1
|
Liu YF, Liu HT, Chang C, Yang CX, Liu XN, Wang X, Ge W, Wang RZ, Bao XJ. Stereotactically intracerebral transplantation of neural stem cells for ischemic stroke attenuated inflammatory responses and promoted neurogenesis: an experimental study with monkeys. Int J Surg 2024; 110:5417-5433. [PMID: 38874473 PMCID: PMC11392141 DOI: 10.1097/js9.0000000000001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Ischemic stroke is a common neurovascular disorder with high morbidity and mortality. However, the underlying mechanism of stereotactically intracerebral transplantation of human neural stem cells (hNSCs) is not well elucidated. MATERIALS AND METHODS Four days after ischemic stroke induced by Rose Bengal photothrombosis, seven cynomolgus monkeys were transplanted with hNSCs or vehicles stereotactically and followed up for 84 days. Behavioral assessments, magnetic resonance imaging, blood tests, and pathological analysis were performed before and after treatment. The proteome profiles of the left and right precentral gyrus and hippocampus were evaluated. Extracellular vesicle micro-RNA (miRNA) from the peripheral blood was extracted and analyzed. RESULTS hNSC transplantation reduced the remaining infarcted lesion volume of cynomolgus monkeys with ischemic stroke without remarkable side effects. Proteomic analyses indicated that hNSC transplantation promoted GABAergic and glutamatergic neurogenesis and restored the mitochondrial electron transport chain function in the ischemic infarcted left precentral gyrus or hippocampus. Immunohistochemical staining and quantitative real-time reverse transcription PCR confirmed the promoting effects on neurogenesis and revealed that hNSCs attenuated post-infarct inflammatory responses by suppressing resident glia activation and mediating peripheral immune cell infiltration. Consistently, miRNA-sequencing revealed the miRNAs that were related to these pathways were downregulated after hNSC transplantation. CONCLUSIONS This study indicates that hNSCs can be effectively and safely used to treat ischemic stroke by promoting neurogenesis, regulating post-infarct inflammatory responses, and restoring mitochondrial function in both the infarct region and hippocampus.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan
| | - Hao-Tian Liu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing
| | - Chuheng Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Cheng-Xian Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- Department of Orthopaedics, Peking University First Hospital, Beijing
| | - Xin-Nan Liu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing
| | - Xia Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing
| | - Wei Ge
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing
| | - Ren-Zhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong
| | - Xin-Jie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| |
Collapse
|
2
|
Rothman DL, Behar KL, Dienel GA. Mechanistic stoichiometric relationship between the rates of neurotransmission and neuronal glucose oxidation: Reevaluation of and alternatives to the pseudo-malate-aspartate shuttle model. J Neurochem 2024; 168:555-591. [PMID: 36089566 DOI: 10.1111/jnc.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022]
Abstract
The ~1:1 stoichiometry between the rates of neuronal glucose oxidation (CMRglc-ox-N) and glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) neurotransmitter (NT) cycling between neurons and astrocytes (VNTcycle) has been firmly established. However, the mechanistic basis for this relationship is not fully understood, and this knowledge is critical for the interpretation of metabolic and brain imaging studies in normal and diseased brain. The pseudo-malate-aspartate shuttle (pseudo-MAS) model established the requirement for glycolytic metabolism in cultured glutamatergic neurons to produce NADH that is shuttled into mitochondria to support conversion of extracellular Gln (i.e., astrocyte-derived Gln in vivo) into vesicular neurotransmitter Glu. The evaluation of this model revealed that it could explain half of the 1:1 stoichiometry and it has limitations. Modifications of the pseudo-MAS model were, therefore, devised to address major knowledge gaps, that is, submitochondrial glutaminase location, identities of mitochondrial carriers for Gln and other model components, alternative mechanisms to transaminate α-ketoglutarate to form Glu and shuttle glutamine-derived ammonia while maintaining mass balance. All modified models had a similar 0.5 to 1.0 predicted mechanistic stoichiometry between VNTcycle and the rate of glucose oxidation. Based on studies of brain β-hydroxybutyrate oxidation, about half of CMRglc-ox-N may be linked to glutamatergic neurotransmission and localized in pre-synaptic structures that use pseudo-MAS type mechanisms for Glu-Gln cycling. In contrast, neuronal compartments that do not participate in transmitter cycling may use the MAS to sustain glucose oxidation. The evaluation of subcellular compartmentation of neuronal glucose metabolism in vivo is a critically important topic for future studies to understand glutamatergic and GABAergic neurotransmission.
Collapse
Affiliation(s)
- Douglas L Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Kevin L Behar
- Magnetic Resonance Research Center and Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
3
|
Qin L, Liang X, Qi Y, Luo Y, Xiao Q, Huang D, Zhou C, Jiang L, Zhou M, Zhou Y, Tang J, Tang Y. MPFC PV + interneurons are involved in the antidepressant effects of running exercise but not fluoxetine therapy. Neuropharmacology 2023:109669. [PMID: 37473999 DOI: 10.1016/j.neuropharm.2023.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Depression is a complex psychiatric disorder. Previous studies have shown that running exercise reverses depression-like behavior faster and more effectively than fluoxetine therapy. GABAergic interneurons, including the PV+ interneuron subtype, in the medial prefrontal cortex (MPFC) are involved in pathological changes of depression. It was unknown whether running exercise and fluoxetine therapy reverse depression-like behavior via GABAergic interneurons or the PV+ interneurons subtype in MPFC. To address this issue, we subjected mice with chronic unpredictable stress (CUS) to a 4-week running exercise or fluoxetine therapy. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that running exercise enriched GABAergic synaptic pathways in the MPFC of CUS-exposed mice. However, the number of PV+ interneurons but not the total number of GABAergic interneurons in the MPFC of mice exposed to CUS reversed by running exercise, not fluoxetine therapy. Running exercise increased the relative gene expression levels of the PV gene in the MPFC of CUS-exposed mice without altering other subtypes of GABAergic interneurons. Moreover, running exercise and fluoxetine therapy both significantly improved the length, area and volume of dendrites and the spine morphology of PV+ interneurons in the MPFC of mice exposed to CUS. However, running exercise but not fluoxetine therapy improved the dendritic complexity level of PV+ interneurons in the MPFC of mice exposed to CUS. In summary, the number and dendritic complexity level of PV+ interneurons may be important therapeutic targets for the mechanism by which running exercise reverses depression-like behavior faster and more effectively than fluoxetine therapy.
Collapse
Affiliation(s)
- Lu Qin
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yingqiang Qi
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qian Xiao
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Department of Radioactive Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Dujuan Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Chunni Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lin Jiang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Mei Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuning Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
4
|
Fish KN, Rocco BR, Wilson JD, Lewis DA. Laminar-Specific Alterations in Calbindin-Positive Boutons in the Prefrontal Cortex of Subjects With Schizophrenia. Biol Psychiatry 2023; 94:142-152. [PMID: 36868891 PMCID: PMC10247897 DOI: 10.1016/j.biopsych.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cognitive deficits in schizophrenia are associated with altered GABA (gamma-aminobutyric acid) neurotransmission in the prefrontal cortex (PFC). GABA neurotransmission requires GABA synthesis by 2 isoforms of glutamic acid decarboxylase (GAD65 and GAD67) and packaging by the vesicular GABA transporter (vGAT). Current postmortem findings suggest that GAD67 messenger RNA is lower in a subset of the calbindin-expressing (CB+) class of GABA neurons in schizophrenia. Hence, we assessed if CB+ GABA neuron boutons are affected in schizophrenia. METHODS For 20 matched pairs of subjects with schizophrenia and unaffected comparison subjects, PFC tissue sections were immunolabeled for vGAT, CB, GAD67, and GAD65. The density of CB+ GABA boutons and levels of the 4 proteins per bouton were quantified. RESULTS Some CB+ GABA boutons contained both GAD65 and GAD67 (GAD65+/GAD67+), whereas others contained only GAD65 (GAD65+) or GAD67 (GAD67+). In schizophrenia, vGAT+/CB+/GAD65+/GAD67+ bouton density was not altered, vGAT+/CB+/GAD65+ bouton density was 86% higher in layers 2/superficial 3 (L2/3s), and vGAT+/CB+/GAD67+ bouton density was 36% lower in L5-6. Bouton GAD levels were differentially altered across bouton types and layers. In schizophrenia, the sum of GAD65 and GAD67 levels in vGAT+/CB+/GAD65+/GAD67+ boutons was 36% lower in L6, GAD65 levels were 51% higher in vGAT+/CB+/GAD65+ boutons in L2, and GAD67 levels in vGAT+/CB+/GAD67+ boutons were 30% to 46% lower in L2/3s-6. CONCLUSIONS These findings indicate that schizophrenia-associated alterations in the strength of inhibition from CB+ GABA neurons in the PFC differ across cortical layers and bouton classes, suggesting complex contributions to PFC dysfunction and cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Brad R Rocco
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - James D Wilson
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Ajumeera R, Thipparapu G, Padya BS, Tirumala L, Challa S. Anti-cancer activity of pyridoxal phosphate and metformin combination in human pancreatic cancer cells. Nutr Health 2022:2601060221137624. [PMID: 36349362 DOI: 10.1177/02601060221137624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background: Pancreatic cancer is the foremost cause of cancer-related deaths in many developed countries with a poor prognosis. With advanced disease conditions chemotherapy, surgery followed by radiation is the regimen to prolong the survival. But a complete cure is questionable. Metformin is the first-line drug used for the treatment of type 2 diabetes in the world. Aim: The study aims to assess the anti-cancer activity of metformin with the combination of micronutrient pyridoxal phosphate (PLP) in the human pancreatic cancer cell line (PANC-1). Methods: Panc1 cells were maintained in vitro cell culture conditions. The IC50 concentrations of metformin and PLP were estimated and selected by using MTT assay. Morphological changes upon treatments were observed under microscope. Distribution of cells pattern was observed with propidium iodide dye in cell cycle assay. Different phases of cell distribution were studied with apoptosis assay. Results: More morphological changes were observed with PLP followed metformin. MTT assay revelled the IC50 concentrations of metformin and PLP were 20.95 ± 0.98 mM and 5.70 ± 0.07 mM. The cell cycle assay revealed that the percentage of cells was arrested in different phases with the treatments. Apoptosis assay revelled metformin increased necrosis population to 9.9%, whereas PLP has enhanced to 14.2% apoptosis. Tumour suppressor protein p53 levels had increased to 24.8% with PLP and 3.5% with metformin. Conclusion: In conclusion, PLP has significantly induced cell cycle arrest, apoptosis and enhanced p53 protein expression but a combination of PLP with metformin drug has not synergised anti-cancer activity in human PANC1 cells.
