1
|
Kondak S, Kondak D, Kabadayi O, Erdei L, Rónavári A, Kónya Z, Galbács G, Kolbert Z. Current insights into the green synthesis, in planta characterization and phytoeffects of nickel nanoparticles and their agricultural implications. ENVIRONMENTAL RESEARCH 2024; 260:119665. [PMID: 39048062 DOI: 10.1016/j.envres.2024.119665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The intensifying production and release into the environment as well as the increasing potential in agricultural applications make the relationship between plants and nickel nanoparticles (Ni NPs) a relevant and timely topic. The aim of this review is to give an overview and discuss the latest findings about the relationship of Ni NPs and plants. Ni NPs can be synthesized using phytochemicals derived from plant parts in an environmentally friendly manner. There are several ways for these nanoparticles to enter plant cells and tissues. This can be demonstrated through various imaging and chemical mapping approaches (e.g., transmission electron microscopy, X-ray fluorescence spectroscopy etc.). NiO NPs affect plants at multiple levels, including subcellular, cellular, tissue, organ, and whole-plant levels. However, the effects of Ni NPs on plants' ecological partners (e.g., rhizobiome, pollinators) remain largely unknown despite their ecotoxicological significance. The main cause of the Ni NPs-triggered damages is the reactive oxygen species imbalance as a consequence of the modulation of antioxidants. In non-tolerant plants, the toxicity of NiO NPs can be mitigated by exogenous treatments such as the application of silicon, salicylic acid, or jasmonic acid, which induce defense mechanisms whereas Ni-hypertolerant plant species possess endogenous defense systems, such as cell wall modifications and nitrosative signaling against NiO NP stress. Research highlights the role of Ni NPs in managing fungal diseases, showcasing their antifungal properties against specific pathogens. Due to the essentiality of Ni, the application of Ni NPs as nanofertilizers might be promising and has recently started to come into view.
Collapse
Affiliation(s)
- Selahattin Kondak
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary; Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Dóra Kondak
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary; Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Onur Kabadayi
- Department of Chemistry, Faculty of Science and Arts, Sakarya University, 54187, Serdivan Sakarya, Turkey
| | - László Erdei
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Rerrich Béla tér 1., 6720, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Rerrich Béla tér 1., 6720, Szeged, Hungary
| | - Gábor Galbács
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8., 6720, Szeged, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary.
| |
Collapse
|
2
|
Nam NN, Trinh TND, Do HDK, Phan TB, Trinh KTL, Lee NY. Advances and Opportunities of luminescence Nanomaterial for bioanalysis and diagnostics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 327:125347. [PMID: 39486236 DOI: 10.1016/j.saa.2024.125347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Luminescence nanomaterials (LNMs) have recently received great attention in biological analysis and sensing owing to their key advances in easy design and functionalization with high photostability, luminescence stability, low autofluorescence, and multiphoton capacity. The number of publications surrounding LNMs for biological applications has grown rapidly. LNMs based on Stokes and anti-Stokes shifts are powerful tools for biological analysis. Especially, unique properties of anti-Stokes luminescence such as upconversion nanoparticles (UCNPs) with an implementation strategy to use longer-wavelength excitation sources such as near-infrared (NIR) light can depth penetrate to biological tissue for bioanalysis and bioimaging. We observed that the LNMs-based metal-organic frameworks (MOFs) have been developed and paid attention to the field of bioimaging and luminescence-based sensors, because of their structural flexibility, and multifunctionality for the encapsulation of luminophores. This article provides an overview of innovative LNMs such as quantum dots (QDs), UCNPs, and LMOFs. A brief summary of recent progress in design strategies and applications of LNMs including pH and temperature sensing in biologically responsive platforms, pathogen detection, molecular diagnosis, bioimaging, photodynamic, and radiation therapy published within the past three years is highlighted. It was found that the integrated nanosystem of lab-on-a-chip (LOC) with nanomaterials was rapidly widespread and erupting in interest after the COVID-19 pandemic. The simple operation and close processes of the integration nanosystem together with the optimized size and low energy and materials consumption of biochips and devices allow their trend study and application to develop portable and intelligent diagnostics tools. The last part of this work is the introduction of the utilization use of LNMs in LOC applications in terms of microfluidics and biodevices.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 72820, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 72820, VietNam; Vietnam National University, Ho Chi Minh City 72820, VietNam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
3
|
Shangguan H, Wang Q, Liu S, Li C, Qu J, Cui Y, Tang Z, Huang Y, Niu N, Xu J. Fluoride Hafnium/Zirconium-Softened Nanoprobes for Near-Infrared-IIb and CT Dual-Mode Bioimaging. NANO LETTERS 2024; 24:11738-11746. [PMID: 39229926 DOI: 10.1021/acs.nanolett.4c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fluoride-based lanthanide-doped nanoparticles (LDNPs) featuring second near-infrared (NIR-II, 1000-1700 nm) downconversion emission for bioimaging have attracted extensive attention. However, conventional LDNPs cannot be degraded and eliminated from organisms because of an inert lattice, which obstructs bioimaging applications. Herein, the core-shell LDNPs of Na3HfF7:Yb,Er@CaF2:Ce,Zr(Hf) [labeled as Zr(Hf)Ce-HC] with pH-selective and tunable degradability were synthesized for dual-modal bioimaging. Notably, the "softening" lattice of the Na3HfF7 matrix and different Zr4+(Hf4+) doping amounts in the shell enable Zr(Hf)Ce-HC with acidity-dependent and tunable degradability. After coating of an optimized Ce3+-doped CaF2:Zr shell, the near-infrared-IIb (NIR-IIb, 1500-1700 nm) luminescence intensity of ZrCe-HC is enhanced by 5.2 times compared with that of Na3HfF7:Yb,Er. The Hf element with high X-ray attenuation allows ZrCe-HC as the contrast agent for computed tomography (CT) bioimaging. The modification of oxidized sodium alginate endows ZrCe-HC with satisfying biocompatibility for NIR-IIb/CT dual-modal bioimaging. These findings would benefit the bioimaging applications of degradable fluoride-based LDNPs.
Collapse
Affiliation(s)
- Hang Shangguan
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiawei Qu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yujie Cui
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Zhengyang Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yaru Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Na Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
4
|
Lamon S, Yu H, Zhang Q, Gu M. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. LIGHT, SCIENCE & APPLICATIONS 2024; 13:252. [PMID: 39277593 PMCID: PMC11401911 DOI: 10.1038/s41377-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.
Collapse
Affiliation(s)
- Simone Lamon
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| | - Haoyi Yu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Qiming Zhang
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
5
|
Hu G, Yue D, Chen W, Lin Q, Lyu H. Dual-mode upconversion sensors for detecting differently charged biotargets based on the oxidase-mimicking activity of Ce 4+ and electrostatic control. Talanta 2024; 277:126392. [PMID: 38865959 DOI: 10.1016/j.talanta.2024.126392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Heparin is a highly negatively charged sulfated linear polymer glycosaminoglycan that has been widely used as an anticoagulant in medicine. Protamine is a cationic protein rich in arginine that is used to treat the blood-brain barrier during excess heparin surgery. Trypsin is the most important digestive enzyme-encoding generated by the pancreas and can specifically cleave the carboxyl ends of arginine and lysine residues. Heparin, protamine, and trypsin interact and constrain each other, and their fluctuations reflect the body's dysfunction. Therefore, it is necessary to develop a fast, sensitive, and highly selective assay for regularly monitoring the levels of heparin, protamine, and trypsin in serum. Herein, a fluorescent and colorimetric dual-mode upconversion nanoparticle (UCNP) biosensor was used for the determination of heparin, protamine, and trypsin based on the oxidase-mimicking activity of Ce4+ and electrostatic control. The biosensor exhibited sensitive detection of heparin, protamine, and trypsin with low limits of detection (LODs) of 16 ng/mL, 87 ng/mL and 31 ng/mL, respectively. Furthermore, the designed biosensor could eliminate autofluorescence, which not only effectively increased the accuracy of the sensor but also provided a new sensing pathway for the detection of differently charged biotargets.
Collapse
Affiliation(s)
- Gaoya Hu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Daoping Yue
- Ningde City Hospital, Ningde Normal University, Ningde, 352100, China
| | - Weishuan Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingqing Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Haixia Lyu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
6
|
Singh SK, Parihar S, Jain S, Ho JAA, Vankayala R. Light-responsive functional nanomaterials as pioneering therapeutics: a paradigm shift to combat age-related disorders. J Mater Chem B 2024; 12:8212-8234. [PMID: 39058026 DOI: 10.1039/d4tb00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Aging, marked by dysregulated cellular systems, gives rise to a spectrum of age-related disorders, including neurodegeneration, atherosclerosis, immunosenescence, and musculoskeletal issues. These conditions contribute significantly to the global disease burden, posing challenges to health span and economic resources. Current therapeutic approaches, although diverse in mechanism, often fall short in targeting the underlying cellular pathologies. They fail to address the issues compounded by altered pharmacokinetics in the elderly. Nanotechnology emerges as a transformative solution, offering tissue-specific targeted therapies through nanoparticles. Functional nanomaterials (FNMs) respond to internal or external stimuli, with light-responsive nanomaterials gaining prominence. Harnessing the benefits of deep tissue penetration and ease of manipulation particularly in the near-infrared spectrum, light-responsive FNMs present innovative strategies for age-related comorbidities. This review comprehensively summarizes the potential of light-responsive FNM-based approaches for targeting cellular environments in age-related disorders, and also emphasizes the advantages over traditional treatment modalities. Specifically, it focuses on the development of various classes of light-responsive functional nanomaterials including plasmonic nanomaterials, nanomaterials as carriers, upconversion nanomaterials, 2D nanomaterials, transition metal oxide and dichalcogenide nanomaterials and carbon-based nanomaterials against age related diseases. We foresee that such advanced developments in the field of nanotechnology could provide a new hope for clinical diagnosis and treatment of age-related disorders.
