1
|
Anitua E, Zalduendo M, Prado R, Troya M, Tierno R, de la Fuente M, Alkhraisat MH. The Biological Effect of Enriching the Plasma Content in Platelet-Rich Plasma: An In Vitro Study. Biomolecules 2024; 14:1328. [PMID: 39456261 PMCID: PMC11506755 DOI: 10.3390/biom14101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP) formulations have become valuable therapeutic tools in regenerative medicine. In addition, these blood derivates have been successfully included in cell therapy as fetal bovine serum substitutes, due to the real need to avoid the risk of host immunologic reactions and the animal disease transmission associated with reagents from animal origin. However, the protocols for obtaining them should be optimized to improve their biological potential. METHODS PRP-derived preparations with different concentrations of the platelet and plasma components were obtained from the blood of five donors by freeze-drying. Measurements of the pH, protein, and growth factor concentration were performed. Moreover, their biological effects on cell proliferation and migration and their angiogenic potential were assessed. RESULTS An increased plasma component concentration resulted in an augmented quantity of the total protein content, a significative variation in the hepatocyte growth factor concentration, and an experimental but clinically irrelevant alteration of the pH value. No significant changes were induced in their potential to enhance proliferative and migratory responses in epithelial cells, with the latter being reduced for dermal fibroblasts. The endothelial cell capacity for tube formation was significatively reduced. CONCLUSIONS An increased blood plasma content did not improve the biological potential of the formulations. However, they have emerged as a promising approach for regenerative therapies where neovascularization must be avoided.
Collapse
Affiliation(s)
- Eduardo Anitua
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - Mar Zalduendo
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - Roberto Prado
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - María Troya
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - Roberto Tierno
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - María de la Fuente
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| | - Mohammad H. Alkhraisat
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain; (M.Z.); (R.P.); (M.T.); (R.T.); (M.d.l.F.); (M.H.A.)
- BTI-Biotechnology Institute, 01005 Vitoria, Spain
| |
Collapse
|
2
|
Tan X, Gao X, Zheng H, Yuan H, Liu H, Ran Q, Luo M. Platelet dysfunction caused by differentially expressed genes as key pathogenic mechanisms in COVID-19. Minerva Cardiol Angiol 2024; 72:517-534. [PMID: 38804627 DOI: 10.23736/s2724-5683.24.06501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
At the end of 2019, the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became prevalent worldwide, which brought a heavy medical burden and tremendous economic losses to the world population. In addition to the common clinical respiratory symptoms such as fever, cough and headache, patients with COVID-19 often have hematological diseases, especially platelet dysfunction. Platelet dysfunction usually leads to multiple organ dysfunction, which is closely related to patient severity or mortality. In addition, studies have confirmed significant changes in the gene expression profile of circulating platelets under SARS-CoV-2 infection, which will further lead to changes in platelet function. At the same time, studies have shown that platelets may absorb SARS-COV-2 mRNA independently of ACE2, which further emphasizes the importance of the stability of platelet function in defense against SARS-CoV-2 infection. This study reviewed the relationship between COVID-19 and platelet and SARS-CoV-2 damage to the circulatory system, and further analyzed the significantly differentially expressed mRNA in platelets after infection with SARS-CoV-2 on the basis of previous studies. The top eight hub genes were identified as NLRP3, MT-CO1, CD86, ICAM1, MT-CYB, CASP8, CXCL8 and CXCR4. Subsequently, the effects of SARS-CoV-2 infection on platelet transcript abnormalities and platelet dysfunction were further explored on the basis of 8 hub genes. Finally, the treatment measures of complications caused by platelet dysfunction in patients with COVID-19 were discussed in detail, so as to provide reference for the prevention, diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoyong Tan
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Xiaojun Gao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Huanhuan Zheng
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Hui Yuan
- Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Liu
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Qijun Ran
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China -
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Banerjee M, Rowley JW, Stubben CJ, Tolley ND, Freson K, Nelson B, Nagy B, Fejes Z, Blair AM, Turro E, Gresele P, Taranta GC, Bury L, Falcinelli E, Lordkipanidzé M, Alessi MC, Johnson AD, Bakchoul T, Ramstrom S, Frontini M, Camera M, Brambilla M, Campbell RA, Rondina MT. Prospective, international, multisite comparison of platelet isolation techniques for genome-wide transcriptomics: communication from the SSC of the ISTH. J Thromb Haemost 2024; 22:2922-2934. [PMID: 38969303 PMCID: PMC11416310 DOI: 10.1016/j.jtha.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
Genome-wide platelet transcriptomics is increasingly used to uncover new aspects of platelet biology and as a diagnostic and prognostic tool. Nevertheless, platelet isolation methods for transcriptomic studies are not standardized, introducing challenges for cross-study comparisons, data integration, and replication. In this prospective multicenter study, called "Standardizing Platelet Transcriptomics for Discovery, Diagnostics, and Therapeutics in the Thrombosis and Hemostasis Community (STRIDE)" by the International Society on Thrombosis and Haemostasis Scientific and Standardization Committees, we assessed how 3 of the most commonly used platelet isolation protocols influence metrics from next-generation bulk RNA sequencing and functional assays. Compared with washing alone, more stringent removal of leukocytes by anti-CD45 beads or PALL filters resulted in a sufficient quantity of RNA for next-generation sequencing and similar quality of RNA sequencing metrics. Importantly, stringent removal of leukocytes resulted in the lower relative expression of known leukocyte-specific genes and the higher relative expression of known platelet-specific genes. The results were consistent across enrolling sites, suggesting that the techniques are transferrable and reproducible. Moreover, all 3 isolation techniques did not influence basal platelet reactivity, but agonist-induced integrin αIIbβ3 activation is reduced by anti-CD45 bead isolation compared with washing alone. In conclusion, the isolation technique chosen influences genome-wide transcriptional and functional assays in platelets. These results should help the research community make informed choices about platelet isolation techniques in their own platelet studies.
Collapse
Affiliation(s)
- Meenakshi Banerjee
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, Utah, USA
| | - Jesse W Rowley
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, Utah, USA; Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, USA
| | - Chris J Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Neal D Tolley
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, Utah, USA
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Katholeike Universiteit (KU) Leuven, Leuven, Belgium
| | - Benjamin Nelson
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, Utah, USA
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Antoinette M Blair
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, Utah, USA
| | - Ernest Turro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paolo Gresele
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Loredana Bury
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Christine Alessi
- Cardiovascular and Nutrition Centre (C2VN), Aix Marseille University, Institut National de la Sante et de la Recherche Medicale (INSERM), National Research Institute for Agriculture, Food and Environment (INRAE), Marseille, France
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA; The Framingham Heart Study, Framingham, Massachusetts, USA
| | - Tamam Bakchoul
- Department of Transfusion Medicine, Medical Faculty of Tubingen, University of Tubingen, Tubingen, Germany
| | - Sofia Ramstrom
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mattia Frontini
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, Exeter, United Kingdom
| | - Marina Camera
- Unit of Cell and Molecular Biology in Cardiovascular Diseases, Centro Cardiologico Monzino, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Marta Brambilla
- Unit of Cell and Molecular Biology in Cardiovascular Diseases, Centro Cardiologico Monzino, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Robert A Campbell
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, Utah, USA; Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, USA
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program, Eccles Institute of Human Genetics, Salt Lake City, Utah, USA; Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, USA; George E. Wahlen Veterans Affairs Medical Center & Geriatric Research Education and Clinical Center (GRECC), Salt Lake City, Utah, USA.
| |
Collapse
|
4
|
Luthi-Carter R, Cappelli S, Le Roux-Bourdieu M, Tentillier N, Quinn JP, Petrozziello T, Gopalakrishnan L, Sethi P, Choudhary H, Bartolini G, Gebara E, Stuani C, Font L, An J, Ortega V, Sage J, Kosa E, Trombetta BA, Simeone R, Seredenina T, Afroz T, Berry JD, Arnold SE, Carlyle BC, Adolfsson O, Sadri-Vakili G, Buratti E, Bowser R, Agbas A. Location and function of TDP-43 in platelets, alterations in neurodegenerative diseases and arising considerations for current plasma biobank protocols. Sci Rep 2024; 14:21837. [PMID: 39294194 PMCID: PMC11410945 DOI: 10.1038/s41598-024-70822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
The TAR DNA Binding Protein 43 (TDP-43) has been implicated in the pathogenesis of human neurodegenerative diseases and exhibits hallmark neuropathology in amyotrophic lateral sclerosis (ALS). Here, we explore its tractability as a plasma biomarker of disease and describe its localization and possible functions in the cytosol of platelets. Novel TDP-43 immunoassays were developed on three different technical platforms and qualified for specificity, signal-to-noise ratio, detection range, variation, spike recovery and dilution linearity in human plasma samples. Surprisingly, implementation of these assays demonstrated that biobank-archived plasma samples yielded considerable heterogeneity in TDP-43 levels. Importantly, subsequent investigation attributed these differences to variable platelet recovery. Fractionations of fresh blood revealed that ≥ 95% of the TDP-43 in platelet-containing plasma was compartmentalized within the platelet cytosol. We reasoned that this highly concentrated source of TDP-43 comprised an interesting substrate for biochemical analyses. Additional characterization of platelets revealed the presence of the disease-associated phosphoserine 409/410 TDP-43 proteoform and many neuron- and astrocyte-expressed TDP-43 mRNA targets. Considering these striking similarities, we propose that TDP-43 may serve analogous functional roles in platelets and synapses, and that the study of platelet TDP-43 might provide a window into disease-related TDP-43 dyshomeostasis in the central nervous system.
Collapse
Affiliation(s)
- Ruth Luthi-Carter
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland.
| | - Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | | | - Noemie Tentillier
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - James P Quinn
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 114 16th Street, Charlestown, MA, 02129, USA
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA, 02129, USA
- Eisai US, 35 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Tiziana Petrozziello
- Sean M. Healey and AMG Center for ALS at MassGeneral, Massachusetts General Hospital, 165 Cambridge Street, Boston, MA, 02114, USA
| | - Lathika Gopalakrishnan
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Purva Sethi
- Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Himanshi Choudhary
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Giorgia Bartolini
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Elias Gebara
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Laure Font
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Jiyan An
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Vanessa Ortega
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Jessica Sage
- Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
- Boehringer Ingelheim Vetmedica, St Joseph, MO, 64503, USA
| | - Edina Kosa
- Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Bianca A Trombetta
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 114 16th Street, Charlestown, MA, 02129, USA
| | - Roberto Simeone
- Dipartimento di Medicina Trasfusionale Giuliano-Isontina, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Tamara Seredenina
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Tariq Afroz
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - James D Berry
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Sean M. Healey and AMG Center for ALS at MassGeneral, Massachusetts General Hospital, 165 Cambridge Street, Boston, MA, 02114, USA
- Neurological Clinical Research Institute, 165 Cambridge Street, Boston, MA, 02114, USA
| | - Steven E Arnold
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 114 16th Street, Charlestown, MA, 02129, USA
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA, 02129, USA
- Sean M. Healey and AMG Center for ALS at MassGeneral, Massachusetts General Hospital, 165 Cambridge Street, Boston, MA, 02114, USA
| | - Becky C Carlyle
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 114 16th Street, Charlestown, MA, 02129, USA
- Department of Physiology, Anatomy and Genetics and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX13QU, UK
| | - Oskar Adolfsson
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Ghazaleh Sadri-Vakili
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA, 02129, USA
- Sean M. Healey and AMG Center for ALS at MassGeneral, Massachusetts General Hospital, 165 Cambridge Street, Boston, MA, 02114, USA
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Robert Bowser
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Abdulbaki Agbas
- Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| |
Collapse
|
5
|
Scalise A, Aggarwal A, Sangwan N, Hamer A, Guntupalli S, Park HE, Aleman JO, Cameron SJ. A Divergent Platelet Transcriptome in Patients with Lipedema and Lymphedema. Genes (Basel) 2024; 15:737. [PMID: 38927673 PMCID: PMC11202821 DOI: 10.3390/genes15060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Lipedema and lymphedema are physically similar yet distinct diseases that are commonly misdiagnosed. We previously reported that lipedema and lymphedema are associated with increased risk for venous thromboembolism (VTE). The underlying etiology of the prothrombotic profile observed in lipedema and lymphedema is unclear, but may be related to alterations in platelets. Our objective was to analyze the platelet transcriptome to identify biological pathways that may provide insight into platelet activation and thrombosis. The platelet transcriptome was evaluated in patients with lymphedema and lipedema, then compared to control subjects with obesity. Patients with lipedema were found to have a divergent transcriptome from patients with lymphedema. The platelet transcriptome and impacted biological pathways in lipedema were surprisingly similar to weight-matched comparators, yet different when compared to overweight individuals with a lower body mass index (BMI). Differences in the platelet transcriptome for patients with lipedema and lymphedema were found in biological pathways required for protein synthesis and degradation, as well as metabolism. Key differences in the platelet transcriptome for patients with lipedema compared to BMI-matched subjects involved metabolism and glycosaminoglycan processing. These inherent differences in the platelet transcriptome warrant further investigation, and may contribute to the increased risk of thrombosis in patients with lipedema and lymphedema.
