1
|
Yim W, Jin Z, Chang YC, Brambila C, Creyer MN, Ling C, He T, Li Y, Retout M, Penny WF, Zhou J, Jokerst JV. Polyphenol-stabilized coacervates for enzyme-triggered drug delivery. Nat Commun 2024; 15:7295. [PMID: 39181884 PMCID: PMC11344779 DOI: 10.1038/s41467-024-51218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Stability issues in membrane-free coacervates have been addressed with coating strategies, but these approaches often compromise the permeability of the coacervate. Here we report a facile approach to maintain both stability and permeability using tannic acid and then demonstrate the value of this approach in enzyme-triggered drug release. First, we develop size-tunable coacervates via self-assembly of heparin glycosaminoglycan with tyrosine and arginine-based peptides. A thrombin-recognition site within the peptide building block results in heparin release upon thrombin proteolysis. Notably, polyphenols are integrated within the nano-coacervates to improve stability in biofluids. Phenolic crosslinking at the liquid-liquid interface enables nano-coacervates to maintain exceptional structural integrity across various environments. We discover a pivotal polyphenol threshold for preserving enzymatic activity alongside enhanced stability. The disassembly rate of the nano-coacervates increases as a function of thrombin activity, thus preventing a coagulation cascade. This polyphenol-based approach not only improves stability but also opens the way for applications in biomedicine, protease sensing, and bio-responsive drug delivery.
Collapse
Affiliation(s)
- Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Zhicheng Jin
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Carlos Brambila
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Matthew N Creyer
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Chuxuan Ling
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Yi Li
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Maurice Retout
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - William F Penny
- Division of Cardiology, VA San Diego Healthcare System, University of California San Diego, La Jolla, CA, USA
| | - Jiajing Zhou
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Jesse V Jokerst
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA.
- Aiiso Yufeng Li Family Department of Chemical and NanoEngineering, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Dunjic Manevski S, Cumbo M, Pruner I, Gvozdenov M, Tomic B, Taxiarchis A, Antovic J, Djordjevic V. Effect of prothrombin Belgrade mutation, causing antithrombin resistance, on fibrin clot properties. Int J Lab Hematol 2024; 46:329-335. [PMID: 37918971 DOI: 10.1111/ijlh.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Prothrombin Belgrade mutation is the result of the c.1787G>A substitution in the prothrombin gene. It is located in the antithrombin and sodium binding site and leads to impaired inactivation of thrombin by antithrombin, resulting in antithrombin resistance and thrombotic disorders. However, it negatively affects sodium binding and may have hypocoagulant effects. Considering that prothrombin Belgrade mutation mechanism is still not fully elucidated and that sodium binding is important for thrombin affinity towards fibrinogen, our aim was to determine whether this mutation affects fibrin clot formation and lysis. METHODS Using HEK293T cell line, recombinant wild type and mutated prothrombin were generated by transient transfection. Samples that correspond to plasma of a non-carrier, heterozygous and homozygous carriers were reconstituted using prothrombin deficient plasma and recombinant proteins. Reconstituted samples were used in OHP assay (Overall Hemostasis Potential) to determine kinetic profiles of coagulation and fibrinolysis. Clot turbidity assay was performed to observe kinetics of clot formation and lysis more closely. Fibrin clots formed in reconstituted plasma samples were analyzed by confocal microscopy to determine density of fibrin network. Fibrin clots were additionally observed using electron microscopy to determine thickness of individual fibrin fibers. RESULTS No significant difference found in OHP, OCP, OFP, and fibrin network density between wild type, heterozygous, and homozygous carrier reconstituted plasma samples. There were significant differences between samples for slope and slope time parameters in kinetic profiles and fibrin fiber thickness. CONCLUSIONS Results indicate that prothrombin Belgrade mutation has no significant impact on fibrinolysis, however it may affect kinetics of clot formation and its architecture.
Collapse
Affiliation(s)
- Sofija Dunjic Manevski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Cumbo
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Iva Pruner
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Maja Gvozdenov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branko Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Jovan Antovic
- Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | - Valentina Djordjevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Wu D, Prem A, Xiao J, Salsbury FR. Thrombin - A Molecular Dynamics Perspective. Mini Rev Med Chem 2024; 24:1112-1124. [PMID: 37605420 DOI: 10.2174/1389557523666230821102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023]
Abstract
Thrombin is a crucial enzyme involved in blood coagulation, essential for maintaining circulatory system integrity and preventing excessive bleeding. However, thrombin is also implicated in pathological conditions such as thrombosis and cancer. Despite the application of various experimental techniques, including X-ray crystallography, NMR spectroscopy, and HDXMS, none of these methods can precisely detect thrombin's dynamics and conformational ensembles at high spatial and temporal resolution. Fortunately, molecular dynamics (MD) simulation, a computational technique that allows the investigation of molecular functions and dynamics in atomic detail, can be used to explore thrombin behavior. This review summarizes recent MD simulation studies on thrombin and its interactions with other biomolecules. Specifically, the 17 studies discussed here provide insights into thrombin's switch between 'slow' and 'fast' forms, active and inactive forms, the role of Na+ binding, the effects of light chain mutation, and thrombin's interactions with other biomolecules. The findings of these studies have significant implications for developing new therapies for thrombosis and cancer. By understanding thrombin's complex behavior, researchers can design more effective drugs and treatments that target thrombin.
Collapse
Affiliation(s)
- Dizhou Wu
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Athul Prem
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Jiajie Xiao
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
- Freenome, South San Francisco, CA, 94080, USA
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| |
Collapse
|
4
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
5
|
Acquasaliente L, Pierangelini A, Pagotto A, Pozzi N, De Filippis V. From haemadin to haemanorm: Synthesis and characterization of full-length haemadin from the leech Haemadipsa sylvestris and of a novel bivalent, highly potent thrombin inhibitor (haemanorm). Protein Sci 2023; 32:e4825. [PMID: 37924304 PMCID: PMC10683372 DOI: 10.1002/pro.4825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Hirudin from Hirudo medicinalis is a bivalent α-Thrombin (αT) inhibitor, targeting the enzyme active site and exosite-I, and is currently used in anticoagulant therapy along with its simplified analogue hirulog. Haemadin, a small protein (57 amino acids) isolated from the land-living leech Haemadipsa sylvestris, selectively inhibits αT with a potency identical to that of recombinant hirudin (KI = 0.2 pM), with which it shares a common disulfide topology and overall fold. At variance with hirudin, haemadin targets exosite-II and therefore (besides the free protease) it also blocks thrombomodulin-bound αT without inhibiting the active intermediate meizothrombin, thus offering potential advantages over hirudin. Here, we produced in reasonably high yields and pharmaceutical purity (>98%) wild-type haemadin and the oxidation resistant Met5 → nor-Leucine analogue, both inhibiting αT with a KI of 0.2 pM. Thereafter, we used site-directed mutagenesis, spectroscopic, ligand-displacement, and Hydrogen/Deuterium Exchange-Mass Spectrometry techniques to map the αT regions relevant for the interaction with full-length haemadin and with the synthetic N- and C-terminal peptides Haem(1-10) and Haem(45-57). Haem(1-10) competitively binds to/inhibits αT active site (KI = 1.9 μM) and its potency was enhanced by 10-fold after Phe3 → β-Naphthylalanine exchange. Conversely to full-length haemadin, haem(45-57) displays intrinsic affinity for exosite-I (KD = 1.6 μM). Hence, we synthesized a peptide in which the sequences 1-9 and 45-57 were joined together through a 3-Glycine spacer to yield haemanorm, a highly potent (KI = 0.8 nM) inhibitor targeting αT active site and exosite-I. Haemanorm can be regarded as a novel class of hirulog-like αT inhibitors with potential pharmacological applications.
Collapse
Affiliation(s)
- Laura Acquasaliente
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| | - Andrea Pierangelini
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| | - Anna Pagotto
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| | - Nicola Pozzi
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research CenterSaint Louis UniversitySt. LouisMissouriUSA
| | - Vincenzo De Filippis
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| |
Collapse
|
6
|
Komives EA. Dynamic allostery in thrombin-a review. Front Mol Biosci 2023; 10:1200465. [PMID: 37457835 PMCID: PMC10339233 DOI: 10.3389/fmolb.2023.1200465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Thrombin is a serine protease that catalyzes a large number of different reactions including proteolytic cleave of fibrinogen to make the fibrin clot (procoagulant activity), of the protease activated receptors (for cell signaling) and of protein C generating activated protein C (anticoagulant activity). Thrombin has an effector binding site called the anion binding exosite 1 that is allosterically coupled to the active site. In this review, we survey results from thermodynamic characterization of the allosteric coupling as well as hydrogen-deuterium exchange mass spectrometry to reveal which parts of the thrombin structure are changed upon effector binding and/or mutagenesis, and finally NMR spectroscopy to characterize the different timescales of motions elicited by the effectors. We also relate the experimental work to computational network analysis of the thrombin-thrombomodulin complex.
