DOI: 10.1016/j.bios.2023.115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Micronucleus (MN) is regarded as an abnormal structure in eukaryotic cells which can be used as a biomarker for genetic instability. However, direct observation of MN in living cells is rarely achieved due to the lack of probes that are capable of distinguishing nuclear- and MN-DNA. Herein, a water-soluble terpyridine organic small molecule (ABT) was designed and employed to recognize Zinc-finger protein (ZF) for imaging intracellular MN. The in vitro experiments suggested ABT has a high affinity towards ZF. Further live cell staining showed that ABT could selectively target MN in HeLa and NSC34 cells when combined with ZF. Importantly, we use ABT to uncover the correlation between neurotoxic amyloid β-protein (Aβ) and MN during Alzheimer's disease (AD) progression. Thus, this study provides profound insight into the relationship between Aβ and genomic disorders, offering a deeper understanding for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Haitao Ding
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province; Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China
| | - Shangke Liu
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Liping Su
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province; Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China
| | - Junyang Chen
- Department of Chemistry, University College London, London, United Kingdom
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei, 230039, China
| | - Dayi Pan
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province; Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China
| | - Lei Chen
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei, 230039, China.
| | - Loris Rizzello
- Department of Pharmaceutical Sciences - University of Milan, Via G. Balzaretti 9, 20133, Milan, IT, Italy; The National Institute of Molecular Genetics (INGM), Via Francesco Sforza 35, 20122, Milan, IT, Italy
| | - Xiaowei Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London, United Kingdom
| | - Kui Luo
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province; Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, And Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province; Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, And Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, 699 Jinyuan Xi Road, Jimei District, 361021, Xiamen, Fujian, China
| | - Xiaohe Tian
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province; Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610000, Sichuan Province, China.
| |
Collapse
|
49
|
Hirota Y, Sakakibara Y, Takei K, Nishijima R, Sekiya M, Iijima KM. Alzheimer's Disease-Related Phospho-Tau181 Signals Are Localized to Demyelinated Axons of Parvalbumin-Positive GABAergic Interneurons in an App Knock-In Mouse Model of Amyloid-β Pathology. J Alzheimers Dis 2023:JAD230121. [PMID: 37212118 DOI: 10.3233/jad-230121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND The tau protein phosphorylated at Thr181 (p-tau181) in cerebrospinal fluid and blood is a sensitive biomarker for Alzheimer's disease (AD). Increased p-tau181 levels correlate well with amyloid-β (Aβ) pathology and precede neurofibrillary tangle formation in the early stage of AD; however, the relationship between p-tau181 and Aβ-mediated pathology is less well understood. We recently reported that p-tau181 represents axonal abnormalities in mice with Aβ pathology (AppNLGF). However, from which neuronal subtype(s) these p-tau181-positive axons originate remains elusive. OBJECTIVE The main purpose of this study is to differentiate neuronal subtype(s) and elucidate damage associated with p-tau181-positive axons by immunohistochemical analysis of AppNLGF mice brains. METHODS Colocalization between p-tau181 and (1) unmyelinated axons positive for vesicular acetylcholine transporter or norepinephrine transporter and (2) myelinated axons positive for vesicular glutamate transporter, vesicular GABA transporter, or parvalbumin in the brains of 24-month-old AppNLGF and control mice without Aβ pathology were analyzed. The density of these axons was also compared. RESULTS Unmyelinated axons of cholinergic or noradrenergic neurons did not overlap with p-tau181. By contrast, p-tau181 signals colocalized with myelinated axons of parvalbumin-positive GABAergic interneurons but not of glutamatergic neurons. Interestingly, the density of unmyelinated axons was significantly decreased in AppNLGF mice, whereas that of glutamatergic, GABAergic, or p-tau181-positive axons was less affected. Instead, myelin sheaths surrounding p-tau181-positive axons were significantly reduced in AppNLGF mice. CONCLUSION This study demonstrates that p-tau181 signals colocalize with axons of parvalbumin-positive GABAergic interneurons with disrupted myelin sheaths in the brains of a mouse model of Aβ pathology.
Collapse
Affiliation(s)
- Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Risa Nishijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Koichi M Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
50
|
Padmanabhan P, Götz J. Clinical relevance of animal models in aging-related dementia research. NATURE AGING 2023; 3:481-493. [PMID: 37202516 DOI: 10.1038/s43587-023-00402-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/21/2023] [Indexed: 05/20/2023]
Abstract
Alzheimer's disease (AD) and other, less prevalent dementias are complex age-related disorders that exhibit multiple etiologies. Over the past decades, animal models have provided pathomechanistic insight and evaluated countless therapeutics; however, their value is increasingly being questioned due to the long history of drug failures. In this Perspective, we dispute this criticism. First, the utility of the models is limited by their design, as neither the etiology of AD nor whether interventions should occur at a cellular or network level is fully understood. Second, we highlight unmet challenges shared between animals and humans, including impeded drug transport across the blood-brain barrier, limiting effective treatment development. Third, alternative human-derived models also suffer from the limitations mentioned above and can only act as complementary resources. Finally, age being the strongest AD risk factor should be better incorporated into the experimental design, with computational modeling expected to enhance the value of animal models.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|