Collapse
Affiliation(s)
- Alliefair Scalise
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Anu Aggarwal
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Annelise Hamer
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Suman Guntupalli
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Huijun Edelyn Park
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Jose O. Aleman
- Holman Division of Endocrinology, New York University, New York, NY 10012, USA;
| | - Scott J. Cameron
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Hematology, Taussig Cancer Center, Cleveland, OH 44195, USA
| |
Collapse
|
6
|
Norouzi M, Mesbah-Namin SA, Sharifi Z, Deyhim MR. L-carnitine contributes to enhancement of viability and quality of platelet concentrates through changing the apoptotic and anti-apoptotic associated microRNAs. Transfus Clin Biol 2024; 31:87-94. [PMID: 38266909 DOI: 10.1016/j.tracli.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Micro RNAs are known as the main regulator of messenger RNA translation in platelets and have a vital role in process of apoptosis during platelet storage. Our pervious study revealed that the expression of miR-145 and miR-326 changed significantly in platelets under maintenance conditions. This study aimed to evaluate the effect of L-carnitine (LC) as an additive to augment platelet quality by changing the microRNA expression. METHODS We used ten platelet concentrate (PC) bags and divided each into two equal parts, LC- treated, and LC free PC. The expression of miR-145 and miR-326 were determined using real-time PCR. Moreover, we measured platelet count, platelet aggregation, platelet viability, and lactate dehydrogenase activity in all samples. RESULTS The miR-326 expression significantly increased during platelet storage with mean fold changes of 3.2 for the control and 2.5 for LC- treated PC. The mean fold changes in miR-145 expression was less in the control PC (0.52) compared to the LC- treated PC (0.79). Increased levels of platelet count, platelet aggregation, and platelet viability were found in the LC-treated compared to the untreated PC. CONCLUSION LC has a protective effect on platelet apoptosis, reduces the expression of apoptotic microRNA, and prevents the reduction of anti-apoptotic microRNA.
Collapse
Affiliation(s)
- Mozhgan Norouzi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Reza Deyhim
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
7
|
Wurtzel JGT, Lazar S, Askari S, Zhao X, Severa J, Ayombil F, Michael JV, Camire RM, McKenzie SE, Stalker TJ, Ma P, Goldfinger LE. Plasma growth factors maintain constitutive translation in platelets to regulate reactivity and thrombotic potential. Blood Adv 2024; 8:1550-1566. [PMID: 38163324 PMCID: PMC10982986 DOI: 10.1182/bloodadvances.2023011734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
ABSTRACT Mechanisms of proteostasis in anucleate circulating platelets are unknown and may regulate platelet function. We investigated the hypothesis that plasma-borne growth factors/hormones (GFHs) maintain constitutive translation in circulating platelets to facilitate reactivity. Bio-orthogonal noncanonical amino acid tagging (BONCAT) coupled with liquid chromatography-tandem mass spectrometry analysis revealed constitutive translation of a broad-spectrum translatome in human platelets dependent upon plasma or GFH exposure, and in murine circulation. Freshly isolated platelets from plasma showed homeostatic activation of translation-initiation signaling pathways: phosphorylation of p38/ERK upstream kinases, essential intermediate MNK1/2, and effectors eIF4E/4E-BP1. Plasma starvation led to loss of pathway phosphorylation, but it was fully restored with 5-minute stimulation by plasma or GFHs. Cycloheximide or puromycin infusion suppressed ex vivo platelet GpIIb/IIIa activation and P-selectin exposure with low thrombin concentrations and low-to-saturating concentrations of adenosine 5'-diphosphate (ADP) or thromboxane analog but not convulxin. ADP-induced thromboxane generation was blunted by translation inhibition, and secondary-wave aggregation was inhibited in a thromboxane-dependent manner. Intravenously administered puromycin reduced injury-induced clot size in cremaster muscle arterioles, and delayed primary hemostasis after tail tip amputation but did not delay neither final hemostasis after subsequent rebleeds, nor final hemostasis after jugular vein puncture. In contrast, these mice were protected from injury-induced arterial thrombosis and thrombin-induced pulmonary thromboembolism (PE), and adoptive transfer of translation-inhibited platelets into untreated mice inhibited arterial thrombosis and PE. Thus, constitutive plasma GFH-driven translation regulates platelet G protein-coupled receptor reactivity to balance hemostasis and thrombotic potential.
Collapse
Affiliation(s)
- Jeremy G. T. Wurtzel
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Sophia Lazar
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Shayan Askari
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Xuefei Zhao
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Jenna Severa
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Francis Ayombil
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - James V. Michael
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Rodney M. Camire
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Steven E. McKenzie
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Timothy J. Stalker
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Peisong Ma
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Lawrence E. Goldfinger
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
8
|
Aris M, Sood AK, Zaslavsky A. Editorial: Platelets in tumor biology: from molecular mechanisms to clinical applications. Front Cell Dev Biol 2024; 12:1373463. [PMID: 38415273 PMCID: PMC10898350 DOI: 10.3389/fcell.2024.1373463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Affiliation(s)
- Mariana Aris
- Centro de Investigaciones Oncológicas-Fundación Cáncer (CIO-FUCA), Buenos Aires, Argentina
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Alexander Zaslavsky
- Department of Urology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Singh PK, Dangelmaier CA, Vari HR, Tsygankov AY, Kunapuli SP. Biochemical characterization of spleen tyrosine kinase (SYK) isoforms in platelets. Platelets 2023; 34:2249549. [PMID: 37661351 PMCID: PMC10502920 DOI: 10.1080/09537104.2023.2249549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
Alternate splicing is among the regulatory mechanisms imparting functional diversity in proteins. Studying protein isoforms generated through alternative splicing is therefore critical for understanding protein functions in many biological systems. Spleen tyrosine kinase (Syk) plays an essential role in ITAM/hemITAM signaling in many cell types, including platelets. However, the spectrum of Syk isoforms expressed in platelets has not been characterized. Syk has been shown to have a full-length long isoform SykL and a shorter SykS lacking 23 amino acid residues within its interdomain B. Furthermore, putative isoforms lacking another 23 amino acid-long sequence or a combination of the two deletions have been postulated to exist. In this report, we demonstrate that mouse platelets express full-length SykL and the previously described shorter isoform SykS, but lack other shorter isoforms, whereas human platelets express predominantly SykL. These results both indicate a possible role of alternative Syk splicing in the regulation of receptor signaling in mouse platelets and a difference between signaling regulation in mouse and human platelets.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Carol A. Dangelmaier
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hymavathi Reddy Vari
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alexander Y. Tsygankov
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Satya P. Kunapuli
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Soslau G. Platelet protein synthesis, regulation, and post-translational modifications: mechanics and function. Crit Rev Biochem Mol Biol 2023; 58:99-117. [PMID: 37347996 DOI: 10.1080/10409238.2023.2224532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Dogma had been firmly entrenched in the minds of the scientific community that the anucleate mammalian platelet was incapable of protein biosynthesis since their identification in the late 1880s. These beliefs were not challenged until the 1960s when several reports demonstrated that platelets possessed the capacity to biosynthesize proteins. Even then, many still dismissed the synthesis as trivial and unimportant for at least another two decades. Research in the field expanded after the 1980s and numerous reports have since been published that now clearly demonstrate the potential significance of platelet protein synthesis under normal, pathological, and activating conditions. It is now clear that the platelet proteome is not a static entity but can be altered slowly or rapidly in response to external signals to support physiological requirements to maintain hemostasis and other biological processes. All the necessary biological components to support protein synthesis have been identified in platelets along with post-transcriptional processing of mRNAs, regulators of translation, and post-translational modifications such as glycosylation. The last comprehensive review of the subject appeared in 2009 and much work has been conducted since that time. The current review of the field will briefly incorporate the information covered in earlier reviews and then bring the reader up to date with more recent findings.
Collapse
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular Biology Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
11
|
Thibord F, Johnson AD. Sources of variability in the human platelet transcriptome. Thromb Res 2023; 231:255-263. [PMID: 37357099 DOI: 10.1016/j.thromres.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Platelets are anucleated cells produced by megakaryocytes, from which they inherit all the components necessary to carry their functions. They circulate in blood vessels where they play essential roles in coagulation, wound repair or inflammation, and have been implicated in various pathological conditions such as thrombosis, viral infection or cancer progression. The importance of these cells has been established over a century ago, and effective anti-platelet medications with different mechanisms of action have since been developed. However, these therapies are not always effective and can incur adverse events, thus a better understanding of platelets molecular processes is needed to address these issues and improve our understanding of platelet functions. In recent years, an increasing number of studies have leveraged OMICs technologies to analyze their content and identify molecular signatures and mechanisms associated with platelet functions and platelet related disorders. In particular, the increased accessibility of microarrays and RNA sequencing opened the way for studies of the platelet transcriptome under a wide array of conditions. These studies revealed distinct expression profiles in diverse pathologies, which could lead to the discovery of novel biomarkers and therapeutic targets, and suggests a dynamic transcriptome that could influence platelet mechanisms. In this review, we highlight the different sources of transcript level variability in platelets while summarizing recent advances and discoveries from this emerging field.
Collapse
Affiliation(s)
- Florian Thibord
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte, Suite #2, Framingham, MA 01702, USA; The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA 01702, USA.
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte, Suite #2, Framingham, MA 01702, USA; The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA 01702, USA
| |
Collapse
|
12
|
Collinson RJ, Boey D, Wilson L, Ng ZY, Mirzai B, Chuah H, Leahy MF, Howman R, Linden M, Fuller K, Erber WN, Guo BB. PlateletSeq: A novel method for discovery of blood-based biomarkers. Methods 2023; 219:139-149. [PMID: 37813292 DOI: 10.1016/j.ymeth.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Platelets are small circulating fragments of cells that play important roles in thrombosis, haemostasis, immune response, inflammation and cancer growth. Although anucleate, they contain a rich RNA repertoire which offers an opportunity to characterise changes in platelet gene expression in health and disease. Whilst this can be achieved with conventional RNA sequencing, a large input of high-quality RNA, and hence blood volume, is required (unless a pre-amplification step is added), along with specialist bioinformatic skills for data analysis and interpretation. We have developed a transcriptomics next-generation sequencing-based approach that overcomes these limitations. Termed PlateletSeq, this method requires very low levels of RNA input and does not require specialist bioinformatic analytical skills. Here we describe the methodology, from sample collection to processing and data analysis. Specifically, blood samples can be stored for up to 8 days at 4 °C prior to analysis. Platelets are isolated using multi-step centrifugation and a purity of ≤ 1 leucocyte per 0.26x106 platelets is optimal for gene expression analysis. We have applied PlateletSeq to normal adult blood samples and show there are no age-associated variations and only minor gender-associated differences. In contrast, platelets from patients with myeloproliferative neoplasms show differences in platelet transcript profiles from normal and between disease subtypes. This illustrates the potential applicability of PlateletSeq for biomarker discovery and studying platelet biology in patient samples. It also opens avenues for assessing platelet quality in other fields such as transfusion research.
Collapse
Affiliation(s)
- Ryan J Collinson
- School of Biomedical Sciences, The University of Western Australia, Crawley, W.A., Australia
| | - Darren Boey
- School of Biomedical Sciences, The University of Western Australia, Crawley, W.A., Australia
| | - Lynne Wilson
- School of Biomedical Sciences, The University of Western Australia, Crawley, W.A., Australia
| | - Zi Yun Ng
- School of Biomedical Sciences, The University of Western Australia, Crawley, W.A., Australia; Royal Perth Hospital, Department of Health Western Australia, Perth, W.A., Australia
| | - Bob Mirzai
- PathWest Laboratory Medicine, Nedlands, W.A., Australia
| | - Hun Chuah
- Royal Perth Hospital, Department of Health Western Australia, Perth, W.A., Australia; PathWest Laboratory Medicine, Nedlands, W.A., Australia; Rockingham General Hospital, Department of Health Western Australia, Rockingham, W.A., Australia
| | - Michael F Leahy
- Royal Perth Hospital, Department of Health Western Australia, Perth, W.A., Australia; PathWest Laboratory Medicine, Nedlands, W.A., Australia; Medical School, The University of Western Australia, Crawley, W.A., Australia
| | - Rebecca Howman
- Sir Charles Gairdner Hospital, Department of Health Western Australia, Nedlands, W.A., Australia
| | - Matthew Linden
- School of Biomedical Sciences, The University of Western Australia, Crawley, W.A., Australia
| | - Kathy Fuller
- School of Biomedical Sciences, The University of Western Australia, Crawley, W.A., Australia
| | - Wendy N Erber
- School of Biomedical Sciences, The University of Western Australia, Crawley, W.A., Australia; PathWest Laboratory Medicine, Nedlands, W.A., Australia
| | - Belinda B Guo
- School of Biomedical Sciences, The University of Western Australia, Crawley, W.A., Australia.
| |
Collapse
|
13
|
Zhao J, He X, Min J, Yao RSY, Chen Y, Chen Z, Huang Y, Zhu Z, Gong Y, Xie Y, Li Y, Luo W, Shi D, Xu J, Shen A, Wang Q, Sun R, He B, Lin Y, Shen N, Cao B, Yang L, She D, Shi Y, Zhou J, Su X, Zhou H, Ma Z, Fan H, Lin Y, Ye F, Nie X, Zhang Q, Tian X, Lai G, Zhou M, Ma J, Zhang J, Qu J. A multicenter prospective study of comprehensive metagenomic and transcriptomic signatures for predicting outcomes of patients with severe community-acquired pneumonia. EBioMedicine 2023; 96:104790. [PMID: 37708700 PMCID: PMC10507133 DOI: 10.1016/j.ebiom.2023.104790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/29/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Severe community-acquired pneumonia (SCAP) results in high mortality as well as massive economic burden worldwide, yet limited knowledge of the bio-signatures related to prognosis has hindered the improvement of clinical outcomes. Pathogen, microbes and host are three vital elements in inflammations and infections. This study aims to discover the specific and sensitive biomarkers to predict outcomes of SCAP patients. METHODS In this study, we applied a combined metagenomic and transcriptomic screening approach to clinical specimens gathered from 275 SCAP patients of a multicentre, prospective study. FINDINGS We found that 30-day mortality might be independent of pathogen category or microbial diversity, while significant difference in host gene expression pattern presented between 30-day mortality group and the survival group. Twelve outcome-related clinical characteristics were identified in our study. The underlying host response was evaluated and enrichment of genes related to cell activation, immune modulation, inflammatory and metabolism were identified. Notably, omics data, clinical features and parameters were integrated to develop a model with six signatures for predicting 30-day mortality, showing an AUC of 0.953 (95% CI: 0.92-0.98). INTERPRETATION In summary, our study linked clinical characteristics and underlying multi-omics bio-signatures to the differential outcomes of patients with SCAP. The establishment of a comprehensive predictive model will be helpful for future improvement of treatment strategies and prognosis with SCAP. FUNDING National Natural Science Foundation of China (No. 82161138018), Shanghai Municipal Key Clinical Specialty (shslczdzk02202), Shanghai Top-Priority Clinical Key Disciplines Construction Project (2017ZZ02014), Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100).