Collapse
|
7
|
Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. Int J Mol Sci 2021; 22:ijms221910803. [PMID: 34639143 PMCID: PMC8509272 DOI: 10.3390/ijms221910803] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Thrombin is the key enzyme of the entire hemostatic process since it is able to exert both procoagulant and anticoagulant functions; therefore, it represents an attractive target for the developments of biomolecules with therapeutic potential. Thrombin can perform its many functional activities because of its ability to recognize a wide variety of substrates, inhibitors, and cofactors. These molecules frequently are bound to positively charged regions on the surface of protein called exosites. In this review, we carried out extensive analyses of the structural determinants of thrombin partnerships by surveying literature data as well as the structural content of the Protein Data Bank (PDB). In particular, we used the information collected on functional, natural, and synthetic molecular ligands to define the anatomy of the exosites and to quantify the interface area between thrombin and exosite ligands. In this framework, we reviewed in detail the specificity of thrombin binding to aptamers, a class of compounds with intriguing pharmaceutical properties. Although these compounds anchor to protein using conservative patterns on its surface, the present analysis highlights some interesting peculiarities. Moreover, the impact of thrombin binding aptamers in the elucidation of the cross-talk between the two distant exosites is illustrated. Collectively, the data and the work here reviewed may provide insights into the design of novel thrombin inhibitors.
Collapse
|
8
|
Vadivel K, Schmidt AE, Cascio D, Padmanabhan K, Krishnaswamy S, Brandstetter H, Bajaj SP. Structure of human factor VIIa-soluble tissue factor with calcium, magnesium and rubidium. Acta Crystallogr D Struct Biol 2021; 77:809-819. [PMID: 34076594 PMCID: PMC8171065 DOI: 10.1107/s2059798321003922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
Coagulation factor VIIa (FVIIa) consists of a γ-carboxyglutamic acid (GLA) domain, two epidermal growth factor-like (EGF) domains and a protease domain. FVIIa binds three Mg2+ ions and four Ca2+ ions in the GLA domain, one Ca2+ ion in the EGF1 domain and one Ca2+ ion in the protease domain. Further, FVIIa contains an Na+ site in the protease domain. Since Na+ and water share the same number of electrons, Na+ sites in proteins are difficult to distinguish from waters in X-ray structures. Here, to verify the Na+ site in FVIIa, the structure of the FVIIa-soluble tissue factor (TF) complex was solved at 1.8 Å resolution containing Mg2+, Ca2+ and Rb+ ions. In this structure, Rb+ replaced two Ca2+ sites in the GLA domain and occupied three non-metal sites in the protease domain. However, Rb+ was not detected at the expected Na+ site. In kinetic experiments, Na+ increased the amidolytic activity of FVIIa towards the synthetic substrate S-2288 (H-D-Ile-Pro-Arg-p-nitroanilide) by ∼20-fold; however, in the presence of Ca2+, Na+ had a negligible effect. Ca2+ increased the hydrolytic activity of FVIIa towards S-2288 by ∼60-fold in the absence of Na+ and by ∼82-fold in the presence of Na+. In molecular-dynamics simulations, Na+ stabilized the two Na+-binding loops (the 184-loop and 220-loop) and the TF-binding region spanning residues 163-180. Ca2+ stabilized the Ca2+-binding loop (the 70-loop) and Na+-binding loops but not the TF-binding region. Na+ and Ca2+ together stabilized both the Na+-binding and Ca2+-binding loops and the TF-binding region. Previously, Rb+ has been used to define the Na+ site in thrombin; however, it was unsuccessful in detecting the Na+ site in FVIIa. A conceivable explanation for this observation is provided.
Collapse
Affiliation(s)
- Kanagasabai Vadivel
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
| | - Amy E. Schmidt
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Duilio Cascio
- DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | | | - Sriram Krishnaswamy
- Division of Hematology, The Children’s Hospital of Philadelphia University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - S. Paul Bajaj
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Kovach IM. Proton Bridging in Catalysis by and Inhibition of Serine Proteases of the Blood Cascade System. Life (Basel) 2021; 11:396. [PMID: 33925363 PMCID: PMC8146069 DOI: 10.3390/life11050396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Inquiries into the participation of short hydrogen bonds in stabilizing transition states and intermediate states in the thrombin, factor Xa, plasmin and activated protein C-catalyzed reactions revealed that specific binding of effectors at Sn, n = 1-4 and S'n, n = 1-3 and at remote exosites elicit complex patterns of hydrogen bonding and involve water networks. The methods employed that yielded these discoveries include; (1) kinetics, especially partial or full kinetic deuterium solvent isotope effects with short cognate substrates and also with the natural substrates, (2) kinetic and structural probes, particularly low-field high-resolution nuclear magnetic resonance (1H NMR), of mechanism-based inhibitors and substrate-mimic peptide inhibitors. Short hydrogen bonds form at the transition states of the catalytic reactions at the active site of the enzymes as they do with mechanism-based covalent inhibitors of thrombin. The emergence of short hydrogen bonds at the binding interface of effectors and thrombin at remote exosites has recently gained recognition. Herein, I describe our contribution, a confirmation of this discovery, by low-field 1H NMR. The principal conclusion of this review is that proton sharing at distances below the sum of van der Waals radii of the hydrogen and both donor and acceptor atoms contribute to the remarkable catalytic prowess of serine proteases of the blood clotting system and other enzymes that employ acid-base catalysis. Proton bridges also play a role in tight binding in proteins and at exosites, i.e., allosteric sites, of enzymes.
Collapse
Affiliation(s)
- Ildiko M Kovach
- Department of Chemistry, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
10
|
Mapping specificity, cleavage entropy, allosteric changes and substrates of blood proteases in a high-throughput screen. Nat Commun 2021; 12:1693. [PMID: 33727531 PMCID: PMC7966775 DOI: 10.1038/s41467-021-21754-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Proteases are among the largest protein families and critical regulators of biochemical processes like apoptosis and blood coagulation. Knowledge of proteases has been expanded by the development of proteomic approaches, however, technology for multiplexed screening of proteases within native environments is currently lacking behind. Here we introduce a simple method to profile protease activity based on isolation of protease products from native lysates using a 96FASP filter, their analysis in a mass spectrometer and a custom data analysis pipeline. The method is significantly faster, cheaper, technically less demanding, easy to multiplex and produces accurate protease fingerprints. Using the blood cascade proteases as a case study, we obtain protease substrate profiles that can be used to map specificity, cleavage entropy and allosteric effects and to design protease probes. The data further show that protease substrate predictions enable the selection of potential physiological substrates for targeted validation in biochemical assays. Characterizing proteases in their native environment is still challenging. Here, the authors develop a proteomics workflow for analyzing protease-specific peptides from cell lysates in 96-well format, providing mechanistic insights into blood proteases and enabling the prediction of protease substrates.
Collapse
|
11
|
Sodium-induced population shift drives activation of thrombin. Sci Rep 2020; 10:1086. [PMID: 31974511 PMCID: PMC6978324 DOI: 10.1038/s41598-020-57822-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/06/2020] [Indexed: 02/04/2023] Open
Abstract
The equilibrium between active E and inactive E* forms of thrombin is assumed to be governed by the allosteric binding of a Na+ ion. Here we use molecular dynamics simulations and Markov state models to sample transitions between active and inactive states. With these calculations we are able to compare thermodynamic and kinetic properties depending on the presence of Na+. For the first time, we directly observe sodium-induced conformational changes in long-timescale computer simulations. Thereby, we are able to explain the resulting change in activity. We observe a stabilization of the active form in presence of Na+ and a shift towards the inactive form in Na+-free simulations. We identify key structural features to quantify and monitor this conformational shift. These include the accessibility of the S1 pocket and the reorientation of W215, of R221a and of the Na+ loop. The structural characteristics exhibit dynamics at various timescales: Conformational changes in the Na+ binding loop constitute the slowest observed movement. Depending on its orientation, it induces conformational shifts in the nearby substrate binding site. Only after this shift, residue W215 is able to move freely, allowing thrombin to adopt a binding-competent conformation.
Collapse
|
12
|
Role of the I16-D194 ionic interaction in the trypsin fold. Sci Rep 2019; 9:18035. [PMID: 31792294 PMCID: PMC6889508 DOI: 10.1038/s41598-019-54564-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Activity in trypsin-like proteases is the result of proteolytic cleavage at R15 followed by an ionic interaction that ensues between the new N terminus of I16 and the side chain of the highly conserved D194. This mechanism of activation, first proposed by Huber and Bode, organizes the oxyanion hole and primary specificity pocket for substrate binding and catalysis. Using the clotting protease thrombin as a relevant model, we unravel contributions of the I16-D194 ionic interaction to Na+ binding, stability of the transition state and the allosteric E*-E equilibrium of the trypsin fold. The I16T mutation abolishes the I16-D194 interaction and compromises the architecture of the oxyanion hole. The D194A mutation also abrogates the I16-D194 interaction but, surprisingly, has no effect on the architecture of the oxyanion hole that remains intact through a new H-bond established between G43 and G193. In both mutants, loss of the I16-D194 ionic interaction compromises Na+ binding, reduces stability of the transition state, collapses the 215–217 segment into the primary specific pocket and abrogates the allosteric E*-E equilibrium in favor of a rigid conformation that binds ligand at the active site according to a simple lock-and-key mechanism. These findings refine the structural role of the I16-D194 ionic interaction in the Huber-Bode mechanism of activation and reveal a functional linkage with the allosteric properties of the trypsin fold like Na+ binding and the E*-E equilibrium.