Collapse
Affiliation(s)
- Shubham Kumar Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Shivay Parihar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Sanskar Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Ja-An Annie Ho
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
- Interdisciplinary Research Platform, Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
7
|
Arellano L, Martínez R, Pardo A, Diez I, Velasco B, Moreda-Piñeiro A, Bermejo-Barrera P, Barbosa S, Taboada P. Assessing the Effect of Surface Coating on the Stability, Degradation, Toxicity and Cell Endocytosis/Exocytosis of Upconverting Nanoparticles. J Colloid Interface Sci 2024; 668:575-586. [PMID: 38691966 DOI: 10.1016/j.jcis.2024.04.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Lanthanide-doped up-converting nanoparticles (UCNPs) have emerged as promising biomedical tools in recent years. Most research efforts were devoted to the synthesis of inorganic cores with the optimal physicochemical properties. However, the careful design of UCNPs with the adequate surface coating to optimize their biological performance still remains a significant challenge. Here, we propose the functionalization of UCNPs with four distinct types of surface coatings, which were compared in terms of the provided colloidal stability and resistance to degradation in different biological-relevant media, including commonly avoided analysis in acidic lysosomal-mimicking fluids. Moreover, the influence of the type of particle surface coating on cell cytotoxicity and endocytosis/exocytosis was also evaluated. The obtained results demonstrated that the functionalization of UCNPs with poly(isobutylene-alt-maleic anhydride) grafted with dodecylamine (PMA-g-dodecyl) constitutes an outstanding strategy for their subsequent biomedical application, whereas poly(ethylene glycol) (PEG) coating, although suitable for colloidal stability purposes, hinders extensive cell internalization. Conversely, surface coating with small ligand were found not to be suitable, leading to large degradation degrees of UCNPs. The analysis of particle' behavior in different biological media and in vitro conditions here performed pretends to help researchers to improve the design and implementation of UCNPs as theranostic nanotools.
Collapse
Affiliation(s)
- Lilia Arellano
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Martínez
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Alberto Pardo
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Iago Diez
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Brenda Velasco
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Faculty of Chemistry and Materials Institute (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Faculty of Chemistry and Materials Institute (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Tian W, Jia Q, Lin J, Luo J, He D, Yang J, Guo T, Guo H, Guo Y, Zhang W, Chen F, Ye Y, Liu J, Xu M, Deng C, Cui B, Su D, Wang H, Lu Y, Xiao J, Liu H, Yang J, Hou Z, Wang S. Remote neurostimulation through an endogenous ion channel using a near-infrared light-activatable nanoagonist. SCIENCE ADVANCES 2024; 10:eadn0367. [PMID: 39121219 PMCID: PMC11313869 DOI: 10.1126/sciadv.adn0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/02/2024] [Indexed: 08/11/2024]
Abstract
The development of noninvasive approaches to precisely control neural activity in mammals is highly desirable. Here, we used the ion channel transient receptor potential ankyrin-repeat 1 (TRPA1) as a proof of principle, demonstrating remote near-infrared (NIR) activation of endogenous neuronal channels in mice through an engineered nanoagonist. This achievement enables specific neurostimulation in nongenetically modified mice. Initially, target-based screening identified flavins as photopharmacological agonists, allowing for the photoactivation of TRPA1 in sensory neurons upon ultraviolet A/blue light illumination. Subsequently, upconversion nanoparticles (UCNPs) were customized with an emission spectrum aligned to flavin absorption and conjugated with flavin adenine dinucleotide, creating a nanoagonist capable of NIR activation of TRPA1. Following the intrathecal injection of the nanoagonist, noninvasive NIR stimulation allows precise bidirectional control of nociception in mice through remote activation of spinal TRPA1. This study demonstrates a noninvasive NIR neurostimulation method with the potential for adaptation to various endogenous ion channels and neural processes by combining photochemical toolboxes with customized UCNPs.
Collapse
Affiliation(s)
- Weifeng Tian
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Institute of Organoid Technology, Kunming Medical University, Kunming, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qi Jia
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiewen Lin
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Luo
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dongmei He
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jie Yang
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tao Guo
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huiling Guo
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yusheng Guo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, The Affiliated TCM Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, GMU-GIBH Joint School of Life Sciences, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - Wenjie Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Feiyu Chen
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ying Ye
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingjing Liu
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mindong Xu
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chengjie Deng
- Cell Biology and Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Boxiang Cui
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Deyuan Su
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hao Wang
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Lu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Heng Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, The Affiliated TCM Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, GMU-GIBH Joint School of Life Sciences, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Zhiyao Hou
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shu Wang
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
González-Mancebo D, Becerro AI, Caro C, Gómez-González E, García-Martín ML, Ocaña M. Nanoparticulated Bimodal Contrast Agent for Ultra-High-Field Magnetic Resonance Imaging and Spectral X-ray Computed Tomography. Inorg Chem 2024; 63:10648-10656. [PMID: 38807360 PMCID: PMC11167642 DOI: 10.1021/acs.inorgchem.4c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Bimodal medical imaging based on magnetic resonance imaging (MRI) and computed tomography (CT) is a well-known strategy to increase the diagnostic accuracy. The most recent advances in MRI and CT instrumentation are related to the use of ultra-high magnetic fields (UHF-MRI) and different working voltages (spectral CT), respectively. Such advances require the parallel development of bimodal contrast agents (CAs) that are efficient under new instrumental conditions. In this work, we have synthesized, through a precipitation reaction from a glycerol solution of the precursors, uniform barium dysprosium fluoride nanospheres with a cubic fluorite structure, whose size was found to depend on the Ba/(Ba + Dy) ratio of the starting solution. Moreover, irrespective of the starting Ba/(Ba + Dy) ratio, the experimental Ba/(Ba + Dy) values were always lower than those used in the starting solutions. This result was assigned to lower precipitation kinetics of barium fluoride compared to dysprosium fluoride, as inferred from the detailed analysis of the effect of reaction time on the chemical composition of the precipitates. A sample composed of 34 nm nanospheres with a Ba0.51Dy0.49F2.49 stoichiometry showed a transversal relaxivity (r2) value of 147.11 mM-1·s-1 at 9.4 T and gave a high negative contrast in the phantom image. Likewise, it produced high X-ray attenuation in a large range of working voltages (from 80 to 140 kVp), which can be attributed to the presence of different K-edge values and high Z elements (Ba and Dy) in the nanospheres. Finally, these nanospheres showed negligible cytotoxicity for different biocompatibility tests. Taken together, these results show that the reported nanoparticles are excellent candidates for UHF-MRI/spectral CT bimodal imaging CAs.
Collapse
Affiliation(s)
- Daniel González-Mancebo
- Instituto
de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, Seville 41092, Spain
| | - Ana Isabel Becerro
- Instituto
de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, Seville 41092, Spain
| | - Carlos Caro
- Biomedical
Magnetic Resonance Laboratory-BMRL, Andalusian
Public Foundation Progress and Health-FPS, Seville 41092, Spain
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina − IBIMA Plataforma BIONAND, Málaga 29590, Spain
- CIBER-BBN,
ISCIII,Monforte de Lemos
3-5. Pabellón 11. Planta 0, Madrid 28029,Spain
| | - Elisabet Gómez-González
- Instituto
de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, Seville 41092, Spain
| | - María Luisa García-Martín
- Biomedical
Magnetic Resonance Laboratory-BMRL, Andalusian
Public Foundation Progress and Health-FPS, Seville 41092, Spain
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina − IBIMA Plataforma BIONAND, Málaga 29590, Spain
- CIBER-BBN,
ISCIII,Monforte de Lemos
3-5. Pabellón 11. Planta 0, Madrid 28029,Spain
| | - Manuel Ocaña
- Instituto
de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, Seville 41092, Spain
| |
Collapse
|
10
|
Qiu F, Gong J, Tong G, Han S, Zhuang X, Zhu X. Near-infrared Light-Induced Polymerizations: Mechanisms and Applications. Chempluschem 2024; 89:e202300782. [PMID: 38345544 DOI: 10.1002/cplu.202300782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Photopolymerizations have garnered significant attention in polymer science due to their low polymerization temperature, high production efficiency, environmental friendliness, and spatial controllability. Despite these merits, the poor penetration and severe chemical damage from ultraviolet/visible (UV/Vis) light resources pose significant barriers to their success in conventional photopolymerizations. A recent breakthrough involving the utilization of near-infrared (NIR) laser with long wavelength has been exploited for diverse applications. With the combination of a NIR photosensitizer (PS), NIR-induced photopolymerizations have been successfully developed to alleviate the challenges in conventional methods. The enhancement of penetration depth and safety of NIR-induced photopolymerizations can contribute significantly to improving the efficiency of polymerization for production of intricate structures across various scales. In this concept, the typical types of PSs and polymerization mechanisms (PMs) within the NIR-induced photopolymerization systems have been classified in detail. Additionally, the applications of various polymers achieved by NIR-induced photopolymerizations are summarized. Furthermore, research directions and future challenges of this field are also discussed comprehensively.
Collapse
Affiliation(s)
- Feng Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Jiao Gong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Gangsheng Tong
- State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiaodong Zhuang
- State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinyuan Zhu
- State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
11
|
Sharma N, Kurmi BD, Singh D, Mehan S, Khanna K, Karwasra R, Kumar S, Chaudhary A, Jakhmola V, Sharma A, Singh SK, Dua K, Kakkar D. Nanoparticles toxicity: an overview of its mechanism and plausible mitigation strategies. J Drug Target 2024; 32:457-469. [PMID: 38328920 DOI: 10.1080/1061186x.2024.2316785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Over the last decade, nanoparticles have found great interest among scientists and researchers working in various fields within the realm of biomedicine including drug delivery, gene delivery, diagnostics, targeted therapy and biomarker mapping. While their physical and chemical properties are impressive, there is growing concern about the toxicological potential of nanoparticles and possible adverse health effects as enhanced exposure of biological systems to nanoparticles may result in toxic effects leading to serious contraindications. Toxicity associated with nanoparticles (nanotoxicity) may include the undesired response of several physiological mechanisms including the distressing of cells by external and internal interaction with nanoparticles. However, comprehensive knowledge of nanotoxicity mechanisms and mitigation strategies may be useful to overcome the hazardous situation while treating diseases with therapeutic nanoparticles. With the same objectives, this review discusses various mechanisms of nanotoxicity and provides an overview of the current state of knowledge on the impact of nanotoxicity on biological control systems and organs including liver, brain, kidneys and lungs. An attempt also been made to present various approaches of scientific research and strategies that could be useful to overcome the effect of nanotoxicity during the development of nanoparticle-based systems including coating, doping, grafting, ligation and addition of antioxidants.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Dilpreet Singh
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Sidharth Mehan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Janakpuri, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, Uttar Pradesh, India
| | - Amit Chaudhary
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | | | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Dipti Kakkar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig SK Mazumdar Marg, Delhi, India
| |
Collapse
|
12
|
Elsaygh J, Zaher A, Parikh MA, Frishman WH, Peterson SJ. Nanotechnology: The Future for Diagnostic and Therapeutic Intervention in Cardiovascular Diseases is Here. Cardiol Rev 2024:00045415-990000000-00281. [PMID: 38814069 DOI: 10.1097/crd.0000000000000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
With advances in technology and medicine over the last 3 decades, cardiovascular medicine has evolved tremendously. Nanotechnology provides a promising future in personalized precision medicine. In this review, we delve into the current and prospective applications of nanotechnology and nanoparticles in cardiology. Nanotechnology has allowed for point-of-care testing such as high-sensitivity troponins, as well as more precise cardiac imaging. This review is focused on 3 diseases within cardiology: coronary artery disease, heart failure, and valvular heart disease. The use of nanoparticles in coronary stents has shown success in preventing in-stent thrombosis, as well as using nanosized drug delivery medications to prevent neointimal proliferation in a way that spares systemic toxicity. In addition, by using nanoparticles as drug delivery systems, nanotechnology can be utilized in the delivery of goal-directed medical therapy in heart failure patients. It has also been shown to improve cell therapy in this patient population by helping in cell retention of grafts. Finally, the use of nanoparticles in the manufacturing of bioprosthetic valves provides a promising future for the longevity and success of cardiac valve repair and replacement.