Collapse
Affiliation(s)
- Rajanna Ajumeera
- Department of Cell Biology, ICMR-28603National Institute of Nutrition, Hyderabad, India
| | - Ganapathi Thipparapu
- Department of Cell Biology, ICMR-28603National Institute of Nutrition, Hyderabad, India
| | - Barath Singh Padya
- Department of Cell Biology, ICMR-28603National Institute of Nutrition, Hyderabad, India
| | - Lalitha Tirumala
- Department of Cell Biology, ICMR-28603National Institute of Nutrition, Hyderabad, India
| | - Suresh Challa
- Department of Cell Biology, ICMR-28603National Institute of Nutrition, Hyderabad, India
| |
Collapse
|
6
|
Michalettos G, Ruscher K. Crosstalk Between GABAergic Neurotransmission and Inflammatory Cascades in the Post-ischemic Brain: Relevance for Stroke Recovery. Front Cell Neurosci 2022; 16:807911. [PMID: 35401118 PMCID: PMC8983863 DOI: 10.3389/fncel.2022.807911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Adaptive plasticity processes are required involving neurons as well as non-neuronal cells to recover lost brain functions after an ischemic stroke. Recent studies show that gamma-Aminobutyric acid (GABA) has profound effects on glial and immune cell functions in addition to its inhibitory actions on neuronal circuits in the post-ischemic brain. Here, we provide an overview of how GABAergic neurotransmission changes during the first weeks after stroke and how GABA affects functions of astroglial and microglial cells as well as peripheral immune cell populations accumulating in the ischemic territory and brain regions remote to the lesion. Moreover, we will summarize recent studies providing data on the immunomodulatory actions of GABA of relevance for stroke recovery. Interestingly, the activation of GABA receptors on immune cells exerts a downregulation of detrimental anti-inflammatory cascades. Conversely, we will discuss studies addressing how specific inflammatory cascades affect GABAergic neurotransmission on the level of GABA receptor composition, GABA synthesis, and release. In particular, the chemokines CXCR4 and CX3CR1 pathways have been demonstrated to modulate receptor composition and synthesis. Together, the actual view on the interactions between GABAergic neurotransmission and inflammatory cascades points towards a specific crosstalk in the post-ischemic brain. Similar to what has been shown in experimental models, specific therapeutic modulation of GABAergic neurotransmission and inflammatory pathways may synergistically promote neuronal plasticity to enhance stroke recovery.
Collapse
Affiliation(s)
- Georgios Michalettos
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- *Correspondence: Karsten Ruscher
| |
Collapse
|
7
|
WORARATPHOKA J, INNOK S, SOISUNGNOEN P, TANAMOOL V, SOEMPHOL W. γ-Aminobutyric acid production and antioxidant activities in fresh cheese by Lactobacillus plantarum L10-11. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Yarabbi H, Mortazavi SA, Yavarmanesh M, Javadmanesh A. Molecular cloning, gene overexpression and characterization of glutamate decarboxylase from Enterococcus faecium DO. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Lin H, Jin T, Chen L, Dai Y, Jia W, He X, Yang M, Li J, Liang S, Wu J, Huang J, Chen L, Liu W, Tao J. Longitudinal tracing of neurochemical metabolic disorders in working memory neural circuit and optogenetics modulation in rats with vascular cognitive impairment. Brain Res Bull 2021; 170:174-186. [PMID: 33600886 DOI: 10.1016/j.brainresbull.2021.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Chronic cerebral ischemia leads to vascular cognitive impairment (VCI) that exacerbates along with ischemia time and eventually develops into dementia. Recent advances in molecular neuroimaging contribute to understand its pathological characteristics. We previously traced the anisotropic diffusion of water molecules suggests that chronic cerebral ischemia leads to irreversible progressive damage to white matter integrity. However, the abnormalities of gray matter activity following chronic cerebral ischemia remains not entirely understood. In this study, in vivo hydrogen proton magnetic resonance spectroscopy (1H-MRS) was applied to longitudinally track the neurochemical metabolic disorder of gray matter associated with working memory, and optogenetics modulation of neurochemical metabolism was performed for targeted treatment of VCI. The results showed that the concentration of N-acetylaspartate (NAA) in the right hippocampus, left hippocampus, right medial prefrontal cortex (mPFC) and mediodorsal thalamus was decreased as early as 7 days after chronic cerebral ischemia, subsequently gamma-aminobutyric acid (GABA) declined whereas myo-inositol (mI) and glutamate (Glu) increased at 14 days, as well as choline (Cho) lost at 28 days, concurrently the change of Glu and GABA in the mPFC and hippocampus was ischemia time-dependent manner within 1 month. Behaviorally, working memory and object recognition memory were impaired at 14 days, 28 days that significantly correlated with neurochemical metabolic disorders. Interestingly, using optogenetics modulation of PV neurons in the mPFC, the metabolic abnormalities of NAA and GABA in working memory neural circuit could be repaired after chronic cerebral ischemia, together with behavior improvements. These findings suggested that as early as 1∼4 weeks after chronic cerebral ischemia, the metabolism of NAA, Glu, mI and Cho was synchronously impaired in neural circuit of hippocampus-mediodorsal thalamus-mPFC, and the loss of GABA delayed in the hippocampus, and optogenetics modulation of parvalbumin (PV) neurons in the mPFC can improve the neurochemical metabolism of working memory neural circuit and enhance working memory.
Collapse
Affiliation(s)
- Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Tingting Jin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology & Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Lewen Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Yaling Dai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Weiwei Jia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Xiaojun He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Minguang Yang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology & Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Jianhong Li
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology & Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Shengxiang Liang
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Jinsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Lidian Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology & Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Weilin Liu
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China.
| | - Jing Tao
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology & Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China.
| |
Collapse
|
10
|
Szpręgiel I, Wrońska D, Kmiecik M, Pałka S, Kania BF. Glutamic Acid Decarboxylase Concentration Changes in Response to Stress and Altered Availability of Glutamic Acid in Rabbit ( Oryctolagus cuniculus) Brain Limbic Structures. Animals (Basel) 2021; 11:455. [PMID: 33572286 PMCID: PMC7915518 DOI: 10.3390/ani11020455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
Glutamic acid decarboxylase (GAD) is an enzyme that catalyses the formation of γ-aminobutyric acid (GABA), the most important inhibitory neurotransmitter, from glutamic acid (Glu), which is considered the most important excitatory transmitter in the central and peripheral nervous systems. GAD is a key enzyme that provides a balance between Glu and GABA concentration. Hence, it can be assumed that if the GAD executes the synthesis of GABA from Glu, it is important in the stress response, and thus also in triggering the emotional states of the body that accompany stress. The aim of the study was to investigate the concentration of the GAD in motivational structures in the brain of the rabbit (Oryctolagus cuniculus) under altered homeostatic conditions caused by stress and variable availability of Glu. Summarising, the experimental results clearly showed variable concentrations of GAD in the motivational structures of the rabbit brain. The highest concentration of GAD was found in the hypothalamus, which suggests a strong effect of Glu and GABA on the activity of this brain structure. The GAD concentrations in individual experimental groups depended to a greater extent on blocking the activity of glutamate receptors than on the effects of a single stress exposure. The results obtained clearly support the possibility that a rapid change in the concentration of GAD could shift bodily responses to quickly achieve homeostasis, especially in this species. Further studies are necessary to reveal the role of the Glu-GAD-GABA system in the modulation of stress situations as well as in body homeostasis.