Collapse
|
13
|
Xiao J, Salsbury FR. Na +-binding modes involved in thrombin's allosteric response as revealed by molecular dynamics simulations, correlation networks and Markov modeling. Phys Chem Chem Phys 2019; 21:4320-4330. [PMID: 30724273 PMCID: PMC6993936 DOI: 10.1039/c8cp07293k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The monovalent sodium ion (Na+) is a critical modulator of thrombin. However, the mechanism of thrombin's activation by Na+ has been widely debated for more than twenty years. Details of the linkage between thrombin and Na+ remain vague due to limited temporal and spatial resolution in experiments. In this work, we combine microsecond scale atomic-detailed molecular dynamics simulations with correlation network analyses and hidden Markov modeling to probe the detailed thermodynamic and kinetic picture of Na+-binding events and their resulting allosteric responses in thrombin. We reveal that ASP189 and ALA190 comprise a stable Na+-binding site (referred as "inner" Na+-binding site) along with the previously known one (referred as "outer" Na+-binding site). The corresponding newly identified Na+-binding mode introduces significant allosteric responses in thrombin's regulatory regions by stabilizing selected torsion angles of residues responsive to Na+-binding. Our Markov model indicates that the bound Na+ prefers to transfer between the two Na+-binding sites when an unbinding event takes place. These results suggest a testable hypothesis of a substrate-driven Na+ migration (ΔG ∼ 1.7 kcal mol-1) from the "inner" Na+-binding site to the "outer" one during thrombin's catalytic activities. The binding of a Na+ ion at the "inner" Na+-binding site should be inferred as a prerequisite for thrombin's efficient recognition to the substrate, which opens a new angle for our understanding of Na+-binding's allosteric activation on thrombin and sheds light on detailed processes in thrombin's activation.
Collapse
Affiliation(s)
- Jiajie Xiao
- Department of Physics, Wake Forest University, Winston Salem, NC, USA.
| | | |
Collapse
|
14
|
Eilertsen J, Stroberg W, Schnell S. Phase-plane geometries in coupled enzyme assays. Math Biosci 2018; 306:126-135. [PMID: 30261179 DOI: 10.1016/j.mbs.2018.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
The determination of a substrate or enzyme activity by coupling one enzymatic reaction with another easily detectable (indicator) reaction is a common practice in the biochemical sciences. Usually, the kinetics of enzyme reactions is simplified with singular perturbation analysis to derive rate or time course expressions valid under the quasi-steady-state and reactant stationary state assumptions. In this paper, the dynamical behavior of coupled enzyme catalyzed reaction mechanisms is studied by analysis of the phase-plane. We analyze two types of time-dependent slow manifolds - Sisyphus and Laelaps manifolds - that occur in the asymptotically autonomous vector fields that arise from enzyme coupled reactions. Projection onto slow manifolds yields various reduced models, and we present a geometric interpretation of the slow/fast dynamics that occur in the phase-planes of these reactions.
Collapse
Affiliation(s)
- Justin Eilertsen
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Wylie Stroberg
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
De Filippis V, Pozzi N, Acquasaliente L, Artusi I, Pontarollo G, Peterle D. Protein engineering by chemical methods: Incorporation of nonnatural amino acids as a tool for studying protein folding, stability, and function. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vincenzo De Filippis
- Laboratory of Protein Chemistry, Department of Pharmaceutical & Pharmacological SciencesUniversity of Padua Padua Italy
| | - Nicola Pozzi
- Laboratory of Protein Chemistry, Department of Pharmaceutical & Pharmacological SciencesUniversity of Padua Padua Italy
| | - Laura Acquasaliente
- Laboratory of Protein Chemistry, Department of Pharmaceutical & Pharmacological SciencesUniversity of Padua Padua Italy
| | - Ilaria Artusi
- Laboratory of Protein Chemistry, Department of Pharmaceutical & Pharmacological SciencesUniversity of Padua Padua Italy
| | - Giulia Pontarollo
- Laboratory of Protein Chemistry, Department of Pharmaceutical & Pharmacological SciencesUniversity of Padua Padua Italy
| | - Daniele Peterle
- Laboratory of Protein Chemistry, Department of Pharmaceutical & Pharmacological SciencesUniversity of Padua Padua Italy
| |
Collapse
|
16
|
Eilertsen J, Stroberg W, Schnell S. A theory of reactant-stationary kinetics for a mechanism of zymogen activation. Biophys Chem 2018; 242:34-44. [PMID: 30218978 DOI: 10.1016/j.bpc.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 11/26/2022]
Abstract
A theoretical analysis is performed on the nonlinear ordinary differential equations that govern the dynamics of a reaction mechanism of zymogen activation. The reaction consists of a primary non-observable zymogen activation reaction that it is coupled to an indicator (observable) reaction. The product of the first reaction is the enzyme of the indicator reaction, and both reactions are governed by the Michaelis-Menten reaction mechanism. Using singular perturbation methods, we derive asymptotic solutions that are valid under the quasi-steady-state and reactant-stationary assumptions. In particular, we obtain closed form solutions that are analogous to the Schnell-Mendoza equation for Michaelis-Menten type reactions. These closed-form solutions approximate the evolution of the observable reaction and provide the mathematical link necessary to measure the enzyme activity of the non-observable reaction. Conditions for the validity of the asymptotic solutions are also derived, and we demonstrate that these asymptotic expressions are applicable under reactant-stationary kinetics.
Collapse
Affiliation(s)
- Justin Eilertsen
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Wylie Stroberg
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Takagi Y, Murata M, Kozuka T, Nakata Y, Hasebe R, Tamura S, Takagi A, Matsushita T, Saito H, Kojima T. Missense mutations in the gene encoding prothrombin corresponding to Arg596 cause antithrombin resistance and thrombomodulin resistance. Thromb Haemost 2018; 116:1022-1031. [DOI: 10.1160/th16-03-0223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/15/2016] [Indexed: 11/05/2022]
Abstract
SummaryAntithrombin (AT) and thrombomodulin (TM) play important roles in the process of natural anticoagulation in vivo. Recently, we reported that the prothrombin Yukuhashi mutation (p.Arg596Leu) was associated with AT and TM resistance-related thrombophilia. To assess the AT and TM resistances associated with other missense mutations by single base substitution in the Arg596 codon, we generated recombinant variants (596Gln, 596Trp, 596Gly, and 596Pro) and investigated the effects on AT and TM anticoagulant functions. All variants except 596Pro were secreted in amounts comparable to that of the wild-type but exhibited variable procoagulant activities. After a 30-minute inactivation by AT, the relative residual activity of wild-type thrombin decreased to 15 ± 4.0%, in contrast to values of all variants were maintained at above 80%. The thrombin–AT complex formation, as determined by enzyme-linked immunosorbent assay, was reduced with all tested variants in the presence and absence of heparin. In the presence of soluble TM (sTM), the relative fibrinogen clotting activity of wild-type thrombin decreased to 16 ± 0.12%, whereas that of tested variants was 37%–56%. In a surface plasmon resonance assay, missense Arg596 mutations reduced thrombin–TM affinity to an extent similar to the reduction of fibrinogen clotting inhibition. In the presence of sTM or cultured endothelial-like cells, APC generation was enhanced differently by variant thrombins in a thrombin–TM affinity- dependent manner. These data indicate that prothrombin Arg596 missense mutations lead to AT and TM resistance in the variant thrombins and suggest that prothrombin Arg596 is important for AT- and TM- mediated anticoagulation.
