1
|
Wu S, Zheng F, Sui A, Wu D, Chen Z. Sodium-iodate injection can replicate retinal and choroid degeneration in pigmented mice: Using multimodal imaging and label-free quantitative proteomics analysis. Exp Eye Res 2024; 247:110050. [PMID: 39151777 DOI: 10.1016/j.exer.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly population. Sodium iodate (NaIO3), a stable oxidizing agent, has been injected to establish a reproducible model of oxidative stress-induced RPE and photoreceptor death. The aim of our study was to evaluate the morphological and molecular changes of retina and retinal pigment epithelium (RPE)-choroid in NaIO3-treated mouse using multimodal fundus imaging and label-free quantitative proteomics analysis. Here, we found that following NaIO3 injection, retinal degeneration was evident. Fundus photographs showed numerous scattered yellow-white speckled deposits. Optical coherence tomography (OCT) images indicated disruption of the retinal layers, damage of the RPE layer and accumulation of hyper-reflective matter in multiple layers of the outer retina. Widespread foci of a high fundus autofluorescence (FAF) signal were noticed. Fundus fluorescein angiography (FFA) revealed diffuse intense transmitted fluorescence mixed with scattered spot-like blocked fluorescence. Indocyanine green angiography (ICGA) presented punctate hyperfluorescence. Due to the atrophy of the RPE and Bruch's membrane and choroidal capillary complex, the larger choroidal vessels become more prominent in ICGA and optical coherence tomography angiography (OCTA). Transmission electron microscope (TEM) illustrated abnormal material accumulation and damaged mitochondria. Bioinformatics analysis of proteomics revealed that the differentially expressed proteins participated in diverse biological processes, encompassing phototransduction, NOD-like receptor signaling pathway, phagosome, necroptosis, and cell adhesion molecules. In conclusion, by multimodal imaging, we described the phenotype of NaIO3-treated mouse model mimicking oxidative stress-induced RPE and photoreceptor death in detail. In addition, proteomics analysis identified differentially expressed proteins and significant enrichment pathways, providing insights for future research, although the exact mechanism of oxidative stress-induced RPE and photoreceptor death remains incompletely understood.
Collapse
Affiliation(s)
- Shijing Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, 310009, Zhejiang, China
| | - Fang Zheng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, 310009, Zhejiang, China
| | - Ailing Sui
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, 310009, Zhejiang, China
| | - Di Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, 310009, Zhejiang, China.
| | - Zhiqing Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
2
|
Vujosevic S, Limoli C, Kozak I. Hallmarks of aging in age-related macular degeneration and age-related neurological disorders: novel insights into common mechanisms and clinical relevance. Eye (Lond) 2024:10.1038/s41433-024-03341-5. [PMID: 39289517 DOI: 10.1038/s41433-024-03341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Age-related macular degeneration (AMD) and age-related neurological diseases (ANDs), such as Alzheimer's and Parkinson's Diseases, are increasingly prevalent conditions that significantly contribute to global morbidity, disability, and mortality. The retina, as an accessible part of the central nervous system (CNS), provides a unique window to study brain aging and neurodegeneration. By examining the associations between AMD and ANDs, this review aims to highlight novel insights into fundamental mechanisms of aging and their role in neurodegenerative disease progression. This review integrates knowledge from the emerging field of aging research, which identifies common denominators of biological aging, specifically loss of proteostasis, impaired macroautophagy, mitochondrial dysfunction, and inflammation. Finally, we emphasize the clinical relevance of these pathways and the potential for cross-disease therapies that target common aging hallmarks. Identifying these shared pathways could open avenues to develop therapeutic strategies targeting mechanisms common to multiple degenerative diseases, potentially attenuating disease progression and promoting the healthspan.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
- Eye Clinic, IRCCS MultiMedica, Milan, Italy.
| | - Celeste Limoli
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Igor Kozak
- Moorfields Eye Hospital Centre, Abu Dhabi, UAE
- Ophthalmology and Vision Science, University of Arizona, Tucson, USA
| |
Collapse
|
3
|
Wang D, Chen Y, Li J, Wu E, Tang T, Singla RK, Shen B, Zhang M. Natural products for the treatment of age-related macular degeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155522. [PMID: 38820665 DOI: 10.1016/j.phymed.2024.155522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a chronic retinal disease that significantly influences the vision of the elderly. PURPOSE There is no effective treatment and prevention method. The pathogenic process behind AMD is complex, including oxidative stress, inflammation, and neovascularization. It has been demonstrated that several natural products can be used to manage AMD, but systematic summaries are lacking. STUDY DESIGN AND METHODS PubMed, Web of Science, and ClinicalTrials.gov were searched using the keywords "Biological Products" AND "Macular Degeneration" for studies published within the last decade until May 2023 to summarize the latest findings on the prevention and treatment of age-related macular degeneration through the herbal medicines and functional foods. RESULTS The eligible studies were screened, and the relevant information about the therapeutic action and mechanism of natural products used to treat AMD was extracted. Our findings demonstrate that natural substances, including retinol, phenols, and other natural products, prevent the development of new blood vessels and protect the retina from oxidative stress in cells and animal models. However, they have barely been examined in clinical studies. CONCLUSION Natural products could be highly prospective candidate drugs used to treat AMD, and further preclinical and clinical research is required to validate it to control the disease.
Collapse
Affiliation(s)
- Dongyue Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yi Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiakun Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Erman Wu
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tong Tang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
4
|
Kaštelan S, Nikuševa-Martić T, Pašalić D, Antunica AG, Zimak DM. Genetic and Epigenetic Biomarkers Linking Alzheimer's Disease and Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:7271. [PMID: 39000382 PMCID: PMC11242094 DOI: 10.3390/ijms25137271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) represents a prominent neurodegenerative disorder (NDD), accounting for the majority of dementia cases worldwide. In addition to memory deficits, individuals with AD also experience alterations in the visual system. As the retina is an extension of the central nervous system (CNS), the loss in retinal ganglion cells manifests clinically as decreased visual acuity, narrowed visual field, and reduced contrast sensitivity. Among the extensively studied retinal disorders, age-related macular degeneration (AMD) shares numerous aging processes and risk factors with NDDs such as cognitive impairment that occurs in AD. Histopathological investigations have revealed similarities in pathological deposits found in the retina and brain of patients with AD and AMD. Cellular aging processes demonstrate similar associations with organelles and signaling pathways in retinal and brain tissues. Despite these similarities, there are distinct genetic backgrounds underlying these diseases. This review comprehensively explores the genetic similarities and differences between AMD and AD. The purpose of this review is to discuss the parallels and differences between AMD and AD in terms of pathophysiology, genetics, and epigenetics.
Collapse
Affiliation(s)
- Snježana Kaštelan
- Department of Ophthalmology, Clinical Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tamara Nikuševa-Martić
- Department of Biology and Genetics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Daria Pašalić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
5
|
Qarawani A, Naaman E, Ben-Zvi Elimelech R, Harel M, Itzkovich C, Safuri S, Dahan N, Henkin J, Zayit-Soudry S. PEDF-derived peptide protects against Amyloid-β toxicity in vitro and prevents retinal dysfunction in rats. Exp Eye Res 2024; 242:109861. [PMID: 38522635 DOI: 10.1016/j.exer.2024.109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Amyloid-beta (Aβ), a family of aggregation-prone and neurotoxic peptides, has been implicated in the pathophysiology of age-related macular degeneration (AMD). We have previously shown that oligomeric and fibrillar species of Aβ42 exerted retinal toxicity in rats, but while the consequences of exposure to amyloid were related to intracellular effects, the mechanism of Aβ42 internalization in the retina is not well characterized. In the brain, the 67 kDa laminin receptor (67LR) participates in Aβ-related neuronal cell death. A short peptide derived from pigment epithelium-derived factor (PEDF), formerly designated PEDF-335, was found to mitigate experimental models of ischemic retinopathy via targeting of 67LR. In the present study, we hypothesized that 67LR mediates the uptake of pathogenic Aβ42 assemblies in the retina, and that targeting of this receptor by PEDF-335 may limit the internalization of Aβ, thereby ameliorating its retinotoxicity. To test this assumption ARPE-19 cells in culture were incubated with PEDF-335 before treatment with fibrillar or oligomeric structures of Aβ42. Immunostaining confirmed that PEDF-335 treatment substantially prevented amyloid internalization into ARPE-19 cells and maintained their viability in the presence of toxic oligomeric and fibrillar Aβ42 entities in vitro. FRET competition assay was performed and confirmed the binding of PEDF-335 to 67LR in RPE-like cells. Wild-type rats were treated with intravitreal PEDF-335 in the experimental eye 2 days prior to administration of retinotoxic Aβ42 oligomers or fibrils to both eyes. Retinal function was assessed by electroretinography through 6 weeks post injection. The ERG responses in rats treated with oligomeric or fibrillar Aβ42 assemblies were near-normal in eyes previously treated with intravitreal PEDF-335, whereas those measured in the control eyes treated with injection of the Aβ42 assemblies alone showed pathologic attenuation of the retinal function through 6 weeks. The retinal presence of 67LR was determined ex vivo by immunostaining and western blotting. Retinal staining demonstrated the constitutional expression of 67LR mainly in the retinal nuclear layers. In the presence of Aβ42, the levels of 67LR were increased, although its retinal distribution remained largely unaltered. In contrast, no apparent differences in the retinal expression level of 67LR were noted following exposure to PEDF-335 alone, and its pattern of localization in the retina remained similarly concentrated primarily in the inner and outer nuclear layers. In summary, we found that PEDF-335 confers protection against Aβ42-mediated retinal toxicity, with significant effects noted in cells as well as in vivo in rats. The effects of PEDF-335 in the retina are potentially mediated via binding to 67LR and by at least partial inhibition of Aβ42 internalization. These results suggest that PEDF-335 may merit further consideration in the development of targeted inhibition of amyloid-related toxicity in the retina. More broadly, our observations provide evidence on the importance of extracellular versus intracellular Aβ42 in the retina and suggest concepts on the molecular mechanism of Aβ retinal pathogenicity.
Collapse
Affiliation(s)
- Amanda Qarawani
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Efrat Naaman
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | - Rony Ben-Zvi Elimelech
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Michal Harel
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Chen Itzkovich
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Shadi Safuri
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | - Nitsan Dahan
- Life Sciences and Engineering (LS&E) Infrastructure Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jack Henkin
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Shiri Zayit-Soudry
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel; Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
6
|
Wilke GA, Apte RS. Complement regulation in the eye: implications for age-related macular degeneration. J Clin Invest 2024; 134:e178296. [PMID: 38690727 PMCID: PMC11060743 DOI: 10.1172/jci178296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.