Collapse
Affiliation(s)
- Jingya Zhao
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Xiangyan He
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Jiumeng Min
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Rosary Sin Yu Yao
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Yu Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhonglin Chen
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Yi Huang
- Department of Pulmonary and Critical Care Medicine, Changhai Hospital, Shanghai, China
| | - Zhongyi Zhu
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Yanping Gong
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Yusang Xie
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital Wenzhou Medical College, Zhejiang, China
| | - Weiwei Luo
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Dongwei Shi
- Department of Emergency Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinfu Xu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ao Shen
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Ruixue Sun
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Bei He
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Lin
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lingling Yang
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Danyang She
- Department of Pulmonary and Critical Care Medicine, The General Hospital of the People's Liberation Army, Beijing, China
| | - Yi Shi
- Department of Pulmonary and Critical Care Medicine, Jinling Hospital, Nanjing, China
| | - Jiali Zhou
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Xin Su
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hua Zhou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Zhenzi Ma
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Hong Fan
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Sichuan, China
| | - Yongquan Lin
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Feng Ye
- Department of Pulmonary and Critical Care Medicine, The First Affiliate Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xifang Nie
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | - Qiao Zhang
- Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Guoxiang Lai
- Department of Pulmonary and Critical Care Medicine, Fuzhou General Hospital, Fuzhou, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
| | - Jinmin Ma
- Clin Lab, BGI Genomics, Shenzhen 518083, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China.
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
| |
Collapse
|
14
|
Xu P, Deng H, Hong Z, Zhong S, Chen F, Wang L, Wang Z, Mei Y, Luo Z, He Z, Li H, Gan C, Zhang H, Ma Y, Han Z, Zhang YH. Superresolution Fluorescence Microscopy of Platelet Subcellular Structures as a Potential Tumor Liquid Biopsy. SMALL METHODS 2023; 7:e2300445. [PMID: 37349902 DOI: 10.1002/smtd.202300445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 06/24/2023]
Abstract
Blood-based tumor liquid biopsies are promising as an alternative or complement to tissue biopsies due to their noninvasiveness, convenience, and safety, and there is still a great demand for the discovery of new biomarkers for these biopsies. Here, nanoscale distribution patterns of subcellular structures in platelets, as imaged by structured illumination superresolution fluorescence microscopy, as a new type of potential biomarker for tumor liquid biopsies are presented. A standardized protocol for platelet sample preparation and developed an automated high-throughput image analysis workflow is established. The diagnostic capability based on the statistical analysis of 280 000 superresolution images of individual platelets from a variety of tumor patients, benign mass patients, and healthy volunteers (n = 206) is explored. These results suggest that the nanoscale distribution patterns of α-granules in platelets have the potential to be biomarkers for several cancers, including glioma and cervical, endometrial, and ovarian cancers, facilitating not only diagnosis but also therapeutic monitoring. This study provides a promising novel type of platelet parameter for tumor liquid biopsies at the subcellular level rather than the existing cellular or molecular level and opens up a new avenue for clinical applications of superresolution imaging techniques.
Collapse
Affiliation(s)
- Peng Xu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Huan Deng
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Joint Wuhan Blood Center-Huazhong University of Science and Technology Hematology Optical Imaging Center, Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, 430030, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Simei Zhong
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Feifan Chen
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenhao Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yu Mei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ziying Luo
- Guangzhou Computational Super-resolution Biotech, Guangzhou, Guangdong, 510300, China
| | - Ziliang He
- Guangzhou Computational Super-resolution Biotech, Guangzhou, Guangdong, 510300, China
| | - Haiwen Li
- Guangzhou Computational Super-resolution Biotech, Guangzhou, Guangdong, 510300, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yan Ma
- Joint Wuhan Blood Center-Huazhong University of Science and Technology Hematology Optical Imaging Center, Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, 430030, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
15
|
Cimmino G, Conte S, Palumbo D, Sperlongano S, Torella M, Della Corte A, Golino P. The Novel Role of Noncoding RNAs in Modulating Platelet Function: Implications in Activation and Aggregation. Int J Mol Sci 2023; 24:7650. [PMID: 37108819 PMCID: PMC10144470 DOI: 10.3390/ijms24087650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
It is currently believed that plaque complication, with the consequent superimposed thrombosis, is a key factor in the clinical occurrence of acute coronary syndromes (ACSs). Platelets are major players in this process. Despite the considerable progress made by the new antithrombotic strategies (P2Y12 receptor inhibitors, new oral anticoagulants, thrombin direct inhibitors, etc.) in terms of a reduction in major cardiovascular events, a significant number of patients with previous ACSs treated with these drugs continue to experience events, indicating that the mechanisms of platelet remain largely unknown. In the last decade, our knowledge of platelet pathophysiology has improved. It has been reported that, in response to physiological and pathological stimuli, platelet activation is accompanied by de novo protein synthesis, through a rapid and particularly well-regulated translation of resident mRNAs of megakaryocytic derivation. Although the platelets are anucleate, they indeed contain an important fraction of mRNAs that can be quickly used for protein synthesis following their activation. A better understanding of the pathophysiology of platelet activation and the interaction with the main cellular components of the vascular wall will open up new perspectives in the treatment of the majority of thrombotic disorders, such as ACSs, stroke, and peripheral artery diseases before and after the acute event. In the present review, we will discuss the novel role of noncoding RNAs in modulating platelet function, highlighting the possible implications in activation and aggregation.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Stefano Conte
- Department of Translational Medical Sciences, Section of Lung Diseases, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy
| | - Domenico Palumbo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Simona Sperlongano
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Michele Torella
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| |
Collapse
|
16
|
Is autologous platelet activation the key step in ovarian therapy for fertility recovery and menopause reversal? Biomedicine (Taipei) 2023; 12:1-8. [PMID: 36816178 PMCID: PMC9910228 DOI: 10.37796/2211-8039.1380] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Platelets are a uniquely mammalian physiologic feature. As the only non-marine vertebrates to experience menopause, humans have a substantial post-reproductive lifespan and are believed to have a limited, non-renewable oocyte supply. Ovarian reserve typically declines after about age 35yrs, marking losses which cannot be recovered by available fertility medications. When in vitro fertilization fails due to low or absent ovarian response, gonadotropin adjustments are often ineffectual and if additional oocytes are occasionally harvested, egg quality is usually poor. This problem was confronted by Greek researchers who developed a new surgical method to insert autologous platelet-rich plasma (PRP) into ovaries; the first ovarian PRP success to improve reproductive outcomes was published from Athens in 2016. This innovation influenced later research with condensed platelet-derived growth factors, leading to correction of oocyte ploidy error, normal blastocyst development, and additional term livebirths. Yet women's health was among the last clinical domains to explore PRP, and its role in 'ovarian rejuvenation' remains unsettled. One critical aspect in this procedure is platelet activation, a commonly overlooked step in the cytokine release cascade considered essential for successful transition of undifferentiated ovarian stem cells to an oocyte lineage. Poor activation of platelets thus becomes an unforced error, potentially diminishing or even negating post-treatment ovarian follicular response. To answer this query, relevant theory, current disagreements, and new data on platelet activation are presented, along with clinical challenges for regenerative fertility practice.
Collapse
|
17
|
Xiang Y, Xiang P, Zhang L, Li Y, Zhang J. A narrative review for platelets and their RNAs in cancers: New concepts and clinical perspectives. Medicine (Baltimore) 2022; 101:e32539. [PMID: 36596034 PMCID: PMC9803462 DOI: 10.1097/md.0000000000032539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent years have witnessed a growing body of evidence suggesting that platelets are involved in several stages of the metastatic process via direct or indirect interactions with cancer cells, contributing to the progression of neoplastic malignancies. Cancer cells can dynamically exchange components with platelets in and out of blood vessels, and directly phagocytose platelets to hijack their proteome, transcriptome, and secretome, or be remotely regulated by metabolites or microparticles released by platelets, resulting in phenotypic, genetic, and functional modifications. Moreover, platelet interactions with stromal and immune cells in the tumor microenvironment lead to alterations in their components, including the ribonucleic acid (RNA) profile, and complicate the impact of platelets on cancers. A deeper understanding of the roles of platelets and their RNAs in cancer will contribute to the development of anticancer strategies and the optimization of clinical management. Encouragingly, advances in high-throughput sequencing, bioinformatics data analysis, and machine learning have allowed scientists to explore the potential of platelet RNAs for cancer diagnosis, prognosis, and guiding treatment. However, the clinical application of this technique remains controversial and requires larger, multicenter studies with standardized protocols. Here, we integrate the latest evidence to provide a broader insight into the role of platelets in cancer progression and management, and propose standardized recommendations for the clinical utility of platelet RNAs to facilitate translation and benefit patients.
Collapse
Affiliation(s)
- Yunhui Xiang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Pinpin Xiang
- Department of Laboratory Medicine, Xiping Community Health Service Center of Longquanyi District Chengdu City, Chengdu, China
| | - Liuyun Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanying Li
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- * Correspondence: Juan Zhang, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, 32# West Second Section, First Ring Road, Qingyang District, Chengdu City, Sichuan Province 610072, China (e-mail: )
| |
Collapse
|
18
|
Manne BK, Campbell RA, Bhatlekar S, Ajanel A, Denorme F, Portier I, Middleton EA, Tolley ND, Kosaka Y, Montenont E, Guo L, Rowley JW, Bray PF, Jacob S, Fukanaga R, Proud C, Weyrich AS, Rondina MT. MAPK-interacting kinase 1 regulates platelet production, activation, and thrombosis. Blood 2022; 140:2477-2489. [PMID: 35930749 PMCID: PMC9918849 DOI: 10.1182/blood.2022015568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
The MAPK-interacting kinase (Mnk) family includes Mnk1 and Mnk2, which are phosphorylated and activated in response to extracellular stimuli. Mnk1 contributes to cellular responses by regulating messenger RNA (mRNA) translation, and mRNA translation influences platelet production and function. However, the role of Mnk1 in megakaryocytes and platelets has not previously been studied. The present study investigated Mnk1 in megakaryocytes and platelets using both pharmacological and genetic approaches. We demonstrate that Mnk1, but not Mnk2, is expressed and active in human and murine megakaryocytes and platelets. Stimulating human and murine megakaryocytes and platelets induced Mnk1 activation and phosphorylation of eIF4E, a downstream target of activated Mnk1 that triggers mRNA translation. Mnk1 inhibition or deletion significantly diminished protein synthesis in megakaryocytes as measured by polysome profiling and [35S]-methionine incorporation assays. Depletion of Mnk1 also reduced megakaryocyte ploidy and proplatelet forming megakaryocytes in vitro and resulted in thrombocytopenia. However, Mnk1 deletion did not affect the half-life of circulating platelets. Platelets from Mnk1 knockout mice exhibited reduced platelet aggregation, α granule secretion, and integrin αIIbβ3 activation. Ribosomal footprint sequencing indicated that Mnk1 regulates the translation of Pla2g4a mRNA (which encodes cPLA2) in megakaryocytes. Consistent with this, Mnk1 ablation reduced cPLA2 activity and thromboxane generation in platelets and megakaryocytes. In vivo, Mnk1 ablation protected against platelet-dependent thromboembolism. These results provide previously unrecognized evidence that Mnk1 regulates mRNA translation and cellular activation in platelets and megakaryocytes, endomitosis and thrombopoiesis, and thrombosis.
