1
|
Tierney MT, Polak L, Yang Y, Abdusselamoglu MD, Baek I, Stewart KS, Fuchs E. Vitamin A resolves lineage plasticity to orchestrate stem cell lineage choices. Science 2024; 383:eadi7342. [PMID: 38452090 PMCID: PMC11177320 DOI: 10.1126/science.adi7342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.
Collapse
Affiliation(s)
- Matthew T Tierney
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | - Lisa Polak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | | | - Merve Deniz Abdusselamoglu
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | | | - Katherine S Stewart
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| |
Collapse
|
2
|
Han Y, Katayama S, Futakuchi M, Nakamichi K, Wakabayashi Y, Sakamoto M, Nakayama J, Semba K. Targeting c-Jun Is a Potential Therapy for Luminal Breast Cancer Bone Metastasis. Mol Cancer Res 2023; 21:908-921. [PMID: 37310848 DOI: 10.1158/1541-7786.mcr-22-0695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/30/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Luminal breast cancer has the highest bone metastasis frequency among all breast cancer subtypes; however, its metastatic mechanism has not been elucidated because of a lack of appropriate models. We have previously developed useful bone metastatic cell lines of luminal breast cancer using MCF7 cells. In this study, we characterized bone metastatic MCF7-BM cell lines and identified c-Jun as a novel bone metastasis marker of luminal breast cancer. The protein level of c-Jun was upregulated in MCF7-BM cells compared with that in parental cells, and its deficiency resulted in the suppression of tumor cell migration, transformation, and reduced osteolytic ability. In vivo, dominant-negative c-Jun exhibited smaller bone metastatic lesions and a lower metastatic frequency. Histologic analysis revealed that c-Jun expression was heterogeneous in bone metastatic lesions, whereas c-Jun overexpression mediated a vicious cycle between MCF7-BM cells and osteoclasts by enhancing calcium-induced migration and releasing the osteoclast activator BMP5. Pharmacological inhibition of c-Jun by the Jun amino-terminal kinase (JNK) inhibitor JNK-IN-8 effectively suppressed tumorigenesis and bone metastasis in MCF7-BM cells. Furthermore, c-Jun downstream signals were specifically correlated with the clinical prognosis of patients with the luminal subtype of breast cancer. Our results illustrate the potential benefits of a therapy that targets c-Jun to prevent bone metastasis in luminal breast cancer. IMPLICATIONS c-Jun expression mediates bone metastasis in luminal breast cancer by forming a vicious cycle in the bone microenvironment, which reveals potential strategies for subtype-specific bone metastasis therapy.
Collapse
Affiliation(s)
- Yuxuan Han
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shota Katayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mitsuru Futakuchi
- Department of Pathological Diagnostics, Yamagata University, Yamagata, Japan
| | - Kazuya Nakamichi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yutaro Wakabayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mai Sakamoto
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Translational Research Center, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
3
|
Yang C, Rybchyn MS, De Silva WGM, Matthews J, Dixon KM, Holland AJA, Conigrave AD, Mason RS. The CaSR Modulator NPS-2143 Reduced UV-Induced DNA Damage in Skh:hr1 Hairless Mice but Minimally Inhibited Skin Tumours. Int J Mol Sci 2023; 24:ijms24054921. [PMID: 36902353 PMCID: PMC10002576 DOI: 10.3390/ijms24054921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is an important regulator of epidermal function. We previously reported that knockdown of the CaSR or treatment with its negative allosteric modulator, NPS-2143, significantly reduced UV-induced DNA damage, a key factor in skin cancer development. We subsequently wanted to test whether topical NPS-2143 could also reduce UV-DNA damage, immune suppression, or skin tumour development in mice. In this study, topical application of NPS-2143 (228 or 2280 pmol/cm2) to Skh:hr1 female mice reduced UV-induced cyclobutane pyrimidine dimers (CPD) (p < 0.05) and oxidative DNA damage (8-OHdG) (p < 0.05) to a similar extent as the known photoprotective agent 1,25(OH)2 vitamin D3 (calcitriol, 1,25D). Topical NPS-2143 failed to rescue UV-induced immunosuppression in a contact hypersensitivity study. In a chronic UV photocarcinogenesis protocol, topical NPS-2143 reduced squamous cell carcinomas for only up to 24 weeks (p < 0.02) but had no other effect on skin tumour development. In human keratinocytes, 1,25D, which protected mice from UV-induced skin tumours, significantly reduced UV-upregulated p-CREB expression (p < 0.01), a potential early anti-tumour marker, while NPS-2143 had no effect. This result, together with the failure to reduce UV-induced immunosuppression, may explain why the reduction in UV-DNA damage in mice with NPS-2143 was not sufficient to inhibit skin tumour formation.
Collapse
Affiliation(s)
- Chen Yang
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Stephen Rybchyn
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2033, Australia
| | | | - Jim Matthews
- Sydney Informatics Hub, University of Sydney, Sydney, NSW 2008, Australia
| | - Katie Marie Dixon
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J. A. Holland
- Douglas Cohen Department of Paediatric Surgery, The Children’s Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
| | - Arthur David Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
4
|
Ramchatesingh B, Martínez Villarreal A, Arcuri D, Lagacé F, Setah SA, Touma F, Al-Badarin F, Litvinov IV. The Use of Retinoids for the Prevention and Treatment of Skin Cancers: An Updated Review. Int J Mol Sci 2022; 23:ijms232012622. [PMID: 36293471 PMCID: PMC9603842 DOI: 10.3390/ijms232012622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
Retinoids are natural and synthetic vitamin A derivatives that are effective for the prevention and the treatment of non-melanoma skin cancers (NMSC). NMSCs constitute a heterogenous group of non-melanocyte-derived skin cancers that impose substantial burdens on patients and healthcare systems. They include entities such as basal cell carcinoma and cutaneous squamous cell carcinoma (collectively called keratinocyte carcinomas), cutaneous lymphomas and Kaposi’s sarcoma among others. The retinoid signaling pathway plays influential roles in skin physiology and pathology. These compounds regulate diverse biological processes within the skin, including proliferation, differentiation, angiogenesis and immune regulation. Collectively, retinoids can suppress skin carcinogenesis. Both topical and systemic retinoids have been investigated in clinical trials as NMSC prophylactics and treatments. Desirable efficacy and tolerability in clinical trials have prompted health regulatory bodies to approve the use of retinoids for NMSC management. Acceptable off-label uses of these compounds as drugs for skin cancers are also described. This review is a comprehensive outline on the biochemistry of retinoids, their activities in the skin, their effects on cancer cells and their adoption in clinical practice.
Collapse
Affiliation(s)
| | | | - Domenico Arcuri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - François Lagacé
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Samy Abu Setah
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fadi Touma
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Faris Al-Badarin
- Faculté de Médicine, Université Laval, Québec, QC G1V 0V6, Canada
| | - Ivan V. Litvinov
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
5
|
Moser R, Gurley KE, Nikolova O, Qin G, Joshi R, Mendez E, Shmulevich I, Ashley A, Grandori C, Kemp CJ. Synthetic lethal kinases in Ras/p53 mutant squamous cell carcinoma. Oncogene 2022; 41:3355-3369. [PMID: 35538224 DOI: 10.1038/s41388-022-02330-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022]
Abstract
The oncogene Ras and the tumor suppressor gene p53 are frequently co-mutated in human cancer and mutations in Ras and p53 can cooperate to generate a more malignant cell state. To discover novel druggable targets for cancers carrying co-mutations in Ras and p53, we performed arrayed, kinome focused siRNA and oncology drug phenotypic screening utilizing a set of syngeneic Ras mutant squamous cell carcinoma (SCC) cell lines that also carried co-mutations in selected p53 pathway genes. These cell lines were derived from SCCs from carcinogen-treated inbred mice which harbored germline deletions or mutations in Trp53, p19Arf, Atm, or Prkdc. Both siRNA and drug phenotypic screening converge to implicate the phosphoinositol kinases, receptor tyrosine kinases, MAP kinases, as well as cell cycle and DNA damage response genes as targetable dependencies in SCC. Differences in functional kinome profiles between Ras mutant cell lines reflect incomplete penetrance of Ras synthetic lethal kinases and indicate that co-mutations cause a rewiring of survival pathways in Ras mutant tumors. This study describes the functional kinomic landscape of Ras/p53 mutant chemically-induced squamous cell carcinoma in both the baseline unperturbed state and following DNA damage and nominates candidate therapeutic targets, including the Nek4 kinase, for further development.
