1
|
Qin S, Wen Z, Huang H, Wu W. Use of novel taurine-chitosan mediated liposomes for enhancing the oral absorption of doxorubicin via the TAUT transporter. Carbohydr Polym 2024; 329:121780. [PMID: 38286550 DOI: 10.1016/j.carbpol.2024.121780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Our research aimed to enhance the oral bioavailability of doxorubicin hydrochloride (DOX·HCl) while minimizing the potential for myocardial toxicity. To achieve this goal, we developed a new method that utilizes a coating material to encapsulate the drug in liposomes, which can specifically target intestinal taurine transporter proteins. This coating material, TAU-CS, was created by combining taurine with chitosan. We characterized TAU-CS using various methods, including 1H NMR, FT-IR, and scanning electron microscopy (SEM). The resulting liposomes exhibited a regular spherical morphology, with a particle size of 195.7 nm, an encapsulation efficiency of 91.23 %, and a zeta potential of +11.65 mV. Under simulated gastrointestinal conditions, TAU-CS/LIP@DOX·HCl exhibited good stability and slow release. Pharmacokinetic studies revealed that, compared with DOX·HCl, TAU-CS/LIP@DOX·HCl had a relative bioavailability of 342 %. Intracellular uptake, immunofluorescence imaging, and permeation assays confirmed that the taurine transporter protein mediates the intestinal uptake of these liposomes. Our study suggested that liposomes coated with TAU-CS could serve as an effective oral delivery system and that targeting the taurine transporter protein shows promise in enhancing drug absorption.
Collapse
Affiliation(s)
- Shuiling Qin
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Zhiwei Wen
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Huajie Huang
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
2
|
Baudouin R, Tartour E, Badoual C, Hans S. Hypothesis of a CD137/Eomes activating axis for effector T cells in HPV oropharyngeal cancers. Mol Med 2024; 30:26. [PMID: 38355394 PMCID: PMC10868089 DOI: 10.1186/s10020-024-00796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic Human Papilloma Virus (HPV) infection is supplanting alcohol and tobacco intoxications as the leading cause of oropharyngeal cancer in developed countries. HPV-related squamous cell carcinomas of the oropharynx (HPV + OSC) present better survival and respond better to radiotherapy and chemotherapy. Regulatory T cells (TREG) are mainly described as immunosuppressive and protumoral in most solid cancers. However, TREG are paradoxically associated with a better prognosis in HPV + OSCs. The transcription factor FoxP3 is the basis for the identification of TREG. Among CD4 + FoxP3 + T cells, some have effector functions. A medical hypothesis is formulated here: the existence of a CD137 (4.1BB)-Eomesodermin (Eomes) activated pathway downstream of TCR-specific activation in a subpopulation of CD4 + FoxP3 + T cells may explain this effector function. Evidence suggest that this axis may exist either in CD4 + FoxP3 + T cells or CD8 + T cells. This pathway could lead T cells to strong antitumor cytotoxic activity in a tumor-specific manner. Furthermore, CD137 is one of the most expected targets for the development of agonist immunotherapies. The identification of CD137 + Eomes + FoxP3+/- T cells could be a key element in the selective activation of the most anti-tumor cells in the HPV + OSC microenvironment.
Collapse
Affiliation(s)
- Robin Baudouin
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, 40 rue Worth, 92 150, Suresnes, France.
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en- Yvelines (Paris Saclay University), 2 Av. de la Source de la Bièvre, Montigny- le-Bretonneux, 78 180, France.
| | - Eric Tartour
- Université Paris Cite, INSERM, PARCC, Hôpital européen Georges Pompidou, Service d'Immunologie biologique, 20, Rue Leblanc, Paris, 75015, France
| | - Cécile Badoual
- Hôpital européen Georges Pompidou, Service d'anatomopathologie, 20, Rue Leblanc, Paris, 75015, France
| | - Stéphane Hans
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, 40 rue Worth, 92 150, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en- Yvelines (Paris Saclay University), 2 Av. de la Source de la Bièvre, Montigny- le-Bretonneux, 78 180, France
| |
Collapse
|
3
|
Miyazaki T. Identification of a novel enzyme and the regulation of key enzymes in mammalian taurine synthesis. J Pharmacol Sci 2024; 154:9-17. [PMID: 38081683 DOI: 10.1016/j.jphs.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Taurine has many pharmacological roles on various tissues. The maintenance of abundant taurine content in the mammalian body through endogenous synthesis, in addition to exogenous intake, is the essential factor for morphological and functional maintenances in most tissues. The synthesis of taurine from sulfur-containing amino acids is influenced by various factors. Previous literature findings indicate the influence of the intake of proteins and sulfur-containing amino acids on the activity of the rate-limiting enzymes cysteine dioxygenase and cysteine sulfinate decarboxylase. In addition, the regulation of the activity and expression of taurine-synthesis enzymes by hormones, bile acids, and inflammatory cytokines through nuclear receptors have been reported in liver and reproductive tissues. Furthermore, flavin-containing monooxygenase subtype 1 was recently identified as the taurine-synthesis enzyme that converts hypotaurine to taurine. This review introduces the novel taurine synthesis enzyme and the nuclear receptor-associated regulation of key enzymes in taurine synthesis.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395, Japan.
| |
Collapse
|
4
|
Ben-Azu B, Uruaka CI, Ajayi AM, Jarikre TA, Nwangwa KE, Chilaka KC, Chijioke BS, Omonyeme MG, Ozege CB, Ofili EC, Warekoromor EB, Edigbue NL, Esiekpe UV, Akaenyi DE, Agu GO. Reversal and Preventive Pleiotropic Mechanisms Involved in the Antipsychotic-Like Effect of Taurine, an Essential β-Amino Acid in Ketamine-Induced Experimental Schizophrenia in Mice. Neurochem Res 2023; 48:816-829. [PMID: 36350433 DOI: 10.1007/s11064-022-03808-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Schizophrenia is a life disabling, multisystem neuropsychiatric disease mostly derived from complex epigenetic-mediated neurobiological changes causing behavioural deficits. Neurochemical disorganizations, neurotrophic and neuroimmune alterations are some of the challenging neuropathologies proving unabated during psychopharmacology of schizophrenia, further bedeviled by drug-induced metabolic derangements including alteration of amino acids. In first-episode schizophrenia patients, taurine, an essential β-amino acid represses psychotic-symptoms. However, its anti-psychotic-like mechanisms remain incomplete. This study evaluated the ability of taurine to prevent or reverse ketamine-induced experimental psychosis and the underlying neurochemical, neurotrophic and neuroinmune mechanisms involved in taurine's clinical action. The study consisted of three different experiments with Swiss mice (n = 7). In the drug alone, mice received saline (10 mL/kg/p.o./day), taurine (50 and 100 mg/kg/p.o./day) and risperidone (0.5 mg/kg/p.o./day) for 14 days. In the preventive study of separate cohort, mice were concomitantly given ketamine (20 mg/kg/i.p./day) from days 8 to 14. In the reversal study, mice received ketamine for 14 days before taurine or risperidone treatments from days 8 to 14 respectively. Afterwards, stereotypy behaviour, social, non-spatial memory deficits, and body weights were assessed. Neurochemical (dopamine, 5-hydroxytryptamine, glutamic acid decarboxylase, (GAD)), brain derived-neurotrophic factor (BDNF) and pro-inflammatory cytokines [tumor necrosis factor-alpha, (TNF-α), interleukin-6, (IL-6)] were assayed in the striatum, prefrontal-cortex and hippocampal area. Taurine attenuates ketamine-induced schizophrenia-like behaviour without changes in body weight. Taurine reduced ketamine-induced dopamine and 5-hydroxytryptamine changes, and increased GAD and BDNF levels in the striatum, prefrontal-cortex and hippocampus, suggesting increased GABAergic and neurotrophic transmissions. Taurine decreases ketamine-induced increased in TNF-α and IL-6 concentrations in the striatum, prefrontal-cortex and hippocampus. These findings also suggest that taurine protects against schizophrenia through neurochemical modulations, neurotrophic enhancement, and inhibition of neuropathologic cytokine activities.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria. .,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| | - Christian I Uruaka
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, Rivers State University, Port Harcourt, Rivers State, Nigeria
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Thiophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kingsley E Nwangwa
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Kingsley C Chilaka
- Department of Pharmacology and Therapeutics, College of Health Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Bienose S Chijioke
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marymagdalene G Omonyeme
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Chineye B Ozege
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emmanuella C Ofili
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Ebidenara B Warekoromor
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Nwanneka L Edigbue
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Ufoma V Esiekpe
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Dabrechi E Akaenyi
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Gladys O Agu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Afe Babalo University, Ado-Ekiti, Ado-Ekiti, Nigeria
| |
Collapse
|
5
|
López-Cayuqueo KI, Planells-Cases R, Pietzke M, Oliveras A, Kempa S, Bachmann S, Jentsch TJ. Renal Deletion of LRRC8/VRAC Channels Induces Proximal Tubulopathy. J Am Soc Nephrol 2022; 33:1528-1545. [PMID: 35777784 PMCID: PMC9342636 DOI: 10.1681/asn.2021111458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Volume-regulated anion channels (VRACs) are heterohexamers of LRRC8A with LRRC8B, -C, -D, or -E in various combinations. Depending on the subunit composition, these swelling-activated channels conduct chloride, amino acids, organic osmolytes, and drugs. Despite VRACs' role in cell volume regulation, and large osmolarity changes in the kidney, neither the localization nor the function of VRACs in the kidney is known. METHODS Mice expressing epitope-tagged LRRC8 subunits were used to determine the renal localization of all VRAC subunits. Mice carrying constitutive deletions of Lrrc8b-e, or with inducible or cell-specific ablation of Lrrc8a, were analyzed to assess renal functions of VRACs. Analysis included histology, urine and serum parameters in different diuresis states, and metabolomics. RESULTS The kidney expresses all five VRAC subunits with strikingly distinct localization. Whereas LRRC8C is exclusively found in vascular endothelium, all other subunits are found in the nephron. LRRC8E is specific for intercalated cells, whereas LRRC8A, LRRC8B, and LRRC8D are prominent in basolateral membranes of proximal tubules. Conditional deletion of LRRC8A in proximal but not distal tubules and constitutive deletion of LRRC8D cause proximal tubular injury, increased diuresis, and mild Fanconi-like symptoms. CONCLUSIONS VRAC/LRRC8 channels are crucial for the function and integrity of proximal tubules, but not for more distal nephron segments despite their larger need for volume regulation. LRRC8A/D channels may be required for the basolateral exit of many organic compounds, including cellular metabolites, in proximal tubules. Proximal tubular injury likely results from combined accumulation of several transported molecules in the absence of VRAC channels.