Collapse
Affiliation(s)
- Jude Elsaygh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Anas Zaher
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Manish A Parikh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| | | | - Stephen J Peterson
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
13
|
Li M, Gao J, Yao L, Zhang L, Li D, Li Z, Wu Q, Wang S, Ding J, Liu Y, Wang M, Tang G, Qin H, Li J, Yang X, Liu R, Zeng L, Shi J, Qu G, Jiang G. Determining toxicity of europium oxide nanoparticles in immune cell components and hematopoiesis in dominant organs in mice: Role of lysosomal fluid interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173482. [PMID: 38795982 DOI: 10.1016/j.scitotenv.2024.173482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Extensive application of rare earth element oxide nanoparticles (REE NPs) has raised a concern over the possible toxic health effects after human exposure. Once entering the body, REE NPs are primarily processed by phagocytes in particular macrophages and undergo biotic phosphate complexation in lysosomal compartment. Such biotransformation affects the target organs and in vivo fate of REE NPs after escaping the lysosomes. However, the immunomodulatory effects of intraphagolysosomal dissolved REE NPs remains insufficient. Here, europium oxide (Eu2O3) NPs were pre-incubated with phagolysosomal simulant fluid (PSF) to mimic the biotransformation of europium oxide (p-Eu2O3) NPs under acid phagolysosome conditions. We investigated the alteration in immune cell components and the hematopoiesis disturbance on adult mice after intravenous administration of Eu2O3 NPs and p-Eu2O3 NPs. Our results indicated that the liver and spleen were the main target organs for Eu2O3 NPs and p-Eu2O3 NPs. Eu2O3 NPs had a much higher accumulative potential in organs than p-Eu2O3 NPs. Eu2O3 NPs induced more alterations in immune cells in the spleen, while p-Eu2O3 NPs caused stronger response in the liver. Regarding hematopoietic disruption, Eu2O3 NPs reduced platelets (PLTs) in peripheral blood, which might be related to the inhibited erythrocyte differentiation in the spleen. By contrast, p-Eu2O3 NPs did not cause significant disturbance in peripheral PLTs. Our study demonstrated that the preincubation with PSF led to a distinct response in the immune system compared to the pristine REE NPs, suggesting that the potentially toxic effects induced by the release of NPs after phagocytosis should not be neglected, especially when evaluating the safety of NPs application in vivo.
Collapse
Affiliation(s)
- Min Li
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Liu Zhang
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Danyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zikang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ding
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Qin
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Li
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinyue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzeng Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Li Zeng
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
14
|
Li Z, Lu S, Liu W, Chen Z, Huang Y, Li X, Gong J, Chen X. Customized Lanthanide Nanobiohybrids for Noninvasive Precise Phototheranostics of Pulmonary Biofilm Infection. ACS NANO 2024; 18:11837-11848. [PMID: 38654614 DOI: 10.1021/acsnano.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A noninvasive strategy for in situ diagnosis and precise treatment of bacterial biofilm infections is highly anticipated but still a great challenge. Currently, no in vivo biofilm-targeted theranostic agent is available. Herein, we fabricated intelligent theranostic alginate lyase (Aly)-NaNdF4 nanohybrids with a 220 nm sunflower-like structure (NaNdF4@DMS-Aly) through an enrichment-encapsulating strategy, which exhibited excellent photothermal conversion efficiency and the second near-infrared (NIR-II) luminescence. Benefiting from the site-specific targeting and biofilm-responsive Aly release from NaNdF4@DMS-Aly, we not only enabled noninvasive diagnosis but also realized Aly-photothermal synergistic therapy and real-time evaluation of therapeutic effect in mice models with Pseudomonas aeruginosa biofilm-induced pulmonary infection. Furthermore, such nanobiohybrids with a sheddable siliceous shell are capable of delaying the NaNdF4 dissolution and biodegradation upon accomplishing the therapy, which is highly beneficial for the biosafety of theranostic agents.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Lu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Wenzhen Liu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Xingjun Li
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Gong
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| |
Collapse
|
15
|
Schroter A, Hirsch T. Control of Luminescence and Interfacial Properties as Perspective for Upconversion Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306042. [PMID: 37986189 DOI: 10.1002/smll.202306042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Near-infrared (NIR) light is highly suitable for studying biological systems due to its minimal scattering and lack of background fluorescence excitation, resulting in high signal-to-noise ratios. By combining NIR light with lanthanide-based upconversion nanoparticles (UCNPs), upconversion is used to generate UV or visible light within tissue. This remarkable property has gained significant research interest over the past two decades. Synthesis methods are developed to produce particles of various sizes, shapes, and complex core-shell architectures and new strategies are explored to optimize particle properties for specific bioapplications. The diverse photophysics of lanthanide ions offers extensive possibilities to tailor spectral characteristics by incorporating different ions and manipulating their arrangement within the nanocrystal. However, several challenges remain before UCNPs can be widely applied. Understanding the behavior of particle surfaces when exposed to complex biological environments is crucial. In applications where deep tissue penetration is required, such as photodynamic therapy and optogenetics, UCNPs show great potential as nanolamps. These nanoparticles can combine diagnostics and therapeutics in a minimally invasive, efficient manner, making them ideal upconversion probes. This article provides an overview of recent UCNP design trends, highlights past research achievements, and outlines potential future directions to bring upconversion research to the next level.
Collapse
Affiliation(s)
- Alexandra Schroter
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053, Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
16
|
Wu Y, Li F, Wu Y, Wang H, Gu L, Zhang J, Qi Y, Meng L, Kong N, Chai Y, Hu Q, Xing Z, Ren W, Li F, Zhu X. Lanthanide luminescence nanothermometer with working wavelength beyond 1500 nm for cerebrovascular temperature imaging in vivo. Nat Commun 2024; 15:2341. [PMID: 38491065 PMCID: PMC10943110 DOI: 10.1038/s41467-024-46727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Nanothermometers enable the detection of temperature changes at the microscopic scale, which is crucial for elucidating biological mechanisms and guiding treatment strategies. However, temperature monitoring of micron-scale structures in vivo using luminescent nanothermometers remains challenging, primarily due to the severe scattering effect of biological tissue that compromises the imaging resolution. Herein, a lanthanide luminescence nanothermometer with a working wavelength beyond 1500 nm is developed to achieve high-resolution temperature imaging in vivo. The energy transfer between lanthanide ions (Er3+ and Yb3+) and H2O molecules, called the environment quenching assisted downshifting process, is utilized to establish temperature-sensitive emissions at 1550 and 980 nm. Using an optimized thin active shell doped with Yb3+ ions, the nanothermometer's thermal sensitivity and the 1550 nm emission intensity are enhanced by modulating the environment quenching assisted downshifting process. Consequently, minimally invasive temperature imaging of the cerebrovascular system in mice with an imaging resolution of nearly 200 μm is achieved using the nanothermometer. This work points to a method for high-resolution temperature imaging of micron-level structures in vivo, potentially giving insights into research in temperature sensing, disease diagnosis, and treatment development.
Collapse
Affiliation(s)
- Yukai Wu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Fang Li
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yanan Wu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Hao Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Liangtao Gu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Jieying Zhang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yukun Qi
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Lingkai Meng
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Na Kong
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yingjie Chai
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai, P.R. China
| | - Qian Hu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Zhenyu Xing
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China.
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai, P.R. China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, P.R. China.
| | - Xingjun Zhu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China.
| |
Collapse
|
17
|
Bietar K, Chu S, Mandl G, Zhang E, Chabaytah N, Sabelli R, Capobianco JA, Stochaj U. Silica-coated LiYF 4:Yb 3+, Tm 3+ upconverting nanoparticles are non-toxic and activate minor stress responses in mammalian cells. RSC Adv 2024; 14:8695-8708. [PMID: 38495986 PMCID: PMC10938293 DOI: 10.1039/d3ra08869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Lanthanide-doped upconverting nanoparticles (UCNPs) are ideal candidates for use in biomedicine. The interaction of nanomaterials with biological systems determines whether they are suitable for use in living cells. In-depth knowledge of the nano-bio interactions is therefore a pre-requisite for the development of biomedical applications. The current study evaluates fundamental aspects of the NP-cell interface for square bipyramidal UCNPs containing a LiYF4:Yb3+, Tm3+ core and two different silica surface coatings. Given their importance for mammalian physiology, fibroblast and renal proximal tubule epithelial cells were selected as cellular model systems. We have assessed the toxicity of the UCNPs and measured their impact on the homeostasis of living non-malignant cells. Rigorous analyses were conducted to identify possible toxic and sub-lethal effects of the UCNPs. To this end, we examined biomarkers that reveal if UCNPs induce cell killing or stress. Quantitative measurements demonstrate that short-term exposure to the UCNPs had no profound effects on cell viability, cell size or morphology. Indicators of oxidative, endoplasmic reticulum, or nucleolar stress, and the production of molecular chaperones varied with the surface modification of the UCNPs and the cell type analyzed. These differences emphasize the importance of evaluating cells of diverse origin that are relevant to the intended use of the nanomaterials. Taken together, we established that short-term, our square bipyramidal UCNPs are not toxic to non-malignant fibroblast and proximal renal epithelial cells. Compared with established inducers of cellular stress, these UCNPs have minor effects on cellular homeostasis. Our results build the foundation to explore square bipyramidal UCNPs for future in vivo applications.
Collapse
Affiliation(s)
- Kais Bietar
- Department of Physiology, McGill University Canada
| | - Siwei Chu
- Department of Physiology, McGill University Canada
| | - Gabrielle Mandl
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Emma Zhang
- Department of Physiology, McGill University Canada
| | | | | | - John A Capobianco
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University Canada
- Quantitative Life Sciences Program, McGill University Montreal Canada
| |
Collapse
|
18
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
19
|
Charbonnière LJ, Nonat AM, Knighton RC, Godec L. Upconverting photons at the molecular scale with lanthanide complexes. Chem Sci 2024; 15:3048-3059. [PMID: 38425527 PMCID: PMC10901487 DOI: 10.1039/d3sc06099c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
In this perspective, we summarise the major milestones to date in the field of molecular upconversion (UC) with lanthanide based coordination complexes. This begins from the leap firstly from solid-state to nanoparticular regimes, and further down the scale to the molecular domain. We explain the mechanistic intricacies of each differing way of generating upconverted photons, critiquing them and outlining our views on the benefits and limitations of each process, also offering our perspective and opinion on where these new molecular UC edifices will take us. This nascent area is already rapidly expanding and improving, having increased in luminance efficiency by more than four orders of magnitude in the last decade: we conclude that the future is bright for molecular UC.
