1
|
Ghoraba HH, Sears J, Traboulsi EI. Hereditary Vitreoretinopathies: Molecular Diagnosis, Clinical Presentation and Management. Clin Exp Ophthalmol 2025. [PMID: 39837650 DOI: 10.1111/ceo.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Hereditary vitreoretinopathies (HVRs), also known as hereditary vitreoretinal degenerations comprise a heterogeneous group of inherited disorders of the retina and vitreous, collectively and variably characterised by vitreal abnormalities, such as fibrillary condensations, liquefaction or membranes, as well as peripheral retinal abnormalities, vascular changes in some, an increased risk of retinal detachment and early-onset cataract formation. The pathology often involves the vitreoretinal interface in some, while the major underlying abnormality is vascular in others. Recent advances in molecular diagnosis and identification of the responsible genes and have improved our understanding of the pathogenesis, risks and management of the HVRs. Clinically, HVRs can be classified according to the presence or absence of skeletal or other systemic abnormalities, retinal dysfunction or retinal vascular abnormalities [2]. There are some discrepancies in the literature regarding which diseases are included under the overarching term 'hereditary vitreoretinopathies'. Conditions such as Stickler syndrome, Wagner syndrome and familial exudative vitreoretinopathy are generally included, while others such as autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) and autosomal dominant vitreoretinochoroidapathy (ADVIRC) may not. In this review, we will discuss some historical aspects, the molecular pathogenesis, clinical features and management of diseases and syndromes commonly considered as HVRs.
Collapse
Affiliation(s)
| | - Jonathan Sears
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
2
|
Holtes LK, de Bruijn SE, Cremers FPM, Roosing S. Dual inheritance patterns: A spectrum of non-syndromic inherited retinal disease phenotypes with varying molecular mechanisms. Prog Retin Eye Res 2025; 104:101308. [PMID: 39486507 DOI: 10.1016/j.preteyeres.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Inherited retinal diseases (IRDs) encompass a variety of disease phenotypes and are known to display both clinical and genetic heterogeneity. A further complexity is that for several IRD-associated genes, pathogenic variants have been reported to cause either autosomal dominant (AD) or autosomal recessive (AR) diseases. The possibility of dual inheritance can create a challenge for variant interpretation as well as the genetic counselling of patients. This review aims to determine whether the molecular mechanisms behind the dual inheritance of each IRD-associated gene is well established, not yet properly understood, or if the association is questionable. Each gene is discussed individually in detail due to different protein structures and functions, but there are overlapping characteristics. For example, eight genes only have a limited number of reported pathogenic variants or a hotspot region implicated in the second inheritance pattern. Whereas CRX and RP1 display distinct spatial patterns for AR and AD pathogenic variants based on the variant type and/or location. The genes with a questionable dual inheritance, namely AIPL1, CRB1, and RCBTB1 highlight the importance of carefully considering allele frequency data. Finally, the crucial role relevant functional studies in animal and cell models play in validating a variant's biochemical or molecular effect is emphasised.
Collapse
Affiliation(s)
- Lara K Holtes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Liu W, Li S, Yang M, Ma J, Liu L, Fei P, Xiang Q, Huang L, Zhao P, Yang Z, Zhu X. Dysfunction of Calcyphosine-Like gene impairs retinal angiogenesis through the MYC axis and is associated with familial exudative vitreoretinopathy. eLife 2024; 13:RP96907. [PMID: 39264149 PMCID: PMC11392532 DOI: 10.7554/elife.96907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a severe genetic disorder characterized by incomplete vascularization of the peripheral retina and associated symptoms that can lead to vision loss. However, the underlying genetic causes of approximately 50% of FEVR cases remain unknown. Here, we report two heterozygous variants in calcyphosine-like gene (CAPSL) that is associated with FEVR. Both variants exhibited compromised CAPSL protein expression. Vascular endothelial cell (EC)-specific inactivation of Capsl resulted in delayed radial/vertical vascular progression, compromised endothelial proliferation/migration, recapitulating the human FEVR phenotypes. CAPSL-depleted human retinal microvascular endothelial cells (HRECs) exhibited impaired tube formation, decreased cell proliferation, disrupted cell polarity establishment, and filopodia/lamellipodia formation, as well as disrupted collective cell migration. Transcriptomic and proteomic profiling revealed that CAPSL abolition inhibited the MYC signaling axis, in which the expression of core MYC targeted genes were profoundly decreased. Furthermore, a combined analysis of CAPSL-depleted HRECs and c-MYC-depleted human umbilical vein endothelial cells uncovered similar transcription patterns. Collectively, this study reports a novel FEVR-associated candidate gene, CAPSL, which provides valuable information for genetic counseling of FEVR. This study also reveals that compromised CAPSL function may cause FEVR through MYC axis, shedding light on the potential involvement of MYC signaling in the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jie Ma
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianchun Xiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lulin Huang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Jinfeng Laboratory, Chongqing, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Jinfeng Laboratory, Chongqing, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
4
|
Kondo H, Tsukahara-Kawamura T, Matsushita I, Nagata T, Hayashi T, Nishina S, Higasa K, Uchio E, Kondo M, Sakamoto T, Kusaka S. Familial Exudative Vitreoretinopathy With and Without Pathogenic Variants of Norrin/β-Catenin Signaling Genes. OPHTHALMOLOGY SCIENCE 2024; 4:100514. [PMID: 38881609 PMCID: PMC11179410 DOI: 10.1016/j.xops.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
Purpose To determine the clinical characteristics of familial exudative vitreoretinopathy (FEVR) associated with or without pathogenic variants of the Norrin/β-catenin genes. Design This was a multicenter, cross-sectional, observational, and genetic study. Subjects Two-hundred eighty-one probands with FEVR were studied. Methods Whole-exome sequence and/or Sanger sequence was performed for the Norrin/β-catenin genes, the FZD4, LRP5, TSPAN12, and NDP genes on blood collected from the probands. The clinical symptoms of the probands with or without the pathogenic variants were assessed as well as differences in the inter Norrin/β-catenin genes. Main Outcome Measures The phenotype associated with or without pathogenic variants of the Norrin/β-catenin genes. Results One-hundred eight probands (38.4%) had 88 different pathogenic or likely pathogenic variants in the genes: 24 with the FZD4, 42 with the LRP5, 10 with the TSPAN12, and 12 with the NDP gene. Compared with the 173 probands without pathogenic variants, the 108 variant-positive probands had characteristics of familial predisposition (63.9% vs. 37.6%, P < 0.0001), progression during infancy (75.0% vs. 53.8%, P = 0.0004), asymmetrical severity between the 2 eyes (50.0% vs. 37.6%, P = 0.0472), and nonsyndromic characteristics (10.2% vs. 17.3%, P = 0.1185). The most frequent stage at which the more severe eye conditions was present was at stage 4 in both groups (40.7% vs. 34.7%). However, the advanced stages of 3 to 5 in the more severe eye were found more frequently in probands with variants than in those without variants (83.3% vs. 58.4%, P < 0.0001). Patients with rhegmatogenous retinal detachments progressed from stage 1 or 2 were found less frequently in the variant-positive probands (8.3% vs. 17.3%, P = 0.0346). Nine probands with NDP variants had features different from probands with typical Norrin/β-catenin gene variants including the sporadic, symmetrical, and systemic characteristics consistent with Norrie disease. Conclusions The results showed that the clinical characteristics of FEVR of patients with variants in the Norrin/β-catenin genes are different from those with other etiologies. We recommend that clinicians who diagnose a child with FEVR perform genetic testing so that the parents can be informed on the prognosis of the vision and general health in the child. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Nagata
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sachiko Nishina
- Division of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University, Fukuoka, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Faculty of Medicine, Tsu, Japan
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University Faculty of Medicine, Kagoshima, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
5
|
Atac D, Maggi K, Feil S, Maggi J, Cuevas E, Sowden JC, Koller S, Berger W. Identification and Characterization of ATOH7-Regulated Target Genes and Pathways in Human Neuroretinal Development. Cells 2024; 13:1142. [PMID: 38994994 PMCID: PMC11240604 DOI: 10.3390/cells13131142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
The proneural transcription factor atonal basic helix-loop-helix transcription factor 7 (ATOH7) is expressed in early progenitors in the developing neuroretina. In vertebrates, this is crucial for the development of retinal ganglion cells (RGCs), as mutant animals show an almost complete absence of RGCs, underdeveloped optic nerves, and aberrations in retinal vessel development. Human mutations are rare and result in autosomal recessive optic nerve hypoplasia (ONH) or severe vascular changes, diagnosed as autosomal recessive persistent hyperplasia of the primary vitreous (PHPVAR). To better understand the role of ATOH7 in neuroretinal development, we created ATOH7 knockout and eGFP-expressing ATOH7 reporter human induced pluripotent stem cells (hiPSCs), which were differentiated into early-stage retinal organoids. Target loci regulated by ATOH7 were identified by Cleavage Under Targets and Release Using Nuclease with sequencing (CUT&RUN-seq) and differential expression by RNA sequencing (RNA-seq) of wildtype and mutant organoid-derived reporter cells. Additionally, single-cell RNA sequencing (scRNA-seq) was performed on whole organoids to identify cell type-specific genes. Mutant organoids displayed substantial deficiency in axon sprouting, reduction in RGCs, and an increase in other cell types. We identified 469 differentially expressed target genes, with an overrepresentation of genes belonging to axon development/guidance and Notch signaling. Taken together, we consolidate the function of human ATOH7 in guiding progenitor competence by inducing RGC-specific genes while inhibiting other cell fates. Furthermore, we highlight candidate genes responsible for ATOH7-associated optic nerve and retinovascular anomalies, which sheds light to potential future therapy targets for related disorders.
Collapse
Affiliation(s)
- David Atac
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Kevin Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Elisa Cuevas
- UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK (J.C.S.)
| | - Jane C. Sowden
- UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK (J.C.S.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (D.A.); (K.M.); (S.F.); (J.M.); (S.K.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
6
|
Redden LD, Iaboni DS, van der Ende S, Nightingale M, Gaston D, McMaster CR, Robitaille JM, Gupta RR. Multimodal imaging of white preretinal lesions in atypical familial exudative vitreoretinopathy: Case report and literature review. Am J Ophthalmol Case Rep 2024; 34:102051. [PMID: 38628947 PMCID: PMC11019094 DOI: 10.1016/j.ajoc.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose To report a rare clinical finding of preretinal granules associated with atypical familial exudative vitreoretinopathy (FEVR) and perform a review of the literature. Observations An asymptomatic 18-year-old male was referred for unilateral peripheral avascular retina evaluation in association with presumed FEVR. He was first noted to have white preretinal granules on fundus examination at five years of age. The lesions remained unchanged over the subsequent years. Genetic testing did not reveal a pathogenic or likely pathogenic variant in a known FEVR gene. A review of the literature revealed five other cases of FEVR with similar findings. Conclusions and Importance Literature review suggests preretinal granules may present rarely in FEVR. Negative genetic screening of known FEVR genes in our patient with atypical FEVR suggests either a molecularly distinct etiology supporting the rarity of this association with FEVR or, alternatively, the presence of granules in developmental retinal vascular anomalies that are not specific to FEVR. Future study and genetic testing is necessary to better understand the cause of these preretinal granules and the clinical manifestations of FEVR.
