1
|
Morel M, Zhukova A, Lemoine F, Gascuel O. Accurate Detection of Convergent Mutations in Large Protein Alignments With ConDor. Genome Biol Evol 2024; 16:evae040. [PMID: 38451738 PMCID: PMC10986858 DOI: 10.1093/gbe/evae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Evolutionary convergences are observed at all levels, from phenotype to DNA and protein sequences, and changes at these different levels tend to be correlated. Notably, convergent mutations can lead to convergent changes in phenotype, such as changes in metabolism, drug resistance, and other adaptations to changing environments. We propose a two-component approach to detect mutations subject to convergent evolution in protein alignments. The "Emergence" component selects mutations that emerge more often than expected, while the "Correlation" component selects mutations that correlate with the convergent phenotype under study. With regard to Emergence, a phylogeny deduced from the alignment is provided by the user and is used to simulate the evolution of each alignment position. These simulations allow us to estimate the expected number of mutations in a neutral model, which is compared to the observed number of mutations in the data studied. In Correlation, a comparative phylogenetic approach, is used to measure whether the presence of each of the observed mutations is correlated with the convergent phenotype. Each component can be used on its own, for example Emergence when no phenotype is available. Our method is implemented in a standalone workflow and a webserver, called ConDor. We evaluate the properties of ConDor using simulated data, and we apply it to three real datasets: sedge PEPC proteins, HIV reverse transcriptase, and fish rhodopsin. The results show that the two components of ConDor complement each other, with an overall accuracy that compares favorably to other available tools, especially on large datasets.
Collapse
Affiliation(s)
- Marie Morel
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Université Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne, 69100, France
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Frédéric Lemoine
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
- Institut Pasteur, Université Paris Cité, CNR Virus Des Infections Respiratoires, Paris, France
| | - Olivier Gascuel
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Institut de Systématique, Evolution, Biodiversité (UMR 7205—CNRS, Muséum National d’Histoire Naturelle, SU, EPHE, UA), Paris, France
| |
Collapse
|
2
|
Zhou S, Long N, Swanstrom R. Evolution Driven By A Varying Host Environment Selects For Distinct HIV-1 Entry Phenotypes and Other Informative Variants. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1291996. [PMID: 38239974 PMCID: PMC10795538 DOI: 10.3389/fviro.2023.1291996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
HIV-1 generates remarkable intra- and inter-host viral diversity during infection. In response to dynamic selective pressures of the host environment, HIV-1 will evolve distinct phenotypes - biological features that provide fitness advantages. The transmitted form of HIV-1 has been shown to require a high density of CD4 on the target cell surface (as found on CD4+ T cells) and typically uses CCR5 as a co-receptor during entry. This phenotype is referred to as R5 T cell-tropic (or R5 T-tropic); however, HIV-1 can switch to a secondary co-receptor, CXCR4, resulting in a X4 T cell-tropic phenotype. Macrophage-tropic (or M-tropic) HIV-1 can evolve to efficiently enter cells expressing low densities of CD4 on their surface (such as macrophages/microglia). So far only CCR5-using M-tropic viruses have been found. M-tropic HIV-1 is most frequently found within the central nervous system, and infection of the CNS has been associated with neurological impairment. It has been shown that interferon resistance phenotypes have a selective advantage during transmission, but the underlying mechanism of this is still unclear. During untreated infection, HIV-1 evolves under selective pressure from both the humoral/antibody response and CD8+ T cell killing. Sufficiently potent antiviral therapy will suppress viral replication, but if the antiviral drugs are not sufficiently potent to stop replication then the replicating virus will evolve drug resistance. HIV-1 phenotypes are highly relevant to treatment efforts, clinical outcomes, vaccine studies, and cure strategies. Therefore, it is critical to understand the dynamics of the host environment that drive these phenotypes and how they affect HIV-1 pathogenesis. This review will provide a comprehensive discussion of HIV-1 entry, transmission, and drug resistance phenotypes. Finally, we will assess the methods used in previous and current research to characterize these phenotypes.
Collapse
Affiliation(s)
- Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathan Long
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Zhou S, Hill CS, Spielvogel E, Clark MU, Hudgens MG, Swanstrom R. Unique Molecular Identifiers and Multiplexing Amplicons Maximize the Utility of Deep Sequencing To Critically Assess Population Diversity in RNA Viruses. ACS Infect Dis 2022; 8:2505-2514. [PMID: 36326446 PMCID: PMC9742341 DOI: 10.1021/acsinfecdis.2c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Next generation sequencing (NGS)/deep sequencing has become an important tool in the study of viruses. The use of unique molecular identifiers (UMI) can overcome the limitations of PCR errors and PCR-mediated recombination and reveal the true sampling depth of a viral population being sequenced in an NGS experiment. This approach of enhanced sequence data represents an ideal tool to study both high and low abundance drug resistance mutations and more generally to explore the genetic structure of viral populations. Central to the use of the UMI/Primer ID approach is the creation of a template consensus sequence (TCS) for each genome sequenced. Here we describe a series of experiments to validate several aspects of the Multiplexed Primer ID (MPID) sequencing approach using the MiSeq platform. We have evaluated how multiplexing of cDNA synthesis and amplicons affects the sampling depth of the viral population for each individual cDNA and amplicon to understand the relationship between broader genome coverage versus maximal sequencing depth. We have validated reproducibility of the MPID assay in the detection of minority mutations in viral genomes. We have also examined the determinants that allow sequencing reads of PCR recombinants to contaminate the final TCS data set and show how such contamination can be limited. Finally, we provide several examples where we have applied MPID to analyze features of minority variants and describe limits on their detection in viral populations of HIV-1 and SARS-CoV-2 to demonstrate the generalizable utility of this approach with any RNA virus.
Collapse
Affiliation(s)
- Shuntai Zhou
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding Author: Shuntai Zhou - UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Collin S. Hill
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ean Spielvogel
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael U. Clark
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael G. Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ronald Swanstrom
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Evolution of Multiple Domains of the HIV-1 Envelope Glycoprotein during Coreceptor Switch with CCR5 Antagonist Therapy. Microbiol Spectr 2022; 10:e0072522. [PMID: 35727047 PMCID: PMC9431240 DOI: 10.1128/spectrum.00725-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 uses CD4 as a receptor and chemokine receptors CCR5 and/or CXCR4 as coreceptors. CCR5 antagonists are a class of antiretrovirals used to inhibit viral entry. Phenotypic prediction algorithms such as Geno2Pheno are used to assess CCR5 antagonist eligibility, for which the V3 region is screened. However, there exist scenarios where the algorithm cannot give an accurate prediction of tropism. The current study examined coreceptor shift of HIV-1 from CCR5-tropic strains to CXCR4-tropic or dual-tropic strains among five subjects in a clinical trial of the CCR5 antagonist vicriviroc. Envelope gene amplicon libraries were constructed and subjected to next-generation sequencing, as well as single-clone sequencing and functional analyses. Approximately half of the amplified full-length single envelope-encoding clones had no significant activity for infection of cells expressing high levels of CD4 and CCR5 or CXCR4. Functional analysis of 9 to 21 individual infectious clones at baseline and at the time of VF were used to construct phylogenetic trees and sequence alignments. These studies confirmed that specific residues and the overall charge of the V3 loop were the major determinants of coreceptor use, in addition to specific residues in other domains of the envelope protein in V1/V2, V4, C3, and C4 domains that may be important for coreceptor shift. These results provide greater insight into the viral genetic determinants of coreceptor shift. IMPORTANCE This study is novel in combining single-genome sequence analysis and next-generation sequencing to characterize HIV-1 quasispecies. The work highlights the importance of mutants present at frequencies of 1% or less in development of drug resistance. This study highlights a critical role of specific amino acid substitutions outside V3 that contribute to coreceptor shift as well as important roles of the V1/V2, V4, C3, and C4 domain residues.
Collapse
|
5
|
Chaillon A, Gianella S, Dellicour S, Rawlings SA, Schlub TE, De Oliveira MF, Ignacio C, Porrachia M, Vrancken B, Smith DM. HIV persists throughout deep tissues with repopulation from multiple anatomical sources. J Clin Invest 2020; 130:1699-1712. [PMID: 31910162 PMCID: PMC7108926 DOI: 10.1172/jci134815] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUNDUnderstanding HIV dynamics across the human body is important for cure efforts. This goal has been hampered by technical difficulties and the challenge of obtaining fresh tissues.METHODSThis observational study evaluated 6 individuals with HIV (n = 4 with viral suppression using antiretroviral [ART] therapy; n = 2 with rebound viremia after stopping ART), who provided serial blood samples before death and their bodies for rapid autopsy. HIV reservoirs were characterized by digital droplet PCR, single-genome amplification, and sequencing of full-length (FL) envelope HIV. Phylogeographic methods were used to reconstruct HIV spread, and generalized linear models were tested for viral factors associated with dispersal.RESULTSAcross participants, HIV DNA levels varied from approximately 0 to 659 copies/106 cells (IQR: 22.9-126.5). A total of 605 intact FL env sequences were recovered in antemortem blood cells and across 28 tissues (IQR: 5-9). Sequence analysis showed (a) the emergence of large, identical, intact HIV RNA populations in blood after cessation of therapy, which repopulated tissues throughout the body; (b) that multiple sites acted as hubs for HIV dissemination but that blood and lymphoid tissues were the main source; (c) that viral exchanges occurred within brain areas and across the blood-brain barrier; and (d) that migration was associated with low HIV divergence between sites and greater diversity at the recipient site.CONCLUSIONHIV reservoirs persisted in all deep tissues, and blood was the main source of dispersal. This may explain why eliminating HIV susceptibility in circulating T cells via bone marrow transplants allowed some individuals with HIV to experience therapy-free remission, even though deeper tissue reservoirs were not targeted.TRIAL REGISTRATIONNot applicable.FUNDINGNIH grants P01 AI31385, P30 AI036214, AI131971-01, AI120009AI036214, HD094646, AI027763, AI134295, and AI68636.