Collapse
Affiliation(s)
- Loïc J Charbonnière
- Equipe de Synthèse Pour L'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR7178, CNRS, Université de Strasbourg, ECPM 67087 Strasbourg Cedex France
| | - Aline M Nonat
- Equipe de Synthèse Pour L'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR7178, CNRS, Université de Strasbourg, ECPM 67087 Strasbourg Cedex France
| | - Richard C Knighton
- Equipe de Synthèse Pour L'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR7178, CNRS, Université de Strasbourg, ECPM 67087 Strasbourg Cedex France
- School of Chemistry, University of Southampton Southampton SO17 1BJ UK
| | - Léna Godec
- Equipe de Synthèse Pour L'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR7178, CNRS, Université de Strasbourg, ECPM 67087 Strasbourg Cedex France
| |
Collapse
|
20
|
Gültekin HE, Yaşayan G, Bal-Öztürk A, Bigham A, Simchi AA, Zarepour A, Iravani S, Zarrabi A. Advancements and applications of upconversion nanoparticles in wound dressings. MATERIALS HORIZONS 2024; 11:363-387. [PMID: 37955196 DOI: 10.1039/d3mh01330h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Wound healing is a complex process that requires effective management to prevent infections and promote efficient tissue regeneration. In recent years, upconversion nanoparticles (UCNPs) have emerged as promising materials for wound dressing applications due to their unique optical properties and potential therapeutic functionalities. These nanoparticles possess enhanced antibacterial properties when functionalized with antibacterial agents, helping to prevent infections, a common complication in wound healing. They can serve as carriers for controlled drug delivery, enabling targeted release of therapeutic agents to the wound site, allowing for tailored treatment and optimal healing conditions. These nanoparticles possess the ability to convert near-infrared (NIR) light into the visible and/or ultraviolet (UV) regions, making them suitable for therapeutic (photothermal therapy and photodynamic therapy) and diagnostic applications. In the context of wound healing, these nanoparticles can be combined with other materials such as hydrogels, fibers, metal-organic frameworks (MOFs), graphene oxide, etc., to enhance the healing process and prevent the growth of microbial infections. Notably, UCNPs can act as sensors for real-time monitoring of the wound healing progress, providing valuable feedback to healthcare professionals. Despite their potential, the use of UCNPs in wound dressing applications faces several challenges. Ensuring the stability and biocompatibility of UCNPs under physiological conditions is crucial for their effective integration into dressings. Comprehensive safety and efficacy evaluations are necessary to understand potential risks and optimize UCNP-based dressings. Scalability and cost-effectiveness of UCNP synthesis and manufacturing processes are important considerations for practical applications. In addition, efficient incorporation of UCNPs into dressings, achieving uniform distribution, poses an important challenge that needs to be addressed. Future research should prioritize addressing concerns regarding stability and biocompatibility, efficient integration into dressings, rigorous safety evaluation, scalability, and cost-effectiveness. The purpose of this review is to critically evaluate the advantages, challenges, and key properties of UCNPs in wound dressing applications to provide insights into their potential as innovative solutions for enhancing wound healing outcomes. We have provided a detailed description of various types of smart wound dressings, focusing on the synthesis and biomedical applications of UCNPs, specifically their utilization in different types of wound dressings.
Collapse
Affiliation(s)
- Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey
| | - Ayça Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010, Istanbul, Turkey
- Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, Istinye University, 34010 Istanbul, Turkey
- Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Abdolreza Arash Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| |
Collapse
|
21
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
22
|
Iglesias-Mejuto A, Lamy-Mendes A, Pina J, Costa BFO, García-González CA, Durães L. Synthesis of Highly Luminescent Silica-Coated Upconversion Nanoparticles from Lanthanide Oxides or Nitrates Using Co-Precipitation and Sol-Gel Methods. Gels 2023; 10:13. [PMID: 38247736 PMCID: PMC10815212 DOI: 10.3390/gels10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Upconversion nanoparticles (UCNPs) are under consideration for their use as bioimaging probes with enhanced optical performance for real time follow-up under non-invasive conditions. Photostable and core-shell NaYF4:Yb3+, Er3+-SiO2 UCNPs obtained by a novel and simple co-precipitation method from lanthanide nitrates or oxides were herein synthesized for the first time. The sol-gel Stöber method followed by oven or supercritical gel drying was used to confer biocompatible surface properties to UCNPs by the formation of an ultrathin silica coating. Upconversion (UC) spectra were studied to evaluate the fluorescence of UCNPs upon red/near infrared (NIR) irradiation. ζ-potential measurements, TEM analyses, XRD patterns and long-term physicochemical stability were also assessed and confirmed that the UCNPs co-precipitation synthesis is a shape- and phase-controlling approach. The bio- and hemocompatibility of the UCNPs formulation with the highest fluorescence intensity was evaluated with murine fibroblasts and human blood, respectively, and provided excellent results that endorse the efficacy of the silica gel coating. The herein synthesized UCNPs can be regarded as efficient fluorescent probes for bioimaging purposes with the high luminescence, physicochemical stability and biocompatibility required for biomedical applications.
Collapse
Affiliation(s)
- Ana Iglesias-Mejuto
- AerogelsLab, I + D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Alyne Lamy-Mendes
- University of Coimbra, CIEPQPF—Centro de Investigação em Engenharia dos Processos Químicos e Produtos da Floresta, Department of Chemical Engineering, 3030-790 Coimbra, Portugal (L.D.)
| | - João Pina
- Coimbra Chemistry Centre—Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Benilde F. O. Costa
- University of Coimbra, CFisUC, Physics Department, 3004-516 Coimbra, Portugal;
| | - Carlos A. García-González
- AerogelsLab, I + D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Luisa Durães
- University of Coimbra, CIEPQPF—Centro de Investigação em Engenharia dos Processos Químicos e Produtos da Floresta, Department of Chemical Engineering, 3030-790 Coimbra, Portugal (L.D.)
| |
Collapse
|
23
|
Wang P, Bai S, Chen C, You Y, Xiao J, Guo X, Wang L. A new ratiometric fluorescence nanosensor based on NaYF 4:3%Er@NaYF 4 upconversion nanoparticles for sensitive determination of Rose Bengal in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123242. [PMID: 37591018 DOI: 10.1016/j.saa.2023.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Rose Bengal (RB) is used as a sensitizer in ambient water due to its property of catalyzing the production of singlet oxygen (1O2). However, this property also brings phototoxicity and carcinogenicity. The NaYF4:3%Er@NaYF4 core-shell upconversion nanoparticles (UCNPs) with higher upconversion efficiency was synthesized to detect RB in ambient water. Due to fluorescence resonance energy transfer (FRET) between RB and UCNPs, the upconversion fluorescence at 538 nm emitted by UCNPs was quenched by the RB, while the emission at 566 nm of RB raised. In the best conditions, the ratiometric emission intensity F566/F538 was positively proportional to RB concentration and the linear range was 0.04-15.0 μg·mL-1 (R2 = 0.996). The detection limit (S/N = 3) of RB was 2.46 ng·mL-1. The recoveries ranged from 99.0% to 105.6% (relative standard deviation 0.97-3.24%, n = 3) in tap water and 100.3%-104.9% (relative standard deviation 0.66-1.94%, n = 3) in lake water. This proposed method exhibits lower detection limit and larger linear, which possesses practical application value to the detection of RB in water.
Collapse
Affiliation(s)
- Peiyao Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Silan Bai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Chen Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Yongtao You
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Junhui Xiao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Xinrong Guo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, People's Republic of China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
24
|
Liu N, Homann C, Morfin S, Kesanakurti MS, Calvert ND, Shuhendler AJ, Al T, Hemmer E. Core-multi-shell design: unlocking multimodal capabilities in lanthanide-based nanoparticles as upconverting, T2-weighted MRI and CT probes. NANOSCALE 2023. [PMID: 37982139 DOI: 10.1039/d3nr05380f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Multimodal bioimaging probes merging optical imaging, magnetic resonance imaging (MRI), and X-ray computed tomography (CT) capabilities have attracted considerable attention due to their potential biomedical applications. Lanthanide-based nanoparticles are promising candidates for multimodal imaging because of their optical, magnetic and X-ray attenuation properties. We prepared a set of hexagonal-phase (β)-NaGdF4:Yb,Er/NaGdF4/NaDyF4 core/shell/shell nanoparticles (Dy-CSS NPs) and demonstrated their optical/T2-weighted MRI/CT multimodal capabilities. A known drawback of multimodal probes that merge the upconverting Er3+/Yb3+ ion pair with magnetic Dy3+ ions for T2-weighted MRI is the loss of upconversion (UC) emission due to Dy3+ poisoning. Particular attention was paid to controlled nanoparticle architectures with tuned inner shell thicknesses separating Dy3+ and Er3+/Yb3+ to shed light on the distance-dependent loss of UC due to Yb3+ → Dy3+ energy transfer. Based on the Er3+ UC spectra and the excited state lifetime of Yb3+, a 4 nm thick NaGdF4 inner shell did not only restore but enhanced the UC emission. We further investigated the effect of the outer NaDyF4 shell thickness on the particles' magnetic and CT performance. MRI T2 relaxivity measurements in vitro at a magnetic field of 7 T performed on citrate-capped Dy-CSS NPs revealed that NPs with the thickest outer shell thickness (4 nm) exhibited the highest r2 value, with a superior T2 contrast effect compared to commercial iron oxide and other Dy-based T2 contrast agents. In addition, the citrate-capped Dy-CSS NPs were demonstrated suitable for CT in in vitro imaging phantoms at X-ray energies of 110 keV, rendering them interesting alternatives to clinically used iodine-based agents that operate at lower energies.
