1
|
Zhang X, Hu J, Liu H, Sun T, Wang Z, Zhao Y, Zhang YB, Huai P, Ma Y, Jiang S. Determining Covalent Organic Framework Structures Using Electron Crystallography and Computational Intelligence. J Am Chem Soc 2024. [PMID: 39621315 DOI: 10.1021/jacs.4c12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The structural characterization of new materials often poses immense challenges, especially when obtaining single-crystal structures is difficult, which is a common difficulty with covalent organic frameworks (COFs). Despite this, understanding the atomic structure is crucial as it provides insights into the arrangement and connectivity of organic building blocks, offering the opportunity to establish the correlation of structure-function relationships and unravel material properties. In this study, we present an approach for determining the structures of COFs, an integration of electron crystallography and computational intelligence (COF+). By applying established chemistry knowledge and employing particle swarm optimization (PSO) for trial structure generation, we overcome existing limitations, thus paving the way for advancements in COF structural determination. We have successfully implemented this technique on four representative COFs, each with unique characteristics. These examples underline the accuracy and efficacy of our approach in addressing the challenges tied to COF structural determination. Furthermore, our approach has revealed new structure candidates with different topologies or interpenetrations that are chemically feasible. This discovery demonstrates the capability of our algorithm in constructing trial COF structures without being influenced by topological factors. Our new approach to COF structure determination represents a significant advancement in the field and opens new avenues for exploring the properties and applications of COF materials.
Collapse
Affiliation(s)
- Xiangyu Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Junyi Hu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Huiyu Liu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Tu Sun
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Zidi Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Ping Huai
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Shan Jiang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Alfonso I. Supramolecular chemical biology: designed receptors and dynamic chemical systems. Chem Commun (Camb) 2024; 60:9692-9703. [PMID: 39129537 DOI: 10.1039/d4cc03163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Supramolecular chemistry focuses on the study of species joined by non-covalent interactions, and therefore on dynamic and relatively ill-defined structures. Despite being a well-developed field, it has to face important challenges when dealing with the selective recognition of biomolecules in highly competitive biomimetic media. However, supramolecular interactions reside at the core of chemical biology systems, since many processes in nature are governed by weak, non-covalent, strongly dynamic contacts. Therefore, there is a natural connection between these two research fields, which are not frequently related or share interests. In this feature article, I will highlight our most recent results in the molecular recognition of biologically relevant species, following different conceptual approaches from the most conventional design of elaborated receptors to the less popular dynamic combinatorial chemistry methodology. Selected illustrative examples from other groups will be also included. The discussion has been focused mainly on systems with potential biomedical applications.
Collapse
Affiliation(s)
- Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), The Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
3
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
4
|
Blanco-Gómez A, Díaz-Abellás M, Montes de Oca I, Peinador C, Pazos E, García MD. Host-Guest Stimuli-Responsive Click Chemistry. Chemistry 2024; 30:e202400743. [PMID: 38597381 DOI: 10.1002/chem.202400743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
Click chemistry has reached its maturity as the weapon of choice for the irreversible ligation of molecular fragments, with over 20 years of research resulting in the development or improvement of highly efficient kinetically controlled conjugation reactions. Nevertheless, traditional click reactions can be disadvantageous not only in terms of efficiency (side products, slow kinetics, air/water tolerance, etc.), but also because they completely avoid the possibility to reversibly produce and control bound/unbound states. Recently, non-covalent click chemistry has appeared as a more efficient alternative, in particular by using host-guest self-assembled systems of high thermodynamic stability and kinetic lability. This review discusses the implementation of molecular switches in the development of such non-covalent ligation processes, resulting in what we have termed stimuli-responsive click chemistry, in which the bound/unbound constitutional states of the system can be favored by external stimulation, in particular using host-guest complexes. As we exemplify with handpicked selected examples, these supramolecular systems are well suited for the development of human-controlled molecular conjugation, by coupling thermodynamically regulated processes with appropriate temporally resolved extrinsic control mechanisms, thus mimicking nature and advancing our efforts to develop a more function-oriented chemical synthesis.
Collapse
Affiliation(s)
- Arturo Blanco-Gómez
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Mauro Díaz-Abellás
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Iván Montes de Oca
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Carlos Peinador
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Elena Pazos
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Marcos D García
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| |
Collapse
|
5
|
Yang Z, Esteve F, Antheaume C, Lehn JM. Triply Adaptive Libraries of Dynamic Covalent Macrocycles: Switching between Sorted and Unsorted States. J Am Chem Soc 2024; 146:15438-15445. [PMID: 38798165 DOI: 10.1021/jacs.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dynamic noncovalent and covalent chemistries have enabled the constitutional modulation of chemical entities within chemical dynamic systems. The switching between order and disorder, i.e., self-sorted and unsorted states of constitutional dynamic libraries, remains challenging. Herein, we study the adaptive behaviors of a dynamic library of imine macrocycles generated from dialdehydes and diamines, seeking ways to exert control over sorting and unsorting processes. The distribution of constituents in the present library of dynamic macrocycles is modulated in response to internal and external effectors (e.g., time, metal cations, and chemical fuels), resulting in the transient amplification of self-sorted constituents in out-of-equilibrium states. The present study showcases higher complexity in systems subject to multiple adaptation through the dynamic interconversion between singularity/order and diversity/disorder.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University, Guangzhou 510006, China
| | - Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Cyril Antheaume
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Dascalu AE, Furman C, Landrieu I, Cantrelle FX, Mortelecque J, Grolaux G, Gillery P, Tessier F, Lipka E, Billamboz M, Boulanger E, Ghinet A. Development of Receptor for Advanced Glycation End Products (RAGE) ligands through target directed dynamic combinatorial chemistry: a novel class of possible antagonists. Chemistry 2024; 30:e202303255. [PMID: 38317623 DOI: 10.1002/chem.202303255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
RAGE is a transmembrane receptor of immunoglobulin family that can bind various endogenous and exogenous ligands, initiating the inflammatory downstream signaling pathways, including inflammaging. Therefore, RAGE represents an attractive drug target for age-related diseases. For the development of small-molecule RAGE antagonists, we employed protein-templated dynamic combinatorial chemistry (ptDCC) using RAGE's VC1 domain as a template, the first application of this approach in the context of RAGE. The affinities of DCC hits were validated using microscale thermophoresis. Subsequent screening against AGE2 (glyceraldehyde-modified AGE)-sRAGE (solubleRAGE) (AGE2-BSA/sRAGE) interaction using ELISA tests led to the identification of antagonists with micromolar potency. Our findings not only demonstrate the successful application of ptDCC on RAGE but also highlight its potential to address the pressing need for alternative strategies for the development of small-molecule RAGE antagonists, an area of research that has experienced a slowdown in recent years.