Collapse
Affiliation(s)
- Russell Moser
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kay E Gurley
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Olga Nikolova
- Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, USA
| | | | - Rashmi Joshi
- New Mexico State University, Las Cruces, NM, USA
| | | | | | | | | | - Christopher J Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
6
|
Casalino L, Talotta F, Cimmino A, Verde P. The Fra-1/AP-1 Oncoprotein: From the "Undruggable" Transcription Factor to Therapeutic Targeting. Cancers (Basel) 2022; 14:cancers14061480. [PMID: 35326630 PMCID: PMC8946526 DOI: 10.3390/cancers14061480] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
The genetic and epigenetic changes affecting transcription factors, coactivators, and chromatin modifiers are key determinants of the hallmarks of cancer. The acquired dependence on oncogenic transcriptional regulators, representing a major determinant of cancer cell vulnerability, points to transcription factors as ideal therapeutic targets. However, given the unavailability of catalytic activities or binding pockets for small-molecule inhibitors, transcription factors are generally regarded as undruggable proteins. Among components of the AP-1 complex, the FOS-family transcription factor Fra-1, encoded by FOSL1, has emerged as a prominent therapeutic target. Fra-1 is overexpressed in most solid tumors, in response to the BRAF-MAPK, Wnt-beta-catenin, Hippo-YAP, IL-6-Stat3, and other major oncogenic pathways. In vitro functional analyses, validated in onco-mouse models and corroborated by prognostic correlations, show that Fra-1-containing dimers control tumor growth and disease progression. Fra-1 participates in key mechanisms of cancer cell invasion, Epithelial-to-Mesenchymal Transition, and metastatic spreading, by driving the expression of EMT-inducing transcription factors, cytokines, and microRNAs. Here we survey various strategies aimed at inhibiting tumor growth, metastatic dissemination, and drug resistance by interfering with Fra-1 expression, stability, and transcriptional activity. We summarize several tools aimed at the design and tumor-specific delivery of Fra-1/AP-1-specific drugs. Along with RNA-based therapeutics targeting the FOSL1 gene, its mRNA, or cognate regulatory circRNAs, we will examine the exploitation of blocking peptides, small molecule inhibitors, and innovative Fra-1 protein degraders. We also consider the possible caveats concerning Fra-1 inhibition in specific therapeutic contexts. Finally, we discuss a recent suicide gene therapy-based approach, aimed at selectively killing the Fra-1-overexpressing neoplastic cells.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| | | | - Amelia Cimmino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
| | - Pasquale Verde
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| |
Collapse
|
7
|
Chen H, Padia R, Li T, Li Y, Li B, Jin L, Huang S. Signaling of MK2 sustains robust AP1 activity for triple negative breast cancer tumorigenesis through direct phosphorylation of JAB1. NPJ Breast Cancer 2021; 7:91. [PMID: 34244488 PMCID: PMC8270897 DOI: 10.1038/s41523-021-00300-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) cells are generally more invasive than estrogen receptor-positive (ER + ) breast cancer cells. Consistent with the importance of activator protein 1 (AP1) transcription factors in invasion, AP1 activity is much higher in TNBC lines than ER + lines. In TNBC cells, robust AP1 activity is facilitated by both ERK and p38MAPK signaling pathways. While ERK signaling pathway regulates AP1 activity by controlling the abundance of AP1 transcription factors, p38MAPK signaling pathway does it by enhancing AP1 binding to AP1 sites without altering their abundance. Here, we show that p38MAPK regulation of AP1 activity involves both MAPKAPK2 (MK2) and JAB1, a known JUN-binding protein. MK2 not only interacts with JAB1 but also directly phosphorylates JAB1 at Ser177 in TNBC cells. Interestingly, Ser177 phosphorylation does not affect JAB1 and JUN interaction. Instead, interfering with p38MAPK signaling pathway or introducing an S to A point mutation at Ser177 of JAB1 reduces JUN recruitment to the AP1 sites in cyclin D1, urokinase plasminogen activator (uPA) and uPA receptor promoters. Moreover, knockdown of JAB1 diminishes >60% of AP1 transcriptional activity in TNBC cells. Taken together, these results indicate that MK2-mediated phosphorylation of JAB1 facilitates JUN recruitment to AP1 sites, thus augmenting AP1 activity. In line with the role of JAB1 in AP1 activity, silencing JAB1 leads to dramatic reduction in TNBC cell growth, in vitro invasion and in vivo tumor outgrowth. This study suggests that the p38MAPK-MK2 signaling pathway promotes TNBC tumorigenesis by sustaining robust AP1 activity.
Collapse
Affiliation(s)
- Haoming Chen
- grid.8547.e0000 0001 0125 2443The Ministry of Education Key Laboratory of Contemporary Anthropology, College of Life Science, Fudan University, Shanghai, China
| | - Ravi Padia
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Tao Li
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Yue Li
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Bin Li
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Lingtao Jin
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Shuang Huang
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| |
Collapse
|
8
|
Zhang H, Zhang R, Zheng X, Sun M, Fan J, Fang C, Tian X, Zheng H. BACH2-mediated FOS confers cytarabine resistance via stromal microenvironment alterations in pediatric ALL. Cancer Sci 2021; 112:1235-1250. [PMID: 33393145 PMCID: PMC7935781 DOI: 10.1111/cas.14792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive hematological cancer that mainly affects children. Relapse and chemoresistance result in treatment failure, underlining the need for improved therapies. BTB and CNC homology 2 (BACH2) is a lymphoid-specific transcription repressor recognized as a tumor suppressor in lymphomas, but little is known about its function and regulatory network in pediatric ALL (p-ALL). Herein, we found aberrant BACH2 expression at new diagnosis not only facilitated risk stratification of p-ALL but also served as a sensitive predictor of early treatment response and clinical outcome. Silencing BACH2 in ALL cells increased cell proliferation and accelerated cell cycle progression. BACH2 blockade also promoted cell adhesion to bone marrow stromal cells and conferred cytarabine (Ara-C)-resistant properties to leukemia cells by altering stromal microenvironment. Strikingly, we identified FOS, a transcriptional activator competing with BACH2, as a novel downstream target repressed by BACH2. Blocking FOS by chemical compounds enhanced the effect of Ara-C treatment in both primary p-ALL cells and pre-B-ALL-driven leukemia xenografts and prolonged the survival of tumor-bearing mice. These data highlight an interconnected network of BACH2-FOS, disruption of which could render current chemotherapies more effective and offer a promising therapeutic strategy to overcome Ara-C resistance in p-ALL.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Ruidong Zhang
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children’s HospitalNational Center for Children’s HealthCapital Medical UniversityBeijingChina
| | - Xueling Zheng
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children’s HospitalNational Center for Children’s HealthCapital Medical UniversityBeijingChina
| | - Ming Sun
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Jia Fan
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children’s HospitalNational Center for Children’s HealthCapital Medical UniversityBeijingChina
| | - Chunlian Fang
- Department of Hematology and OncologyKunming Children’s Hospital (Children’s Hospital of Kunming Medical University, Yunnan Children’s Medical Center)KunmingChina
| | - Xin Tian
- Department of Hematology and OncologyKunming Children’s Hospital (Children’s Hospital of Kunming Medical University, Yunnan Children’s Medical Center)KunmingChina
| | - Huyong Zheng
- Beijing Key Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in ChildrenMinistry of EducationHematology Oncology CenterBeijing Children’s HospitalNational Center for Children’s HealthCapital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
A Driver Never Works Alone-Interplay Networks of Mutant p53, MYC, RAS, and Other Universal Oncogenic Drivers in Human Cancer. Cancers (Basel) 2020; 12:cancers12061532. [PMID: 32545208 PMCID: PMC7353041 DOI: 10.3390/cancers12061532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The knowledge accumulating on the occurrence and mechanisms of the activation of oncogenes in human neoplasia necessitates an increasingly detailed understanding of their systemic interactions. None of the known oncogenic drivers work in isolation from the other oncogenic pathways. The cooperation between these pathways is an indispensable element of a multistep carcinogenesis, which apart from inactivation of tumor suppressors, always includes the activation of two or more proto-oncogenes. In this review we focus on representative examples of the interaction of major oncogenic drivers with one another. The drivers are selected according to the following criteria: (1) the highest frequency of known activation in human neoplasia (by mutations or otherwise), (2) activation in a wide range of neoplasia types (universality) and (3) as a part of a distinguishable pathway, (4) being a known cause of phenotypic addiction of neoplastic cells and thus a promising therapeutic target. Each of these universal oncogenic factors—mutant p53, KRAS and CMYC proteins, telomerase ribonucleoprotein, proteasome machinery, HSP molecular chaperones, NF-κB and WNT pathways, AP-1 and YAP/TAZ transcription factors and non-coding RNAs—has a vast network of molecular interrelations and common partners. Understanding this network allows for the hunt for novel therapeutic targets and protocols to counteract drug resistance in a clinical neoplasia treatment.
Collapse
|
11
|
Wang R, Fu L, Li J, Zhao D, Zhao Y, Yin L. Microarray Analysis for Differentially Expressed Genes Between Stromal and Epithelial Cells in Development and Metastasis of Invasive Breast Cancer. J Comput Biol 2020; 27:1631-1643. [PMID: 32429691 DOI: 10.1089/cmb.2019.0154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Both epithelium and stroma are involved in breast cancer invasion and metastasis. This study aimed at identifying the roles of the stroma in breast cancer tumorigenesis and metastasis. Gene expression profiling GSE10797 was downloaded from the Gene Expression Omnibus database, and it included 28-paired stroma and epithelium breast tissue samples from invasive breast cancer patients and 10 paired normal breast tissue samples. Differentially expressed genes (DEGs) between breast cancer and normal breast tissue samples were identified by using the limma package followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to seek the potential functions of DEGs. Moreover, a protein-protein interaction network was constructed based on the String database, and modules were selected through the BioNet tool. Further, functional annotations of DEGs were carried out by using tumor suppressor gene and tumor associated gene databases. Ultimately, KEGG pathway enrichment analysis for DEGs in modules was performed. A total of 38 and 156 DEGs were identified from normal invasive stromal cells and epithelial cells, respectively. DEGs in stromal and epithelial cells were significantly enriched in extracellular matrix (ECM)- and cell proliferation-related functions. COL1A2, a hub node in the stromal module, was mainly enriched in ECM-receptor interaction and focal adhesion pathways. JUN, a hub node in the epithelium module, was significantly enriched in cancer and ErbB signaling pathways. COL1A2, COL1A1, COL3A1, JUN, and FN1 might be vital for tumorigenesis and metastasis of invasive breast cancer. These genes might be potential therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Rong Wang
- National Research Institute for Health and Family Planning, Beijing, China
| | - Lei Fu
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Department of Medical Engineering, 401 Hospital of Chinese PLA, Qingdao, China
| | - Jinbin Li
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China
| | - Di Zhao
- Dermatological Department, The 309 Hospital Of Chinese PLA, Beijing, China
| | - Yulan Zhao
- Department of Respiratory, The 88th Hospital of PLA, Tai'an, China
| | - Ling Yin
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Arthurs C, Suarez-Bonnet A, Willis C, Xie B, Machulla N, Mair TS, Cao K, Millar M, Thrasivoulou C, Priestnall SL, Ahmed A. Equine penile squamous cell carcinoma: expression of biomarker proteins and EcPV2. Sci Rep 2020; 10:7863. [PMID: 32398763 PMCID: PMC7217868 DOI: 10.1038/s41598-020-64014-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Equine penile squamous cell carcinoma (EpSCC) is a relatively common cutaneous neoplasm with a poor prognosis. In this study, we aimed to determine the protein expression and colocalisation of FRA1, c-Myc, Cyclin D1, and MMP7 in normal (NT), tumour (T), hyperplastic epidermis and/or squamous papilloma (Hyp/Pap), poorly-differentiated (PDSCC), or well-differentiated (WDSCC) EpSCC using a tissue array approach. Further objectives were to correlate protein expression to (i) levels of inflammation, using a convolutional neural network (ii) equine papillomavirus 2 (EcPV2) infection, detected using PCR amplification. We found an increase in expression of FRA1 in EpSCC compared to NT samples. c-Myc expression was higher in Hyp/Pap and WDSCC but not PDSCC whereas MMP7 was reduced in WDSCC compared with NT. There was a significant increase in the global intersection coefficient (GIC) of FRA1 with MMP7, c-Myc, and Cyclin D1 in EpSCC. Conversely, GIC for MMP7 with c-Myc was reduced in EpSCC tissue. Inflammation was positively associated with EcPV2 infection in both NT and EpSCC but not Hyp/Pap. Changes in protein expression could be correlated with EcPV2 for Cyclin D1 and c-Myc. Our results evaluate novel biomarkers of EpSCC and a putative correlation between the expression of biomarkers, EcPV2 infection and inflammation.