Collapse
Affiliation(s)
- Georgia A. Wilke
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
- Department of Medicine, and
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Ban N, Shinojima A, Negishi K, Kurihara T. Drusen in AMD from the Perspective of Cholesterol Metabolism and Hypoxic Response. J Clin Med 2024; 13:2608. [PMID: 38731137 PMCID: PMC11084323 DOI: 10.3390/jcm13092608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Drusen are one of the most characteristic pathologies of precursor lesion of age-related macular degeneration (AMD). Drusen comprise a yellowish white substance that accumulates typically under the retinal pigment epithelium (RPE), and their constituents are lipids, complement, amyloid, crystallin, and others. In the past, many researchers have focused on drusen and tried to elucidate the pathophysiology of AMD because they believed that disease progression from early AMD to advanced AMD might be based on drusen or drusen might cause AMD. In fact, it is well established that drusen are the hallmark of precursor lesion of AMD and a major risk factor for AMD progression mainly based on their size and number. However, the existence of advanced AMD without drusen has long been recognized. For example, polypoidal choroidal vasculopathy (PCV), which comprises the majority of AMD cases in Asians, often lacks drusen. Thus, there is the possibility that drusen might be no more than a biomarker of AMD and not a cause of AMD. Now is the time to reconsider the relationship between AMD and drusen. In this review, we focus on early AMD pathogenesis based on basic research from the perspective of cholesterol metabolism and hypoxic response in the retina, and we discuss the role of drusen.
Collapse
Affiliation(s)
- Norimitsu Ban
- Laboratory of Aging and Retinal Biology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
| | - Ari Shinojima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
8
|
Khan AM, Steffensen MA, Paskeviciute E, Abduljabar AB, Sørensen TL, Vorum H, Nissen MH, Honoré B. Neuroretinal degeneration in a mouse model of systemic chronic immune activation observed by proteomics. Front Immunol 2024; 15:1374617. [PMID: 38665911 PMCID: PMC11043527 DOI: 10.3389/fimmu.2024.1374617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Blindness or vision loss due to neuroretinal and photoreceptor degeneration affects millions of individuals worldwide. In numerous neurodegenerative diseases, including age-related macular degeneration, dysregulated immune response-mediated retinal degeneration has been found to play a critical role in the disease pathogenesis. To better understand the pathogenic mechanisms underlying the retinal degeneration, we used a mouse model of systemic immune activation where we infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13. Here, we evaluated the effects of LCMV infection and present a comprehensive discovery-based proteomic investigation using tandem mass tag (TMT) labeling and high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in protein regulation in the posterior part of the eye, neuroretina, and RPE/choroid were compared to those in the spleen as a secondary lymphoid organ and to the kidney as a non-lymphoid but encapsulated organ at 1, 8, and 28 weeks of infection. Using bioinformatic tools, we found several proteins responsible for maintaining normal tissue homeostasis to be differentially regulated in the neuroretina and the RPE/choroid during the degenerative process. Additionally, in the organs we observed, several important protein pathways contributing to cellular homeostasis and tissue development were perturbed and associated with LCMV-mediated inflammation, promoting disease progression. Our findings suggest that the response to a systemic chronic infection differs between the neuroretina and the RPE/choroid, and the processes induced by chronic systemic infection in the RPE/choroid are not unlike those induced in non-immune-privileged organs such as the kidney and spleen. Overall, our data provide detailed insight into several molecular mechanisms of neuroretinal degeneration and highlight various novel protein pathways that further suggest that the posterior part of the eye is not an isolated immunological entity despite the existence of neuroretinal immune privilege.
Collapse
Affiliation(s)
| | | | - Egle Paskeviciute
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Mogens Holst Nissen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Rinaldi M, Pezone A, Quadrini GI, Abbadessa G, Laezza MP, Passaro ML, Porcellini A, Costagliola C. Targeting shared pathways in tauopathies and age-related macular degeneration: implications for novel therapies. Front Aging Neurosci 2024; 16:1371745. [PMID: 38633983 PMCID: PMC11021713 DOI: 10.3389/fnagi.2024.1371745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The intricate parallels in structure and function between the human retina and the central nervous system designate the retina as a prospective avenue for understanding brain-related processes. This review extensively explores the shared physiopathological mechanisms connecting age-related macular degeneration (AMD) and proteinopathies, with a specific focus on tauopathies. The pivotal involvement of oxidative stress and cellular senescence emerges as key drivers of pathogenesis in both conditions. Uncovering these shared elements not only has the potential to enhance our understanding of intricate neurodegenerative diseases but also sets the stage for pioneering therapeutic approaches in AMD.
Collapse
Affiliation(s)
- Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gaia Italia Quadrini
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Gianmarco Abbadessa
- Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Paola Laezza
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | | | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Noh SE, Lee SJ, Cho CS, Jo DH, Park KS, Kim JH. Mitochondrial transplantation attenuates oligomeric amyloid-beta-induced mitochondrial dysfunction and tight junction protein destruction in retinal pigment epithelium. Free Radic Biol Med 2024; 212:10-21. [PMID: 38101587 DOI: 10.1016/j.freeradbiomed.2023.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Transplantation of mitochondria derived from mesenchymal stem cells (MSCs) has emerged as a new treatment method to improve mitochondrial dysfunction and alleviate cell impairment. Interest in using extrinsic mitochondrial transplantation as a therapeutic approach has been increasing because it has been confirmed to be effective in treating various diseases related to mitochondrial dysfunction, including ischemia, cardiovascular disease, and toxic damage. To support this application, we conducted an experiment to deliver external mitochondria to retinal pigment epithelial cells treated with oligomeric amyloid-beta (oAβ). Externally delivered amyloid-beta internalizes into cells and interacts with mitochondria, resulting in mitochondrial dysfunction and intracellular damage, including increased reactive oxygen species and destruction of tight junction proteins. Externally delivered mitochondria were confirmed to alleviate mitochondrial dysfunction and tight junction protein disruption as well as improve internalized oAβ clearance. These results were also confirmed in a mouse model in vivo. Overall, these findings indicate that the transfer of external mitochondria isolated from MSCs has potential as a new treatment method for age-related macular degeneration, which involves oAβ-induced changes to the retinal pigment epithelium.
Collapse
Affiliation(s)
- Sung-Eun Noh
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Seok Jae Lee
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Sik Cho
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Stout JA, Mahzarnia A, Dai R, Anderson RJ, Cousins S, Zhuang J, Lad EM, Whitaker DB, Madden DJ, Potter GG, Whitson HE, Badea A. Accelerated Brain Atrophy, Microstructural Decline and Connectopathy in Age-Related Macular Degeneration. Biomedicines 2024; 12:147. [PMID: 38255252 PMCID: PMC10813528 DOI: 10.3390/biomedicines12010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Age-related macular degeneration (AMD) has recently been linked to cognitive impairment. We hypothesized that AMD modifies the brain aging trajectory, and we conducted a longitudinal diffusion MRI study on 40 participants (20 with AMD and 20 controls) to reveal the location, extent, and dynamics of AMD-related brain changes. Voxel-based analyses at the first visit identified reduced volume in AMD participants in the cuneate gyrus, associated with vision, and the temporal and bilateral cingulate gyrus, linked to higher cognition and memory. The second visit occurred 2 years after the first and revealed that AMD participants had reduced cingulate and superior frontal gyrus volumes, as well as lower fractional anisotropy (FA) for the bilateral occipital lobe, including the visual and the superior frontal cortex. We detected faster rates of volume and FA reduction in AMD participants in the left temporal cortex. We identified inter-lingual and lingual-cerebellar connections as important differentiators in AMD participants. Bundle analyses revealed that the lingual gyrus had a lower streamline length in the AMD participants at the first visit, indicating a connection between retinal and brain health. FA differences in select inter-lingual and lingual cerebellar bundles at the second visit showed downstream effects of vision loss. Our analyses revealed widespread changes in AMD participants, beyond brain networks directly involved in vision processing.
Collapse
Affiliation(s)
- Jacques A. Stout
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; (J.A.S.); (J.Z.); (D.J.M.)
| | - Ali Mahzarnia
- Radiology Department, Duke University Medical Center, Durham, NC 27710, USA; (A.M.); (R.D.); (R.J.A.)
| | - Rui Dai
- Radiology Department, Duke University Medical Center, Durham, NC 27710, USA; (A.M.); (R.D.); (R.J.A.)
| | - Robert J. Anderson
- Radiology Department, Duke University Medical Center, Durham, NC 27710, USA; (A.M.); (R.D.); (R.J.A.)
| | - Scott Cousins
- Ophthalmology Department, Duke University Medical Center, Durham, NC 27710, USA; (S.C.); (E.M.L.); (D.B.W.); (H.E.W.)
| | - Jie Zhuang
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; (J.A.S.); (J.Z.); (D.J.M.)
| | - Eleonora M. Lad
- Ophthalmology Department, Duke University Medical Center, Durham, NC 27710, USA; (S.C.); (E.M.L.); (D.B.W.); (H.E.W.)
| | - Diane B. Whitaker
- Ophthalmology Department, Duke University Medical Center, Durham, NC 27710, USA; (S.C.); (E.M.L.); (D.B.W.); (H.E.W.)
| | - David J. Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; (J.A.S.); (J.Z.); (D.J.M.)
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Guy G. Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Heather E. Whitson
- Ophthalmology Department, Duke University Medical Center, Durham, NC 27710, USA; (S.C.); (E.M.L.); (D.B.W.); (H.E.W.)
- Department of Medicine, Duke University Medical School, Durham, NC 27710, USA
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexandra Badea
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA; (J.A.S.); (J.Z.); (D.J.M.)
- Radiology Department, Duke University Medical Center, Durham, NC 27710, USA; (A.M.); (R.D.); (R.J.A.)
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
12
|
Finocchio L, Zeppieri M, Gabai A, Toneatto G, Spadea L, Salati C. Recent Developments in Gene Therapy for Neovascular Age-Related Macular Degeneration: A Review. Biomedicines 2023; 11:3221. [PMID: 38137442 PMCID: PMC10740940 DOI: 10.3390/biomedicines11123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex and multifactorial disease and a leading cause of irreversible blindness in the elderly population. The anti-vascular endothelial growth factor (anti-VEGF) therapy has revolutionized the management and prognosis of neovascular AMD (nAMD) and is currently the standard of care for this disease. However, patients are required to receive repeated injections, imposing substantial social and economic burdens. The implementation of gene therapy methods to achieve sustained delivery of various therapeutic proteins holds the promise of a single treatment that could ameliorate the treatment challenges associated with chronic intravitreal therapy, and potentially improve visual outcomes. Several early-phase trials are currently underway, evaluating the safety and efficacy of gene therapy for nAMD; however, areas of controversy persist, including the therapeutic target, route of administration, and potential safety issues. In this review, we assess the evolution of gene therapy for nAMD and summarize several preclinical and early-stage clinical trials, exploring challenges and future directions.