Collapse
Affiliation(s)
- Nan Liu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Christian Homann
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Samuel Morfin
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Meghana S Kesanakurti
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Nicholas D Calvert
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Adam J Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tom Al
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
25
|
Liu Y, Wei Z, Damian M, Zhu X, Knaus T, Zhang H, Mutti FG, Loeffler FF. Recyclable and Robust Optical Nanoprobes with Engineered Enzymes for Sustainable Serodiagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306615. [PMID: 37738281 DOI: 10.1002/adma.202306615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Recyclable fluorescence assays that can be stored at room temperature would greatly benefit biomedical diagnostics by bringing sustainability and cost-efficiency, especially for point-of-care serodiagnostics in developing regions. Here, a general strategy is proposed to generate recyclable fluorescent probes by using engineered enzymes with enhanced thermo-/chemo-stability, which maintains an outstanding serodiagnostic performance (accuracy >95%) after 10 times of recycling as well as after storage at elevated temperatures (37 °C for 10 days). With these three outstanding properties, recyclable fluorescent probes can be designed to detect various biomarkers of clinical importance by using different enzymes.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Biomolecular System, Max-Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
- van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195, Berlin, Germany
| | - Zheng Wei
- van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Matteo Damian
- van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Xingjun Zhu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Tanja Knaus
- van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Hong Zhang
- van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Francesco G Mutti
- van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Felix F Loeffler
- Department of Biomolecular System, Max-Planck Institute for Colloids and Interfaces, 14476, Potsdam, Germany
| |
Collapse
|
26
|
Ullah I, Toor MD, Basit A, Mohamed HI, Gamal M, Tanveer NA, Shah ST. Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants. WATER, AIR, & SOIL POLLUTION 2023; 234:666. [DOI: 10.1007/s11270-023-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
|
27
|
Chaix A, Cueto‐Diaz E, Dominguez‐Gil S, Spiteri C, Lichon L, Maynadier M, Dumail X, Aggad D, Delalande A, Bessière A, Pichon C, Chiappini C, Sailor MJ, Bettache N, Gary‐Bobo M, Durand J, Nguyen C, Cunin F. Two-Photon Light Trigger siRNA Transfection of Cancer Cells Using Non-Toxic Porous Silicon Nanoparticles. Adv Healthc Mater 2023; 12:e2301052. [PMID: 37499629 PMCID: PMC11468491 DOI: 10.1002/adhm.202301052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The concept of using two-photon excitation in the NIR for the spatiotemporal control of biological processes holds great promise. However, its use for the delivery of nucleic acids has been very scarcely described and the reported procedures are not optimal as they often involve potentially toxic materials and irradiation conditions. This work prepares a simple system made of biocompatible porous silicon nanoparticles (pSiNP) for the safe siRNA photocontrolled delivery and gene silencing in cells upon two-photon excitation. PSiNP are linked to an azobenzene moiety, which possesses a lysine group (pSiNP@ICPES-azo@Lys) to efficiently complex siRNA. Non-linear excitation of the two-photon absorber system (pSiNP) followed by intermolecular energy transfer (FRET) to trans azobenzene moiety, result in the photoisomerization of the azobenzene from trans to cis and in the destabilization of the azobenzene-siRNA complex, thus inducing the delivery of the cargo siRNA to the cytoplasm of cells. Efficient silencing in MCF-7 expressing stable firefly luciferase with siRNAluc against luciferase is observed. Furthermore, siRNA against inhibitory apoptotic protein (IAP) leads to over 70% of MCF-7 cancer cell death. The developed technique using two-photon light allows a unique high spatiotemporally controlled and safe siRNA delivery in cells in few seconds of irradiation.
Collapse
Affiliation(s)
- Arnaud Chaix
- ICGMCNRSENSCMUniversity of MontpellierMontpellier34293France
| | | | | | - Chantelle Spiteri
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- London Centre for NanotechnologyKing's College LondonLondonWC2R 2LSUK
| | - Laure Lichon
- IBMMUniv. MontpellierCNRSENSCMMontpellier34093France
| | - Marie Maynadier
- NanoMedSyn Avenue Charles FlahaultMontpellier Cedex 0534093France
| | - Xavier Dumail
- ICGMCNRSENSCMUniversity of MontpellierMontpellier34293France
| | - Dina Aggad
- IBMMUniv. MontpellierCNRSENSCMMontpellier34093France
| | - Anthony Delalande
- Centre de Biophysique MoléculaireCNRS UPR4301Orléans cedex 02F‐45071France
- Inserm UMS 55ART ARNm and University of OrléansOrléansF‐45100France
- Institut Universitaire de France1 rue DescartesParisF‐75035France
| | | | - Chantal Pichon
- Centre de Biophysique MoléculaireCNRS UPR4301Orléans cedex 02F‐45071France
- Inserm UMS 55ART ARNm and University of OrléansOrléansF‐45100France
- Institut Universitaire de France1 rue DescartesParisF‐75035France
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- London Centre for NanotechnologyKing's College LondonLondonWC2R 2LSUK
| | - Michael J. Sailor
- University of CaliforniaSan DiegoDepartment of Chemistry and Biochemistry9500 Gilman Drive, m/c 0358La JollaCA92093USA
| | | | | | | | | | | |
Collapse
|
28
|
Kaur M, Maurizio SL, Mandl GA, Capobianco JA. Achieving photostability in dye-sensitized upconverting nanoparticles and their use in Fenton type photocatalysis. NANOSCALE 2023; 15:13583-13594. [PMID: 37552506 DOI: 10.1039/d3nr02845c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Dye sensitization is a promising approach to enhance the luminescence of lanthanide-doped upconverting nanoparticles. However, the poor photostability of near-infrared dyes hampers their use in practical applications. To address this, commercial IR820 was modified for improved photostability and covalently bonded to amine-functionalized silica-coated LnUCNPs. Two methods of covalent linking were investigated: linking the dye to the surface of the silica shell, and embedding the dye within the silica shell. The photostability of the dyes when embedded in the silica shell exhibited upconversion emissions from NaGdF4:Er3+,Yb3+/NaGdF4:Yb3+ nanoparticles for over four hours of continuous excitation with no change in intensity. To highlight this improvement, the photostable dye-embedded system was successfully utilized for Fenton-type photocatalysis, emphasizing its potential for practical applications. Overall, this study presents a facile strategy to circumvent the overlooked limitations associated with photodegradation, opening up new possibilities for the use of dye-sensitized lanthanide-doped upconverting nanoparticles in a range of fields.
Collapse
Affiliation(s)
- Mannu Kaur
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St W., Montreal, QC, H4B 1R6, Canada.
| | - Steven L Maurizio
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St W., Montreal, QC, H4B 1R6, Canada.
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St W., Montreal, QC, H4B 1R6, Canada.
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St W., Montreal, QC, H4B 1R6, Canada.
| |
Collapse
|
29
|
Gong J, Borecki A, Gillies ER. Self-Immolative Hydrogels with Stimulus-Mediated On-Off Degradation. Biomacromolecules 2023; 24:3629-3637. [PMID: 37418699 DOI: 10.1021/acs.biomac.3c00382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage event through a cascade degradation process. It is also possible to change the active stimulus by changing only a single end-cap or linker unit. However, there are very few examples of self-immolative polymer hydrogels, and the reported examples exhibited relatively poor stability in their nontriggered state or slow degradation after triggering. Described here is the preparation of hydrogels composed of self-immolative poly(ethyl glyoxylate) (PEtG) and poly(ethylene glycol) (PEG). Hydrogels formed from 2 kg/mol 4-arm PEG and 1.2 kg/mol PEtG with a light-responsive linker end-cap had high gel content (90%), an equilibrium water content of 89%, and a compressive modulus of 26 kPa. The hydrogel degradation could be turned on and off repeatedly through alternating cycles of irradiation and dark storage. Similar cycles could also be used to control the release of the anti-inflammatory drug celecoxib. These results demonstrate the potential for self-immolative hydrogels to afford a high degree of control over responses to stimuli in the context of smart materials for a variety of applications.
Collapse
Affiliation(s)
- Jue Gong
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Aneta Borecki
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
30
|
Fan Q, Sun C, Hu B, Wang Q. Recent advances of lanthanide nanomaterials in Tumor NIR fluorescence detection and treatment. Mater Today Bio 2023; 20:100646. [PMID: 37214552 PMCID: PMC10195989 DOI: 10.1016/j.mtbio.2023.100646] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Lanthanide nanomaterials have garnered significant attention from researchers among the main near-infrared (NIR) fluorescent nanomaterials due to their excellent chemical and fluorescence stability, narrow emission band, adjustable luminescence color, and long lifetime. In recent years, with the preparation, functional modification, and fluorescence improvement of lanthanide materials, great progress has been made in their application in the biomedical field. This review focuses on the latest progress of lanthanide nanomaterials in tumor diagnosis and treatment, as well as the interaction mechanism between fluorescence and biological tissues. We introduce a set of efficient strategies for improving the fluorescence properties of lanthanide nanomaterials and discuss some representative in-depth research work in detail, showcasing their superiority in early detection of ultra-small tumors, phototherapy, and real-time guidance for surgical resection. However, lanthanide nanomaterials have only realized a portion of their potential in tumor applications so far. Therefore, we discuss promising methods for further improving the performance of lanthanide nanomaterials and their future development directions.
Collapse
Affiliation(s)
- Qi Fan
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| | - Chao Sun
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| | - Bingliang Hu
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| | - Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| |
Collapse
|
31
|
Khosh Abady K, Dankhar D, Krishnamoorthi A, Rentzepis PM. Enhancing the upconversion efficiency of NaYF 4:Yb,Er microparticles for infrared vision applications. Sci Rep 2023; 13:8408. [PMID: 37225762 DOI: 10.1038/s41598-023-35164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023] Open
Abstract
In this study, (NaYF4:Yb,Er) microparticles dispersed in water and ethanol, were used to generate 540 nm visible light from 980 nm infrared light by means of a nonlinear stepwise two-photon process. IR-reflecting mirrors placed on four sides of the cuvette that contained the microparticles increased the intensity of the upconverted 540 nm light by a factor of three. We also designed and constructed microparticle-coated lenses that can be used as eyeglasses, making it possible to see rather intense infrared light images that are converted to visible.
Collapse
Affiliation(s)
- Keyvan Khosh Abady
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Dinesh Dankhar
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Peter M Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
32
|
Shao M, Wang Y, Dong H, Wang L, Zhang X, Han X, Sang X, Bao Y, Peng M, Cao G. From liver fibrosis to hepatocarcinogenesis: Role of excessive liver H2O2 and targeting nanotherapeutics. Bioact Mater 2023; 23:187-205. [PMID: 36406254 PMCID: PMC9663332 DOI: 10.1016/j.bioactmat.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis and hepatocellular carcinoma (HCC) have been worldwide threats nowadays. Liver fibrosis is reversible in early stages but will develop precancerosis of HCC in cirrhotic stage. In pathological liver, excessive H2O2 is generated and accumulated, which impacts the functionality of hepatocytes, Kupffer cells (KCs) and hepatic stellate cells (HSCs), leading to genesis of fibrosis and HCC. H2O2 accumulation is associated with overproduction of superoxide anion (O2•−) and abolished antioxidant enzyme systems. Plenty of therapeutics focused on H2O2 have shown satisfactory effects against liver fibrosis or HCC in different ways. This review summarized the reasons of liver H2O2 accumulation, and the role of H2O2 in genesis of liver fibrosis and HCC. Additionally, nanotherapeutics targeting H2O2 were summarized for further consideration of antifibrotic or antitumor therapy. Liver fibrosis and HCC are closely related because ROS induced liver damage and inflammation, especially over-cumulated H2O2. Excess H2O2 diffusion in pathological liver was due to increased metabolic rate and diminished cellular antioxidant systems. Freely diffused H2O2 damaged liver-specific cells, thereby leading to fibrogenesis and hepatocarcinogenesis. Nanotherapeutics targeting H2O2 are summarized for treatment of liver fibrosis and HCC, and also challenges are proposed.