Collapse
Affiliation(s)
- Callum Arthurs
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Alejandro Suarez-Bonnet
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, UK
| | - Claire Willis
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, UK
| | - Boyu Xie
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Natalie Machulla
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Tim S Mair
- Bell Equine Veterinary Clinic, Maidstone, UK
| | - Kevin Cao
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Michael Millar
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Thrasivoulou
- Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, Rockefeller Building, University College London, London, United Kingdom
| | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, UK
| | - Aamir Ahmed
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
13
|
Pore-forming toxins from sea anemones: from protein-membrane interaction to its implications for developing biomedical applications. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2020. [DOI: 10.1016/bs.abl.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Wan C, Li Y. Integrative analysis of mRNA-miRNA-TFs reveals the key regulatory connections involved in basal cell carcinoma. Arch Dermatol Res 2019; 312:133-143. [PMID: 31641848 DOI: 10.1007/s00403-019-02002-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
Abstract
Basal cell carcinoma (BCC) is one of the most common skin cancers worldwide and contributes substantially to global morbidity, but its tumorigenesis and pathogenesis remain largely unknown. To investigate the crosstalk between microRNAs (miRNAs), mRNAs and transcription factors (TFs) and the regulatory processes underlying BCC, we have constructed an integrative miRNA-mRNA-TFs network based on RNA-sequencing datasets. In this study, two RNA-sequencing datasets and matched miRNA expression datasets of selected differentially-expressed genes (DEGs) were used to infer potential miRNA regulatory and TFs activities in BCC. A total of 1247 DEGs were identified by combining two BCC RNA-sequencing profiles. Furthermore, by integrating network interaction construction, we found 37 important dysregulated genes (ING3, VEGFA, TP63, MMP11, NRP1, HIF1A, APC, PTCH1, etc.) that are significantly associated with BCC, as well as a few novel potential miRNAs (miR-203, miR-29b, miR-141, miR-7b, miR-9, miR-200a, miR-7c and miR-132) and TFs (MYB, MYC, STAT3, ARNT, PAX5, CUX1, E2F1 and CEBPA). These identified potential genes and miRNA/TFs candidates may play direct/indirect roles in the molecular pathogenesis of BCC.
Collapse
Affiliation(s)
- Chuan Wan
- Department of Dermatology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Yang Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Tremmel L, Rho O, Slaga TJ, DiGiovanni J. Inhibition of skin tumor promotion by TPA using a combination of topically applied ursolic acid and curcumin. Mol Carcinog 2019; 58:185-195. [PMID: 30346064 DOI: 10.1002/mc.22918] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 12/23/2022]
Abstract
Prevention remains an important strategy to reduce the burden of cancer. One approach to prevent cancer is the use of phytochemicals in various combinations as safe and effective cancer preventative agents. The purpose of this study was to examine the effects of the combination of ursolic acid (UA) and curcumin (Curc) for potential combinatorial inhibition of skin tumor promotion using the mouse two-stage skin carcinogenesis model. In short-term experiments, the combination of UA + Curc given topically prior to 12-O-tetradecanoylphorbol-13-acetate (TPA) significantly inhibited activation of epidermal EGFR, p70S6K, NF-κB p50, Src, c-Jun, Rb, and IκBα. Levels of c-Fos, c-Jun, and Cox-2 were also significantly reduced by the combination compared to the TPA treated group. The alterations in these signaling pathways by the combination of UA + Curc were associated with decreased epidermal proliferation as assessed by measuring BrdU incorporation. Significant effects were also seen with the combination on epidermal inflammatory gene expression and dermal inflammation, with the greatest effects on expression of IL-1β, IL-6, IL-22, and CXCL2. Furthermore, results from skin tumor experiments demonstrated that the combination of UA + Curc given topically significantly inhibited mouse skin tumor promotion by TPA to a greater extent than the individual compounds given alone. The greatest effects were seen on tumor free survival, tumor size, and tumor weight, although tumor incidence and multiplicity were also further reduced by the combination. These results demonstrate the potential cancer chemopreventive activity and mechanism(s) for the combination of UA + Curc.
Collapse
Affiliation(s)
- Lisa Tremmel
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Thomas J Slaga
- Department of Pharmacology, UT Health Science Center San Antonio, San Antonio, Texas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
16
|
Meng L, Ma W, Lin S, Shi S, Li Y, Lin Y. Tetrahedral DNA Nanostructure-Delivered DNAzyme for Gene Silencing to Suppress Cell Growth. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6850-6857. [PMID: 30698411 DOI: 10.1021/acsami.8b22444] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lingxian Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
17
|
Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol 2018; 29:212-226. [PMID: 30594349 DOI: 10.1016/j.tcb.2018.12.001] [Citation(s) in RCA: 1751] [Impact Index Per Article: 250.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features. In cancer, EMT is associated with tumor initiation, invasion, metastasis, and resistance to therapy. Recently, it has been demonstrated that EMT is not a binary process, but occurs through distinct cellular states. Here, we review the recent studies that demonstrate the existence of these different EMT states in cancer and the mechanisms regulating their functions. We discuss the different functional characteristics, such as proliferation, propagation, plasticity, invasion, and metastasis associated with the distinct EMT states. We summarize the role of the transcriptional and epigenetic landscapes, gene regulatory network and their surrounding niche in controlling the transition through the different EMT states.
Collapse
Affiliation(s)
- Ievgenia Pastushenko
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium; WELBIO, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
18
|
Zhang Y, Xu M, Zhang X, Chu F, Zhou T. MAPK/c-Jun signaling pathway contributes to the upregulation of the anti-apoptotic proteins Bcl-2 and Bcl-xL induced by Epstein-Barr virus-encoded BARF1 in gastric carcinoma cells. Oncol Lett 2018; 15:7537-7544. [PMID: 29725459 PMCID: PMC5920478 DOI: 10.3892/ol.2018.8293] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
BARF1, encoded by Epstein-Barr virus (EBV), has been hypothesized to function as an oncogene, which was expressed in gastric carcinoma cells. Additionally, it has been reported that the anti-apoptotic function is closely associated with the expression of the B-cell lymphoma-2 (Bcl-2) protein. In addition, the signaling pathway has been reported to be involved in numerous diseases, including the mitogen-activated protein kinase (MAPK) cascade. In order to study the specific mechanism of anti-apoptotic function, BARF1-stably-expressing immortalized normal human embryo gastric epithelial cell line GES1 (GES-BARF1), and well-, moderately- and poorly-differentiated gastric carcinoma cell lines, MKN28 (which has been reported to be contaminated with the moderately-differentiated MKN74 gastric carcinoma cell line), SGC7901 and BGC823 (MKN-BARF1, SGC-BARF1 and BGC-BARF1, respectively) (GCC-BARF1) were constructed, with transfection of cells with the empty vector pSG5 acting as controls. Western blot analysis was performed to analyze the protein expression and the phosphorylation levels. Compared with the controls, it was found that the protein expression levels of c-Jun, Bcl-2 and B-cell lymphoma-extra large (Bcl-xL), as well as the phosphorylation levels of c-Jun, c-Jun N-terminal kinase (JNK) 1/2/3, p38 and extracellular signal-regulated kinase (ERK) 1/2 proteins were upregulated in 3 GCC-BARF1 but not significantly changed in GES-BARF1. The expression levels of the c-Jun, Bcl-2 and Bcl-xL proteins, and levels of c-Jun protein phosphorylation were significantly decreased in SGC-BARF1 cells subsequent to treatment with SP600125, SB203580, and U0126, which were the specific inhibitors of JNK1/2/3, p38 and ERK1/2 respectively. In addition, there was a gradual increase in the protein expression and phosphorylation levels between normal gastric epithelial cells, and well-differentiated, moderately-differentiated and poorly-differentiated gastric carcinoma cells, but this was not statistically significant. Therefore, the present study hypothesized that JNK1/2/3-, p38- and ERK1/2-MAPK/c-Jun cascade signaling pathways may contribute to the upregulation of the expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL induced by BARF1 in gastric carcinoma cells. This mechanism may mainly work in the progressive phase of the development in EBV-associated gastric carcinoma.
Collapse
Affiliation(s)
- Yuqiong Zhang
- Department of Clinical Laboratory and Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Department of Clinical Laboratory, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215168, P.R. China
| | - Meiqin Xu
- Department of Clinical Laboratory, Suzhou Psychiatric Hospital, Suzhou, Jiangsu 215137, P.R. China
| | - Xueyi Zhang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Fuying Chu
- Department of Clinical Laboratory and Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tianji Zhou
- Department of Clinical Laboratory and Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
19
|
Wang D, Sun Y, Li W, Ye F, Zhang Y, Guo Y, Zhang DY, Suo J. Antiproliferative effects of the CDK6 inhibitor PD0332991 and its effect on signaling networks in gastric cancer cells. Int J Mol Med 2018; 41:2473-2484. [PMID: 29436583 PMCID: PMC5846637 DOI: 10.3892/ijmm.2018.3460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/20/2017] [Indexed: 12/31/2022] Open
Abstract
PD0332991 (palbociclib/Ibrance®) is a cyclin-dependent kinase (CDK)4/6 inhibitor that has recently been approved for the treatment of estrogen receptor-positive advanced breast cancer. The present study investigated the antiproliferative effects of PD0332991 on gastric cancer (GC) cells and the underlying molecular mechanisms. The activity of PD0332991 was tested in several GC cell lines, including AGS, KATO-III, NCI-N87 and HS746T. Growth inhibitory activity of PD0332991, alone or in combination with fluorouracil (5-FU), was measured by MTT assay. The effects of PD0332991 on cell cycle progression were analyzed by flow cytometry and western blotting. Protein pathway array and Ingenuity Pathway Analysis were used to identify signaling pathways that may mediate the antiproliferative effects of PD0332991. PD0332991 inhibited proliferation in a dose-dependent manner and enhanced the activity of 5-FU in all GC cell lines tested. Cells treated with PD0332991 exhibited cell cycle arrest in G1 phase of the cell cycle, whereas the number of cells in G2/M phase was decreased. PD0332991 also inhibited CDK6-specific phosphorylation of retinoblastoma on Ser780, reduced the expression of cyclin D1, and induced expression of p53 and p27. Furthermore, 31 proteins were identified, the expression of which was significantly altered following treatment with PD0332991 in at least three cell lines. Pathway analysis indicated that the altered proteins were frequently associated with cell death, cell cycle and the molecular mechanism of cancer. The results of the present study indicated that PD0332991 may inhibit cell proliferation via modulation of the cell cycle, and may affect numerous oncogenic signaling pathways. Therefore, PD0332991 may be considered effective for the treatment of GC.