Collapse
|
18
|
De Filippis V, Acquasaliente L, Pontarollo G, Peterle D. Noncoded amino acids in protein engineering: Structure-activity relationship studies of hirudin-thrombin interaction. Biotechnol Appl Biochem 2018; 65:69-80. [DOI: 10.1002/bab.1632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/06/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Vincenzo De Filippis
- Laboratory of Protein Chemistry; Department of Pharmaceutical & Pharmacological Sciences; University of Padua; Padua Italy
| | - Laura Acquasaliente
- Laboratory of Protein Chemistry; Department of Pharmaceutical & Pharmacological Sciences; University of Padua; Padua Italy
| | - Giulia Pontarollo
- Laboratory of Protein Chemistry; Department of Pharmaceutical & Pharmacological Sciences; University of Padua; Padua Italy
| | - Daniele Peterle
- Laboratory of Protein Chemistry; Department of Pharmaceutical & Pharmacological Sciences; University of Padua; Padua Italy
| |
Collapse
|
19
|
Tamura S, Murata-Kawakami M, Takagi Y, Suzuki S, Katsumi A, Takagi A, Kojima T. In vitro exploration of latent prothrombin mutants conveying antithrombin resistance. Thromb Res 2017; 159:33-38. [PMID: 28961453 DOI: 10.1016/j.thromres.2017.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/19/2017] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Antithrombin resistance (ATR) prothrombinemia is an inherited thrombophilic disorder caused by missense mutations in prothrombin gene (F2) at Arg596 of the sodium-binding region. Previously, prothrombin mutants Yukuhashi (Arg596Leu), Belgrade (Arg596Gln), and Padua 2 (Arg596Trp) were reported as ATR-prothrombins possessing a risk of familial venous thrombosis. To identify additional F2 mutations causing the ATR-phenotype, we investigated the coagulant properties of recombinant prothrombins mutated at amino acid residues within the sodium-binding region by single nucleotide substitutions (Thr540, Arg541, Glu592, and Lys599). MATERIALS AND METHODS We constructed expression vectors of prothrombin mutants, established stably transfected HEK293 cells, and isolated the recombinant prothrombin proteins. We evaluated procoagulant activity and ATR-phenotypes of those mutants in reconstituted plasma by mixing with prothrombin deficient plasma. RESULTS The secreted quantity of all prothrombin mutants was the same as that of the wild-type prothrombin. Procoagulant activity of each mutant varied from 1.7% to 79.5% in a one-stage clotting assay and from 2.0% to 104.5% in a two-stage chromogenic assay. Most prothrombin mutants tested presented with a severe ATR-phenotype. To estimate the thrombosis risk of these mutations, we determined the residual clotting activity (RCA) after 30min inactivation with antithrombin. RCA scores, normalized to the wild-type, revealed that prothrombin mutants Lys599Arg (5.35) and Glu592Gln (4.71) had high scores, which were comparable with prothrombins Yukuhashi (4.36) and Belgrade (5.19). CONCLUSIONS Mutation of prothrombin at the sodium-binding site caused ATR-phenotypes. Of those tested, Lys599Arg and Glu592Gln may possess a thrombosis risk as large as the known pathogenic prothrombins Yukuhashi and Belgrade.
Collapse
Affiliation(s)
- Shogo Tamura
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Moe Murata-Kawakami
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Yuki Takagi
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Sachiko Suzuki
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Katsumi
- Department of Transfusion Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Akira Takagi
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuhito Kojima
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
20
|
Xiao J, Melvin RL, Salsbury FR. Mechanistic insights into thrombin's switch between "slow" and "fast" forms. Phys Chem Chem Phys 2017; 19:24522-24533. [PMID: 28849814 PMCID: PMC5719506 DOI: 10.1039/c7cp03671j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thrombin is a multifunctional enzyme that plays an important role in blood coagulation, cell growth, and metastasis. Depending upon the binding of sodium ions, thrombin presents significantly different enzymatic activities. In the environment with sodium ions, thrombin is highly active in cleaving the coagulated substrates and this is referred to as the "fast" form; in the environment without sodium ions, thrombin turns catalytically less active and is in the "slow" form. Although many experimental studies over the last two decades have attempted to reveal the structural and kinetic differences between these two forms, it remains vague and disputed how the functional switch between the "fast" and "slow" forms is mediated by Na+ cations. In this work, we employ microsecond-scale all-atom molecular dynamics simulations to investigate the differences in the structural ensembles in sodium-bound/unbound and potassium-bound/unbound thrombin. Our calculations indicate that the regulatory regions, including the 60s, γ loops, and exosite I and II, are primarily affected by both the bound and unbound cations. Conformational free energy surfaces, estimated from principal component analysis, further reveal the existence of multiple conformational states. The binding of a cation introduces changes in the distribution of these states. Through comparisons with potassium-binding, the binding of sodium ions appears to shift the population toward conformational states that might be catalytically favorable. Our study of thrombin in the presence of sodium/potassium ions suggests Na+-mediated generalized allostery is the mechanism of thrombin's functional switch between the "fast" and "slow" forms.
Collapse
Affiliation(s)
- Jiajie Xiao
- Department of Physics, Wake Forest University, Winston Salem, NC, USA.
| | | | | |
Collapse
|
21
|
Pontarollo G, Acquasaliente L, Peterle D, Frasson R, Artusi I, De Filippis V. Non-canonical proteolytic activation of human prothrombin by subtilisin from Bacillus subtilis may shift the procoagulant-anticoagulant equilibrium toward thrombosis. J Biol Chem 2017; 292:15161-15179. [PMID: 28684417 DOI: 10.1074/jbc.m117.795245] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/28/2017] [Indexed: 12/26/2022] Open
Abstract
Blood coagulation is a finely regulated physiological process culminating with the factor Xa (FXa)-mediated conversion of the prothrombin (ProT) zymogen to active α-thrombin (αT). In the prothrombinase complex on the platelet surface, FXa cleaves ProT at Arg-271, generating the inactive precursor prethrombin-2 (Pre2), which is further attacked at Arg-320-Ile-321 to yield mature αT. Whereas the mechanism of physiological ProT activation has been elucidated in great detail, little is known about the role of bacterial proteases, possibly released in the bloodstream during infection, in inducing blood coagulation by direct proteolytic ProT activation. This knowledge gap is particularly concerning, as bacterial infections are frequently complicated by severe coagulopathies. Here, we show that addition of subtilisin (50 nm to 2 μm), a serine protease secreted by the non-pathogenic bacterium Bacillus subtilis, induces plasma clotting by proteolytically converting ProT into active σPre2, a nicked Pre2 derivative with a single cleaved Ala-470-Asn-471 bond. Notably, we found that this non-canonical cleavage at Ala-470-Asn-471 is instrumental for the onset of catalysis in σPre2, which was, however, reduced about 100-200-fold compared with αT. Of note, σPre2 could generate fibrin clots from fibrinogen, either in solution or in blood plasma, and could aggregate human platelets, either isolated or in whole blood. Our findings demonstrate that alternative cleavage of ProT by proteases, even by those secreted by non-virulent bacteria such as B. subtilis, can shift the delicate procoagulant-anticoagulant equilibrium toward thrombosis.
Collapse
Affiliation(s)
- Giulia Pontarollo
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Laura Acquasaliente
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Daniele Peterle
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Roberta Frasson
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Ilaria Artusi
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Vincenzo De Filippis
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| |
Collapse
|
22
|
Miljic P, Gvozdenov M, Takagi Y, Takagi A, Pruner I, Dragojevic M, Tomic B, Bodrozic J, Kojima T, Radojkovic D, Djordjevic V. Clinical and biochemical characterization of the prothrombin Belgrade mutation in a large Serbian pedigree: new insights into the antithrombin resistance mechanism. J Thromb Haemost 2017; 15:670-677. [PMID: 28075532 DOI: 10.1111/jth.13618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Indexed: 11/28/2022]
Abstract
Essentials Prothrombin Belgrade mutation leads to antithrombin resistance. Clinical and biochemical phenotypes in a large family with this mutation were investigated. In carriers, we detected decreased factor II activity and increased endogenous thrombin potential. Prothrombin Belgrade mutation represents a strong prothrombotic risk factor. SUMMARY Background The recently reported c.1787G>A mutation in the prothrombin gene leads to Arg596Gln replacement in the protein molecule (prothrombin Belgrade). This substitution impairs binding of antithrombin to thrombin and results in inherited thrombophilia, known as antithrombin resistance. Objectives We aimed to elucidate the clinical and biochemical characteristics of thrombophilia associated with antithrombin resistance in a large Serbian family with the prothrombin Belgrade mutation. Patients and methods Nineteen family members were investigated, among whom 10 were carriers of the c.1787G>A mutation. In all subjects the clinical phenotype was determined and laboratory investigations of hemostatic parameters were performed. Results Six out of the 10 mutation carriers developed thromboembolic events, mainly deep venous and mesenteric vein thrombosis. The median age of the first thrombotic event was 26.5 (12-41) years, whereas the incidence rate of first thrombosis was 2.2% per year. In all mutation carriers prothrombin activity was significantly decreased in comparison with non-carriers, clearly distinguishing each group. However, the presence of the mutation did not affect the prothrombin antigen level in plasma. The endogenous thrombin potential was significantly increased in all carriers in comparison with non-carriers, indicating the presence of blood hypercoagulability. Interestingly, levels of D-dimer and the F1+2 fragment were similar in both groups. Conclusions Although rare, the prothrombin Belgrade mutation represents strong thrombophilia with early onset of thrombosis in the investigated family. According to our results, decreased prothrombin activity may be a simple screening test for detection of this mutation in thrombotic patients.
Collapse
Affiliation(s)
- P Miljic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic of Hematology, University Clinical Center, Belgrade, Serbia
| | - M Gvozdenov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia, Serbia
| | - Y Takagi
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - A Takagi
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - I Pruner
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia, Serbia
| | - M Dragojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia, Serbia
| | - B Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia, Serbia
| | - J Bodrozic
- Clinic of Hematology, University Clinical Center, Belgrade, Serbia
| | - T Kojima
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - D Radojkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia, Serbia
| | - V Djordjevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia, Serbia
| |
Collapse
|
23
|
Cahill K, Suttmiller R, Oehrle M, Sabelhaus A, Gemene KL. Pulsed Chronopotentiometric Detection of Thrombin Activity Using Reversible Polyion Selective Electrodes. ELECTROANAL 2016. [DOI: 10.1002/elan.201600401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kaitlin Cahill
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Rebecca Suttmiller
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Melissa Oehrle
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Andrew Sabelhaus
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Kebede L. Gemene
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| |
Collapse
|
24
|
Wu S. Loop-driven conformational transition between the alternative and collapsed form of prethrombin-2: targeted molecular dynamics study. J Biomol Struct Dyn 2016; 35:119-127. [PMID: 27471844 DOI: 10.1080/07391102.2015.1134347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two distinct crystal structures of prethrombin-2, the alternative and collapsed forms, are elucidated by X-ray crystallogrphy. We analyzed the conformational transition from the alternative to the collapsed form employing targeted molecular dynamics (TMD) simulation. Despite small RMSD difference in the two X-ray crystal structures, some hydrophobic residues (W60d, W148, W215, and F227) show a significant difference between the two conformations. TMD simulation shows that the four hydrophobic residues undergo concerted movement from dimer to trimer transition via tetramer state in the conformational change from the alternative to the collapsed form. We reveal that the concerted movement of the four hydrophobic residues is controlled by movement of specific loop regions behind. In this paper, we propose a sequential scenario for the conformational transition from the alternative form to the collapsed form, which is partially supported by the mutant W148A simulation.