Collapse
|
33
|
Overchuk M, Weersink RA, Wilson BC, Zheng G. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS NANO 2023; 17:7979-8003. [PMID: 37129253 PMCID: PMC10173698 DOI: 10.1021/acsnano.3c00891] [Citation(s) in RCA: 191] [Impact Index Per Article: 191.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tumoricidal photodynamic (PDT) and photothermal (PTT) therapies harness light to eliminate cancer cells with spatiotemporal precision by either generating reactive oxygen species or increasing temperature. Great strides have been made in understanding biological effects of PDT and PTT at the cellular, vascular and tumor microenvironmental levels, as well as translating both modalities in the clinic. Emerging evidence suggests that PDT and PTT may synergize due to their different mechanisms of action, and their nonoverlapping toxicity profiles make such combination potentially efficacious. Moreover, PDT/PTT combinations have gained momentum in recent years due to the development of multimodal nanoplatforms that simultaneously incorporate photodynamically- and photothermally active agents. In this review, we discuss how combining PDT and PTT can address the limitations of each modality alone and enhance treatment safety and efficacy. We provide an overview of recent literature featuring dual PDT/PTT nanoparticles and analyze the strengths and limitations of various nanoparticle design strategies. We also detail how treatment sequence and dose may affect cellular states, tumor pathophysiology and drug delivery, ultimately shaping the treatment response. Lastly, we analyze common experimental design pitfalls that complicate preclinical assessment of PDT/PTT combinations and propose rational guidelines to elucidate the mechanisms underlying PDT/PTT interactions.
Collapse
Affiliation(s)
- Marta Overchuk
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Robert A Weersink
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
34
|
Liu Y, Zhu X, Wei Z, Wu K, Zhang J, Mutti FG, Zhang H, Loeffler FF, Zhou J. Multi-Channel Lanthanide Nanocomposites for Customized Synergistic Treatment of Orthotopic Multi-Tumor Cases. Angew Chem Int Ed Engl 2023:e202303570. [PMID: 37186020 DOI: 10.1002/anie.202303570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Simultaneous photothermal ablation of multiple tumors is limited by unpredictable photo-induced apoptosis, caused by individual intratumoral differences. Here, a multi-channel lanthanide nanocomposite was used to achieve tailored synergistic treatment of multiple subcutaneous orthotopic tumors under non-uniform whole-body infrared irradiation prescription. The nanocomposite reduces intratumoral glutathione by simultaneously activating the fluorescence and photothermal channels. The fluorescence provides individual information on different tumors, allowing customized prescriptions to be made. This enables optimal induction of hyperthermia and dosage of chemo drugs, to ensure treatment efficacy, while avoiding overtherapy. With an accessional therapeutic laser system, customized synergistic treatment of subcutaneous orthotopic cancer cases with multiple tumors is possible with both high efficacy and minimized side effects.
Collapse
Affiliation(s)
- Yuxin Liu
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung, Biomolecular Systems, GERMANY
| | - Xingjun Zhu
- ShanghaiTech University, School of Physical Science and Technology, CHINA
| | - Zheng Wei
- University of Amsterdam: Universiteit van Amsterdam, van' t Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Kefan Wu
- University of Amsterdam: Universiteit van Amsterdam, van' t Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Junfang Zhang
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung, Biomolecular Systems, GERMANY
| | - Francesco G Mutti
- University of Amsterdam: Universiteit van Amsterdam, van' t Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Hong Zhang
- University of Amsterdam: Universiteit van Amsterdam, van' t Hoff Institute for Molecular Sciences, NETHERLANDS
| | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung, Biomolecular Systems, Am Mühlenberg 1, 14476, Potsdam, GERMANY
| | - Jing Zhou
- Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, CHINA
| |
Collapse
|
35
|
Gomez-Villalba LS, Salcines C, Fort R. Application of Inorganic Nanomaterials in Cultural Heritage Conservation, Risk of Toxicity, and Preventive Measures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1454. [PMID: 37176999 PMCID: PMC10180185 DOI: 10.3390/nano13091454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has allowed for significant progress in architectural, artistic, archaeological, or museum heritage conservation for repairing and preventing damages produced by deterioration agents (weathering, contaminants, or biological actions). This review analyzes the current treatments using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials can affect human and animal health, altering the environment. Right now, it is a priority to stop to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or indirectly involved in conservation processes. It reports the human-body interaction mechanisms and provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research of main compounds and emphasizing the need to provide more information about morphological, structural, and specific features that ultimately contribute to understanding their toxicity. It provides information about the current documents of international organizations (European Commission, NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation control, and debris management. Furthermore, it reports the qualitative risk assessment methods, management strategies, dose control, and focus/receptor relationship, besides the latest trends of using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.
Collapse
Affiliation(s)
- Luz Stella Gomez-Villalba
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| | - Ciro Salcines
- Infrastructures Service, Health and Safety Unit, University of Cantabria, Pabellón de Gobierno, Avenida de los Castros 54, 39005 Santander, Spain
| | - Rafael Fort
- Institute of Geosciences, Spanish National Research Council, Complutense University of Madrid (CSIC, UCM), Calle Dr. Severo Ochoa 7, Planta 4, 28040 Madrid, Spain
| |
Collapse
|
36
|
Rajput A, Sevalkar G, Pardeshi K, Pingale P. COMPUTATIONAL NANOSCIENCE AND TECHNOLOGY. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
37
|
Kamal Z, Ebnalwaled AA, Al-Amgad Z, Saied AA, Metwally AA, Said AH. Immunomodulatory and antioxidant effect of green synthesized titanium dioxide nanoparticles on pregnant female albino rats and their fetuses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55455-55470. [PMID: 36892697 DOI: 10.1007/s11356-023-26264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are one of the various nanoparticles that have been increasingly commonly used in vital sectors. This study was aimed at evaluating the effects of prenatal exposure to the chemical TiO2 NPs (CHTiO2 NPs) and green-synthesized TiO2 NPs (GTiO2 NPs) on immunological and oxidative status as well as lungs and spleen. Fifty pregnant female albino rats were divided into five groups of ten rats each: control, CHTiO2 NPs-treated groups orally received 100 and 300 mg/kg CHTiO2 NPs, and GTiO2 NPs-treated groups received 100 and 300 mg/kg GTiO2 NPs, respectively, daily for 14 days. The serum level of proinflammatory cytokines IL-6, oxidative stress markers (MDA and NO), and antioxidant biomarkers (SOD and GSH-PX) were assayed. Spleen and lungs were collected from pregnant rats and fetuses for histopathological examinations. The results showed a significant increase in IL-6 levels in treated groups. In the CHTiO2 NPs-treated groups, there was a significant increase in MDA activity and a significant decrease in GSH-Px and SOD activities, revealing its oxidative effect, while GSH-Px and SOD activities significantly increased in the 300 GTiO2 NPs-treated group, confirming the antioxidant effect of green-synthesized TiO2 NPs. Histopathological findings of the spleen and lungs of the CHTiO2 NPs-treated group revealed severe congestion and thickening of the blood vessels, while those of the GTiO2 NPs-treated group revealed mild tissue alterations. It could be deduced that green synthesized titanium dioxide nanoparticles have immunomodulatory and antioxidant effects on pregnant female albino rats and their fetuses, with an ameliorated impact on the spleen and lung compared to chemical titanium dioxide nanoparticles.
Collapse
Affiliation(s)
- Zeinab Kamal
- Zoology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - A A Ebnalwaled
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Zeinab Al-Amgad
- General Authority for Veterinary Services, Qena Veterinary Directorate, Qena, 83523, Egypt
| | - AbdulRahman A Saied
- National Food Safety Authority (NFSA), Aswan Branch, Aswan, 81511, Egypt
- Ministry of Tourism and Antiquities, Aswan Office, Aswan, 81511, Egypt
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Alaa H Said
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
38
|
Pini F, Francés-Soriano L, Andrigo V, Natile MM, Hildebrandt N. Optimizing Upconversion Nanoparticles for FRET Biosensing. ACS NANO 2023; 17:4971-4984. [PMID: 36867492 DOI: 10.1021/acsnano.2c12523] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Upconversion nanoparticles (UCNPs) are some of the most promising nanomaterials for bioanalytical and biomedical applications. One important challenge to be still solved is how UCNPs can be optimally implemented into Förster resonance energy transfer (FRET) biosensing and bioimaging for highly sensitive, wash-free, multiplexed, accurate, and precise quantitative analysis of biomolecules and biomolecular interactions. The many possible UCNP architectures composed of a core and multiple shells doped with different lanthanoid ions at different ratios, the interaction with FRET acceptors at different possible distances and orientations via biomolecular interaction, and the many and long-lasting energy transfer pathways from the initial UCNP excitation to the final FRET process and acceptor emission make the experimental determination of the ideal UCNP-FRET configuration for optimal analytical performance a real challenge. To overcome this issue, we have developed a fully analytical model that requires only a few experimental configurations to determine the ideal UCNP-FRET system within a few minutes. We verified our model via experiments using nine different Nd-, Yb-, and Er-doped core-shell-shell UCNP architectures within a prototypical DNA hybridization assay using Cy3.5 as an acceptor dye. Using the selected experimental input, the model determined the optimal UCNP out of all theoretically possible combinatorial configurations. An extreme economy of time, effort, and material was accompanied by a significant sensitivity increase, which demonstrated the powerful feat of combining a few selected experiments with sophisticated but rapid modeling to accomplish an ideal FRET biosensor.