Collapse
Affiliation(s)
- Izabela Szpręgiel
- Department of Animal Physiology and Endocrinology, Faculty of Animal Sciences, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland;
| | - Danuta Wrońska
- Department of Animal Physiology and Endocrinology, Faculty of Animal Sciences, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland;
| | - Michał Kmiecik
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland; (M.K.); (S.P.)
| | - Sylwia Pałka
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland; (M.K.); (S.P.)
| | - Bogdan F. Kania
- University Centre of Veterinary Medicine JU-AU, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059 Kraków, Poland;
| |
Collapse
|
11
|
Al-Absi AR, Qvist P, Glerup S, Sanchez C, Nyengaard JR. Df(h15q13)/+ Mouse Model Reveals Loss of Astrocytes and Synaptic-Related Changes of the Excitatory and Inhibitory Circuits in the Medial Prefrontal Cortex. Cereb Cortex 2021; 31:1609-1621. [PMID: 33123721 DOI: 10.1093/cercor/bhaa313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/19/2020] [Accepted: 09/20/2020] [Indexed: 11/13/2022] Open
Abstract
The 15q13.3 deletion is associated with multiple neurodevelopmental disorders including epilepsy, schizophrenia, and autism. The Df(h15q13)/+ mouse model was recently generated that recapitulates several phenotypic features of the human 15q13.3 deletion syndrome (DS). However, the biological substrates underlying these phenotypes in Df(h15q13)/+ mice have not yet been fully characterized. RNA sequencing followed by real-time quantitative PCR, western blotting, liquid chromatography-mass spectrometry, and stereological analysis were employed to dissect the molecular, structural, and neurochemical phenotypes of the medial prefrontal cortex (mPFC) circuits in Df(h15q13)/+ mouse model. Transcriptomic profiling revealed enrichment for astrocyte-specific genes among differentially expressed genes, translated by a decrease in the number of glial fibrillary acidic protein positive cells in mPFC of Df(h15q13)/+ mice compared with wild-type mice. mPFC in Df(h15q13)/+ mice also showed a deficit of the inhibitory presynaptic marker GAD65, in addition to a reduction in dendritic arborization and spine density of pyramidal neurons from layers II/III. mPFC levels of GABA and glutamate neurotransmitters were not different between genotypes. Our results suggest that the 15q13.3 deletion modulates nonneuronal circuits in mPFC and confers molecular and morphometric alterations in the inhibitory and excitatory neurocircuits, respectively. These alterations potentially contribute to the phenotypes accompanied with the 15q13.3DS.
Collapse
Affiliation(s)
- Abdel-Rahman Al-Absi
- Center for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000 Aarhus, Denmark.,Center for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000 Aarhus, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Aarhus University, 8000 Aarhus, Denmark
| | - Jens R Nyengaard
- Center for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
12
|
Enhanced production of γ-aminobutyric acid (GABA) using Lactobacillus plantarum EJ2014 with simple medium composition. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110443] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Yogeswara IBA, Maneerat S, Haltrich D. Glutamate Decarboxylase from Lactic Acid Bacteria-A Key Enzyme in GABA Synthesis. Microorganisms 2020; 8:microorganisms8121923. [PMID: 33287375 PMCID: PMC7761890 DOI: 10.3390/microorganisms8121923] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2023] Open
Abstract
Glutamate decarboxylase (l-glutamate-1-carboxylase, GAD; EC 4.1.1.15) is a pyridoxal-5’-phosphate-dependent enzyme that catalyzes the irreversible α-decarboxylation of l-glutamic acid to γ-aminobutyric acid (GABA) and CO2. The enzyme is widely distributed in eukaryotes as well as prokaryotes, where it—together with its reaction product GABA—fulfils very different physiological functions. The occurrence of gad genes encoding GAD has been shown for many microorganisms, and GABA-producing lactic acid bacteria (LAB) have been a focus of research during recent years. A wide range of traditional foods produced by fermentation based on LAB offer the potential of providing new functional food products enriched with GABA that may offer certain health-benefits. Different GAD enzymes and genes from several strains of LAB have been isolated and characterized recently. GABA-producing LAB, the biochemical properties of their GAD enzymes, and possible applications are reviewed here.
Collapse
Affiliation(s)
- Ida Bagus Agung Yogeswara
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences BOKU, Muthgasse 18, 1190 Vienna, Austria;
- Nutrition Department, Faculty of Health, Science and Technology, Universitas Dhyana Pura, Dalung Kuta utara 80361, Bali, Indonesia
- Correspondence:
| | - Suppasil Maneerat
- Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences BOKU, Muthgasse 18, 1190 Vienna, Austria;
| |
Collapse
|
14
|
Chen YC, Hsieh SL, Hu CY. Effects of Red-Bean Tempeh with Various Strains of Rhizopus on GABA Content and Cortisol Level in Zebrafish. Microorganisms 2020; 8:E1330. [PMID: 32878315 PMCID: PMC7565155 DOI: 10.3390/microorganisms8091330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/03/2022] Open
Abstract
Tempeh is traditionally produced by fermenting soybean with the fungus Rhizopus oligosporus found in banana leafs. We wanted to investigate if Taiwan's flavorful red bean could be used as a healthy substitute for soybeans in tempeh. One bioactive component of tempeh is γ-Aminobutyric acid (GABA). We measured GABA content and shelf-life-related antimicrobial activity in red-bean tempeh made with four strains of Rhizopus, one purchased strain of Rhizopus, and an experimental co-cultured group (Rhizopus and Lactobacillus rhamnosus BCRC16000) as well as cortisol in red-bean-tempeh-treated zebrafish. GABA was highest in the co-culture group (19.028 ± 1.831 g kg-1), followed by screened Strain 1, the purchased strain, and screened Strain 4. All strains had antibacterial activity on S. aureus and B. cereus. The extract significantly reduced cortisol in zebrafish. However, Strain 1, with less GABA than some of the other strains, had the best effect on cortisol level, suggesting that other components in red-bean tempeh may also affect stress-related cortisol. We found the benefits of red-bean tempeh to be similar to those reported for soybean-produced tempeh, suggesting that it could be produced as an alternative product. Considering the Taiwanese appreciation of the red-bean flavor, it might find a welcoming market.
Collapse
Affiliation(s)
- Yo-Chia Chen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan;
| | - Chun-Yi Hu
- Department of Food Science and Nutrition, Meiho University, Pingtung 912009, Taiwan
| |
Collapse
|
15
|
Abstract
This work presents a proof of concept of a novel, simple, and sensitive method of detection of dopamine, a neurotransmitter within the human brain. We propose a simple electrochemical method for the detection of dopamine using a dopamine-specific aptamer labeled with an electrochemically active ferrocene tag. Aptamers immobilized on the surface of gold screen-printed gold electrodes via thiol groups can change their secondary structure by wrapping around the target molecule. As a result, the ferrocene labels move closer to the electrode surface and subsequently increase the electron transfer. The cyclic voltammograms and impedance spectra recorded on electrodes in buffer solutions containing different concentration of dopamine showed, respectively, the increase in both the anodic and cathodic currents and decrease in the double layer resistance upon increasing the concentration of dopamine from 0.1 to 10 nM L−1. The high affinity of aptamer-dopamine binding (KD ≈ 5 nM) was found by the analysis of the binding kinetics. The occurrence of aptamer-dopamine binding was directly confirmed with spectroscopic ellipsometry measurements.
Collapse
|
16
|
Saidi V, Sheikh-Zeinoddin M, Kobarfard F, Soleimanian-Zad S. Bioactive characteristics of a semi-hard non-starter culture cheese made from raw or pasteurized sheep's milk. 3 Biotech 2020; 10:85. [PMID: 32089980 PMCID: PMC7000560 DOI: 10.1007/s13205-020-2075-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, the effect of pasteurization and use of starter cultures on physicochemical, microbiological and functional properties of a traditional Iranian semi-hard cheese (Lighvan cheese) was evaluated during stages of ripening (1, 60, 120 days). Profiles of polar metabolites were analyzed by gas-chromatography mass-spectrometry (GC-MS). Considerable free amino acids such as gamma-aminobutyric acid (GABA) were found in samples that have higher microbial communities i.e. raw sheep's milk without use of starter cultures and pasteurized sheep's milk cheese with co-culture. However, GABA was not found in pasteurized sheep's milk cheese without starter culture during ripening. Conclusively, the application of the starter culture could reduce the ripening time of sheep's milk cheese and could be an appropriate approach to increase the functionality of the sheep's milk cheese.