Collapse
Affiliation(s)
- Karen I. López-Cayuqueo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Matthias Pietzke
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology/Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Anna Oliveras
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Stefan Kempa
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology/Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany,NeuroCure Centre of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Watanabe M, Ito T, Fukuda A. Effects of Taurine Depletion on Body Weight and Mouse Behavior during Development. Metabolites 2022; 12:631. [PMID: 35888755 PMCID: PMC9318136 DOI: 10.3390/metabo12070631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Taurine (2-aminoethanesulfonic acid) plays an important role in various physiological functions and is abundant in the brain and skeletal muscle. Extracellular taurine is an endogenous agonist of gamma-aminobutyric acid type A and glycine receptors. Taurine actively accumulates in cells via the taurine transporter (TauT). Adult taurine-knockout (TauT-/-) mice exhibit lower body weights and exercise intolerance. To further examine the physiological role of taurine, we examined the effect of its depletion on mouse behavior, startle responses, muscular endurance, and body weight during development from postnatal day 0 (P0) until P60. In the elevated plus maze test, TauT-/- mice showed decreased anxiety-like behavior. In addition, TauT-/- mice did not show a startle response to startle stimuli, suggesting they have difficulty hearing. Wire-hang test revealed that muscular endurance was reduced in TauT-/- mice. Although a reduction of body weight was observed in TauT-/- mice during the developmental period, changes in body weight during 60% food restriction were similar to wild-type mice. Collectively, these results suggest that taurine has important roles in anxiety-like behavior, hearing, muscular endurance, and maintenance of body weight.
Collapse
Affiliation(s)
- Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan;
| | - Takashi Ito
- Department of Bioscience and Technology, Graduate School of Bioscience and Technology, Fukui Prefectural University, Fukui 910-1195, Japan;
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan;
| |
Collapse
|
7
|
Tochitani S. Taurine: A Maternally Derived Nutrient Linking Mother and Offspring. Metabolites 2022; 12:metabo12030228. [PMID: 35323671 PMCID: PMC8954275 DOI: 10.3390/metabo12030228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Mammals can obtain taurine from food and synthesize it from sulfur-containing amino acids. Mammalian fetuses and infants have little ability to synthesize taurine. Therefore, they are dependent on taurine given from mothers either via the placenta or via breast milk. Many lines of evidence demonstrate that maternally derived taurine is essential for offspring development, shaping various traits in adults. Various environmental factors, including maternal obesity, preeclampsia, and undernutrition, can affect the efficacy of taurine transfer via either the placenta or breast milk. Thus, maternally derived taurine during the perinatal period can influence the offspring’s development and even determine health and disease later in life. In this review, I will discuss the biological function of taurine during development and the regulatory mechanisms of taurine transport from mother to offspring. I also refer to the possible environmental factors affecting taurine functions in mother-offspring bonding during perinatal periods. The possible functions of taurine as a determinant of gut microbiota and in the context of the Developmental Origins of Health and Disease (DOHaD) hypothesis will also be discussed.
Collapse
Affiliation(s)
- Shiro Tochitani
- Division of Health Science, Graduate School of Health Science, Suzuka University of Medical Science, Suzuka 513-8670, Japan; ; Tel.: +81-59-373-7069
- Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science, Suzuka 513-8670, Japan
- Center for Preventive Medical Sciences, Chiba University, Chiba 263-8522, Japan
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
8
|
Yoshimura T, Manabe C, Inokuchi Y, Mutou C, Nagahama T, Murakami S. Protective effect of taurine on UVB-induced skin aging in hairless mice. Biomed Pharmacother 2021; 141:111898. [PMID: 34246188 DOI: 10.1016/j.biopha.2021.111898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/14/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Taurine, a sulfur-containing amino acid derivative, exists at a high concentration in the skin and is considered to play an important role in maintaining moisture homeostasis. This study investigated the effects of oral taurine supplementation on epidermal moisture content and wrinkle formation, as well as skin taurine content, using ultraviolet B (UVB)-irradiated hairless mice. Wrinkles were induced by exposing hairless mice to UVB radiation (70-100 mJ/cm2). Taurine was dissolved in drinking water at a concentration of 0.3 or 3% (w/v) and given to the mice ad libitum for 2-10 weeks. Taurine was then extracted from the dorsal skin, and the skin taurine content was determined using high-performance liquid chromatography (HPLC). The wrinkles were evaluated using a wrinkle score and the quantitative wrinkle area ratio. The exposure of the mice to UVB radiation for 4 weeks resulted in a decreased moisture content and increased transepidermal water loss (TEWL) in the skin, while taurine supplementation suppressed these changes. Oral supplementation with taurine for 8 weeks ameliorated the development of UVB-induced wrinkle formation. Furthermore, oral taurine supplementation for 4 weeks decreased pre-stablished wrinkles in a dose-dependent manner. Although the UVB radiation reduced the epidermal taurine content, oral taurine supplementation partly restored the taurine content in the epidermis. The present study showed that oral taurine supplementation is able to suppress UVB-induced wrinkle formation, which may be associated with the regulation of moisture content in the epidermis. The beneficial effects of taurine on skin aging may be attributed to its osmoregulatory role.
Collapse
Affiliation(s)
- Tomohisa Yoshimura
- R&D Laboratories, Self-Medication, Taisho Pharmaceutical Co. Ltd., 331-9530 Saitama, Japan
| | - Chika Manabe
- R&D Laboratories, Self-Medication, Taisho Pharmaceutical Co. Ltd., 331-9530 Saitama, Japan
| | - Yuki Inokuchi
- R&D Laboratories, Self-Medication, Taisho Pharmaceutical Co. Ltd., 331-9530 Saitama, Japan
| | - Chikako Mutou
- R&D Laboratories, Self-Medication, Taisho Pharmaceutical Co. Ltd., 331-9530 Saitama, Japan
| | - Tohru Nagahama
- R&D Laboratories, Self-Medication, Taisho Pharmaceutical Co. Ltd., 331-9530 Saitama, Japan
| | - Shigeru Murakami
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 910-1195 Fukui, Japan.
| |
Collapse
|
9
|
Shaw IW, O'Sullivan ED, Pisco AO, Borthwick G, Gallagher KM, Péault B, Hughes J, Ferenbach DA. Aging modulates the effects of ischemic injury upon mesenchymal cells within the renal interstitium and microvasculature. Stem Cells Transl Med 2021; 10:1232-1248. [PMID: 33951342 PMCID: PMC8284778 DOI: 10.1002/sctm.20-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/05/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The renal mesenchyme contains heterogeneous cells, including interstitial fibroblasts and pericytes, with key roles in wound healing. Although healing is impaired in aged kidneys, the effect of age and injury on the mesenchyme remains poorly understood. We characterized renal mesenchymal cell heterogeneity in young vs old animals and after ischemia‐reperfusion‐injury (IRI) using multiplex immunolabeling and single cell transcriptomics. Expression patterns of perivascular cell markers (α‐SMA, CD146, NG2, PDGFR‐α, and PDGFR‐β) correlated with their interstitial location. PDGFR‐α and PDGFR‐β co‐expression labeled renal myofibroblasts more efficiently than the current standard marker α‐SMA, and CD146 was a superior murine renal pericyte marker. Three renal mesenchymal subtypes; pericytes, fibroblasts, and myofibroblasts, were recapitulated with data from two independently performed single cell transcriptomic analyzes of murine kidneys, the first dataset an aging cohort and the second dataset injured kidneys following IRI. Mesenchymal cells segregated into subtypes with distinct patterns of expression with aging and following injury. Baseline uninjured old kidneys resembled post‐ischemic young kidneys, with this phenotype further exaggerated following IRI. These studies demonstrate that age modulates renal perivascular/interstitial cell marker expression and transcriptome at baseline and in response to injury and provide tools for the histological and transcriptomic analysis of renal mesenchymal cells, paving the way for more accurate classification of renal mesenchymal cell heterogeneity and identification of age‐specific pathways and targets.