Collapse
Affiliation(s)
- Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Giacomo Toneatto
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
13
|
Latifi-Navid H, Barzegar Behrooz A, Jamehdor S, Davari M, Latifinavid M, Zolfaghari N, Piroozmand S, Taghizadeh S, Bourbour M, Shemshaki G, Latifi-Navid S, Arab SS, Soheili ZS, Ahmadieh H, Sheibani N. Construction of an Exudative Age-Related Macular Degeneration Diagnostic and Therapeutic Molecular Network Using Multi-Layer Network Analysis, a Fuzzy Logic Model, and Deep Learning Techniques: Are Retinal and Brain Neurodegenerative Disorders Related? Pharmaceuticals (Basel) 2023; 16:1555. [PMID: 38004422 PMCID: PMC10674956 DOI: 10.3390/ph16111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of irreversible visual impairment in the elderly. The current management of nAMD is limited and involves regular intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF). However, the effectiveness of these treatments is limited by overlapping and compensatory pathways leading to unresponsiveness to anti-VEGF treatments in a significant portion of nAMD patients. Therefore, a system view of pathways involved in pathophysiology of nAMD will have significant clinical value. The aim of this study was to identify proteins, miRNAs, long non-coding RNAs (lncRNAs), various metabolites, and single-nucleotide polymorphisms (SNPs) with a significant role in the pathogenesis of nAMD. To accomplish this goal, we conducted a multi-layer network analysis, which identified 30 key genes, six miRNAs, and four lncRNAs. We also found three key metabolites that are common with AMD, Alzheimer's disease (AD) and schizophrenia. Moreover, we identified nine key SNPs and their related genes that are common among AMD, AD, schizophrenia, multiple sclerosis (MS), and Parkinson's disease (PD). Thus, our findings suggest that there exists a connection between nAMD and the aforementioned neurodegenerative disorders. In addition, our study also demonstrates the effectiveness of using artificial intelligence, specifically the LSTM network, a fuzzy logic model, and genetic algorithms, to identify important metabolites in complex metabolic pathways to open new avenues for the design and/or repurposing of drugs for nAMD treatment.
Collapse
Affiliation(s)
- Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3T 2N2, Canada;
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran;
| | - Maliheh Davari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Masoud Latifinavid
- Department of Mechatronic Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey;
| | - Narges Zolfaghari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran;
| | - Golnaz Shemshaki
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore 570005, India;
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Seyed Shahriar Arab
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran;
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran 1666673111, Iran;
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
14
|
Pan Y, Fu Y, Baird PN, Guymer RH, Das T, Iwata T. Exploring the contribution of ARMS2 and HTRA1 genetic risk factors in age-related macular degeneration. Prog Retin Eye Res 2023; 97:101159. [PMID: 36581531 DOI: 10.1016/j.preteyeres.2022.101159] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of severe irreversible central vision loss in individuals over 65 years old. Genome-wide association studies (GWASs) have shown that the region at chromosome 10q26, where the age-related maculopathy susceptibility (ARMS2/LOC387715) and HtrA serine peptidase 1 (HTRA1) genes are located, represents one of the strongest associated loci for AMD. However, the underlying biological mechanism of this genetic association has remained elusive. In this article, we extensively review the literature by us and others regarding the ARMS2/HTRA1 risk alleles and their functional significance. We also review the literature regarding the presumed function of the ARMS2 protein and the molecular processes of the HTRA1 protein in AMD pathogenesis in vitro and in vivo, including those of transgenic mice overexpressing HtrA1/HTRA1 which developed Bruch's membrane (BM) damage, choroidal neovascularization (CNV), and polypoidal choroidal vasculopathy (PCV), similar to human AMD patients. The elucidation of the molecular mechanisms of the ARMS2 and HTRA1 susceptibility loci has begun to untangle the complex biological pathways underlying AMD pathophysiology, pointing to new testable paradigms for treatment.
Collapse
Affiliation(s)
- Yang Pan
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Yingbin Fu
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC506, Houston, TX, 77030, USA
| | - Paul N Baird
- Department of Surgery, (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Robyn H Guymer
- Department of Surgery, (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia; Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, Victoria, 3002, Australia
| | - Taraprasad Das
- Anant Bajaj Retina Institute-Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L. V. Prasad Eye Institute, Hyderabad, 500034, India
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.
| |
Collapse
|
15
|
Pradhan AK, Neumüller T, Klug C, Fuchs S, Schlegel M, Ballmann M, Tartler KJ, Pianos A, Garcia MS, Liere P, Schumacher M, Kreuzer M, Rupprecht R, Rammes G. Chronic administration of XBD173 ameliorates cognitive deficits and neuropathology via 18 kDa translocator protein (TSPO) in a mouse model of Alzheimer's disease. Transl Psychiatry 2023; 13:332. [PMID: 37891168 PMCID: PMC10611770 DOI: 10.1038/s41398-023-02630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of β-amyloid peptide (Aβ). It affects cognition and leads to memory impairment. The mitochondrial translocator protein (TSPO) plays an essential role in maintaining mitochondrial homeostasis and has been implicated in several neuronal disorders or neuronal injuries. Ligands targeting the mitochondrial translocator protein (18 kDa), promote neurosteroidogenesis and may be neuroprotective. To study whether the TSPO ligand XBD173 may exert early neuroprotective effects in AD pathology we investigated the impact of XBD173 on amyloid toxicity and neuroplasticity in mouse models of AD. We show that XBD173 (emapunil), via neurosteroid-mediated signaling and delta subunit-containing GABAA receptors, prevents the neurotoxic effect of Aβ on long-term potentiation (CA1-LTP) in the hippocampus and prevents the loss of spines. Chronic but not acute administration of XBD173 ameliorates spatial learning deficits in transgenic AD mice with arctic mutation (ArcAβ). The heterozygous TSPO-knockout crossed with the transgenic arctic mutation model of AD mice (het TSPOKO X ArcAβ) treated with XBD173 does not show this improvement in spatial learning suggesting TSPO is needed for procognitive effects of XBD173. The neuroprotective profile of XBD173 in AD pathology is further supported by a reduction in plaques and soluble Aβ levels in the cortex, increased synthesis of neurosteroids, rescued spine density, reduction of complement protein C1q deposits, and reduced astrocytic phagocytosis of functional synapses both in the hippocampus and cortex. Our findings suggest that XBD173 may exert therapeutic effects via TSPO in a mouse model of AD.
Collapse
Affiliation(s)
- Arpit Kumar Pradhan
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany.
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | - Tatjana Neumüller
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Claudia Klug
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Severin Fuchs
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Martin Schlegel
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Markus Ballmann
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Katharina Johanna Tartler
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Antoine Pianos
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Maria Sanchez Garcia
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Matthias Kreuzer
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Gerhard Rammes
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
16
|
Chen S, Zhang D, Zheng H, Cao T, Xia K, Su M, Meng Q. The association between retina thinning and hippocampal atrophy in Alzheimer's disease and mild cognitive impairment: a meta-analysis and systematic review. Front Aging Neurosci 2023; 15:1232941. [PMID: 37680540 PMCID: PMC10481874 DOI: 10.3389/fnagi.2023.1232941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction The retina is the "window" of the central nervous system. Previous studies discovered that retinal thickness degenerates through the pathological process of the Alzheimer's disease (AD) continuum. Hippocampal atrophy is one of the typical clinical features and diagnostic criteria of AD. Former studies have described retinal thinning in normal aging subjects and AD patients, yet the association between retinal thickness and hippocampal atrophy in AD is unclear. The optical coherence tomography (OCT) technique has access the non-invasive to retinal images and magnetic resonance imaging can outline the volume of the hippocampus. Thus, we aim to quantify the correlation between these two parameters to identify whether the retina can be a new biomarker for early AD detection. Methods We systematically searched the PubMed, Embase, and Web of Science databases from inception to May 2023 for studies investigating the correlation between retinal thickness and hippocampal volume. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the study quality. Pooled correlation coefficient r values were combined after Fisher's Z transformation. Moderator effects were detected through subgroup analysis and the meta-regression method. Results Of the 1,596 citations initially identified, we excluded 1,062 studies after screening the titles and abstract (animal models, n = 99; irrelevant literature, n = 963). Twelve studies met the inclusion criteria, among which three studies were excluded due to unextractable data. Nine studies were eligible for this meta-analysis. A positive moderate correlation between the retinal thickness was discovered in all participants of with AD, mild cognitive impairment (MCI), and normal controls (NC) (r = 0.3469, 95% CI: 0.2490-0.4377, I2 = 5.0%), which was significantly higher than that of the AD group (r = 0.1209, 95% CI:0.0905-0.1510, I2 = 0.0%) (p < 0.05). Among different layers, the peripapillary retinal nerve fiber layer (pRNFL) indicated a moderate positive correlation with hippocampal volume (r = 0.1209, 95% CI:0.0905-0.1510, I2 = 0.0%). The retinal pigmented epithelium (RPE) was also positively correlated [r = 0.1421, 95% CI:(-0.0447-0.3192), I2 = 84.1%]. The retinal layers and participants were the main overall heterogeneity sources. Correlation in the bilateral hemisphere did not show a significant difference. Conclusion The correlation between RNFL thickness and hippocampal volume is more predominant in both NC and AD groups than other layers. Whole retinal thickness is positively correlated to hippocampal volume not only in AD continuum, especially in MCI, but also in NC. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, CRD42022328088.
Collapse
Affiliation(s)
- Shuntai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dian Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyu Cao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kun Xia
- Department of Respiratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingwan Su
- Department of Respiratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Anisetti B, Stewart MW, Eggenberger ER, Shourav MMI, Youssef H, Elkhair A, Ertekin-Taner N, Meschia JF, Lin MP. Age-related macular degeneration is associated with probable cerebral amyloid angiopathy: A case-control study. J Stroke Cerebrovasc Dis 2023; 32:107244. [PMID: 37422928 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a common retinal degenerative disorder among older individuals. Amyloid deposits, a hallmark of cerebral amyloid angiopathy (CAA), may be involved in the pathogenesis of AMD. Since amyloid deposits may contribute to the development of both AMD and CAA, we hypothesized that patients with AMD have a higher prevalence of CAA. OBJECTIVE To compare the prevalence of CAA in patients with or without AMD matched for age. METHODS We conducted a cross-sectional, 1:1 age-matched, case-control study of patients ≥40 years of age at the Mayo Clinic who had undergone both retinal optical coherence tomography and brain MRI from 2011 to 2015. Primary dependent variables were probable CAA, superficial siderosis, and lobar and deep cerebral microbleeds (CMBs). The relationship between AMD and CAA was assessed using multivariable logistic regression and was compared across AMD severity (none vs early vs late AMD). RESULTS Our analysis included 256 age-matched pairs (AMD 126, no AMD 130). Of those with AMD, 79 (30.9%) had early AMD and 47 (19.4%) had late AMD. The mean age was 75±9 years, and there was no significant difference in vascular risk factors between groups. Patients with AMD had a higher prevalence of CAA (16.7% vs 10.0%, p=0.116) and superficial siderosis (15.1% vs 6.2%, p=0.020), but not deep CMB (5.2% vs 6.2%, p=0.426), compared to those without AMD. After adjusting for covariates, having late AMD was associated with increased odds of CAA (OR 2.83, 95% CI 1.10-7.27, p=0.031) and superficial siderosis (OR 3.40, 95%CI 1.20-9.65, p=0.022), but not deep CMB (OR 0.7, 95%CI 0.14-3.51, p=0.669). CONCLUSIONS AMD was associated with CAA and superficial siderosis but not deep CMB, consistent with the hypothesis that amyloid deposits play a role in the development of AMD. Prospective studies are needed to determine if features of AMD may serve as biomarkers for the early diagnosis of CAA.