Collapse
Affiliation(s)
- Anca-Elena Dascalu
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- 'Alexandru Ioan Cuza' University of Iasi, Faculty of Chemistry, Bd. Carol I, Nr. 11, 700506, Iasi, Romania
| | - Christophe Furman
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Univ. Lille, UFR Pharmacie, BP 83, F-59006, Lille, France
| | - Isabelle Landrieu
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- CNRS EMR9002 Integrative Structural Biology, F-59000, Lille, France
| | - François-Xavier Cantrelle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- CNRS EMR9002 Integrative Structural Biology, F-59000, Lille, France
| | - Justine Mortelecque
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- CNRS EMR9002 Integrative Structural Biology, F-59000, Lille, France
| | - Gaëlle Grolaux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Philippe Gillery
- Univ. Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology CNRS/URCA UMR 7369 MEDyC, Faculty of Medicine, F-51095, Reims, France
| | - Frédéric Tessier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Univ. Lille, UFR Pharmacie, BP 83, F-59006, Lille, France
| | - Emmanuelle Lipka
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Univ. Lille, UFR Pharmacie, BP 83, F-59006, Lille, France
| | - Muriel Billamboz
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Alina Ghinet
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- 'Alexandru Ioan Cuza' University of Iasi, Faculty of Chemistry, Bd. Carol I, Nr. 11, 700506, Iasi, Romania
| |
Collapse
|
7
|
Svestka D, Bobal P, Waser M, Otevrel J. Asymmetric Organocatalyzed Transfer Hydroxymethylation of Isoindolinones Using Formaldehyde Surrogates. Org Lett 2024; 26:2505-2510. [PMID: 38502794 PMCID: PMC10985653 DOI: 10.1021/acs.orglett.4c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The piperidine-based Takemoto catalyst has been successfully employed in a novel asymmetric transfer hydroxymethylation of activated isoindolinones, allowing us to prepare the enantioenriched hydroxymethylated adducts in good to excellent yields (48-96%) and enantiopurities (81:19-97:3 e.r.). To increase the reaction rate without compromising the selectivity, carefully optimized formaldehyde surrogates were employed, providing a convenient source of anhydrous formaldehyde with a base-triggered release. The substrate scope, including 34 entries, showed the considerable generality of the asymmetric transformation, and most entries exhibited complete conversions in 24-48 h. A scale-up experiment and multiple enantioselective downstream transformations were also carried out, suggesting the prospective synthetic utility of the products.
Collapse
Affiliation(s)
- David Svestka
- Department
of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1, 612 00 Brno, Czechia
| | - Pavel Bobal
- Department
of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1, 612 00 Brno, Czechia
| | - Mario Waser
- Institute
of Organic Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Jan Otevrel
- Department
of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1, 612 00 Brno, Czechia
| |
Collapse
|
8
|
Cougnon FBL, Stefankiewicz AR, Ulrich S. Dynamic covalent synthesis. Chem Sci 2024; 15:879-895. [PMID: 38239698 PMCID: PMC10793650 DOI: 10.1039/d3sc05343a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024] Open
Abstract
Dynamic covalent synthesis aims to precisely control the assembly of simple building blocks linked by reversible covalent bonds to generate a single, structurally complex, product. In recent years, considerable progress in the programmability of dynamic covalent systems has enabled easy access to a broad range of assemblies, including macrocycles, shape-persistent cages, unconventional foldamers and mechanically-interlocked species (catenanes, knots, etc.). The reversibility of the covalent linkages can be either switched off to yield stable, isolable products or activated by specific physico-chemical stimuli, allowing the assemblies to adapt and respond to environmental changes in a controlled manner. This activatable dynamic property makes dynamic covalent assemblies particularly attractive for the design of complex matter, smart chemical systems, out-of-equilibrium systems, and molecular devices.
Collapse
Affiliation(s)
- Fabien B L Cougnon
- Department of Chemistry and Nanoscience Centre, University of Jyväskylä Jyväskylä Finland
| | - Artur R Stefankiewicz
- Centre for Advanced Technology and Faculty of Chemistry, Adam Mickiewicz University Poznań Poland
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
9
|
Weigel RK, Rangamani A, Alabi CA. Synthetically encoded complementary oligomers. Nat Rev Chem 2023; 7:875-888. [PMID: 37973830 DOI: 10.1038/s41570-023-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Creating the next generation of advanced materials will require controlling molecular architecture to a degree typically achieved only in biopolymers. Sequence-defined polymers take inspiration from biology by using chain length and monomer sequence as handles for tuning structure and function. These sequence-defined polymers can assemble into discrete structures, such as molecular duplexes, via reversible interactions between functional groups. Selectivity can be attained by tuning the monomer sequence, thereby creating the need for chemical platforms that can produce sequence-defined polymers at scale. Developing sequence-defined polymers that are specific for their complementary sequence and achieve their desired binding strengths is critical for producing increasingly complex structures for new functional materials. In this Review Article, we discuss synthetic platforms that produce sequence-defined, duplex-forming oligomers of varying length, strength and association mode, and highlight several analytical techniques used to characterize their hybridization.
Collapse
Affiliation(s)
- R Kenton Weigel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Adithya Rangamani
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Christopher A Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
van Dam A, van Schendel R, Gangarapu S, Zuilhof H, Smulders MMJ. DFT Study of Imine-Exchange Reactions in Iron(II)-Coordinated Pincers. Chemistry 2023; 29:e202301795. [PMID: 37560922 DOI: 10.1002/chem.202301795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/11/2023]
Abstract
The imine bond is among the most applied motifs in dynamic covalent chemistry. Although its uses are varied and often involve coordination to a transition metal for stability, mechanistic studies on imine exchange reactions so far have not included metal coordination. Herein, we investigated the condensation and transimination reactions of an Fe2+ -coordinated diimine pyridine pincer, employing wB97XD/6-311G(2d,2p) DFT calculations in acetonitrile. We first experimentally confirmed that Fe2+ is strongly coordinated by these pincers, and is thus a justified model ion. When considering a four-membered ring-shaped transition state for proton transfers, the required activation energies for condensation and transimination reaction exceeded the values expected for reactions known to be spontaneous at room temperature. The nature of the incoming and exiting amines and the substituents on the para-position of the pincer had no effect on this. Replacing Fe2+ with Zn2+ or removing it altogether did not reduce it either. However, the addition of two ethylamine molecules lowered the energy barriers to be compatible with experiment (19.4 and 23.2 kcal/mol for condensation and transimination, respectively). Lastly, the energy barrier of condensation of a non-coordinated pincer was significantly higher than found for Fe2+ -coordinating pincers, underlining the catalyzing effect of metal coordination on imine exchange reactions.
Collapse
Affiliation(s)
- Annemieke van Dam
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Robin van Schendel
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Satesh Gangarapu
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, P.R. China
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
11
|
You L. Dual reactivity based dynamic covalent chemistry: mechanisms and applications. Chem Commun (Camb) 2023; 59:12943-12958. [PMID: 37772969 DOI: 10.1039/d3cc04022d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Dynamic covalent chemistry (DCC) focuses on the reversible formation, breakage, and exchange of covalent bonds and assemblies, setting a bridge between irreversible organic synthesis and supramolecular chemistry and finding wide utility. In order to enhance structural and functional diversity and complexity, different types of dynamic covalent reactions (DCRs) are placed in one vessel, encompassing orthogonal DCC without crosstalk and communicating DCC with a shared reactive functional group. As a means of adding tautomers, widespread in chemistry, to interconnected DCRs and combining the features of orthogonal and communicating DCRs, a concept of dual reactivity based DCC and underlying structural and mechanistic insights are summarized. The manipulation of the distinct reactivity of structurally diverse ring-chain tautomers allows selective activation and switching of reaction pathways and corresponding DCRs (C-N, C-O, and C-S) and assemblies. The coupling with photoswitches further enables light-mediated formation and scission of multiple types of reversible covalent bonds. To showcase the capability of dual reactivity based DCC, the versatile applications in dynamic polymers and luminescent materials are presented, paving the way for future functionalization studies.