Collapse
Affiliation(s)
- Federico Pini
- Laboratoire COBRA, Université de Rouen Normandie, CNRS, INSA Rouen, Normandie Université, 76000 Rouen, France
- Istituto di Chimica della Materia Condensata e Tecnologie per l'Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR), 35131 Padova, Italy
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy
| | - Laura Francés-Soriano
- Laboratoire COBRA, Université de Rouen Normandie, CNRS, INSA Rouen, Normandie Université, 76000 Rouen, France
- Instituto de Ciencia Molecular (ICMol), University of Valencia, 46980 Valencia, Spain
| | - Vittoria Andrigo
- Istituto di Chimica della Materia Condensata e Tecnologie per l'Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR), 35131 Padova, Italy
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy
| | - Marta Maria Natile
- Istituto di Chimica della Materia Condensata e Tecnologie per l'Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR), 35131 Padova, Italy
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy
| | - Niko Hildebrandt
- Laboratoire COBRA, Université de Rouen Normandie, CNRS, INSA Rouen, Normandie Université, 76000 Rouen, France
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
39
|
Cressoni C, Vurro F, Milan E, Muccilli M, Mazzer F, Gerosa M, Boschi F, Spinelli AE, Badocco D, Pastore P, Delgado NF, Collado MH, Marzola P, Speghini A. From Nanothermometry to Bioimaging: Lanthanide-Activated KY 3F 10 Nanostructures as Biocompatible Multifunctional Tools for Nanomedicine. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12171-12188. [PMID: 36826830 PMCID: PMC9999348 DOI: 10.1021/acsami.2c22000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Lanthanide-activated fluoride-based nanostructures are extremely interesting multifunctional tools for many modern applications in nanomedicine, e.g., bioimaging, sensing, drug delivery, and photodynamic therapy. Importantly, environmental-friendly preparations using a green chemistry approach, as hydrothermal synthesis route, are nowadays highly desirable to obtain colloidal nanoparticles, directly dispersible in hydrophilic media, as physiological solution. The nanomaterials under investigation are new KY3F10-based citrate-capped core@shell nanostructures activated with several lanthanide ions, namely, Er3+, Yb3+, Nd3+, and Gd3+, prepared as colloidal water dispersions. A new facile microwave-assisted synthesis has been exploited for their preparation, with significant reduction of the reaction times and a fine control of the nanoparticle size. These core@shell multifunctional architectures have been investigated for use as biocompatible and efficient contrast agents for optical, magnetic resonance imaging (MRI) and computerized tomography (CT) techniques. These multifunctional nanostructures are also efficient noninvasive optical nanothermometers. In fact, the lanthanide emission intensities have shown a relevant relative variation as a function of the temperature, in the visible and near-infrared optical ranges, efficiently exploiting ratiometric intensity methods for optical thermometry. Importantly, in contrast with other fluoride hosts, chemical dissolution of KY3F10 citrate-capped nanocrystals in aqueous environment is very limited, of paramount importance for applications in biological fluids. Furthermore, due to the strong paramagnetic properties of lanthanides (e.g., Gd3+), and X-ray absorption of both yttrium and lanthanides, the nanostructures under investigation are extremely useful for MRI and CT imaging. Biocompatibility studies of the nanomaterials have revealed very low cytotoxicity in dfferent human cell lines. All these features point to a successful use of these fluoride-based core@shell nanoarchitectures for simultaneous diagnostics and temperature sensing, ensuring an excellent biocompatibility.
Collapse
Affiliation(s)
- Chiara Cressoni
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federica Vurro
- Division
of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
- University
Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Emil Milan
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matilde Muccilli
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Francesco Mazzer
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Marco Gerosa
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federico Boschi
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Antonello Enrico Spinelli
- Experimental
Imaging Centre, San Raffaele Scientific
Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Denis Badocco
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Paolo Pastore
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Natalia Fernández Delgado
- Department
of Materials Science and Metallurgic Engineering and Inorganic Chemistry, University of Cadiz, Campus Universitario Río
San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Miriam Herrera Collado
- Department
of Materials Science and Metallurgic Engineering and Inorganic Chemistry, University of Cadiz, Campus Universitario Río
San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Pasquina Marzola
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Adolfo Speghini
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
40
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
41
|
Kao CL, Fang GC, Chen YH, Zhuang YJ. Applying principal component, health risk assessment, source identification for metallic elements of ambient air total suspended particulates at Taiwan Scientific Park. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:809-824. [PMID: 35332424 DOI: 10.1007/s10653-022-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
This study collected ambient air total suspended particle (TSP) concentrations and dry depositions at Taichung Science Park sampling site. The metallic elements concentrations and dry depositions were analyzed. The possible pollutant sources are discussed in this study. In addition, this study used the principal component analysis method to find metallic element sources and their transportation pathway and distributions at Taichung Science Park (T.S.P). The results indicated that the average highest TSP concentrations and dry deposition fluxes occurred in the autumn and winter seasons. The highest average metallic element concentration and dry deposition was Fe, while the lowest average metallic element concentration and dry deposition was Hg(p). The study results further indicated that the lowest metallic element concentrations and dry depositions all occurred in the summer season. The pollutant parcels originated from the northern Taiwan counties and sea surface in the autumn, winter and spring seasons. Factor 1 was responsible for the local industrial emission results and traffic road dust. The metallic elements Hg(p) yield a value greater than 0.7 in Factor 2 which revealed that ambient air particulate pollutants were generated from Taichung Thermal Power Plant (T.T.P.P.) emissions and were transported from the coastal area of mainland China cities. The mean seasonal concentration differences existed for ambient air particulates, and there were no mean seasonal concentrations differences for all metallic elements. In addition, there were no significant mean concentrations differences for all metallic elements and meteorological factors such as temperature, humidity and wind speed. Therefore, the ambient air metallic element emissions were stable and considered primary emissions sources. The health risk value for metallic element Cr was higher than that for the acceptable health risk value suggested by the EPA. Metallic element Cr revealed that it was no mean seasonal concentrations differences. Thus, metallic element Cr was considered came from local emission source at this T.S.P. sampling site.
Collapse
Affiliation(s)
- Chao-Lang Kao
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung City, Taiwan
| | - Guor-Cheng Fang
- Department of Safety, Health, and Environmental Engineering, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City, 43302, Taiwan (R.O.C.).
| | - Yi-Hsiu Chen
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung City, Taiwan
| | - Yuan-Jie Zhuang
- Department of Safety, Health, and Environmental Engineering, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City, 43302, Taiwan (R.O.C.)
| |
Collapse
|
42
|
Abstract
Surface-modified lanthanide nanoparticles have been widely developed as an emerging class of therapeutics for cancer treatment because they exhibit several unique properties. First, lanthanide nanoparticles exhibit a variety of diagnostic capabilities suitable for various image-guided therapies. Second, a large number of therapeutic molecules can be accommodated on the surface of lanthanide nanoparticles, which can simultaneously achieve combined cancer therapy. Third, multivalent targeting ligands on lanthanide nanoparticles can be easily modified to achieve high affinity and specificity for target cells. Last but not least, lanthanide nanoparticles can be engineered for spatially and temporally controlled tumor therapy, which is critical for developing precise and personalized tumor therapy. Surface-modified lanthanide-doped nanoparticles are widely used in cancer phototherapy. This is due to their unique optical properties, including large anti-Stokes shifts, long-lasting luminescence, high photostability, and the capacity for near-infrared or X-ray excitation. Upon near-infrared irradiation, these nanoparticles can emit ultraviolet to visible light, which activates photosensitizers and photothermal agents to destroy tumor cells. Surface modification with special ligands that respond to tumor microenvironment changes, such as acidic pH, hypoxia, or redox reactions, can turn lanthanide nanoparticles into a smart nanoplatform for light-guided tumor chemotherapy and gene therapy. Surface-engineered lanthanide nanoparticles can include antigens that elicit tumor-specific immune responses, as well as immune activators that boost immunity, allowing distant and metastatic tumors to be eradicated. The design of ligands and surface chemistry is crucial for improving cancer therapy without causing side effects. In this Account, we classify surface-modified lanthanide nanoparticles for tumor therapy into four main domains: phototherapy, radiotherapy, chemotherapy, and biotherapy. We begin by introducing fundamental bioapplications and then discuss recent developments in tumor phototherapy (photodynamic therapy and photothermal therapy), radiotherapy, chemotherapy, and biotherapy (gene therapy and immunotherapy). We also assess the viability of a variety of strategies for eliminating tumor cells through innovative pathways. Finally, future opportunities and challenges for the development of more efficient lanthanide nanoprobes are discussed.
Collapse
Affiliation(s)
- Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, Singapore 138634, Singapore
| |
Collapse
|
43
|
Chemical and Colloidal Stability of Polymer-Coated NaYF 4:Yb,Er Nanoparticles in Aqueous Media and Viability of Cells: The Effect of a Protective Coating. Int J Mol Sci 2023; 24:ijms24032724. [PMID: 36769046 PMCID: PMC9917078 DOI: 10.3390/ijms24032724] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Upconverting nanoparticles (UCNPs) are of particular interest in nanomedicine for in vivo deep-tissue optical cancer bioimaging due to their efficient cellular uptake dependent on polymer coating. In this study, particles, ca. 25 nm in diameter, were prepared by a high-temperature coprecipitation of lanthanide chlorides. To ensure optimal dispersion of UCNPs in aqueous milieu, they were coated with three different polymers containing reactive groups, i.e., poly(ethylene glycol)-alendronate (PEG-Ale), poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide)-alendronate (PDMA-Ale), and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). All the particles were characterized by TEM, DLS, FTIR, and spectrofluorometer to determine the morphology, hydrodynamic size and ξ-potential, composition, and upconversion luminescence. The degradability/dissolution of UCNPs in water, PBS, DMEM, or artificial lysosomal fluid (ALF) was evaluated using an ion-selective electrochemical method and UV-Vis spectroscopy. The dissolution that was more pronounced in PBS at elevated temperatures was decelerated by polymer coatings. The dissolution in DMEM was relatively small, but much more pronounced in ALF. PMVEMA with multiple anchoring groups provided better protection against particle dissolution in PBS than PEG-Ale and PDMA-Ale polymers containing only one reactive group. However, the cytotoxicity of the particles depended not only on their ability to rapidly degrade, but also on the type of coating. According to MTT, neat UCNPs and UCNP@PMVEMA were toxic for both rat cells (C6) and rat mesenchymal stem cells (rMSCs), which was in contrast to the UCNP@Ale-PDMA particles that were biocompatible. On the other hand, both the cytotoxicity and uptake of the UCNP@Ale-PEG particles by C6 and rMSCs were low, according to MTT assay and ICP-MS, respectively. This was confirmed by a confocal microscopy, where the neat UCNPs were preferentially internalized by both cell types, followed by the UCNP@PMVEMA, UCNP@Ale-PDMA, and UCNP@Ale-PEG particles. This study provides guidance for the selection of a suitable nanoparticle coating with respect to future biomedical applications where specific behaviors (extracellular deposition vs. cell internalization) are expected.