Collapse
Affiliation(s)
- Bhrugun Anisetti
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Michael W Stewart
- Department of Ophthalmology, Mayo Clinic, Jacksonville, FL, United States
| | - Eric R Eggenberger
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States; Department of Ophthalmology, Mayo Clinic, Jacksonville, FL, United States
| | - Md Manjurul I Shourav
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Hossam Youssef
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Ahamed Elkhair
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Nilufer Ertekin-Taner
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - James F Meschia
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Michelle P Lin
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States.
| |
Collapse
|
18
|
Hammadi S, Tzoumas N, Ferrara M, Meschede IP, Lo K, Harris C, Lako M, Steel DH. Bruch's Membrane: A Key Consideration with Complement-Based Therapies for Age-Related Macular Degeneration. J Clin Med 2023; 12:2870. [PMID: 37109207 PMCID: PMC10145879 DOI: 10.3390/jcm12082870] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The complement system is crucial for immune surveillance, providing the body's first line of defence against pathogens. However, an imbalance in its regulators can lead to inappropriate overactivation, resulting in diseases such as age-related macular degeneration (AMD), a leading cause of irreversible blindness globally affecting around 200 million people. Complement activation in AMD is believed to begin in the choriocapillaris, but it also plays a critical role in the subretinal and retinal pigment epithelium (RPE) spaces. Bruch's membrane (BrM) acts as a barrier between the retina/RPE and choroid, hindering complement protein diffusion. This impediment increases with age and AMD, leading to compartmentalisation of complement activation. In this review, we comprehensively examine the structure and function of BrM, including its age-related changes visible through in vivo imaging, and the consequences of complement dysfunction on AMD pathogenesis. We also explore the potential and limitations of various delivery routes (systemic, intravitreal, subretinal, and suprachoroidal) for safe and effective delivery of conventional and gene therapy-based complement inhibitors to treat AMD. Further research is needed to understand the diffusion of complement proteins across BrM and optimise therapeutic delivery to the retina.
Collapse
Affiliation(s)
- Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nikolaos Tzoumas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| | | | - Ingrid Porpino Meschede
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Katharina Lo
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Claire Harris
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David H. Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| |
Collapse
|
19
|
Tsai HR, Lo RY, Liang KH, Chen TL, Huang HK, Wang JH, Lee YC. Risk of Subsequent Dementia or Alzheimer Disease Among Patients With Age-Related Macular Degeneration: A Systematic Review and Meta-analysis. Am J Ophthalmol 2023; 247:161-169. [PMID: 36375591 DOI: 10.1016/j.ajo.2022.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE Alzheimer disease (AD), a common form of dementia, shares several clinical and pathologic features with age-related macular degeneration (AMD). Epidemiologic reports on the association of AMD with subsequent dementia or AD are inconsistent. DESIGN Systematic review and meta-analysis. METHODS The Meta-analysis of Observational Studies in Epidemiology reporting guidelines were applied. The Newcastle-Ottawa Scale was used to evaluate the risk of bias in the included cohort studies that examined the association of AMD with subsequent dementia or AD. We estimated the pooled hazard ratios (HRs) of dementia or AD using random effects model meta-analysis and subgroup analysis on different follow-up periods, AMD subtype, gender, age, study design, and methods to ascertain dementia or AD. RESULTS A total of 8 223 581 participants were included in 8 studies published during 2000-2021. The meta-analysis showed that AMD was significantly associated with subsequent dementia (pooled HR 1.22, 95% CI 1.01-1.47) or AD (pooled HR 1.21, 95% CI 1.03-1.43). Our secondary analysis revealed that the association was more noticeable in dry AMD than wet AMD. CONCLUSIONS Patients with AMD have higher risks of developing dementia or AD, and therefore identifying related comorbidities and retinal biomarkers is much warranted for older adults with AMD in ophthalmologic practice.
Collapse
Affiliation(s)
- Hou-Ren Tsai
- From the Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-R.T., Y.-C.L.), Hualien
| | - Raymond Y Lo
- Division of Cognitive/Geriatric Neurology, Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University (R.Y.L.), Hualien; Institute of Medical Sciences, Tzu Chi University (R.Y.L.), Hualien
| | - Kai-Hsiang Liang
- Department of Medical Education, Medical Administration Office, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
| | - Tai-Li Chen
- Center for Aging and Health, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (T.-L.C.), Hualien; Department of Dermatology, Taipei Veterans General Hospital (T.-L.C.), Taipei
| | - Huei-Kai Huang
- Department of Family medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-K.H.), Hualien; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-K.H., J.-H.W.), Hualien
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-K.H., J.-H.W.), Hualien
| | - Yuan-Chieh Lee
- From the Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-R.T., Y.-C.L.), Hualien; Department of Ophthalmology and Visual Science, Tzu Chi University (Y.-C.L.), Hualien.
| |
Collapse
|
20
|
Seyed Hosseini Fin N, Georgevsky D, Sukkar MB, Golzan SM. RAGE and its ligand amyloid beta promote retinal ganglion cell loss following ischemia-reperfusion injury. Front Cell Neurosci 2023; 17:1156084. [PMID: 37124398 PMCID: PMC10130520 DOI: 10.3389/fncel.2023.1156084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Glaucoma is a progressive neurodegenerative disease associated with age. Accumulation of amyloid-beta (Aß) proteins in the ganglion cell layer (GCL) and subsequent retinal ganglion cell (RGC) loss is an established pathological hallmark of the disease. The mechanism through which Aß provokes RGC loss remains unclear. The receptor for the advanced glycation end product (RAGE), and its ligand Aß, have been shown to mediate neuronal loss via internalizing Aß within the neurons. In this study, we investigated whether the RAGE-Aß axis plays a role in RGC loss in experimental glaucoma. Methods Retinal ischemia was induced by an acute elevation of intraocular pressure in RAGE-/- and wild-type (WT) control mice. In a subset of animals, oligomeric Aß was injected directly into the vitreous of both strains. RGC loss was assessed using histology and biochemical assays. Baseline and terminal positive scotopic threshold (pSTR) were also recorded. Results Retinal ischemia resulted in 1.9-fold higher RGC loss in WT mice compared to RAGE-/- mice (36 ± 3% p < 0.0001 vs. 19 ± 2%, p = 0.004). Intravitreal injection of oligomeric Aß resulted in 2.3-fold greater RGC loss in WT mice compared to RAGE-/- mice, 7-days post-injection (55 ± 4% p = 0.008 vs. 24 ± 2%, p = 0.02). We also found a significant decline in the positive scotopic threshold response (pSTR) amplitude of WT mice compared to RAGE-/- (36 ± 3% vs. 16 ± 6%). Discussion RAGE-/- mice are protected against RGC loss following retinal ischemia. Intravitreal injection of oligomeric Aß accelerated RGC loss in WT mice but not RAGE-/-. A co-localization of RAGE and Aß, suggests that RAGE-Aß binding may contribute to RGC loss.
Collapse
Affiliation(s)
- Nafiseh Seyed Hosseini Fin
- Vision Science Group, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Dana Georgevsky
- Vision Science Group, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Maria B. Sukkar
- Pharmacy Discipline, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - S. Mojtaba Golzan
- Vision Science Group, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: S. Mojtaba Golzan,
| |
Collapse
|
21
|
Malek G, Campisi J, Kitazawa K, Webster C, Lakkaraju A, Skowronska-Krawczyk D. Does senescence play a role in age-related macular degeneration? Exp Eye Res 2022; 225:109254. [PMID: 36150544 PMCID: PMC10032649 DOI: 10.1016/j.exer.2022.109254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022]
Abstract
Advanced age is the most established risk factor for developing age-related macular degeneration (AMD), one of the leading causes of visual impairment in the elderly, in Western and developed countries. Similarly, after middle age, there is an exponential increase in pathologic molecular and cellular events that can induce senescence, traditionally defined as an irreversible loss of the cells' ability to divide and most recently reported to also occur in select post-mitotic and terminally differentiated cells, such as neurons. Together these facts raise the question as to whether or not cellular senescence, may play a role in the development of AMD. A number of studies have reported the effect of ocular-relevant inducers of senescence using primarily in vitro models of poorly polarized, actively dividing retinal pigment epithelial (RPE) cell lines. However, in interpretating the data, the fidelity of these culture models to the RPE in vivo, must be considered. Fewer studies have explored the presence and/or impact of senescent cells in in vivo models that present with phenotypic features of AMD, leaving this an open field for further investigation. The goal of this review is to discuss current thoughts on the potential role of senescence in AMD development and progression, with consideration of the model systems used and their relevance to human disease.
Collapse
Affiliation(s)
- Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA, USA; Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Corey Webster
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Aparna Lakkaraju
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California, San Francisco, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
22
|
Askari S, Azizi F, Javadpour P, Karimi N, Ghasemi R. Endoplasmic reticulum stress as an underlying factor in leading causes of blindness and potential therapeutic effects of 4-phenylbutyric acid: from bench to bedside. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2145945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sahar Askari
- Neuroscience Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azizi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Karimi
- Eye and Skull Base Research Centers, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran5Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Wong JHC, Ma JYW, Jobling AI, Brandli A, Greferath U, Fletcher EL, Vessey KA. Exploring the pathogenesis of age-related macular degeneration: A review of the interplay between retinal pigment epithelium dysfunction and the innate immune system. Front Neurosci 2022; 16:1009599. [PMID: 36408381 PMCID: PMC9670140 DOI: 10.3389/fnins.2022.1009599] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the older population. Classical hallmarks of early and intermediate AMD are accumulation of drusen, a waste deposit formed under the retina, and pigmentary abnormalities in the retinal pigment epithelium (RPE). When the disease progresses into late AMD, vision is affected due to death of the RPE and the light-sensitive photoreceptors. The RPE is essential to the health of the retina as it forms the outer blood retinal barrier, which establishes ocular immune regulation, and provides support for the photoreceptors. Due to its unique anatomical position, the RPE can communicate with the retinal environment and the systemic immune environment. In AMD, RPE dysfunction and the accumulation of drusen drive the infiltration of retinal and systemic innate immune cells into the outer retina. While recruited endogenous or systemic mononuclear phagocytes (MPs) contribute to the removal of noxious debris, the accumulation of MPs can also result in chronic inflammation and contribute to AMD progression. In addition, direct communication and indirect molecular signaling between MPs and the RPE may promote RPE cell death, choroidal neovascularization and fibrotic scarring that occur in late AMD. In this review, we explore how the RPE and innate immune cells maintain retinal homeostasis, and detail how RPE dysfunction and aberrant immune cell recruitment contribute to AMD pathogenesis. Evidence from AMD patients will be discussed in conjunction with data from preclinical models, to shed light on future therapeutic targets for the treatment of AMD.