Collapse
Affiliation(s)
- Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
12
|
Bouffard J, Coelho F, Sakai N, Matile S. Dynamic Phosphorus: Thiolate Exchange Cascades with Higher Phosphorothioates. Angew Chem Int Ed Engl 2023:e202313931. [PMID: 37847524 DOI: 10.1002/anie.202313931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
In this study, we introduce phosphorus, a pnictogen, as an exchange center for dynamic covalent chemistry. Cascade exchange of neutral phosphorotri- and -tetrathioates with thiolates is demonstrated in organic solvents, aqueous micellar systems, and in living cells. Exchange rates increase with the pH value, electrophilicity of the exchange center, and nucleophilicity of the exchangers. Molecular walking of the dynamic phosphorus center along Hammett gradients is simulated by the sequential addition of thiolate exchangers. Compared to phosphorotrithioates, tetrathioates are better electrophiles with higher exchange rates. Dynamic phosphorotri- and -tetrathioates are non-toxic to HeLa Kyoto cells and participate in the dynamic networks that account for thiol-mediated uptake into living cells.
Collapse
Affiliation(s)
- Jules Bouffard
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Filipe Coelho
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Fu W, Tan L, Wang PP. Chiral Inorganic Nanomaterials for Photo(electro)catalytic Conversion. ACS NANO 2023; 17:16326-16347. [PMID: 37540624 DOI: 10.1021/acsnano.3c04337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Chiral inorganic nanomaterials due to their unique asymmetric nanostructures have gradually demonstrated intriguing chirality-dependent performance in photo(electro)catalytic conversion, such as water splitting. However, understanding the correlation between chiral inorganic characteristics and the photo(electro)catalytic process remains challenging. In this perspective, we first highlight the chirality source of inorganic nanomaterials and briefly introduce photo(electro)catalysis systems. Then, we delve into an in-depth discussion of chiral effects exerted by chiral nanostructures and their photo-electrochemistry properties, while emphasizing the emerging chiral inorganic nanomaterials for photo(electro)catalytic conversion. Finally, the challenges and opportunities of chiral inorganic nanomaterials for photo(electro)catalytic conversion are prospected. This perspective provides a comprehensive overview of chiral inorganic nanomaterials and their potential in photo(electro)catalytic conversion, which is beneficial for further research in this area.
Collapse
Affiliation(s)
- Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
14
|
Wang Q, Serda M, Li Q, Sun T. Recent Advancements on Self-Immolative System Based on Dynamic Covalent Bonds for Delivering Heterogeneous Payloads. Adv Healthc Mater 2023; 12:e2300138. [PMID: 36943096 DOI: 10.1002/adhm.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/10/2023] [Indexed: 03/23/2023]
Abstract
The precisely spatial-temporal delivery of heterogeneous payloads from a single system with the same pulse is in great demand in realizing versatile and synergistic functions. Very few molecular architectures can satisfy the strict requirements of dual-release translated from single triggers, while the self-immolative systems based on dynamic covalent bonds represent the "state-of-art" of ultimate solution strategy. Embedding heterogeneous payloads symmetrically onto the self-immolative backbone with dynamic covalent bonds as the trigger, can respond to the quasi-bio-orthogonal hallmarks which are higher at the disease's microenvironment to simultaneously yield the heterogeneous payloads (drug A/drug B or drug/reporter). In this review, the modular design principles are concentrated to illustrate the rules in tailoring useful structures, then the rational applications are enumerated on the aspects of drug codelivery and visualized drug-delivery. This review, hopefully, can give the general readers a comprehensive understanding of the self-immolative systems based on dynamic covalent bonds for delivering heterogeneous payloads.
Collapse
Affiliation(s)
- Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, P. R. China
- Key Laboratory of Smart Drug Delivery Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Katowice, 40-006, Poland
| | - Quan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Boyanghu Road, Tianjin, 301617, P. R. China
- College of Chemistry and Chemical Engineering, Hubei University, 368 Youyidadao Avenue, Wuhan, 430062, P. R. China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| |
Collapse
|
15
|
Xie X, Li Z, Yang X, Yang B, Zong Z, Wang X, Duan L, Lin S, Li G, Bian L. Biomimetic Nanofibrillar Hydrogel with Cell-Adaptable Network for Enhancing Cellular Mechanotransduction, Metabolic Energetics, and Bone Regeneration. J Am Chem Soc 2023. [PMID: 37428960 DOI: 10.1021/jacs.3c02210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The natural extracellular matrix, with its heterogeneous structure, provides a stable and dynamic biophysical framework and biochemical signals to guide cellular behaviors. It is challenging but highly desirable to develop a synthetic matrix that emulates the heterogeneous fibrous structure with macroscopic stability and microscopical dynamics and contains inductive biochemical signals. Herein, we introduce a peptide fiber-reinforced hydrogel in which the stiff ß-sheet fiber functions as a multivalent cross-linker to enhance the hydrogel's macroscopic stability. The dynamic imine cross-link between the peptide fiber and polymer network endows the hydrogel with a microscopically dynamic network. The obtained fibrillar nanocomposite hydrogel, with its cell-adaptable dynamic network, enhances cell-matrix and cell-cell interactions and therefore significantly promotes the mechanotransduction, metabolic energetics, and osteogenesis of encapsulated stem cells. Furthermore, the hydrogel can codeliver a fiber-attached inductive drug to further enhance osteogenesis and bone regeneration. We believe that our work provides valuable guidance for the design of cell-adaptive and bioactive biomaterials for therapeutic applications.
Collapse
Affiliation(s)
- Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xuefeng Yang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, P. R. China
| | - Boguang Yang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zhixian Zong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xuemei Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Sien Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
16
|
Yang Z, Esteve F, Antheaume C, Lehn JM. Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages. Chem Sci 2023; 14:6631-6642. [PMID: 37350816 PMCID: PMC10284075 DOI: 10.1039/d3sc01174g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Investigating the self-assembly and self-sorting behaviour of dynamic covalent organic architectures makes possible the parallel generation of multiple discrete products in a single one pot procedure. We here report the self-assembly of covalent organic macrocycles and macrobicyclic cages from dialdehyde and polyamine components via multiple [2 + 2] and [3 + 2] polyimine condensations. Furthermore, component self-sorting processes have been monitored within the dynamic covalent libraries formed by these macrocycles and macrobicyclic cages. The progressive assembly of the final structures involves intermediates which undergo component selection and self-correction to generate the final thermodynamic constituents. The homo-self-sorting observed seems to involve entropic factors, as the homoleptic species present a higher symmetry than the competing heteroleptic ones. This study not only emphasizes the importance of an adequate design of the components of complex self-sorting systems, but also verifies the conjecture that systems of higher complexity may generate simpler outputs through the operation of competitive self-sorting.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University 510006 Guangzhou China
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Cyril Antheaume
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University 510006 Guangzhou China
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
17
|
Ayme JF, Bruchmann B, Karmazin L, Kyritsakas N. Transient self-assembly of metal-organic complexes. Chem Sci 2023; 14:1244-1251. [PMID: 36756320 PMCID: PMC9891378 DOI: 10.1039/d2sc06374c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Implementing transient processes in networks of dynamic molecules holds great promise for developing new functional behaviours. Here we report that trichloroacetic acid can be used to temporarily rearrange networks of dynamic imine-based metal complexes towards new equilibrium states, forcing them to express complexes otherwise unfavourable in their initial equilibrium states. Basic design principles were determined for the creation of such networks. Where a complex distribution of products was obtained in the initial equilibrium state of the system, the transient rearrangement temporarily yielded a simplified output, forcing a more structured distribution of products. Where a single complex was obtained in the initial equilibrium state of the system, the transient rearrangement temporarily modified the properties of this complex. By doing so, the mechanical properties of an helical macrocyclic complex could be temporarily altered by rearranging it into a [2]catenane.