Collapse
Affiliation(s)
| | - Sara Gianella
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Laboratory of Computational and Evolutionary Virology, Leuven, Belgium
| | | | - Timothy E. Schlub
- University of Sydney, Faculty of Medicine and Health, Sydney School of Public Health, Sydney, Australia
| | | | | | | | - Bram Vrancken
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Laboratory of Computational and Evolutionary Virology, Leuven, Belgium
| | | |
Collapse
|
6
|
Zhao ZM, Campbell MC, Li N, Lee DSW, Zhang Z, Townsend JP. Detection of Regional Variation in Selection Intensity within Protein-Coding Genes Using DNA Sequence Polymorphism and Divergence. Mol Biol Evol 2018; 34:3006-3022. [PMID: 28962009 DOI: 10.1093/molbev/msx213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous approaches have been developed to infer natural selection based on the comparison of polymorphism within species and divergence between species. These methods are especially powerful for the detection of uniform selection operating across a gene. However, empirical analyses have demonstrated that regions of protein-coding genes exhibiting clusters of amino acid substitutions are subject to different levels of selection relative to other regions of the same gene. To quantify this heterogeneity of selection within coding sequences, we developed Model Averaged Site Selection via Poisson Random Field (MASS-PRF). MASS-PRF identifies an ensemble of intragenic clustering models for polymorphic and divergent sites. This ensemble of models is used within the Poisson Random Field framework to estimate selection intensity on a site-by-site basis. Using simulations, we demonstrate that MASS-PRF has high power to detect clusters of amino acid variants in small genic regions, can reliably estimate the probability of a variant occurring at each nucleotide site in sequence data and is robust to historical demographic trends and recombination. We applied MASS-PRF to human gene polymorphism derived from the 1,000 Genomes Project and divergence data from the common chimpanzee. On the basis of this analysis, we discovered striking regional variation in selection intensity, indicative of positive or negative selection, in well-defined domains of genes that have previously been associated with neurological processing, immunity, and reproduction. We suggest that amino acid-altering substitutions within these regions likely are or have been selectively advantageous in the human lineage, playing important roles in protein function.
Collapse
Affiliation(s)
- Zi-Ming Zhao
- Department of Biostatistics, Yale University, New Haven, CT
| | - Michael C Campbell
- Department of Biostatistics, Yale University, New Haven, CT.,Department of Biology, Howard University, Washington, DC
| | - Ning Li
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| | - Daniel S W Lee
- Department of Biostatistics, Yale University, New Haven, CT
| | - Zhang Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University, New Haven, CT.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| |
Collapse
|
7
|
Abstract
: Because HIV is a fast-evolving virus, HIV genomic sequences of several individuals can be used to investigate whether they belong to a transmission network. Since the infamous 'Florida dentist case' in the beginning of the 1990s, phylogenetic analyses has been recurrently used in court settings as a forensic tool in HIV transmission investigations, for example cases where one or more complainants allege that a defendant has unlawfully infected them with HIV. Such cases can arise both in the context of HIV-specific criminal laws - in countries where transmission of HIV infection is specifically criminalized - or in the context of general laws, for example, by applying physical or sexual assault laws to HIV-related cases. Although phylogenetic analysis as a forensic technique for HIV transmission investigations has become common in several countries, the methodologies have not yet been standardized, sometimes giving rise to unwarranted conclusions. In this literature review, we revisit HIV court case investigations published in the scientific literature, as well as the methodological aspects important for the application and standardization of phylogenetic analyses methods as a forensic tool. Phylogenetic methodologies are improving quickly, such that more recently, phylogenetic relatedness, directionality of transmission and timing of nodes in the tree are used to assess whether the phylogenetic transmission analysis is consistent with or contradicting the charges. We find that there has been a lack of consistency between methods used in court case investigations and that it is essential to define guidelines to be used by phylogenetic forensic experts in HIV transmission cases in court.
Collapse
|
8
|
Insights into the Impact of CD8 + Immune Modulation on Human Immunodeficiency Virus Evolutionary Dynamics in Distinct Anatomical Compartments by Using Simian Immunodeficiency Virus-Infected Macaque Models of AIDS Progression. J Virol 2017; 91:JVI.01162-17. [PMID: 28931681 DOI: 10.1128/jvi.01162-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022] Open
Abstract
A thorough understanding of the role of human immunodeficiency virus (HIV) intrahost evolution in AIDS pathogenesis has been limited by the need for longitudinally sampled viral sequences from the vast target space within the host, which are often difficult to obtain from human subjects. CD8+ lymphocyte-depleted macaques infected with simian immunodeficiency virus (SIV) provide an increasingly utilized model of pathogenesis due to clinical manifestations similar to those for HIV-1 infection and AIDS progression, as well as a characteristic rapid disease onset. Comparison of this model with SIV-infected non-CD8+ lymphocyte-depleted macaques also provides a unique opportunity to investigate the role of CD8+ cells in viral evolution and population dynamics throughout the duration of infection. Using several different phylogenetic methods, we analyzed viral gp120 sequences obtained from extensive longitudinal sampling of multiple tissues and enriched leukocyte populations from SIVmac251-infected macaques with or without CD8+ lymphocyte depletion. SIV evolutionary and selection patterns in non-CD8+ lymphocyte-depleted animals were characterized by sequential population turnover and continual viral adaptation, a scenario readily comparable to intrahost evolutionary patterns during human HIV infection in the absence of antiretroviral therapy. Alternatively, animals that were depleted of CD8+ lymphocytes exhibited greater variation in population dynamics among tissues and cell populations over the course of infection. Our findings highlight the major role for CD8+ lymphocytes in prolonging disease progression through continual control of SIV subpopulations from various anatomical compartments and the potential for greater independent viral evolutionary behavior among these compartments in response to immune modulation.IMPORTANCE Although developments in combined antiretroviral therapy (cART) strategies have successfully prolonged the time to AIDS onset in HIV-1-infected individuals, a functional cure has yet to be found. Improvement of drug interventions for a virus that is able to infect a wide range of tissues and cell types requires a thorough understanding of viral adaptation and infection dynamics within this target milieu. Although it is difficult to accomplish in the human host, longitudinal sampling of multiple anatomical locations is readily accessible in the SIV-infected macaque models of neuro-AIDS. The significance of our research is in identifying the impact of immune modulation, through differing immune selective pressures, on viral evolutionary behavior in a multitude of anatomical compartments. The results provide evidence encouraging the development of a more sophisticated model that considers a network of individual viral subpopulations within the host, with differing infection and transmission dynamics, which is necessary for more effective treatment strategies.
Collapse
|
9
|
The interplay of two mutations in a population of varying size: A stochastic eco-evolutionary model for clonal interference. Stoch Process Their Appl 2017. [DOI: 10.1016/j.spa.2016.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Lee J, Malmberg JL, Wood BA, Hladky S, Troyer R, Roelke M, Cunningham M, McBride R, Vickers W, Boyce W, Boydston E, Serieys L, Riley S, Crooks K, VandeWoude S. Feline Immunodeficiency Virus Cross-Species Transmission: Implications for Emergence of New Lentiviral Infections. J Virol 2017; 91:e02134-16. [PMID: 28003486 PMCID: PMC5309969 DOI: 10.1128/jvi.02134-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/09/2016] [Indexed: 11/20/2022] Open
Abstract
Owing to a complex history of host-parasite coevolution, lentiviruses exhibit a high degree of species specificity. Given the well-documented viral archeology of human immunodeficiency virus (HIV) emergence following human exposures to simian immunodeficiency virus (SIV), an understanding of processes that promote successful cross-species lentiviral transmissions is highly relevant. We previously reported natural cross-species transmission of a subtype of feline immunodeficiency virus, puma lentivirus A (PLVA), between bobcats (Lynx rufus) and mountain lions (Puma concolor) for a small number of animals in California and Florida. In this study, we investigate host-specific selection pressures, within-host viral fitness, and inter- versus intraspecies transmission patterns among a larger collection of PLV isolates from free-ranging bobcats and mountain lions. Analyses of proviral and viral RNA levels demonstrate that PLVA fitness is severely restricted in mountain lions compared to that in bobcats. We document evidence of diversifying selection in three of six PLVA genomes from mountain lions, but we did not detect selection among 20 PLVA isolates from bobcats. These findings support the hypothesis that PLVA is a bobcat-adapted virus which is less fit in mountain lions and under intense selection pressure in the novel host. Ancestral reconstruction of transmission events reveals that intraspecific PLVA transmission has occurred among panthers (Puma concolor coryi) in Florida following the initial cross-species infection from bobcats. In contrast, interspecific transmission from bobcats to mountain lions predominates in California. These findings document outcomes of cross-species lentiviral transmission events among felids that compare to the emergence of HIV from nonhuman primates.IMPORTANCE Cross-species transmission episodes can be singular, dead-end events or can result in viral replication and spread in the new species. The factors that determine which outcome will occur are complex, and the risk of new virus emergence is therefore difficult to predict. We used molecular techniques to evaluate the transmission, fitness, and adaptation of puma lentivirus A (PLVA) between bobcats and mountain lions in two geographic regions. Our findings illustrate that mountain lion exposure to PLVA is relatively common but does not routinely result in communicable infections in the new host. This is attributed to efficient species barriers that largely prevent lentiviral adaptation. However, the evolutionary capacity for lentiviruses to adapt to novel environments may ultimately overcome host restriction mechanisms over time and under certain ecological circumstances. This phenomenon provides a unique opportunity to examine cross-species transmission events leading to new lentiviral emergence.