Collapse
Affiliation(s)
- Isaac W Shaw
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Eoin D O'Sullivan
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Gary Borthwick
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Kevin M Gallagher
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Bruno Péault
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.,Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jeremy Hughes
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - David A Ferenbach
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
11
|
Mersman B, Zaidi W, Syed NI, Xu F. Taurine Promotes Neurite Outgrowth and Synapse Development of Both Vertebrate and Invertebrate Central Neurons. Front Synaptic Neurosci 2020; 12:29. [PMID: 32792935 PMCID: PMC7387692 DOI: 10.3389/fnsyn.2020.00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Taurine is a sulfur-containing amino acid that is widely expressed throughout the human brain, heart, retina, and muscle tissues. Taurine deficiency is associated with cardiomyopathy, renal dysfunction, abnormalities of the developing nervous system, and epilepsy which suggests a role specific to excitable tissues. Like vertebrates, invertebrates maintain high levels of taurine during embryonic and larval development, which decline during aging, indicating a potential developmental role. Notwithstanding its extensive presence throughout, taurine’s precise role/s during early brain development, function, and repair remains largely unknown in both vertebrate and invertebrate. Here, we investigated whether taurine affects neurite outgrowth, synapse formation, and synaptic transmission between postnatal day 0 rat cortical neurons in vitro, whereas its synaptogenic role was tested more directly using the Lymnaea soma-soma synapse model. We provide direct evidence that when applied at physiological concentrations, taurine exerts a significant neurotrophic effect on neuritic outgrowth and thickness of neurites as well as the expression of synaptic puncta as revealed by immunostaining of presynaptic synaptophysin and postsynaptic PSD95 proteins in rat cortical neurons, indicating direct involvement in synapse development. To demonstrate taurine’s direct effects on neurons in the absence of glia and other confounding factors, we next exploited individually identified pre- and postsynaptic neurons from the mollusk Lymnaea stagnalis. We found that taurine increased both the incidence of synapse formation (percent of cells that form synapses) and the efficacy of synaptic transmission between the paired neurons. This effect was comparable, but not additive, to Lymnaea trophic factor-induced synaptogenesis. This study thus provides direct morphological and functional evidence that taurine plays an important role in neurite outgrowth, synaptogenesis, and synaptic transmission during the early stages of brain development and that this role is conserved across both vertebrate and invertebrate species.
Collapse
Affiliation(s)
- Brittany Mersman
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, United States.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Wali Zaidi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Naweed I Syed
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Fenglian Xu
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, United States.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
12
|
Baliou S, Kyriakopoulos AM, Goulielmaki M, Panayiotidis MI, Spandidos DA, Zoumpourlis V. Significance of taurine transporter (TauT) in homeostasis and its layers of regulation (Review). Mol Med Rep 2020; 22:2163-2173. [PMID: 32705197 PMCID: PMC7411481 DOI: 10.3892/mmr.2020.11321] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 11/05/2022] Open
Abstract
Taurine (2‑aminoethanesulfonic acid) contributes to homeostasis, mainly through its antioxidant and osmoregulatory properties. Taurine's influx and efflux are mainly mediated through the ubiquitous expression of the sodium/chloride‑dependent taurine transporter, located on the plasma membrane. The significance of the taurine transporter has been shown in various organ malfunctions in taurine‑transporter‑null mice. The taurine transporter differentially responds to various cellular stimuli including ionic environment, electrochemical charge, and pH changes. The renal system has been used as a model to evaluate the factors that significantly determine the regulation of taurine transporter regulation.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | | | | | - Michalis I Panayiotidis
- Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
13
|
Nguyen K, Ito S, Maeyama S, Schaffer SW, Murakami S, Ito T. In Vivo and In Vitro Study of N-Methyltaurine on Pharmacokinetics and Antimuscle Atrophic Effects in Mice. ACS OMEGA 2020; 5:11241-11246. [PMID: 32455249 PMCID: PMC7241010 DOI: 10.1021/acsomega.0c01588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Various types of seaweed are potential functional foods as they contain multiple bioactive compounds. N-Methyltaurine (NMT) is a taurine derivative metabolite found in a type of red algae. The functional actions of NMT in mammalian animals have not been investigated, but the parent compound, taurine, possesses a variety of cellular actions. To explore the beneficial role of NMT in animals, the present study analyzed the effect of NMT against glucocorticoid-induced skeletal muscle atrophy. Glucocorticoids are one of the major causes of pathological muscle atrophy. Initially, we assessed the bioavailability of ingested NMT by determining its concentration in mouse blood. The bioavailability of orally administered NMT was found to be 96.1% that of intravenously administered NMT. Mice maintained on water containing 0.5% NMT for several days lead to the distribution of the taurine derivative to various tissues, including skeletal muscles. Like taurine, the delivery of NMT to skeletal muscles or myoblast cells is cytoprotective. The treatment with NMT prevents dexamethasone-induced atrophy of myotubes derived from C2C12 cells. Similarly, the addition of 0.5% NMT to drinking water attenuates dexamethasone-mediated reduction in muscle mass of the treated mice. The present study supports the hypothesis that orally administered NMT partially reverses skeletal muscle atrophy.
Collapse
Affiliation(s)
- Khanh
Hoang Nguyen
- Department
of Biosciences and Biotechnology, Fukui
Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Shunta Ito
- Department
of Biosciences and Biotechnology, Fukui
Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Sayuri Maeyama
- Department
of Biosciences and Biotechnology, Fukui
Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Stephen W. Schaffer
- College
of Medicine, University of South Alabama, 5795 USA Drive North, CSAB 170, Mobile, Alabama 36688, United States
| | - Shigeru Murakami
- Department
of Biosciences and Biotechnology, Fukui
Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Takashi Ito
- Department
of Biosciences and Biotechnology, Fukui
Prefectural University, 4-1-1 Matsuokakenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| |
Collapse
|
14
|
Rasmussen RN, Christensen KV, Holm R, Nielsen CU. Nfat5 is involved in the hyperosmotic regulation of Tmem184b: a putative modulator of ibuprofen transport in renal MDCK I cells. FEBS Open Bio 2019; 9:1071-1081. [PMID: 31066233 PMCID: PMC6551498 DOI: 10.1002/2211-5463.12630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 11/09/2022] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) is a transcription factor involved in the regulation of several genes involved in the response to extracellular hyperosmolality. Recently, the uptake of ibuprofen by an as yet unknown carrier was suggested in Madin‐Darby canine kidney (MDCK) I cells exposed to hyperosmolality. We therefore speculated that Nfat5 could be involved in the regulation of this ibuprofen carrier. Reverse transfection with siRNA against Nfat5 was used to knock down Nfat5 in MDCK I cells. The uptake of both radiolabelled taurine and ibuprofen was measured in MDCK I cells, first treated with siRNA against Nfat5 and afterwards cultivated with raffinose‐supplemented normal growth medium (500 mOsm) for 24 h. The siRNA transfection resulted in knockdown of Nfat5, and uptake of both taurine and ibuprofen was significantly decreased in transfected MDCK I cells. The decrease in ibuprofen uptake indicates that Nfat5 is involved in upregulation of the ibuprofen carrier. A transcriptome analysis of MDCK I cells treated with siRNA against Nfat5 revealed 989 genes upregulated by Nfat5 during hyperosmotic exposure. From these genes, the gene product transmembrane protein 184b was found to be regulated by Nfat5, and Tmem184b was the only potential gene product involved in the uptake of ibuprofen in MDCK I cells. Dataset The RNA sequencing dataset is available from the NCBI Gene Expression 452 Omnibus (https://www.ncbi.nlm.nih.gov/geo/) with the accession number GSE122074.
