1
|
Chiu YL, Fu WY, Huang WY, Hsu FT, Chen HW, Wang TW, Keng PY. Enhancing Cancer Therapy: Boron-Rich Polyboronate Ester Micelles for Synergistic Boron Neutron Capture Therapy and PD-1/PD-L1 Checkpoint Blockade. Biomater Res 2024; 28:0040. [PMID: 38933089 PMCID: PMC11205919 DOI: 10.34133/bmr.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Malignant cancers, known for their pronounced heterogeneity, pose substantial challenges to monotherapeutic strategies and contribute to the risk of metastasis. Addressing this, our study explores the synergistic potential of combining boron neutron capture therapy (BNCT) with immune checkpoint blockade to enhance cancer treatment efficacy. We synthesized boron-rich block copolymer micelles as a novel boron drug for BNCT. Characterization was conducted using nuclear magnetic resonance, gel-permeation chromatography, transmission electron microscopy, and dynamic light scattering. These micelles, with an optimal size of 91.3 nm and a polydispersity index of 0.18, are suitable for drug delivery applications. In vitro assessments on B16-F10 melanoma cells showed a 13-fold increase in boron uptake with the micelles compared to borophenyl alanine (BPA), the conventional boron drug for BNCT. This resulted in a substantial increase in BNCT efficacy, reducing cell viability to 77% post-irradiation in micelle-treated cells, in contrast to 90% in BPA-treated cells. In vivo, melanoma-bearing mice treated with these micelles exhibited an 8-fold increase in boron accumulation in tumor tissues versus those treated with BPA, leading to prolonged tumor growth delay (5.4 days with micelles versus 3.3 days with BPA). Moreover, combining BNCT with anti-PD-L1 immunotherapy further extended the tumor growth delay to 6.6 days, and enhanced T-cell infiltration and activation at tumor sites, thereby indicating a boosted immune response. This combination demonstrates a promising approach by enhancing cytotoxic T-cell priming and mitigating the immunosuppressive effects of melanoma tumors.
Collapse
Affiliation(s)
- Yi-Lin Chiu
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| | - Wan Yun Fu
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| | - Wei-Yuan Huang
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| | - Fang-Tzu Hsu
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| | - Hsin-Wei Chen
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| | - Tzu-Wei Wang
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| | - Pei Yuin Keng
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| |
Collapse
|
2
|
Lan KW, Huang WY, Chiu YL, Hsu FT, Chien YC, Hsiau YY, Wang TW, Keng PY. In vivo investigation of boron-rich nanodrugs for treating triple-negative breast cancers via boron neutron capture therapy. BIOMATERIALS ADVANCES 2023; 155:213699. [PMID: 37979440 DOI: 10.1016/j.bioadv.2023.213699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
Triple-negative breast cancer (TNBC) is characterized by highly proliferative cancer cells and is the only subtype of breast cancer that lacks a targeted therapy. Boron neutron capture therapy (BNCT) is an approach that combines chemotherapy with radiotherapy and can potentially offer beneficial targeted treatment for TNBC patients owing to its unique ability to eradicate cancer cells selectively while minimizing damage to the surrounding healthy cells. Since BNCT relies on specific delivery of a high loading of B10 to the tumor site, there is growing research interest to develop more potent boron-based drugs for BNCT that can overcome the limitations of small-molecule boron compounds. In this study, polyethylene-glycol-coated boron carbon oxynitride nanoparticles (PEG@BCNO) of size 134.2±23.6nm were prepared as a promising drug for BNCT owing to their high boron content and enhanced biocompatibility. The therapeutic efficiency of PEG@BCNO was compared with a state-of-the-art 10BPA boron drug in mice bearing MDA-MB-231 tumor. In the orthotopic mouse model, PEG@BCNO showed higher B10 accumulation in the tumor tissues (6 μg 10B/g tissue compared to 3 μg 10B/g tissue in mice administered B10-enriched 10BPA drug) despite using the naturally occurring 11B/10B boron precursor in the preparation of the BCNO nanoparticles. The in vivo biodistribution of PEG@BCNO in mice bearing MDA-MB-231 showed a tumor/blood ratio of ~3.5, which is comparable to that of the state-of-the-art 10BPA-fructose drug. We further demonstrated that upon neutron irradiation, the mice bearing MDA-MB-231 tumor cells treated with PEG@BCNO and 10BPA showed tumor growth delay times of 9 days and 1 day, respectively, compared to mice in the control group after BNCT. The doubling times (DTs) for mice treated with PEG@BCNO and 10BPA as well as mice in the control group were calculated to be 31.5, 19.8, and 17.7 days, respectively. Immunohistochemical staining for the p53 and caspase-3 antibodies revealed that mice treated with PEG@BCNO showed lower probability of cancer recurrence and greater level of cellular apoptosis than mice treated with 10BPA and mice in the control group. Our study thus demonstrates the potential of pegylated BCNO nanoparticles in effectively inhibiting the growth of TNBC tumors compared to the state-of-the-art boron drug 10BPA.
Collapse
Affiliation(s)
- Kai-Wei Lan
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Wei-Yuan Huang
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Yi-Lin Chiu
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Fang-Tzu Hsu
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Yun-Chen Chien
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Yong-Yun Hsiau
- College of Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Tzu-Wei Wang
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Pei Yuin Keng
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC.
| |
Collapse
|
3
|
Hattori Y, Andoh T, Kawabata S, Hu N, Michiue H, Nakamura H, Nomoto T, Suzuki M, Takata T, Tanaka H, Watanabe T, Ono K. Proposal of recommended experimental protocols for in vitro and in vivo evaluation methods of boron agents for neutron capture therapy. JOURNAL OF RADIATION RESEARCH 2023; 64:859-869. [PMID: 37717596 PMCID: PMC10665309 DOI: 10.1093/jrr/rrad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 08/19/2023] [Indexed: 09/19/2023]
Abstract
Recently, boron neutron capture therapy (BNCT) has been attracting attention as a minimally invasive cancer treatment. In 2020, the accelerator-based BNCT with L-BPA (Borofalan) as its D-sorbitol complex (Steboronine®) for head and neck cancers was approved by Pharmaceutical and Medical Devices Agency for the first time in the world. As accelerator-based neutron generation techniques are being developed in various countries, the development of novel tumor-selective boron agents is becoming increasingly important and desired. The Japanese Society of Neutron Capture Therapy believes it is necessary to propose standard evaluation protocols at each stage in the development of boron agents for BNCT. This review summarizes recommended experimental protocols for in vitro and in vivo evaluation methods of boron agents for BNCT based on our experience with L-BPA approval.
Collapse
Affiliation(s)
- Yoshihide Hattori
- Research Center for BNCT, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai 599-8531, Japan
| | - Tooru Andoh
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Takahiro Nomoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Tsubasa Watanabe
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494 Japan
| | - Koji Ono
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan
| |
Collapse
|
4
|
Marforio TD, Carboni A, Calvaresi M. In Vivo Application of Carboranes for Boron Neutron Capture Therapy (BNCT): Structure, Formulation and Analytical Methods for Detection. Cancers (Basel) 2023; 15:4944. [PMID: 37894311 PMCID: PMC10605826 DOI: 10.3390/cancers15204944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Carboranes have emerged as one of the most promising boron agents in boron neutron capture therapy (BNCT). In this context, in vivo studies are particularly relevant, since they provide qualitative and quantitative information about the biodistribution of these molecules, which is of the utmost importance to determine the efficacy of BNCT, defining their localization and (bio)accumulation, as well as their pharmacokinetics and pharmacodynamics. First, we gathered a detailed list of the carboranes used for in vivo studies, considering the synthesis of carborane derivatives or the use of delivery system such as liposomes, micelles and nanoparticles. Then, the formulation employed and the cancer model used in each of these studies were identified. Finally, we examined the analytical aspects concerning carborane detection, identifying the main methodologies applied in the literature for ex vivo and in vivo analysis. The present work aims to identify the current strengths and weakness of the use of carboranes in BNCT, establishing the bottlenecks and the best strategies for future applications.
Collapse
Affiliation(s)
| | - Andrea Carboni
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
5
|
Luo T, Huang W, Chu F, Zhu T, Feng B, Huang S, Hou J, Zhu L, Zhu S, Zeng W. The Dawn of a New Era: Tumor-Targeting Boron Agents for Neutron Capture Therapy. Mol Pharm 2023; 20:4942-4970. [PMID: 37728998 DOI: 10.1021/acs.molpharmaceut.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cancer is widely recognized as one of the most devastating diseases, necessitating the development of intelligent diagnostic techniques, targeted treatments, and early prognosis evaluation to ensure effective and personalized therapy. Conventional treatments, unfortunately, suffer from limitations and an increased risk of severe complications. In light of these challenges, boron neutron capture therapy (BNCT) has emerged as a promising approach for cancer treatment with unprecedented precision to selectively eliminate tumor cells. The distinctive and promising characteristics of BNCT hold the potential to revolutionize the field of oncology. However, the clinical application and advancement of BNCT technology face significant hindrance due to the inherent flaws and limited availability of current clinical drugs, which pose substantial obstacles to the practical implementation and continued progress of BNCT. Consequently, there is an urgent need to develop efficient boron agents with higher boron content and specific tumor-targeting properties. Researchers aim to address this need by integrating tumor-targeting strategies with BNCT, with the ultimate goal of establishing BNCT as an effective, readily available, and cutting-edge treatment modality for cancer. This review delves into the recent advancements in integrating tumor-targeting strategies with BNCT, focusing on the progress made in developing boron agents specifically designed for BNCT. By exploring the current state of BNCT and emphasizing the prospects of tumor-targeting boron agents, this review provides a comprehensive overview of the advancements in BNCT and highlights its potential as a transformative treatment option for cancer.