Collapse
Affiliation(s)
- Vahideh Saidi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahmoud Sheikh-Zeinoddin
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| |
Collapse
|
17
|
Alhourani A, Fish KN, Wozny TA, Sudhakar V, Hamilton RL, Richardson RM. GABA bouton subpopulations in the human dentate gyrus are differentially altered in mesial temporal lobe epilepsy. J Neurophysiol 2019; 123:392-406. [PMID: 31800363 DOI: 10.1152/jn.00523.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Medically intractable temporal lobe epilepsy is a devastating disease, for which surgical removal of the seizure onset zone is the only known cure. Multiple studies have found evidence of abnormal dentate gyrus network circuitry in human mesial temporal lobe epilepsy (MTLE). Principal neurons within the dentate gyrus gate entorhinal input into the hippocampus, providing a critical step in information processing. Crucial to that role are GABA-expressing neurons, particularly parvalbumin (PV)-expressing basket cells (PVBCs) and chandelier cells (PVChCs), which provide strong, temporally coordinated inhibitory signals. Alterations in PVBC and PVChC boutons have been described in epilepsy, but the value of these studies has been limited due to methodological hurdles associated with studying human tissue. We developed a multilabel immunofluorescence confocal microscopy and a custom segmentation algorithm to quantitatively assess PVBC and PVChC bouton densities and to infer relative synaptic protein content in the human dentate gyrus. Using en bloc specimens from MTLE subjects with and without hippocampal sclerosis, paired with nonepileptic controls, we demonstrate the utility of this approach for detecting cell-type specific synaptic alterations. Specifically, we found increased density of PVBC boutons, while PVChC boutons decreased significantly in the dentate granule cell layer of subjects with hippocampal sclerosis compared with matched controls. In contrast, bouton densities for either PV-positive cell type did not differ between epileptic subjects without sclerosis and matched controls. These results may explain conflicting findings from previous studies that have reported both preserved and decreased PV bouton densities and establish a new standard for quantitative assessment of interneuron boutons in epilepsy.NEW & NOTEWORTHY A state-of-the-art, multilabel immunofluorescence confocal microscopy and custom segmentation algorithm technique, developed previously for studying synapses in the human prefrontal cortex, was modified to study the hippocampal dentate gyrus in specimens surgically removed from patients with temporal lobe epilepsy. The authors discovered that chandelier and basket cell boutons in the human dentate gyrus are differentially altered in mesial temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ahmad Alhourani
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Thomas A Wozny
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Vivek Sudhakar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ronald L Hamilton
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - R Mark Richardson
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain. Arch Pharm Res 2019; 42:1031-1039. [PMID: 31786745 DOI: 10.1007/s12272-019-01196-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter that is required for the control of synaptic excitation/inhibition and neural oscillation. GABA is synthesized by glutamic acid decarboxylases (GADs) that are widely distributed and localized to axon terminals of inhibitory neurons as well as to the soma and, to a lesser extent, dendrites. The expression and activity of GADs is highly correlated with GABA levels and subsequent GABAergic neurotransmission at the inhibitory synapse. Dysregulation of GADs has been implicated in various neurological disorders including epilepsy and schizophrenia. Two isoforms of GADs, GAD67 and GAD65, are expressed from separate genes and have different regulatory processes and molecular properties. This review focuses on the recent advances in understanding the structure of GAD, its transcriptional regulation and post-transcriptional modifications in the central nervous system. This may provide insights into the pathological mechanisms underlying neurological diseases that are associated with GAD dysfunction.
Collapse
|
19
|
Jung WY, Kim SG, Kim HK, Huh SY, Kim DW, Yoon DU, Yang CH, Kim HY, Jang EY. The Effect of Oral Administration of Black Sticky Rice with Giant Embryo on Brain GABA Concentrations. Psychiatry Investig 2019; 16:615-620. [PMID: 31352770 PMCID: PMC6710419 DOI: 10.30773/pi.2019.05.13.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/13/2019] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE Black sticky rice with giant embryo (BSRGE) contains high GABA content and affects alcohol-related indices among social drinkers, and alcohol intake and anxiety-related behavior of mice. However, it is unknown whether the intake of BSRGE affects GABAergic activity of brain directly. The purpose of this study is to elucidate the effect of oral administration of BSRGE on brain GABA concentrations compared with commercially available GABA compound and regular feeds. METHODS Twenty-one male C57BL/6 mice were assigned to BSRGE, a regular feed (AIN-76) lacking GABA, and a regular feed containing GABA compound. After feeding freely for 48 h, the cortex and striatum were separated from the brain. An enzyme-linked immunosorbent assay was conducted to measure GABA and glutamate concentrations in mouse brain. RESULTS The GABA concentration of the BSRGE group was higher than that of regular feed and GABA compound group (p<0.001). However, the GABA compound group showed no significant difference from the regular feed group (p=0.50). CONCLUSION Intake of BSRGE containing high GABA content increased GABA concentrations in mouse brain compared with regular feed unlike GABA compound. The results of this study constitute an important basis for further investigations into the clinical applications of BSRGE.
Collapse
Affiliation(s)
- Woo-Young Jung
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Sung-Gon Kim
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hyeon-Kyeong Kim
- Medical Research Institute, Pusan National University, Busan, Republic of Korea
| | - Sung-Young Huh
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Dae-Wook Kim
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Dong-Uk Yoon
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Chae Ha Yang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Eun Young Jang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea.,Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daegeon, Republic of Korea
| |
Collapse
|
20
|
Development of Novel and Highly Specific ssDNA-Aptamer-Based Electrochemical Biosensor for Rapid Detection of Mercury (II) and Lead (II) Ions in Water. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7020027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, we report on the development of an electrochemical biosensor for high selectivity and rapid detection of Hg2+ and Pb2+ ions using DNA-based specific aptamer probes labeled with ferrocene (or methylene blue) and thiol groups at their 5′ and 3′ termini, respectively. Aptamers were immobilized onto the surface of screen-printed gold electrodes via the SH (thiol) groups, and then cyclic voltammetry and impedance spectra measurements were performed in buffer solutions with the addition of HgCl2 and PbCl2 salts at different concentrations. Changes in 3D conformation of aptamers, caused by binding their respective targets, e.g., Hg2+ and Pb2+ ions, were accompanied by an increase in the electron transfer between the redox label and the electrode. Accordingly, the presence of the above ions can be detected electrochemically. The detection of Hg2+ and Pb2+ ions in a wide range of concentrations as low as 0.1 ng/mL (or 0.1 ppb) was achieved. The study of the kinetics of aptamer/heavy metal ions binding gave the values of the affinity constants of approximately 9.10−7 mol, which proved the high specificity of the aptamers used.
Collapse
|
21
|
Transcriptome and metabolome analyses reveal global behaviour of a genetically engineered methanol-independent Pichia pastoris strain. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Investigation of diverse interactions of amino acids (Asp and Glu) in aqueous Dopamine hydrochloride with the manifestation of the catecholamine molecule recognition tool in solution phase. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Antiglutamic acid decarboxylase 65 (GAD65) antibody-associated epilepsy. Epilepsy Behav 2018; 80:331-336. [PMID: 29433947 DOI: 10.1016/j.yebeh.2018.01.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/21/2023]
Abstract
Glutamic acid decarboxylase (GAD) antibody-associated encephalitis causes both acute seizures and chronic epilepsy with predominantly temporal lobe onset. This condition is challenging in diagnosis and management, and the incidence of GAD antibody (Ab)-related epilepsy could be much higher than commonly believed. Imaging and CSF evidence of inflammation along with typical clinical presentations, such as adult onset temporal lobe epilepsy (TLE) with unexplained etiology, should prompt testing for the diagnostic antibodies. High serum GAD Ab titer (≥2000U/mL or ≥20nmol/L) and evidence of intrathecal anti-GAD Ab synthesis support the diagnosis. Unlike other immune-mediated epilepsies, antiglutamic acid decarboxylase 65 (GAD65) antibody-mediated epilepsy is often poorly responsive to antiepileptic drugs (AEDs) and only moderately responsive to immune therapy with steroids, intravenous immunoglobulin (IVIG), or plasma exchange (PLEX). Long-term treatment with more aggressive immunosuppressants such as rituximab (RTX) and/or cyclophosphamide is often necessary and may be more effective than current immunosuppressive approaches. The aim of this review is to review the physiology, pathology, clinical presentation, related ancillary tests, and management of GAD Ab-associated autoimmune epilepsy by searching the keywords and to promote the recognition and the initiation of proper therapy for this condition.
Collapse
|
24
|
Cruz T, Gleizes M, Balayssac S, Mornet E, Marsal G, Millán JL, Malet-Martino M, Nowak LG, Gilard V, Fonta C. Identification of altered brain metabolites associated with TNAP activity in a mouse model of hypophosphatasia using untargeted NMR-based metabolomics analysis. J Neurochem 2017; 140:919-940. [PMID: 28072448 DOI: 10.1111/jnc.13950] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/18/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Tissue non-specific alkaline phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However, TNAP's role in the nervous system remains poorly understood. To investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1 H- and 31 P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well-described model of infantile HPP. Among 39 metabolites identified in brain extracts of 1-week-old animals, eight displayed significantly different concentration in Akp2-/- compared to Akp2+/+ and Akp2+/- mice: cystathionine, adenosine, GABA, methionine, histidine, 3-methylhistidine, N-acetylaspartate (NAA), and N-acetyl-aspartyl-glutamate, with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto-nucleotide levels and of pyridoxal phosphate-dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP.
Collapse
Affiliation(s)
- Thomas Cruz
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Marie Gleizes
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Stéphane Balayssac
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Etienne Mornet
- Unité de Génétique Constitutionnelle Prénatale et Postnatale, Service de Biologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Grégory Marsal
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Lionel G Nowak
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Véronique Gilard
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Caroline Fonta
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| |
Collapse
|
25
|
Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl Psychiatry 2017; 7:e1147. [PMID: 28585933 PMCID: PMC5537645 DOI: 10.1038/tp.2017.124] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 01/17/2023] Open
Abstract
Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction. The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance spectroscopy (1H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia and psychosis. Sixteen GABA 1H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABAA/benzodiazepine receptor (GABAA/BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1H-MRS GABA in the medial prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=-0.3, 409 patients, 495 controls, 95% confidence interval (CI): -0.6 to 0.1; POC: g=-0.3, 139 patients, 111 controls, 95% CI: -0.9 to 0.3; striatum: g=-0.004, 123 patients, 95 controls, 95% CI: -0.7 to 0.7). Heterogeneity across studies was high (I2>50%), and this was not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABAA/BZR availability. The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies with improved methodology and addressing potential sources of heterogeneity.