Collapse
Affiliation(s)
- Rune Nørgaard Rasmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | | | - René Holm
- Drug Product Development, Janssens Research and Development, Johnson & Johnson, Beerse, Belgium.,Department of Science and Environment, Roskilde University, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
15
|
Taurine transporter (TauT) deficiency impairs ammonia detoxification in mouse liver. Proc Natl Acad Sci U S A 2019; 116:6313-6318. [PMID: 30862735 DOI: 10.1073/pnas.1813100116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatic ammonia handling was analyzed in taurine transporter (TauT) KO mice. Surprisingly, hyperammonemia was present at an age of 3 and 12 months despite normal tissue integrity. This was accompanied by cerebral RNA oxidation. As shown in liver perfusion experiments, glutamine production from ammonia was diminished in TauT KO mice, whereas urea production was not affected. In livers from 3-month-old TauT KO mice protein expression and activity of glutamine synthetase (GS) were unaffected, whereas the ammonia-transporting RhBG protein was down-regulated by about 50%. Double reciprocal plot analysis of glutamine synthesis versus perivenous ammonia concentration revealed that TauT KO had no effect on the capacity of glutamine formation in 3-month-old mice, but doubled the ammonia concentration required for half-maximal glutamine synthesis. Since hepatic RhBG expression is restricted to GS-expressing hepatocytes, the findings suggest that an impaired ammonia transport into these cells impairs glutamine synthesis. In livers from 12-, but not 3-month-old TauT KO mice, RhBG expression was not affected, surrogate markers for oxidative stress were strongly up-regulated, and GS activity was decreased by 40% due to an inactivating tyrosine nitration. This was also reflected by kinetic analyses in perfused liver, which showed a decreased glutamine synthesizing capacity by 43% and a largely unaffected ammonia concentration dependence. It is concluded that TauT deficiency triggers hyperammonemia through impaired hepatic glutamine synthesis due to an impaired ammonia transport via RhBG at 3 months and a tyrosine nitration-dependent inactivation of GS in 12-month-old TauT KO mice.
Collapse
|
16
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
17
|
Rasmussen RN, Christensen KV, Holm R, Nielsen CU. Transcriptome analysis identifies activated signaling pathways and regulated ABC transporters and solute carriers after hyperosmotic stress in renal MDCK I cells. Genomics 2018; 111:1557-1565. [PMID: 30389539 DOI: 10.1016/j.ygeno.2018.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/01/2022]
Abstract
Hyperosmolality is found under physiological conditions in the kidneys, whereas hyperosmolality in other tissues may be associated with pathological conditions. In such tissues an association between inflammation and hyperosmolality has been suggested. During hyperosmotic stress, an important phenomenon is upregulation of solute carriers (SLCs). We hypothesize that hyperosmolality affects the expression of many SLCs as well as ABC transporters. Through RNA-sequencing and topological pathway analysis, the cell cycle, the cytokine-cytokine receptor interaction pathway, and the chemokine-signaling pathway were significantly activated in MDCK I cells after hyperosmotic treatment (Δ200 mOsm) with raffinose or NaCl. 9065, 8052 and 5018 genes were significantly regulated by raffinose, NaCl or urea supplementation (500 mOsm), respectively, compared to control (300 mOsm). Cytokines, that have not previously been associated with hyperosmolality, were identified. We further provide an overview of transport proteins that could be of relevance in tissues exposed to hyperosmolality. Especially Slc5a8 was found highly up-regulated.
Collapse
Affiliation(s)
- Rune Nørgaard Rasmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark..
| | | | - René Holm
- Drug Product Development, Janssens Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
18
|
Park E, Park SY, Cho IS, Kim BS, Schuller-Levis G. A Novel Cysteine Sulfinic Acid Decarboxylase Knock-Out Mouse: Taurine Distribution in Various Tissues With and Without Taurine Supplementation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:461-474. [PMID: 28849475 DOI: 10.1007/978-94-024-1079-2_37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Taurine, a sulfur containing amino acid, has various physiological functions including development of the eye and brain, immune function, reproduction, osmo-regulatory function as well as anti-oxidant and anti-inflammatory activities. In order to understand the physiological role, we developed taurine deficient mice deleting a rate-liming enzyme, cysteine sulfinic acid decarboxylase (CSAD) for biosynthesis of taurine. Taurine was measured in various tissues including the liver, brain, lung, spleen, thymus, pancreas, heart, muscle and kidney as well as plasma from CSAD knock-out mice (CSAD KO) with and without treatment of taurine in the drinking water at the age of 2 months (2 M). Taurine was determined using HPLC as a phenylisothiocyanate derivative of taurine at 254 nm. Taurine concentrations in the liver and kidney from homozygotes of CSAD KO (HO), in which CSAD level is high, were 90% and 70% lower than WT, respectively. Taurine concentrations in the brain, spleen and lung, where CSAD level is low, were 21%, 20% and 28% lower than WT, respectively. At 2 M, 1% taurine treatment of HO restored taurine concentrations in all tissues compared to that of WT. To select an appropriate taurine treatment, HO were treated with various concentrations (0.05, 0.2, 1%) of taurine for 4 months (4 M). Restoration of taurine in all tissues except the liver, kidney and lung requires 0.05% taurine to be restored to that of WT. The liver and kidney restore taurine back to WT with 0.2% taurine. To examine which enzymes influence taurine concentrations in various tissues from WT and HO at 2 M, expression of five taurine-related enzymes, two antioxidant enzymes as well as lactoferrin (Lft) and prolactin receptor (Prlr) was determined using RT2 qPCR. The expression of taurine transporter in the liver, brain, muscle and kidney from HO was increased except in the lung. Our data showed expression of glutamate decarboxylase-like 1(Gadl-1) was increased in the brain and muscle in HO, compared to WT, indicating taurine in the brain and muscle from HO was replenished through taurine transporter and increased biosynthesis of taurine by up-regulated Gadl-1. The expression of glutathione peroxidase 3 was increased in the brain and peroxireductase 2 was increased in the liver and lung, suggesting taurine has anti-oxidant activity. In contrast to newborn and 1 month CSAD KO, Ltf and Prlr in the liver from CSAD KO at 2 M were increased more than two times and 52%, respectively, indicating these two proteins may be required for pregnancy of CSAD KO. Ltf in HOT1.0 was restored to WT, while Prlr in HOT1.0 was increased more than HO, explaining improvement of neonatal survival with taurine supplementation.These data are essential for investigating the role of taurine in development of the brain and eye, immune function, reproduction and glucose tolerance.
Collapse
Affiliation(s)
- Eunkyue Park
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Seung Yong Park
- School of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - In Soo Cho
- Department of Virology, National Veterinary Research and Quarantine Service, Anyang, South Korea
| | | | - Georgia Schuller-Levis
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
19
|
Park E, Park SY, Cho IS, Kim BS, Schuller-Levis G. A Novel Cysteine Sulfinic Acid Decarboxylase Knock-Out Mouse: Immune Function (II). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:449-460. [PMID: 28849474 DOI: 10.1007/978-94-024-1079-2_36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Taurine deficient mice lacking cysteine sulfinic acid decarboxylase (CSAD KO) were developed for investigating the various physiological roles of taurine including the development of the brain and eye as well as immune function. Due to severe abnormalities of immune function in a taurine deficient cat, the immune function including adoptive and innate immunity in taurine-deficient mice have been studied. Previously we demonstrated that B cell function in CSAD KO was reduced in both females and males. However, T cell function was significantly reduced only in females. In this study, we have examined innate immunity using macrophage activation with LPS or/and IFN-γ and polymorphonuclear leukocytes (PMN) activation with phorbol myristate acetate (PMA). Pro- and anti-inflammatory cytokines including IL-6, TNF-α and IL-10 as well as nitric oxide (NO) were determined using ELISA and Griess reagent, respectively. Peritoneal macrophages were activated with 1 μg/mL of lipopolysaccharide (LPS) and/or 50 U/mL of IFN-γ. In addition, superoxide anion was measured using peritoneal PMN activated with PMA in the presence and absence of superoxide dismutase. Superoxide anion production in activated PMN from CSAD KO homozygotes (HO) was not significantly different from wild-type (WT) with and without 25 mM taurine. IL-10 and TNF-α production in both female and male CSAD KO were not significantly different. IL-6 and NO were significantly lower only in females as previously observed in Con A-activated cellular proliferation of splenocytes. Cytokine production with 10 mM of taurine was not different, indicating the reduction of NO and IL-6 in females may be due to the absence of the CSAD gene, not due to low taurine concentrations.These data indicate that some measures of innate immunity were altered in female CSAD mice.
Collapse
Affiliation(s)
- Eunkyue Park
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Seung Yong Park
- School of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - In Soo Cho
- Department of Virology, National Veterinary Research and Quarantine Service, Anyang, South Korea
| | | | - Georgia Schuller-Levis
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
20
|
Shakeel M, Irfan M, Khan IA. Rare genetic mutations in Pakistani patients with dilated cardiomyopathy. Gene 2018; 673:134-139. [DOI: 10.1016/j.gene.2018.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/23/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
|
21
|
Nielsen CU, Bjerg M, Ulaganathan N, Holm R. Oral and intravenous pharmacokinetics of taurine in sprague-dawley rats: the influence of dose and the possible involvement of the proton-coupled amino acid transporter, PAT1, in oral taurine absorption. Physiol Rep 2017; 5:5/19/e13467. [PMID: 29038364 PMCID: PMC5641942 DOI: 10.14814/phy2.13467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 08/30/2017] [Accepted: 09/10/2017] [Indexed: 11/24/2022] Open
Abstract
Taurine is involved in various physiological processes, and one of the most abundant amino acids in human. The aim was to investigate the mechanism for intestinal absorption of taurine in vivo using also in vitro mechanistic studies. Taurine absorption was measured in male Sprague‐Dawley rats at 10–997 mg/kg and 1–30 mg/kg for oral and intravenous administration, respectively. Oral absorption was measured in the presence of substrates for the proton‐coupled amino acid transporter, PAT1, that is, 200 mg/kg proline (Pro) and sarcosine (Sar), and in the presence of 2‐Amino‐2‐norbornanecarboxylic acid (BCH) (200 mg/kg). BCH is not an inhibitor of PAT1 or the taurine transporter, TauT, hence it was included as a negative control. In vitro studies investigating the transport mechanism of taurine were conducted in human intestinal Caco‐2 cells. The pharmacokinetic investigations showed that intestinal taurine absorption was not saturable at the investigated doses, but that the time (tmax) to reach the maximal plasma concentration (Cmax) increased with dose. Furthermore, Sar and Pro, but not BCH, decreased taurine Cmax. In vitro it was clearly shown that PAT1 mediated the cellular uptake of taurine and thereby facilitated the transepithelial taurine transport, which could be inhibited by Pro and Sar, but not BCH. In vivo and in vitro results suggest that taurine absorption from the intestine is caused by PAT1.