Collapse
Affiliation(s)
- Liam D. Redden
- Dalhousie Medical School, Dalhousie University, Halifax, NS, Canada
| | - Douglas S.M. Iaboni
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Sarah van der Ende
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | - Daniel Gaston
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Christopher R. McMaster
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Johane M. Robitaille
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - R. Rishi Gupta
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Lähteenoja L, Palosaari T, Tiirikka T, Haanpää M, Moilanen J, Falck A, Rahikkala E. Clinical and genetic characteristics and natural history of Finnish families with familial exudative vitreoretinopathy due to pathogenic FZD4 variants. Acta Ophthalmol 2024. [PMID: 38706142 DOI: 10.1111/aos.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To report clinical and genetic characteristics of familial exudative vitreoretinopathy (FEVR) in the Finnish population. METHODS Detailed clinical and genetic data of 35 individuals with heterozygous pathogenic variants in FZD4 were gathered and analysed. RESULTS Thirty-two individuals with FZD4 c.313A>G variant and three individuals with FZD4 c.40_49del were included in the study. The clinical phenotype was variable even among family members with the same FZD4 variant. Only 34% (N = 12/35) of variant-positive individuals had been clinically diagnosed with FEVR. The median age of the onset of symptoms was 2.3 years, ranging between 0 to 25 years. Median visual acuity was 0.1 logMAR (0.8 Snellen decimal), ranging between light perception and -0.1 logMAR (1.25 Snellen decimal). Most (N = 33/35, 94%) were classified as not visually impaired. Despite unilateral visual loss present in some, they did not meet the criteria of visual impairment according to the WHO classification. Two study patients (N = 2/35, 6%) had severe visual impairment. The most common FEVR stage in study patient's eyes (N = 28/70 eyes, 40%) was FEVR stage 1, that is, avascular periphery or abnormal vascularisation. Most of FZD4-variant-positive study patient's eyes (N = 31/50 eyes, 62%) were myopic. Two individuals presented with persistent hyperplastic primary vitreous expanding the phenotypic spectrum of FEVR. Shared haplotypes extending approximately 0.9 Mb around the recurrent FZD4 c.313A>G variant were identified. CONCLUSION Most study patients were unaffected or had mild clinical manifestations by FEVR. Myopia seemed to be overly common in FZD4-variant-positive individuals.
Collapse
Affiliation(s)
- Laura Lähteenoja
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
- Department of Ophthalmology, Oulu University Hospital, Oulu, Finland
| | - Tapani Palosaari
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Ophthalmology, Oulu University Hospital, Oulu, Finland
| | - Timo Tiirikka
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Maria Haanpää
- Department of Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Jukka Moilanen
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Aura Falck
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Ophthalmology, Oulu University Hospital, Oulu, Finland
| | - Elisa Rahikkala
- Research Unit of Clinical Medicine and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
8
|
Kiryakoza L, Cruz NFSD, Hoyek S, Berrocal AM. Retinopathy With Variant of Unknown Significance and Atypical Chorioretinal Coloboma in the Setting of Prematurity. Ophthalmic Surg Lasers Imaging Retina 2024; 55:285-288. [PMID: 38408227 DOI: 10.3928/23258160-20240202-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A 37-week-old girl underwent ophthalmic examination. Born at 32 weeks, the infant weighed 680 grams and received high-flow nasal cannula for respiratory distress of the newborn. Dilated fundus examination of the right eye revealed an atypical chorioretinal coloboma; the left eye revealed hyperpigmentary changes in the macula. Fluorescein angiography of both eyes showed retinal vascularization to zone II. Genetic testing revealed a heterozygous variant of uncertain significance in the catenin Alpha 1 (CTNNA1) gene. CTNNA1 gene abnormalities have been implicated as causes of familial exudative vitreoretinopathy (FEVR). It is important to recognize possible simultaneous retinopathy of prematurity and FEVR. [Ophthalmic Surg Lasers Imaging Retina 2024;55:285-288.].
Collapse
|
9
|
Dai E, Liu M, Li S, Zhang X, Wang S, Zhao R, He Y, Peng L, Lv L, Xiao H, Yang M, Yang Z, Zhao P. Identification of Novel FZD4 Mutations in Familial Exudative Vitreoretinopathy and Investigating the Pathogenic Mechanisms of FZD4 Mutations. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38558095 PMCID: PMC10996936 DOI: 10.1167/iovs.65.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose The purpose of this study is to report five novel FZD4 mutations identified in familial exudative vitreoretinopathy (FEVR) and to analyze and summarize the pathogenic mechanisms of 34 of 96 reported missense mutations in FZD4. Methods Five probands diagnosed with FEVR and their family members were enrolled in the study. Ocular examinations and targeted gene panel sequencing were conducted on all participants. Plasmids, each carrying 29 previously reported FZD4 missense mutations and five novel mutations, were constructed based on the selection of mutations from each domain of FZD4. These plasmids were used to investigate the effects of mutations on protein expression levels, Norrin/β-catenin activation capacity, membrane localization, norrin binding ability, and DVL2 recruitment ability in HEK293T, HEK293STF, and HeLa cells. Results All five novel mutations (S91F, V103E, C145S, E160K, C377F) responsible for FEVR were found to compromise Norrin/β-catenin activation of FZD4 protein. After reviewing a total of 34 reported missense mutations, we categorized all mutations based on their functional changes: signal peptide mutations, cysteine mutations affecting disulfide bonds, extracellular domain mutations influencing norrin binding, transmembrane domain (TM) 1 and TM7 mutations impacting membrane localization, and intracellular domain mutations affecting DVL2 recruitment. Conclusions We expanded the spectrum of FZD4 mutations relevant to FEVR and experimentally demonstrated that missense mutations in FZD4 can be classified into five categories based on different functional changes.
Collapse
Affiliation(s)
- Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xiang Zhang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyuan Wang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Liting Lv
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Haodong Xiao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Yang M, Peng L, Lv L, Dai E, He Y, Zhao R, Li S. Characterization of a novel heterozygous frameshift variant in NDP gene that causes familial exudative vitreoretinopathy in female patients. Mol Genet Genomics 2024; 299:32. [PMID: 38472449 DOI: 10.1007/s00438-024-02128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/28/2023] [Indexed: 03/14/2024]
Abstract
Familial exudative vitreoretinopathy (FEVR) is a severe inherited disease characterized by defective retinal vascular development. With genetic and clinical heterogeneity, FEVR can be inherited in different patterns and characterized by phenotypes ranging from moderate visual defects to complete vision loss. This study was conducted to unravel the genetic and functional etiology of a 4-month-old female FEVR patient. Targeted gene panel and Sanger sequencing were utilized for genetic evaluation. Luciferase assays, western blot, quantitive real-time PCR, and immunocytochemistry were performed to verify the functional defects in the identified candidate variant. Here, we report a 4-month-old girl with bilateral retinal folds and peripheral avascularization, and identified a novel frameshift heterozygous variant c.37dup (p.Leu13ProfsTer13) in NDP. In vitro experiments revealed that the Leu13ProfsTer13 variant led to a prominent decrease in protein levels instead of mRNA levels, resulting in compromised Norrin/β-catenin signaling activity. Human androgen receptor assay further revealed that a slight skewing of X chromosome inactivation could partially cause FEVR. Thus, the pathogenic mechanism by which heterozygous frameshift or nonsense variants in female carriers cause FEVR might largely result from a loss-of-function variant in one X chromosome allele and a slightly skewed X-inactivation. Further recruitment of more FEVR-affected females carrying NDP variants and genotype-phenotype correlation analysis can ultimately offer valuable information for the prognosis prediction of FEVR.
Collapse
Affiliation(s)
- Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Liting Lv
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 The First Ring Road West 2, Chengdu, 610072, Sichuan, China.
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No. 2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.
| |
Collapse
|
11
|
Liu M, Dai E, Yang M, Li S, Fan L, Liu Y, Xiao H, Zhao P, Yang Z. Investigating the Impact of Dimer Interface Mutations on Norrin's Secretion and Norrin/β-Catenin Pathway Activation. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 38517429 PMCID: PMC10981164 DOI: 10.1167/iovs.65.3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Purpose This study aimed to investigate the impact of 21 NDP mutations located at the dimer interface, focusing on their potential effects on protein assembly, secretion efficiency, and activation of the Norrin/β-catenin signaling pathway. Methods The expression level, secretion efficiency, and protein assembly of mutations were analyzed using Western blot. The Norrin/β-catenin signaling pathway activation ability after overexpression of mutants or supernatant incubation of mutant proteins was tested in HEK293STF cells. The mutant norrin and wild-type (WT) FZD4 were overexpressed in HeLa cells to observe their co-localization. Immunofluorescence staining was conducted in HeLa cells to analyze the subcellular localization of Norrin and the Retention Using Selective Hook (RUSH) assay was used to dynamically observe the secretion process of WT and mutant Norrin. Results Four mutants (A63S, E66K, H68P, and L103Q) exhibited no significant differences from WT in all evaluations. The other 17 mutants presented abnormalities, including inadequate protein assembly, reduced secretion, inability to bind to FZD4 on the cell membrane, and decreased capacity to activate Norrin/β-catenin signaling pathway. The RUSH assay revealed the delay in endoplasmic reticulum (ER) exit and impairment of Golgi transport. Conclusions Mutations at the Norrin dimer interface may lead to abnormal protein assembly, inability to bind to FZD4, and decreased secretion, thus contributing to compromised Norrin/β-catenin signaling. Our results shed light on the pathogenic mechanisms behind a significant proportion of NDP gene mutations in familial exudative vitreoretinopathy (FEVR) or Norrie disease.
Collapse
Affiliation(s)
- Min Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lin Fan
- The University of Chinese Academy of Sciences, Beijing, China
| | - Yining Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Haodong Xiao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- The University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Ju Y, Chen T, Ruan L, Zhao Y, Chang Q, Huang X. Mutations in TSPAN12 gene causing familial exudative vitreoretinopathy. Hum Genomics 2024; 18:22. [PMID: 38424652 PMCID: PMC10905792 DOI: 10.1186/s40246-024-00589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND To report newly found TSPAN12 mutations with a unique form of familial exudative vitreoretinopathy (FEVR) and find out the possible mechanism of a repeated novel intronic variant in TSPAN12 led to FEVR. RESULTS Nine TSPAN12 mutations with a unique form of FEVR were detected by panel-based NGS. MINI-Gene assay showed two splicing modes of mRNA that process two different bands A and B, and mutant-type shows replacement with the splicing mode of Exon11 hopping. Construction of wild-type and mutant TSPAN12 vector showed the appearance of premature termination codons (PTC). In vitro expression detection showed significant down-regulated expression level of TSPAN12 mRNAs and proteins in cells transfected with mutant vectors compared with in wild-type group. On the contrary, translation inhibitor CHX and small interfering RNA of UPF1 (si-UPF1) significantly increased mRNA or protein expression of TSPAN12 in cells transfected with the mutant vectors. CONCLUSIONS Nine mutations in TSPAN12 gene are reported in 9 FEVR patients with a unique series of ocular abnormalities. The three novel TSPAN12 mutations trigger NMD would cause the decrease of TSPAN12 proteins that participate in biosynthesis and assembly of microfibers, which might lead to FEVR, and suggest that intronic sequence analysis might be a vital tool for genetic counseling and prenatal diagnoses.
Collapse
Affiliation(s)
- Yuqiao Ju
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, 83 Fenyang Rd, Shanghai, 200031, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Tianhui Chen
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, 83 Fenyang Rd, Shanghai, 200031, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Lu Ruan
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, 83 Fenyang Rd, Shanghai, 200031, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Ye Zhao
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, 83 Fenyang Rd, Shanghai, 200031, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Qing Chang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, 83 Fenyang Rd, Shanghai, 200031, China.