Collapse
|
26
|
Calvigioni D, Máté Z, Fuzik J, Girach F, Zhang MD, Varro A, Beiersdorf J, Schwindling C, Yanagawa Y, Dockray GJ, McBain CJ, Hökfelt T, Szabó G, Keimpema E, Harkany T. Functional Differentiation of Cholecystokinin-Containing Interneurons Destined for the Cerebral Cortex. Cereb Cortex 2017; 27:2453-2468. [PMID: 27102657 DOI: 10.1093/cercor/bhw094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although extensively studied postnatally, the functional differentiation of cholecystokinin (CCK)-containing interneurons en route towards the cerebral cortex during fetal development is incompletely understood. Here, we used CCKBAC/DsRed mice encoding a CCK promoter-driven red fluorescent protein to analyze the temporal dynamics of DsRed expression, neuronal identity, and positioning through high-resolution developmental neuroanatomy. Additionally, we developed a dual reporter mouse line (CCKBAC/DsRed::GAD67gfp/+) to differentiate CCK-containing interneurons from DsRed+ principal cells during prenatal development. We show that DsRed is upregulated in interneurons once they exit their proliferative niche in the ganglionic eminence and remains stably expressed throughout their long-distance migration towards the cerebrum, particularly in the hippocampus. DsRed+ interneurons, including a cohort coexpressing calretinin, accumulated at the palliosubpallial boundary by embryonic day 12.5. Pioneer DsRed+ interneurons already reached deep hippocampal layers by embryonic day 14.5 and were morphologically differentiated by birth. Furthermore, we probed migrating interneurons entering and traversing the cortical plate, as well as stationary cells in the hippocampus by patch-clamp electrophysiology to show the first signs of Na+ and K+ channel activity by embryonic day 12.5 and reliable adult-like excitability by embryonic day 18.5. Cumulatively, this study defines key positional, molecular, and biophysical properties of CCK+ interneurons in the prenatal brain.
Collapse
Affiliation(s)
- Daniela Calvigioni
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, H-1083 Budapest, Hungary
| | - János Fuzik
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Fatima Girach
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Ming-Dong Zhang
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177 Stockholm, Sweden
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, L69 3BX Liverpool, UK
| | - Johannes Beiersdorf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Christian Schwindling
- Microscopy Labs Munich, Global Sales Support-Life Sciences, Carl Zeiss Microscopy GmbH, Kistlerhofstrasse 75, D-81379 Munich, Germany
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Graham J Dockray
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177 Stockholm, Sweden
| | - Chris J McBain
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177 Stockholm, Sweden
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, H-1083 Budapest, Hungary
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| |
Collapse
|
27
|
Changes in the Prefrontal Glutamatergic and Parvalbumin Systems of Mice Exposed to Unpredictable Chronic Stress. Mol Neurobiol 2017; 55:2591-2602. [PMID: 28421533 DOI: 10.1007/s12035-017-0528-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/06/2017] [Indexed: 12/29/2022]
Abstract
The prefrontal cortex (PFC) is highly sensitive to the effects of stress, a known risk factor of mood disorders including anxiety and depression. Abnormalities in PFC functioning have been well described in humans displaying stress-induced depressive symptoms, and hypoactivity of the PFC is now recognized to be a key feature of the depressed brain. However, little is known about the causes and mechanisms leading to this altered prefrontal functional activity in the context of stress-related mood disorders. We previously showed that unpredictable chronic mild stress (UCMS) in mice increases prefrontal expression of parvalbumin (PV), an activity-dependent calcium-binding albumin protein expressed in a specific subtype of GABAergic neurons, highlighting a potential mechanism through which chronic stress leads to hypofunction of the PFC. In this study, we aimed to investigate the mechanisms by which chronic stress alters the prefrontal GABA system. We hypothesized that chronic stress-induced enhancement of glutamatergic transmission in the PFC is a crucial contributing factor to changes within the prefrontal GABAergic and, specifically, PV system. BALB/c male and female mice were exposed to daily handling (control) or 2 or 4 weeks of UCMS. Female mice displayed a more severe altered phenotype than males, as shown by increased anxiety- and depressive-like behaviors and deficits in PFC-dependent cognitive abilities, particularly after exposure to 2 weeks of UCMS. This behavioral phenotype was paralleled by a large increase in prefrontal PV messenger RNA (mRNA) and number of PV-expressing neurons, supporting our previous findings. We further showed that the expression of pre- and postsynaptic markers of glutamatergic transmission (VGlut1 presynaptic terminals and pERK1/2, respectively) onto PV neurons was increased by 2 weeks of UCMS in a sex-specific manner; this was associated with sex-specific changes in the mRNA expression of the NR2B subunit of the NMDA receptor. These findings provide evidence of increased glutamatergic transmission onto prefrontal PV neurons, particularly in female mice, which could potentially contribute to their increased PV expression and the extent of their behavioral impairment following UCMS. Finally, our analysis of activity of subcortical regions sending glutamatergic afferents to the PFC reveals that glutamatergic neurons from the basolateral amygdala might be specifically involved in UCMS-induced changes in prefrontal glutamatergic transmission.
Collapse
|
28
|
Gan RY, Li HB, Gunaratne A, Sui ZQ, Corke H. Effects of Fermented Edible Seeds and Their Products on Human Health: Bioactive Components and Bioactivities. Compr Rev Food Sci Food Saf 2017; 16:489-531. [DOI: 10.1111/1541-4337.12257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ren-You Gan
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
- School of Biological Sciences; The Univ. of Hong Kong; Pokfulam Road Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health; Sun Yat-sen Univ.; Guangzhou 510080 China
| | - Anil Gunaratne
- Faculty of Agricultural Sciences; Sabaragamuwa Univ. of Sri Lanka; P.O. Box 02 Belihuloya Sri Lanka
| | - Zhong-Quan Sui
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
| | - Harold Corke
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
| |
Collapse
|
29
|
Urrutia M, Fernández S, González M, Vilches R, Rojas P, Vásquez M, Kurte M, Vega-Letter AM, Carrión F, Figueroa F, Rojas P, Irarrázabal C, Fuentealba RA. Overexpression of Glutamate Decarboxylase in Mesenchymal Stem Cells Enhances Their Immunosuppressive Properties and Increases GABA and Nitric Oxide Levels. PLoS One 2016; 11:e0163735. [PMID: 27662193 PMCID: PMC5035029 DOI: 10.1371/journal.pone.0163735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
The neurotransmitter GABA has been recently identified as a potent immunosuppressive agent that targets both innate and adaptive immune systems and prevents disease progression of several autoimmunity models. Mesenchymal stem cells (MSCs) are self-renewing progenitor cells that differentiate into various cell types under specific conditions, including neurons. In addition, MSC possess strong immunosuppressive capabilities. Upon cytokine priming, undifferentiated MSC suppress T-cell proliferation via cell-to-cell contact mechanisms and the secretion of soluble factors like nitric oxide, prostaglandin E2 and IDO. Although MSC and MSC-derived neuron-like cells express some GABAergic markers in vitro, the role for GABAergic signaling in MSC-mediated immunosuppression remains completely unexplored. Here, we demonstrate that pro-inflammatory cytokines selectively regulate GAD-67 expression in murine bone marrow-MSC. However, expression of GAD-65 is required for maximal GABA release by MSC. Gain of function experiments using GAD-67 and GAD-65 co-expression demonstrates that GAD increases immunosuppressive function in the absence of pro-inflammatory licensing. Moreover, GAD expression in MSC evokes an increase in both GABA and NO levels in the supernatants of co-cultured MSC with activated splenocytes. Notably, the increase in NO levels by GAD expression was not observed in cultures of isolated MSC expressing GAD, suggesting crosstalk between these two pathways in the setting of immunosuppression. These results indicate that GAD expression increases MSC-mediated immunosuppression via secretion of immunosuppressive agents. Our findings may help reconsider GABAergic activation in MSC for immunological disorders.
Collapse
Affiliation(s)
- Mariana Urrutia
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Sebastián Fernández
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Marisol González
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Rodrigo Vilches
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Pablo Rojas
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Manuel Vásquez
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Mónica Kurte
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Flavio Carrión
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Fernando Figueroa
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Patricio Rojas
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carlos Irarrázabal
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Rodrigo A. Fuentealba
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- * E-mail:
| |
Collapse
|
30
|
Sorolla MA, Rodríguez-Colman MJ, Vall-Llaura N, Vived C, Fernández-Nogales M, Lucas JJ, Ferrer I, Cabiscol E. Impaired PLP-dependent metabolism in brain samples from Huntington disease patients and transgenic R6/1 mice. Metab Brain Dis 2016; 31:579-86. [PMID: 26666246 DOI: 10.1007/s11011-015-9777-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/09/2015] [Indexed: 11/25/2022]
Abstract
Oxidative stress has been described as important to Huntington disease (HD) progression. In a previous HD study, we identified several carbonylated proteins, including pyridoxal kinase and antiquitin, both of which are involved in the metabolism of pyridoxal 5´-phosphate (PLP), the active form of vitamin B6. In the present study, pyridoxal kinase levels were quantified and showed to be decreased both in HD patients and a R6/1 mouse model, compared to control samples. A metabolomic analysis was used to analyze metabolites in brain samples of HD patients and R6/1 mice, compared to control samples using mass spectrometry. This technique allowed detection of increased concentrations of pyridoxal, the substrate of pyridoxal kinase. In addition, PLP, the product of the reaction, was decreased in striatum from R6/1 mice. Furthermore, glutamate and cystathionine, both substrates of PLP-dependent enzymes were increased in HD. This reinforces the hypothesis that PLP synthesis is impaired, and could explain some alterations observed in the disease. Together, these results identify PLP as a potential therapeutic agent.