Collapse
Affiliation(s)
- Justin Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jennifer L Malmberg
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Britta A Wood
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Sahaja Hladky
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Ryan Troyer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Melody Roelke
- Leidos Biomedical Research, Inc., Bethesda, Maryland, USA
| | - Mark Cunningham
- Florida Fish and Wildlife Conservation Commission, Gainesville, Florida, USA
| | | | - Winston Vickers
- Wildlife Health Center, University of California, Davis, Davis, California, USA
| | - Walter Boyce
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Erin Boydston
- U.S. Geological Survey, Western Ecological Research Center, Thousand Oaks, California, USA
| | - Laurel Serieys
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
- Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Seth Riley
- Santa Monica Mountains National Recreation Area, National Park Service, Thousand Oaks, California, USA
| | - Kevin Crooks
- Department of Fish, Wildlife, and Conservation Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
11
|
Deep Sequencing of the HIV-1 env Gene Reveals Discrete X4 Lineages and Linkage Disequilibrium between X4 and R5 Viruses in the V1/V2 and V3 Variable Regions. J Virol 2016; 90:7142-58. [PMID: 27226378 DOI: 10.1128/jvi.00441-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED HIV-1 requires the CD4 receptor and a coreceptor (CCR5 [R5 phenotype] or CXCR4 [X4 phenotype]) to enter cells. Coreceptor tropism can be assessed by either phenotypic or genotypic analysis, the latter using bioinformatics algorithms to predict tropism based on the env V3 sequence. We used the Primer ID sequencing strategy with the MiSeq sequencing platform to reveal the structure of viral populations in the V1/V2 and C2/V3 regions of the HIV-1 env gene in 30 late-stage and 6 early-stage subjects. We also used endpoint dilution PCR followed by cloning of env genes to create pseudotyped virus to explore the link between genotypic predictions and phenotypic assessment of coreceptor usage. We found out that the most stringently sequence-based calls of X4 variants (Geno2Pheno false-positive rate [FPR] of ≤2%) formed distinct lineages within the viral population, and these were detected in 24 of 30 late-stage samples (80%), which was significantly higher than what has been seen previously by using other approaches. Non-X4 lineages were not skewed toward lower FPR scores in X4-containing populations. Phenotypic assays showed that variants with an intermediate FPR (2 to 20%) could be either X4/dual-tropic or R5 variants, although the X4 variants made up only about 25% of the lineages with an FPR of <10%, and these variants carried a distinctive sequence change. Phylogenetic analysis of both the V1/V2 and C2/V3 regions showed evidence of recombination within but very little recombination between the X4 and R5 lineages, suggesting that these populations are genetically isolated. IMPORTANCE Primer ID sequencing provides a novel approach to study genetic structures of viral populations. X4 variants may be more prevalent than previously reported when assessed by using next-generation sequencing (NGS) and with a greater depth of sampling than single-genome amplification (SGA). Phylogenetic analysis to identify lineages of sequences with intermediate FPR values may provide additional information for accurately predicting X4 variants by using V3 sequences. Limited recombination occurs between X4 and R5 lineages, suggesting that X4 and R5 variants are genetically isolated and may be replicating in different cell types or that X4/R5 recombinants have reduced fitness.
Collapse
|
12
|
Abstract
Although the use of phylogenetic trees in epidemiological investigations has become commonplace, their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the true transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals' HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. We confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results.
Collapse
|
13
|
Hartfield M, Murall CL, Alizon S. Clinical applications of pathogen phylogenies. Trends Mol Med 2014; 20:394-404. [DOI: 10.1016/j.molmed.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/16/2022]
|
14
|
Lee JS, Bevins SN, Serieys LEK, Vickers W, Logan KA, Aldredge M, Boydston EE, Lyren LM, McBride R, Roelke-Parker M, Pecon-Slattery J, Troyer JL, Riley SP, Boyce WM, Crooks KR, VandeWoude S. Evolution of puma lentivirus in bobcats (Lynx rufus) and mountain lions (Puma concolor) in North America. J Virol 2014; 88:7727-37. [PMID: 24741092 PMCID: PMC4097783 DOI: 10.1128/jvi.00473-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/31/2014] [Indexed: 02/05/2023] Open
Abstract
Mountain lions (Puma concolor) throughout North and South America are infected with puma lentivirus clade B (PLVB). A second, highly divergent lentiviral clade, PLVA, infects mountain lions in southern California and Florida. Bobcats (Lynx rufus) in these two geographic regions are also infected with PLVA, and to date, this is the only strain of lentivirus identified in bobcats. We sequenced full-length PLV genomes in order to characterize the molecular evolution of PLV in bobcats and mountain lions. Low sequence homology (88% average pairwise identity) and frequent recombination (1 recombination breakpoint per 3 isolates analyzed) were observed in both clades. Viral proteins have markedly different patterns of evolution; sequence homology and negative selection were highest in Gag and Pol and lowest in Vif and Env. A total of 1.7% of sites across the PLV genome evolve under positive selection, indicating that host-imposed selection pressure is an important force shaping PLV evolution. PLVA strains are highly spatially structured, reflecting the population dynamics of their primary host, the bobcat. In contrast, the phylogeography of PLVB reflects the highly mobile mountain lion, with diverse PLVB isolates cocirculating in some areas and genetically related viruses being present in populations separated by thousands of kilometers. We conclude that PLVA and PLVB are two different viral species with distinct feline hosts and evolutionary histories. Importance: An understanding of viral evolution in natural host populations is a fundamental goal of virology, molecular biology, and disease ecology. Here we provide a detailed analysis of puma lentivirus (PLV) evolution in two natural carnivore hosts, the bobcat and mountain lion. Our results illustrate that PLV evolution is a dynamic process that results from high rates of viral mutation/recombination and host-imposed selection pressure.
Collapse
Affiliation(s)
- Justin S Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah N Bevins
- USDA National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Laurel E K Serieys
- Department of Ecology and Evolutionary Biology, University of California-Los Angeles, Los Angeles, California, USA
| | - Winston Vickers
- Department of Pathology, Microbiology, and Immunology, University of California-Davis, Davis, California, USA
| | - Ken A Logan
- Colorado Parks and Wildlife, Montrose, Colorado, USA
| | - Mat Aldredge
- Colorado Parks and Wildlife, Fort Collins, Colorado, USA
| | - Erin E Boydston
- USGS Western Ecological Research Center, Thousand Oaks, California, USA
| | - Lisa M Lyren
- USGS Western Ecological Research Center, Thousand Oaks, California, USA
| | - Roy McBride
- Rancher's Supply Inc., Ochopee, Florida, USA
| | - Melody Roelke-Parker
- Laboratory of Genetic Diversity, National Cancer Institute, Frederick, Maryland, USA
| | - Jill Pecon-Slattery
- Laboratory of Genetic Diversity, National Cancer Institute, Frederick, Maryland, USA
| | - Jennifer L Troyer
- Laboratory of Genetic Diversity, National Cancer Institute, Frederick, Maryland, USA
| | - Seth P Riley
- Department of Ecology and Evolutionary Biology, University of California-Los Angeles, Los Angeles, California, USA
| | - Walter M Boyce
- Department of Pathology, Microbiology, and Immunology, University of California-Davis, Davis, California, USA
| | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
15
|
Doyle VP, Andersen JJ, Nelson BJ, Metzker ML, Brown JM. Untangling the influences of unmodeled evolutionary processes on phylogenetic signal in a forensically important HIV-1 transmission cluster. Mol Phylogenet Evol 2014; 75:126-37. [PMID: 24589520 DOI: 10.1016/j.ympev.2014.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 11/28/2022]
Abstract
Stochastic models of sequence evolution have been developed to reflect many biologically important processes, allowing for accurate phylogenetic reconstruction when an appropriate model is selected. However, commonly used models do not incorporate several potentially important biological processes. Spurious phylogenetic inference may result if these processes play an important role in the evolution of a dataset yet are not incorporated into assumed models. Few studies have attempted to assess the relative importance of multiple processes in producing spurious inferences. The application of phylogenetic methods to infer the source of HIV-1 transmission clusters depends upon accurate phylogenetic results, yet there are several relevant unmodeled biological processes (e.g., recombination and convergence) that may cause complications. Here, through analyses of HIV-1 env sequences from a small, forensically important transmission cluster, we tease apart the impact of these processes and present evidence suggesting that convergent evolution and high rates of insertions and deletions (causing alignment uncertainty) led to spurious phylogenetic signal with forensic relevance. Previous analyses show paraphyly of HIV-1 lineages sampled from an individual who, based on non-phylogenetic evidence, had never acted as a source of infection for others in this transmission cluster. If true, this pattern calls into question assumptions underlying phylogenetic approaches to source and recipient identification. By systematically assessing the contribution of different unmodeled processes, we demonstrate that removal of sites likely influenced by strong positive selection both reduces the alignment-wide signal supporting paraphyly of viruses sampled from this individual and eliminates support for the effects of recombination. Additionally, the removal of ambiguously aligned sites alters strongly supported relationships among viruses sampled from different individuals. These observations highlight the need to jointly consider multiple unmodeled evolutionary processes and motivate a phylogenomic perspective when inferring viral transmission histories.
Collapse
Affiliation(s)
- Vinson P Doyle
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - John J Andersen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Bradley J Nelson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Michael L Metzker
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, and Cell and Molecular Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy M Brown
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
16
|
A framework including recombination for analyzing the dynamics of within-host HIV genetic diversity. PLoS One 2014; 9:e87655. [PMID: 24516557 PMCID: PMC3917834 DOI: 10.1371/journal.pone.0087655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/31/2013] [Indexed: 12/01/2022] Open
Abstract
This paper presents a novel population genetic model and a computationally and statistically tractable framework for analyzing within-host HIV diversity based on serial samples of HIV DNA sequences. This model considers within-host HIV evolution during the chronic phase of infection and assumes that the HIV population is homogeneous at the beginning, corresponding to the time of seroconversion, and evolves according to the Wright-Fisher reproduction model with recombination and variable mutation rate across nucleotide sites. In addition, the population size and generation time vary over time as piecewise constant functions of time. Under this model I approximate the genealogical and mutational processes for serial samples of DNA sequences by a continuous coalescent-recombination process and an inhomogeneous Poisson process, respectively. Based on these derivations, an efficient algorithm is described for generating polymorphisms in serial samples of DNA sequences under the model including various substitution models. Extensions of the algorithm are also described for other demographic scenarios that can be more suitable for analyzing the dynamics of genetic diversity of other pathogens in vitro and in vivo. For the case of the infinite-sites model, I derive analytical formulas for the expected number of polymorphic sites in sample of DNA sequences, and apply the developed simulation and analytical methods to explore the fit of the model to HIV genetic diversity based on serial samples of HIV DNA sequences from 9 HIV-infected individuals. The results particularly show that the estimates of the ratio of recombination rate over mutation rate can vary over time between very high and low values, which can be considered as a consequence of the impact of selection forces.