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China.
| | - Xin Huang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, 83 Fenyang Rd, Shanghai, 200031, China.
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China.
| |
Collapse
|
13
|
Zhou Y, Xu MF, Chen J, Zhang JL, Wang XY, Huang MH, Wei YL, She ZY. Loss-of-function of kinesin-5 KIF11 causes microcephaly, chorioretinopathy, and developmental disorders through chromosome instability and cell cycle arrest. Exp Cell Res 2024; 436:113975. [PMID: 38367657 DOI: 10.1016/j.yexcr.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Xin-Yao Wang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Min-Hui Huang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
14
|
Zhao R, Liu M, Dai E, Chen C, Lv L, Peng L, He Y, Li S, Yang M. Deciphering a crucial dimeric interface governing Norrin dimerization and the pathogenesis of familial exudative vitreoretinopathy. FASEB J 2024; 38:e23493. [PMID: 38363575 DOI: 10.1096/fj.202302387r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disease that could cause blindness. It has been established that Norrin forms dimers to activate β-catenin signaling, yet the core interface for Norrin dimerization and the precise mechanism by which Norrin dimerization contributes to the pathogenesis of FEVR remain elusive. Here, we report an NDP variant, c.265T>C (p.Phe89Leu), that interrupted β-catenin signaling by disrupting Norrin dimerization. Structural and functional analysis revealed that the Phe-89 of one Norrin monomer interacts with Pro-98, Ser-101, Arg-121, and Ile-123 of another, forming two core symmetrical dimerization interfaces that are pivotal for the formation of a "hand-by-arm" dimer. Intriguingly, we proved that one of the two core symmetrical interfaces is sufficient for dimerization and activation of β-catenin signaling, with a substantial contribution from the Phe-89/Pro-98 interaction. Further functional analysis revealed that the disruption of both dimeric interfaces eliminates potential binding sites for LRP5, which could be partially restored by over-expression of TSPAN12. In conclusion, our findings unveil a core dimerization interface that regulates Norrin/LRP5 interaction, highlighting the essential role of Norrin dimerization on β-catenin signaling and providing potential therapeutic avenues for the treatment of FEVR.
Collapse
Affiliation(s)
- Rulian Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Min Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Liting Lv
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Peng
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yunqi He
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
15
|
Liu Y, Yang M, Fan L, He Y, Dai E, Liu M, Jiang L, Yang Z, Li S. Frameshift variants in the C-terminal of CTNNB1 cause familial exudative vitreoretinopathy by AXIN1-mediated ubiquitin-proteasome degradation condensation. Int J Biol Macromol 2024; 258:128570. [PMID: 38096938 DOI: 10.1016/j.ijbiomac.2023.128570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
The β-catenin has two intrinsically disordered regions in both C- and N-terminal domains that trigger the formation of phase-separated condensates. Variants in its C-terminus are associated with familial exudative vitreoretinopathy (FEVR), yet the pathogenesis and the role of these variants in inducing abnormal condensates, are unclear. In this study, we identified a novel heterozygous frameshift variant, c.2104-2105insCC (p.Gln703ProfsTer33), in CTNNB1 from a FEVR-affected family. This variant encodes an unstable truncated protein that was unable to activate Wnt signal transduction, which could be rescued by the inhibition of proteasome or phosphorylation. Further functional experiments revealed the propensity of the Gln703ProfsTer33 variant to form cytoplasmic condensates, exhibiting a lower turnover rate after fluorescent bleaching due to enhanced interaction with AXIN1. LiCl, which specifically blocks GSK3β-mediated phosphorylation, restored signal transduction, cell proliferation, and junctional integrity in primary human retinal microvascular endothelial cells over-expressed with Gln703ProfsTer33. Finally, experiments on two reported FEVR-associated mutations in the C-terminal domain of β-catenin exhibited several functional defects similar to the Gln703ProfsTer33. Together, our findings unravel that the C-terminal region of β-catenin is pivotal for the regulation of AXIN1/β-catenin interaction, acting as a switch to mediate nucleic and cytosolic condensates formation that is implicated in the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Yining Liu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Jinfeng Laboratory, Chongqing, China
| | - Lin Fan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China; The University of Chinese Academy of Sciences, Beijing, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Jinfeng Laboratory, Chongqing, China; Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China; The University of Chinese Academy of Sciences, Beijing, China.
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
16
|
Lu Z, Wang L, Ying X, Tan L. Bilateral angle closure glaucoma with retinitis pigmentosa in young patients: case series. BMC Ophthalmol 2023; 23:458. [PMID: 37968604 PMCID: PMC10648655 DOI: 10.1186/s12886-023-03190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND To report the ocular characteristics and management of three cases of retinitis pigmentosa (RP) concurrent primary angle closure glaucoma (PACG). CASE PRESENTATION Three middle-aged patients presenting with diminished vision, high intraocular pressure (IOP), and typical fundus manifestations of RP were clinically evaluated. The individualized treatment was based on the ocular conditions of each case. A novel genetic alteration in ZNF408 was identified in one patient. Two patients with short-axial eyes received unilateral combined trabeculectomy, cataract surgery, and Irido-zonulo-hyaloid-vitrectomy. One of them had a subluxated lens, managed with a capsular tension ring implantation. Their contralateral eyes, respectively, underwent laser peripheral iridotomy (LPI) and transscleral cyclophotocoagulation. The third patient underwent bilaterally combined laser peripheral iridoplasty, LPI, and medication. Ultimately, all patients achieved the target IOP during a two-year follow-up. CONCLUSION Young patients with RP may have a risk of developing angle closure glaucoma, and conversely, patients with angle closure glaucoma at younger age should be aware of the presence of RP. Therefore, routine gonioscopy and IOP monitoring are required for RP patients, and detailed fundus examinations are warranted for young PACG patients.
Collapse
Affiliation(s)
- Ziyang Lu
- Southwest Hospital / Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Department of Ophthalmology, the 958Th Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lu Wang
- Southwest Hospital / Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xi Ying
- Southwest Hospital / Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Lian Tan
- Southwest Hospital / Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
17
|
Le V, Abdelmessih G, Dailey WA, Pinnock C, Jobczyk V, Rashingkar R, Drenser KA, Mitton KP. Mechanisms Underlying Rare Inherited Pediatric Retinal Vascular Diseases: FEVR, Norrie Disease, Persistent Fetal Vascular Syndrome. Cells 2023; 12:2579. [PMID: 37947657 PMCID: PMC10647367 DOI: 10.3390/cells12212579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early angiogenesis of the retina and its iBRB is a delicate process that is mediated by the canonical Norrin Wnt-signaling pathway in retinal endothelial cells. Pathogenic variants in genes that play key roles within this pathway, such as NDP, FZD4, TSPAN12, and LRP5, have been associated with the incidence of these retinal diseases. Recent efforts to further elucidate the etiology of these conditions have not only highlighted their multigenic nature but have also resulted in the discovery of pathological variants in additional genes such as CTNNB1, KIF11, and ZNF408, some of which operate outside of the Norrin Wnt-signaling pathway. Recent discoveries of FEVR-linked variants in two other Catenin genes (CTNND1, CTNNA1) and the Endoplasmic Reticulum Membrane Complex Subunit-1 gene (EMC1) suggest that we will continue to find additional genes that impact the neural retinal vasculature, especially in multi-syndromic conditions. The goal of this review is to briefly highlight the current understanding of the roles of their encoded proteins in retinal endothelial cells to understand the essential functional mechanisms that can be altered to cause these very rare pediatric retinal vascular diseases.
Collapse
Affiliation(s)
- Vincent Le
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | | | - Wendy A. Dailey
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Cecille Pinnock
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Victoria Jobczyk
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Revati Rashingkar
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Kimberly A. Drenser
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Associated Retinal Consultants P.C., Royal Oak, MI 48073, USA
| | - Kenneth P. Mitton
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
18
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
19
|
Maitra P. Pediatric retinal vascular disorders: From translational sciences to clinical practice. Saudi J Ophthalmol 2023; 37:269-275. [PMID: 38155677 PMCID: PMC10752273 DOI: 10.4103/sjopt.sjopt_63_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 12/30/2023] Open
Abstract
Pediatric retinal vascular diseases are a spectrum with overlapping phenotypes and related genes. Retinal vascular development is biphasic. Vasculogenesis is responsible for the formation of primordial vessels leading to the four major arcades in the posterior retina. Angiogenesis, which is vascular endothelial growth factor dependent, is responsible for the formation of new vessels through budding from existing vessels, forming the peripheral vessels, increasing the capillary density of the central retina, and forming the superficial and deep capillary plexus. This process is controlled by WNT signaling, which is important for cell proliferation, division, and migration. Disorders of WNT signaling, such as familial exudative vitreoretinopathy (FEVR), have overlapping clinical findings. Conversely, pathogenic variants in some of the FEVR-related genes are reported in conditions such as retinopathy of prematurity (ROP), persistent fetal vasculature, and Coats disease. The various overlapping features and underlying genetic basis in the pathogenesis of pediatric retinal vascular developmental diseases suggest that genetic variants may provide a framework or a background for these conditions, upon which further insults can affect the development at any phase (such as prematurity and oxygenation in ROP), influencing and determining the final phenotype.
Collapse
Affiliation(s)
- Puja Maitra
- Department of Vitreoretina Services, Aravind Eye Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
20
|
Tao X, He L, Cen C, Liu Y, Li Q, Gong L, Zhou W, Li C. Genetic and clinical characteristics of ZNF408-related familial exudative vitreoretinopathy. J Int Med Res 2023; 51:3000605231194518. [PMID: 37684015 PMCID: PMC10492493 DOI: 10.1177/03000605231194518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVE To analyze the clinical and genetic characteristics of zinc finger protein 408 (ZNF408)-related familial exudative vitreoretinopathy (FEVR) in a Chinese cohort. METHODS Ninety families from Chongqing and 16 families from Xinjiang were selected according to fundus lesion characteristics. Peripheral venous blood was collected from patients and their families; genomic DNA was extracted for whole exome sequencing. Relationships between genotype and phenotype in patients with ZNF408-related FEVR were analyzed. RESULTS ZNF408 variants were detected in three patients (2.83%, 3/106). ZNF408 variants in these three probands were all missense mutations at novel sites. One proband had a ZNF408 and LRP5 double-gene variant, and two probands had ZNF408 single-gene variants. Patients with double-gene variants did not display more severe clinical manifestations. CONCLUSIONS This study expands the spectrum of known ZNF408 variants and confirms that ZNF408 variants can cause FEVR. Most variants detected in this study have not been reported in the literature and are suspected pathogenic variants of FEVR. In patients with FEVR, phenotype and genotype do not necessarily display a direct one-to-one relationship.