Collapse
Affiliation(s)
- Sangwook Wu
- a Department of Physics , Pukyong National University , Busan 608-737 , Republic of Korea
| |
Collapse
|
25
|
Pozzi N, Chen Z, Di Cera E. How the Linker Connecting the Two Kringles Influences Activation and Conformational Plasticity of Prothrombin. J Biol Chem 2016; 291:6071-82. [PMID: 26763231 DOI: 10.1074/jbc.m115.700401] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 01/11/2023] Open
Abstract
A flexible linker (Lnk2) composed of 26 amino acids connects kringle-1 to kringle-2 in the coagulation factor prothrombin. Recent studies point to Lnk2 as a key determinant of the structure and function of this zymogen. Using a combination of mutagenesis, structural biology, and single molecule spectroscopy, we show how Lnk2 influences activation and conformational plasticity of prothrombin. Scrambling the sequence of Lnk2 is inconsequential on activation, and so is extension by as many as 22 residues. On the other hand, below a critical length of 15 residues, the rate of prothrombin activation increases (10-fold) in the absence of cofactor Va and decreases (3-fold) in the presence of cofactor. Furthermore, activation by prothrombinase takes place without preference along the prethrombin-2 (cleavage at Arg(271) first) or meizothrombin (cleavage at Arg(320) first) pathways. Notably, these transitions in the rate and pathway of activation require the presence of phospholipids, pointing to an important physiological role for Lnk2 when prothrombin is anchored to the membrane. Two new crystal structures of prothrombin lacking 22 (ProTΔ146-167) or 14 (ProTΔ154-167) residues of Lnk2 document striking conformational rearrangements of domains located across this linker. FRET measurements of freely diffusing single molecules prove that these structural transitions are genuine properties of the zymogen in solution. These findings support a molecular model of prothrombin activation where Lnk2 presents the sites of cleavage at Arg(271) and Arg(320) to factor Xa in different orientations by pivoting the C-terminal kringle-2/protease domain pair on the N-terminal Gla domain/kringle-1 pair anchored to the membrane.
Collapse
Affiliation(s)
- Nicola Pozzi
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Zhiwei Chen
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
26
|
Dynamics Govern Specificity of a Protein-Protein Interface: Substrate Recognition by Thrombin. PLoS One 2015; 10:e0140713. [PMID: 26496636 PMCID: PMC4619833 DOI: 10.1371/journal.pone.0140713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/28/2015] [Indexed: 12/01/2022] Open
Abstract
Biomolecular recognition is crucial in cellular signal transduction. Signaling is mediated through molecular interactions at protein-protein interfaces. Still, specificity and promiscuity of protein-protein interfaces cannot be explained using simplistic static binding models. Our study rationalizes specificity of the prototypic protein-protein interface between thrombin and its peptide substrates relying solely on binding site dynamics derived from molecular dynamics simulations. We find conformational selection and thus dynamic contributions to be a key player in biomolecular recognition. Arising entropic contributions complement chemical intuition primarily reflecting enthalpic interaction patterns. The paradigm “dynamics govern specificity” might provide direct guidance for the identification of specific anchor points in biomolecular recognition processes and structure-based drug design.
Collapse
|
27
|
Belviso BD, Caliandro R, de Candia M, Zaetta G, Lopopolo G, Incampo F, Colucci M, Altomare CD. How a β-d-Glucoside Side Chain Enhances Binding Affinity to Thrombin of Inhibitors Bearing 2-Chlorothiophene as P1 Moiety: Crystallography, Fragment Deconstruction Study, and Evaluation of Antithrombotic Properties. J Med Chem 2014; 57:8563-75. [DOI: 10.1021/jm5010754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benny D. Belviso
- Institute
of Crystallography, Consiglio Nazionale delle Ricerche, Via Amendola
122/o, 70126 Bari, Italy
| | - Rocco Caliandro
- Institute
of Crystallography, Consiglio Nazionale delle Ricerche, Via Amendola
122/o, 70126 Bari, Italy
| | - Modesto de Candia
- Department
of Pharmacy—Drug Sciences, University of Bari ‘‘Aldo Moro’’, Via E. Orabona 4, 70125 Bari, Italy
| | - Giorgia Zaetta
- Department
of Pharmacy—Drug Sciences, University of Bari ‘‘Aldo Moro’’, Via E. Orabona 4, 70125 Bari, Italy
| | - Gianfranco Lopopolo
- Department
of Pharmacy—Drug Sciences, University of Bari ‘‘Aldo Moro’’, Via E. Orabona 4, 70125 Bari, Italy
| | - Francesca Incampo
- Department
of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Mario Colucci
- Department
of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Cosimo D. Altomare
- Department
of Pharmacy—Drug Sciences, University of Bari ‘‘Aldo Moro’’, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
28
|
Antithrombin-resistant prothrombin Yukuhashi mutation also causes thrombomodulin resistance in fibrinogen clotting but not in protein C activation. Thromb Res 2014; 134:914-7. [DOI: 10.1016/j.thromres.2014.07.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/16/2014] [Accepted: 07/28/2014] [Indexed: 11/21/2022]
|
29
|
Kovach IM, Kakalis L, Jordan F, Zhang D. Proton bridging in the interactions of thrombin with hirudin and its mimics. Biochemistry 2013; 52:2472-81. [PMID: 23517305 DOI: 10.1021/bi301625a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thrombin is the pivotal serine protease enzyme in the blood cascade system and thus a target of drug design for control of its activity. The most efficient nonphysiologic inhibitor of thrombin is hirudin, a naturally occurring small protein. Hirudin and its synthetic mimics employ a range of hydrogen bonding, salt bridging, and hydrophobic interactions with thrombin to achieve tight binding with K(i) values in the nano- to femtomolar range. The one-dimensional (1)H nuclear magnetic resonance spectrum recorded at 600 MHz reveals a resonance 15.33 ppm downfield from silanes in complexes between human α-thrombin and r-hirudin in pH 5.6-8.8 buffers and between 5 and 35 °C. There is also a resonance between 15.17 and 15.54 ppm seen in complexes of human α-thrombin with hirunorm IV, hirunorm V, an Nα(Me)Arg peptide, RGD-hirudin, and Nα-2-naphthylsulfonyl-glycyl-DL-4-amidinophenylalanyl-piperidide acetate salt (NAPAP), while there is no such low-field resonance observed in a complex of porcine trypsin and NAPAP. The chemical shifts suggest that these resonances represent H-bonded environments. H-Donor-acceptor distances in the corresponding H-bonds are estimated to be <2.7 Å. Addition of Phe-Pro-Arg-chloromethylketone (PPACK) to a complex of human α-thrombin with r-hirudin results in an additional signal at 18.03 ppm, which is 0.10 ppm upfield from the observed signal [Kovach, I. M., et al. (2009) Biochemistry 48, 7296-7304] for thrombin covalently modified with PPACK. In contrast, the peak at 15.33 ppm remains unchanged. The fractionation factors for the thrombin-hirudin complexes are near 1.0 within 20% error. The most likely site of the short H-bond in complexes of thrombin with the hirudin family of inhibitors is in the hydrophobic patch of the C-terminus of hirudin where Glu(57') and Glu(58') are embedded and interact with Arg(75) and Arg(77) and their solvate water (on thrombin). Glu(57') and Glu(58') present in the hirudin family of inhibitors make up a key binding epitope of fibrinogen, thrombin's prime substrate, which lends substantial interest to the short hydrogen bond as a binding element at the fibrinogen recognition site.