Collapse
Affiliation(s)
- Jean-François Ayme
- BASF SE, Joint Research Network on Advanced Materials and Systems (JONAS) Carl-Bosch Str. 38 67056 Ludwigshafen Germany
| | - Bernd Bruchmann
- BASF SE, Joint Research Network on Advanced Materials and Systems (JONAS) Carl-Bosch Str. 38 67056 Ludwigshafen Germany
| | - Lydia Karmazin
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg 1 rue Blaise Pascal 67008 Strasbourg France
| | - Nathalie Kyritsakas
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg 1 rue Blaise Pascal 67008 Strasbourg France
| |
Collapse
|
18
|
Liu F, Anton N, Niko Y, Klymchenko AS. Controlled Release and Capture of Aldehydes by Dynamic Imine Chemistry in Nanoemulsions: From Delivery to Detoxification. ACS APPLIED BIO MATERIALS 2023; 6:246-256. [PMID: 36516427 DOI: 10.1021/acsabm.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current biomedical applications of nanocarriers are focused on drug delivery, where encapsulated cargo is released in the target tissues under the control of external stimuli. Here, we propose a very different approach, where the active toxic molecules are removed from biological tissues by the nanocarrier. It is based on the drug-sponge concept, where specific molecules are captured by the lipid nanoemulsion (NE) droplets due to dynamic covalent chemistry inside their oil core. To this end, we designed a highly lipophilic amine (LipoAmine) capable of reacting with a free cargo-aldehyde (fluorescent dye and 4-hydroxynonenal toxin) directly inside lipid NEs, yielding a lipophilic imine conjugate well encapsulated in the oil core. The formation of imine bonds was first validated using a push-pull pyrene aldehyde dye, which changes its emission color during the reaction. The conjugate formation was independently confirmed by mass spectrometry. As a result, LipoAmine-loaded NEs spontaneously loaded cargo-aldehydes, yielding formulations stable against leakage at pH 7.4, which can further release the cargo in a low pH range (4-6) in solutions and living cells. Using fluorescence microscopy, we showed that LipoAmine NEs can extract pyrene aldehyde dye from cells as well as from an epithelial tissue (chicken skin). Moreover, successful extraction from cells was also achieved for a highly toxic aliphatic aldehyde 4-hydroxynonenal, which allowed obtaining the proof of concept for detoxification of living cells. Taken together, these results show that the dynamic imine chemistry inside NEs can be used to develop detoxification platforms.
Collapse
Affiliation(s)
- Fei Liu
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, Illkirch 67401, France.,INSERM UMR 1260, Regenerative Nanomedicine (RNM), CRBS, Université de Strasbourg, Strasbourg 67000, France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), CRBS, Université de Strasbourg, Strasbourg 67000, France
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, Illkirch 67401, France
| |
Collapse
|
19
|
Cui M, Zhang D, Wang Q, Chao J. An intelligent, autocatalytic, DNAzyme biocircuit for amplified imaging of intracellular microRNAs. NANOSCALE 2023; 15:578-587. [PMID: 36533380 DOI: 10.1039/d2nr05165f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
DNAzymes hold great promise as transducing agents for the analysis of intracellular biomarkers. However, their low intracellular delivery efficiency and limited signal amplification capability (including an additional supply of cofactors) hinder their application in low-abundance biomarker analysis. Herein, a general strategy to design an intelligent, autocatalytic, DNAzyme biocircuit is developed for amplified microRNA imaging in living cells. The DNAzyme biocircuit is constructed based on a nanodevice composed of catalytic hairpin assembly (CHA) and DNAzyme biocatalytic functional units, sustained by Au nanoparticles (AuNPs) and MnO2 nanosheets (CD/AM nanodevices). Once the CD/AM nanodevices are endocytosed by cells, the MnO2 nanosheets are reduced by intracellular glutathione (GSH), which not only releases the different units of the DNAzyme circuit, but also generates the cofactor Mn2+ for DNAzyme autocatalysis. The intracellular analytes could trigger the coordinated cross-activation of CHA and autocatalytic DNAzymes on AuNPs, enabling reliable and accurate detection of miRNAs in living cells. This intelligent autocatalytic multilayer DNAzyme biocircuit can effectively avoid signal leakage and obtain high amplification gain, expanding the application of programmable complex DNA nanocircuits in biosensing, nanomaterial assembly, and biomedicine.
Collapse
Affiliation(s)
- Meirong Cui
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Dan Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Qingfu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Jie Chao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| |
Collapse
|
20
|
Li Z, Wu Y, Zhen S, Su K, Zhang L, Yang F, McDonough MA, Schofield CJ, Zhang X. In Situ Inhibitor Synthesis and Screening by Fluorescence Polarization: An Efficient Approach for Accelerating Drug Discovery. Angew Chem Int Ed Engl 2022; 61:e202211510. [PMID: 36112310 PMCID: PMC9827864 DOI: 10.1002/anie.202211510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 01/12/2023]
Abstract
Target-directed dynamic combinatorial chemistry has emerged as a useful tool for hit identification, but has not been widely used, in part due to challenges associated with analyses involving complex mixtures. We describe an operationally simple alternative: in situ inhibitor synthesis and screening (ISISS), which links high-throughput bioorthogonal synthesis with screening for target binding by fluorescence. We exemplify the ISISS method by showing how coupling screening for target binding by fluorescence polarization with the reaction of acyl-hydrazides and aldehydes led to the efficient discovery of a potent and novel acylhydrazone-based inhibitor of human prolyl hydroxylase 2 (PHD2), a target for anemia treatment, with equivalent in vivo potency to an approved medicine.
Collapse
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Yue Wu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Shuai Zhen
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Kaijun Su
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Linjian Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Fulai Yang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Michael A. McDonough
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Xiaojin Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| |
Collapse
|
21
|
Li Z, Wu Y, Zhen S, Su K, Zhang L, Yang F, McDonough MA, Schofield CJ, Zhang X. In Situ Inhibitor Synthesis and Screening by Fluorescence Polarization: An Efficient Approach for Accelerating Drug Discovery. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202211510. [PMID: 38505687 PMCID: PMC10947266 DOI: 10.1002/ange.202211510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Target-directed dynamic combinatorial chemistry has emerged as a useful tool for hit identification, but has not been widely used, in part due to challenges associated with analyses involving complex mixtures. We describe an operationally simple alternative: in situ inhibitor synthesis and screening (ISISS), which links high-throughput bioorthogonal synthesis with screening for target binding by fluorescence. We exemplify the ISISS method by showing how coupling screening for target binding by fluorescence polarization with the reaction of acyl-hydrazides and aldehydes led to the efficient discovery of a potent and novel acylhydrazone-based inhibitor of human prolyl hydroxylase 2 (PHD2), a target for anemia treatment, with equivalent in vivo potency to an approved medicine.