Collapse
Affiliation(s)
- Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Wenzhi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Tianyu Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Jing Hou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Liyong Zhu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shaihong Zhu
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| |
Collapse
|
6
|
Mushtaq S, Ae PJ, Kim JY, Lee KC, Kim KI. The role of radiolabeling in BNCT tracers for enhanced dosimetry and treatment planning. Theranostics 2023; 13:5247-5265. [PMID: 37908724 PMCID: PMC10614688 DOI: 10.7150/thno.88998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/15/2023] [Indexed: 11/02/2023] Open
Abstract
Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are potent technologies for non-invasive imaging of pharmacological and biochemical processes in both preclinical and advanced clinical research settings. In the field of radiation therapy, boron neutron capture therapy (BNCT) stands out because it harnesses biological mechanisms to precisely target tumor cells while preserving the neighboring healthy tissues. To achieve the most favorable therapeutic outcomes, the delivery of boron-enriched tracers to tumors must be selective and efficient, with a substantial concentration of boron atoms meticulously arranged in and around the tumor cells. Although several BNCT tracers have been developed to facilitate the targeted and efficient delivery of boron to tumors, only a few have been labeled with PET or SPECT radionuclides. Such radiolabeling enables comprehensive in vivo examination, encompassing crucial aspects such as pharmacodynamics, pharmacokinetics, tumor selectivity, and accumulation and retention of the tracer within the tumor. This review provides a comprehensive summary of the essential aspects of BNCT tracers, focusing on their radiolabeling with PET or SPECT radioisotopes. This leads to more effective and targeted treatment approaches which ultimately enhance the quality of patient care with respect to cancer treatment.
Collapse
Affiliation(s)
- Sajid Mushtaq
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS) Seoul 01812, Republic of Korea
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650, Pakistan
| | - Park Ji Ae
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS) Seoul 01812, Republic of Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS) Seoul 01812, Republic of Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS) Seoul 01812, Republic of Korea
| | - Kwang Il Kim
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS) Seoul 01812, Republic of Korea
| |
Collapse
|
7
|
Seneviratne DS, Saifi O, Mackeyev Y, Malouff T, Krishnan S. Next-Generation Boron Drugs and Rational Translational Studies Driving the Revival of BNCT. Cells 2023; 12:1398. [PMID: 37408232 DOI: 10.3390/cells12101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
BNCT is a high-linear-energy transfer therapy that facilitates tumor-directed radiation delivery while largely sparing adjacent normal tissues through the biological targeting of boron compounds to tumor cells. Tumor-specific accumulation of boron with limited accretion in normal cells is the crux of successful BNCT delivery. Given this, developing novel boronated compounds with high selectivity, ease of delivery, and large boron payloads remains an area of active investigation. Furthermore, there is growing interest in exploring the immunogenic potential of BNCT. In this review, we discuss the basic radiobiological and physical aspects of BNCT, traditional and next-generation boron compounds, as well as translational studies exploring the clinical applicability of BNCT. Additionally, we delve into the immunomodulatory potential of BNCT in the era of novel boron agents and examine innovative avenues for exploiting the immunogenicity of BNCT to improve outcomes in difficult-to-treat malignancies.
Collapse
Affiliation(s)
| | - Omran Saifi
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Yuri Mackeyev
- Department of Neurosurgery, UTHealth, Houston, TX 77030, USA
| | - Timothy Malouff
- Department of Radiation Oncology, University of Oklahoma, Oklahoma City, OK 73019, USA
| | - Sunil Krishnan
- Department of Neurosurgery, UTHealth, Houston, TX 77030, USA
| |
Collapse
|
8
|
Beck-Sickinger AG, Becker DP, Chepurna O, Das B, Flieger S, Hey-Hawkins E, Hosmane N, Jalisatgi SS, Nakamura H, Patil R, Vicente MDGH, Viñas C. New Boron Delivery Agents. Cancer Biother Radiopharm 2023; 38:160-172. [PMID: 36350709 PMCID: PMC10325817 DOI: 10.1089/cbr.2022.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This proceeding article compiles current research on the development of boron delivery drugs for boron neutron capture therapy that was presented and discussed at the National Cancer Institute (NCI) Workshop on Neutron Capture Therapy that took place on April 20-22, 2022. The most used boron sources are icosahedral boron clusters attached to peptides, proteins (such as albumin), porphyrin derivatives, dendrimers, polymers, and nanoparticles, or encapsulated into liposomes. These boron clusters and/or carriers can be labeled with contrast agents allowing for the use of imaging techniques, such as PET, SPECT, and fluorescence, that enable quantification of tumor-localized boron and their use as theranostic agents.
Collapse
Affiliation(s)
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Oksana Chepurna
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Sebastian Flieger
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany
| | - Narayan Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | | | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Clara Viñas
- Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Spain
| |
Collapse
|
9
|
Ailuno G, Balboni A, Caviglioli G, Lai F, Barbieri F, Dellacasagrande I, Florio T, Baldassari S. Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment. Cells 2022; 11:cells11244029. [PMID: 36552793 PMCID: PMC9776957 DOI: 10.3390/cells11244029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Boron neutron capture therapy is a low-invasive cancer therapy based on the neutron fission process that occurs upon thermal neutron irradiation of 10B-containing compounds; this process causes the release of alpha particles that selectively damage cancer cells. Although several clinical studies involving mercaptoundecahydro-closo-dodecaborate and the boronophenylalanine-fructose complex are currently ongoing, the success of this promising anticancer therapy is hampered by the lack of appropriate drug delivery systems to selectively carry therapeutic concentrations of boron atoms to cancer tissues, allowing prolonged boron retention therein and avoiding the damage of healthy tissues. To achieve these goals, numerous research groups have explored the possibility to formulate nanoparticulate systems for boron delivery. In this review. we report the newest developments on boron vehiculating drug delivery systems based on nanoparticles, distinguished on the basis of the type of carrier used, with a specific focus on the formulation aspects.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
- Correspondence: (G.A.); (T.F.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
| | | | - Francesco Lai
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, 09124 Cagliari, Italy
| | - Federica Barbieri
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | | | - Tullio Florio
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (G.A.); (T.F.)
| | - Sara Baldassari
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
| |
Collapse
|
10
|
Kuthala N, Shanmugam M, Yao CL, Chiang CS, Hwang KC. One step synthesis of 10B-enriched 10BPO4 nanoparticles for effective boron neutron capture therapeutic treatment of recurrent head-and-neck tumor. Biomaterials 2022; 290:121861. [DOI: 10.1016/j.biomaterials.2022.121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2022]
|
11
|
Novel Self-Forming Nanosized DDS Particles for BNCT: Utilizing A Hydrophobic Boron Cluster and Its Molecular Glue Effect. Cells 2022; 11:cells11203307. [PMID: 36291173 PMCID: PMC9600043 DOI: 10.3390/cells11203307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
BNCT is a non-invasive cancer therapy that allows for cancer cell death without harming adjacent cells. However, the application is limited, owing to the challenges of working with clinically approved boron (B) compounds and drug delivery systems (DDS). To address the issues, we developed self-forming nanoparticles consisting of a biodegradable polymer, namely, “AB-type Lactosome (AB-Lac)” loaded with B compounds. Three carborane isomers (o-, m-, and p-carborane) and three related alkylated derivatives, i.e., 1,2-dimethy-o-carborane (diC1-Carb), 1,2-dihexyl-o-carborane (diC6-Carb), and 1,2-didodecyl-o-carborane (diC12-Carb), were separately loaded. diC6-Carb was highly loaded with AB-Lac particles, and their stability indicated the “molecular glue” effect. The efficiency of in vitro B uptake of diC6-Carb for BNCT was confirmed at non-cytotoxic concentration in several cancer cell lines. In vivo/ex vivo biodistribution studies indicated that the AB-Lac particles were remarkably accumulated within 72 h post-injection in the tumor lesions of mice bearing syngeneic breast cancer (4T1) cells, but the maximum accumulation was reached at 12 h. In ex vivo B biodistribution, the ratios of tumor/normal tissue (T/N) and tumor/blood (T/Bl) of the diC6-Carb-loaded particles remained stably high up to 72 h. Therefore, we propose the diC6-Carb-loaded AB-Lac particles as a promising candidate medicine for BNCT.
Collapse
|
12
|
Boron encapsulated in a liposome can be used for combinational neutron capture therapy. Nat Commun 2022; 13:2143. [PMID: 35440126 PMCID: PMC9018847 DOI: 10.1038/s41467-022-29780-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 11/08/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is an attractive approach to treat invasive malignant tumours due to binary heavy-particle irradiation, but its clinical applications have been hindered by boron delivery agents with low in vivo stability, poor biocompatibility, and limited application of combinational modalities. Here, we report boronsome, a carboranyl-phosphatidylcholine based liposome for combinational BNCT and chemotherapy. Theoretical simulations and experimental approaches illustrate high stability of boronsome. Then positron emission tomography (PET) imaging with Cu-64 labelled boronsome reveals high-specific tumour accumulation and long retention with a clear irradiation background. In particular, we show the suppression of tumour growth treated with boronsome with neutron irradiation and therapeutic outcomes are further improved by encapsulation of chemotherapy drugs, especially with PARP1 inhibitors. In sum, boronsome may be an efficient agent for concurrent chemoradiotherapy with theranostic properties against malignancies. Boron neutron capture therapy is a type of cancer therapy but is associated with insufficient boron delivery and with poor biocompatibility. Here, the authors constructed boronated lipids to generate - boronsome - and show the system can reduce tumour growth.