Collapse
|
24
|
Blasiak J, Sobczuk P, Pawlowska E, Kaarniranta K. Interplay between aging and other factors of the pathogenesis of age-related macular degeneration. Ageing Res Rev 2022; 81:101735. [PMID: 36113764 DOI: 10.1016/j.arr.2022.101735] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease with the retina as the target tissue and aging as per definition the most serious risk factor. However, the retina contains over 60 kinds of cells that form different structures, including the neuroretina and retinal pigment epithelium (RPE) which can age at different rates. Other established or putative AMD risk factors can differentially affect the neuroretina and RPE and can differently interplay with aging of these structures. The occurrence of β-amyloid plaques and increased levels of cholesterol in AMD retinas suggest that AMD may be a syndrome of accelerated brain aging. Therefore, the question about the real meaning of age in AMD is justified. In this review we present and update information on how aging may interplay with some aspects of AMD pathogenesis, such as oxidative stress, amyloid beta formation, circadian rhythm, metabolic aging and cellular senescence. Also, we show how this interplay can be specific for photoreceptors, microglia cells and RPE cells as well as in Bruch's membrane and the choroid. Therefore, the process of aging may differentially affect different retinal structures. As an accurate quantification of biological aging is important for risk stratification and early intervention for age-related diseases, the determination how photoreceptors, microglial and RPE cells age in AMD may be helpful for a precise diagnosis and treatment of this largely untreatable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Piotr Sobczuk
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, Pomorska 251, 92-209 Lodz, Poland; Department of Orthopaedics and Traumatology, Polish Mothers' Memorial Hospital - Research Institute, Rzgowska 281, 93-338 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, FI-70029 Finland
| |
Collapse
|
25
|
Peng M, Zhou X, Yao F, Li H, Song W, Xiong S, Xia X. (–)-Epicatechin Provides Neuroprotection in Sodium Iodate-Induced Retinal Degeneration. Front Med (Lausanne) 2022; 9:879901. [PMID: 35833100 PMCID: PMC9271623 DOI: 10.3389/fmed.2022.879901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress, mitochondrial impairment, and pathological amyloid beta (Aβ) deposition are involved in the pathogenesis of dry age-related macular degeneration (AMD). The natural flavonoid (–)-epicatechin (EC) is known to be an antioxidant and neuroprotective compound. Whether EC plays a therapeutic role in AMD is unknown. In this work, we aimed to assess the efficacy and molecular mechanisms of EC against sodium iodate (NaIO3)-induced retinal degeneration in C57BL/6 mice via bioinformatic, morphological, and functional methods. We demonstrated that EC had no toxic effects on the retina and could ameliorate retinal deformation and thinning. EC treatment prevented outer retinal degeneration, reduced drusen-like deposits, increased b-wave amplitude in electroretinography, blocked retinal gliosis, and increased the number and quality of mitochondria. Importantly, EC increased the protein expression of OPA1 and decreased the expression of PINK1, indicating the role of EC in mitochondrial fusion that impaired by NaIO3. Moreover, EC downregulated APP and TMEM97 levels, upregulated PGRMC1 levels, and reduced subretinal Aβ accumulation. This study illustrated that EC, which may become a promising therapeutic strategy for AMD, prevented NaIO3-induced retinal degeneration, and this improvement may be associated with the mitochondrial quality control and the TMEM97/PGRMC1/Aβ signaling pathway.
Collapse
Affiliation(s)
- Manjuan Peng
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xuezhi Zhou
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yao
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haibo Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weitao Song
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Siqi Xiong
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiaobo Xia
| |
Collapse
|
26
|
El-Darzi N, Mast N, Buchner DA, Saadane A, Dailey B, Trichonas G, Pikuleva IA. Low-Dose Anti-HIV Drug Efavirenz Mitigates Retinal Vascular Lesions in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:902254. [PMID: 35721135 PMCID: PMC9198296 DOI: 10.3389/fphar.2022.902254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
A small dose of the anti-HIV drug efavirenz (EFV) was previously discovered to activate CYP46A1, a cholesterol-eliminating enzyme in the brain, and mitigate some of the manifestation of Alzheimer's disease in 5XFAD mice. Herein, we investigated the retina of these animals, which were found to have genetically determined retinal vascular lesions associated with deposits within the retinal pigment epithelium and subretinal space. We established that EFV treatment activated CYP46A1 in the retina, enhanced retinal cholesterol turnover, and diminished the lesion frequency >5-fold. In addition, the treatment mitigated fluorescein leakage from the aberrant blood vessels, deposit size, activation of retinal macrophages/microglia, and focal accumulations of amyloid β plaques, unesterified cholesterol, and Oil Red O-positive lipids. Studies of retinal transcriptomics and proteomics identified biological processes enriched with differentially expressed genes and proteins. We discuss the mechanisms of the beneficial EFV effects on the retinal phenotype of 5XFAD mice. As EFV is an FDA-approved drug, and we already tested the safety of small-dose EFV in patients with Alzheimer's disease, our data support further clinical investigation of this drug in subjects with retinal vascular lesions or neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Natalia Mast
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - David A. Buchner
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aicha Saadane
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Brian Dailey
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Georgios Trichonas
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Irina A. Pikuleva
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States,*Correspondence: Irina A. Pikuleva,
| |
Collapse
|
27
|
Characterization of Retinal Drusen in Subjects at High Genetic Risk of Developing Sporadic Alzheimer’s Disease: An Exploratory Analysis. J Pers Med 2022; 12:jpm12050847. [PMID: 35629270 PMCID: PMC9145327 DOI: 10.3390/jpm12050847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Having a family history (FH+) of Alzheimer’s disease (AD) and being a carrier of at least one ɛ4 allele of the ApoE gene are two of the main risk factors for the development of AD. AD and age-related macular degeneration (AMD) share one of the main risk factors, such as age, and characteristics including the presence of deposits (Aβ plaques in AD and drusen in AMD); however, the role of apolipoprotein E isoforms in both pathologies is controversial. We analyzed and characterized retinal drusen by optical coherence tomography (OCT) in subjects, classifying them by their AD FH (FH- or FH+) and their allelic characterization of ApoE ɛ4 (ApoE ɛ4- or ApoE ɛ4+) and considering cardiovascular risk factors (hypercholesterolemia, hypertension, and diabetes mellitus). In addition, we analyzed the choroidal thickness by OCT and the area of the foveal avascular zone with OCTA. We did not find a relationship between a family history of AD or any of the ApoE isoforms and the presence or absence of drusen. Subjects with drusen show choroidal thinning compared to patients without drusen, and thinning could trigger changes in choroidal perfusion that may give rise to the deposits that generate drusen.
Collapse
|
28
|
Sultan F, Parkin ET. The Amyloid Precursor Protein Plays Differential Roles in the UVA
Resistance and Proliferation of Human Retinal Pigment Epithelial Cells. Protein Pept Lett 2022; 29:313-327. [DOI: 10.2174/0929866529666220217124152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Background:
Age-related macular degeneration (AMD) can be characterised by
degeneration of retinal pigment epithelial (RPE) cells and the accumulation, in retinal drusen
deposits, of amyloid beta-peptides proteolytically derived, by secretases, from the amyloid precursor
protein (APP). Ultraviolet (UV) light exposure is a risk factor for the development of AMD.
Objectives:
In the current study, we investigated whether APP and/or its proteolysis are linked to the
UVA resistance or proliferation of ARPE-19 human RPE cells.
Methods:
Cell viability was determined, following UVA exposure, with prior small interfering
RNA-mediated APP depletion or secretase inhibitor treatments. APP levels/proteolysis were
analysed by immunoblotting. Cells were also grown in the presence/absence of secretase inhibitors
to assess their effects on longer-term culture growth. Finally, the effects of APP proteolytic
fragments on ARPE-19 cell proliferation were monitored following co-culture with human
embryonic kidney cells stably over-expressing these fragments.
Results:
Endogenous APP was depleted following UVA irradiation and β-secretase, but not α-
secretase, and the processing of the protein was reduced. Experimental APP depletion or γ-secretase
(but not α- or β-secretase) inhibition ablated the detrimental effect of UVA on cell viability. In
contrast, α-secretase, and possibly γ-secretase but not β-secretase activity, appeared to promote the
longer-term proliferation of ARPE-19 cells in the absence of UVA irradiation.
Conclusions:
There are clear but differential links between APP expression/proteolysis and the
proliferation and UVA resistance of ARPE-19 cells indicating that the protein should be
investigated further in relation to the identification of possible drug targets for the treatment of
AMD.
Collapse
Affiliation(s)
- Fatima Sultan
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United
Kingdom
| | - Edward T. Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United
Kingdom
| |
Collapse
|
29
|
McLaughlin T, Medina A, Perkins J, Yera M, Wang JJ, Zhang SX. Cellular stress signaling and the unfolded protein response in retinal degeneration: mechanisms and therapeutic implications. Mol Neurodegener 2022; 17:25. [PMID: 35346303 PMCID: PMC8962104 DOI: 10.1186/s13024-022-00528-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background The retina, as part of the central nervous system (CNS) with limited capacity for self-reparation and regeneration in mammals, is under cumulative environmental stress due to high-energy demands and rapid protein turnover. These stressors disrupt the cellular protein and metabolic homeostasis, which, if not alleviated, can lead to dysfunction and cell death of retinal neurons. One primary cellular stress response is the highly conserved unfolded protein response (UPR). The UPR acts through three main signaling pathways in an attempt to restore the protein homeostasis in the endoplasmic reticulum (ER) by various means, including but not limited to, reducing protein translation, increasing protein-folding capacity, and promoting misfolded protein degradation. Moreover, recent work has identified a novel function of the UPR in regulation of cellular metabolism and mitochondrial function, disturbance of which contributes to neuronal degeneration and dysfunction. The role of the UPR in retinal neurons during aging and under disease conditions in age-related macular degeneration (AMD), retinitis pigmentosa (RP), glaucoma, and diabetic retinopathy (DR) has been explored over the past two decades. Each of the disease conditions and their corresponding animal models provide distinct challenges and unique opportunities to gain a better understanding of the role of the UPR in the maintenance of retinal health and function. Method We performed an extensive literature search on PubMed and Google Scholar using the following keywords: unfolded protein response, metabolism, ER stress, retinal degeneration, aging, age-related macular degeneration, retinitis pigmentosa, glaucoma, diabetic retinopathy. Results and conclusion We summarize recent advances in understanding cellular stress response, in particular the UPR, in retinal diseases, highlighting the potential roles of UPR pathways in regulation of cellular metabolism and mitochondrial function in retinal neurons. Further, we provide perspective on the promise and challenges for targeting the UPR pathways as a new therapeutic approach in age- and disease-related retinal degeneration.
Collapse
Affiliation(s)
- Todd McLaughlin
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Andy Medina
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jacob Perkins
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Maria Yera
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA. .,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA. .,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
30
|
Zhang H, Jiang W, Zhao Y, Song T, Xi Y, Han G, Jin Y, Song M, Bai K, Zhou J, Ding Y. Lipoprotein-Inspired Nanoscavenger for the Three-Pronged Modulation of Microglia-Derived Neuroinflammation in Alzheimer's Disease Therapy. NANO LETTERS 2022; 22:2450-2460. [PMID: 35271279 DOI: 10.1021/acs.nanolett.2c00191] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The inflammatory dysfunction of microglia from excess amyloid-β peptide (Aβ) disposal is an overlooked but pathogenic event in Alzheimer's disease (AD). Here, we exploit a native high-density lipoprotein (HDL)-inspired nanoscavenger (pHDL/Cur-siBACE1) that combines the trinity of phosphatidic acid-functionalized HDL (pHDL), curcumin (Cur), and β-site APP cleavage enzyme 1 targeted siRNA (siBACE1) to modulate microglial dysfunction. By mimicking the natural lipoprotein transport route, pHDL can penetrate the blood-brain barrier and sequentially target Aβ plaque, where Aβ catabolism is accelerated without microglial dysfunction. The benefit results are from a three-pronged modulation strategy, including promoted Aβ clearance with an antibody-like Aβ binding affinity, normalized microglial dysfunction by blocking the NF-κB pathway, and reduced Aβ production by gene silence (44%). After treatment, the memory deficit and neuroinflammation of APPswe/PSEN 1dE9 mice are reversed. Collectively, this study highlights the double-edged sword role of microglia and provides a promising tactic for modulating microglial dysfunction in AD treatment.