Collapse
Affiliation(s)
- Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Maria Bjerg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Nithiya Ulaganathan
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - René Holm
- Pharmaceutical Science and CMC Biologics, H. Lundbeck A/S, Valby, Denmark
| |
Collapse
|
22
|
The potential protective role of taurine against experimental allergic inflammation. Life Sci 2017; 184:18-24. [PMID: 28694089 DOI: 10.1016/j.lfs.2017.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/21/2017] [Accepted: 07/06/2017] [Indexed: 12/24/2022]
Abstract
AIMS Taurine has been widely evaluated as a potential therapeutic agent in chronic inflammatory disorders and various infections. However, the potential role of taurine in regulating allergic inflammatory responses is currently unknown. MATERIALS AND METHODS The present study was designed to evaluate the in vitro effects of taurine on the levels of thymic stromal lymphopoietin (TSLP) and other pro-inflammatory cytokines and activation of caspase-1 and nuclear factor (NF)-κB as well as the phosphorylations of c-Jun N-terminal kinase (JNK) and p38 in phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-triggered human mast cell line, HMC-1 cells. Furthermore, we assessed the therapeutic effects of taurine on ovalbumin (OVA)-induced allergic rhinitis (AR) animal models. KEY FINDINGS AND SIGNIFICANCE Here, the obtained results showed that taurine dose-dependently inhibited the production and mRNA expression of TSLP and pro-inflammatory cytokines in HMC-1 cells exposed to PMACI. Taurine attenuated the phosphorylation of JNK and p38 in activated HMC-1 cells. Moreover, taurine brought a significant inhibition of the activities of NF-κB and caspase-1. In an OVA-induced AR animal model, the increased levels of nose rubbing, histamine, immunoglobulin E, TSLP, and interleukin IL-1β were dramatically reduced by the administration of taurine. In summary, taurine could serve as potential novel remedy of allergic inflammatory disorders.
Collapse
|
23
|
Lin CH, Yeh PL, Lee TH. Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges. Front Physiol 2016; 7:368. [PMID: 27610088 PMCID: PMC4997000 DOI: 10.3389/fphys.2016.00368] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
Most marine mollusks are osmoconformers, in that, their body fluid osmolality changes in the direction of the change in environmental salinity. Marine mollusks exhibit a number of osmoregulatory mechanisms to cope with either hypo- or hyperosmotic stress. The effects of changes in salinity on the osmoregulatory mechanisms of the hard clam (Meretrix lusoria, an economically important species of marine bivalve for Taiwan) have not been determined. In this study, we examined the effect of exposure to hypo (10‰)- and hyper (35‰)-osmotic salinity on hard clams raised at their natural salinity (20‰). The osmolality, [Na(+)], and [Cl(-)] of the hard clam hemolymph were changed in the same direction as the surrounding salinity. Further, the contents of total free amino acids including taurine in the gills and mantles were significantly upregulated in hard clam with increasing salinity. The gill Na(+), K(+)-ATPase (NKA) activity, the important enzyme regulating cellular inorganic ions, was not affected by the changed salinity. Mantle NKA activity, however, was stimulated in the 35‰ SW treatment. The taurine transporter (TAUT) is related to the regulation of intracellular contents of taurine, the dominant osmolyte. Herein, a TAUT gene of hard clam was cloned and a TAUT antibody was derived for the immunoblotting. The TAUT mRNA expression of the mantle in hard clam was significantly stimulated in 35‰ SW, but protein expression was not modulated by the changed salinity. In gills of the hard clam with 10‰ SW, both TAUT mRNA and protein expressions were significantly stimulated, and it may reflect a feedback regulation from the decreased gills taurine content under long-term hypoosmotic acclimation. These findings suggest that TAUT expression is regulated differently in gills and mantles following exposure to alterations in environmental salinity. Taken together, this study used the physiological, biochemical and molecular approaches to simultaneously explore the osmoregulation in tissues of hard clam and may further help to understand the osmoregulation in bivalves.
Collapse
Affiliation(s)
- Chia-Hao Lin
- National Institute for Basic Biology, National Institutes of Natural Sciences Okazaki, Japan
| | - Po-Ling Yeh
- Department of Life Sciences, National Chung Hsing University Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan; Agricultural Biotechnology Center, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
24
|
Sanchez-Paulete AR, Labiano S, Rodriguez-Ruiz ME, Azpilikueta A, Etxeberria I, Bolaños E, Lang V, Rodriguez M, Aznar MA, Jure-Kunkel M, Melero I. Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy. Eur J Immunol 2016; 46:513-22. [PMID: 26773716 DOI: 10.1002/eji.201445388] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/29/2015] [Accepted: 01/11/2016] [Indexed: 01/22/2023]
Abstract
CD137 (4-1BB, TNF-receptor superfamily 9) is a surface glycoprotein of the TNFR family which can be induced on a variety of leukocyte subsets. On T and NK cells, CD137 is expressed following activation and, if ligated by its natural ligand (CD137L), conveys polyubiquitination-mediated signals via TNF receptor associated factor 2 that inhibit apoptosis, while enhancing proliferation and effector functions. CD137 thus behaves as a bona fide inducible costimulatory molecule. These functional properties of CD137 can be exploited in cancer immunotherapy by systemic administration of agonist monoclonal antibodies, which increase anticancer CTLs and enhance NK-cell-mediated antibody-dependent cell-mediated cytotoxicity. Reportedly, anti-CD137 mAb and adoptive T-cell therapy strongly synergize, since (i) CD137 expression can be used to select the T cells endowed with the best activities against the tumor, (ii) costimulation of the lymphocyte cultures to be used in adoptive T-cell therapy can be done with CD137 agonist antibodies or CD137L, and (iii) synergistic effects upon coadministration of T cells and antibodies are readily observed in mouse models. Furthermore, the signaling cytoplasmic tail of CD137 is a key component of anti-CD19 chimeric antigen receptors that are used to redirect T cells against leukemia and lymphoma in the clinic. Ongoing phase II clinical trials with agonist antibodies and the presence of CD137 sequence in these successful chimeric antigen receptors highlight the importance of CD137 in oncoimmunology.
Collapse
Affiliation(s)
- Alfonso R Sanchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Sara Labiano
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,University Clinic, University of Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Iñaki Etxeberria
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Valérie Lang
- Ubiquitylation and Cancer Molecular Biology Laboratory, Foundation for Stem Cell Research, Fundación Inbiomed, San Sebastián, Spain
| | - Manuel Rodriguez
- Advanced Technology Institute in Life Sciences (ITAV), CNRS-USR3505, Toulouse, France.,University of Toulouse III-Paul Sabatier, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-UMR5089, Toulouse, France
| | - M Angela Aznar
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,University Clinic, University of Navarra, Pamplona, Spain
| |
Collapse
|
25
|
Rasmussen RN, Holm R, Christensen KV, Nielsen CU. Ibuprofen transport in renal cell cultures: characterization of an ibuprofen transporter upregulated by hyperosmolarity. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00305b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ibuprofen transporter localizes to the apical and basolateral membrane of MDCK I cells is upregulated by hyperosmotic exposure. Ibuprofen uptake is inhibited by other NSAIDs and ibuprofen metabolites.