Collapse
|
13
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
14
|
Ho SL, Yue H, Tegafaw T, Ahmad MY, Liu S, Nam SW, Chang Y, Lee GH. Gadolinium Neutron Capture Therapy (GdNCT) Agents from Molecular to Nano: Current Status and Perspectives. ACS OMEGA 2022; 7:2533-2553. [PMID: 35097254 PMCID: PMC8793081 DOI: 10.1021/acsomega.1c06603] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/31/2021] [Indexed: 05/03/2023]
Abstract
157Gd (natural abundance = 15.7%) has the highest thermal neutron capture cross section (σ) of 254,000 barns (1 barn = 10-28 m2) among stable (nonradioactive) isotopes in the periodic table. Another stable isotope, 155Gd (natural abundance = 14.8%), also has a high σ value of 60,700 barns. These σ values are higher than that of 10B (3840 barns, natural abundance = 19.9%), which is currently used as a neutron-absorbing isotope for boron neutron capture therapy agents. Energetic particles such as electrons and γ-rays emitted from Gd-isotopes after neutron beam absorption kill cancer cells by damaging DNAs inside cancer-cell nuclei without damaging normal cells if Gd-chemicals are positioned in cancer cells. To date, various Gd-chemicals such as commercial Gd-chelates used as magnetic resonance imaging contrast agents, modified Gd-chelates, nanocomposites containing Gd-chelates, fullerenes containing Gd, and solid-state Gd-nanoparticles have been investigated as gadolinium neutron capture therapy (GdNCT) agents. All GdNCT agents had exhibited cancer-cell killing effects, and the degree of the effects depended on the GdNCT agents used. This confirms that GdNCT is a promising cancer therapeutic technique. However, the commercial Gd-chelates were observed to be inadequate in clinical use because of their low accumulation in cancer cells due to their extracellular and noncancer targeting properties and rapid excretion. The other GdNCT agents exhibited higher accumulation in cancer cells, compared to Gd-chelates; consequently, they demonstrated higher cancer-cell killing effects. However, they still displayed limitations such as poor specificity to cancer cells. Therefore, continuous efforts should be made to synthesize GdNCT agents suitable in clinical applications. Herein, the principle of GdNCT, current status of GdNCT agents, and general design strategy for GdNCT agents in clinical use are discussed and reviewed.
Collapse
Affiliation(s)
- Son Long Ho
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Huan Yue
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Tirusew Tegafaw
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Mohammad Yaseen Ahmad
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Shuwen Liu
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Sung-Wook Nam
- Department
of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, South
Korea
| | - Yongmin Chang
- Department
of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, South
Korea
| | - Gang Ho Lee
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| |
Collapse
|
15
|
Shirakawa M, Zaboronok A, Nakai K, Sato Y, Kayaki S, Sakai T, Tsurubuchi T, Yoshida F, Nishiyama T, Suzuki M, Tomida H, Matsumura A. A Novel Boron Lipid to Modify Liposomal Surfaces for Boron Neutron Capture Therapy. Cells 2021; 10:cells10123421. [PMID: 34943929 PMCID: PMC8699917 DOI: 10.3390/cells10123421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a cancer treatment with clinically demonstrated efficacy using boronophenylalanine (BPA) and sodium mercaptododecaborate (BSH). However, tumor tissue selectivity of BSH and retention of BPA in tumor cells is a constant problem. To ensure boron accumulation and retention in tumor tissues, we designed a novel polyethylene glycol (PEG)-based boron-containing lipid (PBL) and examined the potency of delivery of boron using novel PBL-containing liposomes, facilitated by the enhanced permeability and retention (EPR) effect. PBL was synthesized by the reaction of distearoylphosphoethanolamine and BSH linked by PEG with Michael addition while liposomes modified using PBL were prepared from the mixed lipid at a constant molar ratio. In this manner, novel boron liposomes featuring BSH in the liposomal surfaces, instead of being encapsulated in the inner aqueous phase or incorporated in the lipid bilayer membrane, were prepared. These PBL liposomes also carry additional payload capacity for more boron compounds (or anticancer agents) in their inner aqueous phase. The findings demonstrated that PBL liposomes are promising candidates to effect suitable boron accumulation for BNCT.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Department of Pharmaceutical Sciences, Fukuyama University, 1-985 Higashimuracho-Sanzo, Fukuyama, Hiroshima 729-0292, Japan; (Y.S.); (S.K.); (T.S.); (T.N.); (H.T.)
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan; (K.N.); (A.M.)
- Correspondence: ; Tel.: +81-84-936-2112
| | - Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (A.Z.); (T.T.); (F.Y.)
| | - Kei Nakai
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan; (K.N.); (A.M.)
| | - Yuhki Sato
- Department of Pharmaceutical Sciences, Fukuyama University, 1-985 Higashimuracho-Sanzo, Fukuyama, Hiroshima 729-0292, Japan; (Y.S.); (S.K.); (T.S.); (T.N.); (H.T.)
| | - Sho Kayaki
- Department of Pharmaceutical Sciences, Fukuyama University, 1-985 Higashimuracho-Sanzo, Fukuyama, Hiroshima 729-0292, Japan; (Y.S.); (S.K.); (T.S.); (T.N.); (H.T.)
| | - Tomonori Sakai
- Department of Pharmaceutical Sciences, Fukuyama University, 1-985 Higashimuracho-Sanzo, Fukuyama, Hiroshima 729-0292, Japan; (Y.S.); (S.K.); (T.S.); (T.N.); (H.T.)
| | - Takao Tsurubuchi
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (A.Z.); (T.T.); (F.Y.)
| | - Fumiyo Yoshida
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (A.Z.); (T.T.); (F.Y.)
| | - Takashi Nishiyama
- Department of Pharmaceutical Sciences, Fukuyama University, 1-985 Higashimuracho-Sanzo, Fukuyama, Hiroshima 729-0292, Japan; (Y.S.); (S.K.); (T.S.); (T.N.); (H.T.)
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan; (M.S.)
| | - Hisao Tomida
- Department of Pharmaceutical Sciences, Fukuyama University, 1-985 Higashimuracho-Sanzo, Fukuyama, Hiroshima 729-0292, Japan; (Y.S.); (S.K.); (T.S.); (T.N.); (H.T.)
| | - Akira Matsumura
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan; (K.N.); (A.M.)
- Ibaraki Prefectural University of Health Sciences, 4669-2 Amicho, Inashiki 300-0394, Ibaraki, Japan
| |
Collapse
|
16
|
Li F, Luo Z. Boron delivery agents for boron neutron capture therapy. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-1013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Pulagam KR, Henriksen-Lacey M, B Uribe K, Renero-Lecuna C, Kumar J, Charalampopoulou A, Facoetti A, Protti N, Gómez-Vallejo V, Baz Z, Kumar V, Sánchez-Iglesias A, Altieri S, Cossío U, Di Silvio D, Martínez-Villacorta AM, Ruiz de Angulo A, Rejc L, Liz-Marzán LM, Llop J. In Vivo Evaluation of Multifunctional Gold Nanorods for Boron Neutron Capture and Photothermal Therapies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49589-49601. [PMID: 34643365 DOI: 10.1021/acsami.0c17575] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The incidence and mortality of cancer demand more innovative approaches and combination therapies to increase treatment efficacy and decrease off-target side effects. We describe a boron-rich nanoparticle composite with potential applications in both boron neutron capture therapy (BNCT) and photothermal therapy (PTT). Our strategy is based on gold nanorods (AuNRs) stabilized with polyethylene glycol and functionalized with the water-soluble complex cobalt bis(dicarbollide) ([3,3'-Co(1,2-C2B9H11)2]-), commonly known as COSAN. Radiolabeling with the positron emitter copper-64 (64Cu) enabled in vivo tracking using positron emission tomography imaging. 64Cu-labeled multifunctionalized AuNRs proved to be radiochemically stable and capable of being accumulated in the tumor after intravenous administration in a mouse xenograft model of gastrointestinal cancer. The resulting multifunctional AuNRs showed high biocompatibility and the capacity to induce local heating under external stimulation and trigger cell death in heterogeneous cancer spheroids as well as the capacity to decrease cell viability under neutron irradiation in cancer cells. These results position our nanoconjugates as suitable candidates for combined BNCT/PTT therapies.
Collapse
Affiliation(s)
- Krishna R Pulagam
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
| | - Kepa B Uribe
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
| | - Carlos Renero-Lecuna
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Alexandra Charalampopoulou
- Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy
| | - Angelica Facoetti
- Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia 27100, Italy
| | - Nicoletta Protti
- Department of Physics, University of Pavia, Pavia 27100, Italy
- National Institute of Nuclear Physics, Pavia Section, Pavia 27100, Italy
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
| | - Vished Kumar
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
| | - Saverio Altieri
- Department of Physics, University of Pavia, Pavia 27100, Italy
- National Institute of Nuclear Physics, Pavia Section, Pavia 27100, Italy
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
| | - Desire Di Silvio
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
| | - Angel M Martínez-Villacorta
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
| | - Ane Ruiz de Angulo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science & Technology Park bld 801 A, Derio 48160, Bizkaia, Spain
| | - Luka Rejc
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastian 20014, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid 28029, Spain
| |
Collapse
|
18
|
Tolman WB, Evans W, Spokoyny AM. Mr. Inorganic Chemistry: M. Frederick Hawthorne (August 24, 1928-July 8, 2021). Inorg Chem 2021; 60:12621-12624. [PMID: 34492757 DOI: 10.1021/acs.inorgchem.1c02482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- William B Tolman
- Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St. Louis, Missouri 63103-4899, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - William Evans
- Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St. Louis, Missouri 63103-4899, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St. Louis, Missouri 63103-4899, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| |
Collapse
|
19
|
Matsumoto Y, Fukumitsu N, Ishikawa H, Nakai K, Sakurai H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J Pers Med 2021; 11:jpm11080825. [PMID: 34442469 PMCID: PMC8399040 DOI: 10.3390/jpm11080825] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022] Open
Abstract
In this paper, we discuss the role of particle therapy—a novel radiation therapy (RT) that has shown rapid progress and widespread use in recent years—in multidisciplinary treatment. Three types of particle therapies are currently used for cancer treatment: proton beam therapy (PBT), carbon-ion beam therapy (CIBT), and boron neutron capture therapy (BNCT). PBT and CIBT have been reported to have excellent therapeutic results owing to the physical characteristics of their Bragg peaks. Variable drug therapies, such as chemotherapy, hormone therapy, and immunotherapy, are combined in various treatment strategies, and treatment effects have been improved. BNCT has a high dose concentration for cancer in terms of nuclear reactions with boron. BNCT is a next-generation RT that can achieve cancer cell-selective therapeutic effects, and its effectiveness strongly depends on the selective 10B accumulation in cancer cells by concomitant boron preparation. Therefore, drug delivery research, including nanoparticles, is highly desirable. In this review, we introduce both clinical and basic aspects of particle beam therapy from the perspective of multidisciplinary treatment, which is expected to expand further in the future.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
- Correspondence: ; Tel.: +81-29-853-7100
| | | | - Hitoshi Ishikawa
- National Institute of Quantum and Radiological Science and Technology Hospital, Chiba 263-8555, Japan;
| | - Kei Nakai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| |
Collapse
|
20
|
Yao Q, Wu C, Chen J, Zhao Y, Gao Y. Enzyme-instructed supramolecular assemblies promote intracellular boron accumulation for boron neutron capture therapy. NANOTECHNOLOGY 2021; 32:435602. [PMID: 34280913 DOI: 10.1088/1361-6528/ac15ca] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Selective accumulation of boron agents in cancer cells is of critical importance for BNCT. Here we involve enzyme-instructed supramolecular assembly (EISA) to facilitate the accumulation of a typical boron agent borylphenylalanine (BPA) in cancer cells. By covalently conjugating BPA to the phosphorylated assembly precursor, the boron-bearing precursors undergo phosphatase-catalyzed dephosphorylation to yield assembly molecules, which then self-assemble to form nanomaterials. Due to the up-regulated phosphatase activity of cancer cells, kinetic preference allows the EISA to accumulate boron in HeLa cells selectively. Interestingly, by attaching BPA on the backbone or side-chain of precursor, the boron-bearing isomers show different assembly propensity with time-dependent morphology change, which leads to the differentiated accumulation of boron inside cells. Overall, the optimized boron-bearing assembly precursor could significantly improve the boron accumulation compared with BPA in cancer cells. In this study, we have demonstrated a convenient method to introduce boron agents to cancer cells. We envision that the EISA-mediated accumulation of boron will be helpful in the design of boron agents to facilitate BNCT treatment.