Collapse
Affiliation(s)
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT
- Department of Pathology, University of Utah Health, Salt Lake City, UT
| | - Seema Bhatlekar
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Abigail Ajanel
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Pathology, University of Utah Health, Salt Lake City, UT
| | - Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Elizabeth A. Middleton
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT
| | - Neal D. Tolley
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Yasuhiro Kosaka
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Emilie Montenont
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Li Guo
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Jesse W. Rowley
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT
| | - Paul F. Bray
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT
| | - Shancy Jacob
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Rikiro Fukanaga
- Department of Biochemistry, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Christopher Proud
- Lifelong Health, South Australian Health & Medical Research Institute, Adelaide, Australia
- Department of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Andrew S. Weyrich
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT
| | - Matthew T. Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT
- Department of Pathology, University of Utah Health, Salt Lake City, UT
- Department of Internal Medicine and the Geriatric Research, Education, and Clinical Center (GRECC), George E. Wahlen Veterans Affairs Medical Center (VAMC), Salt Lake City, UT
| |
Collapse
|
19
|
In 't Veld SGJG, Arkani M, Post E, Antunes-Ferreira M, D'Ambrosi S, Vessies DCL, Vermunt L, Vancura A, Muller M, Niemeijer ALN, Tannous J, Meijer LL, Le Large TYS, Mantini G, Wondergem NE, Heinhuis KM, van Wilpe S, Smits AJ, Drees EEE, Roos E, Leurs CE, Tjon Kon Fat LA, van der Lelij EJ, Dwarshuis G, Kamphuis MJ, Visser LE, Harting R, Gregory A, Schweiger MW, Wedekind LE, Ramaker J, Zwaan K, Verschueren H, Bahce I, de Langen AJ, Smit EF, van den Heuvel MM, Hartemink KJ, Kuijpers MJE, Oude Egbrink MGA, Griffioen AW, Rossel R, Hiltermann TJN, Lee-Lewandrowski E, Lewandrowski KB, De Witt Hamer PC, Kouwenhoven M, Reijneveld JC, Leenders WPJ, Hoeben A, Verdonck-de Leeuw IM, Leemans CR, Baatenburg de Jong RJ, Terhaard CHJ, Takes RP, Langendijk JA, de Jager SC, Kraaijeveld AO, Pasterkamp G, Smits M, Schalken JA, Łapińska-Szumczyk S, Łojkowska A, Żaczek AJ, Lokhorst H, van de Donk NWCJ, Nijhof I, Prins HJ, Zijlstra JM, Idema S, Baayen JC, Teunissen CE, Killestein J, Besselink MG, Brammen L, Bachleitner-Hofmann T, Mateen F, Plukker JTM, Heger M, de Mast Q, Lisman T, Pegtel DM, Bogaard HJ, Jassem J, Supernat A, Mehra N, Gerritsen W, de Kroon CD, Lok CAR, Piek JMJ, Steeghs N, van Houdt WJ, Brakenhoff RH, Sonke GS, Verheul HM, Giovannetti E, Kazemier G, Sabrkhany S, Schuuring E, Sistermans EA, Wolthuis R, Meijers-Heijboer H, Dorsman J, Oudejans C, Ylstra B, Westerman BA, van den Broek D, Koppers-Lalic D, Wesseling P, Nilsson RJA, Vandertop WP, Noske DP, Tannous BA, Sol N, Best MG, Wurdinger T. Detection and localization of early- and late-stage cancers using platelet RNA. Cancer Cell 2022; 40:999-1009.e6. [PMID: 36055228 DOI: 10.1016/j.ccell.2022.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/06/2022] [Accepted: 08/08/2022] [Indexed: 01/12/2023]
Abstract
Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I-IV cancer patients and in half of 352 stage I-III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening.
Collapse
Affiliation(s)
- Sjors G J G In 't Veld
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Neurochemistry Lab, Boelelaan 1117, Amsterdam, the Netherlands; Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Mohammad Arkani
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Boelelaan 1117, Amsterdam, the Netherlands
| | - Edward Post
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Mafalda Antunes-Ferreira
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Silvia D'Ambrosi
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Daan C L Vessies
- Department of Laboratory Medicine, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Lisa Vermunt
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Neurochemistry Lab, Boelelaan 1117, Amsterdam, the Netherlands; Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Adrienne Vancura
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Mirte Muller
- Department of Thoracic Oncology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Anna-Larissa N Niemeijer
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Boelelaan 1117, Amsterdam, the Netherlands
| | - Jihane Tannous
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Laura L Meijer
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Boelelaan 1117, Amsterdam, the Netherlands
| | - Tessa Y S Le Large
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Boelelaan 1117, Amsterdam, the Netherlands
| | - Giulia Mantini
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Niels E Wondergem
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Otolaryngology and Head and Neck Surgery, Boelelaan 1117, Amsterdam, the Netherlands
| | - Kimberley M Heinhuis
- Department of Medical Oncology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands; Department of Clinical Pharmacology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Sandra van Wilpe
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A Josien Smits
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Boelelaan 1117, Amsterdam, the Netherlands
| | - Esther E E Drees
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Pathology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Eva Roos
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Boelelaan 1117, Amsterdam, the Netherlands
| | - Cyra E Leurs
- Neuroscience Campus Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurology, Boelelaan 1117, Amsterdam, the Netherlands; MS Center Amsterdam, Amsterdam, the Netherlands
| | | | - Ewoud J van der Lelij
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Govert Dwarshuis
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Maarten J Kamphuis
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Lisanne E Visser
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Romee Harting
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Annemijn Gregory
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Markus W Schweiger
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Laurine E Wedekind
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Jip Ramaker
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Kenn Zwaan
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Heleen Verschueren
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Idris Bahce
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Boelelaan 1117, Amsterdam, the Netherlands
| | - Adrianus J de Langen
- Department of Thoracic Oncology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Egbert F Smit
- Department of Thoracic Oncology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Michel M van den Heuvel
- Department of Thoracic Oncology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands; Department of Respiratory Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Koen J Hartemink
- Department of Thoracic Surgery, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands; Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Mirjam G A Oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Arjan W Griffioen
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Rafael Rossel
- Translational Research Unit, Dr. Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain; Pangaea Biotech SL, Barcelona, Spain; Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Barcelona, Spain; Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - T Jeroen N Hiltermann
- University of Groningen, Department of Pulmonary Diseases, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Kent B Lewandrowski
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip C De Witt Hamer
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Mathilde Kouwenhoven
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Jaap C Reijneveld
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurology, Boelelaan 1117, Amsterdam, the Netherlands; Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Irma M Verdonck-de Leeuw
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Otolaryngology and Head and Neck Surgery, Boelelaan 1117, Amsterdam, the Netherlands; Department of Clinical, Neuro- and Developmental Psychology, Faculty of Behavioral and Movement Sciences & Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - C René Leemans
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Otolaryngology and Head and Neck Surgery, Boelelaan 1117, Amsterdam, the Netherlands
| | - Robert J Baatenburg de Jong
- Department of Otolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Chris H J Terhaard
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robert P Takes
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Saskia C de Jager
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adriaan O Kraaijeveld
- Department of Cardiology, Division of Heart and Lungs, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Minke Smits
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jack A Schalken
- Urological Research Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sylwia Łapińska-Szumczyk
- Department of Gynaecology, Gynaecological Oncology and Gynaecological Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Łojkowska
- Department of Gynaecology, Gynaecological Oncology and Gynaecological Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Henk Lokhorst
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Niels W C J van de Donk
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Inger Nijhof
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Henk-Jan Prins
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Josée M Zijlstra
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Sander Idema
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Johannes C Baayen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Neurochemistry Lab, Boelelaan 1117, Amsterdam, the Netherlands; Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Joep Killestein
- Neuroscience Campus Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurology, Boelelaan 1117, Amsterdam, the Netherlands; MS Center Amsterdam, Amsterdam, the Netherlands
| | - Marc G Besselink
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Boelelaan 1117, Amsterdam, the Netherlands
| | - Lindsay Brammen
- Department of Surgery, Division of General Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Farrah Mateen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John T M Plukker
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pathology, Laboratory Experimental Oncology, Erasmus MC, Rotterdam, the Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ton Lisman
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Surgical Research Laboratory, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - D Michiel Pegtel
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Pathology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Harm-Jan Bogaard
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Boelelaan 1117, Amsterdam, the Netherlands
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Supernat
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Winald Gerritsen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cornelis D de Kroon
- Department of Obstetrics and Gynaecology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christianne A R Lok
- Department of Gynaecological Oncology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Center of Gynaecologic Oncology Amsterdam, the Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Jurgen M J Piek
- Department of Obstetrics and Gynaecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands; Department of Clinical Pharmacology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Winan J van Houdt
- Department of Surgical Oncology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Otolaryngology and Head and Neck Surgery, Boelelaan 1117, Amsterdam, the Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Henk M Verheul
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elisa Giovannetti
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Geert Kazemier
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Boelelaan 1117, Amsterdam, the Netherlands
| | - Siamack Sabrkhany
- Department of Physiology, Maastricht University, Maastricht, the Netherlands
| | - Ed Schuuring
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik A Sistermans
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Clinical Genetics, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Rob Wolthuis
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Clinical Genetics, Boelelaan 1117, Amsterdam, the Netherlands
| | - Hanne Meijers-Heijboer
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Clinical Genetics, Boelelaan 1117, Amsterdam, the Netherlands
| | - Josephine Dorsman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Clinical Genetics, Boelelaan 1117, Amsterdam, the Netherlands
| | - Cees Oudejans
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Boelelaan 1117, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Pathology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Bart A Westerman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Daan van den Broek
- Department of Laboratory Medicine, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Danijela Koppers-Lalic
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Pieter Wesseling
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Pathology, Boelelaan 1117, Amsterdam, the Netherlands; Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, the Netherlands
| | - R Jonas A Nilsson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - W Peter Vandertop
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - David P Noske
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Nik Sol
- Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Myron G Best
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands.
| | - Thomas Wurdinger
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Lopatina T, Sarcinella A, Brizzi MF. Tumour Derived Extracellular Vesicles: Challenging Target to Blunt Tumour Immune Evasion. Cancers (Basel) 2022; 14:cancers14164020. [PMID: 36011012 PMCID: PMC9406972 DOI: 10.3390/cancers14164020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumour onset and development occur because of specific immune support. The immune system, which is originally able to perceive and eliminate incipient cancer cells, becomes suppressed and hijacked by cancer. For these purposes, tumour cells use extracellular vesicles (TEVs). Specific molecular composition allows TEVs to reprogram immune cells towards tumour tolerance. Circulating TEVs move from their site of origin to other organs, preparing “a fertile soil” for metastasis formation. This implies that TEV molecular content can provide a valuable tool for cancer biomarker discovery and potential targets to reshape the immune system into tumour recognition and eradication. Abstract Control of the immune response is crucial for tumour onset and progression. Tumour cells handle the immune reaction by means of secreted factors and extracellular vesicles (EV). Tumour-derived extracellular vesicles (TEV) play key roles in immune reprogramming by delivering their cargo to different immune cells. Tumour-surrounding tissues also contribute to tumour immune editing and evasion, tumour progression, and drug resistance via locally released TEV. Moreover, the increase in circulating TEV has suggested their underpinning role in tumour dissemination. This review brings together data referring to TEV-driven immune regulation and antitumour immune suppression. Attention was also dedicated to TEV-mediated drug resistance.
Collapse
|
21
|
De Wispelaere K, Freson K. The Analysis of the Human Megakaryocyte and Platelet Coding Transcriptome in Healthy and Diseased Subjects. Int J Mol Sci 2022; 23:ijms23147647. [PMID: 35886993 PMCID: PMC9317744 DOI: 10.3390/ijms23147647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Platelets are generated and released into the bloodstream from their precursor cells, megakaryocytes that reside in the bone marrow. Though platelets have no nucleus or DNA, they contain a full transcriptome that, during platelet formation, is transported from the megakaryocyte to the platelet. It has been described that transcripts in platelets can be translated into proteins that influence platelet response. The platelet transcriptome is highly dynamic and has been extensively studied using microarrays and, more recently, RNA sequencing (RNA-seq) in relation to diverse conditions (inflammation, obesity, cancer, pathogens and others). In this review, we focus on bulk and single-cell RNA-seq studies that have aimed to characterize the coding transcriptome of healthy megakaryocytes and platelets in humans. It has been noted that bulk RNA-seq has limitations when studying in vitro-generated megakaryocyte cultures that are highly heterogeneous, while single-cell RNA-seq has not yet been applied to platelets due to their very limited RNA content. Next, we illustrate how these methods can be applied in the field of inherited platelet disorders for gene discovery and for unraveling novel disease mechanisms using RNA from platelets and megakaryocytes and rare disease bioinformatics. Next, future perspectives are discussed on how this field of coding transcriptomics can be integrated with other next-generation technologies to decipher unexplained inherited platelet disorders in a multiomics approach.
Collapse
|
22
|
Wen X, Yang G, Dong Y, Luo L, Cao B, Mengesha BA, Zu R, Liao Y, Liu C, Li S, Deng Y, Zhang K, Ma X, Huang J, Wang D, Zhao K, Leng P, Luo H. Selection and Validation of Reference Genes for Pan-Cancer in Platelets Based on RNA-Sequence Data. Front Genet 2022; 13:913886. [PMID: 35770000 PMCID: PMC9234127 DOI: 10.3389/fgene.2022.913886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies in recent years have demonstrated that some messenger RNA (mRNA) in platelets can be used as biomarkers for the diagnosis of pan-cancer. The quantitative real-time polymerase chain reaction (RT-qPCR) molecular technique is most commonly used to determine mRNA expression changes in platelets. Accurate and reliable relative RT-qPCR is highly dependent on reliable reference genes. However, there is no study to validate the reference gene in platelets for pan-cancer. Given that the expression of some commonly used reference genes is altered in certain conditions, selecting and verifying the most suitable reference gene for pan-cancer in platelets is necessary to diagnose early stage cancer. This study performed bioinformatics and functional analysis from the RNA-seq of platelets data set (GSE68086). We generated 95 candidate reference genes after the primary bioinformatics step. Seven reference genes (YWHAZ, GNAS, GAPDH, OAZ1, PTMA, B2M, and ACTB) were screened out among the 95 candidate reference genes from the data set of the platelets’ transcriptome of pan-cancer and 73 commonly known reference genes. These candidate reference genes were verified by another platelets expression data set (GSE89843). Then, we used RT-qPCR to confirm the expression levels of these seven genes in pan-cancer patients and healthy individuals. These RT-qPCR results were analyzed using the internal stability analysis software programs (the comparative Delta CT method, geNorm, NormFinder, and BestKeeper) to rank the candidate genes in the order of decreasing stability. By contrast, the GAPDH gene was stably and constitutively expressed at high levels in all the tested samples. Therefore, GAPDH was recommended as the most suitable reference gene for platelet transcript analysis. In conclusion, our result may play an essential part in establishing a molecular diagnostic platform based on the platelets to diagnose pan-cancer.