Collapse
Affiliation(s)
- Daguang Wang
- Department of Gastric and Colorectal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yabin Sun
- Department of Ophthalmology, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Li
- Department of Gastric and Colorectal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fei Ye
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yang Zhang
- Department of Gastric and Colorectal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuchen Guo
- Department of Gastric and Colorectal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - David Y Zhang
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Suo
- Department of Gastric and Colorectal Surgery, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
20
|
Abdou AG, Marae AH, Shoeib M, Dawood G, Abouelfath E. C-Jun expression in lichen planus, psoriasis, and cutaneous squamous cell carcinoma, an immunohistochemical study. J Immunoassay Immunochem 2018; 39:58-69. [PMID: 29144206 DOI: 10.1080/15321819.2017.1395347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The AP-1 transcription factor complex is a key player in regulating inflammatory processes, cell proliferation, differentiation, and cell transformation. The aim of the present study is to investigate C-Jun (one of AP-1complex) expression and its proliferative role in skin samples of lichen planus, psoriasis as common inflammatory skin diseases and squamous cell carcinoma using immunohistochemical method. The present study was carried out on skin biopsies of 15 psoriatic patients, 15 lichen planus patients, 15 SCC, and 15 normal skin biopsies. Nuclear expression of C-Jun was detected in basal and few suprabasal layers of epidermis of normal skin. C-Jun was expressed in the whole epidermal layers of both psoriasis (14/15) and lichen planus (15/15) in addition to its expression in lymphocytic infiltrate in the latter in about half of cases (8/15). C-Jun was also expressed in 93.3% (14/15) of SCC in a percentage lower than that of psoriasis, lichen planus, and normal skin. The percentage of C-Jun expression in SCC was significantly associated with an early stage (p = 0.000), free surgical margins (p = 0.022), and small tumour size (p = 0.003). CONCLUSIONS The marked reduction of C-Jun in SCC in comparison to normal skin and inflammatory skin dermatoses may refer to its tumour suppressor activity. C-Jun expression in SCC carries favourable prognosis. Absence of significant association between C-Jun and Ki-67 either in SCC or inflammatory skin diseases indicates that it does not affect proliferative capacity of cells.
Collapse
Affiliation(s)
- Asmaa Gaber Abdou
- a Pathology Department, Faculty of Medicine , Menoufia University , Shibin Elkom , Egypt
| | - Alaa Hassan Marae
- b Dermatology Departments, Faculty of Medicine , Menoufia University , Shibin Elkom , Egypt
| | - Mohammed Shoeib
- b Dermatology Departments, Faculty of Medicine , Menoufia University , Shibin Elkom , Egypt
| | - Ghada Dawood
- c Dermatology Departments , Shibin Elkom Teaching Hospital , Shibin Elkom , Egypt
| | - Enas Abouelfath
- c Dermatology Departments , Shibin Elkom Teaching Hospital , Shibin Elkom , Egypt
| |
Collapse
|
21
|
Truong VL, Kong AN, Jeong WS. Red Ginseng Oil Inhibits TPA-Induced Transformation of Skin Epidermal JB6 Cells. J Med Food 2017; 21:380-389. [PMID: 29271701 DOI: 10.1089/jmf.2017.4082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Red ginseng oil (RGO) has been shown to possess anti-inflammatory and hepatoprotective activity. In this study, we evaluated the inhibitory effect of RGO on 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated neoplastic transformation of JB6 P+ cells. RGO pretreatment abolished the transformation of JB6 P+ cells challenged by TPA. RGO suppressed the transactivation of activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors as well as protein levels of cyclooxygenase-2, cyclin D1, cyclin E, and Bcl-2 in the TPA-treated cells. Additionally, TPA-induced phosphorylations of extracellular signal-regulated kinases, 90 kDa ribosomal S6 kinase 2, c-Jun N-terminal kinases, and glycogen synthase kinase 3β were downregulated in the presence of RGO. Furthermore, RGO induced the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant enzyme heme oxygenase-1 (HO-1) expression, and effectively blocked the overproduction of TPA-induced reactive oxygen species. These results suggest that RGO exerts a potent chemopreventive activity in skin cell model.
Collapse
Affiliation(s)
- Van-Long Truong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University , Gimhae, Korea
| | - Ah Ng Kong
- 2 Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey, USA
| | - Woo-Sik Jeong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University , Gimhae, Korea
| |
Collapse
|
22
|
Young CA, Eckert RL, Adhikary G, Crumrine D, Elias PM, Blumenberg M, Rorke EA. Embryonic AP1 Transcription Factor Deficiency Causes a Collodion Baby-Like Phenotype. J Invest Dermatol 2017; 137:1868-1877. [PMID: 28526300 DOI: 10.1016/j.jid.2017.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 01/02/2023]
Abstract
AP1 transcription factors are important controllers of gene expression in the epidermis, and altered AP1 factor function can perturb keratinocyte proliferation and differentiation. However, our understanding of how AP1 signaling changes may underlie or exacerbate skin disease is limited. We have shown that inhibiting AP1 factor function in suprabasal adult epidermis leads to reduced filaggrin levels and to a phenotype that resembles the genetic disorder ichthyosis vulgaris. We now show that inhibiting AP1 factor function during development in embryonic epidermis produces marked phenotypic changes including reduced filaggrin mRNA and protein levels, compromised barrier function, marked ultrastructural change, and enhanced dehydration susceptibility that resembles the phenotype observed in the flaky tail mouse, a model for ichthyosis vulgaris. In addition, the AP1 factor-deficient newborn mice display a collodion membrane phenotype that is not observed in flaky tail mice or in newborn individuals with ichthyosis vulgaris but is present in other forms of ichthyosis. This mixed phenotype suggests the need for a better understanding of the possible role of filaggrin loss and AP1 transcription factor deficiency in ichthyoses and collodion membrane formation.
Collapse
Affiliation(s)
- Christina A Young
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L Eckert
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Gautam Adhikary
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Debra Crumrine
- Dermatology Service, Veterans Affairs Medical Center, San Francisco and Department of Dermatology, University of California, San Francisco, California, USA
| | - Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, San Francisco and Department of Dermatology, University of California, San Francisco, California, USA
| | - Miroslav Blumenberg
- The R.O. Perelman Department of Dermatology, Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, New York, USA
| | - Ellen A Rorke
- Departments of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Kang BS, Hwang YJ, Dong Z. ERK1 Directly Interacts With JNK1 Leading to Regulation of JNK1/c-Jun Activity and Cell Transformation. J Cell Biochem 2017; 118:2357-2370. [PMID: 28106280 DOI: 10.1002/jcb.25896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/18/2017] [Indexed: 11/09/2022]
Abstract
ERK1 and ERK2 share a great deal of homology and have been presumed to have similar functions. Available antibodies recognize both isoforms making the elucidation of functional differences challenging. Mitogen-activated protein (MAP) kinase networks are commonly depicted in the literature as linear and sequential phosphorylation cascades; however, the activation of these pathways is not mutually exclusive. Little doubt exists that MAP kinases engage in crosstalk, but the extent or the direct effect of these "conversations" is unclear. Here, we report the possible points of direct interaction as "crosstalk" points between ERK1 and JNK1 and a potential mechanism for ERK1 function in repressing Ras/JNK-mediated cell transformation. ERK1, but not ERK2, directly interacts with and antagonizes JNK1 phosphorylation and activity, resulting in suppression of neoplastic cell transformation mediated by the Ras/JNK/c-Jun signaling pathway. Interestingly, ERK1 phosphorylation was increased in normal tissues compared to liver cancer tissues. Furthermore, predominant JNK/c-Jun activation was observed in liver cancer tissues. These phenomena can provide evidence for the existence of a functional association between ERK and JNK signaling pathways during in vivo tumorigenesis. Overall, our findings provide new evidence supporting the paradigm of an ERK1/JNK1 antagonistic interaction as a novel mechanism of trans-regulation between different MAP kinase signaling modules. J. Cell. Biochem. 118: 2357-2370, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bong Seok Kang
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Yoon Jin Hwang
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.,Department of Surgery, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, Minnesota, 55912
| |
Collapse
|
24
|
Bravo K, Duque L, Ferreres F, Moreno DA, Osorio E. Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:78-88. [DOI: 10.1016/j.jphotobiol.2017.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/18/2022]
|
25
|
The TLR4–NOS1–AP1 signaling axis regulates macrophage polarization. Inflamm Res 2016; 66:323-334. [DOI: 10.1007/s00011-016-1017-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022] Open
|
26
|
Liu Y, Long Y, Xing Z, Zhang D. C-Jun recruits the NSL complex to regulate its target gene expression by modulating H4K16 acetylation and promoting the release of the repressive NuRD complex. Oncotarget 2016; 6:14497-506. [PMID: 25971333 PMCID: PMC4546482 DOI: 10.18632/oncotarget.3988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/15/2015] [Indexed: 11/25/2022] Open
Abstract
The proto-oncogene c-Jun plays essential roles in various cellular processes, including cell proliferation, cell differentiation, and cellular apoptosis. Enormous efforts have been made to understand the mechanisms regulating c-Jun activation. The males absent on the first (MOF)-containing non-specific lethal (NSL) complex has been shown to positively regulate gene expression. However, the biological function of the NSL complex is largely unknown. Here we present evidence showing that c-Jun recruits the NSL complex to c-Jun target genes upon activation. The NSL complex catalyzes H4K16 acetylation at c-Jun target genes, thereby promoting c-Jun target gene transcription. More interestingly, we also found that the NSL complex promotes the release of the repressive NuRD complex from c-Jun target genes, thus activating c-Jun. Our findings not only reveal a new mechanism regulating c-Jun activation, but also identify the NSL complex as a c-Jun co-activator in c-Jun-regulated gene expression, expanding our knowledge of the function of the NSL complex in gene expression regulation.