Collapse
Affiliation(s)
- Xueying Tao
- />Department of Ophthalmology and Otorhinolaryngology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Liying He
- />Department of Ophthalmology and Otorhinolaryngology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Cen
- />Department of Ophthalmology and Otorhinolaryngology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ya Liu
- />Department of Ophthalmology and Otorhinolaryngology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Li
- />Department of Ophthalmology and Otorhinolaryngology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Liyan Gong
- />Department of Ophthalmology and Otorhinolaryngology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Wenke Zhou
- />Department of Ophthalmology and Otorhinolaryngology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Chunmei Li
- />Department of Ophthalmology and Otorhinolaryngology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Derbyshire ML, Akula S, Wong A, Rawlins K, Voura EB, Brunken WJ, Zuber ME, Fuhrmann S, Moon AM, Viczian AS. Loss of Tbx3 in Mouse Eye Causes Retinal Angiogenesis Defects Reminiscent of Human Disease. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 37126314 PMCID: PMC10155871 DOI: 10.1167/iovs.64.5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Purpose Familial exudative vitreoretinopathy (FEVR) and Norrie disease are examples of genetic disorders in which the retinal vasculature fails to fully form (hypovascular), leading to congenital blindness. While studying the role of a factor expressed during retinal development, T-box factor Tbx3, we discovered that optic cup loss of Tbx3 caused the retina to become hypovascular. The purpose of this study was to characterize how loss of Tbx3 affects retinal vasculature formation. Methods Conditional removal of Tbx3 from both retinal progenitors and astrocytes was done using the optic cup-Cre recombinase driver BAC-Dkk3-Cre and was analyzed using standard immunohistochemical techniques. Results With Tbx3 loss, the retinas were hypovascular, as seen in patients with retinopathy of prematurity (ROP) and FEVR. Retinal vasculature failed to form the stereotypic tri-layered plexus in the dorsal-temporal region. Astrocyte precursors were reduced in number and failed to form a lattice at the dorsal-temporal edge. We next examined retinal ganglion cells, as they have been shown to play a critical role in retinal angiogenesis. We found that melanopsin expression and Islet1/2-positive retinal ganglion cells were reduced in the dorsal half of the retina. In previous studies, the loss of melanopsin has been linked to hyaloid vessel persistence, which we also observed in the Tbx3 conditional knockout (cKO) retinas, as well as in infants with ROP or FEVR. Conclusions To the best of our knowledge, these studies are the first demonstration that Tbx3 is required for normal mammalian eye formation. Together, the results provide a potential genetic model for retinal hypovascular diseases.
Collapse
Affiliation(s)
- Mark L Derbyshire
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
- College of Medicine, Upstate Medical University, Syracuse, New York, United States
| | - Sruti Akula
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
- College of Medicine, Upstate Medical University, Syracuse, New York, United States
| | - Austin Wong
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
- College of Medicine, Upstate Medical University, Syracuse, New York, United States
| | - Karisa Rawlins
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - Evelyn B Voura
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - William J Brunken
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - Michael E Zuber
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - Sabine Fuhrmann
- Ophthalmology and Visual Sciences Department, Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, United States
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, United States
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, New York, United States
| | - Andrea S Viczian
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| |
Collapse
|
22
|
Tanenbaum R, Acon D, El Hamichi S, Negron C, Berrocal AM. Unrecognized ROPER in a child with a novel pathogenic variant in ZNF408 gene. Ophthalmic Genet 2023; 44:171-174. [PMID: 32530348 DOI: 10.1080/13816810.2020.1778735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a rare hereditary disorder characterized by abnormal or incomplete retinal angiogenesis commonly inherited in an autosomal dominant fashion. Up to 50% of FEVR cases are linked to known genetic mutations affecting retinal vasculature development. PURPOSE To report a case, a novel pathogenic variant of the ZNF408 gene associated with a case of FEVR in a premature male. MATERIALS AND METHODS Case report. RESULTS A 10-month-old male who was born prematurely at 34 weeks' gestation in the Dominican Republic was referred for persistent avascular retina. The baby was treated with bilateral intravitreal ranibizumab injections for retinopathy of prematurity (ROP) with the presence of plus disease. Fundus examination several months after treatment revealed the absence of tortuosity of the vessels with avascular periphery; fluorescein angiography (FA) confirmed peripheral avascularity and demonstrated irregular sprouts of vascularization in the absence of neovascularization. We performed genetic testing under the suspicion of FEVR and results identified a heterozygous mutation in the ZNF408 gene on chromosome 11, c.1307 C > T. CONCLUSION FEVR is an important differential diagnosis in premature infants with retinopathy, as clinical presentation can overlap with common findings in ROP. Maintaining high suspicion for the disease is especially critical in cases with findings unusual for ROP. FEVR in the presence of prematurity has been well described, falling under the proposed term ROPER. Genetic testing is key to confirm diagnosis.
Collapse
Affiliation(s)
- Rebecca Tanenbaum
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dhariana Acon
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sophia El Hamichi
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Murray Ocular Oncology and Retina, Miami, Florida, USA
| | - Catherin Negron
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Audina M Berrocal
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
23
|
Zhao R, Dai E, Wang S, Zhang X, He Y, Peng L, Zhao P, Yang Z, Yang M, Li S. A comprehensive functional analysis on the pathogenesis of novel TSPAN12 and NDP variants in familial exudative vitreoretinopathy. Clin Genet 2023; 103:320-329. [PMID: 36453149 DOI: 10.1111/cge.14273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder; however, the known FEVR-associated variants account for approximately only 50% cases. Currently, the pathogenesis of most reported variants is not well studied, we aim to identify novel variants from FEVR-associated genes and perform a comprehensive functional analysis to uncover the pathogenesis of variants that cause FEVR. Using targeted gene panel and Sanger sequencing, we identified six novel and three known variants in TSPAN12 and NDP. These variants were demonstrated to cause significant inhibition of Norrin/β-catenin pathway by dual-luciferase reporter assay and western blot analysis. Structural analysis and co-immunoprecipitation revealed compromised interactions between missense variants and binding partners in the Norrin/β-catenin pathway. Immunofluorescence and subcellular protein extraction were performed to reveal the abnormal subcellular trafficking. Additionally, over-expression of TSPAN12 successfully enhanced the Norrin/β-catenin signaling activity by strengthening the binding affinity of mutant Norrin with FZD4 or LRP5. Together, these observations expanded the spectrum of FEVR-associated variants for the genetic counseling and prenatal diagnosis of FEVR, as well providing a potential therapeutic strategy for the treatment of FEVR.
Collapse
Affiliation(s)
- Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyuan Wang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
24
|
Huang L, Lu J, Wang Y, Sun L, Ding X. Familial Exudative Vitreoretinopathy and Systemic Abnormalities in Patients With CTNNB1 Mutations. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 36790797 PMCID: PMC9940768 DOI: 10.1167/iovs.64.2.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Purpose Familial exudative vitreoretinopathy (FEVR) is an inherited vitreoretinopathy. This study aimed to analyze the ocular phenotypes and systemic features of patients with CTNNB1 mutations. Methods Whole exome sequencing was performed in the probands, and Sanger sequencing was used to verify the mutations and perform segregation analysis in the available family members. A luciferase assay was used to assess the effect of the mutant β-catenin on transcription. Comprehensive ocular examinations were performed on the probands and family members. Systemic features were evaluated and followed up. Results A total of 763 FEVR families were enrolled. Seven different CTNNB1 mutations, including 5 novels and 2 known mutations, were detected in 8 families, accounting for 1.05% of all FEVR families. Compared to wild-type CTNNB1, the CTNNB1 mutants failed to induce luciferase reporter activity in SuperTopFlash (STF) cells. Among the 16 eyes of the 8 probands, 2 (12.5%) eyes were classified as stage 2 FEVR, 8 (50.0%) as stage 4, and 6 (37.5%) as stage 5. All the patients had varying degrees of systemic abnormalities and presented with motor, speech, and developmental delays over time. Among the eight families with CTNNB1 mutations, seven were de novo mutations, and one proband inherited the mutation from his asymptomatic mother. Conclusions This study provides detailed descriptions of the ocular phenotypes of patients with CTNNB1 mutations that presented as severe FEVR, and accompanied with other systemic abnormalities. Five novel mutations identified in this study, expanded the mutation spectrum of CTNNB1-associated FEVR.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jinglin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - You Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
25
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
26
|
He Y, Yang M, Zhao R, Peng L, Dai E, Huang L, Zhao P, Li S, Yang Z. Novel truncating variants in CTNNB1 cause familial exudative vitreoretinopathy. J Med Genet 2023; 60:174-182. [PMID: 35361685 DOI: 10.1136/jmedgenet-2021-108259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is an inheritable blinding disorder with clinical and genetic heterogeneity. Heterozygous variants in the CTNNB1 gene have been reported to cause FEVR. However, the pathogenic basis of CTNNB1-associated FEVR has not been fully explored. METHODS Whole-exome sequencing was performed on the genomic DNA of probands. Dual-luciferase reporter assay, western blotting and co-immunoprecipitation were used to characterise the impacts of variants. Quantitative real-time PCR, EdU (5-ethynyl-2'-deoxyuridine) incorporation assay and immunocytochemistry were performed on the primary human retinal microvascular endothelial cells (HRECs) to investigate the effect of CTNNB1 depletion on the downstream genes involved in Norrin/β-catenin signalling, cell proliferation and junctional integrity, respectively. Transendothelial electrical resistance assay was applied to measure endothelial permeability. Heterozygous endothelial-specific Ctnnb1-knockout mouse mice were generated to verify FEVR-like phenotypes in the retina. RESULTS We identified two novel heterozygous variants (p.Leu103Ter and p.Val199LeufsTer11) and one previously reported heterozygous variant (p.His369ThrfsTer2) in the CTNNB1 gene. These variants caused truncation and degradation of β-catenin that reduced Norrin/β-catenin signalling activity. Additionally, knockdown (KD) of CTNNB1 in HRECs led to diminished mRNA levels of Norrin/β-catenin targeted genes, reduced cell proliferation and compromised junctional integrity. The Cre-mediated heterozygous deletion of Ctnnb1 in mouse endothelial cells (ECs) resulted in FEVR-like phenotypes. Moreover, LiCl treatment partially rescued the defects in CTNNB1-KD HRECs and EC-specific Ctnnb1 heterozygous knockout mice. CONCLUSION Our findings reinforced the current pathogenesis of Norrin/β-catenin for FEVR and expanded the causative variant spectrum of CTNNB1 for the prenatal diagnosis and genetic counselling of FEVR.
Collapse
Affiliation(s)
- Yunqi He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China .,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China .,Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Mao J, Chen Y, Fang Y, Shao Y, Xiang Z, Li H, Zhao S, Chen Y, Shen L. Clinical characteristics and mutation spectrum in 33 Chinese families with familial exudative vitreoretinopathy. Ann Med 2022; 54:3286-3298. [PMID: 36411543 PMCID: PMC9704097 DOI: 10.1080/07853890.2022.2146744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To explore the clinical manifestations and search for the variants of six related genes (LRP5, FZD4, TSPAN12, NDP, KIF11 and ZNF408) in Chinese patients with familial exudative vitreoretinopathy (FEVR), and investigate the correlation between the genetic variants and the clinical characteristics. PATIENTS AND METHODS Clinical data, including the retinal artery angle, acquired from wide-field fundus imaging, structural and microvascular features of the retina obtained from optical coherence tomography (OCT) and OCT angiography (OCTA) were collected from 33 pedigrees. Furthermore, mutation screening was performed. Variants filtering, bioinformatics analysis and Sanger sequencing were conducted to verify the variants. RESULTS Twenty-one variants were successfully detected in 16 of 33 families, of which 10 variants were newly identified. The proportion of variants in LRP5, FZD4, TSPAN12, NDP and KIF11 was 38.1% (8/21), 33.3% (7/21), 19.1% (4/21), 4.8% (1/21) and 4.8% (1/21), respectively. Three new variants were considered to be pathogenic or likely pathogenic. The FEVR group tended to exhibit a smaller retinal artery angle, higher incidence of foveal hypoplasia and lower vascular density compared to the control group. Patients who harboured variants of FZD4 exhibited greater severity of FEVR than those with LRP5 variants. However, those who harboured LRP5 variants tended to possess lower foveal vascular density. CONCLUSIONS Six known pathogenic genes were screened in 33 pedigrees with FEVR in our study, which revealed 10 novel variants. These findings enrich the clinical features and mutation spectrum in Chinese patients with FEVR, revealing the genotype-phenotype relationship, and contributing to the diagnosis and treatment of the disease.Key messagesWe identified 21 variants in 5 genes (LRP5, FZD4, TSPAN12, NDP and KIF11) associated with FEVR, 10 of which are novel (three were pathogenic or likely pathogenic).The proportion of variants was the highest for the LRP5 gene.FZD4 variants may be responsible for greater FEVR severity than LRP5 variants.