Collapse
Affiliation(s)
- Qingxin Yao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengling Wu
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Jiali Chen
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Yan Zhao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Yuan Gao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
21
|
Warneke J, Wang XB. Measuring Electronic Structure of Multiply Charged Anions to Understand Their Chemistry: A Case Study on Gaseous Polyhedral closo-Borate Dianions. J Phys Chem A 2021; 125:6653-6661. [PMID: 34323504 DOI: 10.1021/acs.jpca.1c04618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on multiply charged anions (MCAs) in the gas phase has been intensively performed during the past decades, mainly to understand fundamental molecular physics phenomena, for example, intramolecular Coulomb repulsion and existence of the repulsive Coulomb barrier. However, the relevance of these investigations with respect to understanding MCAs' chemistry appears often vague. Here, we discuss how insights into the electronic structure obtained from negative ion photoelectron spectroscopy (NIPES) combined with theoretical calculations and collision-induced dissociation can provide a fundamental understanding of the intrinsic chemical reactivity of MCAs and their fragments. This is exemplified in our studies on polyhedral closo-borate dianions [BnXn]2- (n = 6, 10, 11, 12; X = H, F-I, CN) and their fragment ions. For example, the rational design of closo-borate dianions with specific electronic properties is described, which leads to generating highly reactive fragments. Depending on the dianionic precursor, these fragments are tuned to either bind noble gases effectively or activate small molecules like CO and N2. The intrinsic electronic properties of closo-borate dianions are further compared to their electrochemistry in solutions, revealing solvent effects on the redox potentials. Neutral host molecules such as cyclodextrins are found to bind strongly to [BnXn]2-, and gas phase NIPES provides insights into the intrinsic host-guest interactions. Finally, outlooks including the direct NIPES of molecular fragment ions that cannot be generated in the condensed phase and their utilization in preparative mass spectrometry are discussed.
Collapse
Affiliation(s)
- Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany.,Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
22
|
Abstract
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened in vitro or in vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
- Institute of Analytical ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityLinnéstr. 304103LeipzigGermany
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Benedikt Schwarze
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
23
|
Quan H, Fan L, Huang Y, Xia X, He Y, Liu S, Yu J. Hyaluronic acid-decorated carborane-TAT conjugation nanomicelles: A potential boron agent with enhanced selectivity of tumor cellular uptake. Colloids Surf B Biointerfaces 2021; 204:111826. [PMID: 33984611 DOI: 10.1016/j.colsurfb.2021.111826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
Boron neutron capture therapy (BNCT) has received widespread attention as a new type of radiation therapy. The main problem encountered in BNCT is insufficient tumor cellular uptake of boron agents. In this study, cell-penetrating peptide TAT-conjugated o-carborane was synthesized. The conjugation can self-assemble to form positively charged carborane-TAT micelles, and then adsorb negatively charged hyaluronic acid (HA) to give core-shell structured carborane-TAT@HA micelles. Carborane-TAT@HA micelles exhibits a large amount of boron uptake at the tumor tissue through the enhanced permeability and retention (EPR) effect and the ability of HA to bind to CD44 receptors. Carborane-TAT@HA was wrapped by the HA shell during systemic circulation to avoid non-specific uptake of TAT with normal cells, while tumor microenvironment-responsive shedding of HA shell could expose Carborane-TAT to penetrate the cell membrane into tumor cells. Experiments have proved the enhanced selectivity of tumor cellular uptake of the boron drug, displayed excellent drug delivery potential, and can meet the basic requirements of BNCT.
Collapse
Affiliation(s)
- Hao Quan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Li Fan
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Yushu Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Xiaoyan Xia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Yang He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China.
| |
Collapse
|
24
|
Kellert M, Friedrichs JSJ, Ullrich NA, Feinhals A, Tepper J, Lönnecke P, Hey-Hawkins E. Modular Synthetic Approach to Carboranyl‒Biomolecules Conjugates. Molecules 2021; 26:2057. [PMID: 33916755 PMCID: PMC8038343 DOI: 10.3390/molecules26072057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
The development of novel, tumor-selective and boron-rich compounds as potential agents for use in boron neutron capture therapy (BNCT) represents a very important field in cancer treatment by radiation therapy. Here, we report the design and synthesis of two promising compounds that combine meta-carborane, a water-soluble monosaccharide and a linking unit, namely glycine or ethylenediamine, for facile coupling with various tumor-selective biomolecules bearing a free amino or carboxylic acid group. In this work, coupling experiments with two selected biomolecules, a coumarin derivative and folic acid, were included. The task of every component in this approach was carefully chosen: the carborane moiety supplies ten boron atoms, which is a tenfold increase in boron content compared to the l-boronophenylalanine (l-BPA) presently used in BNCT; the sugar moiety compensates for the hydrophobic character of the carborane; the linking unit, depending on the chosen biomolecule, acts as the connection between the tumor-selective component and the boron-rich moiety; and the respective tumor-selective biomolecule provides the necessary selectivity. This approach makes it possible to develop a modular and feasible strategy for the synthesis of readily obtainable boron-rich agents with optimized properties for potential applications in BNCT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (J.-S.J.F.); (N.A.U.); (A.F.); (J.T.); (P.L.)
| |
Collapse
|
25
|
Chan WJ, Cho HL, Goudar V, Bupphathong S, Shu CH, Kung C, Tseng FG. Boron-enriched polyvinyl-alcohol/boric-acid nanoparticles for boron neutron capture therapy. Nanomedicine (Lond) 2021; 16:441-452. [DOI: 10.2217/nnm-2020-0401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Due to the noninvasive nature of boron neutron capture therapy (BNCT), it is considered a promising cancer treatment method. Aim: To investigate whether polyvinyl alcohol/boric acid crosslinked nanoparticles (PVA/BA NPs) are an efficient delivery system for BNCT. Materials & methods: PVA/BA NPs were synthesized and cocultured with brain and oral cancers cells for BNCT. Results: PVA/BA NPs had a boron-loading capacity of 7.83 ± 1.75 w/w%. They accumulated in brain and oral cancers cells at least threefold more than in fibroblasts and macrophages. The IC50 values of the brain and oral cancers cells were at least ninefold and sixfold lower than those of fibroblasts and macrophages, respectively. Conclusion: Theoretically, PVA/BA NPs target brain and oral cancers cells and could offer improved therapeutic outcomes of BNCT.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Han-Lin Cho
- Engineering & System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Venkanagouda Goudar
- Engineering & System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sasinan Bupphathong
- Engineering & System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chi-Hung Shu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chi Kung
- Engineering & System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Fan-Gang Tseng
- Engineering & System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental & Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
26
|
Kanygin V, Zaboronok A, Taskaeva I, Zavjalov E, Mukhamadiyarov R, Kichigin A, Kasatova A, Razumov I, Sibirtsev R, Mathis BJ. In Vitro and In Vivo Evaluation of Fluorescently Labeled Borocaptate-Containing Liposomes. J Fluoresc 2021; 31:73-83. [PMID: 33078252 DOI: 10.1007/s10895-020-02637-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Boron neutron capture therapy (BNCT), a binary cancer therapeutic modality, has moved to a new phase since development of accelerator-based neutron sources and establishment of BNCT centers in Finland and Japan. That stimulated efforts for better boron delivery agent development. As liposomes have shown effective boron delivery properties and sufficient tumor retention, fluorescent liposome labelling may serve as a rapid method to study initial ability of newly synthesized liposomes to be captured by tumor cells prior to experiments on boron accumulation and neutron irradiation. In this work, we studied the accumulation and biodistribution of pegylated liposomes with encapsulated borocaptate (BSH) and a fluorescent label (Nile Red) in U87 (human glioblastoma), SW-620 (human colon carcinoma), SK-MEL-28 (human melanoma), FetMSC (mesenchymal human embryo stem cells), and EMBR (primary embryocytes) cell lines as well as an orthotopic xenograft model of U87 glioma in SCID mice. Results indicate that fluorescent microscopy is effective at determining the intracellular localization of the liposomes using a fluorescent label. The synthesized, pegylated liposomes showed higher accumulation in tumors compared to normal cells, with characteristic concentration peaks in SW-620 and U87 cell lines, and provided in vivo tumor selectivity with several-fold higher tumor tissue fluorescence at the 6-h timepoint. Graphical abstract Fluorescent images of U-87 glioma cells after 24 hours of incubation with BSH-containing liposomes labeled with lipophilic Nile Red (red color)and water-soluble FITC-Dextran (green color); cell nuclei in blue color (DAPI-staining) (×400). Scale bar is 50 μm. Fluorescent labelling serves as anexpress method to study liposome delivery efficiency prior to boron accumulation evaluation and BNCT irradiation experiments.