Collapse
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Yue Wu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Shuai Zhen
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Kaijun Su
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Linjian Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Fulai Yang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| | - Michael A. McDonough
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Xiaojin Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Design and Optimization, and Department of ChemistryChina Pharmaceutical UniversityNanjing211198China
| |
Collapse
|
22
|
Fluorescent Dynamic Covalent Polymers for DNA Complexation and Templated Assembly. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196648. [PMID: 36235185 PMCID: PMC9570939 DOI: 10.3390/molecules27196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Dynamic covalent polymers (DCPs) offer opportunities as adaptive materials of particular interest for targeting, sensing and delivery of biological molecules. In this view, combining cationic units and fluorescent units along DCP chains is attractive for achieving optical probes for the recognition and delivery of nucleic acids. Here, we report on the design of acylhydrazone-based DCPs combining cationic arginine units with π-conjugated fluorescent moieties based on thiophene-ethynyl-fluorene cores. Two types of fluorescent building blocks bearing neutral or cationic side groups on the fluorene moiety are considered in order to assess the role of the number of cationic units on complexation with DNA. The (chir)optical properties of the building blocks, the DCPs, and their complexes with several types of DNA are explored, providing details on the formation of supramolecular complexes and on their stability in aqueous solutions. The DNA-templated formation of DCPs is demonstrated, which provides new perspectives on the assembly of fluorescent DCP based on the nucleic acid structure.
Collapse
|
23
|
Del Giudice D, Spatola E, Valentini M, Ercolani G, Di Stefano S. Dissipative Dynamic Libraries (DDLs) and Dissipative Dynamic Combinatorial Chemistry (DDCC). CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma – Meccanismi di Reazione P.le A. Moro 5 I-00185 Roma Italy
| | - Emanuele Spatola
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma – Meccanismi di Reazione P.le A. Moro 5 I-00185 Roma Italy
| | - Matteo Valentini
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma – Meccanismi di Reazione P.le A. Moro 5 I-00185 Roma Italy
| | - Gianfranco Ercolani
- Dipartimento di Scienze e Tecnologie Chimiche Università di Roma Tor Vergata Via della Ricerca Scientifica 00133 Roma Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma – Meccanismi di Reazione P.le A. Moro 5 I-00185 Roma Italy
| |
Collapse
|
24
|
Dascalu AE, Halgreen L, Torres-Huerta A, Valkenier H. Dynamic covalent chemistry with azines. Chem Commun (Camb) 2022; 58:11103-11106. [PMID: 36102679 DOI: 10.1039/d2cc03523e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic covalent chemistry is used in many applications that require both the stability of covalent bonds and the possibility to exchange building blocks. Here we present azines as a dynamic covalent functional group that combines the best characteristics of imines and acylhydrazones. We show that azines are stable in the presence of water and that dynamic combinatorial libraries of azines and aldehydes equilibrate in less than an hour.
Collapse
Affiliation(s)
- Anca-Elena Dascalu
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| | - Lau Halgreen
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering Molecular NanoSystems, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.
| |
Collapse
|
25
|
Borodin O, Shchukin Y, Schmid J, von Delius M. Anion-assisted amidinium exchange and metathesis. Chem Commun (Camb) 2022; 58:10178-10181. [PMID: 35997205 PMCID: PMC9469691 DOI: 10.1039/d2cc03425e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Dynamic covalent chemistry has become an invaluable tool for the design and preparation of adaptable yet robust molecular systems. Herein we explore the scope of a largely overlooked dynamic covalent reaction - amidinium exchange - and report on conditions that allow formal amidinium metathesis reactions.
Collapse
Affiliation(s)
- Oleg Borodin
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Yevhenii Shchukin
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Jonas Schmid
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
26
|
Jia Y, Yan X, Li J. Schiff Base Mediated Dipeptide Assembly toward Nanoarchitectonics. Angew Chem Int Ed Engl 2022; 61:e202207752. [DOI: 10.1002/anie.202207752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yi Jia
- Beijing National Laboratory for Molecular Sciences CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
- Center for Mesoscience Institute of Process Engineering Chinese Academy of Sciences Beijing 100049 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
27
|
She Z, Zou H, You L. Tuning the selectivity of amino acid recognition with dynamic covalent bond constrained fluorophores in aqueous media. Org Biomol Chem 2022; 20:6897-6904. [PMID: 35972458 DOI: 10.1039/d2ob01361d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recognition and discrimination of amino acids are generating continuous interest due to their importance. Herein we developed a series of dynamic covalent reaction constrained aldehyde-derived fluorescent probes for the binding of amino acids with tunable selectivity. Diverse emission behaviors were obtained via pH triggered movement of ring-chain tautomerization equilibrium of aldehyde probes. By taking advantage of the distinct pKa and reactivity of aldehyde probes and amino acids, unique fluorescence signaling patterns were generated, and the selectivity for amino acid recognition was further modulated. The selective recognition of Cys/Hcy was attained at pH 7.4 as a result of thiazolidine formation. The manipulation of the reactivity at pH 10 enabled the realization of high selectivity for His and Cys, respectively. Moreover, pH and redox stimuli-responsive dynamic covalent networks were constructed for the regulation of amino acid recognition. The strategies and results described should be appealing in many aspects, including dynamic assemblies, molecular sensing, biological labeling, and smart materials.
Collapse
Affiliation(s)
- Zijian She
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Lei You
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
28
|
Dong J, O'Hagan MP, Willner I. Switchable and dynamic G-quadruplexes and their applications. Chem Soc Rev 2022; 51:7631-7661. [PMID: 35975685 DOI: 10.1039/d2cs00317a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-Quadruplexes attract growing interest as functional constituents in biology, chemistry, nanotechnology, and material science. In particular, the reversible dynamic reconfiguration of G-quadruplexes provides versatile means to switch DNA nanostructures, reversibly control catalytic functions of DNA assemblies, and switch material properties and functions. The present review article discusses the switchable dynamic reconfiguration of G-quadruplexes as central functional and structural motifs that enable diverse applications in DNA nanotechnology and material science. The dynamic reconfiguration of G-quadruplexes has a major impact on the development of DNA switches and DNA machines. The integration of G-quadruplexes with enzymes yields supramolecular assemblies exhibiting switchable catalytic functions guided by dynamic G-quadruplex topologies. In addition, G-quadruplexes act as important building blocks to operate constitutional dynamic networks and transient dissipative networks mimicking complex biological dynamic circuitries. Furthermore, the integration of G-quadruplexes with DNA nanostructures, such as origami tiles, introduces dynamic and mechanical features into these static frameworks. Beyond the dynamic operation of G-quadruplex structures in solution, the assembly of G-quadruplexes on bulk surfaces such as electrodes or nanoparticles provides versatile means to engineer diverse electrochemical and photoelectrochemical devices and to switch the dynamic aggregation/deaggregation of nanoparticles, leading to nanoparticle assemblies that reveal switchable optical properties. Finally, the functionalization of hydrogels, hydrogel microcapsules, or nanoparticle carriers, such as SiO2 nanoparticles or metal-organic framework nanoparticles, yields stimuli-responsive materials exhibiting shape-memory, self-healing, and controlled drug release properties. Indeed, G-quadruplex-modified nanomaterials find growing interest in the area of nanomedicine. Beyond the impressive G-quadruplex-based scientific advances achieved to date, exciting future developments are still anticipated. The review addresses these goals by identifying the potential opportunities and challenges ahead of the field in the coming years.