Collapse
Affiliation(s)
- Jianbo Mao
- Department of Ophthalmology, Center for Rehabilitation Medicine, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yijing Chen
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yuyan Fang
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yirun Shao
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Ziyi Xiang
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Hanxiao Li
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Shixin Zhao
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yiqi Chen
- Department of Ophthalmology, Center for Rehabilitation Medicine, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Lijun Shen
- Department of Ophthalmology, Center for Rehabilitation Medicine, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| |
Collapse
|
28
|
Liu M, Luo J, Feng H, Li J, Zhang X, Zhao P, Fei P. Decrease of FZD4 exon 1 methylation in probands from FZD4-associated FEVR family of phenotypic heterogeneity. Front Med (Lausanne) 2022; 9:976520. [PMID: 36353221 PMCID: PMC9638120 DOI: 10.3389/fmed.2022.976520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an important cause of childhood blindness and is clinically characterized by phenotypic heterogeneity. FEVR patients harboring the same genetic mutation vary widely in disease severity. The purpose of this study was to explore non-genetic factors that regulate FEVR phenotypic heterogeneity. We detected methylation levels of 21 CpG sites located at the FZD4 exon 1 region of 11 probands, 12 asymptomatic/paucisymptomatic carriers and 11 non-carriers from 10 unrelated FZD4-associated FEVR families using bisulfite amplicon sequencing (BSAS). Our results showed reduced methylation level of FZD4 exon 1 in probands, suggesting that FZD4 exon 1 methylation level may be negatively linked with FEVR disease severity. It provided a new research direction for follow-up research, helping us better understand the complexity of the FEVR-causing mechanism.
Collapse
|
29
|
Chen C, Cheng Y, Zhang Z, Zhang X, Li J, Zhao P, Peng X. Long-term clinical prognosis of 335 infant single-gene positive FEVR cases. BMC Ophthalmol 2022; 22:329. [PMID: 35918671 PMCID: PMC9347171 DOI: 10.1186/s12886-022-02522-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose To describe and analyze the clinical prognosis of infants diagnosed of familial exudative vitreoretinopathy (FEVR) with single gene mutation in long-term follow-up. Methods A retrospective case study was conducted on 355 FEVR infants with single positive gene. Result Of the 335 single-gene positive infant FEVR cases (under 3 years old), 20% (n = 67) was diagnosed of strabismus at first visit. Staging of various genotypes was different (P < 0.001). Patients with NDP mutations presented the most severe clinical phenotypes and patients with ZNF408 mutations presented the mildest clinical phenotypes. Most infants underwent surgery under 1 year old (5th stage 75 of 108 [69.44%]). The axial length of different genotypes showed no significant difference (P = 0.2891). The 1st to 3rd stage cases were given intravitreal injection and/or retina photocoagulation with the last follow-up vision above 20/67. The 4th to 5th stage cases received the transcorneal vitrectomy with lensectomy or lens sparing vitrectomy (LSV), whose lens maintained transparent after LSV (11/14[78.58%]). After 2 to 10 years of follow-up, 37.96% (41/108) of post-surgery cases showed retinal funnel-like unfold and posterior pole unfold, 69.57% (16/ 23) of which received second surgery for closure of pupil with good prognosis. At the last follow-up, 20% (60/300) were with vision above 20/200. Conclusion LRP5 gene mutation was the most common mutation in FEVR patients. The severity of the clinical phenotype varied with different gene mutations. The main surgical methods for cases at Stage 4–5 were transcorneal vitrectomy with lensectomy or LSV. The earlier FEVR occurred, the worse prognosis would be. Active surgical intervention and lens sparing were necessary for cases at Stage 4–5.
Collapse
Affiliation(s)
- Chunli Chen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing, China
| | - Yizhe Cheng
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Zhihan Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Jiakai Li
- Department of Ophthalmology, Xinhua Hospital, Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, People's Republic of China.
| | - Xiaoyan Peng
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China. .,Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China. .,Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No.1, Dongjiaominxiang Street, Dongcheng District, Beijing, 100005, People's Republic of China.
| |
Collapse
|
30
|
Qu N, Li W, Han DM, Gao JY, Yang ZT, Jiang L, Liu TB, Chen YX, Jiang XS, Zhou L, Wu JH, Huang X. Mutation spectrum in a cohort with familial exudative vitreoretinopathy. Mol Genet Genomic Med 2022; 10:e2021. [PMID: 35876299 PMCID: PMC9482396 DOI: 10.1002/mgg3.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/06/2021] [Accepted: 07/08/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose To expand the mutation spectrum of patients with familial exudative vitreoretinopathy (FEVR) disease. Participants 74 probands (53 families and 21 sporadic probands) with familial exudative vitreoretinopathy (FEVR) disease and their available family members (n = 188) were recruited for sequencing. Methods Panel‐based targeted screening was performed on all subjects. Before sanger sequencing, variants of LRP5, NDP, FZD4, TSPAN12, ZNF408, KIF11, RCBTB1, JAG1, and CTNNA1 genes were verified by a series of bioinformatics tools and genotype–phenotype co‐segregation analysis. Results 40.54% (30/74) of the probands were sighted to possess at least one etiological mutation of the nine FEVR‐causative genes. The etiological mutation detection rate was 37.74% (20/53) in family‐attainable probands while 47.62% (10/21) in sporadic cases. The diagnosis rate of patients in the early‐onset subgroup (≤5 years old, 45.4%) is higher than that of the children or adolescence‐onset subgroup (6–16 years old, 42.1%) and the late‐onset subgroup (≥17 years old, 39.4%). A total of 36 etiological mutations were identified in this study, comprising 26 novel mutations and 10 reported mutations. LRP5 was the most prevalent mutant gene among the 36 mutation types with a percentage of 41.67% (15/36). Followed by FZD4 (10/36, 27.78%), TSPAN12 (5/36, 13.89%), NDP (4/36, 11.11%), KIF11 (1/36, 2.78%), and RCBTB1 (1/36, 2.78%). Among these mutations, 63.89% (23/36) were missense mutations, 25.00% (9/36) were frameshift mutations, 5.56% (2/36) were splicing mutations, 5.56% (2/36) were nonsense mutations. Moreover, the clinical pathogenicity of these variants was defined according to American College of Medical Genetics (ACMG) and genomics guidelines: 41.67% (15/36) were likely pathogenic variants, 27.78% (10/36) pathogenic variants, 30.55% (11/36) variants of uncertain significance. No etiological mutations discovered in the ZNF408, JAG1, and CTNNA1 genes in this FEVR cohort. Conclusions We systematically screened nine FEVR disease‐associated genes in a cohort of 74 Chinese probands with FEVR disease. With a detection rate of 40.54%, 36 etiological mutations of six genes were authenticated in 30 probands, including 26 novel mutations and 10 reported mutations. The most prevalent mutated gene is LRP5, followed by FZD4, TSPAN12, NDP, KIF11, and RCBTB1. In total, a de novo mutation was confirmed. Our study significantly clarified the mutation spectrum of variants bounded up to FEVR disease.
Collapse
Affiliation(s)
- Ning Qu
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Yu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, China
| | - Tian-Bin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Xian Chen
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Sen Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhou
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, The Center of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ji-Hong Wu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xin Huang
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
31
|
Jeyabalan N, Ghosh A, Mathias GP, Ghosh A. Rare eye diseases in India: A concise review of genes and genetics. Indian J Ophthalmol 2022; 70:2232-2238. [PMID: 35791102 PMCID: PMC9426079 DOI: 10.4103/ijo.ijo_322_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rare eye diseases (REDs) are mostly progressive and are the leading cause of irreversible blindness. The disease onset can vary from early childhood to late adulthood. A high rate of consanguinity contributes to India’s predisposition to RED. Most gene variations causing REDs are monogenic and, in some cases, digenic. All three types of Mendelian inheritance have been reported in REDs. Some of the REDs are related to systemic illness with variable phenotypes in affected family members. Approximately, 50% of the children affected by REDs show associated phenotypes at the early stages of the disease. A precise clinical diagnosis becomes challenging due to high clinical and genetic heterogeneity. Technological advances, such as next-generation sequencing (NGS), have improved genetic and genomic testing for REDs, thereby aiding in determining the underlying causative gene variants. It is noteworthy that genetic testing together with genetic counseling facilitates a more personalized approach in the accurate diagnosis and management of the disease. In this review, we discuss REDs identified in the Indian population and their underlying genetic etiology.
Collapse
Affiliation(s)
- Nallathambi Jeyabalan
- Molecular Signaling and Gene Therapy Unit, GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| | - Anuprita Ghosh
- Molecular Signaling and Gene Therapy Unit, GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| | - Grace P Mathias
- Molecular Signaling and Gene Therapy Unit, GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| | - Arkasubhra Ghosh
- Molecular Signaling and Gene Therapy Unit, GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
32
|
Sen P, Sreenivasan J. Commentary: Familial exudative vitreoretinopathy-The masquerade in pediatric retinal disorders. Indian J Ophthalmol 2022; 70:2496-2497. [PMID: 35791143 PMCID: PMC9426098 DOI: 10.4103/ijo.ijo_216_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Parveen Sen
- Department of Vitreo-Retina, Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Janani Sreenivasan
- Department of Vitreo-Retina, Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| |
Collapse
|
33
|
Zhao R, Wang S, Zhao P, Dai E, Zhang X, Peng L, He Y, Yang M, Li S, Yang Z. Heterozygote loss-of-function variants in the LRP5 gene cause familial exudative vitreoretinopathy. Clin Exp Ophthalmol 2022; 50:441-448. [PMID: 35133048 DOI: 10.1111/ceo.14037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is an inherited ocular disease with clinical manifestations of aberrant retinal vasculature. We aimed to identify novel causative variants responsible for FEVR and provided evidence for the genetic counselling of FEVR. METHODS We applied whole-exome sequencing (WES) on the genomic DNA samples from the probands and performed Sanger sequencing for variant validation. Western blot analysis and luciferase assays were performed to test the expression levels and the activity of mutant proteins. RESULTS We identified one novel heterozygous nonsense variant, and three novel heterozygous frameshift variants including c.1801G>T (p.G601*), c.1965delC (p.H656Tfs*41), c.4445delC (p.S1482Cfs*17), and c.4482delC (p.P1495Rfs*4), which disabled the function of LRP5 on the Norrin/β-catenin signalling. Overexpression of variant-carrying LRP5 proteins resulted in down regulation of the protein levels of β-catenin and the Norrin/β-catenin signalling target genes c-Myc and Glut1. CONCLUSION Our study showed that four inherited LRP5 variants can cause autosomal dominant FEVR via down regulation of Norrin/β-catenin signalling and expanded the spectrum of FEVR-associated LRP5 variants.