Collapse
Affiliation(s)
- Vladimir Kanygin
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Alexander Zaboronok
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation.
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Department of Neurosurgery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
- Laboratory of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
- Budker Institute of Nuclear Physics, Novosibirsk, Russian Federation
| | - Evgenii Zavjalov
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Rinat Mukhamadiyarov
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
- Research Institute for Complex Issues of Cardiovascular Diseases SB RAS, Kemerovo, Russian Federation
| | - Aleksandr Kichigin
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Anna Kasatova
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
- Budker Institute of Nuclear Physics, Novosibirsk, Russian Federation
| | - Ivan Razumov
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Roman Sibirtsev
- Laboratory of Medical and Biological Problems of BNCT, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Bryan J Mathis
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Shi Y, Fu Q, Li J, Liu H, Zhang Z, Liu T, Liu Z. Covalent Organic Polymer as a Carborane Carrier for Imaging-Facilitated Boron Neutron Capture Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55564-55573. [PMID: 33327054 DOI: 10.1021/acsami.0c15251] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Boron neutron capture therapy (BNCT) is an atomic targeted radiotherapy that shows fantastic suppression impact on locally intrusive threatening tumors. One key factor for effective BNCT is to aggregate an adequate concentration (>20 ppm) of 10B in the cytoplasm of the tumor. Carborane-loaded polymer nanoparticles are promising because of their outstanding biocompatibility and plasma steadiness. In this study, a new class of carborane-loaded nanoscale covalent organic polymers (BCOPs) was prepared by a Schiff base condensation reaction, and their solubility was greatly improved in common solvents via alkyl chain engineering and size tailoring. The obtained BCOP-5T was further functionalized by biocompatible 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene-glycol)-2000] (DSPE-PEG, molecular weight 2000) to form stable aqueous-phase nanoparticles with a hydrodynamic diameter of around 100 nm. After chelating with radioactive copper-64, DSPE-BCOP-5T was tracked by positron emission tomography (PET) imaging and showed significant accumulation in the tumor. DSPE-BCOP-5T + neutron radiation showed remarkable tumor suppression in 4T1 tumor-bearing mice (murine breast cancer). No obvious physical tissue damage and abnormal behavior were observed, demonstrating that the boron delivery was successful and tumor-selective. To conclude, this study presents a theranostic COP-based platform with a well-defined composition, good biocompatibility, and satisfactory tumor accumulation, which is promising for PET imaging, drug delivery, and BNCT.
Collapse
Affiliation(s)
- Yaxin Shi
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiang Fu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zizhu Zhang
- Beijing Capture Tech Co. Ltd., Beijing 102413, China
| | - Tong Liu
- Beijing Capture Tech Co. Ltd., Beijing 102413, China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking University-Tsinghua University Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
28
|
Fukuo Y, Hattori Y, Kawabata S, Kashiwagi H, Kanemitsu T, Takeuchi K, Futamura G, Hiramatsu R, Watanabe T, Hu N, Takata T, Tanaka H, Suzuki M, Miyatake SI, Kirihata M, Wanibuchi M. The Therapeutic Effects of Dodecaborate Containing Boronophenylalanine for Boron Neutron Capture Therapy in a Rat Brain Tumor Model. BIOLOGY 2020; 9:biology9120437. [PMID: 33271972 PMCID: PMC7759915 DOI: 10.3390/biology9120437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022]
Abstract
Simple Summary We have developed a new boron compound for application in boron neutron capture therapy (BNCT) named boronophenylalanine–amide alkyl dodecaborate (BADB). It is characterized by a larger amount of 10B per molecule, linking boronphenylalanine (BPA) and dodecaborate, and we conducted various experiments on its efficacy. Its high accumulation at the cellular level made it a promising novel drug, but it did not sufficiently accumulate in brain tumor tissue when intravenously administered. However, in neutron irradiation experiments, the drug showed remarkably high compound biological effectiveness and significantly prolonged the survival time in rat brain tumor models. We confirmed the antitumor efficacy of BADB in BNCT and its additional efficacy when administered in combination with BPA. Though this drug showed poor results when administered as a single agent, it was superior to BPA alone when administered in combination with BPA, making it a drug that we have been waiting for in our clinical practice. Abstract Background: The development of effective boron compounds is a major area of research in the study of boron neutron capture therapy (BNCT). We created a novel boron compound, boronophenylalanine–amide alkyl dodecaborate (BADB), for application in BNCT and focused on elucidating how it affected a rat brain tumor model. Methods: The boron concentration of F98 rat glioma cells following exposure to boronophenylalanine (BPA) (which is currently being utilized clinically) and BADB was evaluated, and the biodistributions in F98 glioma-bearing rats were assessed. In neutron irradiation studies, the in vitro cytotoxicity of each boron compound and the in vivo corresponding therapeutic effect were evaluated in terms of survival time. Results: The survival fractions of the groups irradiated with BPA and BADB were not significantly different. BADB administered for 6 h after the termination of convection-enhanced delivery ensured the highest boron concentration in the tumor (45.8 μg B/g). The median survival time in the BADB in combination with BPA group showed a more significant prolongation of survival than that of the BPA group. Conclusion: BADB is a novel boron compound for BNCT that triggers a prolonged survival effect in patients receiving BNCT.
Collapse
Affiliation(s)
- Yusuke Fukuo
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan; (Y.F.); (H.K.); (T.K.); (K.T.); (G.F.); (R.H.); (M.W.)
| | - Yoshihide Hattori
- Research Center of Boron Neutron Capture Therapy, Research Organization for the 21st Century, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai-shi, Osaka 599-8531, Japan; (Y.H.); (M.K.)
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan; (Y.F.); (H.K.); (T.K.); (K.T.); (G.F.); (R.H.); (M.W.)
- Correspondence: ; Tel.: +81-72-683-1221
| | - Hideki Kashiwagi
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan; (Y.F.); (H.K.); (T.K.); (K.T.); (G.F.); (R.H.); (M.W.)
| | - Takuya Kanemitsu
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan; (Y.F.); (H.K.); (T.K.); (K.T.); (G.F.); (R.H.); (M.W.)
| | - Koji Takeuchi
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan; (Y.F.); (H.K.); (T.K.); (K.T.); (G.F.); (R.H.); (M.W.)
| | - Gen Futamura
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan; (Y.F.); (H.K.); (T.K.); (K.T.); (G.F.); (R.H.); (M.W.)
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan; (Y.F.); (H.K.); (T.K.); (K.T.); (G.F.); (R.H.); (M.W.)
| | - Tsubasa Watanabe
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan; (T.W.); (T.T.); (H.T.); (M.S.)
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan; (N.H.); (S.-I.M.)
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan; (T.W.); (T.T.); (H.T.); (M.S.)
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan; (T.W.); (T.T.); (H.T.); (M.S.)
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan; (T.W.); (T.T.); (H.T.); (M.S.)
| | - Shin-Ichi Miyatake
- Kansai BNCT Medical Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan; (N.H.); (S.-I.M.)
| | - Mitsunori Kirihata
- Research Center of Boron Neutron Capture Therapy, Research Organization for the 21st Century, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai-shi, Osaka 599-8531, Japan; (Y.H.); (M.K.)
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka 569-8686, Japan; (Y.F.); (H.K.); (T.K.); (K.T.); (G.F.); (R.H.); (M.W.)
| |
Collapse
|
29
|
Shirakawa M, Nakai K, Sato Y, Nakamura S, Harada M, Ishihara K, Yoshida F, Matsumura A, Tomida H. Optimization of preparation methods for high loading content and high encapsulation efficiency of BSH into liposomes. Appl Radiat Isot 2020; 169:109260. [PMID: 33160809 DOI: 10.1016/j.apradiso.2020.109260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
To optimize the preparation methods for liposomes encapsulating mercaptoundecahydrododecaborate (BSH), we examined BSH and lipid concentrations that increased the boron content in liposomes. We improved the BSH encapsulation efficiency and boron content of the liposomes from 4.2 to 45.9 % and 9.5-54.3 μg, respectively, by changing the lipid concentration from 10 to 150 mg/mL. Notably, the boron content increased significantly from 26.2 μg to 326.3 μg at a constant lipid concentration of 30 mg/mL with increased BSH concentrations.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Department of Pharmaceutical Sciences, Fukuyama University, 1-985 Higashimuracho-Sanzo, Fukuyama, Hiroshima, 729-0292, Japan; Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Kei Nakai
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yuhki Sato
- Department of Pharmaceutical Sciences, Fukuyama University, 1-985 Higashimuracho-Sanzo, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Shunji Nakamura
- Department of Pharmaceutical Sciences, Fukuyama University, 1-985 Higashimuracho-Sanzo, Fukuyama, Hiroshima, 729-0292, Japan
| | - Mari Harada
- Department of Pharmaceutical Sciences, Fukuyama University, 1-985 Higashimuracho-Sanzo, Fukuyama, Hiroshima, 729-0292, Japan
| | - Kazuki Ishihara
- Department of Pharmaceutical Sciences, Fukuyama University, 1-985 Higashimuracho-Sanzo, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Fumiyo Yoshida
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Hisao Tomida
- Department of Pharmaceutical Sciences, Fukuyama University, 1-985 Higashimuracho-Sanzo, Fukuyama, Hiroshima, 729-0292, Japan.
| |
Collapse
|
30
|
Bregadze VI, Sivaev IB, Dubey RD, Semioshkin A, Shmal'ko AV, Kosenko ID, Lebedeva KV, Mandal S, Sreejyothi P, Sarkar A, Shen Z, Wu A, Hosmane NS. Boron-Containing Lipids and Liposomes: New Conjugates of Cholesterol with Polyhedral Boron Hydrides. Chemistry 2020; 26:13832-13841. [PMID: 32521076 DOI: 10.1002/chem.201905083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/16/2022]
Abstract
A series of boron-containing lipids were prepared by reactions of cyclic oxonium derivatives of polyhedron boranes and metallacarboranes (closo-dodecaborate anion, cobalt and iron bis(dicarbollides)) with amine and carboxylic acids which are derived from cholesterol. Stable liposomal formulations, on the basis of synthesized boron-containing lipids, hydrogenated soybean l-α-phosphatidylcholine and (HSPC) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG) as excipients, were prepared and then characterized by dynamic light scattering (DLS) that revealed the formation of particles to be smaller than 200 nm in diameter. The resulting liposomal formulations showed moderate to excellent loading and entrapment efficiency, thus justifying the design of the compounds to fit in the lipid bilayer and ensuring ease of in vivo use for future application. The liposomal formulations based on cobalt and iron bis(dicarbollide)-based lipids were found to be nontoxic against both human breast normal epithelial cells MCF-10A and human breast cancer cells MCF-7.