Collapse
Affiliation(s)
- M Alba Sorolla
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain.
| | - María José Rodríguez-Colman
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Núria Vall-Llaura
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Celia Vived
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Marta Fernández-Nogales
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - José J Lucas
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| |
Collapse
|
31
|
Davis KN, Tao R, Li C, Gao Y, Gondré-Lewis MC, Lipska BK, Shin JH, Xie B, Ye T, Weinberger DR, Kleinman JE, Hyde TM. GAD2 Alternative Transcripts in the Human Prefrontal Cortex, and in Schizophrenia and Affective Disorders. PLoS One 2016; 11:e0148558. [PMID: 26848839 PMCID: PMC4744057 DOI: 10.1371/journal.pone.0148558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/19/2016] [Indexed: 01/04/2023] Open
Abstract
Genetic variation and early adverse environmental events work together to increase risk for schizophrenia. γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in adult mammalian brain, plays a major role in normal brain development, and has been strongly implicated in the pathobiology of schizophrenia. GABA synthesis is controlled by two glutamic acid decarboxylase (GAD) genes, GAD1 and GAD2, both of which produce a number of alternative transcripts. Genetic variants in the GAD1 gene are associated with increased risk for schizophrenia, and reduced expression of its major transcript in the human dorsolateral prefrontal cortex (DLPFC). No consistent changes in GAD2 expression have been found in brains from patients with schizophrenia. In this work, with the use of RNA sequencing and PCR technologies, we confirmed and tracked the expression of an alternative truncated transcript of GAD2 (ENST00000428517) in human control DLPFC homogenates across lifespan besides the well-known full length transcript of GAD2. In addition, using quantitative RT-PCR, expression of GAD2 full length and truncated transcripts were measured in the DLPFC of patients with schizophrenia, bipolar disorder and major depression. The expression of GAD2 full length transcript is decreased in the DLPFC of schizophrenia and bipolar disorder patients, while GAD2 truncated transcript is increased in bipolar disorder patients but decreased in schizophrenia patients. Moreover, the patients with schizophrenia with completed suicide or positive nicotine exposure showed significantly higher expression of GAD2 full length transcript. Alternative transcripts of GAD2 may be important in the growth and development of GABA-synthesizing neurons as well as abnormal GABA signaling in the DLPFC of patients with schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Kasey N. Davis
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892–1385, United States of America
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington D.C., 20059, United States of America
| | - Ran Tao
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Chao Li
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Yuan Gao
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Marjorie C. Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington D.C., 20059, United States of America
| | - Barbara K. Lipska
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892–1385, United States of America
| | - Joo Heon Shin
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Bin Xie
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Tianzhang Ye
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Daniel R. Weinberger
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
- Department of Psychiatry and Behavior Sciences, and Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University Medical Campus, Baltimore, Maryland, 21205, United States of America
- Departments of Neuroscience and the Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Joel E. Kleinman
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Thomas M. Hyde
- The Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
- Department of Psychiatry and Behavior Sciences, and Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University Medical Campus, Baltimore, Maryland, 21205, United States of America
- * E-mail:
| |
Collapse
|
32
|
A pathway map of glutamate metabolism. J Cell Commun Signal 2015; 10:69-75. [PMID: 26635200 DOI: 10.1007/s12079-015-0315-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022] Open
Abstract
Glutamate metabolism plays a vital role in biosynthesis of nucleic acids and proteins. It is also associated with a number of different stress responses. Deficiency of enzymes involved in glutamate metabolism is associated with various disorders including gyrate atrophy, hyperammonemia, hemolytic anemia, γ-hydoxybutyric aciduria and 5-oxoprolinuria. Here, we present a pathway map of glutamate metabolism representing metabolic intermediates in the pathway, 107 regulator molecules, 9 interactors and 3 types of post-translational modifications. This pathway map provides detailed information about enzyme regulation, protein-enzyme interactions, post-translational modifications of enzymes and disorders due to enzyme deficiency. The information included in the map was based on published experimental evidence reported from mammalian systems.
Collapse
|
33
|
Region-specific effects of repeated ketamine administration on the presynaptic GABAergic neurochemistry in rat brain. Neurochem Int 2015; 91:13-25. [PMID: 26492822 DOI: 10.1016/j.neuint.2015.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022]
Abstract
A growing body of evidence indicates that clinical use of ketamine as a promising antidepressant can be accompanied by psychotic-like side effects. Although, the generation of such effects is thought to be attributed to dysfunction of prefrontal GABAergic interneurons, the mechanism underlying ketamine's propsychotic-like action is not fully understood. Due to wide spectrum of behavioral abnormalities, it is hypothesized that ketamine action is not limited to only cortical GABA metabolism but may also involve alterations in other functional brain areas. To test it, we treated rats with ketamine (30 mg/kg, i.p.) for 5 days, and next we analyzed GABA metabolizing enzymes in cortex, cerebellum, hippocampus and striatum. Our results demonstrated that diminished GAD67 expression in cortex, cerebellum (by ∼60%) and in hippocampus (by ∼40%) correlated with lowered protein level in these areas. The expression of GAD65 isoform decreased by ∼45% in striatum, but pronounced increase by ∼90% was observed in hippocampus. Consecutively, reduction in glutamate decarboxylase activity and GABA concentration were detected in cortex, cerebellum and striatum, but not in hippocampus. Ketamine administration decreased GABA transaminase protein in cortex and striatum (by ∼50% and 30%, respectively), which was reflected in diminished activity of the enzyme. Also, a significant drop in succinic semialdehyde dehydrogenase activity in cortex, cerebellum and striatum was present. These data suggest a reduced utilization of GABA for energetic purposes. In addition, we observed synaptic GABA release to be reduced by ∼30% from striatal terminals. It correlated with lowered KCl-induced Ca(2+) influx and decreased amount of L-type voltage-dependent calcium channel. Our results indicate that unique changes in GABA metabolism triggered by chronic ketamine treatment in functionally distinct brain regions may be involved in propsychotic-like effects of this drug.
Collapse
|
34
|
Epilepsy and hippocampal neurodegeneration induced by glutamate decarboxylase inhibitors in awake rats. Epilepsy Res 2015; 116:27-33. [PMID: 26354164 DOI: 10.1016/j.eplepsyres.2015.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
Abstract
Glutamic acid decarboxylase (GAD), the enzyme responsible for GABA synthesis, requires pyridoxal phosphate (PLP) as a cofactor. Thiosemicarbazide (TSC) and γ-glutamyl-hydrazone (PLPGH) inhibit the free PLP-dependent isoform (GAD65) activity after systemic administration, leading to epilepsy in mice and in young, but not in adult rats. However, the competitive GAD inhibitor 3-mercaptopropionic acid (MPA) induces convulsions in both immature and adult rats. In the present study we tested comparatively the epileptogenic and neurotoxic effects of PLPGH, TSC and MPA, administered by microdialysis in the hippocampus of adult awake rats. Cortical EEG and motor behavior were analyzed during the next 2h, and aspartate, glutamate and GABA were measured by HPLC in the microdialysis-collected fractions. Twenty-four hours after drug administration rats were fixed for histological analysis of the hippocampus. PLPGH or TSC did not affect the motor behavior, EEG or cellular morphology, although the extracellular concentration of GABA was decreased. In contrast, MPA produced intense wet-dog shakes, EEG epileptiform discharges, a >75% reduction of extracellular GABA levels and remarkable neurodegeneration of the CA1 region, with >80% neuronal loss. The systemic administration of the NMDA glutamate receptor antagonist MK-801 30 min before MPA did not prevent the MPA-induced epilepsy but significantly protected against its neurotoxic effect, reducing neuronal loss to <30%. We conclude that in adult awake rats, drugs acting on PLP availability have only a weak effect on GABA neurotransmission, whereas direct GAD inhibition produced by MPA induces hyperexcitation leading to epilepsy and hippocampal neurodegeneration. Because this degeneration was prevented by the blockade of NMDA receptors, we conclude that it is due to glutamate-mediated excitotoxicity consequent to disinhibition of the hippocampal excitatory circuits.