Collapse
|
17
|
Enhanced fusion and virion incorporation for HIV-1 subtype C envelope glycoproteins with compact V1/V2 domains. J Virol 2013; 88:2083-94. [PMID: 24335304 DOI: 10.1128/jvi.02308-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In infected people, the HIV-1 envelope glycoprotein (Env) constantly evolves to escape the immune response while retaining the essential elements needed to mediate viral entry into target cells. The extensive genetic variation of Env is particularly striking in the V1/V2 hypervariable domains. In this study, we investigated the trade-off, in terms of fusion efficiency, for encoding V1/V2 domains of different lengths. We found that natural variations in V1/V2 length exert a profound impact on HIV-1 entry. Variants encoding compact V1/V2 domains mediated fusion with higher efficiencies than related Envs encoding longer V1/V2 domains. By exchanging the V1/V2 domains between Envs of the same infected person or between two persons linked by a transmission event, we further demonstrated that V1/V2 domains critically influence both Env incorporation into viral particles and fusion to primary CD4 T cells and monocyte-derived dendritic cells. Shortening the V1/V2 domains consistently increased Env incorporation and fusion, whereas lengthening the V1/V2 domains decreased Env incorporation and fusion. Given that in a new host transmitted founder viruses are distinguished by compact Envs with fewer glycosylation sites, our study points to fusion and possibly Env incorporation into virions as limiting steps for transmission of HIV-1 to a new host and suggests that the length and/or the N-glycosylation profile of the V1/V2 domain influences these early steps in the HIV life cycle.
Collapse
|
18
|
Salemi M. The intra-host evolutionary and population dynamics of human immunodeficiency virus type 1: a phylogenetic perspective. Infect Dis Rep 2013; 5:e3. [PMID: 24470967 PMCID: PMC3892624 DOI: 10.4081/idr.2013.s1.e3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 01/09/2023] Open
Abstract
The intra-host evolutionary and population dynamics of the human immunodeficiency virus type 1 (HIV-1), the cause of the acquired immunodeficiency syndrome, have been the focus of one of the most extensive study efforts in the field of molecular evolution over the past three decades. As HIV-1 is among the fastest mutating organisms known, viral sequence data sampled over time from infected patients can provide, through phylogenetic analysis, significant insights about the tempo and mode of evolutionary processes shaped by complex interaction with the host milieu. Five main aspects are discussed: the patterns of HIV-1 intra-host diversity and divergence over time in relation to different phases of disease progression; the impact of selection on the temporal structure of HIV-1 intra-host genealogies inferred from longitudinally sampled viral sequences; HIV-1 intra-host sub-population structure; the potential relationship between viral evolutionary rate and disease progression and the central evolutionary role played by recombination occurring in super-infected cells.
Collapse
Affiliation(s)
- Marco Salemi
- Department of Pathology Immunology and Laboratory Medicine and Emerging Pathogens Institute, University of Florida, Gainesville, USA
| |
Collapse
|
19
|
Bull ME, Heath LM, McKernan-Mullin JL, Kraft KM, Acevedo L, Hitti JE, Cohn SE, Tapia KA, Holte SE, Dragavon JA, Coombs RW, Mullins JI, Frenkel LM. Human immunodeficiency viruses appear compartmentalized to the female genital tract in cross-sectional analyses but genital lineages do not persist over time. J Infect Dis 2013; 207:1206-15. [PMID: 23315326 DOI: 10.1093/infdis/jit016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Whether unique human immunodeficiency type 1 (HIV) genotypes occur in the genital tract is important for vaccine development and management of drug resistant viruses. Multiple cross-sectional studies suggest HIV is compartmentalized within the female genital tract. We hypothesize that bursts of HIV replication and/or proliferation of infected cells captured in cross-sectional analyses drive compartmentalization but over time genital-specific viral lineages do not form; rather viruses mix between genital tract and blood. METHODS Eight women with ongoing HIV replication were studied during a period of 1.5 to 4.5 years. Multiple viral sequences were derived by single-genome amplification of the HIV C2-V5 region of env from genital secretions and blood plasma. Maximum likelihood phylogenies were evaluated for compartmentalization using 4 statistical tests. RESULTS In cross-sectional analyses compartmentalization of genital from blood viruses was detected in three of eight women by all tests; this was associated with tissue specific clades containing multiple monotypic sequences. In longitudinal analysis, the tissues-specific clades did not persist to form viral lineages. Rather, across women, HIV lineages were comprised of both genital tract and blood sequences. CONCLUSIONS The observation of genital-specific HIV clades only in cross-sectional analysis and an absence of genital-specific lineages in longitudinal analyses suggest a dynamic interchange of HIV variants between the female genital tract and blood.
Collapse
Affiliation(s)
- Marta E Bull
- Department of Pediatrics. University of Washington, Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wong A, Rodrigue N, Kassen R. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Genet 2012; 8:e1002928. [PMID: 23028345 PMCID: PMC3441735 DOI: 10.1371/journal.pgen.1002928] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 07/15/2012] [Indexed: 01/03/2023] Open
Abstract
Adaptation is likely to be an important determinant of the success of many pathogens, for example when colonizing a new host species, when challenged by antibiotic treatment, or in governing the establishment and progress of long-term chronic infection. Yet, the genomic basis of adaptation is poorly understood in general, and for pathogens in particular. We investigated the genetics of adaptation to cystic fibrosis-like culture conditions in the presence and absence of fluoroquinolone antibiotics using the opportunistic pathogen Pseudomonas aeruginosa. Whole-genome sequencing of experimentally evolved isolates revealed parallel evolution at a handful of known antibiotic resistance genes. While the level of antibiotic resistance was largely determined by these known resistance genes, the costs of resistance were instead attributable to a number of mutations that were specific to individual experimental isolates. Notably, stereotypical quinolone resistance mutations in DNA gyrase often co-occurred with other mutations that, together, conferred high levels of resistance but no consistent cost of resistance. This result may explain why these mutations are so prevalent in clinical quinolone-resistant isolates. In addition, genes involved in cyclic-di-GMP signalling were repeatedly mutated in populations evolved in viscous culture media, suggesting a shared mechanism of adaptation to this CF–like growth environment. Experimental evolutionary approaches to understanding pathogen adaptation should provide an important complement to studies of the evolution of clinical isolates. Pathogens face a hostile and often novel environment when infecting a new host, and adaptation to this environment can be critical to a pathogen's survival. The genetic basis of pathogen adaptation is in turn important for treatment, since the consistency with which therapies succeed may depend on the extent to which a pathogen adapts via the same routes in different patients. In this study, we investigate adaptation of the bacterium Pseudomonas aeruginosa to laboratory conditions that resemble the lungs of cystic fibrosis patients and to quinolone antibiotics. We find that a handful of genes and genetic pathways are repeatedly involved in adaptation to each condition. Nonetheless, other, less common mutations can play important roles in determining fitness, complicating strategies aimed at reducing the prevalence of antibiotic resistance.
Collapse
Affiliation(s)
- Alex Wong
- Department of Biology, Carleton University, Ottawa, Canada.
| | | | | |
Collapse
|
21
|
Soleimani P, Barzegar A, Movafeghi A. Phylogenetic study of SIVcpz MT145 virus based on proteome and genome analysis. J Biomol Struct Dyn 2012; 30:328-37. [DOI: 10.1080/07391102.2012.680032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Sargsyan O. Analytical framework for identifying and differentiating recent hitchhiking and severe bottleneck effects from multi-locus DNA sequence data. PLoS One 2012; 7:e37588. [PMID: 22662176 PMCID: PMC3360760 DOI: 10.1371/journal.pone.0037588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/21/2012] [Indexed: 11/19/2022] Open
Abstract
Hitchhiking and severe bottleneck effects have impact on the dynamics of genetic diversity of a population by inducing homogenization at a single locus and at the genome-wide scale, respectively. As a result, identification and differentiation of the signatures of such events from DNA sequence data at a single locus is challenging. This paper develops an analytical framework for identifying and differentiating recent homogenization events at multiple neutral loci in low recombination regions. The dynamics of genetic diversity at a locus after a recent homogenization event is modeled according to the infinite-sites mutation model and the Wright-Fisher model of reproduction with constant population size. In this setting, I derive analytical expressions for the distribution, mean, and variance of the number of polymorphic sites in a random sample of DNA sequences from a locus affected by a recent homogenization event. Based on this framework, three likelihood-ratio based tests are presented for identifying and differentiating recent homogenization events at multiple loci. Lastly, I apply the framework to two data sets. First, I consider human DNA sequences from four non-coding loci on different chromosomes for inferring evolutionary history of modern human populations. The results suggest, in particular, that recent homogenization events at the loci are identifiable when the effective human population size is 50,000 or greater in contrast to 10,000, and the estimates of the recent homogenization events are agree with the "Out of Africa" hypothesis. Second, I use HIV DNA sequences from HIV-1-infected patients to infer the times of HIV seroconversions. The estimates are contrasted with other estimates derived as the mid-time point between the last HIV-negative and first HIV-positive screening tests. The results show that significant discrepancies can exist between the estimates.