Collapse
Affiliation(s)
- Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Wenxin Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanpei Zhao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yilong Xi
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Mingjie Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Kaiwen Bai
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
31
|
Damian I, Nicoară SD. SD-OCT Biomarkers and the Current Status of Artificial Intelligence in Predicting Progression from Intermediate to Advanced AMD. Life (Basel) 2022; 12:life12030454. [PMID: 35330205 PMCID: PMC8950761 DOI: 10.3390/life12030454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of blindness in the Western World. Optical coherence tomography (OCT) has revolutionized the diagnosis and follow-up of AMD patients. This review focuses on SD-OCT imaging biomarkers which were identified as predictors for progression in intermediate AMD to late AMD, either geographic atrophy (GA) or choroidal neovascularization (CNV). Structural OCT remains the most compelling modality to study AMD features related to the progression such as drusen characteristics, hyperreflective foci (HRF), reticular pseudo-drusen (RPD), sub-RPE hyper-reflective columns and their impact on retinal layers. Further on, we reviewed articles that attempted to integrate biomarkers that have already proven their involvement in intermediate AMD progression, in their models of artificial intelligence (AI). By combining structural biomarkers with genetic risk and lifestyle the predictive ability becomes more accurate.
Collapse
Affiliation(s)
- Ioana Damian
- Department of Ophthalmology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Simona Delia Nicoară
- Department of Ophthalmology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
- Clinic of Ophthalmology, Emergency County Hospital, 3-5 Clinicilor Street, 40006 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264592771
| |
Collapse
|
32
|
Santos FM, Mesquita J, Castro-de-Sousa JP, Ciordia S, Paradela A, Tomaz CT. Vitreous Humor Proteome: Targeting Oxidative Stress, Inflammation, and Neurodegeneration in Vitreoretinal Diseases. Antioxidants (Basel) 2022; 11:505. [PMID: 35326156 PMCID: PMC8944522 DOI: 10.3390/antiox11030505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is defined as an unbalance between pro-oxidants and antioxidants, as evidenced by an increase in reactive oxygen and reactive nitrogen species production over time. It is important in the pathophysiology of retinal disorders such as diabetic retinopathy, age-related macular degeneration, retinal detachment, and proliferative vitreoretinopathy, which are the focus of this article. Although the human organism's defense mechanisms correct autoxidation caused by endogenous or exogenous factors, this may be insufficient, causing an imbalance in favor of excessive ROS production or a weakening of the endogenous antioxidant system, resulting in molecular and cellular damage. Furthermore, modern lifestyles and environmental factors contribute to increased chemical exposure and stress induction, resulting in oxidative stress. In this review, we discuss the current information about oxidative stress and the vitreous proteome with a special focus on vitreoretinal diseases. Additionally, we explore therapies using antioxidants in an attempt to rescue the body from oxidation, restore balance, and maximize healthy body function, as well as new investigational therapies that have shown significant therapeutic potential in preclinical studies and clinical trial outcomes, along with their goals and strategic approaches to combat oxidative stress.
Collapse
Affiliation(s)
- Fátima Milhano Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
| | - Joana Mesquita
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
| | - João Paulo Castro-de-Sousa
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197 Leiria, Portugal
| | - Sergio Ciordia
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Alberto Paradela
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Cândida Teixeira Tomaz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
33
|
de Almeida Torres R, de Almeida Torres R, Luchini A, Anjos Ferreira A. The oxidative and inflammatory nature of age-related macular degeneration. JOURNAL OF CLINICAL OPHTHALMOLOGY AND RESEARCH 2022. [DOI: 10.4103/jcor.jcor_268_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Mavroudis I, Chowdhury R, Petridis F, Karantali E, Chatzikonstantinou S, Balmus IM, Luca IS, Ciobica A, Kazis D. YKL-40 as a Potential Biomarker for the Differential Diagnosis of Alzheimer's Disease. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010060. [PMID: 35056368 PMCID: PMC8777884 DOI: 10.3390/medicina58010060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, associated with extensive neuronal loss, dendritic and synaptic changes resulting in significant cognitive impairment. An increased number of studies have given rise to the neuroinflammatory hypothesis in AD. It is widely accepted that AD brains show chronic inflammation, probably triggered by the presence of insoluble amyloid beta deposits and neurofibrillary tangles (NFT) and is also related to the activation of neuronal death cascade. In the present study we aimed to investigate the role of YKL-40 levels in the cerebrospinal fluid (CSF) in the diagnosis of AD, and to discuss whether there are further potential roles of this protein in the management and treatment of AD. We conducted an online search on PubMed, Web of Science, and the Cochrane library databases from 1990 to 2021. The quantitative analysis showed that the levels of YKL-40 were significantly higher in Alzheimer’s disease compared to controls, to mild cognitive impairment (MCI) AD (MCI-AD) and to stable MCI. They were also increased in MCI-AD compared to stable MCI. The present study shows that the CSF levels of YKL-40 could be potentially used as a biomarker for the prognosis of mild cognitive impairment and the likelihood of progression to AD, as well as for the differential diagnosis between AD and MCI.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK; (I.M.); (R.C.)
| | - Rumana Chowdhury
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK; (I.M.); (R.C.)
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.P.); (E.K.); (S.C.); (D.K.)
| | - Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.P.); (E.K.); (S.C.); (D.K.)
| | - Symela Chatzikonstantinou
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.P.); (E.K.); (S.C.); (D.K.)
| | - Ioana Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, ”Alexandru Ioan Cuza” University of Iasi, Alexandru Lapsuneanu Street, No. 26, 700057 Iasi, Romania;
| | - Iuliana Simona Luca
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Correspondence: (I.S.L.); (A.C.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Correspondence: (I.S.L.); (A.C.)
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.P.); (E.K.); (S.C.); (D.K.)
| |
Collapse
|
35
|
Complement as a powerful "influencer" in the brain during development, adulthood and neurological disorders. Adv Immunol 2021; 152:157-222. [PMID: 34844709 DOI: 10.1016/bs.ai.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complement system was long considered as only a powerful effector arm of the immune system that, while critically protective, could lead to inflammation and cell death if overactivated, even in the central nervous system (CNS). However, in the past decade it has been recognized as playing critical roles in key physiological processes in the CNS, including neurogenesis and synaptic remodeling in the developing and adult brain. Inherent in these processes are the interactions with cells in the brain, and the cascade of interactions and functional consequences that ensue. As a result, investigations of therapeutic approaches for both suppressing excessive complement driven neurotoxicity and aberrant sculpting of neuronal circuits, require broad (and deep) knowledge of the functional activities of multiple components of this highly evolved and regulated system to avoid unintended negative consequences in the clinic. Advances in basic science are beginning to provide a roadmap for translation to therapeutics, with both small molecule and biologics. Here, we present examples of the critical roles of proper complement function in the development and sculpting of the nervous system, and in enabling rapid protection from infection and clearance of dying cells. Microglia are highlighted as important command centers that integrate signals from the complement system and other innate sensors that are programed to provide support and protection, but that direct detrimental responses to aberrant activation and/or regulation of the system. Finally, we present promising research areas that may lead to effective and precision strategies for complement targeted interventions to promote neurological health.
Collapse
|
36
|
Le JT, Agrón E, Keenan TDL, Clemons TE, Brenowitz WD, Yaffe K, Chew EY. Assessing bidirectional associations between cognitive impairment and late age-related macular degeneration in the Age-Related Eye Disease Study 2. Alzheimers Dement 2021; 18:1296-1305. [PMID: 34758100 DOI: 10.1002/alz.12473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/06/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION We aimed to investigate bidirectional associations between cognitive impairment and late age-related macular degeneration (AMD). METHODS Participants in the Age-Related Eye Disease Study 2 (AREDS2) received annual eye examinations and cognitive function testing (e.g., Modified Telephone Interview for Cognitive Status [TICS-M]). We examined bidirectional associations between cognitive impairment (e.g., a TICS-M score < 30) and late AMD at 5 and 10 years. RESULTS Five thousand one hundred eighty-nine eyes (3157 participants; mean age 72.7 years) were analyzed and followed for a median of 10.4 years. Eyes of participants with cognitive impairment at baseline were more likely to progress to late AMD at 5 years (hazard ratio [HR], 1.24; 95% confidence interval [CI], 1.08-1.43) and 10 years (HR, 1.20; 95% CI, 1.05-1.37) than eyes of participants without cognitive impairment. Worse baseline AMD severity was not associated with developing cognitive impairment. DISCUSSION Cognitive impairment is associated with late AMD progression in AREDS2. Our finding highlights the importance of eyecare for people with cognitive impairment.
Collapse
Affiliation(s)
- Jimmy T Le
- Division of Epidemiology and Clinical Applications & Division of Extramural Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elvira Agrón
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Willa D Brenowitz
- Departments of Psychiatry and Behavioral Science, Neurology, and Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Kristine Yaffe
- Department of Neurology, University of California San Francisco, San Francisco, San Francisco, California, USA.,Departments of Psychiatry and Behavioral Science, Neurology, and Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
37
|
Esteban O, Marcuello C, Martinez M, Lavilla L, Marco S, Ascaso FJ. Macular and choroidal thickness in Down syndrome by swept-source optical coherence tomography (SS-OCT). ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96:618-622. [PMID: 34756287 DOI: 10.1016/j.oftale.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/05/2021] [Indexed: 06/13/2023]
Abstract
Down syndrome (DS) is associated with certain structural and functional disorders in the whole visual system. The purpose was to compare retinal and choroidal thickness using swept-source optical coherence tomography (SS-OCT) in DS subjects with controls. This cross-sectional study included 100 eyes of 52 DS subjects and 78 eyes of 39 matching age and axial length controls. Our results showed that inner or outer retinal and ganglionar thickness showed no significant differences between DS and control group (p > 0.05). However, retinal foveal thickness (rFT), ganglion foveal thickness (gFT) were significantly higher in DS group than in controls, whereas choroidal foveal thickness (cFT) and some choroidal quadrants of inner and outer rings were significantly lower (p < 0.05). This the first pilot study to provide information about macular and choroidal thicknesses in SD using SS-OCT compared to controls. Further analyses with larger numbers of subjects are needed to confirm our results.