Collapse
Affiliation(s)
- Vladimir I Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Igor B Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Ravindra Dhar Dubey
- India Innovation Research Center, 465 Patparganj Industrial Area, Delhi, 110092, India
| | - Andrey Semioshkin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Akim V Shmal'ko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Irina D Kosenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Kseniya V Lebedeva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Swadhin Mandal
- Indian Institute of Science Education and Research, Mohanpur, 741246, India
| | | | - Arindam Sarkar
- India Innovation Research Center, 465 Patparganj Industrial Area, Delhi, 110092, India
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of, Magnetic Materials and Devices, Ningbo Institute of Materials Technology, and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Narayan S Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
31
|
Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2020; 329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer theranostics is a new strategy for combating cancer that integrates cancer imaging and treatment through theranostic agents to provide an efficient and safe way to improve cancer prognosis. Design and synthesis of these cancer theranostic agents are crucial since these agents are required to be biocompatible, tumor-specific, imaging distinguishable and therapeutically efficacious. In this regard, several types of gadolinium (Gd)-based nanomaterials have been introduced to combine different therapeutic agents with Gd to enhance the efficacy of therapeutic agents. At the same time, the entire treatment procedure could be monitored via imaging tools due to incorporation of Gd ions, Gd chelates and Gd/other imaging probes in the theranostic agents. This review aims to overview recent advances in the Gd-based nanomaterials for cancer theranostics and perspectives for Gd nanomaterial-based cancer theranostics are provided.
Collapse
Affiliation(s)
- Haonan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
32
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
33
|
Zavjalov E, Zaboronok A, Kanygin V, Kasatova A, Kichigin A, Mukhamadiyarov R, Razumov I, Sycheva T, Mathis BJ, Maezono SEB, Matsumura A, Taskaev S. Accelerator-based boron neutron capture therapy for malignant glioma: a pilot neutron irradiation study using boron phenylalanine, sodium borocaptate and liposomal borocaptate with a heterotopic U87 glioblastoma model in SCID mice. Int J Radiat Biol 2020; 96:868-878. [PMID: 32339057 DOI: 10.1080/09553002.2020.1761039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: To evaluate the efficacy of boron neutron capture therapy (BNCT) for a heterotopic U87 glioblastoma model in SCID mice using boron phenylalanine (BPA), sodium borocaptate (BSH) and liposomal BSH as boron compounds at a unique, accelerator-based neutron source.Materials and methods: Glioblastoma models were obtained by subcutaneous implantation of U87 cells in the right thighs of SCID mice before administration of 350 mg/kg of BPA (BPA-group), 100 mg/kg of BSH (BSH-group) or 100 mg/kg of BSH in PEGylated liposomes (liposomal BSH-group) into the retroorbital sinus. Liposomes were prepared by reverse-phase evaporation. Neutron irradiation was carried out at a proton accelerator with a lithium target developed for BNCT at the Budker Institute of Nuclear Physics, Novosibirsk, Russian Federation. A proton beam current integral of 3 mA/h and energy of 2.05 MeV were used for neutron generation.Results: Boron compound accumulation in tumor tissues at the beginning of irradiation was higher in the BPA group, followed by the Liposomal BSH and BSH groups. Tumor growth was significantly slower in all irradiated mice from the 7th day after BNCT compared to untreated controls (p < .05). Tumor growth in all treated groups showed no large variation, apart from the Irradiation only group and the BPA group on the 7th day after BNCT. The overall trend of tumor growth was clear and the differences between treatment groups became significant from the 50th day after BNCT. Tumor growth was significantly slower in the Liposomal BSH group compared to the Irradiation only group on the 50th (p = .012), 53rd (p = .005), and the 57th (p = .021) days after treatment. Tumor growth in the Liposomal BSH group was significantly different from that in the BPA group on the 53rd day after BNCT (p = .021) and in the BSH group on the 50th (p = .024), 53rd (p = .015), and 57th (p = .038) days after BNCT. Skin reactions in the form of erosions and ulcers in the tumor area developed in treated as well as untreated animals with further formation of fistulas and necrotic decay cavities in most irradiated mice.Conclusions: We observed a tendency of BNCT at the accelerator-based neutron source to reduce or suspend the growth of human glioblastoma in immunodeficient animals. Liposomal BSH showed better long-term results compared to BPA and non-liposomal BSH. Further modifications in liposomal boron delivery are being studied to improve treatment outcomes.
Collapse
Affiliation(s)
- Evgenii Zavjalov
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia.,Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Alexander Zaboronok
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia.,Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Vladimir Kanygin
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia
| | - Anna Kasatova
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia.,Budker Institute of Nuclear Physics, Novosibirsk, Russia
| | - Aleksandr Kichigin
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia
| | - Rinat Mukhamadiyarov
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia.,Research Institute for Complex Issues of Cardiovascular Diseases SB RAS, Kemerovo, Russia
| | - Ivan Razumov
- Laboratory of medical and biological problems of BNCT, Novosibirsk State University, Novosibirsk, Russia.,Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | - Bryan J Mathis
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sakura Eri B Maezono
- PhD Program in Human Biology, School of Integrative and Global Majors and International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Matsumura
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia.,Laboratory of BNCT, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
34
|
Tsygankova AR, Kanygin VV, Kasatova AI, Zav’yalov EL, Gusel’nikova TY, Kichigin AI, Mukhamadiyarov RA. Determination of boron by inductively coupled plasma atomic emission spectroscopy. Biodistribution of 10B in tumor-bearing mice. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2805-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Abstract
AbstractIntroduction:In the recent years, some publications (mainly from one group of authors) have dealt with the effectiveness of proton–boron fusion therapy (PBFT). This theory is based on the Q-value of three produced α particles in the reaction of protons with boron (11B). They claim that this reaction significantly increases the absorbed dose in the target volume. However, the current study would re-evaluate their method to show if PBFT is really effective.Methods and materials:A parallel 80-MeV proton beam was irradiated on a water medium in a cubic boron uptake region (BUR). The two-dimensional dose distribution and percentage depth dose of protons, alphas and all particles were calculated using tally F6 and mesh-tallies by Monte Carlo N Particle Transport code.Results:The results not only showed that the dose enhancement in BUR is neglectable but also the higher density of BUR in comparison with water led to decrement of dose in this region. Because of low cross section of boron for proton beam (<100 mb), the α particles’ dose is 1,000 times lower than the proton dose.Conclusions:The physical aspects and the simulation results did not show any effectiveness of the PBFT for proton therapy dose enhancement.
Collapse
|
36
|
Malinina EA, Goeva LV, Buzanov GA, Retivov VM, Avdeeva VV, Kuznetsov NT. Synthesis and Thermal Reduction of Complexes [NiLn][B10H10] (L = DMF, H2O, n = 6; L = N2H4, n = 3): Formation of Solid Solutions Ni3C1 –xВx. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
|
38
|
Wang M, Tong Y, Luo Q, Hu S. Comparative Study on Neutron Irradiation Sensitization Effects of Nucleotide Borate Esters and Several Other Boron Agents. Radiat Res 2020; 193:249-262. [PMID: 31910121 DOI: 10.1667/rr15473.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
More effective boron-containing compounds are needed for use in boron neutron capture therapy (BNCT). Here, borate esters were synthesized by heating and dehydrating nucleotides adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), the nucleoside (inosine) or glycerol in the presence of boric acid (H3BO3). Borate ester products were compared to clinical boron agent boronophenylalanine (BPA) and several other borate esters for neutron-sensitization effects using the A549 cell line. Cells were incubated with boron agent solutions (2.3 mM) for 5 h, then washed, resuspended in fresh media, and irradiated with a neutron dose of 0.33 Sv followed by cell survival assessment using the CCK-8 method. Calculated radiosensitization values (control group cell survival rate/boron agent-treated experimental group cell survival rate) were 3.9 ± 0.2 (ATP borate ester), 2.4 ± 0.1 (BPA), 2.1 ± 0.1 (ADP borate ester), 1.9 ± 0.2 (AMP borate ester), 1.7 ± 0.3 (glycerin borate ester), 1.4 ± 0.1 (inosine borate ester), 1.3 ± 0.3 (triethanolamine borate ester) and 1.3 ± 0.5 (H3BO3). Borate esters derived from nucleotides ATP, ADP or AMP exhibited significantly higher sensitization values than did those derived from glycerol, inosine or triethanolamine. Notably, due to its relatively higher water solubility and degree of tumor cell enrichment, ATP borate ester exhibited the highest sensitization rate overall, significantly exceeding rates obtained for BPA and borate esters of ADP and AMP. Flow cytometric determinations of boron agent-treated cell survival at 24 h postirradiation revealed long-term apoptosis rates of 4.8-6.6 ± 0.2% (nucleotide borate ester groups) and 5.6 ± 0.3% (BPA group) compared to 3.9 ± 0.1% (irradiation control group without boron agent) and 2.6 ± 0.2% (blank control group). Significant differences between experimental and control groups demonstrated that nucleotide borate esters and BPA induced long-term radiosensitization effects. In particular, postirradiation percentages of ATP borate ester-treated cells progressing to DNA replication prophase (G1 phase) increased significantly, while percentages of cells progressing to S phase significantly decreased, demonstrating cellular DNA replication inhibition. Meanwhile, boron content values of tumor tissue, measured using inductively coupled plasma mass spectrometry (ICP-MS) and expressed as tumor-to-normal tissue boron ratios (T/N), were not significantly different between nucleotide borate ester- and BPA-fed groups of tumor-bearing mice. However, tumor tissue boron concentrations of nucleotide borate ester-fed mice (0.81-0.88 ± 0.04 µg/g) significantly exceeded those of BPA-fed mice (0.52 ± 0.05 µg/g) and thus provided greater tumor tissue boron enrichment for achieving a stronger neutron radiation-sensitizing effect. In conclusion, nucleotide borate esters, especially ATP borate ester, exhibited superior neutron radiosensitization effects than did other representative borate ester compounds and significantly greater long-term radiation effects as well. Thus, nucleotide borate esters have several advantages over other borate esters for BNCT and therefore warrant further study.