Collapse
Affiliation(s)
- Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shiyuan Wang
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Peiquan Zhao
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Erkuan Dai
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Xiang Zhang
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Lu J, Huang L, Sun L, Li S, Zhang Z, Jiang Z, Li J, Ding X. FZD4 in a Large Chinese Population With Familial Exudative Vitreoretinopathy: Molecular Characteristics and Clinical Manifestations. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 35394490 PMCID: PMC8994167 DOI: 10.1167/iovs.63.4.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose The purpose of this study was to establish a genotype-phenotype correlation of familial exudative vitreoretinopathy (FEVR) caused by FZD4 gene mutations. Methods Six hundred fifty-one probands and their family members were recruited based on a clinical diagnosis of FEVR between 2015 and 2021 at Zhongshan Ophthalmic Center. Ocular examinations were performed in all participants. Targeted gene panel sequencing and whole-exome sequencing were performed in the probands, and Sanger sequencing was used to verify the mutations and segregation analysis was performed in the family members. Results Fifty-one FZD4 mutations (24 novels and 27 known) were detected in 84 families. Of these 168 eyes with FEVR, the eyes at stages 1, 2, 3, 4, and 5 were 29 (17.3%), 15 (8.9%), 19 (11.3%), 55 (32.7%), and 12 (7.1%), respectively. Exact stage of 38 (22.6%) eyes could not be determined. The FEVR phenotypes were more severe in the probands than the phenotypes in the family members (P < 0.001). The families were divided into two groups, probands that inherited the variant from the mother, and probands that inherited the variant from the father. In addition, the FEVR stage differences between these two groups were different (P < 0.05). Despite the mutations being located in different domains of FZD4, no significant differences were identified among the domains in terms of FEVR staging, retinal folds, retinal detachment, temporal midperipheral vitreoretinal interface abnormality, and foveal hypoplasia. Conclusions The FZD4 probands had severer phenotype than the family members, and the FEVR stage difference was greater between the probands and mothers than that between the probands and fathers.
Collapse
Affiliation(s)
- Jinglin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Songshan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaoxin Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiaqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Jiang YJ, Fann CSJ, Fuh JL, Chung MY, Huang HY, Chu KC, Wang YF, Hsu CL, Kao LS, Chen SP, Wang SJ. Genome-wide analysis identified novel susceptible genes of restless legs syndrome in migraineurs. J Headache Pain 2022; 23:39. [PMID: 35350973 PMCID: PMC8966278 DOI: 10.1186/s10194-022-01409-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Restless legs syndrome is a highly prevalent comorbidity of migraine; however, its genetic contributions remain unclear. Objectives To identify the genetic variants of restless legs syndrome in migraineurs and to investigate their potential pathogenic roles. Methods We conducted a two-stage genome-wide association study (GWAS) to identify susceptible genes for restless legs syndrome in 1,647 patients with migraine, including 264 with and 1,383 without restless legs syndrome, and also validated the association of lead variants in normal controls unaffected with restless legs syndrome (n = 1,053). We used morpholino translational knockdown (morphants), CRISPR/dCas9 transcriptional knockdown, transient CRISPR/Cas9 knockout (crispants) and gene rescue in one-cell stage embryos of zebrafish to study the function of the identified genes. Results We identified two novel susceptibility loci rs6021854 (in VSTM2L) and rs79823654 (in CCDC141) to be associated with restless legs syndrome in migraineurs, which remained significant when compared to normal controls. Two different morpholinos targeting vstm2l and ccdc141 in zebrafish demonstrated behavioural and cytochemical phenotypes relevant to restless legs syndrome, including hyperkinetic movements of pectoral fins and decreased number in dopaminergic amacrine cells. These phenotypes could be partially reversed with gene rescue, suggesting the specificity of translational knockdown. Transcriptional CRISPR/dCas9 knockdown and transient CRISPR/Cas9 knockout of vstm2l and ccdc141 replicated the findings observed in translationally knocked-down morphants. Conclusions Our GWAS and functional analysis suggest VSTM2L and CCDC141 are highly relevant to the pathogenesis of restless legs syndrome in migraineurs. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01409-9.
Collapse
Affiliation(s)
- Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Ming-Yi Chung
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Hui-Ying Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Kuo-Chang Chu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chia-Lin Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Lung-Sen Kao
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 11217, Taiwan. .,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
36
|
Huang L, Zhang L, Li X, Lu J, Sun L, Chen L, Ding X, Li Z. Ocular manifestations of Chinese patients with copy number variants in the NDP gene. Mol Vis 2022; 28:29-38. [PMID: 35656167 PMCID: PMC9108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Familial exudative vitreoretinopathy (FEVR) and Norrie disease (ND) are genetic disorders that can be caused by mutations in the NDP gene and affect retinal vasculature growth and development. This study aimed to describe the copy number variations (CNVs) in the NDP gene in Chinese FEVR families and the associated phenotypes. METHODS This study recruited 651 FEVR families. SeqCNV was used to analyze the CNVs in the families without mutations in known FEVR-associated genes. Multiplex ligation-dependent probe amplification and semiquantitative multiplex PCR were performed to verify the NDP CNVs. The probands and family members underwent complete ocular examinations. RESULTS NDP CNVs were identified in four patients from three unrelated families, accounting for 15% of the patients with NDP mutations and 0.46% of the entire FEVR cohort. Exon 2 deletions were detected in two families, and whole gene deletion was identified in one family. The affected individuals were born blind with total retinal detachment. CONCLUSIONS The findings confirm that CNVs are a common NDP mutation type. The CNV-associated phenotype is congenital blindness with total retinal detachment. Antenatal genetic analyses and fetal ultrasound can facilitate early diagnosis and interventions in patients with NDP mutations.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Linyan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jinglin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Limei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhan Li
- Zhuhai Women and Children's Hospital, Zhuhai, China
| |
Collapse
|
37
|
Cicerone AP, Dailey W, Sun M, Santos A, Jeong D, Jones L, Koustas K, Drekh M, Schmitz K, Haque N, Felisky JA, Guzman AE, Mellert K, Trese MT, Capone A, Drenser KA, Mitton KP. A Survey of Multigenic Protein-Altering Variant Frequency in Familial Exudative Vitreo-Retinopathy (FEVR) Patients by Targeted Sequencing of Seven FEVR-Linked Genes. Genes (Basel) 2022; 13:495. [PMID: 35328049 PMCID: PMC8953269 DOI: 10.3390/genes13030495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
While Inherited Retinal Diseases (IRDs) are typically considered rare diseases, Familial Exudative Vitreo-Retinopathy (FEVR) and Norrie Disease (ND) are more rare than retinitis pigmentosa. We wanted to determine if multigenic protein-altering variants are common in FEVR subjects within a set of FEVR-related genes. The potential occurrence of protein-altering variants in two different genes has been documented in a very small percentage of patients, but potential multigenic contributions to FEVR remain unclear. Genes involved in these orphan pediatric retinal diseases are not universally included in available IRD targeted-sequencing panels, and cost is also a factor limiting multigenic-sequence-based testing for these rare conditions. To provide an accurate solution at lower cost, we developed a targeted-sequencing protocol that includes seven genes involved in Familial Exudative Vitreo-Retinopathy (FEVR) and Norrie disease. Seventy-six DNA samples from persons refered to clinic with possible FEVR and some close relatives were sequenced using a novel Oakland-ERI orphan pediatric retinal disease panel (version 2) providing 900 times average read coverage. The seven genes involved in FEVR/ND were: NDP (ChrX), CTNNB1 (Chr3); TSPAN12 (Chr7); KIF11 (Chr10), FZD4 (Chr11), LRP5 (Chr11), ZNF408 (Chr11). A total of 33 variants were found that alter protein sequence, with the following relative distribution: LRP5 13/33 (40%), FZD4 9/33 (27%), ZNF408 6/33 (18%), (KIF11 3/33 (9%), NDP 1/33 (3%), CTNNB1 1/33 (3%). Most protein-altering variants, 85%, were found in three genes: FZD4, LRP5, and ZNF408. Four previously known pathogenic variants were detected in five families and two unrelated individuals. Two novel, likely pathogenic variants were detected in one family (FZD4: Cys450ter), and a likely pathogenic frame shift termination variant was detected in one unrelated individual (LRP5: Ala919CysfsTer67). The average number of genes with protein-altering variants was greater in subjects with confirmed FEVR (1.46, n = 30) compared to subjects confirmed unaffected by FEVR (0.95, n = 20), (p = 0.009). Thirty-four percent of persons sequenced had digenic and trigenic protein-altering variants within this set of FEVR genes, which was much greater than expected in the general population (3.6%), as derived from GnomAD data. While the potential contributions to FEVR are not known for most of the variants in a multigenic context, the high multigenic frequency suggests that potential multigenic contributions to FEVR severity warrant future investigation. The targeted-sequencing format developed will support such exploration by reducing the testing cost to $250 (US) for seven genes and facilitating greater access to genetic testing for families with this very rare inherited retinal disease.
Collapse
Affiliation(s)
- Amanda Petrelli Cicerone
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
| | - Wendy Dailey
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
| | - Michael Sun
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Andrew Santos
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Daeun Jeong
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Lance Jones
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Konstaninos Koustas
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Mary Drekh
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Keaton Schmitz
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Naomi Haque
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Jennifer A. Felisky
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
| | - Alvaro E. Guzman
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
| | - Kendra Mellert
- Associated Retinal Consultants LLC, Royal Oak, MI 48073, USA; (K.M.); (M.T.T.); (A.C.)
| | - Michael T. Trese
- Associated Retinal Consultants LLC, Royal Oak, MI 48073, USA; (K.M.); (M.T.T.); (A.C.)
| | - Antonio Capone
- Associated Retinal Consultants LLC, Royal Oak, MI 48073, USA; (K.M.); (M.T.T.); (A.C.)
| | - Kimberly A. Drenser
- Associated Retinal Consultants LLC, Royal Oak, MI 48073, USA; (K.M.); (M.T.T.); (A.C.)
| | - Kenneth P. Mitton
- Eye Research Institute, Rochester, MI 48309, USA; (A.P.C.); (W.D.); (M.S.); (A.S.); (D.J.); (L.J.); (K.K.); (M.D.); (K.S.); (N.H.); (J.A.F.); (A.E.G.)
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
38
|
Whole exome sequencing revealed 14 variants in NDP, FZD4, LRP5, and TSPAN12 genes for 20 families with familial exudative vitreoretinopathy. BMC Med Genomics 2022; 15:54. [PMID: 35277167 PMCID: PMC8915523 DOI: 10.1186/s12920-022-01204-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Familial exudative vitreoretinopathy (FEVR) is a complex form of blindness-causing retinal degeneration. This study investigated the potential disease-causing variants in 20 Chinese families with FEVR.
Methods
All available family members underwent detailed ophthalmological examinations, including best-corrected visual acuity and fundus examination. All probands and most family members underwent fluorescein fundus angiography. Twenty probands underwent whole exome sequencing; 16 of them also underwent copy number variant and mitochondrial genome analysis. Bioinformatics analysis and Sanger sequencing of available family members were used to confirm the disease-causing gene variant.