Collapse
Affiliation(s)
- O Esteban
- Departamento de Oftalmología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.
| | - C Marcuello
- Departamento de Psicología y Sociología, Universidad de Zaragoza, Zaragoza, Spain
| | | | - L Lavilla
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - S Marco
- Departamento de Oftalmología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - F J Ascaso
- Departamento de Oftalmología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| |
Collapse
|
38
|
Amadoro G, Latina V, Balzamino BO, Squitti R, Varano M, Calissano P, Micera A. Nerve Growth Factor-Based Therapy in Alzheimer's Disease and Age-Related Macular Degeneration. Front Neurosci 2021; 15:735928. [PMID: 34566573 PMCID: PMC8459906 DOI: 10.3389/fnins.2021.735928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease which is the most common cause of dementia among the elderly. Imbalance in nerve growth factor (NGF) signaling, metabolism, and/or defect in NGF transport to the basal forebrain cholinergic neurons occurs in patients affected with AD. According to the cholinergic hypothesis, an early and progressive synaptic and neuronal loss in a vulnerable population of basal forebrain involved in memory and learning processes leads to degeneration of cortical and hippocampal projections followed by cognitive impairment with accumulation of misfolded/aggregated Aβ and tau protein. The neuroprotective and regenerative effects of NGF on cholinergic neurons have been largely demonstrated, both in animal models of AD and in living patients. However, the development of this neurotrophin as a disease-modifying therapy in humans is challenged by both delivery limitations (inability to cross the blood-brain barrier (BBB), poor pharmacokinetic profile) and unwanted side effects (pain and weight loss). Age-related macular degeneration (AMD) is a retinal disease which represents the major cause of blindness in developed countries and shares several clinical and pathological features with AD, including alterations in NGF transduction pathways. Interestingly, nerve fiber layer thinning, degeneration of retinal ganglion cells and changes of vascular parameters, aggregation of Aβ and tau protein, and apoptosis also occur in the retina of both AD and AMD. A protective effect of ocular administration of NGF on both photoreceptor and retinal ganglion cell degeneration has been recently described. Besides, the current knowledge about the detection of essential trace metals associated with AD and AMD and their changes depending on the severity of diseases, either systemic or locally detected, further pave the way for a promising diagnostic approach. This review is aimed at describing the employment of NGF as a common therapeutic approach to AMD and AD and the diagnostic power of detection of essential trace metals associated with both diseases. The multiple approaches employed to allow a sustained release/targeting of NGF to the brain and its neurosensorial ocular extensions will be also discussed, highlighting innovative technologies and future translational prospects.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Rome, Italy
- European Brain Research Institute, Rome, Italy
| | | | | | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Monica Varano
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Rome, Italy
| | | | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Rome, Italy
| |
Collapse
|
39
|
May A, Su F, Dinh B, Ehlen R, Tran C, Adivikolanu H, Shaw PX. Ongoing controversies and recent insights of the ARMS2-HTRA1 locus in age-related macular degeneration. Exp Eye Res 2021; 210:108605. [PMID: 33930395 DOI: 10.1016/j.exer.2021.108605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/10/2021] [Accepted: 04/21/2021] [Indexed: 01/17/2023]
Abstract
Age-related macular degeneration (AMD) is the most common cause of central vision loss among elderly populations in industrialized countries. Genome-wide association studies have consistently associated two genomic loci with progression to late-stage AMD: the complement factor H (CFH) locus on chromosome 1q31 and the age-related maculopathy susceptibility 2-HtrA serine peptidase 1 (ARMS2-HTRA1) locus on chromosome 10q26. While the CFH risk variant has been shown to alter complement activity, the ARMS2-HTRA1 risk haplotype remains enigmatic due to high linkage disequilibrium and inconsistent functional findings spanning two genes that are plausibly causative for AMD risk. In this review, we detail the genetic and functional evidence used to support either ARMS2 or HTRA1 as the causal gene for AMD risk, emphasizing both the historical development and the current understanding of the ARMS2-HTRA1 locus in AMD pathogenesis. We conclude by summarizing the evidence in favor of HTRA1 and present our hypothesis whereby HTRA1-derived ECM fragments mediate AMD pathogenesis.
Collapse
Affiliation(s)
- Adam May
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| | - Fei Su
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| | - Brian Dinh
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| | - Rachael Ehlen
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| | - Christina Tran
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| | - Harini Adivikolanu
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| | - Peter X Shaw
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| |
Collapse
|
40
|
Liao C, Xu J, Chen Y, Ip NY. Retinal Dysfunction in Alzheimer's Disease and Implications for Biomarkers. Biomolecules 2021; 11:biom11081215. [PMID: 34439882 PMCID: PMC8394950 DOI: 10.3390/biom11081215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that manifests as cognitive deficits and memory decline, especially in old age. Several biomarkers have been developed to monitor AD progression. Given that the retina and brain share some similarities including features related to anatomical composition and neurological functions, the retina is closely associated with the progression of AD. Herein, we review the evidence of retinal dysfunction in AD, particularly at the early stage, together with the underlying molecular mechanisms. Furthermore, we compared the retinal pathologies of AD and other ophthalmological diseases and summarized potential retinal biomarkers measurable by existing technologies for detecting AD, providing insights for the future development of diagnostic tools.
Collapse
Affiliation(s)
- Chunyan Liao
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Jinying Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| | - Nancy Y. Ip
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Division of Life Science, Molecular Neuroscience Center, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| |
Collapse
|
41
|
Rehan S, Giroud N, Al-Yawer F, Wittich W, Phillips N. Visual Performance and Cortical Atrophy in Vision-Related Brain Regions Differ Between Older Adults with (or at Risk for) Alzheimer's Disease. J Alzheimers Dis 2021; 83:1125-1148. [PMID: 34397410 DOI: 10.3233/jad-201521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Visual impairment is associated with deficits in cognitive function and risk for cognitive decline and Alzheimer's disease (AD). OBJECTIVE The purpose of this study was to characterize the degree of visual impairment and explore the association thereof with cortical atrophy in brain regions associated with visual processing in individuals with (or at risk for) AD. METHODS Using the Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND) dataset, we analyzed vision and brain imaging data from three diagnostic groups: individuals with subjective cognitive decline (SCD; N = 35), mild cognitive impairment (MCI; N = 74), and mild AD (N = 30). We used ANCOVAs to determine whether performance on reading acuity and contrast sensitivity tests differed across diagnostic groups. Hierarchical regression analyses were applied to determine whether visual performance predicted gray matter volume for vision-related regions of interest above and beyond group membership. RESULTS The AD group performed significantly worse on reading acuity (F(2,138) = 4.12, p < 0.01, ω 2 = 0.04) compared to the SCD group and on contrast sensitivity (F(2,138) = 7.6, p < 0.01, ω 2 = 0.09) compared to the SCD and MCI groups, which did not differ from each other. Visual performance was associated with volume in some vision-related structures beyond clinical diagnosis. CONCLUSION Our findings demonstrate poor visual performance in AD and that both group membership and visual performance are predictors of cortical pathology, consistent with the idea that atrophy in visual areas and pathways contributes to the functional vision deficits observed in AD.
Collapse
Affiliation(s)
- Sana Rehan
- Department of Psychology, Centre for Research in Human Development>, Concordia University, Montréal, Québec, Canada.,Centre for Research on Brain, Language, and Music, Montréal, Québec, Canada
| | - Nathalie Giroud
- Institute of Computational Linguistics, University of Zurich, Zurich, Switzerland
| | - Faisal Al-Yawer
- Department of Psychology, Centre for Research in Human Development>, Concordia University, Montréal, Québec, Canada.,Centre for Research on Brain, Language, and Music, Montréal, Québec, Canada
| | - Walter Wittich
- School of Optometry, Université de Montréal, Montreal, Quebec, Canada
| | - Natalie Phillips
- Department of Psychology, Centre for Research in Human Development>, Concordia University, Montréal, Québec, Canada.,Centre for Research on Brain, Language, and Music, Montréal, Québec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| |
Collapse
|
42
|
The Value of OCT and OCTA as Potential Biomarkers for Preclinical Alzheimer's Disease: A Review Study. Life (Basel) 2021; 11:life11070712. [PMID: 34357083 PMCID: PMC8306512 DOI: 10.3390/life11070712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
Preclinical Alzheimer's disease (AD) includes cognitively healthy subjects with at least one positive biomarker: reduction in cerebrospinal fluid Aβ42 or visualization of cerebral amyloidosis by positron emission tomography imaging. The use of these biomarkers is expensive, invasive, and not always possible. It has been shown that the retinal changes measured by optical coherence tomography (OCT) and OCT-angiography (OCTA) could be biomarkers of AD. Diagnosis in early stages before irreversible AD neurological damage takes place is important for the development of new therapeutic interventions. In this review, we summarize the findings of different published studies using OCT and OCTA in participants with preclinical AD. To date, there have been few studies on this topic and they are methodologically very dissimilar. Moreover, these include only two longitudinal studies. For these reasons, it would be interesting to unify the methodology, make the inclusion criteria more rigorous, and conduct longer longitudinal studies to assess the evolution of these subjects. If the results were consistent across repeated studies with the same methodology, this could provide us with insight into the value of the retinal changes observed by OCT/OCTA as potential reliable, cost-effective, and noninvasive biomarkers of preclinical AD.
Collapse
|
43
|
Hu ML, Quinn J, Xue K. Interactions between Apolipoprotein E Metabolism and Retinal Inflammation in Age-Related Macular Degeneration. Life (Basel) 2021; 11:life11070635. [PMID: 34210002 PMCID: PMC8305051 DOI: 10.3390/life11070635] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial retinal disorder that is a major global cause of severe visual impairment. The development of an effective therapy to treat geographic atrophy, the predominant form of AMD, remains elusive due to the incomplete understanding of its pathogenesis. Central to AMD diagnosis and pathology are the hallmark lipid and proteinaceous deposits, drusen and reticular pseudodrusen, that accumulate in the subretinal pigment epithelium and subretinal spaces, respectively. Age-related changes and environmental stressors, such as smoking and a high-fat diet, are believed to interact with the many genetic risk variants that have been identified in several major biochemical pathways, including lipoprotein metabolism and the complement system. The APOE gene, encoding apolipoprotein E (APOE), is a major genetic risk factor for AMD, with the APOE2 allele conferring increased risk and APOE4 conferring reduced risk, in comparison to the wildtype APOE3. Paradoxically, APOE4 is the main genetic risk factor in Alzheimer’s disease, a disease with features of neuroinflammation and amyloid-beta deposition in common with AMD. The potential interactions of APOE with the complement system and amyloid-beta are discussed here to shed light on their roles in AMD pathogenesis, including in drusen biogenesis, immune cell activation and recruitment, and retinal inflammation.
Collapse
Affiliation(s)
- Monica L. Hu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia;
| | - Joel Quinn
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Correspondence:
| |
Collapse
|
44
|
The CD36 Ligand-Promoted Autophagy Protects Retinal Pigment Epithelial Cells from Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6691402. [PMID: 33854697 PMCID: PMC8019622 DOI: 10.1155/2021/6691402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium (RPE) performs many functions that maintain photoreceptor health. Oxidative damage to the RPE is a critical component in the pathogenesis of eye diseases such as age-related macular degeneration (AMD). Ligands of the cluster of differentiation 36 (CD36) have previously preserved photoreceptor integrity in mouse models of AMD. The cytoprotective effect of the CD36 ligand MPE-001 on RPE cells has now been elucidated employing a model of oxidative stress. Sodium iodate (NaIO3) induced formation of reactive oxygen species and apoptosis in human RPE cells, which were decreased by MPE-001 without affecting antioxidant enzyme transcription. Immunoblotting and immunostaining assays showed a restorative effect of MPE-001 on the autophagic flux disrupted by NaIO3, which was associated with an increase in syntaxin 17-positive mature autophagosomes. The cytoprotective effect of MPE-001 was completely abolished by the autophagy inhibitors wortmannin and bafilomycin A1. In conclusion, we report for the first time an autophagy-dependent protection of RPE cells from oxidative stress by a CD36 ligand.