Collapse
|
35
|
Antiallodynic effect of tianeptine via modulation of the 5-HT7 receptor of GABAergic interneurons in the spinal cord of neuropathic rats. Neurosci Lett 2015; 598:91-5. [DOI: 10.1016/j.neulet.2015.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 02/02/2023]
|
36
|
Shan Y, Man CX, Han X, Li L, Guo Y, Deng Y, Li T, Zhang LW, Jiang YJ. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. J Dairy Sci 2015; 98:2138-49. [PMID: 25622870 DOI: 10.3168/jds.2014-8698] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/07/2014] [Indexed: 11/19/2022]
Abstract
Most γ-aminobutyric acid (GABA)-producing microorganisms are lactic acid bacteria (LAB), but the yield of GABA is limited in most of these GABA-producing strains. In this study, the production of GABA was carried out by using Lactobacillus plantarum NDC75017, a strain screened from traditional fermented dairy products in China. Concentrations of substrate (l-monosodium glutamate, L-MSG) and coenzyme (pyridoxal-5-phosphate, PLP) of glutamate decarboxylase (GAD) and culture temperature were investigated to evaluate their effects on GABA yield of Lb. plantarum NDC75017. The results indicated that GABA production was related to GAD activity and biomass of Lb. plantarum NDC75017. Response surface methodology was used to optimize conditions of GABA production. The optimal factors for GABA production were L-MSG at 80 mM, PLP at 18 μM, and a culture temperature of 36 °C. Under these conditions, production of GABA was maximized at 314.56 mg/100 g. Addition of Lb. plantarum NDC75017 to a commercial starter culture led to higher GABA production in fermented yogurt. Flavor and texture of the prepared yogurt and the control yogurt did not differ significantly. Thus, Lb. plantarum NDC75017 has good potential for manufacture of GABA-enriched fermented milk products.
Collapse
Affiliation(s)
- Y Shan
- National Research Center of Dairy Engineering and Technology, Northeast Agricultural University, Harbin 150086, China; Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - C X Man
- National Research Center of Dairy Engineering and Technology, Northeast Agricultural University, Harbin 150086, China; Synergetic Innovation Center of Food Safety and Nutrition, Harbin 150030, China
| | - X Han
- College of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - L Li
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Y Guo
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Y Deng
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - T Li
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - L W Zhang
- College of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Y J Jiang
- National Research Center of Dairy Engineering and Technology, Northeast Agricultural University, Harbin 150086, China; Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; Synergetic Innovation Center of Food Safety and Nutrition, Harbin 150030, China.
| |
Collapse
|
37
|
Zhang J, Liu Y. A QM/MM study of the catalytic mechanism of succinic semialdehyde dehydrogenase from Synechococcus sp. PCC 7002 and Salmonella typhimurium. RSC Adv 2015. [DOI: 10.1039/c5ra21535h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The catalytic mechanism of succinic semialdehyde dehydrogenase (SSADH) has been studied using a combined quantum mechanics and molecular mechanics (QM/MM) approach.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Yongjun Liu
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| |
Collapse
|
38
|
Négyessy L, Györffy B, Hanics J, Bányai M, Fonta C, Bazsó F. Signal Transduction Pathways of TNAP: Molecular Network Analyses. Subcell Biochem 2015. [PMID: 26219713 DOI: 10.1007/978-94-017-7197-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.
Collapse
Affiliation(s)
- László Négyessy
- Theoretical Neuroscience and Complex Systems Research Group, Wigner Research Center for Physics, Budapest, Hungary,
| | | | | | | | | | | |
Collapse
|
39
|
Trifonov S, Yamashita Y, Kase M, Maruyama M, Sugimoto T. Glutamic acid decarboxylase 1 alternative splicing isoforms: characterization, expression and quantification in the mouse brain. BMC Neurosci 2014; 15:114. [PMID: 25322942 PMCID: PMC4295415 DOI: 10.1186/1471-2202-15-114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/25/2014] [Indexed: 11/24/2022] Open
Abstract
Background GABA has important functions in brain plasticity related processes like memory, learning, locomotion and during the development of the nervous system. It is synthesized by the glutamic acid decarboxylase (GAD). There are two isoforms of GAD, GAD1 and GAD2, which are encoded by different genes. During embryonic development the transcription of GAD1 mRNA is regulated by alternative splicing and several alternative transcripts were distinguished in human, mouse and rat. Despite the fact that the structure of GAD1 gene has been extensively studied, knowledge of its exact structural organization, alternative promoter usage and splicing have remained incomplete. Results In the present study we report the identification and characterization of novel GAD1 splicing isoforms (GenBank: KM102984, KM102985) by analyzing genomic and mRNA sequence data using bioinformatics, cloning and sequencing. Ten mRNA isoforms are generated from GAD1 gene locus by the combined actions of utilizing different promoters and alternative splicing of the coding exons. Using RT-PCR we found that GAD1 isoforms share similar pattern of expression in different mouse tissues and are expressed early during development. Quantitative RT-PCR was used to investigate the expression of GAD1 isoforms and GAD2 in olfactory bulb, cortex, medial and lateral striatum, hippocampus and cerebellum of adult mouse. Olfactory bulb showed the highest expression of GAD1 transcripts. Isoforms 1/2 are the most abundant forms. Their expression is significantly higher in the lateral compared to the medial striatum. Isoforms 3/4, 5/6, 7/8 and 9/10 are barely detectable in all investigated regions except of the high expression in olfactory bulb. When comparing GAD1 expression with GAD2 we found that Isoforms 1/2 are the predominant isoforms. In situ hybridization confirmed the predominant expression of Isoforms 7/8 and 9/10 in the olfactory bulb and revealed their weak expression in hippocampus, cerebellum and some other areas known to express GAD1. Conclusions Generation of ten splicing isoforms of GAD1 was described including two so far uncharacterized transcripts. GAD1 splicing isoforms producing the shorter, enzymatically inactive GAD25 protein are expressed at very low level in adult mouse brain except in the olfactory bulb that is associated with neurogenesis and synaptic plasticity even during adulthood. Electronic supplementary material The online version of this article (doi:10.1186/1471-2202-15-114) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Tetsuo Sugimoto
- Department of Anatomy and Brain Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
40
|
Marseglia A, Palla G, Caligiani A. Presence and variation of γ-aminobutyric acid and other free amino acids in cocoa beans from different geographical origins. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
41
|
|
42
|
Zhang K, Hill K, Labak S, Blatt G, Soghomonian JJ. Loss of glutamic acid decarboxylase (Gad67) in Gpr88-expressing neurons induces learning and social behavior deficits in mice. Neuroscience 2014; 275:238-47. [DOI: 10.1016/j.neuroscience.2014.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/16/2014] [Accepted: 06/06/2014] [Indexed: 01/08/2023]
|
43
|
Glutamic acid decarboxylase 65: a link between GABAergic synaptic plasticity in the lateral amygdala and conditioned fear generalization. Neuropsychopharmacology 2014; 39:2211-20. [PMID: 24663011 PMCID: PMC4104340 DOI: 10.1038/npp.2014.72] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 12/25/2022]
Abstract
An imbalance of the gamma-aminobutyric acid (GABA) system is considered a major neurobiological pathomechanism of anxiety, and the amygdala is a key brain region involved. Reduced GABA levels have been found in anxiety patients, and genetic variations of glutamic acid decarboxylase (GAD), the rate-limiting enzyme of GABA synthesis, have been associated with anxiety phenotypes in both humans and mice. These findings prompted us to hypothesize that a deficiency of GAD65, the GAD isoform controlling the availability of GABA as a transmitter, affects synaptic transmission and plasticity in the lateral amygdala (LA), and thereby interferes with fear responsiveness. Results indicate that genetically determined GAD65 deficiency in mice is associated with (1) increased synaptic length and release at GABAergic connections, (2) impaired efficacy of GABAergic synaptic transmission and plasticity, and (3) reduced spillover of GABA to presynaptic GABAB receptors, resulting in a loss of the associative nature of long-term synaptic plasticity at cortical inputs to LA principal neurons. (4) In addition, training with high shock intensities in wild-type mice mimicked the phenotype of GAD65 deficiency at both the behavioral and synaptic level, indicated by generalization of conditioned fear and a loss of the associative nature of synaptic plasticity in the LA. In conclusion, GAD65 is required for efficient GABAergic synaptic transmission and plasticity, and for maintaining extracellular GABA at a level needed for associative plasticity at cortical inputs in the LA, which, if disturbed, results in an impairment of the cue specificity of conditioned fear responses typifying anxiety disorders.
Collapse
|
44
|
Kántor O, Varga A, Kovács-Öller T, Énzsöly A, Balogh L, Baksa G, Szepessy Z, Fonta C, Roe AW, Nitschke R, Szél Á, Négyessy L, Völgyi B, Lukáts Á. TNAP activity is localized at critical sites of retinal neurotransmission across various vertebrate species. Cell Tissue Res 2014; 358:85-98. [PMID: 24988913 DOI: 10.1007/s00441-014-1944-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/05/2014] [Indexed: 12/01/2022]
Abstract
Evidence is emerging with regard to the role of tissue non-specific alkaline phosphatase (TNAP) in neural functions. As an ectophosphatase, this enzyme might influence neural activity and synaptic transmission in diverse ways. The localization of the enzyme in known neural circuits, such as the retina, might significantly advance an understanding of its role in normal and pathological functioning. However, the presence of TNAP in the retina is scarcely investigated. Our multispecies comparative study (zebrafish, cichlid, frog, chicken, mouse, rat, golden hamster, guinea pig, rabbit, sheep, cat, dog, ferret, squirrel monkey, human) using enzyme histochemistry and Western blots has shown the presence of TNAP activity in the retina of several mammalian species, including humans. Although the TNAP activity pattern varies across species, we have observed the following trends: (1) in all investigated species (except golden hamster), retinal vessels display TNAP activity; (2) TNAP activity consistently occurs in the photoreceptor layer; (3) in majority of the investigated species, marked TNAP activity is present in the outer and inner plexiform layers. In zebrafish, frog, chicken, guinea pig, and rat, TNAP histochemistry has revealed several sublayers of the inner plexiform layer. Frog, golden hamster, guinea pig, mouse, and human retinas possess a subpopulation of amacrine cells positively staining for TNAP activity. The expression of TNAP in critical sites of retinal signal transmission across a wide range of species suggests its fundamental, evolutionally conserved role in vision.