Collapse
Affiliation(s)
- Xiaoxia Wen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guishu Yang
- Department of Clinical Laboratory, Guangyuan Central Hospital, Guangyuan, China
| | | | - Liping Luo
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bangrong Cao
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Birga Anteneh Mengesha
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiling Zu
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yulin Liao
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chang Liu
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shi Li
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Deng
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Ma
- GenomCan Inc., Chengdu, China
| | - Jian Huang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Keyan Zhao
- GenomCan Inc., Chengdu, China
- *Correspondence: Keyan Zhao, ; Ping Leng, ; Huaichao Luo,
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Keyan Zhao, ; Ping Leng, ; Huaichao Luo,
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Keyan Zhao, ; Ping Leng, ; Huaichao Luo,
| |
Collapse
|
23
|
Abstract
RATIONALE Pulmonary hypertension encompasses progressive disorders leading to right ventricular dysfunction and early death. Late detection is an important cause of poor clinical outcomes. However, biomarkers that accurately predict the presence of pulmonary hypertension are currently lacking. OBJECTIVES In this study we provide evidence that blood platelets contain a distinctive RNA profile that may be exploited for detection of pulmonary hypertension. METHODS Blood platelet RNA was isolated prospectively from 177 prevalent patients with different subtypes of pulmonary hypertension as well as 195 controls clinically not suspected of pulmonary hypertension. Sequencing libraries were created using SMARTer cDNA amplification, and sequenced on the Illumina HiSeq platform. RNA-sequencing reads were mapped to the human reference genome, and intron-spanning spliced RNA reads were selected. Differential spliced RNA panels were calculated by ANOVA-statistics. A particle swarm optimisation (PSO)-enhanced classification algorithm was built employing a development (n=213 samples) and independent validation series (n=159 samples). RESULTS We detected a total of 4014 different RNAs in blood platelets from pulmonary hypertension patients (n=177) and asymptomatic controls (n=195). GSEA gene ontology analysis revealed enriched RNA levels for genes related to RNA-processing, translation and mitochondrial function. A PSO-selected RNA panel of 408 distinctive differentially spliced RNAs mediated detection of pulmonary hypertension with 93% sensitivity, 62% specificity, 77% accuracy, 0.89 (95%CI 0.83-0.93) area under the curve and a negative predictive value of 91% in the independent validation series. Prediction score was independent of age, sex, smoking, pulmonary hypertension subtype, and the use of pulmonary hypertension-specific medication or anti-coagulants. CONCLUSION A platelet RNA-panel may accurately discriminate patients with pulmonary hypertension from asymptomatic controls. In the light of current diagnostic delays, this study is the starting point for further development and evaluation of a platelet RNA-based blood test, to ultimately improve early diagnosis and clinical outcomes in patients with pulmonary hypertension.
Collapse
|
24
|
Cimmino G, di Serafino L, Cirillo P. Pathophysiology and mechanisms of Acute Coronary Syndromes: athero-thrombosis, immune-inflammation and beyond. Expert Rev Cardiovasc Ther 2022; 20:351-362. [PMID: 35510629 DOI: 10.1080/14779072.2022.2074836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The pathophysiology of atherosclerosis and its acute complications, such as the Acute Coronary Syndromes (ACS), is continuously under investigation. Immunity and inflammation seem to play a pivotal role in promoting formation and grow of atherosclerotic plaques. At the same time, plaque rupture followed by both platelets' activation and coagulation cascade induction lead to intracoronary thrombus formation. Although these phenomena might be considered responsible of about 90% of ACS, in up to 5-10% of acute syndromes a non-obstructive coronary artery disease (MINOCA) might be documented. This paper gives an overview on athero-thrombosis and immuno-inflammation processes involved in ACS pathophysiology also emphasizing the pathological mechanisms potentially involved in MINOCA. AREAS COVERED The relationship between immuno-inflammation and atherothrombosis is continuously updated by recent findings. At the same time, pathophysiology of MINOCA still remains a partially unexplored field, stimulating the research of potential links between these two aspects of ACS pathophysiology. EXPERT OPINION Pathophysyiology of ACS has been extensively investigated; however, several grey areas still remain. MINOCA represents one of these areas. At the same time, many aspects of immune-inflammation processes are still unknown. Thus, research should be continued to shed a brighter light on both these sides of "ACS" moon.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi di Serafino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Plinio Cirillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
Abstract
This review discusses our understanding of platelet diversity with implications for the roles of platelets in hemostasis and thrombosis and identifies advanced technologies set to provide new insights. We use the term diversity to capture intrasubject platelet variability that can be intrinsic or governed by the environment and lead to a heterogeneous response pattern of aggregation, clot promotion, and external communication. Using choice examples, we discuss how the use of advanced technologies can provide new insights into the underlying causes of platelet molecular, structural, and functional diversity. As sources of diversity, we discuss the proliferating megakaryocytes with different allele-specific expression patterns, the asymmetrical formation of proplatelets, changes in platelets induced by aging and priming, interplatelet heterogeneity in thrombus organization and stability, and platelet-dependent communications. We provide indications how current knowledge gaps can be addressed using promising technologies, such as next-generation sequencing, proteomic approaches, advanced imaging techniques, multicolor flow and mass cytometry, multifunctional microfluidics assays, and organ-on-a-chip platforms. We then argue how this technology base can aid in characterizing platelet populations and in identifying platelet biomarkers relevant for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (J.W.M.H.)
| | - Jonathan West
- Faculty of Medicine and Centre for Hybrid Biodevices, University of Southampton, United Kingdom (J.W.)
| |
Collapse
|
26
|
Szelenberger R, Karbownik MS, Kacprzak M, Synowiec E, Michlewska S, Bijak M, Zielińska M, Olender A, Saluk-Bijak J. Dysregulation in the Expression of Platelet Surface Receptors in Acute Coronary Syndrome Patients-Emphasis on P2Y12. BIOLOGY 2022; 11:biology11050644. [PMID: 35625372 PMCID: PMC9138357 DOI: 10.3390/biology11050644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023]
Abstract
The pathological conditions caused by blood platelet activation constitute a fundamental core in the pathogenesis of Acute Coronary Syndrome (ACS). The hyperactivity of platelets in ACS is well-documented, but there is still little research into the molecular basis of phenotypic changes in platelet functionality. To expand the knowledge of this phenomenon, we analyzed the disturbances in the expression of several key platelet receptors and the aspect of regulating potential abnormalities. Platelet surface receptors are responsible for maintaining the hemostatic balance, platelet interaction with immune cells, and support of the coagulation cascade leading to occlusion of the vessel lumen. Due to their prominent role, platelet receptors constitute a major target in pharmacological treatment. Our work aimed to identify the molecular alteration of platelet surface receptors, which showed augmented mRNA expression of P2Y12, GP1BB, ITGA2B, and ITGB3 and increased protein concentrations of P2Y12 and GP IIb/IIIa in ACS. The upregulation of the P2Y12 level was also confirmed by confocal and cytometric visualization. Furthermore, we evaluated the expression of two microRNAs: miR-223-3p and miR-126-3p, which were suggested to regulate platelet P2Y12 expression. Results of our study present new insight into the molecular background of ACS.
Collapse
Affiliation(s)
- Rafał Szelenberger
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
- Correspondence:
| | | | - Michał Kacprzak
- Department of Interventional Cardiology, Medical University of Lodz, 91-213 Lodz, Poland; (M.K.); (M.Z.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Marzenna Zielińska
- Department of Interventional Cardiology, Medical University of Lodz, 91-213 Lodz, Poland; (M.K.); (M.Z.)
| | - Alina Olender
- Chair and Department of Medical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
27
|
Zhang N, Zang T. A multi-network integration approach for measuring disease similarity based on ncRNA regulation and heterogeneous information. BMC Bioinformatics 2022; 23:89. [PMID: 35255810 PMCID: PMC8902705 DOI: 10.1186/s12859-022-04613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Background Measuring similarity between complex diseases has significant implications for revealing the pathogenesis of diseases and development in the domain of biomedicine. It has been consentaneous that functional associations between disease-related genes and semantic associations can be applied to calculate disease similarity. Currently, more and more studies have demonstrated the profound involvement of non-coding RNA in the regulation of genome organization and gene expression. Thus, taking ncRNA into account can be useful in measuring disease similarities. However, existing methods ignore the regulation functions of ncRNA in biological process. In this study, we proposed a novel deep-learning method to deduce disease similarity. Results In this article, we proposed a novel method, ImpAESim, a framework integrating multiple networks embedding to learn compact feature representations and disease similarity calculation. We first utilize three different disease-related information networks to build up a heterogeneous network, after a network diffusion process, RWR, a compact feature learning model composed of classic Auto Encoder (AE) and improved AE model is proposed to extract constraints and low-dimensional feature representations. We finally obtain an accurate and low-dimensional feature representation of diseases, then we employed the cosine distance as the measurement of disease similarity. Conclusion ImpAESim focuses on extracting a low-dimensional vector representation of features based on ncRNA regulation, and gene–gene interaction network. Our method can significantly reduce the calculation bias resulted from the sparse disease associations which are derived from semantic associations.
Collapse
Affiliation(s)
- Ningyi Zhang
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tianyi Zang
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
28
|
Fields AT, Lee MC, Mayer F, Santos YA, Bainton CM, Matthay ZA, Callcut RA, Mayer N, Cuschieri J, Kober KM, Bainton RJ, Kornblith LZ. A new trauma frontier: Exploratory pilot study of platelet transcriptomics in trauma patients. J Trauma Acute Care Surg 2022; 92:313-322. [PMID: 34738997 PMCID: PMC8781218 DOI: 10.1097/ta.0000000000003450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The earliest measurable changes to postinjury platelet biology may be in the platelet transcriptome, as platelets are known to carry messenger ribonucleic acids (RNAs), and there is evidence in other inflammatory and infectious disease states of differential and alternative platelet RNA splicing in response to changing physiology. Thus, the aim of this exploratory pilot study was to examine the platelet transcriptome and platelet RNA splicing signatures in trauma patients compared with healthy donors. METHODS Preresuscitation platelets purified from trauma patients (n = 9) and healthy donors (n = 5) were assayed using deep RNA sequencing. Differential gene expression analysis, weighted gene coexpression network analysis, and differential alternative splicing analyses were performed. In parallel samples, platelet function was measured with platelet aggregometry, and clot formation was measured with thromboelastography. RESULTS Differential gene expression analysis identified 49 platelet RNAs to have differing abundance between trauma patients and healthy donors. Weighted gene coexpression network analysis identified coexpressed platelet RNAs that correlated with platelet aggregation. Differential alternative splicing analyses revealed 1,188 splicing events across 462 platelet RNAs that were highly statistically significant (false discovery rate <0.001) in trauma patients compared with healthy donors. Unsupervised principal component analysis of these platelet RNA splicing signatures segregated trauma patients in two main clusters separate from healthy controls. CONCLUSION Our findings provide evidence of finetuning of the platelet transcriptome through differential alternative splicing of platelet RNA in trauma patients and that this finetuning may have relevance to downstream platelet signaling. Additional investigations of the trauma platelet transcriptome should be pursued to improve our understanding of the platelet functional responses to trauma on a molecular level.
Collapse
|
29
|
Nicolet BP, Jansen SBG, Heideveld E, Ouwehand WH, van den Akker E, von Lindern M, Wolkers MC. Circular RNAs exhibit limited evidence for translation, or translation regulation of the mRNA counterpart in terminal hematopoiesis. RNA (NEW YORK, N.Y.) 2022; 28:194-209. [PMID: 34732567 PMCID: PMC8906552 DOI: 10.1261/rna.078754.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Each day, about 1012 erythrocytes and platelets are released into the bloodstream. This substantial output from hematopoietic stem cells is tightly regulated by transcriptional and epigenetic factors. Whether and how circular RNAs (circRNAs) contribute to the differentiation and/or identity of hematopoietic cells is to date not known. We recently reported that erythrocytes and platelets contain the highest levels and numbers of circRNAs among hematopoietic cells. Here, we provide the first detailed analysis of circRNA expression during erythroid and megakaryoid differentiation. CircRNA expression not only significantly increased upon enucleation, but also had limited overlap between progenitor cells and mature cells, suggesting that circRNA expression stems from regulated processes rather than resulting from mere accumulation. To study circRNA function in hematopoiesis, we first compared the expression levels of circRNAs with the translation efficiency of their mRNA counterpart. We found that only one out of 2531 (0.04%) circRNAs associated with mRNA-translation regulation. Furthermore, irrespective of thousands of identified putative open reading frames, deep ribosome-footprinting sequencing, and mass spectrometry analysis provided little evidence for translation of endogenously expressed circRNAs. In conclusion, circRNAs alter their expression profile during terminal hematopoietic differentiation, yet their contribution to regulate cellular processes remains enigmatic.
Collapse
Affiliation(s)
- Benoit P Nicolet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sjoert B G Jansen
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge CB2 0AW, United Kingdom
| | - Esther Heideveld
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge CB2 0AW, United Kingdom
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
30
|
Krishnan A, Thomas S. Toward platelet transcriptomics in cancer diagnosis, prognosis and therapy. Br J Cancer 2022; 126:316-322. [PMID: 34811507 PMCID: PMC8810955 DOI: 10.1038/s41416-021-01627-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
Widespread adoption of next-generation techniques such as RNA-sequencing (RNA-seq) has enabled research examining the transcriptome of anucleate blood platelets in health and disease, thus revealing a rich platelet transcriptomic signature that is reprogrammed in response to disease. Platelet signatures not only capture information from parent megakaryocytes and progenitor hematopoietic stem cells but also the bone marrow microenvironment, and underlying disease states. In cancer, the substantive body of research in patients with solid tumours has identified distinct signatures in 'tumour-educated platelets', reflecting influences of the tumour, stroma and vasculature on splicing, sequestration of tumour-derived RNAs, and potentially cytokine and microvesicle influences on megakaryocytes. More recently, platelet RNA expression has emerged as a highly sensitive approach to profiling chronic progressive haematologic malignancies, where the combination of large data cohorts and machine-learning algorithms enables precise feature selection and potential prognostication. Despite these advances, however, our ability to translate platelet transcriptomics toward clinical diagnostic and prognostic efforts remains limited. In this Perspective, we present a few actionable steps for our basic, translational and clinical research communities in advancing the utility of the platelet transcriptome as a highly sensitive biomarker in cancer and collectively enable efforts toward clinical translation and patient benefit.