Collapse
Affiliation(s)
- Miao Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Yongpeng Tong
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Qi Luo
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Shipeng Hu
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
39
|
Kellert M, Hoppenz P, Lönnecke P, Worm DJ, Riedl B, Koebberling J, Beck-Sickinger AG, Hey-Hawkins E. Tuning a modular system - synthesis and characterisation of a boron-rich s-triazine-based carboxylic acid and amine bearing a galactopyranosyl moiety. Dalton Trans 2019; 49:57-69. [PMID: 31808482 DOI: 10.1039/c9dt04031e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of a bis(isopropylidene)-protected galactopyranosyl moiety in s-triazine-based boron-rich carboxylic acids and amines results in soluble and suitable coupling partners for tumour-selective biomolecules with applications as selective agents for boron neutron capture therapy (BNCT). Bearing either a carboxylic acid or primary amine as a functional group, these compounds are highly versatile and thus largely extend the possible coupling strategies with suitable biomolecules. Modification of the gastrin-releasing peptide receptor (GRPR) selective agonist [d-Phe6, β-Ala11, Ala13, Nle14]Bn(6-14) with the carboxylic acid derivative yielded a bioconjugate with an optimal receptor activation and internalisation profile. This demonstrates the great potential of this approach for the development of novel boron delivery agents.
Collapse
Affiliation(s)
- Martin Kellert
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Li R, Zhang J, Guo J, Xu Y, Duan K, Zheng J, Wan H, Yuan Z, Chen H. Application of Nitroimidazole-Carbobane-Modified Phenylalanine Derivatives as Dual-Target Boron Carriers in Boron Neutron Capture Therapy. Mol Pharm 2019; 17:202-211. [PMID: 31763850 DOI: 10.1021/acs.molpharmaceut.9b00898] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Boron neutron capture therapy (BNCT) has received extensive attention as noninvasive cell-level oncotherapy for treating solid cancer tumors. However, boron-containing drugs such as l-boronophenylalanine (BPA) and sodium borocaptate have low boron content and/or poor tumor-targeting ability, limiting their application. In this study, we designed and synthesized a series of nontoxic, dual-target boron carriers (B139, B142, and B151) with the ability to accumulate specifically in tumor cells. We found that the B139 uptake into hypoxic tumor regions was high, with a 70-fold boron content compared to BPA. In addition, in vivo observation showed that B139 can be trapped in tumor cells for a prolonged period and maintains an effective therapeutic concentration, with a peak boron concentration of 50.7 μg/g and a high tumor: blood boron ratio of >3, achieving ideal BNCT conditions. Cytotoxicity evaluation in mice further proved that B139 is safe and reliable. Therefore, B139 has great potential for BNCT application as a dual-target, safe, and efficient boron carrier.
Collapse
Affiliation(s)
- Ruixi Li
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Juanjuan Zhang
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Jingxuan Guo
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Kunyuan Duan
- Department of Pharmacy , Qujing Medical College , Qujing 655000 , China
| | - Jinrong Zheng
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Hao Wan
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Lane , Gulou District, Nanjing 210009 , China
| |
Collapse
|
41
|
Lee W, Sarkar S, Ahn H, Kim JY, Lee YJ, Chang Y, Yoo J. PEGylated liposome encapsulating nido-carborane showed significant tumor suppression in boron neutron capture therapy (BNCT). Biochem Biophys Res Commun 2019; 522:669-675. [PMID: 31787237 DOI: 10.1016/j.bbrc.2019.11.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 11/19/2022]
Abstract
Boron neutron capture therapy (BNCT) is a binary radiotherapy based on nuclear reactions that occur when boron-10 is irradiated with neutrons, which result in the ejection of high-energy alpha particles. Successful BNCT requires the efficient delivery of a boron-containing compound to effect high concentrations in tumor cells while minimizing uptake in normal tissues. In this study, PEGylated liposomes were employed as boron carriers to maximize delivery to tumors and minimize uptake in the reticuloendothelial system (RES). The water-soluble potassium salt of nido-7,8-carborane, nido-carborane, was chosen as the boron source due to its high boron content per molecule. Nido-carborane was encapsulated in the aqueous cores of PEGylated liposomes by hydrating thin lipid films. Repeated freezing and thawing increased nido-carborane loading by up to 47.5 ± 3.1%. The average hydrodynamic diameter of the prepared boronated liposomes was determined to be 114.5 ± 28 nm through dynamic light scattering (DLS) measurement. Globular liposomes approximately 100 nm in diameter were clearly visible in transmission electron microscope (TEM) images. The viability of tumor cells following BNCT with 70 μM nido-carborane was reduced to 17.1% compared to irradiated control cells, which did not contain boronated liposomes. Confocal microscopy revealed that fluorescently labeled liposomes injected into the tail veins of mice were deeply and evenly distributed in tumor tissues and localized in the cytoplasm of tumor cells. When mice were properly shielded with a 12 mm-thick polyethylene board during in-vivo irradiation at a thermal neutron flux of 1.94 × 104/cm2·sec, almost complete tumor suppression was achieved in tumor models injected with boronated liposomes (21.0 mg 10B/kg). Two BNCT cycles spaced 10 days apart further enhanced the therapeutic anti-tumor effect, even when the dose was lowered to 10.5 mg 10B/kg. No notable weight loss was observed in the tumor models during the BNCT study.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Swarbhanu Sarkar
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Heesu Ahn
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Yongmin Chang
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
42
|
Pulagam KR, Gona KB, Gómez-Vallejo V, Meijer J, Zilberfain C, Estrela-Lopis I, Baz Z, Cossío U, Llop J. Gold Nanoparticles as Boron Carriers for Boron Neutron Capture Therapy: Synthesis, Radiolabelling and In vivo Evaluation. Molecules 2019; 24:E3609. [PMID: 31591329 PMCID: PMC6804187 DOI: 10.3390/molecules24193609] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Boron Neutron Capture Therapy (BNCT) is a binary approach to cancer therapy that requires accumulation of boron atoms preferentially in tumour cells. This can be achieved by using nanoparticles as boron carriers and taking advantage of the enhanced permeability and retention (EPR) effect. Here, we present the preparation and characterization of size and shape-tuned gold NPs (AuNPs) stabilised with polyethylene glycol (PEG) and functionalized with the boron-rich anion cobalt bis(dicarbollide), commonly known as COSAN. The resulting NPs were radiolabelled with 124I both at the core and the shell, and were evaluated in vivo in a mouse model of human fibrosarcoma (HT1080 cells) using positron emission tomography (PET). Methods: The thiolated COSAN derivatives for subsequent attachment to the gold surface were synthesized by reaction of COSAN with tetrahydropyran (THP) followed by ring opening using potassium thioacetate (KSAc). Iodination on one of the boron atoms of the cluster was also carried out to enable subsequent radiolabelling of the boron cage. AuNPs grafted with mPEG-SH (5 Kda) and thiolated COSAN were prepared by ligand displacement. Radiolabelling was carried out both at the shell (isotopic exchange) and at the core (anionic absorption) of the NPs using 124I to enable PET imaging. Results: Stable gold nanoparticles simultaneously functionalised with PEG and COSAN (PEG-AuNPs@[4]-) with hydrodynamic diameter of 37.8 ± 0.5 nm, core diameter of 19.2 ± 1.4 nm and ξ-potential of -18.0 ± 0.7 mV were obtained. The presence of the COSAN on the surface of the NPs was confirmed by Raman Spectroscopy and UV-Vis spectrophotometry. PEG-AuNPs@[4]- could be efficiently labelled with 124I both at the core and the shell. Biodistribution studies in a xenograft mouse model of human fibrosarcoma showed major accumulation in liver, lungs and spleen, and poor accumulation in the tumour. The dual labelling approach confirmed the in vivo stability of the PEG-AuNPs@[4]-. Conclusions: PEG stabilized, COSAN-functionalised AuNPs could be synthesized, radiolabelled and evaluated in vivo using PET. The low tumour accumulation in the animal model assayed points to the need of tuning the size and geometry of the gold core for future studies.
Collapse
Affiliation(s)
- Krishna R Pulagam
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, 20014 San Sebastian, Spain.
| | - Kiran B Gona
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, 20014 San Sebastian, Spain.
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.
| | | | - Jan Meijer
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| | - Carolin Zilberfain
- Felix Bloch Institute for Solid State Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany.
| | - Irina Estrela-Lopis
- Felix Bloch Institute for Solid State Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany.
| | - Zuriñe Baz
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, 20014 San Sebastian, Spain.
| | - Unai Cossío
- Radioimaging and Image Analysis Platform, CIC biomaGUNE, 20014 San Sebastian, Spain.
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, 20014 San Sebastian, Spain.
- Centro de Investigación Biomédica en red Enfermedades Respiratorias-CIBERES, 28029 Madrid, Spain.
| |
Collapse
|
43
|
Kellert M, Lönnecke P, Riedl B, Koebberling J, Hey-Hawkins E. Enlargement of a Modular System-Synthesis and Characterization of an s-Triazine-Based Carboxylic Acid Ester Bearing a Galactopyranosyl Moiety and an Enormous Boron Load. Molecules 2019; 24:E3288. [PMID: 31509949 PMCID: PMC6767515 DOI: 10.3390/molecules24183288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 11/26/2022] Open
Abstract
The amount of boron accumulated in tumor tissue plays an important role regarding the success of the boron neutron capture therapy (BNCT). In this article, we report a modular system, combining readily available starting materials, like glycine, 1,3,5-triazine and the well-known 9-mercapto-1,7-dicarba-closo-dodecaborane(12), as well as α-d-galactopyranose for increased hydrophilicity, with a novel boron-rich tris-meta-carboranyl thiol.