Collapse
Affiliation(s)
- Jiantong Dong
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
29
|
Jia Y, Yan X, Li J. Schiff Base Mediated Dipeptide Assembly toward Nanoarchitectonics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Jia
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Beijing CHINA
| | - Xuehai Yan
- Institute of Process Engineering Chinese Academy of Sciences Institute of Process Engineering Beijing CHINA
| | - Junbai Li
- Chinese Academy of Sciences Institute of Chemistry Zhong Guan Cun Bei Yi Jie No.2 100190 Beijing CHINA
| |
Collapse
|
30
|
Hollstein S, Shyshov O, Hanževački M, Zhao J, Rudolf T, Jäger CM, von Delius M. Dynamic Covalent Self-Assembly of Chloride- and Ion-Pair-Templated Cryptates. Angew Chem Int Ed Engl 2022; 61:e202201831. [PMID: 35384202 PMCID: PMC9400851 DOI: 10.1002/anie.202201831] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 12/17/2022]
Abstract
While supramolecular hosts capable of binding and transporting anions and ion pairs are now widely available, self-assembled architectures are still rare, even though they offer an inherent mechanism for the release of the guest ion(s). In this work, we report the dynamic covalent self-assembly of tripodal, urea-based anion cryptates that are held together by two orthoester bridgeheads. These hosts exhibit affinity for anions such as Cl- , Br- or I- in the moderate range that is typically advantageous for applications in membrane transport. In unprecedented experiments, we were able to dissociate the Cs⋅Cl ion pair by simultaneously assembling suitably sized orthoester hosts around the Cs+ and the Cl- ion.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Oleksandr Shyshov
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marko Hanževački
- Department of Chemical and Environmental EngineeringUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Jie Zhao
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tamara Rudolf
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Christof M. Jäger
- Department of Chemical and Environmental EngineeringUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
31
|
Greenlee AJ, Chen H, Wendell CI, Moore JS. Tandem Imine Formation and Alkyne Metathesis Enabled by Catalyst Choice. J Org Chem 2022; 87:8429-8436. [PMID: 35678630 DOI: 10.1021/acs.joc.2c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three-rung molecular ladder 8 was prepared in one pot via tandem imine condensation and alkyne metathesis. Catalyst VI is demonstrated to successfully engender the metathesis of imine-bearing substrate 7, while catalyst III does not. The susceptibility of catalyst VI to deactivation by hydrolysis and ligand exchange is demonstrated. Assembly and disassembly of ladder 8 in one pot were demonstrated in the presence and absence of a Lewis acid catalyst.
Collapse
Affiliation(s)
- Andrew J Greenlee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Heyu Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chloe I Wendell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Sheng L, Jin Y, Hou H, Huang Y, Zhao R. Hydrazone bond-oriented molecularly imprinted nanocomposites for the selective separation of protein via the well-defined recognition sites. Mikrochim Acta 2022; 189:246. [PMID: 35674804 DOI: 10.1007/s00604-022-05308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
The development of hydrazone bond-oriented epitope imprinting strategy is reported to synthesize the polymeric binders for the selective recognition of a protein-β2-microglobulin through either its N- or C-terminal epitope. The dynamic reversibility of hydrazone bond facilitated not only the oriented assembly of the template peptide hydrazides onto the substrate but also the efficient removal of them from the imprinted cavities. The well-defined surface imprinted layer was successfully constructed through the precise control over the polymerization of silicate esters. Binding performance of the C-terminal peptide imprinted nanocomposite was significantly improved after tuning the non-covalent interactions using the sequence-matching aromatic co-monomers. The dissociation constant (Kd) between the optimized nanocomposite and epitope peptide was 0.5 µmol L-1. The nanomaterial was utilized for the selective extraction and determination of β2-microglobulin from human urine by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and HPLC-UV with satisfied recoveries of 93.1-112.3% in a concentration range 1.0-50.0 μg⋅mL-1.
Collapse
Affiliation(s)
- Le Sheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China. .,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huiqing Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China. .,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Qin S, Zou H, Hai Y, You L. Aggregation-induced emission luminogens and tunable multicolor polymer networks modulated by dynamic covalent chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Hollstein S, Shyshov O, Hanževački M, Zhao J, Rudolf T, Jäger CM, Delius M. Dynamisch kovalente Selbstassemblierung von Chlorid‐ und Ionenpaar‐templierten Kryptaten. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Selina Hollstein
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Oleksandr Shyshov
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Marko Hanževački
- Department of Chemical and Environmental Engineering University of Nottingham University Park Nottingham NG7 2RD Großbritannien
| | - Jie Zhao
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Tamara Rudolf
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Christof M. Jäger
- Department of Chemical and Environmental Engineering University of Nottingham University Park Nottingham NG7 2RD Großbritannien
| | - Max Delius
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
35
|
Wu CJ, Liu YF, Zhang WF, Zhang C, Chai GB, Zhang QD, Mao J, Ahmad I, Zhang SS, Xie JP. Encapsulation and controlled release of fragrances from MIL-101(Fe)-based recyclable magnetic nanoporous carbon. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Debiais M, Gimenez Molina A, Müller S, Vasseur JJ, Barvik I, Baraguey C, Smietana M. Design and NMR characterization of reversible head-to-tail boronate-linked macrocyclic nucleic acids. Org Biomol Chem 2022; 20:2889-2895. [PMID: 35319560 DOI: 10.1039/d2ob00232a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inspired by the ability of boronic acids to bind with compounds containing diol moieties, we envisioned the formation in solution of boronate ester-based macrocycles by the head-to-tail assembly of a nucleosidic precursor that contains both a boronic acid and the natural 2',3'-diol of ribose. DOSY NMR spectroscopy experiments in water and anhydrous DMF revealed the dynamic assembly of this precursor into dimeric and trimeric macrocycles in a concentration-dependent fashion as well as the reversibility of the self-assembly process. NMR experimental values and quantum mechanics calculations provided further insight into the sugar pucker conformation profile of these macrocycles.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| | - Alejandro Gimenez Molina
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| | - Sabine Müller
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| | - Ivan Barvik
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 2, 121 16, Czech Republic
| | - Carine Baraguey
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| |
Collapse
|
37
|
Shi B, Zhou Y, Li X. Recent advances in DNA-encoded dynamic libraries. RSC Chem Biol 2022; 3:407-419. [PMID: 35441147 PMCID: PMC8985084 DOI: 10.1039/d2cb00007e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The DNA-encoded chemical library (DEL) has emerged as a powerful technology platform in drug discovery and is also gaining momentum in academic research. The rapid development of DNA-/DEL-compatible chemistries has greatly expanded the chemical space accessible to DELs. DEL technology has been widely adopted in the pharmaceutical industry and a number of clinical drug candidates have been identified from DEL selections. Recent innovations have combined DELs with other legacy and emerging techniques. Among them, the DNA-encoded dynamic library (DEDL) introduces DNA encoding into the classic dynamic combinatorial libraries (DCLs) and also integrates the principle of fragment-based drug discovery (FBDD), making DEDL a novel approach with distinct features from static DELs. In this Review, we provide a summary of the recently developed DEDL methods and their applications. Future developments in DEDLs are expected to extend the application scope of DELs to complex biological systems with unique ligand-discovery capabilities.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jining Medical University Jining Shandong 272067 P. R. China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission Units 1503-1511 15/F. Building 17W Hong Kong SAR China
| |
Collapse
|
38
|
Carbajo D, Pérez Y, Guerra-Rebollo M, Prats E, Bujons J, Alfonso I. Dynamic Combinatorial Optimization of In Vitro and In Vivo Heparin Antidotes. J Med Chem 2022; 65:4865-4877. [PMID: 35235323 PMCID: PMC8958503 DOI: 10.1021/acs.jmedchem.1c02054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Heparin-like macromolecules
are widely used in clinics as anticoagulant,
antiviral, and anticancer drugs. However, the search of heparin antidotes
based on small synthetic molecules to control blood coagulation still
remains a challenging task due to the physicochemical properties of
this anionic polysaccharide. Here, we use a dynamic combinatorial
chemistry approach to optimize heparin binders with submicromolar
affinity. The recognition of heparin by the most amplified members
of the dynamic library has been studied with different experimental
(SPR, fluorescence, NMR) and theoretical approaches, rendering a detailed
interaction model. The enzymatic assays with selected library members
confirm the correlation between the dynamic covalent screening and
the in vitro heparin inhibition. Moreover, both ex vivo and in vivo blood coagulation assays
with mice show that the optimized molecules are potent antidotes with
potential use as heparin reversal drugs. Overall, these results underscore
the power of dynamic combinatorial chemistry targeting complex and
elusive biopolymers.