Collapse
Affiliation(s)
- Ildiko M Kovach
- Department of Chemistry, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | |
Collapse
|
30
|
Borisevich N, Loznikova S, Sukhodola A, Halets I, Bryszewska M, Shcharbin D. Acidosis, magnesium and acetylsalicylic acid: effects on thrombin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 104:158-164. [PMID: 23266689 DOI: 10.1016/j.saa.2012.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 06/01/2023]
Abstract
Thrombin, an enzyme from the hydrolase family, is the main component of the blood coagulation system. In ischemic stroke it acts as a serine protease that converts soluble fibrinogen into insoluble strands of fibrin forming blood clots in the brain. It has been found to phosphoresce at room temperature in the millisecond and microsecond ranges. The phosphorescence of thrombin was studied under physiological conditions, in acidosis (decrease of pH from 8.0 to 5.0) and on the addition of salts (magnesium sulfate and sodium chloride) and of acetylsalicylic acid, and its connection with thrombin function is discussed. Acidosis significantly increased the internal dynamics of thrombin. We propose that lactate-acidosis plays a protective role in stroke, preventing the formation of clots. The addition of NaCl and MgSO(4) in different concentrations increased the internal dynamics of thrombin. Also, the addition of MgSO(4) decreased thrombin-induced platelet aggregation. However, magnesium sulfate and acetylsalicylic acid in the therapeutic concentrations used for treatment of ischemic stroke had no effect on thrombin internal dynamics. The data obtained will help to elucidate the conformational stability of thrombin under conditions modulating lactate-acidosis and in the presence of magnesium sulfate.
Collapse
Affiliation(s)
- Nikolaj Borisevich
- BI Stepanov Institute of Physics of NASB, Skoriny str. 68, 220072 Minsk, Belarus
| | | | | | | | | | | |
Collapse
|
31
|
Miyawaki Y, Suzuki A, Fujita J, Maki A, Okuyama E, Murata M, Takagi A, Murate T, Kunishima S, Sakai M, Okamoto K, Matsushita T, Naoe T, Saito H, Kojima T. Thrombosis from a prothrombin mutation conveying antithrombin resistance. N Engl J Med 2012; 366:2390-6. [PMID: 22716977 DOI: 10.1056/nejmoa1201994] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We identified a novel mechanism of hereditary thrombosis associated with antithrombin resistance, with a substitution of arginine for leucine at position 596 (p.Arg596Leu) in the gene encoding prothrombin (called prothrombin Yukuhashi). The mutant prothrombin had moderately lower activity than wild-type prothrombin in clotting assays, but the formation of thrombin-antithrombin complex was substantially impaired. A thrombin-generation assay revealed that the peak activity of the mutant prothrombin was fairly low, but its inactivation was extremely slow in reconstituted plasma. The Leu596 substitution caused a gain-of-function mutation in the prothrombin gene, resulting in resistance to antithrombin and susceptibility to thrombosis.
Collapse
Affiliation(s)
- Yuhri Miyawaki
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Protein C is activated by thrombin with a value of k(cat)/K(m) = 0.11mM(-1)s(-1) that increases 1700-fold in the presence of the cofactor thrombomodulin. The molecular origin of this effect triggering an important feedback loop in the coagulation cascade remains elusive. Acidic residues in the activation domain of protein C are thought to electrostatically clash with the active site of thrombin. However, functional and structural data reported here support an alternative scenario. The thrombin precursor prethrombin-2 has R15 at the site of activation in ionic interaction with E14e, D14l, and E18, instead of being exposed to solvent for proteolytic attack. Residues E160, D167, and D172 around the site of activation at R169 of protein C occupy the same positions as E14e, D14l, and E18 in prethrombin-2. Caging of R169 by E160, D167, and D172 is responsible for much of the poor activity of thrombin toward protein C. The E160A/D167A/D172A mutant is activated by thrombin 63-fold faster than wild-type in the absence of thrombomodulin and, over a slower time scale, spontaneously converts to activated protein C. These findings establish a new paradigm for cofactor-assisted reactions in the coagulation cascade.
Collapse
|
33
|
Allosteric activation of human α-thrombin through exosite 2 by suramin analogs. Arch Biochem Biophys 2012; 520:36-41. [DOI: 10.1016/j.abb.2012.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 11/22/2022]
|
34
|
Castro HC, Abreu PA, Geraldo RB, Martins RCA, dos Santos R, Loureiro NIV, Cabral LM, Rodrigues CR. Looking at the proteases from a simple perspective. J Mol Recognit 2011; 24:165-81. [PMID: 21360607 DOI: 10.1002/jmr.1091] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteases have received enormous interest from the research and medical communities because of their significant roles in several human diseases. Some examples include the involvement of thrombin in thrombosis, HIV-1 protease in Acquired Immune Deficiency Syndrome, cruzain in Trypanosoma cruzi infection, and membrane-type 1 matrix metalloproteinase in tumor invasion and metastasis. Many efforts has been undertaken to design effective inhibitors featuring potent inhibitory activity, specificity, and metabolic stability to those proteases involved in such pathologies. Protease inhibitors usually target the active site, but some of them act by other inhibitory mechanisms. The understanding of the structure-function relationships of proteases and inhibitors has an impact on new inhibitor drugs designing. In this paper, the structures of four proteases (thrombin, HIV-protease, cruzain, and a matrix metalloproteinase) are briefly reviewed, and used as examples of the importance of proteases for the development of new treatment strategies, leading to a longer and healthier life.
Collapse
Affiliation(s)
- Helena C Castro
- LABioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, 24001-970, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Pozzi N, Chen R, Chen Z, Bah A, Di Cera E. Rigidification of the autolysis loop enhances Na(+) binding to thrombin. Biophys Chem 2011; 159:6-13. [PMID: 21536369 DOI: 10.1016/j.bpc.2011.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 01/09/2023]
Abstract
Binding of Na(+) to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na(+) is weak due to large heat capacity and enthalpy changes associated with binding, and the K(d)=80 mM ensures only 64% saturation of the site at the concentration of Na(+) in the blood (140 mM). Residues controlling Na(+) binding and activation have been identified. Yet, attempts to improve the interaction of Na(+) with thrombin and possibly increase catalytic activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na(+) affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na(+) binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.
Collapse
Affiliation(s)
- Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Enzyme activation by monovalent cations is widely documented in plants and the animal world. In type II enzymes, activation entails two steps: binding of the monovalent cation to its allosteric site and transduction of this event into enhanced catalytic activity. The effect has exquisite specificity for either Na(+) or K(+), the most abundant cations present in physiological environments. Enzymes requiring K(+) such as kinases and molecular chaperones are not activated as well or at all by the larger cation Cs(+) or the smaller cations Na(+) and Li(+). Enzymes requiring Na(+) such as β-galactosidase and clotting proteases are not activated as well by Li(+), or the larger cations K(+), Rb(+), and Cs(+). Efforts to switch specificity between Na(+) and K(+) in this large class of enzymes and completely redesign the mechanism of allosteric transduction leading to enhanced catalytic activity have so far been unsuccessful. Here we show how mutagenesis of two loops defining the Na(+) binding site of thrombin, a Na(+)-activated clotting protease, generates a construct that is most active in the presence of K(+) toward synthetic and physiological substrates. The effect is the result of a higher binding affinity and more efficient allosteric transduction of binding into enhanced catalytic activity for K(+) compared to Na(+), which represents a complete reversal of the properties of wild type. In addition, the construct features altered specificity toward physiological substrates resulting in a significant anticoagulant profile. The findings are relevant to all Na(+)-activated proteases involved in blood coagulation and the complement system.
Collapse
Affiliation(s)
- Sadhna Rana
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Leslie A. Pelc
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Enrico Di Cera
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
37
|
Di Cera E. Thrombin as an Anticoagulant. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:145-84. [DOI: 10.1016/b978-0-12-385504-6.00004-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Vogt AD, Bah A, Di Cera E. Evidence of the E*-E equilibrium from rapid kinetics of Na+ binding to activated protein C and factor Xa. J Phys Chem B 2010; 114:16125-30. [PMID: 20809655 DOI: 10.1021/jp105502c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Na(+) binding to thrombin enhances the procoagulant and prothrombotic functions of the enzyme and obeys a mechanism that produces two kinetic phases: one fast (in the microsecond time scale) due to Na(+) binding to the low activity form E to produce the high activity form E:Na(+) and another considerably slower (in the millisecond time scale) that reflects a pre-equilibrium between E and the inactive form E*. In this study, we demonstrate that this mechanism also exists in other Na(+)-activated clotting proteases like factor Xa and activated protein C. These findings, along with recent structural data, suggest that the E*-E equilibrium is a general feature of the trypsin fold.
Collapse
Affiliation(s)
- Austin D Vogt
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
39
|
Niu W, Chen Z, Bush-Pelc LA, Bah A, Gandhi PS, Di Cera E. Mutant N143P reveals how Na+ activates thrombin. J Biol Chem 2009; 284:36175-36185. [PMID: 19846563 PMCID: PMC2794733 DOI: 10.1074/jbc.m109.069500] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/12/2009] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanism of thrombin activation by Na(+) remains elusive. Its kinetic formulation requires extension of the classical Botts-Morales theory for the action of a modifier on an enzyme to correctly account for the contribution of the E*, E, and E:Na(+) forms. The extended scheme establishes that analysis of k(cat) unequivocally identifies allosteric transduction of Na(+) binding into enhanced catalytic activity. The thrombin mutant N143P features no Na(+)-dependent enhancement of k(cat) yet binds Na(+) with an affinity comparable to that of wild type. Crystal structures of the mutant in the presence and absence of Na(+) confirm that Pro(143) abrogates the important H-bond between the backbone N atom of residue 143 and the carbonyl O atom of Glu(192), which in turn controls the orientation of the Glu(192)-Gly(193) peptide bond and the correct architecture of the oxyanion hole. We conclude that Na(+) activates thrombin by securing the correct orientation of the Glu(192)-Gly(193) peptide bond, which is likely flipped in the absence of cation. Absolute conservation of the 143-192 H-bond in trypsin-like proteases and the importance of the oxyanion hole in protease function suggest that this mechanism of Na(+) activation is present in all Na(+)-activated trypsin-like proteases.