Collapse
Affiliation(s)
- Ori Sargsyan
- Theoretical Biology and Biophysics and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
| |
Collapse
|
23
|
Huang G, Takeuchi Y, Korobeinikov A. HIV evolution and progression of the infection to AIDS. J Theor Biol 2012; 307:149-59. [PMID: 22634206 DOI: 10.1016/j.jtbi.2012.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 12/12/2022]
Abstract
In this paper, we propose and discuss a possible mechanism, which, via continuous mutations and evolution, eventually enables HIV to break from immune control. In order to investigate this mechanism, we employ a simple mathematical model, which describes the relationship between evolving HIV and the specific CTL response and explicitly takes into consideration the role of CD4(+)T cells (helper T cells) in the activation of the CTL response. Based on the assumption that HIV evolves towards higher replication rates, we quantitatively analyze the dynamical properties of this model. The model exhibits the existence of two thresholds, defined as the immune activation threshold and the immunodeficiency threshold, which are critical for the activation and persistence of the specific cell-mediated immune response: the specific CTL response can be established and is able to effectively control an infection when the virus replication rate is between these two thresholds. If the replication rate is below the immune activation threshold, then the specific immune response cannot be reliably established due to the shortage of antigen-presenting cells. Besides, the specific immune response cannot be established when the virus replication rate is above the immunodeficiency threshold due to low levels of CD4(+)T cells. The latter case implies the collapse of the immune system and beginning of AIDS. The interval between these two thresholds roughly corresponds to the asymptomatic stage of HIV infection. The model shows that the duration of the asymptomatic stage and progression of the disease are very sensitive to variations in the model parameters. In particularly, the rate of production of the naive lymphocytes appears to be crucial.
Collapse
Affiliation(s)
- Gang Huang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, PR China
| | | | | |
Collapse
|
24
|
Change of positive selection pressure on HIV-1 envelope gene inferred by early and recent samples. PLoS One 2011; 6:e18630. [PMID: 21526184 PMCID: PMC3079721 DOI: 10.1371/journal.pone.0018630] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 03/11/2011] [Indexed: 11/28/2022] Open
Abstract
HIV-1 infection has been on the rise in Japan recently, and the main transmission route has changed from blood transmission in the 1980s to homo- and/or hetero-sexual transmission in the 2000s. The lack of early viral samples with clinical information made it difficult to investigate the possible virological changes over time. In this study, we sequenced 142 full-length env genes collected from 16 Japanese subjects infected with HIV-1 in the 1980s and in the 2000s. We examined the diversity change in sequences and potential adaptive evolution of the virus to the host population. We used a codon-based likelihood method under the branch-site and clade models to detect positive selection operating on the virus. The clade model was extended to account for different positive selection pressures in different viral populations. The result showed that the selection pressure was weaker in the 2000s than in the 1980s, indicating that it might have become easier for the HIV to infect a new host and to develop into AIDS now than 20 years ago and that the HIV may be becoming more virulent in the Japanese population. The study provides useful information on the surveillance of HIV infection and highlights the utility of the extended clade models in analysis of virus populations which may be under different selection pressures.
Collapse
|
25
|
Sniegowski PD, Gerrish PJ. Beneficial mutations and the dynamics of adaptation in asexual populations. Philos Trans R Soc Lond B Biol Sci 2010; 365:1255-63. [PMID: 20308101 DOI: 10.1098/rstb.2009.0290] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We discuss the dynamics of adaptive evolution in asexual (clonal) populations. The classical 'periodic selection' model of clonal evolution assumed that beneficial mutations are very rare and therefore substitute unfettered into populations as occasional, isolated events. Newer models allow for the possibility that beneficial mutations are sufficiently common to coexist and compete for fixation within populations. Experimental evolution studies in microbes provide empirical support for stochastic models in which both selection and mutation are strong effects and clones compete for fixation; however, the relative importance of competition among clones bearing mutations of different selective effects versus competition among clones bearing multiple mutations remains unresolved. We provide some new theoretical results, moreover, suggesting that population dynamics consistent with the periodic selection model can arise even in a deterministic model that can accommodate a very high beneficial mutation rate.
Collapse
Affiliation(s)
- Paul D Sniegowski
- Department of Biology, University of Pennsylvania, , Philadelphia, PA 19063, USA.
| | | |
Collapse
|
26
|
Bożek K, Lengauer T. Positive selection of HIV host factors and the evolution of lentivirus genes. BMC Evol Biol 2010; 10:186. [PMID: 20565842 PMCID: PMC2906474 DOI: 10.1186/1471-2148-10-186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/18/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Positive selection of host proteins that interact with pathogens can indicate factors relevant for infection and potentially be a measure of pathogen driven evolution. RESULTS Our analysis of 1439 primate genes and 175 lentivirus genomes points to specific host factors of high genetic variability that could account for differences in susceptibility to disease and indicate specific mechanisms of host defense and pathogen adaptation. We find that the largest amount of genetic change occurs in genes coding for cellular membrane proteins of the host as well as in the viral envelope genes suggesting cell entry and immune evasion as the primary evolutionary interface between host and pathogen. We additionally detect the innate immune response as a gene functional group harboring large differences among primates that could potentially account for the different levels of immune activation in the HIV/SIV primate infection. We find a significant correlation between the evolutionary rates of interacting host and viral proteins pointing to processes of the host-pathogen biology that are relatively conserved among species and to those undergoing accelerated genetic evolution. CONCLUSIONS These results indicate specific host factors and their functional groups experiencing pathogen driven evolutionary selection pressures. Individual host factors pointed to by our analysis might merit further study as potential targets of antiretroviral therapies.
Collapse
Affiliation(s)
- Katarzyna Bożek
- Max Planck Institute for Informatics Computational Biology and Applied Algorithmics Campus E1 4 66123 Saarbrücken, Germany
| | - Thomas Lengauer
- Max Planck Institute for Informatics Computational Biology and Applied Algorithmics Campus E1 4 66123 Saarbrücken, Germany
| |
Collapse
|
27
|
Cavalieri E, Florido C, Leal É, Machado DM, Camargo M, Diaz RS, Janini LM. Intrahost and interhost variability of the HIV type 1 nef gene in Brazilian children. AIDS Res Hum Retroviruses 2009; 25:1129-40. [PMID: 19943790 DOI: 10.1089/aid.2009.0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many aspects of HIV-1 pathogenesis are affected by Nef protein activity, and efforts have been made to study variation in the nef gene and how that variation relates to disease outcome. We studied the genetic diversity of the nef gene in distinct clones obtained from the same patient (intrahost) and in sequences obtained from different hosts (interhost). The set of sequences analyzed was obtained from HIV-1-infected Brazilian children and contained 112 clones from 25 children (intrahost samples), as well as 55 sequences from epidemiologically unlinked children (interhost samples). We found extensive site polymorphisms and amino acid length variations, mainly in the amino terminal region of the nef gene, between the myristoylation motif (MGxxxS) and the MHC-1 downregulation motif (Rxx). Analysis of the sequences deposited in the Los Alamos HIV sequences database ( www.hiv.lanl.gov ) indicated that the most frequent motif at the MHC-1 downregulation site in the subtype B strain is R(86%)A(64%)E(82%) (n = 1040) and R(78%)T(74%)E(56%) in the subtype C strain (n = 549). Conversely, the Brazilian subtype B isolates presented the motif R(81%)T(62%)E(67%) at this site (n = 64). A detailed analysis of selective pressures identified a concentration of codons under strong positive selection in the amino terminal region of the nef gene. We also determined that different sites are under positive selection in the subtype B and subtype C viruses. The amino acid composition in the MHC-1 downregulation motif of the nef gene in our sequences may indicate a distinct adaptive pattern of HIV-1 subtype B to the Brazilian host population.
Collapse
Affiliation(s)
| | | | - Élcio Leal
- Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
28
|
Viral adaptation to host: a proteome-based analysis of codon usage and amino acid preferences. Mol Syst Biol 2009; 5:311. [PMID: 19888206 PMCID: PMC2779085 DOI: 10.1038/msb.2009.71] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 08/05/2009] [Indexed: 01/30/2023] Open
Abstract
Viruses differ markedly in their specificity toward host organisms. Here, we test the level of general sequence adaptation that viruses display toward their hosts. We compiled a representative data set of viruses that infect hosts ranging from bacteria to humans. We consider their respective amino acid and codon usages and compare them among the viruses and their hosts. We show that bacteria-infecting viruses are strongly adapted to their specific hosts, but that they differ from other unrelated bacterial hosts. Viruses that infect humans, but not those that infect other mammals or aves, show a strong resemblance to most mammalian and avian hosts, in terms of both amino acid and codon preferences. In groups of viruses that infect humans or other mammals, the highest observed level of adaptation of viral proteins to host codon usages is for those proteins that appear abundantly in the virion. In contrast, proteins that are known to participate in host-specific recognition do not necessarily adapt to their respective hosts. The implication for the potential of viral infectivity is discussed.
Collapse
|
29
|
Buendia P, Narasimhan G. Serial evolutionary networks of within-patient HIV-1 sequences reveal patterns of evolution of X4 strains. BMC SYSTEMS BIOLOGY 2009; 3:62. [PMID: 19531207 PMCID: PMC2709891 DOI: 10.1186/1752-0509-3-62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 06/16/2009] [Indexed: 11/13/2022]
Abstract
Background The HIV virus is known for its ability to exploit numerous genetic and evolutionary mechanisms to ensure its proliferation, among them, high replication, mutation and recombination rates. Sliding MinPD, a recently introduced computational method [1], was used to investigate the patterns of evolution of serially-sampled HIV-1 sequence data from eight patients with a special focus on the emergence of X4 strains. Unlike other phylogenetic methods, Sliding MinPD combines distance-based inference with a nonparametric bootstrap procedure and automated recombination detection to reconstruct the evolutionary history of longitudinal sequence data. We present serial evolutionary networks as a longitudinal representation of the mutational pathways of a viral population in a within-host environment. The longitudinal representation of the evolutionary networks was complemented with charts of clinical markers to facilitate correlation analysis between pertinent clinical information and the evolutionary relationships. Results Analysis based on the predicted networks suggests the following:: significantly stronger recombination signals (p = 0.003) for the inferred ancestors of the X4 strains, recombination events between different lineages and recombination events between putative reservoir virus and those from a later population, an early star-like topology observed for four of the patients who died of AIDS. A significantly higher number of recombinants were predicted at sampling points that corresponded to peaks in the viral load levels (p = 0.0042). Conclusion Our results indicate that serial evolutionary networks of HIV sequences enable systematic statistical analysis of the implicit relations embedded in the topology of the structure and can greatly facilitate identification of patterns of evolution that can lead to specific hypotheses and new insights. The conclusions of applying our method to empirical HIV data support the conventional wisdom of the new generation HIV treatments, that in order to keep the virus in check, viral loads need to be suppressed to almost undetectable levels.