Collapse
|
45
|
You M, Rong R, Zeng Z, Li H, Xia X, Ji D. Single-cell RNA sequencing: A new opportunity for retinal research. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1652. [PMID: 33754496 DOI: 10.1002/wrna.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/08/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a technology for single-cell transcriptome analysis that can be used to characterize complex dynamics of various retinal cell types. It provides deep scrutiny into the gene expression character of diverse cell types, lending insight into all the biological processes being carried out. The scRNA-seq is an alternative to regular RNA-seq, which does not achieve cellular heterogeneity. The retina, is a part of the central nervous system (CNS) and consists of six types of neurons and several types of glial cells. Studying retinal cell heterogeneity is important for understanding retinal diseases. Currently, scRNA-seq is employed to assess retina development and retinal disease pathogenesis and has improved our understanding of the relationship between the retina, its visual pathways, and the brain. Moreover, this technology provides new ideas on the sensitivity and molecular mechanisms of cell subtypes involved in retinal-related diseases. The application of scRNA-seq technology has given us a deeper understanding of the latest advancements and challenges in retinal development and diseases. We advocate scRNA-seq as one of the important tools for developing novel therapies for retinal diseases. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Development RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Mengling You
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Rong Rong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Zhou Zeng
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Haibo Li
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| |
Collapse
|
46
|
Chen J, Sun J, Hu Y, Wan X, Wang Y, Gao M, Liang J, Liu T, Sun X. MicroRNA-191-5p ameliorates amyloid-β 1-40 -mediated retinal pigment epithelium cell injury by suppressing the NLRP3 inflammasome pathway. FASEB J 2021; 35:e21184. [PMID: 33715208 DOI: 10.1096/fj.202000645rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Amyloid β (Aβ) is a crucial component of drusen, the hallmark of the early stage of age-related macular degeneration (AMD), and can cause retinal pigment epithelium (RPE) cell damage through activation of the inflammatory response. MicroRNAs play a critical role in inflammation. However, the mechanism underlying the effect of microRNAs on the NLRP3 inflammasome induced by Aβ remains poorly understood. In the present study, we demonstrated that Aβ1-40 -mediated RPE damage by inducing a decrease in endogenous miR-191-5p expression. This led to the upregulation of its target gene, C/EBPβ. C/EBPβ acts as a transcription factor for NLRP3, promotes its transcription, and upregulates the downstream inflammatory factors Caspase-1 and IL-1β. Correspondingly, overexpression of miR-191-5p alleviated RPE cell injury by suppressing inflammation. The present study elucidates a novel transcriptional regulatory mechanism of the NLRP3 inflammasome. Our findings suggest an anti-inflammatory effect of miR-191-5p in Aβ1-40 -induced RPE impairment, shedding light on novel preventive or therapeutic approaches for AMD-associated RPE impairment.
Collapse
Affiliation(s)
- Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junran Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yifan Hu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yuwei Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Gao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.,Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Esteban O, Marcuello C, Martinez M, Lavilla L, Marco S, Ascaso FJ. Macular and choroidal thickness in Down syndrome by swept-source optical coherence tomography (SS-OCT). ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96:S0365-6691(21)00054-X. [PMID: 33715915 DOI: 10.1016/j.oftal.2021.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Down syndrome (DS) is associated with certain structural and functional disorders in the whole visual system. The purpose was to compare retinal and choroidal thickness using swept-source optical coherence tomography (SS-OCT) in DS subjects with controls. This cross-sectional study included 100 eyes of 52 DS subjects and 78 eyes of 39 matching age and axial length controls. Our results showed that inner or outer retinal and ganglionar thickness showed no significant differences between DS and control group (p>0.05). However, retinal foveal thickness (rFT), ganglion foveal thickness (gFT) were significantly higher in DS group than in controls, whereas choroidal foveal thickness (cFT) and some choroidal quadrants of inner and outer rings were significantly lower (p<0.05). This the first pilot study to provide information about macular and choroidal thicknesses in SD using SS-OCT compared to controls. Further analyses with larger numbers of subjects are needed to confirm our results.
Collapse
Affiliation(s)
- O Esteban
- Departamento de Oftalmología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, España.
| | - C Marcuello
- Departamento de Psicología y Sociología, Universidad de Zaragoza, Zaragoza, España
| | | | - L Lavilla
- Hospital Universitario Miguel Servet, Zaragoza, España
| | - S Marco
- Departamento de Oftalmología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| | - F J Ascaso
- Departamento de Oftalmología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, España
| |
Collapse
|
48
|
Wang L, Mao X. Role of Retinal Amyloid-β in Neurodegenerative Diseases: Overlapping Mechanisms and Emerging Clinical Applications. Int J Mol Sci 2021; 22:2360. [PMID: 33653000 PMCID: PMC7956232 DOI: 10.3390/ijms22052360] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 02/03/2023] Open
Abstract
Amyloid-β (Aβ) accumulations have been identified in the retina for neurodegeneration-associated disorders like Alzheimer's disease (AD), glaucoma, and age-related macular degeneration (AMD). Elevated retinal Aβ levels were associated with progressive retinal neurodegeneration, elevated cerebral Aβ accumulation, and increased disease severity with a decline in cognition and vision. Retinal Aβ accumulation and its pathological effects were demonstrated to occur prior to irreversible neurodegeneration, which highlights its potential in early disease detection and intervention. Using the retina as a model of the brain, recent studies have focused on characterizing retinal Aβ to determine its applicability for population-based screening of AD, which warrants a further understanding of how Aβ manifests between these disorders. While current treatments directly targeting Aβ accumulations have had limited results, continued exploration of Aβ-associated pathological pathways may yield new therapeutic targets for preserving cognition and vision. Here, we provide a review on the role of retinal Aβ manifestations in these distinct neurodegeneration-associated disorders. We also discuss the recent applications of retinal Aβ for AD screening and current clinical trial outcomes for Aβ-associated treatment approaches. Lastly, we explore potential future therapeutic targets based on overlapping mechanisms of pathophysiology in AD, glaucoma, and AMD.
Collapse
Affiliation(s)
- Liang Wang
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Lynn SA, Johnston DA, Scott JA, Munday R, Desai RS, Keeling E, Weaterton R, Simpson A, Davis D, Freeman T, Chatelet DS, Page A, Cree AJ, Lee H, Newman TA, Lotery AJ, Ratnayaka JA. Oligomeric Aβ 1-42 Induces an AMD-Like Phenotype and Accumulates in Lysosomes to Impair RPE Function. Cells 2021; 10:413. [PMID: 33671133 PMCID: PMC7922851 DOI: 10.3390/cells10020413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease-associated amyloid beta (Aβ) proteins accumulate in the outer retina with increasing age and in eyes of age-related macular degeneration (AMD) patients. To study Aβ-induced retinopathy, wild-type mice were injected with nanomolar human oligomeric Aβ1-42, which recapitulate the Aβ burden reported in human donor eyes. In vitro studies investigated the cellular effects of Aβ in endothelial and retinal pigment epithelial (RPE) cells. Results show subretinal Aβ-induced focal AMD-like pathology within 2 weeks. Aβ exposure caused endothelial cell migration, and morphological and barrier alterations to the RPE. Aβ co-localized to late-endocytic compartments of RPE cells, which persisted despite attempts to clear it through upregulation of lysosomal cathepsin B, revealing a novel mechanism of lysosomal impairment in retinal degeneration. The rapid upregulation of cathepsin B was out of step with the prolonged accumulation of Aβ within lysosomes, and contrasted with enzymatic responses to internalized photoreceptor outer segments (POS). Furthermore, RPE cells exposed to Aβ were identified as deficient in cargo-carrying lysosomes at time points that are critical to POS degradation. These findings imply that Aβ accumulation within late-endocytic compartments, as well as lysosomal deficiency, impairs RPE function over time, contributing to visual defects seen in aging and AMD eyes.
Collapse
Affiliation(s)
- Savannah A. Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - David A. Johnston
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.A.J.); (D.S.C.); (A.P.)
| | - Jenny A. Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Rosie Munday
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Roshni S. Desai
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Ruaridh Weaterton
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Alexander Simpson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Dillon Davis
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Thomas Freeman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - David S. Chatelet
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.A.J.); (D.S.C.); (A.P.)
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.A.J.); (D.S.C.); (A.P.)
| | - Angela J. Cree
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Helena Lee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| |
Collapse
|
50
|
Zhu J, Su T, Wang M, Li M, Liu L, Wang F. Highly Expressed Amyloid Beta-42 Of Aqueous Humor In Patients With Neovascular Macular Degeneration. Semin Ophthalmol 2021; 36:9-13. [PMID: 33587673 DOI: 10.1080/08820538.2021.1883679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Age-related macular degeneration (AMD) is a type of macular degeneration disease, and amyloid beta (aβ) is the main component of vitreous warts in AMD patients. Neovascular AMD (nAMD) is the most serious type of AMD, but its pathogenesis remains unclear. The aim of this study was to detect the expression of aβ42 in the aqueous humor of nAMD patients and to evaluate whether aβ42 expression of aqueous humor is correlated with cognitive function in these patients.Methods: A total of 70 patients were enrolled in this study, including 50 nAMD patients (nAMD group) and 20 patients with cataract (control group). The cognitive function of the patients was assessed using the Mini-Mental State Examination and Montreal Cognitive Assessment Scale, and based on their scores, 50 patients with nAMD were divided into two subgroups: the p-nAMD group (18 nAMD patients with normal cognition) and the ci-nAMD group (32 nAMD patients with cognitive impairment). An immunofluorescence microsphere probe technique was used to detect the aβ42 expression of aqueous humor in all patients. Pearson correlation analysis was used.Results: The aβ42 expression of aqueous humor was significantly higher in the nAMD group (124.56 ± 41.93 pg/mL) as compared with the control group (82.94 ± 33.75 pg/mL; P < .01). There was no significant difference in aβ42 expression of aqueous humor between the p-nAMD group (136.42 ± 51.68 pg/mL) and ci-nAMD group (117.90 ± 34.46 pg/mL; P = .14).Conclusion: In nAMD patients, aβ42 was highly expressed in the aqueous humor but was not correlated with cognitive function.
Collapse
Affiliation(s)
- Juming Zhu
- Department of Ophthalmology, the Fourth Affiliated Hospital of Nantong University, Yancheng No.1 People's Hospital, Yancheng, Jiangsu Province, China
| | - Tu Su
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Affiliate of Tongji University, School of Medicine, Shanghai, China
| | - Minli Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Affiliate of Tongji University, School of Medicine, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Affiliate of Tongji University, School of Medicine, Shanghai, China
| | - Lin Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Affiliate of Tongji University, School of Medicine, Shanghai, China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Affiliate of Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|