Collapse
|
44
|
Matulionyte M, Skripka A, Ramos-Guerra A, Benayas A, Vetrone F. The Coming of Age of Neodymium: Redefining Its Role in Rare Earth Doped Nanoparticles. Chem Rev 2023; 123:515-554. [PMID: 36516409 DOI: 10.1021/acs.chemrev.2c00419] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among luminescent nanostructures actively investigated in the last couple of decades, rare earth (RE3+) doped nanoparticles (RENPs) are some of the most reported family of materials. The development of RENPs in the biomedical framework is quickly making its transition to the ∼800 nm excitation pathway, beneficial for both in vitro and in vivo applications to eliminate heating and facilitate higher penetration in tissues. Therefore, reports and investigations on RENPs containing the neodymium ion (Nd3+) greatly increased in number as the focus on ∼800 nm radiation absorbing Nd3+ ion gained traction. In this review, we cover the basics behind the RE3+ luminescence, the most successful Nd3+-RENP architectures, and highlight application areas. Nd3+-RENPs, particularly Nd3+-sensitized RENPs, have been scrutinized by considering the division between their upconversion and downshifting emissions. Aside from their distinctive optical properties, significant attention is paid to the diverse applications of Nd3+-RENPs, notwithstanding the pitfalls that are still to be addressed. Overall, we aim to provide a comprehensive overview on Nd3+-RENPs, discussing their developmental and applicative successes as well as challenges. We also assess future research pathways and foreseeable obstacles ahead, in a field, which we believe will continue witnessing an effervescent progress in the years to come.
Collapse
Affiliation(s)
- Marija Matulionyte
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Alma Ramos-Guerra
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Antonio Benayas
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.,Molecular Imaging Program at Stanford Department of Radiology Stanford University 1201 Welch Road, Lucas Center (exp.), Stanford, California 94305-5484, United States
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| |
Collapse
|
45
|
Nguyen NT, Kim J, Le XT, Lee WT, Lee ES, Oh KT, Choi HG, Youn YS. Amplified Fenton-Based Oxidative Stress Utilizing Ultraviolet Upconversion Luminescence-Fueled Nanoreactors for Apoptosis-Strengthened Ferroptosis Anticancer Therapy. ACS NANO 2023; 17:382-401. [PMID: 36579941 DOI: 10.1021/acsnano.2c08706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As an emerging anticancer strategy, ferroptosis has recently been developed in combination with current therapeutic modalities to overcome the existing limitations of conventional therapies. Herein, an ultraviolet (UV) upconversion luminescence-fueled nanoreactor is explored to combine ferroptosis and apoptosis through the UV-catalyzed Fenton reaction of an iron supplement (ferric ammonium citrate) loaded in a mesoporous silica layer in addition to the support of a chemotherapeutic agent (cisplatin) attached on the functionalized silica surface for the treatment of triple negative breast cancer (TNBC). The nanoplatform can circumvent the low penetration depth typical of UV light by upconverting near-infrared irradiation and emitting UV photons that convert Fe3+ to Fe2+ to boost the generation of hydroxyl radicals (·OH), causing devastating lipid peroxidation. Apart from DNA damage-induced apoptosis, cisplatin can also catalyze Fenton-based therapy by its abundant production of hydrogen peroxide (H2O2). As a bioinspired lipid membrane, the folate receptor-targeted liposome as the coating layer offers high biocompatibility and colloidal stability for the upconversion nanoparticles, in addition to prevention of the premature release of encapsulated hydrophilic compounds, before driving the nanoformulation to the target tumor site. As a result, superior antitumor efficacy has been observed in a 4T1 tumor-bearing mouse model with negligible side effects, suggesting that such a nanoformulation could play a pivotal role in effective apoptosis-strengthened ferroptosis TNBC therapy.
Collapse
Affiliation(s)
- Nguyen Thi Nguyen
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Juho Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Woo Tak Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology and Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
46
|
Peng S, Wang L, Liu L, Song L, Shi J, Zheng H, Xu J, Rong R, Zhang Y. Inhibition of Pro-Survival Autophagy Induced by Rare-Earth Nanocomposites for Promoting Photothermal Therapy of Visualized Tumors. Adv Healthc Mater 2023; 12:e2202117. [PMID: 36222264 DOI: 10.1002/adhm.202202117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/21/2022] [Indexed: 01/18/2023]
Abstract
Manipulation of autophagic processes has emerged as a promising strategy for synergizing nanoagent-mediated photothermal therapy (PTT). Most of the current studies focus on improving PTT efficacy by inhibiting pro-survival autophagy induced by the heat generated from the photothermal process. However, autophagy induced by the nanoagents is usually ignored, which may weaken the effect of autophagy-mediated efficacy improvement in PTT if induced autophagy is pro-death. Therefore, this work aims at developing a nanoagent that is able to induce heat-synergetic pro-survival autophagy to optimize the efficacy of PTT. An approach is developed to coat carbon layer, polyethylenimine (PEI), and folic acid (FA) on NaYF4 :Er,Yb,Nd@NaNdF4 (DCNPs@C@PEI@FA, DCPF) nanoparticles successively, giving access to the nanoagent to induce pro-survival autophagy. The synthetic imaging-guided photothermal nanoagent displays outstanding targeting ability and biocompatibility based on the surface modification of PEI and FA. By using an autophagy inhibitor chloroquine, a conspicuously synergistic effect on DCPF-mediated PTT in vitro and in vivo tumor models (HeLa) is achieved. A promising strategy is presented here to enhance the efficacy of imaging-guided PTT by modulating the autophagy induced by the nanoagent.
Collapse
Affiliation(s)
- Shanshan Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lizhen Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Hanrun Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jixuan Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Rui Rong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China.,Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
47
|
Chintamaneni PK, Nagasen D, Babu KC, Mourya A, Madan J, Srinivasarao DA, Ramachandra RK, Santhoshi PM, Pindiprolu SKSS. Engineered upconversion nanocarriers for synergistic breast cancer imaging and therapy: Current state of art. J Control Release 2022; 352:652-672. [PMID: 36328078 DOI: 10.1016/j.jconrel.2022.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Breast cancer is the most common type of cancer in women and is the second leading cause of cancer-related deaths worldwide. Early diagnosis and effective therapeutic interventions are critical determinants that can improve survival and quality of life in breast cancer patients. Nanotheranostics are emerging interventions that offer the dual benefit of in vivo diagnosis and therapeutics through a single nano-sized carrier. Rare earth metal-doped upconversion nanoparticles (UCNPs) with their ability to convert near-infrared light to visible light or UV light in vivo settings have gained special attraction due to their unique luminescence and tumor-targeting properties. In this review, we have discussed applications of UCNPs in drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and tumor targeting in breast cancer. Further, present challenges and future opportunities for UCNPs in breast cancer treatment have also been mentioned.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | - Dasari Nagasen
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| | - Katta Chanti Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| | - R K Ramachandra
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India; Government Degree College, Chodavaram, Andhra Pradesh, India.
| | - P Madhuri Santhoshi
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| |
Collapse
|
48
|
Das I, Gogoi B, Sharma B, Borah D. Role of metal-nanoparticles in farming practices: an insight. 3 Biotech 2022; 12:294. [PMID: 36276472 PMCID: PMC9519825 DOI: 10.1007/s13205-022-03361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/12/2022] [Indexed: 11/01/2022] Open
Abstract
Nanotechnology introduces revolutionary approaches for agriculture in the form of nano-based pesticides, fertilizers, sensors, weed-controlling agents, enhanced seed germination materials, etc. Even though metal-nanoparticles (NPs) have shown their potential to improve crop yield, the mode of action at the cellular level and fate in the human body and the environment are not well understood yet. Several metal-nanoparticles have been studied extensively by researchers for their active role in enhancing the rate of seed germination and crop quality augmentation which may happen due to several mechanisms such as increased porosity in nano-primed seeds inducing up-regulation of the expression of aquaporin and Reactive Oxygen Species (ROS) genes involved in water uptake, improving the root dehydrogenase activity to enhance the water absorption capability, etc. However, researchers have also demonstrated and reported the possible toxicity of NPs in the environment due to their agricultural practices. But the fate of NPs and their environmental impact are still unclear and largely vary based on several factors such as the size of NPs, coating material, mode of discharge and locations, etc. This review thoroughly focuses on the mode of action of various NPs in seed germination and accumulation, translocation through cells, and potential environmental and health risks.
Collapse
Affiliation(s)
- Indukalpa Das
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035 India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035 India
| | - Bidisha Sharma
- Department of Botany, Cotton University, Guwahati, 781001 India
| | - Debajit Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035 India
| |
Collapse
|
49
|
Goh Y, Kim J, Park HS, Jung T, Hong KS, Nam SH, Suh YD, Lee KT. Visualization of intercellular cargo transfer using upconverting nanoparticles. NANOSCALE 2022; 14:14008-14013. [PMID: 36053238 DOI: 10.1039/d2nr01999j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell-cell communication is important for cellular differentiation, organ function, and immune responses. In intercellular communication, the extracellular vesicles (EVs) play a significant role in delivering the cargo molecules such as genes, proteins, and enzymes, to regulate and control the ability of the recipient cells. In this study, the observation of intercellular cargo transfer via dual-colour imaging using upconverting nanoparticles (UCNPs) has been demonstrated. Using this technique, the intercellular transport via contact-dependent and contact-independent signaling in live HeLa cells was clearly visualized with real-time, long-term single-vesicle tracking. Furthermore, it was demonstrated that the endocytosed UCNPs can be transmitted with the encapsulation of EVs labelled with fluorescent proteins.
Collapse
Affiliation(s)
- Yeongchang Goh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
| | - Jongwoo Kim
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, South Korea
| | - Taeyoung Jung
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, South Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Sang Hwan Nam
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Yung Doug Suh
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
| |
Collapse
|
50
|
Cheignon C, Kassir AA, Soro LK, Charbonnière LJ. Dye-sensitized lanthanide containing nanoparticles for luminescence based applications. NANOSCALE 2022; 14:13915-13949. [PMID: 36072997 DOI: 10.1039/d1nr06464a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to their exceptional luminescent properties, lanthanide (Ln) complexes represent a unique palette of probes in the spectroscopic toolkit. Their extremely weak brightness due to forbidden Ln electronic transitions can be overcome by indirect dye-sensitization from the antenna effect brought by organic ligands. Despite the improvement brought by the antenna effect, (bio)analytical applications with discrete Ln complexes as luminescent markers still suffers from low sensitivity as they are limited by the complex brightness. Thus, there is a need to develop nano-objects that cumulate the spectroscopic properties of multiple Ln ions. This review firstly gives a brief introduction of the spectral properties of lanthanides both in complexes and in nanoparticles (NPs). Then, the research progress of the design of Ln-doped inorganic NPs with capping antennas, Ln-complex encapsulated NPs and Ln-complex surface functionalized NPs is presented along with a summary of the various photosensitizing ligands and of the spectroscopic properties (excited-state lifetime, brightness, quantum yield). The review also emphasizes the problems and limitations encountered over the years and the solutions provided to address them. Finally, a comparison of the advantages and drawbacks of the three types of NP is provided as well as a conclusion about the remaining challenges both in the design of brighter NPs and in the luminescence based applications.
Collapse
Affiliation(s)
- Clémence Cheignon
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Ali A Kassir
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Lohona K Soro
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| | - Loïc J Charbonnière
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.
| |
Collapse
|