Collapse
Affiliation(s)
- Patricia Buendia
- Department of Biology and Center for Computational Science, University of Miami, Coral Gables, FL 33146, USA.
| | | |
Collapse
|
30
|
|
31
|
Matthews PC, Leslie AJ, Katzourakis A, Crawford H, Payne R, Prendergast A, Power K, Kelleher AD, Klenerman P, Carlson J, Heckerman D, Ndung'u T, Walker BD, Allen TM, Pybus OG, Goulder PJR. HLA footprints on human immunodeficiency virus type 1 are associated with interclade polymorphisms and intraclade phylogenetic clustering. J Virol 2009; 83:4605-15. [PMID: 19244334 PMCID: PMC2668443 DOI: 10.1128/jvi.02017-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 02/10/2009] [Indexed: 11/20/2022] Open
Abstract
The selection of escape mutations has a major impact on immune control of infections with viruses such as human immunodeficiency virus (HIV). Viral evasion of CD8(+) T-cell responses leaves predictable combinations of escape mutations, termed HLA "footprints." The most clearly defined footprints are those associated with HLA alleles that are linked with successful control of HIV, such as HLA-B*57. Here we investigated the extent to which HLA footprint sites in HIV type 1 (HIV-1) are associated with viral evolution among and within clades. First, we examined the extent to which amino acid differences between HIV-1 clades share identity with sites of HLA-mediated selection pressure and observed a strong association, in particular with respect to sites of HLA-B selection (P < 10(-6)). Similarly, the sites of amino acid variability within a clade were found to overlap with sites of HLA-selected mutation. Second, we studied the impact of HLA selection on interclade phylogeny. Removing the sites of amino acid variability did not significantly affect clade-specific clustering, reflecting the central role of founder effects in establishing distinct clades. However, HLA footprints may underpin founder strains, and we show that amino acid substitutions between clades alter phylogeny, underlining a potentially substantial role for HLA in driving ongoing viral evolution. Finally, we investigated the impact of HLA selection on within-clade phylogeny and demonstrate that even a single HLA allele footprint can result in significant phylogenetic clustering of sequences. In conclusion, these data highlight the fact that HLA can be a strong selection force for both intra- and interclade HIV evolution at a population level.
Collapse
Affiliation(s)
- Philippa C Matthews
- Department of Paediatrics, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Biesinger T, Kimata JT. HIV-1 Transmission, Replication Fitness and Disease Progression. Virology (Auckl) 2008; 2008:49-63. [PMID: 20354593 PMCID: PMC2846839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023] Open
Abstract
Upon transmission, human immunodeficiency virus type 1 (HIV-1) establishes infection of the lymphatic reservoir, leading to profound depletion of the memory CD4(+) T cell population, despite the induction of the adaptive immune response. The rapid evolution and association of viral variants having distinct characteristics with different stages of infection, the level of viral burden, and rate of disease progression suggest a role for viral variants in this process. Here, we review the literature on HIV-1 variants and disease and discuss the importance of viral fitness for transmission and disease.
Collapse
Affiliation(s)
| | - Jason T. Kimata
- Corresponding Author: Department of Molecular Virology and Microbiology, BCM385, Room 811D, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA, Tel: 713-798-4536, FAX: 713-798-4435,
| |
Collapse
|
33
|
Biesinger T, Kimata JT. HIV-1 Transmission, Replication Fitness and Disease Progression. Virology (Auckl) 2008. [DOI: 10.4137/vrt.s860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Upon transmission, human immunodeficiency virus type 1 (HIV-1) establishes infection of the lymphatic reservoir, leading to profound depletion of the memory CD4+ T cell population despite the induction of the adaptive immune response. The rapid evolution and association of viral variants having distinct characteristics during different stages of infection, the level of viral burden, and rate of disease progression suggest a role for viral variants in this process. Here, we review the literature on HIV-1 variants and disease and discuss the importance of viral fitness for transmission and disease.
Collapse
Affiliation(s)
- Tasha Biesinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030. U.S.A
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030. U.S.A
| |
Collapse
|
34
|
Liu S, Xing H, He X, Xin R, Zhang Y, Zhu J, Shao Y. Dynamic analysis of genetic diversity of gag and env regions of HIV-1 CRF07_BC recombinant in intravenous drug users in Xinjiang Uvghur Autonomous Region, China. Arch Virol 2008; 153:1233-40. [PMID: 18504522 DOI: 10.1007/s00705-008-0107-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 03/31/2008] [Indexed: 12/30/2022]
Abstract
The aim of this study was to investigate the genetic variation of HIV-1 CRF07_BC, the most prevalent circulating strain in intravenous drug users (IDUs) in China. We studied the diversity in the C2-V5 region of the HIV-1 env gene and in the p17-p24 region of the HIV-1 gag gene from the same samples in 12 IDUs who were divided into two groups according to the length of infection time. Two IDUs were longitudinally monitored from the time of seroconversion for 2-2.5 years. The viral divergence from the founder strain and the viral population diversity between sequential time points were analyzed in two men. The data show that the divergence of the env gene is higher than that of gag in general, while the diversity of the gag gene is sometimes higher than that of env during the course of HIV evolution. In addition, env and gag gene diversity increased over time. The observed patterns and associations may enhance our understanding of HIV-1 evolution.
Collapse
Affiliation(s)
- Shengya Liu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Poon AFY, Lewis FI, Pond SLK, Frost SDW. An evolutionary-network model reveals stratified interactions in the V3 loop of the HIV-1 envelope. PLoS Comput Biol 2007; 3:e231. [PMID: 18039027 PMCID: PMC2082504 DOI: 10.1371/journal.pcbi.0030231] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 10/11/2007] [Indexed: 12/28/2022] Open
Abstract
The third variable loop (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope is a principal determinant of antibody neutralization and progression to AIDS. Although it is undoubtedly an important target for vaccine research, extensive genetic variation in V3 remains an obstacle to the development of an effective vaccine. Comparative methods that exploit the abundance of sequence data can detect interactions between residues of rapidly evolving proteins such as the HIV-1 envelope, revealing biological constraints on their variability. However, previous studies have relied implicitly on two biologically unrealistic assumptions: (1) that founder effects in the evolutionary history of the sequences can be ignored, and; (2) that statistical associations between residues occur exclusively in pairs. We show that comparative methods that neglect the evolutionary history of extant sequences are susceptible to a high rate of false positives (20%-40%). Therefore, we propose a new method to detect interactions that relaxes both of these assumptions. First, we reconstruct the evolutionary history of extant sequences by maximum likelihood, shifting focus from extant sequence variation to the underlying substitution events. Second, we analyze the joint distribution of substitution events among positions in the sequence as a Bayesian graphical model, in which each branch in the phylogeny is a unit of observation. We perform extensive validation of our models using both simulations and a control case of known interactions in HIV-1 protease, and apply this method to detect interactions within V3 from a sample of 1,154 HIV-1 envelope sequences. Our method greatly reduces the number of false positives due to founder effects, while capturing several higher-order interactions among V3 residues. By mapping these interactions to a structural model of the V3 loop, we find that the loop is stratified into distinct evolutionary clusters. We extend our model to detect interactions between the V3 and C4 domains of the HIV-1 envelope, and account for the uncertainty in mapping substitutions to the tree with a parametric bootstrap.
Collapse
Affiliation(s)
- Art F Y Poon
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America.
| | | | | | | |
Collapse
|
36
|
Kupfer B, Sing T, Schüffler P, Hall R, Kurz R, McKeown A, Schneweis KE, Eberl W, Oldenburg J, Brackmann HH, Rockstroh JK, Spengler U, Däumer MP, Kaiser R, Lengauer T, Matz B. Fifteen years of env C2V3C3 evolution in six individuals infected clonally with human immunodeficiency virus type 1. J Med Virol 2007; 79:1629-39. [PMID: 17854039 DOI: 10.1002/jmv.20976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study of the evolution of human immunodeficiency virus type 1 (HIV-1) requires blood samples collected longitudinally and data on the approximate time point of infection. Although these requirements were fulfilled in several previous studies, the infectious sources were either unknown or heterogeneous genetically. In the present study, HIV-1 env C2V3C3 (nt 7029-7315) evolution was examined retrospectively in a cohort of hemophiliacs. Compared to other cohorts, the area of interest here was the infection of six hemophiliacs by the same virus strain, that is, the infecting viruses shared an identical genome. As expected, divergence from the founder sequence as well as interpatient divergence of the predominant virus strains increased significantly over time. Based on the V3 nucleotide sequences, CCR5 usage was predicted exclusively throughout the whole period of infection in all patients. Interestingly, common patterns of viral evolution were detected in the patients of the cohort. Four amino acid substitutions within the V3 loop emerged and persisted subsequently in five (positions 305 and 308 of the HXB2 gp120 reference sequence) and six patients (positions 325 and 328 in HXB2 gp120), respectively. These common changes within the V3 loop are likely to be enforced by HIV-1 specific immune response.