Collapse
Affiliation(s)
| | | | - Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | |
Collapse
|
39
|
Fedorowicz D, Banach S, Koza P, Frydrych R, Ślepokura K, Gregoliński J. Controlling chirality in the synthesis of 4 + 4 diastereomeric amine macrocycles derived from trans-1,2-diaminocyclopentane and 2,6-diformylpyridine. Org Biomol Chem 2022; 20:1080-1094. [PMID: 35020779 DOI: 10.1039/d1ob02410h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A few suitably long dialdehyde and primary diamine building blocks of a predetermined chirality have been designed and synthesized to enable controlled and efficient synthesis of all six possible diastereomers of 4 + 4 macrocyclic amine derived from trans-1,2-diaminocyclopentane (DACP) and 2,6-diformypyridine (DFP) units. Although two out of six diastereomers have been reported recently, their synthesis presented here is more direct and occurs with an improved yield. This family of 4 + 4 macrocycles contains one pair of homochiral enantiomers of identical RRRRRRRR and SSSSSSSS configurations of DACP units, two different meso forms (meso I of alternating RRSSRRSS and meso II of neighboring RRRRSSSS configuration of DACP moieties) as well as one pair of heterochiral enantiomers, where configuration of one diamine fragment is opposite to the other three diamine parts, RRRRRRSS and SSSSSSRR, respectively. The structures of each type of macrocycle in solid state have been confirmed by single crystal analyses of a macrocyclic amine in its suitable protonated form. The different symmetry of each type of macrocycle in solutions has been proved by 1H and 13C NMR spectra of their hydrochloride derivatives. The chiral nature of two different pairs of optically active enantiomers has been established by circular dichroism spectra. These chiral 4 + 4 diastereomeric macrocycles are receptors for chiral guests and recognize in solution 10-camphorsulfonic acid as well as chiral tartaric acid.
Collapse
Affiliation(s)
- Dominika Fedorowicz
- Dr Janusz Gregoliński, Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Sylwia Banach
- Dr Janusz Gregoliński, Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Patrycja Koza
- Dr Janusz Gregoliński, Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Rafał Frydrych
- Dr Janusz Gregoliński, Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Katarzyna Ślepokura
- Dr Janusz Gregoliński, Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Janusz Gregoliński
- Dr Janusz Gregoliński, Faculty of Chemistry University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
40
|
Wu Y, Zhao S, Hu L. Identification of potent α-amylase inhibitors via dynamic combinatorial chemistry. Bioorg Med Chem 2022; 55:116609. [PMID: 35021143 DOI: 10.1016/j.bmc.2022.116609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022]
Abstract
In this study, we report for the first time the discovery of potent α-amylase inhibitors using principle of dynamic combinatorial chemistry. The best compound identified exhibited not only high inhibitory efficiency but also low cytotoxicity. The binding mode and possible mechanism are determined in the subsequent kinetic and molecular docking studies.
Collapse
Affiliation(s)
- Yao Wu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Shuang Zhao
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Lei Hu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China.
| |
Collapse
|
41
|
He W, Wang Q, Tian X, Pan G. Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. EXPLORATION (BEIJING, CHINA) 2022; 2:20210093. [PMID: 37324582 PMCID: PMC10191035 DOI: 10.1002/exp.20210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The extracellular matrix (ECM) provides not only physical support for the tissue structural integrity, but also dynamic biochemical cues capable of regulating diverse cell behaviors and functions. Biomaterial surfaces with dynamic ligand presentation are capable of mimicking the dynamic biochemical cues of ECM, showing ECM-like functions to modulate cell behaviors. This review paper described an overview of present dynamic biomaterial interfaces by focusing on currently developed molecular strategies for dynamic ligand presentation. The paradigmatic examples for each strategy were separately discussed. In addition, the regulation of some typical cell behaviors on these dynamic biointerfaces including cell adhesion, macrophage polarization, and stem cell differentiation, and their potential applications in pathogenic cell isolation, single cell analysis, and tissue engineering are highlighted. We hope it would not only clarify a clear background of this field, but also inspire to exploit novel molecular strategies and more applications to match the increasing demand of manipulating complex cellular processes in biomedicine.
Collapse
Affiliation(s)
- Wenbo He
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Qinghe Wang
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Xiaohua Tian
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| |
Collapse
|
42
|
Li Z, Zhang L, Zhou Y, Zha D, Hai Y, You L. Dynamic Covalent Reactions Controlled by Ring‐Chain Tautomerism of 2‐Formylbenzoic Acid. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziyi Li
- College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ling Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yuntao Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daijun Zha
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei You
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
43
|
Hu D, Mao L, Wang M, Huang H, Hu R, Ma H, Yuan J, Wei Y. In Situ Visualization of Reversible Diels-Alder Reactions with Self-Reporting Aggregation-Induced Emission Luminogens. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3485-3495. [PMID: 34994541 DOI: 10.1021/acsami.1c20758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamic reversible Diels-Alder (DA) reactions play essential roles in both academic and applied fields. Currently, in situ visualization and direct monitoring of the formation and cleavage of covalent bonds in DA reactions are hampered by finite compatibility and expensive precise instruments, especially limited in solid reactions. We herein report a fluorescence system capable of in situ visualization by naked eyes and monitoring DA/retro-DA reactions. With the fluorescence quenching effect, the synthesized TPEMI could work as an innovative self-indicator for both DA termination and retro-DA occurrence. The fluorescence increases during DA reactions, and the mechanism is investigated to establish qualitative and quantitative relations. Besides rapid screening of reaction conditions and monitoring of DA exchange processes, the TPEMI fluorescence system can visualize heterogeneous and solid-state reactions with the AIE character. The TPEMI platform is expected to offer novel insights into reversible DA processes and dynamic covalent chemistry.