Results
Twenty families were diagnosed with FEVR based on clinical symptoms, fundus manifestations, and fundus fluorescein angiography. Whole exome sequencing revealed 14 variants in NDP, FZD4, LRP5, and TSPAN12 genes among the 13 families. These variants were predicted to be damaging or deleterious according to multiple lines of prediction algorithms; they were not frequently found in multiple population databases. Seven variants had not previously been reported to cause FEVR: c.1039T>G p.(Phe347Val) in the FZD4 gene; c.1612C>T p.(Arg538Trp) and c.3237-2A>C in the LRP5 gene; and c.77T>A p.(Ile26Asn), c.170dupT p.(Leu57Phe fsTer60), c.236T>G p.(Met79Arg) and c.550dupA p.(Arg184Lys fsTer16) in the TSPAN12 gene. We did not detect any variants in the remaining seven families.
Conclusions
These results expand the spectrum of variants in the NDP, FZD4, LRP5, and TSPAN12 genes and provide insights regarding accurate diagnosis, family genetic counseling, and future gene therapy for FEVR.
Collapse
|
39
|
Wang Y, Zhao R, Dai E, Peng L, He Y, Yang M, Li S. Identification of Two Novel Variants in the LRP5 Gene that Cause Familial Exudative Vitreoretinopathy. Genet Test Mol Biomarkers 2022; 26:146-151. [PMID: 35244470 DOI: 10.1089/gtmb.2021.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Familial exudative vitreoretinopathy (FEVR, OMIM 133780) is a severe inherited eye disease characterized by abnormal development of the retinal vasculature. Variants in the reported genes account for ∼50% of total FEVR cases. However, the pathogenesis of other 50% of FEVR cases remains unclear. Therefore, it is crucial to identify novel variants responsible for the pathogenesis of FEVR. Aims: To find causative variants responsible for FEVR in two Han Chinses families. Materials and Methods: We recruited two families with two FEVR patients and applied exome sequencing on the genomic DNA samples from the probands. Sanger sequencing was performed for variant validation. Western blot analysis and luciferase assays were performed to test the expression levels and activity of mutant proteins. Results: We identified two novel missense variants in the LRP5 gene (NM_002335), namely c.1176 C > A (p.Asp392Glu) and c.2435 A>C (p.Asp812Ala), inherited in an autosomal dominant manner. Both variants significantly reduced Norrin/β-catenin signaling activity without affecting the expression of the LRP5 protein. Conclusion: This study expands the variant spectrum of the LRP5 gene for FEVR, providing valuable information for prenatal counseling and molecular diagnosis of FEVR.
Collapse
Affiliation(s)
- Yuze Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Ophthalmology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
40
|
Shute CL, McLoone E. Reaching a FEVR Pitch: A Case Series of Familial Exudative Vitreoretinopathy in Northern Ireland. J Pediatr Ophthalmol Strabismus 2022; 59:102-109. [PMID: 34592872 DOI: 10.3928/01913913-20210720-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To evaluate the heterogeneity of both the clinical features and genetics of familial exudative vitreoretinopathy (FEVR) in a Northern Irish population. METHODS A retrospective trawl of a secure pediatric database was completed, as well as communication with all Northern Ireland ophthalmologists to identify adult cases. Cases were cross-referenced with a regional genetics database. Data on patient demographics, clinical findings, genetic testing, and patient treatment were collected. RESULTS Sixteen patients were identified. Average age at presentation was 11.8 years (range: 4 months to 38 years). Earlier age at presentation was associated with more advanced disease and those presenting later had more subtle signs such as retinal tear or vitreous hemorrhage. Four types of gene mutations were identified in 7 patients (NDP, TSPAN12, FZD4, and KIF11). Thirteen patients had complications associated with FEVR and associated systemic conditions were found in 5 patients. Twelve eyes received active treatment to control disease. CONCLUSIONS FEVR is a sight-threatening disease affecting prenatal retinal angiogenesis with a spectrum of disease and diverse genetic basis. Clinicians should look for signs of systemic and other ophthalmic sequelae in patients with FEVR because this could point to a genetic cause. Vigilance should also be exercised in older patients with unexplained vitreous hemorrhage or retinal tear with consideration of widefield angiography if FEVR is suspected. [J Pediatr Ophthalmol Strabismus. 2022;59(2):102-109.].
Collapse
|
41
|
Peng Y, Zhao R, Dai E, Peng L, He Y, Li S, Yang M. Whole-Exome Sequencing Reveals Novel NDP Variants in X-Linked Familial Exudative Vitreoretinopathy. Eur J Ophthalmol 2022; 32:3220-3226. [PMID: 35037517 DOI: 10.1177/11206721221074209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE To investigate causative variants in three Chinese families affected with familial exudative vitreoretinopathy (FEVR). METHODS Three unrelated Chinese families were recruited in this study. The three probands and their family members experienced a comprehensive age-appropriate eye examination and genetic analysis. Luciferase assay was performed to evaluate impacts of variants on Norrin/β-catenin signaling activity. RESULTS Here we report two novel NDP variants associated with FEVR in three families, including c.17T>C (p.Leu6Pro) in family 1 and c.58G>A (p.Gly20Arg) in family 2 and 3. These two variants were co-segregated with the disease phenotypes within each family. In addition, both variants resulted in compromised Norrin/β-catenin signaling activity. CONCLUSION Our study identified two FEVR-associated pathogenic variants in NDP, which expanded the variant spectrum and provided information for the genetic diagnosis of FEVR.
Collapse
Affiliation(s)
- Yujiao Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, 12599University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & 89669Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, 12599University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & 89669Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Erkuan Dai
- Ophthalmology, 91603Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Li Peng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, 12599University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & 89669Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Hospital, Chengdu, Sichuan, China
| | - Yunqi He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, 12599University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & 89669Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Hospital, Chengdu, Sichuan, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, 12599University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & 89669Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Hospital, Chengdu, Sichuan, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, 12599University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & 89669Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Hospital, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Tao T, Xu N, Li J, Li H, Qu J, Yin H, Liang J, Zhao M, Li X, Huang L. Ocular Features and Mutation Spectrum of Patients With Familial Exudative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2021; 62:4. [PMID: 34860240 PMCID: PMC8648064 DOI: 10.1167/iovs.62.15.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose To investigate the clinical findings in Chinese patients diagnosed with familial exudative vitreoretinopathy (FEVR) and carrying pathogenic mutations. Methods One hundred twenty unrelated patients with FEVR were enrolled in this study. Genomic DNA and ophthalmic examinations were collected from all the patients and their available relatives. Targeted next-generation sequencing was performed to detect mutations. In silico programs were used to evaluate the pathogenicity of all the mutations. Results Eighty identified mutations were found in 81 unrelated patients (31/81 in LRP5, 25/81 in FZD4, 12/81 in TSPAN12, 8/81 in NDP, 4/81 in KIF11, and 1/81 in ZNF408). Among those mutations, 53 were novel (23/35 in LRP5, 15/21 in FZD4, 8/11 in TSPAN12, 3/8 in NDP, 3/4 in KIF11, 1/1 in ZNF408). Patients with LRP5, FZD4, TSPAN12, or NDP mutations were mainly classified into stage 4 and stage 5 and one-half of patients with KIF11 mutations were in stage 4. In addition, all the patients in NDP group were found to have bilateral symmetry in FEVR stage. Conclusions Our results present profound phenotypic variability and a wide mutation spectrum of FEVR in the Chinese population, which could be useful for a precise and comprehensive genetic diagnosis for patients with FEVR in the future.
Collapse
Affiliation(s)
- Tianchang Tao
- Department of Ophthalmology, Peking University People's Hospital Eye diseases and optometry institute, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital Eye diseases and optometry institute, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital Eye diseases and optometry institute, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China
| | - Hongyan Li
- Department of Ophthalmology, Peking University People's Hospital Eye diseases and optometry institute, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jinfeng Qu
- Department of Ophthalmology, Peking University People's Hospital Eye diseases and optometry institute, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China
| | - Hong Yin
- Department of Ophthalmology, Peking University People's Hospital Eye diseases and optometry institute, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jianhong Liang
- Department of Ophthalmology, Peking University People's Hospital Eye diseases and optometry institute, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital Eye diseases and optometry institute, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China
| | - Xiaoxin Li
- Department of Ophthalmology, Peking University People's Hospital Eye diseases and optometry institute, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China.,Department of Ophthalmology, Xiamen Eye Center of Xiamen University, Xiamen, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital Eye diseases and optometry institute, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
43
|
Five novel copy number variations detected in patients with familial exudative vitreoretinopathy. Mol Vis 2021; 27:632-642. [PMID: 34924743 PMCID: PMC8645187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/18/2021] [Indexed: 11/05/2022] Open
Abstract
Purpose Familial exudative vitreoretinopathy (FEVR) is an inherited retinal vascular disease genetically heterogeneous with multiple causative genes. The aim of this study is to report five novel copy number variation (CNV) regions in FEVR patients and to investigate the possible contributions of novel CNVs to FEVR. Methods In this study, 824 FEVR families were collected. All cases were performed using the targeted next generation sequencing (NGS) assay, and families with no definite pathogenic mutations in FEVR genes were screened for CNVs according to the NGS results. Droplet digital polymerase chain reaction (ddPCR) testing was introduced to validate the screened CNV regions. We also reviewed the clinical presentations of the probands and affected family members associated with the novel CNVs and conducted segregation analysis. Results Five CNVs in five patients were detected in this study: heterozygous deletions of kinesin family member 11 (KIF11) exons 2-4, KIF11 exon 11, KIF11 exons 1-10, tetraspanin-12 (TSPAN12) exons 1-3, and low-density lipoprotein receptor-related protein 5 (LRP5) exons 19-21. Among the five affected families, TSPAN12 exons 1-3 heterozygous deletion and LRP5 exons 19-21 heterozygous deletion originate from the mother and the father of the proband, respectively. No other family members manifested as FEVR except for the probands. The correlation between disease severity and CNV loci seems uncertain. Conclusions Five novel CNV loci in FEVR patients were uncovered in this study, including one maternally-inherited and one paternally-inherited CNV region. Though there is no evidence of co-segregation between these CNVs and FEVR, our findings suggest novel genetic risk factors for FEVR.