Collapse
Affiliation(s)
- Bernd Kupfer
- Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Buendia P, Narasimhan G. Sliding MinPD: building evolutionary networks of serial samples via an automated recombination detection approach. Bioinformatics 2007; 23:2993-3000. [PMID: 17717035 PMCID: PMC3187926 DOI: 10.1093/bioinformatics/btm413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Traditional phylogenetic methods assume tree-like evolutionary models and are likely to perform poorly when provided with sequence data from fast-evolving, recombining viruses. Furthermore, these methods assume that all the sequence data are from contemporaneous taxa, which is not valid for serially-sampled data. A more general approach is proposed here, referred to as the Sliding MinPD method, that reconstructs evolutionary networks for serially-sampled sequences in the presence of recombination. RESULTS Sliding MinPD combines distance-based phylogenetic methods with automated recombination detection based on the best-known sliding window approaches to reconstruct serial evolutionary networks. Its performance was evaluated through comprehensive simulation studies and was also applied to a set of serially-sampled HIV sequences from a single patient. The resulting network organizations reveal unique patterns of viral evolution and may help explain the emergence of disease-associated mutants and drug-resistant strains with implications for patient prognosis and treatment strategies.
Collapse
|
38
|
Leal E, Janini M, Diaz RS. Selective pressures of human immunodeficiency virus type 1 (HIV-1) during pediatric infection. INFECTION GENETICS AND EVOLUTION 2007; 7:694-707. [PMID: 17719854 DOI: 10.1016/j.meegid.2007.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/13/2007] [Accepted: 07/17/2007] [Indexed: 01/09/2023]
Abstract
Pediatric HIV-1 infection presents remarkable features that are distinct from those observed in adult infection. In vertically HIV-1-infected children, the viral load declines more slowly, and the cytotoxic T-lymphocyte response emerges late, only after the sixth month of life. This response generally tends to be narrow and less intense than that seen in adults. While the nuances of immune response at the cellular level during pediatric HIV-1 infection have been addressed, there is a lack of studies focusing on the consequences of this delayed and narrowed immune response at the population level. To better explore these features, we evaluated the selection regimen in gag, pol and env gene fragments of HIV-1 during pediatric infection. We estimated the number of nonsynonymous substitutions (d(N)) and synonymous substitutions (d(S)) codon-by-codon, using the maximum likelihood method and a modified counting method. Notably, both methods indicated a similar intensity of selection (measure by mean d(N)/d(S) ratio) between children and adults. Additionally, sites under positive selection were equally distributed along HIV genes and the location of these sites was analogous between children and adults. Therefore, the selective regimen in HIV during pediatric infection is equally broad and intense likewise the observed in adults. Unexpectedly, our phylogenetic-based analysis enabled us to identify two regions in the env gene of HIV with distinct adaptive functions. The first region, located in the vicinity of V3 loop, contains sites that might increase viral fitness within-host during antibody attack and virus-cell interaction. The second region, restricted to amino acids 334-368 of Gp160, contains sites that might increase viral fitness during interhost transmission at the population level.
Collapse
Affiliation(s)
- Elcio Leal
- Federal University of São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
39
|
Abstract
Positive selection in genes and genomes can point to the evolutionary basis for differences among species and among races within a species. The detection of positive selection can also help identify functionally important protein regions and thus guide protein engineering. Many existing tests for positive selection are excessively conservative, vulnerable to artifacts caused by demographic population history, or computationally very intensive. I here propose a simple and rapid test that is complementary to existing tests and that overcomes some of these problems. It relies on the null hypothesis that neutrally evolving DNA regions should show a Poisson distribution of nucleotide substitutions. The test detects significant deviations from this expectation in the form of variation clusters, highly localized groups of amino acid changes in a coding region. In applying this test to several thousand human-chimpanzee gene orthologs, I show that such variation clusters are not generally caused by relaxed selection. They occur in well-defined domains of a protein's tertiary structure and show a large excess of amino acid replacement over silent substitutions. I also identify multiple new human-chimpanzee orthologs subject to positive selection, among them genes that are involved in reproductive functions, immune defense, and the nervous system.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
40
|
Bello G, Casado C, García S, Rodríguez C, del Romero J, Carvajal-Rodriguez A, Posada D, López-Galíndez C. Lack of temporal structure in the short term HIV-1 evolution within asymptomatic naïve patients. Virology 2007; 362:294-303. [PMID: 17275055 DOI: 10.1016/j.virol.2006.11.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/28/2006] [Accepted: 11/22/2006] [Indexed: 12/31/2022]
Abstract
HIV-1 evolution in the envelope gene (env) was analyzed in four asymptomatic antiretroviral therapy naïve patients with typical and slow disease progression rates. In typical progressors, viral populations were monophyletic and two distinct evolutionary patterns were observed. In one patient, HIV-1 evolution displayed a strong temporal structure similar to the consistent pattern previously described. In the other, viral evolution displayed a lack of temporal structure with no increase in genetic heterogeneity and divergence over time. In slow progressors, several clades were observed in viral populations. However, analysis within the major sub-population revealed the same two evolutionary patterns described for typical progressors. Synonymous and non-synonymous substitution rate analyses indicated that positive selection was the major force driving HIV-1 evolution in viral populations with temporal structure, while evolution in viral populations with an atemporal structure was dominated by genetic drift and purifying selection. These results support the existence of distinct patterns of env evolution in untreated HIV-1-infected patients.
Collapse
Affiliation(s)
- Gonzalo Bello
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mathet VL, López JL, Ruiz V, Sánchez DO, Carballal G, Campos RH, Oubiña JR. Dynamics of a hepatitis B virus e antigen minus population ascribed to genotype F during the course of a chronic infection despite the presence of anti-HBs antibodies. Virus Res 2006; 123:72-85. [PMID: 16979773 DOI: 10.1016/j.virusres.2006.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
The in vivo evolution of genotype F HBV variants was recorded in a chronically infected patient throughout a 3-year observation period. Fluctuating levels of HBs Ag and anti-HBs antibodies were recorded, both of them cocirculating in peripheral blood samples at given times. Fifty S gene derived clones were sequenced and phylogenetically analyzed. As expected, some amino acid replacements within the S ORF were also observed within the P ORF while others were silent for the former. Such change was statistically significant for both S and P overlapping genes, which clearly indicates the appearance of a positive selection pressure. Supporting this notion, amino acid replacements were documented at both B and T cell epitopes in samples from 1997 and 1998. Several mutations were documented within and outside the "a" determinant in the major hydrophilic region. Such substitutions might have resulted from the attempt of HBV to evade both humoral and/or cellular immune response. To the best of our knowledge this unusual profile of HBV variants in presence of usually "neutralizing" anti-HBs antibodies was examined in vivo for the first time.
Collapse
Affiliation(s)
- V L Mathet
- Department of Microbiology, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, Piso 11, (1121) Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
42
|
Turner LM, Hoekstra HE. Adaptive evolution of fertilization proteins within a genus: variation in ZP2 and ZP3 in deer mice (Peromyscus). Mol Biol Evol 2006; 23:1656-69. [PMID: 16774977 DOI: 10.1093/molbev/msl035] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rapid evolution of reproductive proteins has been documented in a wide variety of taxa. In internally fertilized species, knowledge about the evolutionary dynamics of these proteins between closely related taxa is primarily limited to accessory gland proteins in the semen of Drosophila. Investigation of additional taxa and functional classes of proteins is necessary in order to determine if there is a general pattern of adaptive evolution of reproductive proteins between recently diverged species. We performed an evolutionary analysis of 2 egg coat proteins, ZP2 and ZP3, in 15 species of deer mice (genus Peromyscus). Both of these proteins are involved in egg-sperm binding, a critical step in maintaining species-specific fertilization. Here, we show that Zp2 and Zp3 gene trees are not consistent with trees based on nonreproductive genes, Mc1r and Lcat, where species formed monophyletic clades. In fact, for both of the reproductive genes, intraspecific amino acid variation was extensive and alleles were sometimes shared across species. We document positive selection acting on ZP2 and ZP3 and identify specific amino acid sites that are likely targets of selection using both maximum likelihood approaches and patterns of parallel amino acid change. In ZP3, positively selected sites are clustered in and around the region implicated in sperm binding in Mus, suggesting changes may impact egg-sperm binding and fertilization potential. Finally, we identify lineages with significantly elevated rates of amino acid substitution using a Bayesian mapping approach. These findings demonstrate that the pattern of adaptive reproductive protein evolution found at higher taxonomic levels can be documented between closely related mammalian species, where reproductive isolation has evolved recently.
Collapse
Affiliation(s)
- Leslie M Turner
- Division of Biological Sciences, University of California, San Diego, USA.
| | | |
Collapse
|
43
|
Hill MD, Hernández W. Nucleotide and amino acid mutations in human immunodeficiency virus corresponding to CD4+ decline. Arch Virol 2006; 151:1149-58. [PMID: 16385396 DOI: 10.1007/s00705-005-0693-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 11/10/2005] [Indexed: 11/26/2022]
Abstract
In a meta-analysis, gene sequences of the HIV-1 V3 and surrounding envelope region from studies examining longitudinally derived blood and plasma human immunodeficiency virus forms were analyzed for changes over disease course. CD4+ counts were used as a marker of disease progression; 58 subjects, followed an average of 56 months, were included. Genetic diversification was found early in disease progression. In mid-progression (CD4+ counts dropping from 488 to 329/mm3) diversification did not increase while loop charge dramatically increased. This is consistent with a charged form that dominates and induces disease progression at this critical time. Although the overall mean increase in loop charge was significant, this increase and the transition to amino acids known to change tropism occurred in only half of the subjects who progressed. Those with rapidly progressing disease (within 2 years post-infection) began with a loop charge similar to the end stage of normal progressors. DNA from blood-cell-derived sequences differed from concurrently obtained plasma counterparts by one nucleotide out of 238, but this difference was not reflected in differences in glycosylation patterns, loop charge, or tropism-conferring amino acids. Plasma-derived forms were poorer predictors of future viral forms than were cell-derived sequences.