Collapse
Affiliation(s)
- Yan Liu
- College of Life Sciences, Hebei United University, Tangshan, China
| | - Yuehong Long
- College of Life Sciences, Hebei United University, Tangshan, China
| | - Zhaobin Xing
- College of Life Sciences, Hebei United University, Tangshan, China
| | - Daoyong Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
27
|
Hyakusoku H, Sano D, Takahashi H, Hatano T, Isono Y, Shimada S, Ito Y, Myers JN, Oridate N. JunB promotes cell invasion, migration and distant metastasis of head and neck squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:6. [PMID: 26754630 PMCID: PMC4709939 DOI: 10.1186/s13046-016-0284-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/04/2016] [Indexed: 01/03/2023]
Abstract
Background While treatment failure in cases of head and neck squamous cell carcinoma (HNSCC) frequently takes the form of locoregional recurrences and distant metastasis, our understanding of the mechanisms of metastasis in HNSCC is limited. We initially performed the upstream and key nodes analysis together with whole gene microarray analysis characterized by distant metastatic potential in vivo with HNSCC cell lines and identified JunB, a member of the activator protein-1 (AP-1) family, as a key molecule in the regulation of the pathways related to distant metastasis in HNSCC. We have therefore tested the hypothesis that JunB plays a crucial role in distant metastasis in HNSCC. Methods To study the role of JunB on metastatic potential of HNSCC, small interfering RNA (siRNA)-mediated knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (cas9) system (CRISPR/Cas9)-mediated knockout of JunB in HNSCC cells were established and the abilities of cell invasion and migration in vitro were examined. The efficacy of knockout of JunB was also examined using an experimental lung metastatic mouse model of HNSCC. In addition, to study if the role of JunB in HNSCC cell migration and invasiveness is related to epithelial-to-mesenchymal transition (EMT), cell morphology and expression of mesenchymal or epithelial marker on siRNA mediated JunB knockdown in HNSCC cells were examined with or without TGF-β stimulation. Results siRNA knockdown and sgRNA knockout of JunB in metastatic HNSCC cells significantly suppressed both cell invasion and migration in vitro. In addition, the knockout of JunB in metastatic HNSCC cells significantly repressed the incidence of lung metastases and prolonged the survival in vivo. However, we did not observe any change in cell morphology with the down-regulation of mesenchymal markers and up-regulation of epithelial markers in response to siRNA-mediated JunB knockdown in HNSCC cells. Conclusion These results suggested that JunB could play an important role in promoting cell invasion, migration and distant metastasis in HNSCC via pathways other than EMT and that the down-regulation of JunB may become an effective strategy for patients with invasive HNSCC. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0284-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroshi Hyakusoku
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Daisuke Sano
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Department of Otorhinolaryngology - Head and Neck Surgery, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Hideaki Takahashi
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Department of Otorhinolaryngology - Head and Neck Surgery, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Takashi Hatano
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yasuhiro Isono
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Shoko Shimada
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yusuke Ito
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| | - Nobuhiko Oridate
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Department of Otorhinolaryngology - Head and Neck Surgery, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
28
|
Kwon H, Ahn E, Kim SY, Kang Y, Kim MO, Jin BS, Park S. Inhibition of UV-induced matrix metabolism by a myristoyl tetrapeptide. Cell Biol Int 2015; 40:257-68. [PMID: 26510539 DOI: 10.1002/cbin.10557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/23/2015] [Indexed: 11/08/2022]
Abstract
Regulation of extracellular matrix (ECM) composition is important in tissue homeostasis and function. We screened small peptides for their ability to inhibit ultraviolet (UV)-induced cell metabolism in epidermal fibroblasts. We found that UV irradiation increased matrix metalloproteinase (MMP) expression and inflammatory gene expression in human Hs68 fibroblast cells. We also demonstrated that a myristoyl tetrapeptide with the amino acid sequence Gly-Leu-Phe-Trp (mGLFW) suppressed the UV-induced expression of MMPs and inflammatory genes. Moreover, mGLFW stimulated the expression of ECM proteins in Hs68 fibroblasts. In order to provide the mechanism of action for mGLFW, we investigated UV-induced signaling changes in the presence of mGLFW using a cDNA microarray. UV exposure increased the expression of MMP genes, such as MMP1, MMP3, and MMP14, and inflammation-related genes, including interleukin 1 receptor and peroxisome proliferator-activated receptor gamma (PPARγ). Treatment with mGLFW abrogated the UV-induced expression of MMP-related genes and inflammatory genes. In addition, mGLFW increased the expression of collagen genes, including COL1A1, COL1A2, and COL5A1. We examined whether the activation of AP-1, a UV-activated transcription factor, is suppressed by mGLFW. The results demonstrated that AP-1 expression increased upon UV exposure and that this expression was inhibited by mGLFW. In conclusion, our results demonstrate that mGLFW reversed the effects of UV exposure by enhancing the expression of collagen proteins and suppressing the expression of MMPs, which degrade the ECM.
Collapse
Affiliation(s)
- Haeyoung Kwon
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Eunsook Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Seon-Young Kim
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | | | | | - Byung Suk Jin
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Seyeon Park
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| |
Collapse
|
29
|
Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, Rosato A, Bicciato S, Cordenonsi M, Piccolo S. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 2015; 17:1218-27. [PMID: 26258633 PMCID: PMC6186417 DOI: 10.1038/ncb3216] [Citation(s) in RCA: 812] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/02/2015] [Indexed: 12/14/2022]
Abstract
YAP/TAZ are nuclear effectors of the Hippo pathway regulating organ growth and tumorigenesis. Yet, their function as transcriptional regulators remains underinvestigated. By ChIP-seq analyses in breast cancer cells, we discovered that the YAP/TAZ transcriptional response is pervasively mediated by a dual element: TEAD factors, through which YAP/TAZ bind to DNA, co-occupying chromatin with activator protein-1 (AP-1, dimer of JUN and FOS proteins) at composite cis-regulatory elements harbouring both TEAD and AP-1 motifs. YAP/TAZ/TEAD and AP-1 form a complex that synergistically activates target genes directly involved in the control of S-phase entry and mitosis. This control occurs almost exclusively from distal enhancers that contact target promoters through chromatin looping. YAP/TAZ-induced oncogenic growth is strongly enhanced by gain of AP-1 and severely blunted by its loss. Conversely, AP-1-promoted skin tumorigenesis is prevented in YAP/TAZ conditional knockout mice. This work highlights a new layer of signalling integration, feeding on YAP/TAZ function at the chromatin level.
Collapse
Affiliation(s)
- Francesca Zanconato
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Mattia Forcato
- Center for Genome Research, Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100 Modena, Italy
| | - Giusy Battilana
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Luca Azzolin
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Erika Quaranta
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Beatrice Bodega
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo and Enrica Invernizzi', via Francesco Sforza 35, Milan 20126, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua School of Medicine, Via Gattamelata 64, 35126 Padua, Italy
- Istituto Oncologico Veneto IRCCS, Via Gattamelata 64, 35126 Padua, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100 Modena, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| |
Collapse
|
30
|
Activated STING enhances Tregs infiltration in the HPV-related carcinogenesis of tongue squamous cells via the c-jun/CCL22 signal. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2494-503. [PMID: 26303640 DOI: 10.1016/j.bbadis.2015.08.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/07/2015] [Accepted: 08/19/2015] [Indexed: 11/23/2022]
Abstract
The negative role of the activated stimulator of IFN genes (STING) has been uncovered in autoinflammatory disease and cancer. However, the role of STING in virus-related carcinogenesis is not well known. Herein, HPV(+) tongue squamous cell carcinoma (TSCC) (n=25) and HPV(-) TSCC samples (n=25) were randomly collected and were verified by in situ hybridization (ISH) and p16 immunohistochemistry (IHC) to assess the expression and activated status of STING through IHC. The results showed that the expression of STING was up-regulated during the development of TSCC. Interestingly, although the expression of STING showed no difference between HPV(+/-) TSCC samples, the activated status of STING with dark staining around the nucleus was observed in HPV(+) TSCC samples. The role of activated STING was analyzed in three cell lines by siRNA and indicated that activated STING had no impact on cell viability or apoptosis but promoted the induction of several immunosuppressive cytokines, e.g., IL-10, IDO and CCL22, which facilitated the infiltration of regulatory T cells (Tregs). Moreover, increased infiltration of Foxp3(+) Tregs along with increased expression of CCL22 was confirmed in HPV(+) TSCC samples. An inhibitor of the MAPK/AP-1 pathway (U0126) and the silencing of c-jun significantly suppressed CCL22 induction and the recruitment of Tregs by activated STING. Furthermore, down-regulated miR-27 was verified in independent fresh TSCC samples (n=50) and eight cell lines, which enhanced STING activation and led to increased CCL22 expression for Tregs recruitment in the TSCC microenvironment. Therefore, our findings provided distinct insight into the side effects of activated STING in HPV-related carcinogenesis.
Collapse
|
31
|
Külshammer E, Mundorf J, Kilinc M, Frommolt P, Wagle P, Uhlirova M. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy. Dis Model Mech 2015; 8:1279-93. [PMID: 26398940 PMCID: PMC4610234 DOI: 10.1242/dmm.020719] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/28/2015] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (RasV12) and loss of the tumor suppressor Scribble (scrib1). We show that malignant transformation of the rasV12scrib1 tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to rasV12scrib1 tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in rasV12scrib1 tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with RasV12 in inducing malignant clones that, like rasV12scrib1 tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While rasV12ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our study delineates both unique and overlapping functions of distinct TFs that cooperatively promote aberrant expression of target genes, leading to malignant tumor phenotypes. Summary: This study provides genetic evidence that malignancy driven by oncogenic Ras and loss of polarity requires transcription factors of three distinct protein families, acting in synergy downstream of JNK signaling.
Collapse
Affiliation(s)
- Eva Külshammer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Juliane Mundorf
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Merve Kilinc
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Peter Frommolt
- Bioinformatics Facility, CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| | - Prerana Wagle
- Bioinformatics Facility, CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
32
|
Wei S, Huang Y, Huang X, Qin Q. Characterization of c-Jun from orange-spotted grouper, Epinephelus coioides involved in SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2015; 43:230-240. [PMID: 25555808 DOI: 10.1016/j.fsi.2014.12.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/21/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
The nuclear phosphoprotein c-Jun is a member of the AP1 family of transcription activating complex, can be induced by various extracellular stimuli such as virus infection. In this study, the c-Jun gene (Ec-c-Jun) was cloned from orange-spotted grouper, Epinephelus coioides. The full-length Ec-c-Jun cDNA is composed of 2046 bp and encodes a polypeptide of 328 amino acids with 81% identity of zebrafish. Amino acid alignment analysis indicated that Ec-c-Jun contained three conserved domains including a transactivation domain (TAD), a DNA-binding domain (DBD) and leucine zipper domain (LZD). RT-PCR results showed that Ec-c-Jun transcript was most abundant in spleen, kidney, heart and gill. The expression of Ec-c-Jun was up-regulated after challenged with Singapore grouper iridovirus (SGIV). To investigate the roles of Ec-c-Jun during SGIV infection, we constructed its dominant-negative mutant (DN-Ec-c-Jun) by deleting the major TAD that lacks amino acids 3-122. Fluorescence microscopy observation revealed that Ec-c-Jun and DN-Ec-c-Jun were expressed predominantly in the nucleus in transfected cells. Interestingly, the green fluorescence of Ec-c-Jun was congregated and co-localized with virus assembly sites at the late stage of SGIV infection. However, in DN-Ec-c-Jun transfected cells, no virus assembly sites were observed, and the distribution of fluorescence remained unchanged. Moreover, overexpression of DN-Ec-c-Jun in vitro delayed the occurrence of CPE induced by SGIV infection and inhibited the virus gene transcription. In addition, ectopic expression of DN-Ec-c-Jun was able to inhibit SGIV induced c-Jun/AP1 promoter activity in GS cells. Thus, we proposed that c-Jun transcription factor was essential for SGIV replication in vitro. Our results will contribute to understanding the crucial roles of JNK signaling pathway in fish virus infection.