Collapse
Affiliation(s)
- Anandi Krishnan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Sally Thomas
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, UK
- Department of Haematology, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| |
Collapse
|
31
|
Martins Castanheira N, Spanhofer AK, Wiener S, Bobe S, Schillers H. Uptake of platelets by cancer cells and recycling of the platelet protein CD42a. J Thromb Haemost 2022; 20:170-181. [PMID: 34592045 DOI: 10.1111/jth.15543] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is well accepted that the bidirectional crosstalk between platelets and cancer cells promotes tumorigenesis and metastasis. In an early step, cancer cells trigger platelet granule and extracellular vesicle release that is needed to facilitate cancer cell survival in circulation. OBJECTIVES To discover the early crosstalk of cancer cells and platelets. METHODS Cancer cells were incubated with freshly isolated and stained human platelets. Confocal laser scanning microscopy and flow cytometry was used to visualize and to quantify platelet uptake and the membrane presence of CD42 on cancer cells. Dyngo4a was used to test if platelet uptake is a dynamin-dependent process. RESULTS We found a dynamin-dependent uptake of platelets by cancer cells. This is followed by the recycling of the platelet-specific protein CD42a and its incorporation into cancer cells' plasma membrane, which is not a result of platelet RNA transfer by platelet-derived microparticles and exosomes. Time course of platelet uptake follows a sigmoid function revealing that 50% of the cancer cells are positive for platelets after approximately 38 min. Platelet uptake was observed for the tested cancerous cells (A549, MCF-7, and MV3) but not for the non-cancerous cell line 16HBE14o-. CONCLUSIONS Our results demonstrate that cancer cells hijack platelets by phagocytosis and recycling of platelet membrane proteins. The uptake of platelets has additional advantages for cancer cells: access to the entire and undiluted platelet proteome, transcriptome, and secretome. These novel findings will allow further mechanistic elucidation and thus help us gain deeper insights into platelet-assisted hematogenous metastasis.
Collapse
Affiliation(s)
| | - Anna K Spanhofer
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Sebastian Wiener
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Stefanie Bobe
- Institute of Physiology II, University of Muenster, Muenster, Germany
- Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Hermann Schillers
- Institute of Physiology II, University of Muenster, Muenster, Germany
| |
Collapse
|
32
|
Inzulza-Tapia A, Alarcón M. Role of Non-Coding RNA of Human Platelet in Cardiovascular Disease. Curr Med Chem 2021; 29:3420-3444. [PMID: 34967288 DOI: 10.2174/0929867329666211230104955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/12/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVD) are the major cause of death in the world. Numerous genetic studies involving transcriptomic approaches aimed at the detailed understanding of the disease and the development of new therapeutic strategies have been conducted over recent years. There has been an increase in research on platelets, which are implicated in CVD due to their capacity to release regulatory molecules that affect various pathways. Platelets secrete over 500 various kinds of molecules to plasma including large amounts of non-coding (nc) RNA (miRNA, lncRNA or circRNA). These ncRNA correspond to 98% of transcripts that are not translated into proteins as they are important regulators in physiology and disease. Thus, miRNAs can direct protein complexes to mRNAs through base-pairing interactions, thus causing translation blockage or/and transcript degradation. The lncRNAs act via different mechanisms by binding to transcription factors. Finally, circRNAs act as regulators of miRNAs, interfering with their action. Alteration in the repertoire and/or the amount of the platelet-secreted ncRNA can trigger CVD as well as other diseases. NcRNAs can serve as effective biomarkers for the disease or as therapeutic targets due to their disease involvement. In this review, we will focus on the most important ncRNAs that are secreted by platelets (9 miRNA, 9 lncRNA and 5 circRNA), their association with CVD, and the contribution of these ncRNA to CVD risk to better understand the relation between ncRNA of human platelet and CVD.
Collapse
Affiliation(s)
- Inzulza-Tapia A
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, University of Talca, 2 Norte 685, Talca, Chile
| | - Alarcón M
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, University of Talca, 2 Norte 685, Talca, Chile
| |
Collapse
|
33
|
Moon MJ, McFadyen JD, Peter K. Caught at the Scene of the Crime: Platelets and Neutrophils Are Conspirators in Thrombosis. Arterioscler Thromb Vasc Biol 2021; 42:63-66. [PMID: 34852641 DOI: 10.1161/atvbaha.121.317187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mitchell J Moon
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.)
| | - James D McFadyen
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Department of Clinical Hematology (J.D.M.), The Alfred Hospital, Melbourne, Victoria, Australia.,Departments of Medicine (J.D.M., K.P.), Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Department of Cardiology (K.P.), The Alfred Hospital, Melbourne, Victoria, Australia.,Departments of Medicine (J.D.M., K.P.), Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Immunology (K.P.), Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Louadi Z, Elkjaer ML, Klug M, Lio CT, Fenn A, Illes Z, Bongiovanni D, Baumbach J, Kacprowski T, List M, Tsoy O. Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases. Genome Biol 2021; 22:327. [PMID: 34857024 PMCID: PMC8638120 DOI: 10.1186/s13059-021-02538-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its role in molecular processes and pathobiology is far from understood. A roadblock is that tools for the functional analysis of AS-set events are lacking. To mitigate this, we developed NEASE, a tool integrating pathways with structural annotations of protein-protein interactions to functionally characterize AS events. We show in four application cases how NEASE can identify pathways contributing to tissue identity and cell type development, and how it highlights splicing-related biomarkers. With a unique view on AS, NEASE generates unique and meaningful biological insights complementary to classical pathways analysis.
Collapse
Affiliation(s)
- Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Melissa Klug
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Chit Tong Lio
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Amit Fenn
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dario Bongiovanni
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center IRCCS and Humanitas University, Rozzano, Milan, Italy
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
- Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5000, Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany.
| |
Collapse
|
35
|
Sahai A, Bhandari R, Godwin M, McIntyre T, Chung MK, Iskandar JP, Kamran H, Hariri E, Aggarwal A, Burton R, Kalra A, Bartholomew JR, McCrae KR, Elbadawi A, Bena J, Svensson LG, Kapadia S, Cameron SJ. Effect of aspirin on short-term outcomes in hospitalized patients with COVID-19. Vasc Med 2021; 26:626-632. [PMID: 34010070 PMCID: PMC8137864 DOI: 10.1177/1358863x211012754] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is an ongoing viral pandemic marked by increased risk of thrombotic events. However, the role of platelets in the elevated observed thrombotic risk in COVID-19 and utility of antiplatelet agents in attenuating thrombosis is unknown. We aimed to determine if the antiplatelet effect of aspirin may mitigate risk of myocardial infarction, cerebrovascular accident, and venous thromboembolism in COVID-19. We evaluated 22,072 symptomatic patients tested for COVID-19. Propensity-matched analyses were performed to determine if treatment with aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) affected thrombotic outcomes in COVID-19. Neither aspirin nor NSAIDs affected mortality in COVID-19. Thus, aspirin does not appear to prevent thrombosis and death in COVID-19. The mechanisms of thrombosis in COVID-19, therefore, appear distinct and the role of platelets as direct mediators of SARS-CoV-2-mediated thrombosis warrants further investigation.
Collapse
Affiliation(s)
- Aditya Sahai
- Section of Vascular Medicine, Department of Cardiovascular Medicine; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rohan Bhandari
- Section of Vascular Medicine, Department of Cardiovascular Medicine; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew Godwin
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas McIntyre
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mina K Chung
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular Medicine; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Hayaan Kamran
- Section of Vascular Medicine, Department of Cardiovascular Medicine; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Essa Hariri
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Anu Aggarwal
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robert Burton
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ankur Kalra
- Section of Vascular Medicine, Department of Cardiovascular Medicine; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John R Bartholomew
- Section of Vascular Medicine, Department of Cardiovascular Medicine; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Keith R McCrae
- Department of Cardiovascular Medicine; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ayman Elbadawi
- Division of Cardiovascular Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - James Bena
- Department of Quantitative Health Science, Cleveland Clinic, Cleveland, OH, USA
| | - Lars G Svensson
- Section of Vascular Medicine, Department of Cardiovascular Medicine; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samir Kapadia
- Section of Vascular Medicine, Department of Cardiovascular Medicine; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Scott J Cameron
- Section of Vascular Medicine, Department of Cardiovascular Medicine; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
36
|
Perales S, Torres C, Jimenez-Luna C, Prados J, Martinez-Galan J, Sanchez-Manas JM, Caba O. Liquid biopsy approach to pancreatic cancer. World J Gastrointest Oncol 2021; 13:1263-1287. [PMID: 34721766 PMCID: PMC8529923 DOI: 10.4251/wjgo.v13.i10.1263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to pose a major clinical challenge. There has been little improvement in patient survival over the past few decades, and it is projected to become the second leading cause of cancer mortality by 2030. The dismal 5-year survival rate of less than 10% after the diagnosis is attributable to the lack of early symptoms, the absence of specific biomarkers for an early diagnosis, and the inadequacy of available chemotherapies. Most patients are diagnosed when the disease has already metastasized and cannot be treated. Cancer interception is vital, actively intervening in the malignization process before the development of a full-blown advanced tumor. An early diagnosis of PC has a dramatic impact on the survival of patients, and improved techniques are urgently needed to detect and evaluate this disease at an early stage. It is difficult to obtain tissue biopsies from the pancreas due to its anatomical position; however, liquid biopsies are readily available and can provide useful information for the diagnosis, prognosis, stratification, and follow-up of patients with PC and for the design of individually tailored treatments. The aim of this review was to provide an update of the latest advances in knowledge on the application of carbohydrates, proteins, cell-free nucleic acids, circulating tumor cells, metabolome compounds, exosomes, and platelets in blood as potential biomarkers for PC, focusing on their clinical relevance and potential for improving patient outcomes.
Collapse
Affiliation(s)
- Sonia Perales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Carolina Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Cristina Jimenez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Joaquina Martinez-Galan
- Department of Medical Oncology, Hospital Universitario Virgen de las Nieves, Granada 18011, Spain
| | | | - Octavio Caba
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| |
Collapse
|
37
|
Mohanty A, Mohanty SK, Rout S, Pani C. Liquid Biopsy, the hype vs. hope in molecular and clinical oncology. Semin Oncol 2021; 48:259-267. [PMID: 34384614 DOI: 10.1053/j.seminoncol.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
The molecular landscape of tumors has been traditionally established using a biopsy or resection specimens. These modalities result in sampling bias that offer only a single snapshot of tumor heterogeneity. Over the last decade intensive research towards alleviating such a bias and obtaining an integral yet accurate portrait of the tumors, evolved to the use of established molecular and genetic analysis using blood and several other body fluids, such as urine, saliva, and pleural effusions as liquid biopsies. Genomic profiling of the circulating markers including circulating cell-free tumor DNA (ctDNA), circulating tumor cells (CTCs) or even RNA, proteins, and lipids constituting exosomes, have facilitated the diligent monitoring of response to treatment, allowed one to follow the emergence of drug resistance, and enumerate minimal residual disease. The prevalence of tumor educated platelets (TEPs) and our understanding of how tumor cells influence platelets are beginning to unearth TEPs as a potentially dynamic component of liquid biopsies. Here, we review the biology, methodology, approaches, and clinical applications of biomarkers used to assess liquid biopsies. The current review addresses recent technological advances and different forms of liquid biopsy along with upcoming challenges and how they can be integrated to get the best possible tumor-derived genetic information that can be leveraged to more precise therapies for patient as liquid biopsies become increasingly routine in clinical practice.
Collapse
Affiliation(s)
- Abhishek Mohanty
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India.
| | - Sambit K Mohanty
- Advanced Medical Research Institute, Bhubaneswar, Odisha, India; CORE Diagnostics, Gurgaon, Haryana, India
| | - Sipra Rout
- Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
38
|
Sabrkhany S, Kuijpers MJE, Oude Egbrink MGA, Griffioen AW. Platelets as messengers of early-stage cancer. Cancer Metastasis Rev 2021; 40:563-573. [PMID: 33634328 PMCID: PMC8213673 DOI: 10.1007/s10555-021-09956-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Platelets have an important role in tumor angiogenesis, growth, and metastasis. The reciprocal interaction between cancer and platelets results in changes of several platelet characteristics. It is becoming clear that analysis of these platelet features could offer a new strategy in the search for biomarkers of cancer. Here, we review the human studies in which platelet characteristics (e.g., count, volume, protein, and mRNA content) are investigated in early-stage cancer. The main focus of this paper is to evaluate which platelet features are suitable for the development of a blood test that could detect cancer in its early stages.
Collapse
Affiliation(s)
- Siamack Sabrkhany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Mirjam G A Oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Vulliamy P, Kornblith LZ, Kutcher ME, Cohen MJ, Brohi K, Neal MD. Alterations in platelet behavior after major trauma: adaptive or maladaptive? Platelets 2021; 32:295-304. [PMID: 31986948 PMCID: PMC7382983 DOI: 10.1080/09537104.2020.1718633] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/01/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
Platelets are damage sentinels of the intravascular compartment, initiating and coordinating the primary response to tissue injury. Severe trauma and hemorrhage induce profound alterations in platelet behavior. During the acute post-injury phase, platelets develop a state of impaired ex vivo agonist responsiveness independent of platelet count, associated with systemic coagulopathy and mortality risk. In patients surviving the initial insult, platelets become hyper-responsive, associated with increased risk of thrombotic events. Beyond coagulation, platelets constitute part of a sterile inflammatory response to injury: both directly through release of immunomodulatory molecules, and indirectly through modifying behavior of innate leukocytes. Both procoagulant and proinflammatory aspects have implications for secondary organ injury and multiple-organ dysfunction syndromes. This review details our current understanding of adaptive and maladaptive alterations in platelet biology induced by severe trauma, mechanisms underlying these alterations, potential platelet-focused therapies, and existing knowledge gaps and their research implications.