Collapse
Affiliation(s)
- Weiling Niu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Zhiwei Chen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Leslie A Bush-Pelc
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Alaji Bah
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Prafull S Gandhi
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Enrico Di Cera
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
40
|
Attia FM, Mikhailidis DP, Reffat SA. Prothrombin gene G20210A mutation in acute deep venous thrombosis patients with poor response to warfarin therapy. Open Cardiovasc Med J 2009; 3:147-51. [PMID: 19920886 PMCID: PMC2778014 DOI: 10.2174/1874192400903010147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 09/04/2009] [Accepted: 09/05/2009] [Indexed: 12/05/2022] Open
Abstract
AIM The pathogenesis of deep venous thrombosis (DVT) involves an interaction between hereditary and acquired factors. Prothrombin gene mutation is one of the hereditary risk factors. We evaluated the frequency of the prothrombin gene mutation in patients with DVT and its relation to oral warfarin anticoagulant therapy response. METHODS Prothrombin gene mutation was looked for in 40 DVT patients with poor response to warfarin. The results were compared with 40 DVT patients with a normal response to warfarin and 30 healthy blood donors. Blood samples were also assessed for protein C, protein S, anti-thrombin III and anticardiolipin antibodies (ACA) levels. RESULTS Prothrombin gene mutation was found in normal and poor DVT responders (6/40 and 13/40, respectively; p = NS) as well as in healthy controls (1/30). Patients with recurrent DVT or a family history of DVT were significantly (p<0.0001) more likely to have the prothrombin mutation than other DVT patients. Non prothrombin abnormalities (protein C, anti-thrombin III and ACA) were more common in poor responders than controls (p<0.0037) as were ACA (p<0.034). CONCLUSIONS Prothrombin gene mutation is present in several DVT patients, especially those with recurrent DVT or a family history of DVT. This mutation may contribute to a poor response to warfarin.
Collapse
Affiliation(s)
- F M Attia
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | | | | |
Collapse
|
41
|
Thrombin allosteric modulation revisited: a molecular dynamics study. J Mol Model 2009; 16:725-35. [DOI: 10.1007/s00894-009-0590-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
42
|
Demerdash ONA, Daily MD, Mitchell JC. Structure-based predictive models for allosteric hot spots. PLoS Comput Biol 2009; 5:e1000531. [PMID: 19816556 PMCID: PMC2748687 DOI: 10.1371/journal.pcbi.1000531] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/09/2009] [Indexed: 12/12/2022] Open
Abstract
In allostery, a binding event at one site in a protein modulates the behavior of a distant site. Identifying residues that relay the signal between sites remains a challenge. We have developed predictive models using support-vector machines, a widely used machine-learning method. The training data set consisted of residues classified as either hotspots or non-hotspots based on experimental characterization of point mutations from a diverse set of allosteric proteins. Each residue had an associated set of calculated features. Two sets of features were used, one consisting of dynamical, structural, network, and informatic measures, and another of structural measures defined by Daily and Gray [1]. The resulting models performed well on an independent data set consisting of hotspots and non-hotspots from five allosteric proteins. For the independent data set, our top 10 models using Feature Set 1 recalled 68–81% of known hotspots, and among total hotspot predictions, 58–67% were actual hotspots. Hence, these models have precision P = 58–67% and recall R = 68–81%. The corresponding models for Feature Set 2 had P = 55–59% and R = 81–92%. We combined the features from each set that produced models with optimal predictive performance. The top 10 models using this hybrid feature set had R = 73–81% and P = 64–71%, the best overall performance of any of the sets of models. Our methods identified hotspots in structural regions of known allosteric significance. Moreover, our predicted hotspots form a network of contiguous residues in the interior of the structures, in agreement with previous work. In conclusion, we have developed models that discriminate between known allosteric hotspots and non-hotspots with high accuracy and sensitivity. Moreover, the pattern of predicted hotspots corresponds to known functional motifs implicated in allostery, and is consistent with previous work describing sparse networks of allosterically important residues. Allostery is the process whereby a molecule binds to one site in a protein and alters the function of a distant site. This phenomenon is ubiquitous, as proteins frequently must adapt their behavior to changes in the cellular milieu. The mechanism(s) underlying allostery remains incompletely understood. In particular, predictive models are needed that distinguish amino-acid residues that are critical to allostery, or “hotspots”, from non-hotspots. Here we have used data-mining approaches to infer rules that distinguish hotspots from non-hotspots. Starting with a data set of known hotspot and non-hotspot residues from a diverse set of allosteric proteins, the training data set, we applied machine learning to this data to “learn” models, or sets of rules, for distinguishing hotspots and non-hotspots by inferring associations between the classification (hotspot or non-hotspot) and an associated set of calculated attributes. Many models that showed the highest predictive power on the training data also exhibited high accuracy and sensitivity when applied to an independent data set. Moreover, the pattern of predicted hotspots in the proteins we studied was consistent with known structure/function relationships and previous work suggesting that a network of essential residues mediates the allosteric transition.
Collapse
Affiliation(s)
- Omar N. A. Demerdash
- Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael D. Daily
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Julie C. Mitchell
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
43
|
Qureshi SH, Yang L, Manithody C, Iakhiaev AV, Rezaie AR. Mutagenesis studies toward understanding allostery in thrombin. Biochemistry 2009; 48:8261-70. [PMID: 19640005 DOI: 10.1021/bi900921t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding of thrombomodulin (TM) to exosite-1 and the binding of Na(+) to 225-loop allosterically modulate the catalytic activity and substrate specificity of thrombin. To determine whether the conformation of these two cofactor-binding loops are energetically linked to each other and to the active site, we rationally designed two thrombin mutants in which either the 70-80 loop of exosite-1 or the 225-loop of the Na(+)-binding site was stabilized by an engineered disulfide bond. This was possible by replacing two residues, Arg-67 and Ile-82, in the first mutant and two residues, Glu-217 and Lys-224, in the second mutant with Cys residues. These mutants were expressed in mammalian cells as monomeric molecules, purified to homogeneity and characterized with respect to their ability to bind TM and Na(+) by kinetic and direct binding approaches. The Cys-67/Cys-82 mutant did not bind TM and exhibited a normal amidolytic activity, however, the activity of Cys-217/Cys-224 was dramatically impaired, though TM interacted with this mutant with >20-fold elevated K(D) to partially restore its activity. Both mutants exhibited approximately 2-3-fold higher K(D) for interaction with Na(+), and neither mutant clotted fibrinogen or activated protein C in the presence of TM. Both mutants interacted with heparin with a normal affinity. These results suggest that, while exosite-2 of thrombin is an independent cofactor binding-site, both Na(+)-binding and exosite-1 are energetically linked. Further studies with the fluorescein labeled Cys-195 mutant of thrombin revealed that the catalytic residue of thrombin is modulated by Na(+), but TM has no effect on the conformation of this residue.
Collapse
Affiliation(s)
- Shabir H Qureshi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
44
|
Kovach IM, Kelley P, Eddy C, Jordan F, Baykal A. Proton bridging in the interactions of thrombin with small inhibitors. Biochemistry 2009; 48:7296-304. [PMID: 19530705 PMCID: PMC2800789 DOI: 10.1021/bi900098s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thrombin is the pivotal serine protease enzyme in the blood cascade system. Phe-Pro-Arg-chloromethylketone (PPACK), phosphate, and phosphonate ester inhibitors form a covalent bond with the active-site Ser of thrombin. PPACK, a mechanism-based inhibitor, and the phosphate/phosphonate esters form adducts that mimic intermediates formed in reactions catalyzed by thrombin. Therefore, the dependence of the inhibition of human alpha-thrombin on the concentration of these inhibitors, pH, and temperature was investigated. The second-order rate constant (ki/Ki) and the inhibition constant (Ki) for inhibition of human alpha-thrombin by PPACK are (1.1 +/- 0.2) x 10(7) M(-1) s(-1) and (2.4 +/- 1.3) x 10(-8) M, respectively, at pH 7.00 in 0.05 M phosphate buffer and 0.15 M NaCl at 25.0 +/- 0.1 degrees C, in good agreement with previous reports. The activation parameters at pH 7.00 in 0.05 M phosphate buffer and 0.15 M NaCl are as follows: DeltaH = 10.6 +/- 0.7 kcal/mol, and DeltaS = 9 +/- 2 cal mol(-1) degrees C(-1). The pH dependence of the second-order rate constants of inhibition is bell-shaped. Values of pKa1 and pKa2 are 7.3 +/- 0.2 and 8.8 +/- 0.3, respectively, at 25.0 +/- 0.1 degrees C. A phosphate and a phosphonate ester inhibitor gave higher values, 7.8 and 8.0 for pKa1 and 9.3 and 8.6 for pKa2, respectively. They inhibit thrombin more than 6 orders of magnitude less efficiently than PPACK does. The deuterium solvent isotope effect for the second-order rate constant at pH 7.0 and 8.3 at 25.0 +/- 0.1 degrees C is unity within experimental error in all three cases, indicating the absence of proton transfer in the rate-determining step for the association of thrombin with the inhibitors, but in a 600 MHz 1H NMR spectrum of the inhibition adduct at pH 6.7 and 30 degrees C, a peak at 18.10 ppm with respect to TSP appears with PPACK, which is absent in the 1H NMR spectrum of a solution of the enzyme between pH 5.3 and 8.5. The peak at low field is an indication of the presence of a short-strong hydrogen bond (SSHB) at the active site in the adduct. The deuterium isotope effect on this hydrogen bridge is 2.2 +/- 0.2 (phi = 0.45). The presence of an SSHB is also established with a signal at 17.34 ppm for a dealkylated phosphate adduct of thrombin.