Collapse
|
44
|
Zhu X, Yang M, Zhao P, Li S, Zhang L, Huang L, Huang Y, Fei P, Yang Y, Zhang S, Xu H, Yuan Y, Zhang X, Zhu X, Ma S, Hao F, Sundaresan P, Zhu W, Yang Z. Catenin α 1 mutations cause familial exudative vitreoretinopathy by overactivating Norrin/β-catenin signaling. J Clin Invest 2021; 131:139869. [PMID: 33497368 DOI: 10.1172/jci139869] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a severe retinal vascular disease that causes blindness. FEVR has been linked to mutations in several genes associated with inactivation of the Norrin/β-catenin signaling pathway, but these account for only approximately 50% of cases. We report that mutations in α-catenin (CTNNA1) cause FEVR by overactivating the β-catenin pathway and disrupting cell adherens junctions. We identified 3 heterozygous mutations in CTNNA1 (p.F72S, p.R376Cfs*27, and p.P893L) by exome sequencing and further demonstrated that FEVR-associated mutations led to overactivation of Norrin/β-catenin signaling as a result of impaired protein interactions within the cadherin-catenin complex. The clinical features of FEVR were reproduced in mice lacking Ctnna1 in vascular endothelial cells (ECs) or with overactivated β-catenin signaling by an EC-specific gain-of-function allele of Ctnnb1. In isolated mouse lung ECs, both CTNNA1-P893L and F72S mutants failed to rescue either the disrupted F-actin arrangement or the VE-cadherin and CTNNB1 distribution. Moreover, we discovered that compound heterozygous Ctnna1 F72S and a deletion allele could cause a similar phenotype. Furthermore, in a FEVR family, we identified a mutation of LRP5, which activates Norrin/β-catenin signaling, and the corresponding knockin mice exhibited a partial FEVR-like phenotype. Our study demonstrates that the precise regulation of β-catenin activation is critical for retinal vascular development and provides new insights into the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shanshan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huijuan Xu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ye Yuan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiong Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shi Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fang Hao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Weiquan Zhu
- Department of Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
45
|
Wang K, Zhang X, Tian T, Zhao P. Identification of a novel mutation in KIF11 with functional analysis in a cohort of 516 familial patients with exudative vitreoretinopathy. Mol Vis 2021; 27:528-541. [PMID: 34526760 PMCID: PMC8410233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/30/2021] [Indexed: 11/03/2022] Open
Abstract
Purpose To identify a novel mutation in KIF11 with clinical and functional analysis among 516 familial patients with exudative vitreoretinopathy (FEVR). Methods Next-generation sequencing was performed on 516 patients with FEVR between January 2015 and October 2017. Clinical data were collected from patient charts, including sex, age at presentation, visual acuity if available, axial length, stage, and systemic clinical findings. Protein and mRNA levels were detected with western blotting and real-time quantitative PCR, respectively. Mass spectrometry was used to analyze the interacting protein of KIF11. Results In total, 304 of 516 patients were identified with at least one mutation in FEVR causative genes. Mutations in KIF11 were identified in 14.47% of all carriers. The novel mutation p. H718L accounted for the greatest proportion (12/44; 27.30%) among all mutations in KIF11. Fundus presentations in these 12 individuals varied from the avascular zone of the peripheral retina to total retinal detachment. The p. H718L mutation can reduce the proliferation of human retinal endothelial cells (HRECs) compared to the wild type. The mRNA level of vascular endothelial growth factor-α, transforming growth factor-α, metalloproteinase-1, and angiopoietin-like 4 were depressed in the KIF11 (p. H718L) groups under hypoxia stimuli. Mass spectrometry results demonstrated that eukaryotic elongation factor 2 (EEF2) was an interacting protein of KIF11 and that the p. H718L mutation can attenuate the binding activity. Conclusions Patients with the most frequent KIF11 mutation p. H718L showed typical FEVR presentations in this cohort. The mutation in KIF11 likely plays a role in the proliferation of HRECs, and the p. H718L mutation can reduce the proliferation.
Collapse
Affiliation(s)
- Kezhou Wang
- Department of Pathology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, China
| | - Tian Tian
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, China
| |
Collapse
|
46
|
Lyu J, Zhang Q, Xu Y, Zhang X, Fei P, Zhao P. INTRAVITREAL RANIBIZUMAB TREATMENT FOR ADVANCED FAMILIAL EXUDATIVE VITREORETINOPATHY WITH HIGH VASCULAR ACTIVITY. Retina 2021; 41:1976-1985. [PMID: 34432746 PMCID: PMC8384247 DOI: 10.1097/iae.0000000000003122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine the efficacy of intravitreal ranibizumab (IVR) treatment for advanced familial exudative vitreoretinopathy with high vascular activity. METHODS The retrospective interventional case series included 28 eyes (20 patients) that had IVR in combination or not with other treatment, for Stage 3 to 5 familial exudative vitreoretinopathy with active fibrovascular proliferation and prominent subretinal exudation. Outcome measures were fundus features after treatment, associated clinical variables, and genetic mutations. RESULTS The age of patients at the first IVR ranged from 0.2 to 36 months. An average of 1.3 IVR injections per eye were given. Familial exudative vitreoretinopathy regressed in 16 (57%) eyes and progressed in 12 eyes (43%) after IVR. Laser and/or vitrectomy was performed on 13 eyes. The retina was reattached in 22 eyes (78%) after 24 to 58 months follow-up. Clinical variables associated with progression after IVR were preexisting fibrovascular proliferation over one quadrant and persistent vascular activity after the initial injection (P < 0.05). Familial exudative vitreoretinopathy-causative genetic mutations in 11 patients were related to variable response to IVR treatment. CONCLUSION Intravitreal ranibizumab treatment may effectively regress advanced familial exudative vitreoretinopathy with high vascular activity in selected cases. Different treatment outcomes may be relevant to variable presentation and genetic heterogeneity of familial exudative vitreoretinopathy.
Collapse
Affiliation(s)
- Jiao Lyu
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Zhang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Compound Heterozygous Mutations in ZNF408 in a Patient with a Late Onset Pigmentary Retinopathy and Relatively Preserved Central Retina. Doc Ophthalmol 2021; 143:305-312. [PMID: 34259982 DOI: 10.1007/s10633-021-09847-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/24/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE To describe in detail the phenotype of a patient with compound heterozygous mutations in ZNF408 and an adult-onset pigmentary retinopathy rather than familial exudative vitreoretinopathy as expected with heterozygous mutations in this gene. METHODS A 70-year-old male presented with a pigmentary retinopathy, which prompted a genetic evaluation that revealed two variants in trans in the ZNF408 gene. He underwent an ophthalmic examination, kinetic fields, electroretinography (ERG), spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence, wide-angle fluorescein angiography and near-infrared imaging. RESULTS Visual acuity was 20/20 for both eyes. Fundus examination showed epiretinal membrane, vascular attenuation and peripheral bone spicule pigmentation in both eyes. Fluorescein angiography showed no vascular anomalies in both eyes. Fundus autofluorescence showed a preserved island of fundus autofluorescence centrally. Visual field by kinetic perimetry (V-4e stimulus) showed generalized constriction to 40 degrees of eccentricity and by an I-4e target showed generalized constriction to 10 degrees of eccentricity. ERG showed detectable but reduced cone-mediated responses. SD-OCT demonstrated preserved outer nuclear layer thickness centrally, which decreased with eccentricity. Static perimetry showed substantial rod and cone sensitivities centrally that declined with eccentricity. A next-generation sequencing panel revealed bi-allelic variants (p.Arg567Ter; c.1699C > T and p.Leu566His; c.1697 T > A) in the ZNF408 gene. CONCLUSIONS ZNF408-associated retinal dystrophies can present with predominantly retinal findings and should be considered in the differential diagnosis of retinitis pigmentosa. Our study revealed a novel variant p.L566H, which to our knowledge has not previously been reported.
Collapse
|
48
|
Whole-Gene Deletions of FZD4 Cause Familial Exudative Vitreoretinopathy. Genes (Basel) 2021; 12:genes12070980. [PMID: 34199009 PMCID: PMC8306649 DOI: 10.3390/genes12070980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited disorder characterized by abnormalities in the retinal vasculature. The FZD4 gene is associated with FEVR, but the prevalence and impact of FZD4 copy number variation (CNV) on FEVR patients are unknown. The aim of this study was to better understand the genetic features and clinical manifestations of patients with FZD4 CNVs. A total of 651 FEVR families were recruited. Families negative for mutations in FEVR-associated genes were selected for CNV analysis using SeqCNV. Semiquantitative multiplex polymerase chain reaction and multiplex ligation-dependent probe amplification were conducted to verify the CNVs. Four probands were found to carry whole-gene deletions of FZD4, accounting for 5% (4/80) of probands with FZD4 mutations and 0.6% (4/651) of all FEVR probands. The four probands exhibited similar phenotypes of unilateral retinal folds. FEVR in probands with CNVs was not more severe than in probands with FZD4 missense mutations (p = 1.000). Although this is the first report of FZD4 CNVs and the associated phenotypes, the interpretation of FZD4 CNVs should be emphasized when analyzing the next-generation sequencing data of FEVR patients because of their high prevalence.
Collapse
|
49
|
Chen C, Yang M, Huang L, Zhao R, Sundaresan P, Zhu X, Li S, Yang Z. Whole-Exome Sequencing Reveals Novel TSPAN12 Variants in Autosomal Dominant Familial Exudative Vitreoretinopathy. Genet Test Mol Biomarkers 2021; 25:399-404. [PMID: 34077673 DOI: 10.1089/gtmb.2021.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Familial exudative vitreoretinopathy (FEVR), a group of rare inherited retinal vascular disorders, is the major cause of vision loss in juveniles. At present, the diagnosis of FEVR remains difficult due to its clinical and genetic heterogeneities. Aims: To identify the causative genetic variants in two unrelated FEVR-affected families: one Indian family and one Chinese Han family. Materials and Methods: Five affected patients from two families were recruited for this study. Whole-exome sequencing was applied to the probands, and Sanger sequencing was performed for validation. Stringent whole-exome sequence data analyses were performed to evaluate all of the identified pathogenic variants. Results: Two novel variants in the TSPAN12 gene, were identified: a missense variant c.437 T > G (p.Leu146Arg); and a nonsense variant c.477 C > A (p.Cys159*). Both variants cosegregated with the disease in the investigated FEVR-affected families. Additionally, both variants inactivated the ability of TSPAN12 protein to enhance Norrin/β-catenin signaling. Conclusion: This study expands the mutational spectrum of TSPAN12 for FEVR.
Collapse
Affiliation(s)
- Chen Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Rulian Zhao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, India
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
50
|
Hasegawa T, Hirato M, Kobashi C, Yamaguchi A, Takagi R, Tanaka Y, Kaburaki T, Kakehashi A. Evaluation of the Foveal Avascular Zone in Familial Exudative Vitreoretinopathy Using Optical Coherence Tomography Angiography. Clin Ophthalmol 2021; 15:1913-1920. [PMID: 33994778 PMCID: PMC8114822 DOI: 10.2147/opth.s305520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the foveal avascular zone (FAZ) and retinal structure in familial exudative vitreoretinopathy (FEVR). Patients and Methods Eighteen eyes with stage 1 or 2 FEVR and 20 control eyes were evaluated. The central retinal thickness (CRT), foveal inner retinal thickness (IRT), surface retinal vessel density (SRVD), and deep retinal vessel density (DRVD) were measured using optical coherence tomography. The FAZ area was calculated using ImageJ software. The equivalent spherical value (SE) and axial length (AL) were measured. Results The CRT (232.5±3.086 vs 211±12.6325 μm; p=0.003) and foveal IRT (15.83±13.95 vs 0.9±4.02 μm; p=0.002) were thicker in the FEVR group than in the control group. The surface FAZ area (0.265±0.08 vs 0.364±0.09 mm2; p=0.004) and the deep FAZ area (0.364±0.1 vs 0.484±0.11 mm2; p=0.03) were smaller in the FEVR group than in the control group. The SRVD values did not differ among the sectors, but the DRVD was higher in the FEVR group except for the inferior sector (superior, p=0.027; inferior, p=0.88; temporal, p=0.035; nasal, p=0.027). The SE and AL did not differ between the two groups. There were no correlations between the surface and deep layer FAZ area and age, CRT, SE, and AL. The surface, deep FAZ area, and foveal IRT were correlated negatively (surface, r = -0.47, p=0.033; deep layer FAZ area, r = -0.46, p=0.037). Conclusion Eyes with FEVR have a smaller FAZ because the vascular structure in the inner retina remained in the fovea.
Collapse
Affiliation(s)
- Tetsuya Hasegawa
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Misaki Hirato
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Chieko Kobashi
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Aya Yamaguchi
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Rina Takagi
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Yoshiaki Tanaka
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| | - Akihiro Kakehashi
- Department of Ophthalmology, Saitama Medical Center Jichi Medical University, Saitama-shi, Saitama-ken, Japan
| |
Collapse
|