Collapse
Affiliation(s)
- Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Rorke EA, Adhikary G, Young CA, Rice RH, Elias PM, Crumrine D, Meyer J, Blumenberg M, Eckert RL. Structural and biochemical changes underlying a keratoderma-like phenotype in mice lacking suprabasal AP1 transcription factor function. Cell Death Dis 2015; 6:e1647. [PMID: 25695600 PMCID: PMC4669787 DOI: 10.1038/cddis.2015.21] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/06/2015] [Indexed: 01/07/2023]
Abstract
Epidermal keratinocyte differentiation on the body surface is a carefully choreographed process that leads to assembly of a barrier that is essential for life. Perturbation of keratinocyte differentiation leads to disease. Activator protein 1 (AP1) transcription factors are key controllers of this process. We have shown that inhibiting AP1 transcription factor activity in the suprabasal murine epidermis, by expression of dominant-negative c-jun (TAM67), produces a phenotype type that resembles human keratoderma. However, little is understood regarding the structural and molecular changes that drive this phenotype. In the present study we show that TAM67-positive epidermis displays altered cornified envelope, filaggrin-type keratohyalin granule, keratin filament, desmosome formation and lamellar body secretion leading to reduced barrier integrity. To understand the molecular changes underlying this process, we performed proteomic and RNA array analysis. Proteomic study of the corneocyte cross-linked proteome reveals a reduction in incorporation of cutaneous keratins, filaggrin, filaggrin2, late cornified envelope precursor proteins, hair keratins and hair keratin-associated proteins. This is coupled with increased incorporation of desmosome linker, small proline-rich, S100, transglutaminase and inflammation-associated proteins. Incorporation of most cutaneous keratins (Krt1, Krt5 and Krt10) is reduced, but incorporation of hyperproliferation-associated epidermal keratins (Krt6a, Krt6b and Krt16) is increased. RNA array analysis reveals reduced expression of mRNA encoding differentiation-associated cutaneous keratins, hair keratins and associated proteins, late cornified envelope precursors and filaggrin-related proteins; and increased expression of mRNA encoding small proline-rich proteins, protease inhibitors (serpins), S100 proteins, defensins and hyperproliferation-associated keratins. These findings suggest that AP1 factor inactivation in the suprabasal epidermal layers reduces expression of AP1 factor-responsive genes expressed in late differentiation and is associated with a compensatory increase in expression of early differentiation genes.
Collapse
Affiliation(s)
- E A Rorke
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - G Adhikary
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - C A Young
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - R H Rice
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - P M Elias
- Dermatology Service, Veterans Affairs Medical Center, San Francisco and Department of Dermatology, University of California, San Francisco, CA, USA
| | - D Crumrine
- Dermatology Service, Veterans Affairs Medical Center, San Francisco and Department of Dermatology, University of California, San Francisco, CA, USA
| | - J Meyer
- Dermatology Service, Veterans Affairs Medical Center, San Francisco and Department of Dermatology, University of California, San Francisco, CA, USA
| | - M Blumenberg
- The R.O. Perelman Department of Dermatology, Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York City, NY, USA
| | - R L Eckert
- 1] Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA [2] Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA [3] Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, MD, USA [4] Greenebaum Cancer Center University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Brown L, Wan H. Desmoglein 3: a help or a hindrance in cancer progression? Cancers (Basel) 2015; 7:266-86. [PMID: 25629808 PMCID: PMC4381258 DOI: 10.3390/cancers7010266] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 02/07/2023] Open
Abstract
Desmoglein 3 is one of seven desmosomal cadherins that mediate cell-cell adhesion in desmosomes. Desmosomes are the intercellular junctional complexes that anchor the intermediate filaments of adjacent cells and confer strong cell adhesion thus are essential in the maintenance of tissue architecture and structural integrity. Like adherens junctions, desmosomes function as tumour suppressors and are down regulated in the process of epithelial-mesenchymal transition and in tumour cell invasion and metastasis. However, recently several studies have shown that various desmosomal components, including desmoglein 3, are up-regulated in cancer with increased levels of expression correlating with the clinical stage of malignancy, implicating their potentiality to serve as a diagnostic and prognostic marker. Furthermore, in vitro studies have demonstrated that overexpression of desmoglein 3 in cancer cell lines activates several signal pathways that have an impact on cell morphology, adhesion and locomotion. These additional signalling roles of desmoglein 3 may not be associated to its adhesive function in desmosomes but rather function outside of the junctions, acting as a key regulator in the control of actin based cellular processes. This review will discuss recent advances which support the role of desmoglein 3 in cancer progression.
Collapse
Affiliation(s)
- Louise Brown
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT, UK.
| | - Hong Wan
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT, UK.
| |
Collapse
|
35
|
Rorke EA, Adhikary G, Young CA, Roop DR, Eckert RL. Suppressing AP1 factor signaling in the suprabasal epidermis produces a keratoderma phenotype. J Invest Dermatol 2015; 135:170-180. [PMID: 25050598 PMCID: PMC4268309 DOI: 10.1038/jid.2014.310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/21/2014] [Accepted: 04/10/2014] [Indexed: 11/09/2022]
Abstract
Keratodermas comprise a heterogeneous group of highly debilitating and painful disorders characterized by thickening of the skin with marked hyperkeratosis. Some of these diseases are caused by genetic mutation, whereas other forms are acquired in response to environmental factors. Our understanding of signaling changes that underlie these diseases is limited. In the present study, we describe a keratoderma phenotype in mice in response to suprabasal epidermis-specific inhibition of activator protein 1 transcription factor signaling. These mice develop a severe phenotype characterized by hyperplasia, hyperkeratosis, parakeratosis, and impaired epidermal barrier function. The skin is scaled, constricting bands encircle the tail and digits, the footpads are thickened and scaled, and loricrin staining is markedly reduced in the cornified layers and increased in the nucleus. Features of this phenotype, including nuclear loricrin localization and pseudoainhum (autoamputation), are characteristic of the Vohwinkel syndrome. We confirm that the phenotype develops in a loricrin-null genetic background, indicating that suppressed suprabasal AP1 factor function is sufficient to drive this disease. We also show that the phenotype regresses when suprabasal AP1 factor signaling is restored. Our findings suggest that suppression of AP1 factor signaling in the suprabasal epidermis is a key event in the pathogenesis of keratoderma.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Abnormalities, Multiple/pathology
- Ainhum/genetics
- Ainhum/metabolism
- Ainhum/pathology
- Animals
- Constriction, Pathologic/genetics
- Constriction, Pathologic/metabolism
- Constriction, Pathologic/pathology
- Epidermis/pathology
- Epidermis/physiology
- Female
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/metabolism
- Hand Deformities, Congenital/pathology
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/pathology
- Keratoderma, Palmoplantar/genetics
- Keratoderma, Palmoplantar/metabolism
- Keratoderma, Palmoplantar/pathology
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Mutant Strains
- Phenotype
- Signal Transduction/physiology
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/metabolism
Collapse
Affiliation(s)
- Ellen A Rorke
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christina A Young
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dennis R Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
36
|
Jung SK, Ha SJ, Kim YA, Lee J, Lim TG, Kim YT, Lee NH, Park JS, Yeom MH, Lee HJ, Lee KW. MLK3 is a novel target of dehydroglyasperin D for the reduction in UVB-induced COX-2 expression in vitro and in vivo. J Cell Mol Med 2015; 19:135-42. [PMID: 25176057 PMCID: PMC4288357 DOI: 10.1111/jcmm.12311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/31/2014] [Indexed: 12/03/2022] Open
Abstract
Dehydroglyasperin D (DHGA-D), a compound present in licorice, has been found to exhibit anti-obesity, antioxidant and anti-aldose reductase effects. However, the direct molecular mechanism and molecular targets of DHGA-D during skin inflammation remain unknown. In the present study, we investigated the effect of DHGA-D on inflammation and its mechanism of action on UVB-induced skin inflammation in HaCaT human keratinocytes and SKH-1 hairless mice. DHGA-D treatment strongly suppressed UVB-induced COX-2 expression, PGE2 generation and AP-1 transactivity in HaCaT cells without affecting cell viability. DHGA-D also inhibited phosphorylation of the mitogen-activated protein kinase kinase (MKK) 3/6/p38, MAPK/Elk-1, MKK4/c-Jun N-terminal kinase (JNK) 1/2/c-Jun/mitogen, and stress-activated protein kinase (MSK), whereas phosphorylation of the mixed-lineage kinase (MLK) 3 remained unaffected. Kinase and co-precipitation assays with DHGA-D Sepharose 4B beads showed that DHGA-D significantly suppressed MLK3 activity through direct binding to MLK3. Knockdown of MLK3 suppressed COX-2 expression as well as phosphorylation of MKK4/p38 and MKK3/6/JNK1/2 in HaCaT cells. Furthermore, Western blot assay and immunohistochemistry results showed that DHGA-D pre-treatment significantly inhibits UVB-induced COX-2 expression in vivo. Taken together, these results indicate that DHGA-D may be a promising anti-inflammatory agent that mediates suppression of both COX-2 expression and the MLK3 signalling pathway through direct binding and inhibition of MLK3.