Collapse
Affiliation(s)
- Orsolya Kántor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó u. 58, Budapest, 1094, Hungary,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Structural characterization of a β-hydroxyacid dehydrogenase from Geobacter sulfurreducens and Geobacter metallireducens with succinic semialdehyde reductase activity. Biochimie 2014; 104:61-9. [PMID: 24878278 DOI: 10.1016/j.biochi.2014.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/09/2014] [Indexed: 11/23/2022]
Abstract
Beta-hydroxyacid dehydrogenase (β-HAD) genes have been identified in all sequenced genomes of eukaryotes and prokaryotes. Their gene products catalyze the NAD(+)- or NADP(+)-dependent oxidation of various β-hydroxy acid substrates into their corresponding semialdehyde. In many fungal and bacterial genomes, multiple β-HAD genes are observed leading to the hypothesis that these gene products may have unique, uncharacterized metabolic roles specific to their species. The genomes of Geobacter sulfurreducens and Geobacter metallireducens each contain two potential β-HAD genes. The protein sequences of one pair of these genes, Gs-βHAD (Q74DE4) and Gm-βHAD (Q39R98), have 65% sequence identity and 77% sequence similarity with each other. Both proteins are observed to reduce succinic semialdehyde, a 4-carbon substrate instead of the typical β-HAD 3-carbon substrate, to γ-hydroxybutyric acid. To further explore the structural and functional characteristics of these two β-HADs with a less frequently observed substrate specificity, crystal structures for Gs-βHAD and Gm-βHAD in complex with NADP(+) were determined to a resolution of 1.89 Å and 2.07 Å, respectively. The structures of both proteins are similar, composed of 14 α-helices and nine β-strands organized into two domains. Domain 1 (1-165) adopts a typical Rossmann fold composed of two α/β units: a six-strand parallel β-sheet surrounded by six α-helices (α1-α6) followed by a mixed three-strand β-sheet surrounded by two α-helices (α7 and α8). Domain 2 (166-287) is composed of a bundle of seven α-helices (α9-α14). Four functional regions conserved in all β-HADs are spatially located near each other, with a buried molecule of NADP(+), at the interdomain cleft. Comparison of these Geobacter structures to a closely related β-HAD from Arabidopsis thaliana in the apo-NADP(+) and apo-substrate bound state suggests that NADP(+) binding effects a rigid body rotation between Domains 1 and 2. Bound near the Substrate-Binding and Catalysis Regions in two of the eight protomers in the asymmetric unit of Gm-βHAD is a glycerol molecule that may mimic features of bound biological substrates.
Collapse
|
46
|
Deidda G, Bozarth IF, Cancedda L. Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 2014; 8:119. [PMID: 24904277 PMCID: PMC4033255 DOI: 10.3389/fncel.2014.00119] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023] Open
Abstract
During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
Collapse
Affiliation(s)
- Gabriele Deidda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Ignacio F Bozarth
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
47
|
Leke R, Silveira TR, Escobar TDC, Schousboe A. Expression of Glutamate Decarboxylase (GAD) mRNA in the brain of bile duct ligated rats serving as a model of hepatic encephalopathy. Neurochem Res 2013; 39:605-11. [PMID: 23904086 DOI: 10.1007/s11064-013-1116-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 12/14/2022]
Abstract
Hepatic encephalopathy (HE) is a neurologic disorder that involves different pathophysiological mechanisms, including disturbances in the GABAergic neurotransmitter system. Albeit an overall increase in the level of neurotransmitter GABA has not been found in HE, alterations in GABA receptors and metabolism have been described. Moreover, it has been reported that bile duct ligated (BDL) rats, an animal model for the study of HE, exhibited an altered GABA biosynthesis involving preferentially the tricarboxylic (TCA) cycle. In this context it should be noted that the GABA synthesizing enzyme glutamate decarboxylase (GAD) is expressed in the brain in two isoforms GAD67 and GAD65, GAD65 being related to the synthesis of GABA that occurs via the TCA cycle and coupled to the vesicular pool of the neurotransmitter. The aim of the present study was to investigate whether changes in mRNA expression of GAD67 and GAD65 were related to the altered GABA biosynthesis previously observed. To study this, cerebral cortices and hippocampi were dissected from control and BDL rats, total mRNA was isolated and cDNA was synthesized by reverse transcription reaction. Subsequently samples were analyzed for gene expression of GAD67 and GAD65 by qPCR multiplex assay, using GAPDH as endogenous control. No changes in GAD67 and GAD65 mRNA expression between control and BDL rats either in cerebral cortex or in hippocampus were observed indicating that the HE condition did not lead to changes in GAD mRNA expression. However, other regulatory mechanism might be affecting GAD activity and to clarify this additional studies need to be conducted.
Collapse
Affiliation(s)
- Renata Leke
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Avenida Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil,
| | | | | | | |
Collapse
|
48
|
Abstract
Recognizing stiff person syndrome is clinically important. It is uncommon, characterized by body stiffness associated with painful muscle spasms, and varies in location and severity. It is subdivided into stiff trunk versus stiff limb presentation, and as a progressive encephalomyelitis. Stiff person-type syndrome also reflects a paraneoplastic picture. Most patients demonstrate exaggerated lumbar lordosis. Roughly 60% of patients have antiglutamic acid decarboxylase antibodies in the blood and the cerebrospinal fluid. The differential diagnosis includes many severe conditions. There are reports of response to muscle relaxants, immunosuppressants, intravenous gamma globulin, plasma exchange, a number of anticonvulsants, and botulinum toxin.
Collapse
Affiliation(s)
- Giuseppe Ciccotto
- Department of Neurology, Tulane University School of Medicine, 1430 Tulane Avenue 8065, New Orleans, LA 70112, USA
| | - Maike Blaya
- Department of Neurology, Tulane University School of Medicine, 1430 Tulane Avenue 8065, New Orleans, LA 70112, USA
| | - Roger E Kelley
- Department of Neurology, Tulane University School of Medicine, 1430 Tulane Avenue 8065, New Orleans, LA 70112, USA.
| |
Collapse
|
49
|
Ilg T, Berger M, Noack S, Rohwer A, Gaßel M. Glutamate decarboxylase of the parasitic arthropods Ctenocephalides felis and Rhipicephalus microplus: gene identification, cloning, expression, assay development, identification of inhibitors by high throughput screening and comparison with the orthologs from Drosophila melanogaster and mouse. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:162-177. [PMID: 23220582 DOI: 10.1016/j.ibmb.2012.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 06/01/2023]
Abstract
Glutamate decarboxylase (l-glutamate 1-carboxylyase, E.C. 4.1.1.15, GAD) is the rate-limiting enzyme for the production of γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in vertebrates and invertebrates. We report the identification, isolation and characterization of cDNAs encoding GAD from the parasitic arthropods Ctenocephalides felis (cat flea) and Rhipicephalus microplus (cattle tick). Expression of the parasite GAD genes and the corresponding Drosophila melanogaster (fruit fly) GAD1 as well as the mouse GAD(65) and GAD(67) genes in Escherichia coli as maltose binding protein fusions resulted in functional enzymes in quantities compatible with the needs of high throughput inhibitor screening (HTS). A novel continuous coupled spectrophotometric assay for GAD activity based on the detection cascade GABA transaminase/succinic semialdehyde dehydrogenase was developed, adapted to HTS, and a corresponding screen was performed with cat flea, cattle tick and fruit fly GAD. Counter-screening of the selected 38 hit substances on mouse GAD(65) and GAD(67) resulted in the identification of non-specific compounds as well as inhibitors with preferences for arthropod GAD, insect GAD, tick GAD and the two mouse GAD forms. Half of the identified hits most likely belong to known classes of GAD inhibitors, but several substances have not been described previously as GAD inhibitors and may represent lead optimization entry points for the design of arthropod-specific parasiticidal compounds.
Collapse
Affiliation(s)
- Thomas Ilg
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany.
| | | | | | | | | |
Collapse
|
50
|
Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates. Biosci Rep 2013; 33:137-44. [PMID: 23126365 PMCID: PMC3546353 DOI: 10.1042/bsr20120111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Imbalances in GABA (γ-aminobutyric acid) homoeostasis underlie psychiatric and movement disorders. The ability of the 65 kDa isoform of GAD (glutamic acid decarboxylase), GAD65, to control synaptic GABA levels is influenced through its capacity to auto-inactivate. In contrast, the GAD67 isoform is constitutively active. Previous structural insights suggest that flexibility in the GAD65 catalytic loop drives enzyme inactivation. To test this idea, we constructed a panel of GAD65/67 chimaeras and compared the ability of these molecules to auto-inactivate. Together, our data reveal the important finding that the C-terminal domain of GAD plays a key role in controlling GAD65 auto-inactivation. In support of these findings, we determined the X-ray crystal structure of a GAD65/67 chimaera that reveals that the conformation of the catalytic loop is intimately linked to the C-terminal domain.
Collapse
|