Collapse
Affiliation(s)
- Martin Kellert
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| | - Bernd Riedl
- Bayer AG, Aprather Weg 18A, 42113 Wuppertal, Germany.
| | | | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
44
|
Khan AA, Maitz C, Quanyu C, Hawthorne F. BNCT induced immunomodulatory effects contribute to mammary tumor inhibition. PLoS One 2019; 14:e0222022. [PMID: 31479484 PMCID: PMC6719824 DOI: 10.1371/journal.pone.0222022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022] Open
Abstract
In the United States, breast cancer is one of the most common and the second leading cause of cancer-related death in women. Treatment modalities for mammary tumor are surgical removal of the tumor tissue followed by either chemotherapy or radiotherapy or both. Radiation therapy is a whole body irradiation regimen that suppresses the immune system leaving hosts susceptible to infection or secondary tumors. Boron neutron capture therapy (BNCT) in that regard is more selective, the cells that are mostly affected are those that are loaded with 109 or more 10B atoms. Previously, we have described that liposomal encapsulation of boron-rich compounds such as TAC and MAC deliver a high payload to the tumor tissue when injected intravenously. Here we report that liposome-mediated boron delivery to the tumor is inversely proportional to the size of the murine mammary (EMT-6) tumors. The plausible reason for the inverse ratio of boron and EMT-6 tumor size is the necrosis in these tumors, which is more prominent in the large tumors. The large tumors also have receding blood vessels contributing further to poor boron delivery to these tumors. We next report that the presence of boron in blood is essential for the effects of BNCT on EMT-6 tumor inhibition as direct injection of boron-rich liposomes did not provide any added advantage in inhibition of EMT-6 tumor in BALB/c mice following irradiation despite having a significantly higher amount of boron in the tumor tissue. BNCT reaction in PBMCs resulted in the modification of these cells to anti-tumor phenotype. In this study, we report the immunomodulatory effects of BNCT when boron-rich compounds are delivered systemically.
Collapse
Affiliation(s)
- Aslam Ali Khan
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
- Bond Life Science Center, University of Missouri, Columbia, United States of America
- Department of Veterinary Pathobiology, University of Missouri, Columbia, United States of America
| | - Charlie Maitz
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
| | - Cai Quanyu
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
| | - Fred Hawthorne
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
| |
Collapse
|
45
|
Luderer MJ, Muz B, Alhallak K, Sun J, Wasden K, Guenthner N, de la Puente P, Federico C, Azab AK. Thermal Sensitive Liposomes Improve Delivery of Boronated Agents for Boron Neutron Capture Therapy. Pharm Res 2019; 36:144. [PMID: 31392417 DOI: 10.1007/s11095-019-2670-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/09/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Boron neutron capture therapy (BNCT) has the potential to become a viable cancer treatment modality, but its clinical translation requires sufficient tumor boron delivery while minimizing nonspecific accumulation. METHODS Thermal sensitive liposomes (TSLs) were designed to have a stable drug payload at physiological temperatures but engineered to have high permeability under mild hyperthermia. RESULTS We found that TSLs improved the tumor-specific delivery of boronophenylalanine (BPA) and boronated 2-nitroimidazole derivative B-381 in D54 glioma cells. Uniquely, the 2-nitroimidazole moiety extended the tumor retention of boron content compared to BPA. CONCLUSION This is the first study to show the delivery of boronated compounds using TSLs for BNCT, and these results will provide the basis of future clinical trials using TSLs for BNCT.
Collapse
Affiliation(s)
- Micah John Luderer
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
| | - Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
| | - Kinan Alhallak
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Jennifer Sun
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Katherine Wasden
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
| | - Nicole Guenthner
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
| | - Cinzia Federico
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, 4511 Forest Park Ave., Room 3103, St. Louis, MO, 63108, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
46
|
Mixed-ligand polymeric and binuclear silver(I) complexes with the decahydro-closo-decaborate anion and azaheterocyclic ligands L (L = bipy, phen, bpa). Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Kellert M, Worm DJ, Hoppenz P, Sárosi MB, Lönnecke P, Riedl B, Koebberling J, Beck-Sickinger AG, Hey-Hawkins E. Modular triazine-based carborane-containing carboxylic acids - synthesis and characterisation of potential boron neutron capture therapy agents made of readily accessible building blocks. Dalton Trans 2019; 48:10834-10844. [PMID: 31246208 DOI: 10.1039/c9dt02130b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Based on a modular combination of s-triazine, the well-known 9-mercapto-1,7-dicarba-closo-dodecaborane(12) and commercially available carboxylic acids, namely thioglycolic acid, glycine, and Nα-Boc-l-lysine, several carboxylic acid derivatives were synthesised and fully characterised. The thioglycolic acid derivative was introduced into a peptide hormone by solid phase peptide synthesis. High activity and selective internalisation into peptide receptor-expressing cells was observed. With a very high boron content of twenty boron atoms, these derivatives are interesting as selective Boron Neutron Capture Therapy (BNCT) agents.
Collapse
Affiliation(s)
- Martin Kellert
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Dennis J Worm
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Paul Hoppenz
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Menyhárt B Sárosi
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Peter Lönnecke
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Bernd Riedl
- Bayer AG, Aprather Weg 18A, 42113 Wuppertal, Germany
| | | | - Annette G Beck-Sickinger
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
48
|
He T, Chittur SV, Musah RA. Impact on Glioblastoma U87 Cell Gene Expression of a Carborane Cluster-Bearing Amino Acid: Implications for Carborane Toxicity in Mammalian Cells. ACS Chem Neurosci 2019; 10:1524-1534. [PMID: 30475580 DOI: 10.1021/acschemneuro.8b00512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Carboranes have been extensively investigated as potential drugs for the treatment of malignant human brain tumors by boron neutron capture therapy (BNCT). This noninvasive treatment modality utilizes compounds containing the nonradioactive isotope 10B which has a high propensity to capture slow neutrons. In response, it emits high energy α-particles that kill the cell. We have successfully synthesized a boron delivery agent by installing a boron-rich m-carborane within the amino acid cysteine. Rapid uptake of this compound into U87 glioblastoma cells within 5 min of exposure was observed, and fluorescence microscopy studies showed that it was retained intracellularly after 48 h. In the absence of thermal neutrons, a cytostatic effect in U87 cells was observed at exposures ranging from 1 μM to 1 mM relative to the control, while no change was observed at 1-0.01 μM. Microarray studies unveiled a wide range of unique changes in the gene expression profile of the U87 cells, particularly for the genes associated with cell cycle, which were observed to be greatly suppressed after treatment with the compound. These results were validated by qPCR studies. Although the compound was designed for BNCT, its distinctive impacts on gene regulation reveal that it and other carborane-containing cluster molecules may exert unique heretofore unknown effects on the transcriptome, even in the absence of applied radiation.
Collapse
Affiliation(s)
- Tianyu He
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Sridar V. Chittur
- Center for Functional Genomics, University at Albany, State University of New York, 1 Discovery Drive, Rensselaer, New York 12144, United States
| | - Rabi A. Musah
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
49
|
Warneke J, Konieczka SZ, Hou GL, Aprà E, Kerpen C, Keppner F, Schäfer TC, Deckert M, Yang Z, Bylaska EJ, Johnson GE, Laskin J, Xantheas SS, Wang XB, Finze M. Properties of perhalogenated {closo-B10} and {closo-B11} multiply charged anions and a critical comparison with {closo-B12} in the gas and the condensed phase. Phys Chem Chem Phys 2019; 21:5903-5915. [DOI: 10.1039/c8cp05313h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dependence of electronic properties and reactivity of closo-borates with size and halogen substituent was investigated.
Collapse
|
50
|
Shi Y, Li J, Zhang Z, Duan D, Zhang Z, Liu H, Liu T, Liu Z. Tracing Boron with Fluorescence and Positron Emission Tomography Imaging of Boronated Porphyrin Nanocomplex for Imaging-Guided Boron Neutron Capture Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43387-43395. [PMID: 30451482 DOI: 10.1021/acsami.8b14682] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boron neutron capture therapy (BNCT) induces high-energy radiation within cancer cells while avoiding damage to normal cells without uptake of BNCT drugs, which is holding great promise to provide excellent control over locally invasive malignant tumors. However, lack of quantitative imaging technique to determine local boron concentration has been a great challenge for nuclear physicians to apply accurate neutron irradiation during the treatment, which is a key factor that has limited BNCT's application in clinics. To meet this challenge, this study describes coating boronated porphyrins with a biocompatible poly(lactide- co-glycolide)-monomethoxy-poly(polyethylene-glycol) (PLGA-mPEG) micelle for selective tumor accumulation and reduced toxicity comparing with the previously reported boronated porphyrin drugs. Fluorescence imaging and positron emission tomography (PET) imaging were performed, unveiling the potential imaging properties of this boronated porphyrin nanocomplex (BPN) to locate tumor region and to determine tissue-localized boron concentration which facilitates treatment planning. By studying the pharmacokinetics of BPN with Cu-64 PET imaging, the treatment plan was adjusted from single bolus injection to multiple times of injections of smaller doses. As expected, high tumor uptake of boron (125.17 ± 13.54 ppm) was achieved with an extraordinarily high tumor to normal tissue ratio: tumors to liver, muscle, fat, and blood were 3.24 ± 0.22, 61.46 ± 20.26, 31.55 ± 10.30, and 33.85 ± 5.73, respectively. At last, neutron irradiation with BPN showed almost complete tumor suppression, demonstrating that BPN holds a great potential for being an efficient boron delivery agent for imaging-guided BNCT.
Collapse
Affiliation(s)
- Yaxin Shi
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zizhu Zhang
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Dongban Duan
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhengchu Zhang
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Tong Liu
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
- Peking University-Tsinghua University Center for Life Sciences , Beijing 100871 , China
| |
Collapse
|