Collapse
Affiliation(s)
- Ildiko M Kovach
- Department of Chemistry, The Catholic University of America, Washington, D.C. 20064, USA.
| | | | | | | | | |
Collapse
|
45
|
Bah A, Carrell CJ, Chen Z, Gandhi PS, Di Cera E. Stabilization of the E* form turns thrombin into an anticoagulant. J Biol Chem 2009; 284:20034-40. [PMID: 19473969 DOI: 10.1074/jbc.m109.012344] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that deletion of nine residues in the autolysis loop of thrombin produces a mutant with an anticoagulant propensity of potential clinical relevance, but the molecular origin of the effect has remained unresolved. The x-ray crystal structure of this mutant solved in the free form at 1.55 A resolution reveals an inactive conformation that is practically identical (root mean square deviation of 0.154 A) to the recently identified E* form. The side chain of Trp(215) collapses into the active site by shifting > 10 A from its position in the active E form, and the oxyanion hole is disrupted by a flip of the Glu(192)-Gly(193) peptide bond. This finding confirms the existence of the inactive form E* in essentially the same incarnation as first identified in the structure of the thrombin mutant D102N. In addition, it demonstrates that the anticoagulant profile often caused by a mutation of the thrombin scaffold finds its likely molecular origin in the stabilization of the inactive E* form that is selectively shifted to the active E form upon thrombomodulin and protein C binding.
Collapse
Affiliation(s)
- Alaji Bah
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
46
|
Continuous hypertonic saline therapy and the occurrence of complications in neurocritically ill patients. Crit Care Med 2009; 37:1433-41. [PMID: 19242317 DOI: 10.1097/ccm.0b013e31819c1933] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate potential side effects of continuous hypertonic 3% saline (CHS) as maintenance fluid in patients with brain injury. METHODS Retrospective chart analysis of prospectively collected data. PATIENTS Patients admitted to the neurosurgical intensive care unit for >4 days with traumatic brain injury, stroke, or subarachnoid hemorrhage with a Glasgow Coma Scale <9 and elevated intracranial pressure (ICP) or at risk of developing elevated ICP were included. Based on physician preference, one group was treated with 3% CHS at a rate of 1.5 mL/kg/bw as maintenance fluid. The other group received 0.9% normal saline (NS). Two percent saline was used in the CHS group to wean patients off 3% CHS or when sodium was above 155. Data on serum sodium, blood urea nitrogen, creatinine, ICP, infection rate, length of stay, rates of deep vein thrombosis, and pulmonary emboli and dural thrombosis were collected prospectively. RESULTS One hundred seven patients in the CHS group and 80 in the NS group met the inclusion criteria. The incidence of moderate hypernatremia (Na >155 mmol/L) and severe hypernatremia (Na >160 mmol/L) was significantly higher in the CHS therapy group than in the NS group. No significant relationship between CHS infusion and renal dysfunction was found. Moderate and severe hypernatremia was associated with a higher risk of elevated blood urea nitrogen and creatinine levels. Acute renal failure was not seen in these patients. A total of 53.3% in the CHS group and in 16.3% in the NS group (p < 0.0001) had raised ICP (>25 mm Hg), consistent with the physicians decision to use CHS in patients with elevated ICP. CONCLUSIONS CHS therapy was not associated with an increased rate of infection, deep vein thrombosis, or renal failure. However, there was a significant risk of developing hypernatremia. We conclude that CHS administration in patients with severe injuries is safe as long as sodium levels are carefully monitored.
Collapse
|
47
|
Bae JS, Rezaie AR. Thrombin inhibits nuclear factor kappaB and RhoA pathways in cytokine-stimulated vascular endothelial cells when EPCR is occupied by protein C. Thromb Haemost 2009; 101:513-520. [PMID: 19277413 PMCID: PMC2688729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The occupancy of endothelial protein C receptor (EPCR) by protein C switches the protease activated receptor 1 (PAR-1)-dependent signalling specificity of thrombin from a permeability enhancing to a barrier protective response in vascular endothelial cells. In this study, the modulatory effects of thrombin and thrombin receptor agonist peptides (TRAP) on tumour necrosis factor (TNF)-alpha-stimulated HUVECs in the absence and presence of the catalytically inactive protein C-S195A were evaluated by monitoring the expression of cell surface adhesion molecules (VCAM-1, ICAM-1 and E-selectin), adhesion of freshly isolated neutrophils to cytokine-stimulated endothelial cells, regulation of the Rho family of small GTPases and the activation of nuclear factor-kappaB (NF-kappaB) pathway. The analysis of results indicate that both thrombin and TRAP initiate proinflammatory responses in endothelial cells, thus neither PAR-1 agonist influenced the proinflammatory effects of TNF-alpha in the absence of the protein C mutant. Interestingly, however, the occupancy of EPCR by the protein C mutant switched the PAR-1-dependent signaling specificity of thrombin, thus leading to thrombin inhibition of the expression of all three adhesion molecules as well as the binding of neutrophils to TNF-alpha-activated endothelial cells. Furthermore, similar to activated protein C, both thrombin and TRAP activated Rac1 and inhibited the activation of RhoA and NF-kappaB pathways in response to TNF-alpha in cells pretreated with protein C-S195A. Based on these results we conclude that when EPCR is ligated by protein C, the cleavage of PAR-1 by thrombin initiates antiinflammatory responses, thus leading to activation of Rac1 and inhibition of RhoA and NF-kappaB signalling cascades in vascular endothelial cells.
Collapse
Affiliation(s)
| | - Alireza R. Rezaie
- Address of Corresponding Author: Alireza R. Rezaie, Ph.D., Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, Phone: (314) 977-9240, Fax: (314) 977-9205, E-mail:
| |
Collapse
|
48
|
Abstract
Thrombin is the ultimate coagulation factor; it is the final protease generated in the blood coagulation cascade and is the effector of clot formation. Regulation of thrombin activity is thus of great relevance to determining the correct haemostatic balance, with dysregulation leading to bleeding or thrombosis. One of the most enigmatic and controversial regulators of thrombin activity is the monovalent cation Na+. When bound to Na+, thrombin adopts a 'fast' conformation which cleaves all procoagulant substrates more rapidly, and when free of Na+, thrombin reverts to a 'slow' state which preferentially activates the protein C anticoagulant pathway. Thus, Na+-binding allosterically modulates the activity of thrombin and helps determine the haemostatic balance. Over the last 30 years, there has been much research investigating the structural basis of thrombin allostery. Biochemical and mutagenesis studies established which regions and residues are involved in the slow-->fast conformational change, and recently several crystal structures of the putative slow form have been solved. In this article, the biochemical and crystallographic data are reviewed to see if we are any closer to understanding the conformational basis of the Na+ activation of thrombin.
Collapse
Affiliation(s)
- James A Huntington
- Department of Haematology, University of Cambridge, Division of Structural Medicine, Thrombosis Research Unit, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
49
|
Abstract
Meizothrombin is the physiologically active intermediate generated by a single cleavage of prothrombin at R320 to separate the A and B chains. Recent evidence has suggested that meizothrombin, like thrombin, is a Na(+)-activated enzyme. In this study we present the first X-ray crystal structure of human meizothrombin desF1 solved in the presence of the active site inhibitor PPACK at 2.1 A resolution. The structure reveals a Na(+) binding site whose architecture is practically identical to that of human thrombin. Stopped-flow measurements of Na(+) binding to meizothrombin desF1 document a slow phase of fluorescence change with a k(obs) decreasing hyperbolically with increasing [Na(+)], consistent with the existence of three conformations in equilibrium, E*, E and E:Na(+), as for human thrombin. Evidence that meizothrombin exists in multiple conformations provides valuable new information for studies of the mechanism of prothrombin activation.
Collapse
Affiliation(s)
- M. E. Papaconstantinou
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St. Louis, MO 63110 USA
| | - P. S. Gandhi
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St. Louis, MO 63110 USA
| | - Z. Chen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St. Louis, MO 63110 USA
| | - A. Bah
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St. Louis, MO 63110 USA
| | - E. Di Cera
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St. Louis, MO 63110 USA
| |
Collapse
|
50
|
How Na +activates thrombin – a review of the functional and structural data. Biol Chem 2008. [DOI: 10.1515/bc.2008.113_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|