Collapse
Affiliation(s)
- Rune Nørgaard Rasmussen
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense M
- Denmark
| | - René Holm
- Drug Product Development
- Janssens Research and Development
- Johnson & Johnson
- 2430 Beerse
- Belgium
| | | | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense M
- Denmark
| |
Collapse
|
26
|
Rasmussen RN, Lagunas C, Plum J, Holm R, Nielsen CU. Interaction of GABA-mimetics with the taurine transporter (TauT, Slc6a6) in hyperosmotic treated Caco-2, LLC-PK1 and rat renal SKPT cells. Eur J Pharm Sci 2015; 82:138-46. [PMID: 26631583 DOI: 10.1016/j.ejps.2015.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to investigate if basic GABA-mimetics interact with the taurine transporter (TauT, Slc6a6), and to find a suitable cell based model that is robust towards extracellular changes in osmolality during uptake studies. Taurine uptake was measured in human Caco-2 cells, porcine LLC-PK1 cells, and rat SKPT cells using radiolabelled taurine. Hyperosmotic conditions were obtained by incubation with raffinose (final osmolality of 500mOsm) for 24h prior to the uptake experiments. Expression of the taurine transporter, TauT, was investigated at the mRNA level by real-time PCR. Uptake of the GABA-mimetics gaboxadol and vigabatrin was investigated in SKPT cells, and quantified by liquid scintillation or HPLC-MS/MS analysis, respectively. The uptake rate of [(3)H]-taurine was Na(+) and Cl(-) and concentration dependent with taurine with an apparent Vmax of 6.3±1.6pmolcm(-2)min(-1) and a Km of 24.9±15.0μM. β-alanine, nipecotic acid, gaboxadol, GABA, vigabatrin, δ-ALA and guvacine inhibited the taurine uptake rate in a concentration dependent manner. The order of affinity for TauT was β-alanine>GABA>nipecotic acid>guvacine>δ-ALA>vigabatrin>gaboxadol with IC50-values of 0.04, 1.07, 2.02, 4.19, 4.94, 31.4 and 39.9mM, respectively. In conclusion, GABA mimetics inhibited taurine uptake in hyperosmotic rat renal SKPT cells. SKPT cells, which seem to be a useful model for investigating taurine transport in the short-term presence of high concentrations of osmolytes. Furthermore, analogues of β-alanine appear to have higher affinities for TauT than GABA-analogues.
Collapse
Affiliation(s)
- Rune Nørgaard Rasmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Candela Lagunas
- Drug Transporters in ADME, Department of Pharmacy, Faculty of Health and Medical Sciences, Universitetsparken 2, DK 2100, Copenhagen, Denmark
| | - Jakob Plum
- Drug Transporters in ADME, Department of Pharmacy, Faculty of Health and Medical Sciences, Universitetsparken 2, DK 2100, Copenhagen, Denmark
| | - René Holm
- Pharmaceutical Science and CMC Biologics, H. Lundbeck A/S, DK 2500, Valby, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark.
| |
Collapse
|
27
|
Park SY, Schuller-Levis G, Park E. A novel cysteine sulfinic Acid decarboxylase knock-out mouse: immune function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:89-98. [PMID: 25833490 DOI: 10.1007/978-3-319-15126-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Seung Yong Park
- School of Veterinary Medicine, Konkuk University, Seoul, Korea
| | | | | |
Collapse
|
28
|
Park E, Park SY, Dobkin C, Schuller-Levis G. A Novel Cysteine Sulfinic Acid Decarboxylase Knock-Out Mouse: Comparison Between Newborn and Weanling Mice. TAURINE 9 2015; 803:3-16. [DOI: 10.1007/978-3-319-15126-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Lambert IH, Kristensen DM, Holm JB, Mortensen OH. Physiological role of taurine--from organism to organelle. Acta Physiol (Oxf) 2015; 213:191-212. [PMID: 25142161 DOI: 10.1111/apha.12365] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/01/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022]
Abstract
Taurine is often referred to as a semi-essential amino acid as newborn mammals have a limited ability to synthesize taurine and have to rely on dietary supply. Taurine is not thought to be incorporated into proteins as no aminoacyl tRNA synthetase has yet been identified and is not oxidized in mammalian cells. However, taurine contributes significantly to the cellular pool of organic osmolytes and has accordingly been acknowledged for its role in cell volume restoration following osmotic perturbation. This review describes taurine homeostasis in cells and organelles with emphasis on taurine biophysics/membrane dynamics, regulation of transport proteins involved in active taurine uptake and passive taurine release as well as physiological processes, for example, development, lung function, mitochondrial function, antioxidative defence and apoptosis which seem to be affected by a shift in the expression of the taurine transporters and/or the cellular taurine content.
Collapse
Affiliation(s)
- I. H. Lambert
- Section of Cellular and Developmental Biology; Department of Biology; University of Copenhagen; Copenhagen Ø Denmark
| | - D. M. Kristensen
- Section of Genomics and Molecular Biomedicine; Department of Biology; University of Copenhagen; Copenhagen Denmark
- Cellular and Metabolic Research Section; Department of Biomedical Sciences; Panum Institute; University of Copenhagen; Copenhagen N Denmark
| | - J. B. Holm
- Section of Genomics and Molecular Biomedicine; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - O. H. Mortensen
- Cellular and Metabolic Research Section; Department of Biomedical Sciences; Panum Institute; University of Copenhagen; Copenhagen N Denmark
| |
Collapse
|
30
|
Gordon R, Park SY, Schuller-Levis G, Park E. A novel cysteine sulfinic Acid decarboxylase knock-out mouse: pathology of the kidney and lung in newborn pups. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:17-28. [PMID: 25833484 DOI: 10.1007/978-3-319-15126-7_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ronald Gordon
- Department of Pathology, Mt. Sinai School of Medicine, New York, NY, 10029, USA
| | | | | | | |
Collapse
|
31
|
Fezai M, Elvira B, Borras J, Ben-Attia M, Hoseinzadeh Z, Lang F. Negative regulation of the creatine transporter SLC6A8 by SPAK and OSR1. Kidney Blood Press Res 2014; 39:546-54. [PMID: 25531585 DOI: 10.1159/000368465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Transport regulation involves several kinases including SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1), which are under control of WNK (with-no-K[Lys]) kinases. The present study explored whether SPAK and/or OSR1 participate in the regulation of the creatine transporter CreaT (SLC6A8), which accomplishes Na+ coupled cellular uptake of creatine in several tissues including kidney, intestine, heart, skeletal muscle and brain. METHODS cRNA encoding SLC6A8 was injected into Xenopus laevis oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1 and catalytically inactive (D164A)OSR1. Transporter activity was determined from creatine (1 mM) induced current utilizing dual electrode voltage clamp. RESULTS Coexpression of wild-type SPAK and of (T233E)SPAK, but not of (T233A)SPAK or of (D212A)SPAK was followed by a significant decrease of creatine induced current in SLC6A8 expressing oocytes. Coexpression of SPAK significantly decreased maximal transport rate. Coexpression of wild-type OSR1, (T185E)OSR1 and (T185A)OSR1 but not of (D164A)OSR1 significantly negatively regulated SLC6A8 activity. OSR1 again decreased significantly maximal transport rate. CONCLUSIONS Both, SPAK and OSR1, are negative regulators of the creatine transporter SLC6A8.
Collapse
Affiliation(s)
- Myriam Fezai
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Almilaji A, Sopjani M, Elvira B, Borras J, Dërmaku-Sopjani M, Munoz C, Warsi J, Lang UE, Lang F. Upregulation of the creatine transporter Slc6A8 by Klotho. Kidney Blood Press Res 2014; 39:516-25. [PMID: 25531216 DOI: 10.1159/000368462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The transmembrane Klotho protein contributes to inhibition of 1,25(OH)2D3 formation. The extracellular domain of Klotho protein could function as an enzyme with e.g. β-glucuronidase activity, be cleaved off and be released into blood and cerebrospinal fluid. Klotho regulates several cellular transporters. Klotho protein deficiency accelerates the appearance of age related disorders including neurodegeneration and muscle wasting and eventually leads to premature death. The main site of Klotho protein expression is the kidney. Klotho protein is also appreciably expressed in other tissues including chorioid plexus. The present study explored the effect of Klotho protein on the creatine transporter CreaT (Slc6A8), which participates in the maintenance of neuronal function and survival. METHODS To this end cRNA encoding Slc6A8 was injected into Xenopus oocytes with and without additional injection of cRNA encoding Klotho protein. Creatine transporter CreaT (Slc6A8) activity was estimated from creatine induced current determined by two-electrode voltage-clamp. RESULTS Coexpression of Klotho protein significantly increased creatine-induced current in Slc6A8 expressing Xenopus oocytes. Coexpression of Klotho protein delayed the decline of creatine induced current following inhibition of carrier insertion into the cell membrane by brefeldin A (5 µM). The increase of creatine induced current by coexpression of Klotho protein in Slc6A8 expressing Xenopus oocytes was reversed by β-glucuronidase inhibitor (DSAL). Similarly, treatment of Slc6A8 expressing Xenopus oocytes with recombinant human alpha Klotho protein significantly increased creatine induced current. CONCLUSION Klotho protein up-regulates the activity of creatine transporter CreaT (Slc6A8) by stabilizing the carrier protein in the cell membrane, an effect requiring β-glucuronidase activity of Klotho protein.