Collapse
Affiliation(s)
- Paul Vulliamy
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, United Kingdom
| | - Lucy Z. Kornblith
- Department of Surgery, Zuckerberg San Francisco General Hospital and the University of California, San Francisco, San Francisco, California
| | - Matthew E. Kutcher
- Division of Trauma, Critical Care, and Acute Care Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Mitchell J. Cohen
- Department of Surgery, University of Colorado, Aurora, Colorado
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, Colorado
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, United Kingdom
| | - Matthew D. Neal
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
40
|
Oudejans C, Manders V, Visser A, Keijser R, Min N, Poutsma A, Mulders J, van den Berkmortel T, Wigman DJ, Blanken B, Jongejan A, Pajkrt E, de Boer M, Sistermans EA, Sie D, Best MG, Würdinger T, Afink G. Circular RNA Sequencing of Maternal Platelets: A Novel Tool for the Identification of Pregnancy-Specific Biomarkers. Clin Chem 2021; 67:508-517. [PMID: 33257975 DOI: 10.1093/clinchem/hvaa249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the first trimester of pregnancy, the maternal platelet is directly involved in a positive feedback mechanism that facilitates invasion of the extravillous trophoblast into the maternal spiral arteries. Dysfunctional trophoblast invasion with defective deep placentation is primordial in the etiology of the "great obstetrical syndromes." METHODS In this proof-of-concept study, using transcriptome analysis of circular RNA (circRNA) following RNA sequencing of maternal platelets, we tested whether pregnancy-specific circRNA markers could be identified in the first trimester of normal pregnancies. Differential transcript expression analysis of circRNAs, as predicted by Accurate CircRNA Finder Suite, CircRNA Identifier (version 2), and Known and Novel Isoform Explorer, was done using thromboSeq.R with variation of multiple settings. Test performance was checked for (a) de novo circRNA identification using the novel platelet-specific Plt-circR4 as a positive control, (b) complete segregation of groups (pregnant vs nonpregnant) after heat map-dendrogram clustering, (c) identification of pregnancy-specific circRNA markers at a false discovery rate (FDR) <0.05, and (d) confirmation of differentially expressed circRNA markers with an FDR <0.05 by an independent method, reverse transcription-quantitative PCR. RESULTS Of the differentially expressed circRNAs with P values <0.05, 41 circRNAs were upregulated (logFC >2), and 52 circRNAs were downregulated (logFC less than -2) in first-trimester platelet RNA. Of these, nuclear receptor-interacting protein 1 circRNA covering exons 2 and 3 of the 5'-untranslated region was pregnancy specific with upregulation in first-trimester maternal platelets compared to nonpregnant controls. CONCLUSION CircRNA sequencing of first-trimester maternal platelets permits the identification of novel pregnancy-specific RNA biomarkers. Future use could include the assessment of maternal and fetal well-being.
Collapse
Affiliation(s)
- Cees Oudejans
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Vera Manders
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Reproductive Biology Laboratory, Amsterdam UMC, Academic Medical Center, Amsterdam, the Netherlands
| | - Allerdien Visser
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Remco Keijser
- Reproductive Biology Laboratory, Amsterdam UMC, Academic Medical Center, Amsterdam, the Netherlands
| | - Naomi Min
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Reproductive Biology Laboratory, Amsterdam UMC, Academic Medical Center, Amsterdam, the Netherlands
| | - Ankie Poutsma
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Joyce Mulders
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Tarah van den Berkmortel
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Di-Jan Wigman
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Britt Blanken
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam UMC, Academic Medical Center, the Netherlands
| | - Eva Pajkrt
- Department of Obstetrics/Gynecology, Amsterdam UMC, Academic Medical Center, Amsterdam, the Netherlands
| | - Marjon de Boer
- Department of Obstetrics/Gynecology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Erik A Sistermans
- Department of Clinical Genetics, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Daoud Sie
- Department of Clinical Genetics, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Myron G Best
- Department of Neurosurgery, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Pathology, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Brain Tumor Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Tom Würdinger
- Department of Neurosurgery, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Brain Tumor Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Gijs Afink
- Reproductive Biology Laboratory, Amsterdam UMC, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Torres-Juarez F, Trejo-Martínez LA, Layseca-Espinosa E, Leon-Contreras JC, Enciso-Moreno JA, Hernandez-Pando R, Rivas-Santiago B. Platelets immune response against Mycobacterium tuberculosis infection. Microb Pathog 2021; 153:104768. [PMID: 33524564 DOI: 10.1016/j.micpath.2021.104768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022]
Abstract
Tuberculosis (TB) is the first cause of death by a single infectious agent. Previous reports have highlighted the presence of platelets within Tb granulomas, albeit the immune-associated platelet response to Mycobacterium tuberculosis (Mtb) has not been deeply studied. Our results showed that platelets are recruited into the granuloma in the late stages of tuberculosis. Furthermore, electron-microscopy studies showed that platelets can internalize Mtb and produce host defense peptides (HDPs), such as RNase 7, HBD2 and hPF-4 that bind to the internalized Mtb. Mtb-infected platelets exhibited higher transcription and secretion of IL-1β and TNF-α, whereas IL-10 and IL-6 protein levels decreased. These results suggest that platelets participate in the immune response against Mtb through HDPs and cytokines production.
Collapse
Affiliation(s)
- Flor Torres-Juarez
- Biomedical Research Unit of Zacatecas-Mexican Institute of Social Security, Zacatecas, Mexico; Laboratory of Immunology, Autonomous University of San Luis Potosí, San Luis Potosi, Mexico
| | - Luis A Trejo-Martínez
- Biomedical Research Unit of Zacatecas-Mexican Institute of Social Security, Zacatecas, Mexico
| | | | - Juan C Leon-Contreras
- Laboratory of Experimental Pathology, Nacional Institute of Medical Sciences and Nutrition "Salvador Zubiran", CDMX, Mexico
| | - Jose A Enciso-Moreno
- Biomedical Research Unit of Zacatecas-Mexican Institute of Social Security, Zacatecas, Mexico
| | - Rogelio Hernandez-Pando
- Laboratory of Experimental Pathology, Nacional Institute of Medical Sciences and Nutrition "Salvador Zubiran", CDMX, Mexico
| | - Bruno Rivas-Santiago
- Biomedical Research Unit of Zacatecas-Mexican Institute of Social Security, Zacatecas, Mexico.
| |
Collapse
|
42
|
Mantini G, Meijer LL, Glogovitis I, In ‘t Veld SGJG, Paleckyte R, Capula M, Le Large TYS, Morelli L, Pham TV, Piersma SR, Frampton AE, Jimenez CR, Kazemier G, Koppers-Lalic D, Wurdinger T, Giovannetti E. Omics Analysis of Educated Platelets in Cancer and Benign Disease of the Pancreas. Cancers (Basel) 2020; 13:cancers13010066. [PMID: 33383671 PMCID: PMC7795159 DOI: 10.3390/cancers13010066] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is traditionally associated with thrombocytosis/hypercoagulation and novel insights on platelet-PDAC "dangerous liaisons" are warranted. Here we performed an integrative omics study investigating the biological processes of mRNAs and expressed miRNAs, as well as proteins in PDAC blood platelets, using benign disease as a reference for inflammatory noise. Gene ontology mining revealed enrichment of RNA splicing, mRNA processing and translation initiation in miRNAs and proteins but depletion in RNA transcripts. Remarkably, correlation analyses revealed a negative regulation on SPARC transcription by isomiRs involved in cancer signaling, suggesting a specific "education" in PDAC platelets. Platelets of benign patients were enriched for non-templated additions of G nucleotides (#ntaG) miRNAs, while PDAC presented length variation on 3' (lv3p) as the most frequent modification on miRNAs. Additionally, we provided an actionable repertoire of PDAC and benign platelet-ome to be exploited for future studies. In conclusion, our data show that platelets change their biological repertoire in patients with PDAC, through dysregulation of miRNAs and splicing factors, supporting the presence of de novo protein machinery that can "educate" the platelet. These novel findings could be further exploited for innovative liquid biopsies platforms as well as possible therapeutic targets.
Collapse
Affiliation(s)
- Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (G.M.); (L.L.M.); (R.P.); (T.Y.S.L.L.); (T.V.P.); (S.R.P.); (C.R.J.)
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy;
| | - Laura L. Meijer
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (G.M.); (L.L.M.); (R.P.); (T.Y.S.L.L.); (T.V.P.); (S.R.P.); (C.R.J.)
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands;
| | - Ilias Glogovitis
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (I.G.); (S.G.J.G.I.V.); (D.K.-L.)
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Sjors G. J. G. In ‘t Veld
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (I.G.); (S.G.J.G.I.V.); (D.K.-L.)
| | - Rosita Paleckyte
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (G.M.); (L.L.M.); (R.P.); (T.Y.S.L.L.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Mjriam Capula
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy;
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Tessa Y. S. Le Large
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (G.M.); (L.L.M.); (R.P.); (T.Y.S.L.L.); (T.V.P.); (S.R.P.); (C.R.J.)
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands;
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (G.M.); (L.L.M.); (R.P.); (T.Y.S.L.L.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (G.M.); (L.L.M.); (R.P.); (T.Y.S.L.L.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Adam E. Frampton
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford GU2 7WG, UK;
- Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford GU2 7XH, UK
| | - Connie R. Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (G.M.); (L.L.M.); (R.P.); (T.Y.S.L.L.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands;
| | - Danijela Koppers-Lalic
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (I.G.); (S.G.J.G.I.V.); (D.K.-L.)
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (I.G.); (S.G.J.G.I.V.); (D.K.-L.)
- Correspondence: (T.W.); (E.G.); Tel.: +31-003-120-444-2633 (E.G.)
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (G.M.); (L.L.M.); (R.P.); (T.Y.S.L.L.); (T.V.P.); (S.R.P.); (C.R.J.)
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy;
- Correspondence: (T.W.); (E.G.); Tel.: +31-003-120-444-2633 (E.G.)
| |
Collapse
|
43
|
Sahai A, Bhandari R, Koupenova M, Freedman JE, Godwin M, McIntyre T, Chung MK, Iskandar JP, Kamran H, Hariri E, Aggarwal A, Kalra A, Bartholomew JR, McCrae KR, Elbadawi A, Svensson LG, Kapadia S, Cameron SJ. SARS-CoV-2 Receptors are Expressed on Human Platelets and the Effect of Aspirin on Clinical Outcomes in COVID-19 Patients. RESEARCH SQUARE 2020:rs.3.rs-119031. [PMID: 33398263 PMCID: PMC7781327 DOI: 10.21203/rs.3.rs-119031/v1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coronavirus disease-2019 (COVID-19) caused by SARS-CoV-2 is an ongoing viral pandemic marked by increased risk of thrombotic events. However, the role of platelets in the elevated observed thrombotic risk in COVID-19 and utility of anti-platelet agents in attenuating thrombosis is unknown. We aimed to determine if human platelets express the known SARS-CoV-2 receptor-protease axis on their cell surface and assess whether the anti-platelet effect of aspirin may mitigate risk of myocardial infarction (MI), cerebrovascular accident (CVA), and venous thromboembolism (VTE) in COVID-19. Expression of ACE2 and TMPRSS2 on human platelets were detected by immunoblotting and confirmed by confocal microscopy. We evaluated 22,072 symptomatic patients tested for COVID-19. Propensity-matched analyses were performed to determine if treatment with aspirin or non-steroidal anti-inflammatory drugs (NSAIDs) affected thrombotic outcomes in COVID-19. Neither aspirin nor NSAIDs affected mortality in COVID-19. However, both aspirin and NSAID therapies were associated with increased risk of the combined thrombotic endpoint of (MI), (CVA), and (VTE). Thus, while platelets clearly express ACE2-TMPRSS2 receptor-protease axis for SARS-CoV-2 infection, aspirin does not prevent thrombosis and death in COVID-19. The mechanisms of thrombosis in COVID-19, therefore, appears distinct and the role of platelets as direct mediators of SARS-CoV-2-mediated thrombosis warrants further investigation.