Collapse
Affiliation(s)
- M D Hill
- Department of Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico.
| | | |
Collapse
|
44
|
Frost SDW, Wrin T, Smith DM, Kosakovsky Pond SL, Liu Y, Paxinos E, Chappey C, Galovich J, Beauchaine J, Petropoulos CJ, Little SJ, Richman DD. Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection. Proc Natl Acad Sci U S A 2005; 102:18514-9. [PMID: 16339909 PMCID: PMC1310509 DOI: 10.1073/pnas.0504658102] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV type 1 (HIV-1) can rapidly escape from neutralizing antibody responses. The genetic basis of this escape in vivo is poorly understood. We compared the pattern of evolution of the HIV-1 env gene between individuals with recent HIV infection whose virus exhibited either a low or a high rate of escape from neutralizing antibody responses. We demonstrate that the rate of viral escape at a phenotypic level is highly variable among individuals, and is strongly correlated with the rate of amino acid substitutions. We show that dramatic escape from neutralizing antibodies can occur in the relative absence of changes in glycosylation or insertions and deletions ("indels") in the envelope; conversely, changes in glycosylation and indels occur even in the absence of neutralizing antibody responses. Comparison of our data with the predictions of a mathematical model support a mechanism in which escape from neutralizing antibodies occurs via many amino acid substitutions, with low cross-neutralization between closely related viral strains. Our results suggest that autologous neutralizing antibody responses may play a pivotal role in the diversification of HIV-1 envelope during the early stages of infection.
Collapse
Affiliation(s)
- Simon D W Frost
- Department of Pathology, University of California at San Diego, La Jolla, CA 92093-0679, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lemey P, Pybus OG, Van Dooren S, Vandamme AM. A Bayesian statistical analysis of human T-cell lymphotropic virus evolutionary rates. INFECTION GENETICS AND EVOLUTION 2005; 5:291-8. [PMID: 15737921 DOI: 10.1016/j.meegid.2004.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 04/29/2004] [Indexed: 10/26/2022]
Abstract
HTLV is a genetically-stable retrovirus that is considered to have evolved partly in concert with human migrations. Its rate of evolution is low and therefore, difficult to estimate reliably. In the first part of this study, we provide an improved estimate of HTLV evolutionary rate using anthropological calibration of phylogenetic nodes. We investigate two different anthropological calibrations using a Bayesian method that implements a relaxed molecular clock model and can combine data from multiple genes. The analysis shows that the two calibrations are compatible. In the second part, we develop a Bayesian statistical model to combine and compare the anthropology-based estimates of evolutionary rate with a rate recently calculated using pedigree data from vertically HTLV-infected families. We compare the statistical power of the two estimates and show that the current pedigree estimate, although resulting in considerably higher evolutionary rates, is too statistically weak to warrant a re-examination of the commonly used anthropology-based estimates. Statistical uncertainty burdens HTLV rate estimates based on both anthropological calibrations and on pedigree data; the former method rests on an untested assumption, whilst that latter is affected by small sample sizes.
Collapse
Affiliation(s)
- Philippe Lemey
- Rega Institute for Medical Research, Minderbroedersstraat 10, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
46
|
Hué S, Clewley JP, Cane PA, Pillay D. Investigation of HIV-1 transmission events by phylogenetic methods: requirement for scientific rigour. AIDS 2005; 19:449-50. [PMID: 15750402 DOI: 10.1097/01.aids.0000161778.15568.a1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Yang OO, Daar ES, Jamieson BD, Balamurugan A, Smith DM, Pitt JA, Petropoulos CJ, Richman DD, Little SJ, Brown AJL. Human immunodeficiency virus type 1 clade B superinfection: evidence for differential immune containment of distinct clade B strains. J Virol 2005; 79:860-8. [PMID: 15613314 PMCID: PMC538553 DOI: 10.1128/jvi.79.2.860-868.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequential infection with different strains of human immunodeficiency virus type 1 (HIV-1) is a rarely identified phenomenon with important implications for immunopathogenesis and vaccine development. Here, we identify an individual whose good initial control of viremia was lost in association with reduced containment of a superinfecting strain. Subject 2030 presented with acute symptoms of HIV-1 infection with high viremia and an incomplete seroconversion as shown by Western blotting. A low set point of viremia (approximately 1,000 HIV-1 copies/ml) was initially established without drug therapy, but a new higher set point (approximately 40,000 HIV-1 copies/ml) manifested about 5 months after infection. Drug susceptibility testing demonstrated a multidrug-resistant virus initially but a fully sensitive virus after 5 months, and an analysis of pol genotypes showed that these were two phylogenetically distinct strains of virus (strains A and B). Replication capacity assays suggested that the outgrowth of strain B was not due to higher fitness conferred by pol, and env sequences indicated that the two strains had the same R5 coreceptor phenotype. Delineation of CD8+-T-lymphocyte responses against HIV-1 showed a striking pattern of decay of the initial cellular immune responses after superinfection, followed by some adaptation of targeting to new epitopes. An examination of targeted sequences suggested that differences in the recognized epitopes contributed to the poor immune containment of strain B. In conclusion, the rapid overgrowth of a superinfecting strain of HIV-1 of the same subtype raises major concerns for effective vaccine development.
Collapse
Affiliation(s)
- Otto O Yang
- 37-121 Center for Health Sciences, Division of Infectious Diseases, 10833 LeConte Ave., UCLA Medical Center, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Palmer S, Kearney M, Maldarelli F, Halvas EK, Bixby CJ, Bazmi H, Rock D, Falloon J, Davey RT, Dewar RL, Metcalf JA, Hammer S, Mellors JW, Coffin JM. Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. J Clin Microbiol 2005; 43:406-13. [PMID: 15635002 PMCID: PMC540111 DOI: 10.1128/jcm.43.1.406-413.2005] [Citation(s) in RCA: 404] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Revised: 06/29/2004] [Accepted: 09/12/2004] [Indexed: 01/08/2023] Open
Abstract
To investigate the extent to which drug resistance mutations are missed by standard genotyping methods, we analyzed the same plasma samples from 26 patients with suspected multidrug-resistant human immunodeficiency virus type 1 by using a newly developed single-genome sequencing technique and compared it to standard genotype analysis. Plasma samples were obtained from patients with prior exposure to at least two antiretroviral drug classes and who were on a failing antiretroviral regimen. Standard genotypes were obtained by reverse transcriptase (RT)-PCR and sequencing of the bulk PCR product. For single-genome sequencing, cDNA derived from plasma RNA was serially diluted to 1 copy per reaction, and a region encompassing p6, protease, and a portion of RT was amplified and sequenced. Sequences from 15 to 46 single viral genomes were obtained from each plasma sample. Drug resistance mutations identified by single-genome sequencing were not detected by standard genotype analysis in 24 of the 26 patients studied. Mutations present in less than 10% of single genomes were almost never detected in standard genotypes (1 of 86). Similarly, mutations present in 10 to 35% of single genomes were detected only 25% of the time in standard genotypes. For example, in one patient, 10 mutations identified by single-genome sequencing and conferring resistance to protease inhibitors (PIs), nucleoside analog reverse transcriptase inhibitors, and nonnucleoside reverse transcriptase inhibitors (NNRTIs) were not detected by standard genotyping methods. Each of these mutations was present in 5 to 20% of the 20 genomes analyzed; 15% of the genomes in this sample contained linked PI mutations, none of which were present in the standard genotype. In another patient sample, 33% of genomes contained five linked NNRTI resistance mutations, none of which were detected by standard genotype analysis. These findings illustrate the inadequacy of the standard genotype for detecting low-frequency drug resistance mutations. In addition to having greater sensitivity, single-genome sequencing identifies linked mutations that confer high-level drug resistance. Such linkage cannot be detected by standard genotype analysis.
Collapse
Affiliation(s)
- Sarah Palmer
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Iwasa Y, Michor F, Nowak MA. Virus evolution within patients increases pathogenicity. J Theor Biol 2005; 232:17-26. [PMID: 15498589 DOI: 10.1016/j.jtbi.2004.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 07/14/2004] [Accepted: 07/16/2004] [Indexed: 11/17/2022]
Abstract
Viruses like the human immunodeficiency virus (HIV), the hepatitis B virus (HBV), the hepatitis C virus (HCV) and many others undergo numerous rounds of inaccurate reproduction within an infected host. The resulting viral quasispecies is heterogeneous and sensitive to any selection pressure. Here we extend earlier work by showing that for a wide class of models describing the interaction between the virus population and the immune system, virus evolution has a well-defined direction toward increased pathogenicity. In particular, we study virus-induced impairment of the immune response and certain cross-reactive stimulation of specific immune responses. For eight different mathematical models, we show that virus evolution reduces the equilibrium abundance of uninfected cells and increases the rate at which uninfected cells are infected. Thus, in general, virus evolution makes things worse. An idea for combating HIV infection, however, is constructing a virus mutant that could outcompete the existing infection without being pathogenic itself.
Collapse
Affiliation(s)
- Yoh Iwasa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | |
Collapse
|
50
|
Hill MD, Lorenzo E, Kumar A. Changes in the human immunodeficiency virus V3 region that correspond with disease progression: a meta-analysis. Virus Res 2004; 106:27-33. [PMID: 15522444 DOI: 10.1016/j.virusres.2004.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 05/28/2004] [Accepted: 05/28/2004] [Indexed: 11/26/2022]
Abstract
In order to determine the changes in the human immunodeficiency virus type-1 (HIV-1) envelope that corresponds with disease progression, a meta-analysis of viral forms was performed using HIV-1 sequences obtained from GenBank. Studies were selected that included longitudinally derived V3 envelope region sequences from multiple time points along with CD4 values as a marker of disease progression. Studies with a total of 58 subjects, 327 time points, and 380,000 total amino acid residues were included in this meta-analysis. Changes at specific amino acid sites over the course of disease progression stages were analyzed. The most common specific changes were found at amino acid sites 324D to N, 306S/G to R, and 360N to R. Other sites had changes from one amino acid type to another including the appearance of a basic form at 327, a charged form at 319, and 320D/E changing to basic or neutral. The timing of these changes was contrasted to CD4 decline with changes at 324 and 327 appearing before and 306, 320, and 319 appearing after the initiation of CD4 decline.
Collapse
Affiliation(s)
- Martin D Hill
- Department of Pharmacology and Toxicology, Ponce School of Medicine, P.O. Box 7004, Ponce, PR 00732, Puerto Rico.
| | | | | |
Collapse
|