Collapse
Affiliation(s)
- Danning Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liucheng Mao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mengshi Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongye Huang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Renjian Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haijun Ma
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinying Yuan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Center for Nanotechnology, Institute of Biomedical Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan, China
| |
Collapse
|
44
|
Kawai K, Ikeda K, Sato A, Kabasawa A, Kojima M, Kokado K, Kakugo A, Sada K, Yoshino T, Matsunaga S. 1,2-Disubstituted 1,2-Dihydro-1,2,4,5-tetrazine-3,6-dione as a Dynamic Covalent Bonding Unit at Room Temperature. J Am Chem Soc 2022; 144:1370-1379. [PMID: 35040645 DOI: 10.1021/jacs.1c11665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dynamic covalent bonds are useful tools in a wide range of applications. Although various reversible chemical reactions have been studied for this purpose, the requirement for harsh conditions, such as high temperature and low or high pH, to activate generally stable covalent bonds limits their potential applications involving biomolecules or household utilization. Here, we report the design, synthesis, characterization, and dynamic covalent bonding properties of 1,2-disubstituted 1,2-dihydro-1,2,4,5-tetrazine-3,6-dione (TETRAD). Hetero-Diels-Alder reactions of TETRAD with furan derivatives and their retro-reactions proceeded rapidly at room temperature under neutral conditions, enabling a chemically induced sol-gel transition system.
Collapse
Affiliation(s)
- Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kazuki Ikeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akane Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Kabasawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kenta Kokado
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Akira Kakugo
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Kazuki Sada
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
45
|
Wang C, O'Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Photoresponsive DNA materials and their applications. Chem Soc Rev 2022; 51:720-760. [PMID: 34985085 DOI: 10.1039/d1cs00688f] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoresponsive nucleic acids attract growing interest as functional constituents in materials science. Integration of photoisomerizable units into DNA strands provides an ideal handle for the reversible reconfiguration of nucleic acid architectures by light irradiation, triggering changes in the chemical and structural properties of the nanostructures that can be exploited in the development of photoresponsive functional devices such as machines, origami structures and ion channels, as well as environmentally adaptable 'smart' materials including nanoparticle aggregates and hydrogels. Moreover, photoresponsive DNA components allow control over the composition of dynamic supramolecular ensembles that mimic native networks. Beyond this, the modification of nucleic acids with photosensitizer functionality enables these biopolymers to act as scaffolds for spatial organization of electron transfer reactions mimicking natural photosynthesis. This review provides a comprehensive overview of these exciting developments in the design of photoresponsive DNA materials, and showcases a range of applications in catalysis, sensing and drug delivery/release. The key challenges facing the development of the field in the coming years are addressed, and exciting emergent research directions are identified.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ziyuan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
46
|
Jiang G, Hai Y, Ye H, You L. Dynamic Covalent Chemistry Constrained Diphenylethenes: Control over Reactivity and Luminescence in both Solution and Solid State. Org Chem Front 2022. [DOI: 10.1039/d2qo00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diarylethenes (DAEs) are an important class of building blocks in chemistry and materials science, and hence, their modulation and functionalization are of critical significance. Here we demonstrate a general strategy...
Collapse
|
47
|
Priegue JM, Louzao I, Gallego I, Montenegro J, Granja JR. 1D alignment of proteins and other nanoparticles by using reversible covalent bonds on cyclic peptide nanotubes. Org Chem Front 2022. [DOI: 10.1039/d1qo01349a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide nanotubes deposit on mica surface can be used for the alignment of proteins thank to the use of dynamic covalent bonds that allow the incorporation of appropriate ligands on nanotube surface.
Collapse
Affiliation(s)
- Juan M. Priegue
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Iria Louzao
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Iván Gallego
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Javier Montenegro
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Juan R. Granja
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| |
Collapse
|
48
|
Cai Z, Liu Y, Tao Y, Zhu JB. Recent Advances in Monomer Design for Recyclable Polymers. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Pan J, He Y, Liu Z, Chen J. Tetrahedron-Based Constitutional Dynamic Network for COVID-19 or Other Coronaviruses Diagnostics and Its Logic Gate Applications. Anal Chem 2021; 94:714-722. [PMID: 34935362 DOI: 10.1021/acs.analchem.1c03051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Considering the large-scale outbreak of the coronavirus, it is essential to develop a versatile sensing system for different coronaviruses diagnostics, such as COVID-19, severe acute respiratory syndrome-related coronavirus (SARS-CoV), and bat SARS-like coronavirus (Bat-SL-CoVZC45). In this work, a tetrahedron-based constitutional dynamic network was built as the sensing platform for coronavirus detection. Four different DNA probes were used to construct the tetrahedron structure. DNAzyme and the fluorophore modified substrate strand were used to generate different fluorescence signals, which can be used to distinguish different coronaviruses. The coronavirus biosensor shows a high sensitivity for COVID-19, Bat-SL-CoVZC45, and SARS-CoV detection, with detection limits of 2.5, 3.1, and 2.9 fM, respectively. Also, the platform is robust, and the possible interference from clinical samples was negligible. Using different coronaviruses as inputs, we have fabricated several concatenated logic gates, such as "AND-OR", "INHIBIT-AND", "AND-AND-AND", and "AND-INHIBIT". Importantly, our logic system can also be used to identify SARS-CoV-2 Delta and Lambda variants in the logic operations. Due to the unique advantages of high sensitivity and selectivity, multiple logic biocomputing capabilities, and multireadout mode, this flexible sensing system provides a versatile sensing strategy for intelligent diagnostics of different coronaviruses with low false-negative rates.
Collapse
Affiliation(s)
- Jiafeng Pan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ying He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
50
|
Hai Y, Ye H, Li Z, Zou H, Lu H, You L. Light-Induced Formation/Scission of C-N, C-O, and C-S Bonds Enables Switchable Stability/Degradability in Covalent Systems. J Am Chem Soc 2021; 143:20368-20376. [PMID: 34797658 DOI: 10.1021/jacs.1c09958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The manipulation of covalent bonds could be directed toward degradable, recyclable, and sustainable materials. However, there is an intrinsic conflict between properties of stability and degradability. Here we report light-controlled formation/scission of three types of covalent bonds (C-N, C-O, and C-S) through photoswitching between equilibrium and nonequilibrium states of dynamic covalent systems, achieving dual benefits of photoaddressable stability and cleavability. The photocyclization of dithienylethene fused aldehyde ring-chain tautomers turns on the reactivity, incorporating/releasing amines, alcohols, and thiols reversibly with high efficiency, respectively. Upon photocycloreversion the system is shifted to kinetically locked out-of-equilibrium form, enabling remarkable robustness of covalent assemblies. Reaction coupling allows remote and directional control of a diverse range of equilibria and further broadens the scope. Through locking and unlocking covalent linkages with light when needed, the utility is demonstrated with capture/release of bioactive molecules, modification of surfaces, and creation of polymers exhibiting tailored stability and degradability/recyclability. The versatile toolbox for photoswitchable dynamic covalent reactions to toggle matters on and off should be appealing to many endeavors.
Collapse
Affiliation(s)
- Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ziyi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|