Collapse
Affiliation(s)
- Aditya Sahai
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Rohan Bhandari
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Milka Koupenova
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Jane E. Freedman
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Matthew Godwin
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Thomas McIntyre
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
- Case Western Reserve University Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Mina K. Chung
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
- Case Western Reserve University Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | | | - Hayaan Kamran
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Essa Hariri
- Department of Medicine, Cleveland Clinic, Cleveland, OH
| | - Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Ankur Kalra
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - John R. Bartholomew
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
- Case Western Reserve University Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Keith R. McCrae
- Case Western Reserve University Cleveland Clinic Lerner College of Medicine, Cleveland, OH
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Ayman Elbadawi
- Division of Cardiovascular Medicine, University of Texas Medical Branch, Galveston, TX
| | - Lars G. Svensson
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
- Case Western Reserve University Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Samir Kapadia
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
- Case Western Reserve University Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Scott J. Cameron
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
- Case Western Reserve University Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| |
Collapse
|
44
|
Kraemer BF, Geimer M, Franz-Wachtel M, Lamkemeyer T, Mannell H, Lindemann S. Extracellular Matrix-Specific Platelet Activation Leads to a Differential Translational Response and Protein De Novo Synthesis in Human Platelets. Int J Mol Sci 2020; 21:ijms21218155. [PMID: 33142786 PMCID: PMC7672557 DOI: 10.3390/ijms21218155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
Platelets are exposed to extracellular matrix (ECM) proteins like collagen and laminin and to fibrinogen during acute vascular events. However, beyond hemostasis, platelets have the important capacity to migrate on ECM surfaces, but the translational response of platelets to different extracellular matrix stimuli is still not fully characterized. Using 2D-gel electrophoresis, confocal microscopy, polysome analysis and protein sequencing by mass spectrometry, we demonstrate that platelets show a differential expression profile of newly synthesized proteins on laminin, collagen or fibrinogen. In this context, we observed a characteristic, ECM-dependent translocation phenotype of translation initiation factor eIF4E to the ribosomal site. eIF4E accumulated in polysomes with increased binding of mRNA and co-localization with vinculin, leading to de novo synthesis of important cytoskeletal regulator proteins. As the first study, we included a proteome analysis of laminin-adherent platelets and interestingly identified upregulation of essentially important proteins that mediate cytoskeletal regulation and mobility in platelets, such as filamin A, talin, vinculin, gelsolin, coronin or kindlin-3. In summary, we demonstrate that platelet activation with extracellular matrix proteins results in a distinct stimulus-specific translational response of platelets that will help to improve our understanding of the regulation of platelet mobility and migration.
Collapse
Affiliation(s)
- Bjoern F. Kraemer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistrasse 15, 81377 Munich, Germany;
| | - Marc Geimer
- Klinik für Anästhesie, Intensiv- und Notfallmedizin, Westpfalz Klinikum Kaiserslautern, Hellmut-Hartert Str. 1, 67655 Kaiserslautern, Germany;
| | - Mirita Franz-Wachtel
- Proteasome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany;
| | - Tobias Lamkemeyer
- Cluster of Excellence Cologne (CEDAD), Mass Spectrometry Facility at the Institute for Genetics, University of Köln, Josef-Stelzmann-Str. 26, 50931 Köln, Germany;
| | - Hanna Mannell
- Doctoral Programme of Clinical Pharmacy, University Hospital, Ludwig-Maximilians-University, Marchioninistr. 27, 81377 Munich, Germany;
- Institute of Cardiovascular Physiology and Pathophysiology Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, 82152 Planegg, Germany
| | - Stephan Lindemann
- Philipps Universität Marburg, FB 20-Medizin, Baldingerstraße, 35032 Marburg, Germany
- Klinikum Warburg, Medizinische Klinik II, Hüffertstr. 50, 34414 Warburg, Germany
- Medizinische Klinik und Poliklinik III, Otfried-Muller-Str. 10, Universitätsklinikum Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
45
|
A journey upstream: Fluctuating platelet-specific genes in cell-free plasma as proof-of-concept for using ribonucleic acid sequencing to improve understanding of postinjury platelet biology. J Trauma Acute Care Surg 2020; 88:742-751. [PMID: 32195992 DOI: 10.1097/ta.0000000000002681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The mechanisms of aberrant circulating platelet behavior following injury remain unclear. Platelets retain megakaryocyte immature ribonucleic acid (RNA) splicing and protein synthesis machinery to alter their functions based on physiologic signals. We sought to identify fluctuating platelet-specific RNA transcripts in cell-free plasma (CFP) from traumatic brain injury (TBI) patients as proof-of-concept for using RNA sequencing to improve our understanding of postinjury platelet behavior. We hypothesized that we could identify differential expression of activated platelet-specific spliced RNA transcripts from CFP of patients with isolated severe fatal TBI (fTBI) compared with minimally injured trauma controls (t-controls), filtered by healthy control (h-control) data sets. METHODS High-read depth RNA sequencing was applied to CFP from 10 patients with fTBI (Abbreviated Injury Scale [AIS] for head ≥3, AIS for all other categories <3, and expired) and five t-controls (Injury Severity Score ≤1, and survived). A publicly available CFP RNA sequencing data set from 23 h-controls was used to determine the relative steady state of splice-form RNA transcripts discoverable in CFP. Activated platelet-specific spliced RNA transcripts were derived from studies of ex vivo platelet activation and identified by splice junction presence greater than 1.5-fold or less than 0.67-fold ex vivo nonactivated platelet-specific RNA transcripts. RESULTS Forty-two differentially spliced activated platelet-specific RNA transcripts in 34 genes were altered in CFP from fTBI patients (both upregulated and downregulated). CONCLUSION We have discovered differentially expressed activated platelet-specific spliced RNA transcripts present in CFP from isolated severe fTBI patients that are upregulated or downregulated compared with minimally injured trauma controls. This proof-of-concept suggests that a pool of immature platelet RNAs undergo splicing events after injury for presumed modulation of platelet protein products involved in platelet function. This validates our exploration of injury-induced platelet RNA transcript modulation as an upstream "liquid biopsy" to identify novel postinjury platelet biology and treatment targets for aberrant platelet behavior. LEVEL OF EVIDENCE Diagnostic tests, level V.
Collapse
|
46
|
Sol N, In 't Veld SGJG, Vancura A, Tjerkstra M, Leurs C, Rustenburg F, Schellen P, Verschueren H, Post E, Zwaan K, Ramaker J, Wedekind LE, Tannous J, Ylstra B, Killestein J, Mateen F, Idema S, de Witt Hamer PC, Navis AC, Leenders WPJ, Hoeben A, Moraal B, Noske DP, Vandertop WP, Nilsson RJA, Tannous BA, Wesseling P, Reijneveld JC, Best MG, Wurdinger T. Tumor-Educated Platelet RNA for the Detection and (Pseudo)progression Monitoring of Glioblastoma. CELL REPORTS MEDICINE 2020; 1:100101. [PMID: 33103128 PMCID: PMC7576690 DOI: 10.1016/j.xcrm.2020.100101] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 01/09/2023]
Abstract
Tumor-educated platelets (TEPs) are potential biomarkers for cancer diagnostics. We employ TEP-derived RNA panels, determined by swarm intelligence, to detect and monitor glioblastoma. We assessed specificity by comparing the spliced RNA profile of TEPs from glioblastoma patients with multiple sclerosis and brain metastasis patients (validation series, n = 157; accuracy, 80%; AUC, 0.81 [95% CI, 0.74–0.89; p < 0.001]). Second, analysis of patients with glioblastoma versus asymptomatic healthy controls in an independent validation series (n = 347) provided a detection accuracy of 95% and AUC of 0.97 (95% CI, 0.95–0.99; p < 0.001). Finally, we developed the digitalSWARM algorithm to improve monitoring of glioblastoma progression and demonstrate that the TEP tumor scores of individual glioblastoma patients represent tumor behavior and could be used to distinguish false positive progression from true progression (validation series, n = 20; accuracy, 85%; AUC, 0.86 [95% CI, 0.70–1.00; p < 0.012]). In conclusion, TEPs have potential as a minimally invasive biosource for blood-based diagnostics and monitoring of glioblastoma patients. TEP RNA enables blood-based brain tumor diagnostics TEP RNA is dynamic throughout anti-tumor treatment TEP RNA may be employed for therapy monitoring
Collapse
Affiliation(s)
- Nik Sol
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Sjors G J G In 't Veld
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Adrienne Vancura
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Maud Tjerkstra
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Cyra Leurs
- Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - François Rustenburg
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Pepijn Schellen
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Heleen Verschueren
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Edward Post
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Kenn Zwaan
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Jip Ramaker
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Laurine E Wedekind
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Jihane Tannous
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Bauke Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Joep Killestein
- Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Farrah Mateen
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Sander Idema
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Philip C de Witt Hamer
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Anna C Navis
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, Maastricht Academical Medical Center, Maastricht, the Netherlands
| | - Bastiaan Moraal
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - David P Noske
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - W Peter Vandertop
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - R Jonas A Nilsson
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Pieter Wesseling
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jaap C Reijneveld
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Myron G Best
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| | - Thomas Wurdinger
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
47
|
Hille L, Lenz M, Vlachos A, Grüning B, Hein L, Neumann FJ, Nührenberg TG, Trenk D. Ultrastructural, transcriptional, and functional differences between human reticulated and non-reticulated platelets. J Thromb Haemost 2020; 18:2034-2046. [PMID: 32428354 DOI: 10.1111/jth.14895] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Reticulated platelets (RP) are the youngest circulating platelets in blood. An increased amount of this subpopulation is associated with higher cardiovascular risk and mortality. OBJECTIVES It is unknown to what extent intrinsic properties of RP contribute to their hyperreactive features. This study is the first providing a multifactorial approach based on ultrastructural, transcriptional, and functional analysis of RP compared to non-RP sorted by flow cytometry. METHODS Reticulated platelets and non-RP were sorted after platelet staining with SYTO 13. Employing transmission electron microscopy, 1089 micrographs were analyzed for platelet size, amounts of intracellular structures, and anatomical surrogates indicating activation. Long and small RNA-sequencing (RNA-seq) were performed for analyzing differential gene expression. Functional analysis of P-selectin-an upregulated mRNA in RP-was performed in healthy subjects and patients on P2Y12 -inhibitors. RESULTS Electron micrographs uncovered distinct ultrastructural differences in RP versus non-RP. Cross sections were 1.9-fold larger in RP (P < .0001). Amounts of α-granules, dense granules, open canalicular system-openings, and mitochondria were increased in RP, which persisted after adjustment for platelet size. Long RNA-seq showed 1212 upregulated transcripts that are predominantly associated to platelet shape change, aggregation, and activation; 1264 mRNAs were downregulated in RP. Small RNA-seq did not reveal any differentially expressed transcripts. Functional analysis displayed higher P-selectin expression as compared to non-RP upon ADP- or TRAP-stimulation. CONCLUSIONS Our results demonstrate that altered intrinsic structural and molecular properties contribute to the hyperreactivity of RP. These properties and an increased amount of RP may account for the association with cardiovascular risk.
Collapse
Affiliation(s)
- Laura Hille
- Department of Cardiology and Angiology II, Clinical Pharmacology, University Heart Center Freiburg-Bad Krozingen, Bad Krozingen, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Franz-Josef Neumann
- Department of Cardiology and Angiology II, University Heart Center Freiburg-Bad Krozingen, Bad Krozingen, Germany
| | - Thomas G Nührenberg
- Department of Cardiology and Angiology II, Clinical Pharmacology, University Heart Center Freiburg-Bad Krozingen, Bad Krozingen, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology II, University Heart Center Freiburg-Bad Krozingen, Bad Krozingen, Germany
| | - Dietmar Trenk
- Department of Cardiology and Angiology II, Clinical Pharmacology, University Heart Center Freiburg-Bad Krozingen, Bad Krozingen, Germany
| |
Collapse
|
48
|
Nording H, Baron L, Langer HF. Platelets as therapeutic targets to prevent atherosclerosis. Atherosclerosis 2020; 307:97-108. [DOI: 10.1016/j.atherosclerosis.2020.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
|
49
|
Davizon-Castillo P, Rowley JW, Rondina MT. Megakaryocyte and Platelet Transcriptomics for Discoveries in Human Health and Disease. Arterioscler Thromb Vasc Biol 2020; 40:1432-1440. [PMID: 32295424 PMCID: PMC7253186 DOI: 10.1161/atvbaha.119.313280] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anucleate platelets, long viewed as merely cell fragments with a limited repertoire of rapid-acting hemostatic functions, are now recognized to have a complex and dynamic transcriptome mirroring that of many nucleated cells. The field of megakaryocyte and platelet transcriptomics has been rapidly growing, particularly with the advent of newer technologies such as next-generation RNA-sequencing. Studies interrogating the megakaryocyte and platelet transcriptome have led to a number of key insights into human health and disease. In this brief focused review, we will discuss some of the recent discoveries made through transcriptome analysis of megakaryocytes and platelets. We will also highlight the utility of integrating ribosome footprint analysis to augment discoveries. Both bulk and single-cell sequencing approaches will be reviewed, along with comparative studies between human and murine platelets under basal healthy settings and during acute systemic inflammatory diseases.
Collapse
Affiliation(s)
- Pavel Davizon-Castillo
- From the Section of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora (P.D.-C)
| | - Jesse W Rowley
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City (J.W.R., M.T.R.).,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (J.W.R., M.T.R.)
| | - Matthew T Rondina
- From the Section of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora (P.D.-C).,University of Utah Molecular Medicine Program, University of Utah, Salt Lake City (J.W.R., M.T.R.).,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (J.W.R., M.T.R.).,Department of Pathology, University of Utah, Salt Lake City (M.T.R.).,George E. Wahlen VAMC, Salt Lake City, UT (M.T.R.)
| |
Collapse
|
50
|
Platelets: Mechanistic and Diagnostic Significance in Transplantation. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Purpose of Review
In addition to their function in coagulation, platelets recently have been recognized as an important component of innate immune responses. This review relates salient immune functions of platelets to transplants.
Recent Findings
Platelets are critical bridges between vascular endothelium and leukocytes. Real-time imaging of platelets has demonstrated that platelets rapidly adhere to vascular endothelium and form a nidus for attachment of neutrophils and then monocytes. However, the majority of platelets subsequently release from endothelium and return to the circulation in an activated state. These recycled platelets have the potential to transport proteins and RNA from the graft to the recipient. Some of the platelets that return to the circulation are attached to leukocytes.
Summary
Platelets have the potential to modulate many elements of the graft and the immune response from the time of organ retrieval through ischemia-reperfusion to acute and chronic rejection. Beyond mechanistic considerations, assays that detect changes in platelet protein or RNA expression could be used to monitor early inflammatory responses in transplants.
Collapse
|