Collapse
Affiliation(s)
- Ahmad Almilaji
- Department of Physiology, Gmelinstr. 5, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Plum J, Nøhr MK, Hansen SH, Holm R, Nielsen CU. The anti-epileptic drug substance vigabatrin inhibits taurine transport in intestinal and renal cell culture models. Int J Pharm 2014; 473:395-7. [PMID: 25062867 DOI: 10.1016/j.ijpharm.2014.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/17/2014] [Indexed: 10/25/2022]
|
34
|
Akahoshi N, Kamata S, Kubota M, Hishiki T, Nagahata Y, Matsuura T, Yamazaki C, Yoshida Y, Yamada H, Ishizaki Y, Suematsu M, Kasahara T, Ishii I. Neutral aminoaciduria in cystathionine β-synthase-deficient mice, an animal model of homocystinuria. Am J Physiol Renal Physiol 2014; 306:F1462-76. [DOI: 10.1152/ajprenal.00623.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidney is one of the major loci for the expression of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH). While CBS-deficient ( Cbs−/−) mice display homocysteinemia/methioninemia and severe growth retardation, and rarely survive beyond the first 4 wk, CTH-deficient ( Cth−/−) mice show homocysteinemia/cystathioninemia but develop with no apparent abnormality. This study examined renal amino acid reabsorption in those mice. Although both 2-wk-old Cbs−/− and Cth−/− mice had normal renal architecture, their serum/urinary amino acid profiles largely differed from wild-type mice. The most striking feature was marked accumulation of Met and cystathionine in serum/urine/kidney samples of Cbs−/− and Cth−/− mice, respectively. Levels of some neutral amino acids (Val, Leu, Ile, and Tyr) that were not elevated in Cbs−/− serum were highly elevated in Cbs−/− urine, and urinary excretion of other neutral amino acids (except Met) was much higher than expected from their serum levels, demonstrating neutral aminoaciduria in Cbs−/− (not Cth−/−) mice. Because the bulk of neutral amino acids is absorbed via a B0AT1 transporter and Met has the highest substrate affinity for B0AT1 than other neutral amino acids, hypermethioninemia may cause hyperexcretion of neutral amino acids.
Collapse
Affiliation(s)
- Noriyuki Akahoshi
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan; and
| | - Shotaro Kamata
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Masashi Kubota
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Takako Hishiki
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Yoshiko Nagahata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Tomomi Matsuura
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Chiho Yamazaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yuka Yoshida
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hidenori Yamada
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Makoto Suematsu
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo, Japan
| | - Tadashi Kasahara
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Isao Ishii
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
- Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
35
|
Lambert IH, Jensen JV, Pedersen PA. mTOR ensures increased release and reduced uptake of the organic osmolyte taurine under hypoosmotic conditions in mouse fibroblasts. Am J Physiol Cell Physiol 2014; 306:C1028-40. [DOI: 10.1152/ajpcell.00005.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that modulates translation in response to growth factors and alterations in nutrient availability following hypoxia and DNA damage. Here we demonstrate that mTOR activity in Ehrlich Lettré ascites (ELA) cells is transiently increased within minutes following osmotic cell swelling and that inhibition of phosphatidylinositol-3-phosphatase (PTEN) counteracts the upstream phosphatidylinositol kinase and potentiates mTOR activity. PTEN inhibition concomitantly potentiates swelling-induced taurine release via the volume-sensitive transporter for organic osmolytes and anion channels (VSOAC) and enhances swelling-induced inhibition of taurine uptake via the taurine-specific transporter (TauT). Chronic osmotic stress, i.e., exposure to hypotonic or hypertonic media for 24 h, reduces and increases mTOR activity in ELA cells, respectively. Using rapamycin, we demonstrate that mTOR inhibition is accompanied by reduction in TauT activity and increase in VSOAC activity in cells expressing high (NIH3T3 fibroblasts) or low (ELA) amounts of mTOR protein. The effect of mTOR inhibition on TauT activity reflects reduced TauT mRNA, TauT protein abundance, and an overall reduction in protein synthesis, whereas the effect on VSOAC is mimicked by catalase inhibition and correlates with reduced catalase mRNA abundance. Hence, mTOR activity favors loss of taurine following hypoosmotic cell swelling, i.e., release via VSOAC and uptake via TauT during acute hypotonic exposure is potentiated and reduced, respectively, by phosphorylation involving mTOR and/or the kinases upstream to mTOR. Decrease in TauT activity during chronic hypotonic exposure, on the other hand, involves reduction in expression/activity of TauT and enzymes in antioxidative defense.
Collapse
Affiliation(s)
- Ian Henry Lambert
- Department of Biology, Section of Cellular and Developmental Biology, University of Copenhagen, Copenhagen, Denmark; and
| | - Jane Vendelbo Jensen
- Department of Biology, Section of Cellular and Developmental Biology, University of Copenhagen, Copenhagen, Denmark; and
| | - Per Amstrup Pedersen
- Department of Biology, Section for Molecular Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Kempson SA, Zhou Y, Danbolt NC. The betaine/GABA transporter and betaine: roles in brain, kidney, and liver. Front Physiol 2014; 5:159. [PMID: 24795654 PMCID: PMC4006062 DOI: 10.3389/fphys.2014.00159] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022] Open
Abstract
The physiological roles of the betaine/GABA transporter (BGT1; slc6a12) are still being debated. BGT1 is a member of the solute carrier family 6 (the neurotransmitter, sodium symporter transporter family) and mediates cellular uptake of betaine and GABA in a sodium- and chloride-dependent process. Most of the studies of BGT1 concern its function and regulation in the kidney medulla where its role is best understood. The conditions here are hostile due to hyperosmolarity and significant concentrations of NH4Cl and urea. To withstand the hyperosmolarity, cells trigger osmotic adaptation, involving concentration of a transcriptional factor TonEBP/NFAT5 in the nucleus, and accumulate betaine and other osmolytes. Data from renal cells in culture, primarily MDCK, revealed that transcriptional regulation of BGT1 by TonEBP/NFAT5 is relatively slow. To allow more acute control of the abundance of BGT1 protein in the plasma membrane, there is also post-translation regulation of BGT1 protein trafficking which is dependent on intracellular calcium and ATP. Further, betaine may be important in liver metabolism as a methyl donor. In fact, in the mouse the liver is the organ with the highest content of BGT1. Hepatocytes express high levels of both BGT1 and the only enzyme that can metabolize betaine, namely betaine:homocysteine –S-methyltransferase (BHMT1). The BHMT1 enzyme removes a methyl group from betaine and transfers it to homocysteine, a potential risk factor for cardiovascular disease. Finally, BGT1 has been proposed to play a role in controlling brain excitability and thereby represents a target for anticonvulsive drug development. The latter hypothesis is controversial due to very low expression levels of BGT1 relative to other GABA transporters in brain, and also the primary location of BGT1 at the surface of the brain in the leptomeninges. These issues are discussed in detail.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Yun Zhou
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Niels C Danbolt
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|
37
|
|
38
|
|
39
|
Abstract
Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.
Collapse
Affiliation(s)
- Florian Lang
- Institute of Physiology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
40
|
Lötsch J, Hummel T, Warskulat U, Coste O, Häussinger D, Geisslinger G, Tegeder I. Congenital taurine deficiency in mice is associated with reduced sensitivity to nociceptive chemical stimulation. Neuroscience 2013; 259:63-70. [PMID: 24321512 DOI: 10.1016/j.neuroscience.2013.11.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/04/2013] [Accepted: 11/20/2013] [Indexed: 01/06/2023]
Abstract
The amino acid taurine is required for development and functioning of the central and peripheral nervous system where it exerts osmoregulatory, neuromodulatory and anti-apoptotic actions. It is subject to cellular import by the taurine transporter slc6a6. Absence of the transporter and consequently, absence of taurine leads to several neurologic deficits and sensory losses. In a slc6a6 knock-out mouse model, consequences of congenital taurine deficiency were assessed in nociceptive sensory processes. The formalin assay, hot plate assay, and summated generator potentials in response to local nociceptive stimulation with gaseous CO2 were applied. Reduced responsiveness of slc6a6(-/-) mice to nociceptive stimulation was observed in particular to chemical nociceptive stimuli. Scl6a6 knock-out mice spent significantly less time licking the formalin injected paw and displayed smaller amplitudes of the nociceptive nasal mucosa potentials than wild-type mice (p=0.002 and 0.01 respectively). In contrast, withdrawal latencies on a hot plate did not significantly differ, suggesting that intracellular taurine deficits lead in particular to a hyposensitivity of nociceptive sensory neurons sensitive to noxious chemical stimulation. As hereditary absence of taurine affects biological processes of anatomical structure development, the altered nociceptive responses likely reflect consequences of compromised peripheral nervous system development.
Collapse
Affiliation(s)
- J Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; Fraunhofer Institute of Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - T Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Fetscherstr. 74, D-01307 Dresden, Germany
| | - U Warskulat
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - O Coste
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - D Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - G Geisslinger
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; Fraunhofer Institute of Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - I Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
41
|
Dall'asta V, Franchi-Gazzola R, Bussolati O, Sala R, Rotoli BM, Rossi PA, Uggeri J, Belletti S, Visigalli R, Gazzola GC. Emerging roles for sodium dependent amino acid transport in mesenchymal cells. Amino Acids 2013; 11:117-33. [PMID: 24178683 DOI: 10.1007/bf00813856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1996] [Accepted: 02/20/1996] [Indexed: 11/25/2022]
Abstract
The functional aspects of sodium dependent amino acid transport in mesenchymal cells are the subject of this contribution. In a survey of the cross-talk existing among the various transport mechanisms, particular attention is devoted to the role played by substrates shared by several transport systems, such as L-glutamine. Intracellular levels of glutamine are determined by the activity of System A, the main transducer of ion gradients built on by Na,K-ATPase into neutral amino acid gradients. Changes in the activity of the System are employed to regulate intracellular amino acid pool and, hence, cell volume. System A activity has been found increased in hypertonically shrunken cells and in proliferating cells. Under both these conditions cells have to increase their volume; therefore, System A can be employed as a convenient mechanism to increase cell volume both under hypertonic and isotonic conditions. Although less well characterized, the uptake of anionic amino acids performed by System X(-) AG may be involved in the maintenance of intracellular amino acid pool under conditions of limited availability of neutral amino acids substrates of System A.