Collapse
Affiliation(s)
- Sung Keun Jung
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National UniversitySeoul, Korea
- Division of Metabolism and Functionality Research, Korea Food Research InstituteSeongnam, Korea
| | - Su Jeong Ha
- Division of Metabolism and Functionality Research, Korea Food Research InstituteSeongnam, Korea
| | - Yeong A Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National UniversitySeoul, Korea
| | - Jihoon Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National UniversitySeoul, Korea
| | - Tae-Gyu Lim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National UniversitySeoul, Korea
| | - Yun Tai Kim
- Division of Metabolism and Functionality Research, Korea Food Research InstituteSeongnam, Korea
| | - Nam Hyouck Lee
- Division of Metabolism and Functionality Research, Korea Food Research InstituteSeongnam, Korea
| | - Jun Seong Park
- Skin Research Institute, Amorepacific R&D CenterYongin, Korea
| | - Myeong-Hun Yeom
- Skin Research Institute, Amorepacific R&D CenterYongin, Korea
| | - Hyong Joo Lee
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology, Seoul National UniversityPyeongchang, Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National UniversitySeoul, Korea
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology, Seoul National UniversityPyeongchang, Korea
- Advanced Institutes of Convergence Technology, Seoul National UniversitySuwon, Korea
| |
Collapse
|
37
|
p38δ MAPK: Emerging Roles of a Neglected Isoform. Int J Cell Biol 2014; 2014:272689. [PMID: 25313309 PMCID: PMC4182853 DOI: 10.1155/2014/272689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 12/19/2022] Open
Abstract
p38δ mitogen activated protein kinase (MAPK) is a unique stress responsive protein kinase. While the p38 MAPK family as a whole has been implicated in a wide variety of biological processes, a specific role for p38δ MAPK in cellular signalling and its contribution to both physiological and pathological conditions are presently lacking. Recent emerging evidence, however, provides some insights into specific p38δ MAPK signalling. Importantly, these studies have helped to highlight functional similarities as well as differences between p38δ MAPK and the other members of the p38 MAPK family of kinases. In this review we discuss the current understanding of the molecular mechanisms underlying p38δ MAPK activity. We outline a role for p38δ MAPK in important cellular processes such as differentiation and apoptosis as well as pathological conditions such as neurodegenerative disorders, diabetes, and inflammatory disease. Interestingly, disparate roles for p38δ MAPK in tumour development have also recently been reported. Thus, we consider evidence which characterises p38δ MAPK as both a tumour promoter and a tumour suppressor. In summary, while our knowledge of p38δ MAPK has progressed somewhat since its identification in 1997, our understanding of this particular isoform in many cellular processes still strikingly lags behind that of its counterparts.
Collapse
|
38
|
Huang PY, Balmain A. Modeling cutaneous squamous carcinoma development in the mouse. Cold Spring Harb Perspect Med 2014; 4:a013623. [PMID: 25183851 DOI: 10.1101/cshperspect.a013623] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cutaneous squamous cell carcinoma (SCC) is one of the most common cancers in Caucasian populations and is associated with a significant risk of morbidity and mortality. The classic mouse model for studying SCC involves two-stage chemical carcinogenesis, which has been instrumental in the evolution of the concept of multistage carcinogenesis, as widely applied to both human and mouse cancers. Much is now known about the sequence of biological and genetic events that occur in this skin carcinogenesis model and the factors that can influence the course of tumor development, such as perturbations in the oncogene/tumor-suppressor signaling pathways involved, the nature of the target cell that acquires the first genetic hit, and the role of inflammation. Increasingly, studies of tumor-initiating cells, malignant progression, and metastasis in mouse skin cancer models will have the potential to inform future approaches to treatment and chemoprevention of human squamous malignancies.
Collapse
Affiliation(s)
- Phillips Y Huang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
39
|
Bunjobpol W, Dulloo I, Igarashi K, Concin N, Matsuo K, Sabapathy K. Suppression of acetylpolyamine oxidase by selected AP-1 members regulates DNp73 abundance: mechanistic insights for overcoming DNp73-mediated resistance to chemotherapeutic drugs. Cell Death Differ 2014; 21:1240-9. [PMID: 24722210 PMCID: PMC4085530 DOI: 10.1038/cdd.2014.41] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 02/17/2014] [Accepted: 02/28/2014] [Indexed: 12/18/2022] Open
Abstract
Enhanced resistance to chemotherapy has been correlated with high levels of Delta-Np73 (DNp73), an anti-apoptotic protein of the p53 tumor-suppressor family which inhibits the pro-apoptotic members such as p53 and TAp73. Although genotoxic drugs have been shown to induce DNp73 degradation, lack of mechanistic understanding of this process precludes strategies to enhance the targeting of DNp73 and improve treatment outcomes. Antizyme (Az) is a mediator of ubiquitin-independent protein degradation regulated by the polyamine biosynthesis pathway. We show here that acetylpolyamine oxidase (PAOX), a catabolic enzyme of this pathway, upregulates DNp73 levels by suppressing its degradation via the Az pathway. Conversely, downregulation of PAOX activity by siRNA-mediated knockdown or chemical inhibition leads to DNp73 degradation in an Az-dependent manner. PAOX expression is suppressed by several genotoxic drugs, via selected members of the activator protein-1 (AP-1) transcription factors, namely c-Jun, JunB and FosB, which are required for stress-mediated DNp73 degradation. Finally, chemical- and siRNA-mediated inhibition of PAOX significantly reversed the resistant phenotype of DNp73-overexpressing cancer cells to genotoxic drugs. Together, these data define a critical mechanism for the regulation of DNp73 abundance, and reveal that inhibition of PAOX could widen the therapeutic index of cytotoxic drugs and overcome DNp73-mediated chemoresistance in tumors.
Collapse
Affiliation(s)
- W Bunjobpol
- Laboratory of Molecular Carcinogenesis, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, Singapore
| | - I Dulloo
- Laboratory of Molecular Carcinogenesis, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, Singapore
| | - K Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15Inohana, Chiba, Japan
| | - N Concin
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Anichstrasse 35, Innsbruck, Austria
| | - K Matsuo
- Department of Microbiology and Immunology, School of Medicine, Keio University, 35 Shinanomachi, Tokyo, Japan
| | - K Sabapathy
- Laboratory of Molecular Carcinogenesis, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8, College Road, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, 8, Medical Drive, Singapore, Singapore
| |
Collapse
|
40
|
Sioletic S, Czaplinski J, Hu L, Fletcher JA, Fletcher CDM, Wagner AJ, Loda M, Demetri GD, Sicinska ET, Snyder EL. c-Jun promotes cell migration and drives expression of the motility factor ENPP2 in soft tissue sarcomas. J Pathol 2014; 234:190-202. [PMID: 24852265 DOI: 10.1002/path.4379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 05/12/2014] [Accepted: 05/18/2014] [Indexed: 12/26/2022]
Abstract
Genomic amplification of the c-Jun proto-oncogene has been identified in ∼30% of dedifferentiated liposarcomas (DDLPS), but the functional contribution of c-Jun to the progression of DDLPS remains poorly understood. In previous work we showed that knock-down of c-Jun by RNA interference impaired the in vitro proliferation and in vivo growth of a DDLPS cell line (LP6) with genomic amplification of the c-Jun locus. Here, we used gene expression analysis and functional studies in a broad panel of cell lines to further define the role of c-Jun in DDLPS and other soft tissue sarcomas. We show that c-Jun knock-down impairs transition through the G1 phase of the cell cycle in multiple DDLPS cell lines. We also found that high levels of c-Jun expression are both necessary and sufficient to promote DDLPS cell migration and invasion in vitro. Our data suggest that high levels of c-Jun enhance motility in part by driving the expression of ENPP2/Autotaxin. c-Jun over-expression has minimal effects on in vitro proliferation but substantially enhances the in vivo growth of weakly tumourigenic DDLPS cell lines. Finally, we provide evidence that c-Jun genomic amplification and over-expression may have similar functional consequences in other types of soft tissue sarcoma. Our data suggest a model in which relatively low levels of c-Jun are sufficient for in vitro proliferation, but high levels of c-Jun enhance invasiveness and capacity for in vivo tumour growth. These observations provide an explanation for the selective advantage provided by c-Jun genomic amplification in vivo and suggest that sarcomas with elevated c-Jun levels are likely to have a particularly high malignant potential. Data from exon array and RNA-Seq experiments have been deposited in the GEO database (Accession No. GSE57531).
Collapse
Affiliation(s)
- Stefano Sioletic
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA; Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Aaptamines from the marine sponge Aaptos sp. display anticancer activities in human cancer cell lines and modulate AP-1-, NF-κB-, and p53-dependent transcriptional activity in mouse JB6 Cl41 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:469309. [PMID: 25215281 PMCID: PMC4158141 DOI: 10.1155/2014/469309] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/02/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022]
Abstract
Aaptamine (8,9-dimethoxy-1H-benzo[de][1,6]naphthyridine) is a marine natural compound possessing antioxidative, antimicrobial, antifungal, and antiretroviral activity. Earlier, we have found that aaptamine and its derivatives demonstrate equal anticancer effects against the human germ cell cancer cell lines NT2 and NT2-R and cause some changes in the proteome of these cells. In order to explore further the mechanism of action of aaptamine and its derivatives, we studied the effects of aaptamine (1), demethyl(oxy)aaptamine (2), and isoaaptamine (3) on human cancer cell lines and on AP-1-, NF-κB-, and p53-dependent transcriptional activity in murine JB6 Cl41 cells. We showed that compounds 1–3 demonstrate anticancer activity in THP-1, HeLa, SNU-C4, SK-MEL-28, and MDA-MB-231 human cancer cell lines. Additionally, all compounds were found to prevent EGF-induced neoplastic transformation of murine JB6 Cl41 cells. Nuclear factors AP-1, NF-κB, and p53 are involved in the cellular response to high and nontoxic concentrations of aaptamine alkaloids 1–3. Furthermore, inhibition of EGF-induced JB6 cell transformation, which is exerted by the compounds 1–3 at low nontoxic concentrations of 0.7–2.1 μM, cannot be explained by activation of AP-1 and NF-κB.
Collapse
|
42
|
Ye N, Ding Y, Wild C, Shen Q, Zhou J. Small molecule inhibitors targeting activator protein 1 (AP-1). J Med Chem 2014; 57:6930-48. [PMID: 24831826 PMCID: PMC4148154 DOI: 10.1021/jm5004733] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Activator
protein 1 (AP-1) is a pivotal transcription factor that
regulates a wide range of cellular processes including proliferation,
apoptosis, differentiation, survival, cell migration, and transformation.
Accumulating evidence supports that AP-1 plays an important role in
several severe disorders including cancer, fibrosis, and organ injury,
as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid
arthritis. AP-1 has emerged as an actively pursued drug discovery
target over the past decade. Excitingly, a selective AP-1 inhibitor
T-5224 (51) has been investigated in phase II human clinical
trials. Nevertheless, no effective AP-1 inhibitors have yet been approved
for clinical use. Despite significant advances achieved in understanding
AP-1 biology and function, as well as the identification of small
molecules modulating AP-1 associated signaling pathways, medicinal
chemistry efforts remain an urgent need to yield selective and efficacious
AP-1 inhibitors as a viable therapeutic strategy for human diseases.