Collapse
Affiliation(s)
- V Dall'asta
- Istituto di Patologia Generale, Università degli Studi di Parma, Via Gramsci 14, I-43100, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The solute carrier 6 (SLC6) family of the human genome comprises transporters for neurotransmitters, amino acids, osmolytes and energy metabolites. Members of this family play critical roles in neurotransmission, cellular and whole body homeostasis. Malfunction or altered expression of these transporters is associated with a variety of diseases. Pharmacological inhibition of the neurotransmitter transporters in this family is an important strategy in the management of neurological and psychiatric disorders. This review provides an overview of the biochemical and pharmacological properties of the SLC6 family transporters.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
43
|
Han X, Chesney RW. Knockdown of TauT Expression Impairs Human Embryonic Kidney 293 Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:307-20. [DOI: 10.1007/978-1-4614-6093-0_28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
44
|
Miyazaki T, Matsuzaki Y. Taurine and liver diseases: a focus on the heterogeneous protective properties of taurine. Amino Acids 2012; 46:101-10. [PMID: 22918604 DOI: 10.1007/s00726-012-1381-0] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/27/2012] [Indexed: 12/30/2022]
Abstract
Taurine (2-aminoethylsulfonic acid) has many physiological and pharmacological functions in most tissues. It is abundantly maintained in the liver by both endogenous biosynthesis and exogenous transport, but is decreased in liver diseases. In the hepatic lobule, there are heterogeneous differences in metabolism between the pericentral (PC) and periportal regions, and the distributions of the biosynthesis capacity and specific taurine transporter expression are predominantly in the PC region. In cases of depletion of hepatic taurine level, serious liver damages were observed in the PC region. Taurine has protective effects against xenobiotics-induced liver damages in the PC region, but not xenobiotics-induced PP region damages. The xenobiotics that injure the PC region are mainly catabolized by NADPH-dependent cytochrome P450 2E1 that is also predominantly expressed in the PC region. Taurine treatment seems to be a useful agent for CYP2E1-related liver diseases with predominant damages in the PC region.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Japan,
| | | |
Collapse
|
45
|
Ando D, Kubo Y, Akanuma SI, Yoneyama D, Tachikawa M, Hosoya KI. Function and regulation of taurine transport in Müller cells under osmotic stress. Neurochem Int 2012; 60:597-604. [DOI: 10.1016/j.neuint.2012.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/16/2012] [Accepted: 02/18/2012] [Indexed: 11/26/2022]
|
46
|
Downregulation of the Creatine Transporter SLC6A8 by JAK2. J Membr Biol 2012; 245:157-63. [DOI: 10.1007/s00232-012-9424-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/16/2012] [Indexed: 12/20/2022]
|
47
|
Hosseinzadeh Z, Shojaiefard M, Bhavsar SK, Lang F. Up-regulation of the betaine/GABA transporter BGT1 by JAK2. Biochem Biophys Res Commun 2012; 420:172-7. [DOI: 10.1016/j.bbrc.2012.02.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 02/24/2012] [Indexed: 11/17/2022]
|
48
|
Christoph K, Beck FX, Neuhofer W. Osmoadaptation of Mammalian cells - an orchestrated network of protective genes. Curr Genomics 2011; 8:209-18. [PMID: 18645598 DOI: 10.2174/138920207781386979] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/27/2007] [Accepted: 03/03/2007] [Indexed: 11/22/2022] Open
Abstract
In mammals, the cells of the renal medulla are physiologically exposed to interstitial osmolalities several-fold higher that found in any other tissue. Nevertheless, these cells not only have the ability to survive in this harsh environment, but also to function normally, which is critical for maintenance of systemic electrolyte and fluid homeostasis. Over the last two decades, a substantial body of evidence has accumulated, indicating that sequential and well orchestrated genomic responses are required to provide tolerance to osmotic stress. This includes the enhanced expression and action of immediate-early genes, growth arrest and DNA damage inducible genes (GADDs), genes involved in cell cycle control and apoptosis, heat shock proteins, and ultimately that of genes involved in the intracellular accumulation of nonperturbing organic osmolytes. The present review summarizes the sequence of genomic responses conferring resistance against osmotic stress. In addition, the regulatory mechanisms mediating the coordinated genomic response to osmotic stress will be highlighted.
Collapse
Affiliation(s)
- Küper Christoph
- Department of Physiology, University of Munich, Munich, Germany
| | | | | |
Collapse
|
49
|
Bianchi L, Lari R, Anichini R, De Bellis A, Berti A, Napoli Z, Seghieri G, Franconi F. Taurine transporter gene expression in peripheral mononuclear blood cells of type 2 diabetic patients. Amino Acids 2011; 42:2267-74. [PMID: 21739148 DOI: 10.1007/s00726-011-0968-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 06/18/2011] [Indexed: 12/24/2022]
Abstract
Taurine acts as antioxidant, cell osmolyte, modulator of glucose metabolism, and plays a role in the retinal function. It is 10(3)-fold more concentrated in the intracellular than in the extracellular milieu due to a specific taurine-Na-dependent transporter (TauT), which is upregulated by hypertonicity, low extracellular taurine, or oxidative stress and acutely downregulated 'in vitro' by high glucose concentrations. Aim of this study was to investigate whether TauT expression was modified in mononuclear peripheral blood cells (MPC) of type 2 diabetic patients with or without micro/macrovascular complications. Plasma taurine, as well as other sulphur-containing aminoacids (assayed by HPLC) and TauT gene expression (assayed by real-time PCR analysis) were measured in MPC of 45 controls and of 81 age-and-sex matched type 2 diabetic patients with or without micro/macrovascular complications. Median value (interquartile range) of plasma taurine was significantly lower in diabetic patients than in controls [28.7 (13.7) μmol/l vs. 46.5 (20.3) μmol/l; P<0.05], while median TauT expression, in arbitrary units, was significantly higher in diabetics than in controls [3.8 (3.9) vs. 1 (1.3); P<0.05) and was related to HbA1c only in controls (r=0.34; P<0.05). Patients with retinopathy (n=25) had lower TauT expression than those who were unaffected [3.1 (2.8) vs. 4.1 (3.4); P<0.05], while persistent micro/macroalbuminuria was associated with unchanged TauT expression. A trend toward reduction in TauT expression was observed in patients with macroangiopathy [n=27; 3.3 (2.5) vs. 4 [3.7]; P=NS]. In conclusion, TauT gene is overexpressed in MPC of type 2 diabetic patients, while presence of retinopathy is specifically associated with a drop in TauT overexpression, suggesting its possible involvement in this microangiopathic lesion.
Collapse
Affiliation(s)
- Loria Bianchi
- Department of Clinical Chemistry, Spedali Riuniti, Pistoia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Effects of taurine on nitric oxide and 3-nitrotyrosine levels in spleen during endotoxemia. Neurochem Res 2011; 36:1978-83. [PMID: 21674239 DOI: 10.1007/s11064-011-0521-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2011] [Indexed: 02/07/2023]
Abstract
Taurine (2-aminoethanesulfonic acid) is a free sulfur-containing β-amino acid which has antioxidant, antiinflammatory and detoxificant properties. In the present study, the role of endotoxemia on peroxynitrite formation via 3-nitrotyrosine (3-NT) detection, and the possible antioxidant effect of taurine in lipopolysaccharide (LPS)-treated guinea pigs were aimed. 40 adult male guinea pigs were divided into four groups; control, endotoxemia, taurine and taurine+endotoxemia. Animals were administered taurine (300 mg/kg), LPS (4 mg/kg) or taurine plus LPS intraperitoneally. After 6 h of incubation, when highest blood levels of taurine and endotoxin were attained, the animals were sacrificed and spleen samples were collected. The amounts of 3-nitrotyrosine and taurine were measured by HPLC, and reactive nitrogen oxide species (NOx) which are stable end products of nitric oxide was measured spectrophotometrically in spleen tissues. LPS administration significantly decreased the concentration of taurine whilst increased levels of 3-NT and NOx compared with control group. It was determined that taurine treatment decreased the levels of 3-nitrotyrosine and NOx in taurine+endotoxemia group. The group in which taurine was administered alone, contradiction to well-known antioxidant effect, taurine caused elevated concentration of 3-NT and NOx. This data suggest that taurine protects spleen against oxidative damage in endotoxemic conditions. However, the effect of taurine is different when it is administered alone. In conclusion, taurine may act as an antioxidant during endotoxemia, and as a prooxidant in healthy subjects at this dose.
Collapse
|