Collapse
Affiliation(s)
- Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | |
Collapse
|
43
|
Luo A, Yu X, Li G, Ma G, Chen H, Ding F, Li Y, Liu Z. Differentiation-associated genes regulated by c-Jun and decreased in the progression of esophageal squamous cell carcinoma. PLoS One 2014; 9:e96610. [PMID: 24796531 PMCID: PMC4010476 DOI: 10.1371/journal.pone.0096610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/10/2014] [Indexed: 12/20/2022] Open
Abstract
Transcription factor c-Jun plays a key role in controlling epithelium cell proliferation, apoptosis and differentiation. However, molecular mechanism and biological functions of c-Jun in squamous differentiation and the progression of esophageal squamous cell carcinoma (ESCC) remain elusive. In this study, we found that c-Jun bound directly to the promoter region, and activated the transcription of differentiation-associated genes including cystatin A, involucrin and SPRR3 in vivo. Ectopic expression of c-Jun enhanced SPRR3 transactivation in KYSE450 cells. Conversely, TAM67, a dominant negative mutant of c-Jun, inhibited SPRR3 transactivation. c-Jun increased expression of SPPR3 mainly via a PKC/JNK pathway in response to TPA in KYSE450 cells. Furthermore, c-Jun was remarkably reduced in esophageal cancer. Interestingly, cystatin A, involucrin and SPRR3 were significantly downregulated as well, and associated with differentiation grade. Expression of c-Jun was correlated with the expression of these genes in normal epithelium and ESCC. Importantly, the expression of these genes was remarkably decreased during the malignant transformation from normal epithelium to low-grade intraepithelial neoplasia (LGIN) or high-grade intraepithelial neoplasia (HGIN). The expression of cystatin A and involucrin was significantly reduced from LGIN to HGIN. These results suggest c-Jun was involved in the regulation of differentiation-associated genes in ESCC. These genes might serve as the potential markers in distinguishing normal epithelium from esophageal squamous intraepithelial neoplasia.
Collapse
Affiliation(s)
- Aiping Luo
- State Key Lab of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinfeng Yu
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Guichang Li
- Department of Media and Biology Control, Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gang Ma
- State Key Lab of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongyan Chen
- State Key Lab of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Ding
- State Key Lab of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Li
- State Key Lab of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
44
|
Magaye R, Zhou Q, Bowman L, Zou B, Mao G, Xu J, Castranova V, Zhao J, Ding M. Metallic nickel nanoparticles may exhibit higher carcinogenic potential than fine particles in JB6 cells. PLoS One 2014; 9:e92418. [PMID: 24691273 PMCID: PMC3972196 DOI: 10.1371/journal.pone.0092418] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/21/2014] [Indexed: 01/20/2023] Open
Abstract
While numerous studies have described the pathogenic and carcinogenic effects of nickel compounds, little has been done on the biological effects of metallic nickel. Moreover, the carcinogenetic potential of metallic nickel nanoparticles is unknown. Activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) have been shown to play pivotal roles in tumor initiation, promotion, and progression. Mutation of the p53 tumor suppressor gene is considered to be one of the steps leading to the neoplastic state. The present study examines effects of metallic nickel fine and nanoparticles on tumor promoter or suppressor gene expressions as well as on cell transformation in JB6 cells. Our results demonstrate that metallic nickel nanoparticles caused higher activation of AP-1 and NF-κB, and a greater decrease of p53 transcription activity than fine particles. Western blot indicates that metallic nickel nanoparticles induced a higher level of protein expressions for R-Ras, c-myc, C-Jun, p65, and p50 in a time-dependent manner. In addition, both metallic nickel nano- and fine particles increased anchorage-independent colony formation in JB6 P+ cells in the soft agar assay. These results imply that metallic nickel fine and nanoparticles are both carcinogenetic in vitro in JB6 cells. Moreover, metallic nickel nanoparticles may exhibit higher carcinogenic potential, which suggests that precautionary measures should be taken in the use of nickel nanoparticles or its compounds in nanomedicine.
Collapse
Affiliation(s)
- Ruth Magaye
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Qi Zhou
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Linda Bowman
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Baobo Zou
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Guochuan Mao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Jin Xu
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China
| | - Vincent Castranova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Jinshun Zhao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People's Republic of China; Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Min Ding
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| |
Collapse
|
45
|
Mariottini GL, Pane L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins (Basel) 2013; 6:108-51. [PMID: 24379089 PMCID: PMC3920253 DOI: 10.3390/toxins6010108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 01/20/2023] Open
Abstract
The toxicity of Cnidaria is a subject of concern for its influence on human activities and public health. During the last decades, the mechanisms of cell injury caused by cnidarian venoms have been studied utilizing extracts from several Cnidaria that have been tested in order to evaluate some fundamental parameters, such as the activity on cell survival, functioning and metabolism, and to improve the knowledge about the mechanisms of action of these compounds. In agreement with the modern tendency aimed to avoid the utilization of living animals in the experiments and to substitute them with in vitro systems, established cell lines or primary cultures have been employed to test cnidarian extracts or derivatives. Several cnidarian venoms have been found to have cytotoxic properties and have been also shown to cause hemolytic effects. Some studied substances have been shown to affect tumour cells and microorganisms, so making cnidarian extracts particularly interesting for their possible therapeutic employment. The review aims to emphasize the up-to-date knowledge about this subject taking in consideration the importance of such venoms in human pathology, the health implications and the possible therapeutic application of these natural compounds.
Collapse
Affiliation(s)
- Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy.
| | - Luigi Pane
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy.
| |
Collapse
|
46
|
Jun proteins and AP-1 in tumorigenesis. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
47
|
Hsieh YH, van der Heyde H, Oh ES, Guan JL, Chang PL. Osteopontin mediates tumorigenic transformation of a preneoplastic murine cell line by suppressing anoikis: An Arg-Gly-Asp-dependent-focal adhesion kinase-caspase-8 axis. Mol Carcinog 2013; 54:379-92. [DOI: 10.1002/mc.22108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Yu-Hua Hsieh
- Department of Nutrition Sciences, 1720 2nd Avenue South; University of Alabama at Birmingham; Birmingham Alabama
| | | | - Eok-Soo Oh
- Division of Molecular Life Sciences and Center for Cell Signaling Research, Department of Life Sciences; Ewha Woman's University; Seoul Korea
| | - Jun-Lin Guan
- Division of Molecular Medicine and Genetics, Department of Internal Medicine; University of Michigan Medical School; Ann Arbor Michigan
| | - Pi-Ling Chang
- Department of Nutrition Sciences, 1720 2nd Avenue South; University of Alabama at Birmingham; Birmingham Alabama
- Department of Dermatology, 1720 2nd Avenue South; University of Alabama at Birmingham; Birmingham Alabama
- Department of Comprehensive Cancer Center, 1720 2nd Avenue South; University of Alabama at Birmingham; Birmingham Alabama
| |
Collapse
|
48
|
AP-1/c-Jun transcription factors: regulation and function in malignant melanoma. Eur J Cell Biol 2013; 93:76-81. [PMID: 24315690 DOI: 10.1016/j.ejcb.2013.10.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/01/2013] [Accepted: 10/21/2013] [Indexed: 11/23/2022] Open
Abstract
Malignant melanoma is an aggressive form of skin cancer with an increasing incidence worldwide. One way to address the pathology of the disease is through molecular research. In addition to the analysis of melanoma-relevant signaling pathways, the investigation of important transcription factors is a fundamental objective. The AP-1 transcription factor family is known to play an important role in melanoma progression and development. The AP-1 family member c-Jun is highly expressed and active in melanoma cells, and the mechanisms and signaling pathways regulating c-Jun protein are diverse. In addition to the common regulation and activation of c-Jun by mitogen-activated protein kinases (MAPKs), there are several other signaling pathways and interactions leading to c-Jun protein expression and thus AP-1 activation. In malignant melanoma, and many other cancer types, c-Jun has mainly oncogenic functions; however, other AP-1 proteins also have anti-oncogenic roles. Interestingly, several studies have revealed that a strong AP-1 activity in melanoma mainly depends on c-Jun. Recently, it has also been shown that the c-Jun protein is regulated and activated by several other mechanisms, including miRNAs and the cytoskeleton. In summary, there are a variety of mechanisms underlying the induction of c-Jun protein expression and activity leading to tumor progression and development, and this diverse regulatory machinery is due to the heterogeneity of different tumor types, particularly in malignant melanoma.
Collapse
|
49
|
Human TTC5, a novel tetratricopeptide repeat domain containing gene, activates p53 and inhibits AP-1 pathway. Mol Biol Rep 2013; 40:6183-8. [DOI: 10.1007/s11033-013-2729-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 09/14/2013] [Indexed: 12/20/2022]
|
50
|
KOWALCZYK MAGDALENAC, JUNCO JACOBJ, KOWALCZYK PIOTR, TOLSTYKH OLGA, HANAUSEK MARGARET, SLAGA THOMASJ, WALASZEK ZBIGNIEW. Effects of combined phytochemicals on skin tumorigenesis in SENCAR mice. Int J Oncol 2013; 43:911-8. [PMID: 23835587 PMCID: PMC3787890 DOI: 10.3892/ijo.2013.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/17/2013] [Indexed: 12/24/2022] Open
Abstract
The purpose of our study was to determine the effect of the combined action of phytochemicals on the early stages of skin tumorigenesis, i.e. initiation and promotion. We tested calcium D-glucarate (CG) given in the diet, while resveratrol (RES) and ursolic acid (UA) were applied topically. The 7,12-dimethylbenz[a]anthracene (DMBA)-initiated, 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted multistage skin carcinogenesis model in SENCAR mice was used. Mice received one topical dose of DMBA, then after one month, two weekly doses of TPA for 14 weeks until sacrifice. RES or UA were applied 20 min prior to DMBA or TPA treatment and 2% dietary CG was given from 2 weeks prior to 2 weeks after the DMBA dose or continually beginning 2 weeks prior to the first dose of TPA. UA applied alone and in combination with CG during the promotion stage was the only inhibitor of tumor multiplicity and tumor incidence. A number of combinations reduced epidermal proliferation, but only UA and the combination UA+CG applied during promotion significantly reduced epidermal hyperplasia. DMBA/TPA application resulted in significant increases in c-jun and p50, which were reversed by a number of different treatments. DMBA/TPA treatment also strongly increased mRNA levels of inflammation markers COX-2 and IL-6. All anti-promotion treatments caused a marked decrease in COX-2 and IL-6 expression compared to the DMBA/TPA control. These results show that UA is a potent inhibitor of skin tumor promotion and inflammatory signaling and it may be useful in the prevention of skin cancer and other epithelial cancers in humans.
Collapse
Affiliation(s)
- MAGDALENA C. KOWALCZYK
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - JACOB J. JUNCO
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - PIOTR KOWALCZYK
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - OLGA TOLSTYKH
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - MARGARET HANAUSEK
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- The Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - THOMAS J. SLAGA
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- The Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Medical Research Division of the Regional Academic Health Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - ZBIGNIEW WALASZEK
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- The Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|