1
|
Martinelli S, Hafner K, Koedel M, Knauer-Arloth J, Gassen NC, Binder EB. Differential Dynamics and Roles of FKBP51 Isoforms and Their Implications for Targeted Therapies. Int J Mol Sci 2024; 25:12318. [PMID: 39596380 PMCID: PMC11594789 DOI: 10.3390/ijms252212318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The expression of FKBP5, and its resulting protein FKBP51, is strongly induced by glucocorticoids. Numerous studies have explored their involvement in a plethora of cellular processes and diseases. There is, however, a lack of knowledge on the role of the different RNA splicing variants and the two protein isoforms, one missing functional C-terminal motifs. In this study, we use in vitro models (HeLa and Jurkat cells) as well as peripheral blood cells of a human cohort (N = 26 male healthy controls) to show that the two expressed variants are both dynamically upregulated following dexamethasone, with significantly earlier increases (starting 1-2 h after stimulation) in the short isoform both in vitro and in vivo. Protein degradation assays in vitro showed a reduced half-life (4 h vs. 8 h) of the shorter isoform. Only the shorter isoform showed a subnuclear cellular localization. The two isoforms also differed in their effects on known downstream cellular pathways, including glucocorticoid receptor function, macroautophagy, immune activation, and DNA methylation regulation. The results shed light on the difference between the two variants and highlight the importance of differential analyses in future studies with implications for targeted drug design.
Collapse
Affiliation(s)
- Silvia Martinelli
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Kathrin Hafner
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Maik Koedel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Janine Knauer-Arloth
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Nils C. Gassen
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Elisabeth B. Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
2
|
Antonio LM, Martins GH, Aragão AZB, Quel NG, Zazeri G, Houry WA, Ramos CHI. Unveiling the Role of Sorghum RPAP3 in the Function of R2TP Complex: Insights into Protein Assembly in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2925. [PMID: 37631136 PMCID: PMC10458388 DOI: 10.3390/plants12162925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The chaperone R2TP has multiple subunits that assist in the proper folding, assembly, and stabilization of various protein complexes in cells and its study can offer valuable insights into the regulation and maintenance of protein assemblies in plant systems. The 'T' component of R2TP is Tah1 in yeast, consisting of 111 residues, while its counterpart in humans is RPAP3, with 665 residues. RPAP3 acts as a co-chaperone of Hsp90 and facilitates interactions between RUVBL proteins and other complex components, enhancing the recruitment of client proteins by the R2TP complex. These facts further underscore the relevance of studying this complex in different organisms. The putative gene corresponding to the RPAP3 in Sorghum bicolor, a monocotyledon plant, was cloned, and the protein (396 residues) purified for biochemical characterization. SbRPAP3 exists as a folded monomer and has a RPAP3 domain, which is present in human RPAP3 but absent in yeast Tah1. SbRPAP3 retains its functional capabilities, including binding with RUVBLs, Hsp90, and Hsp70. By elucidating the role of RPAP3 in plant R2TP complex, we can further comprehend the molecular mechanisms underlying plant-specific protein assembly and contribute to advancements in plant biology and biotechnological applications.
Collapse
Affiliation(s)
- Larissa Machado Antonio
- Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13100-104, SP, Brazil; (L.M.A.); (G.H.M.); (A.Z.B.A.); (N.G.Q.); (G.Z.)
| | - Gustavo Henrique Martins
- Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13100-104, SP, Brazil; (L.M.A.); (G.H.M.); (A.Z.B.A.); (N.G.Q.); (G.Z.)
| | - Annelize Zambon Barbosa Aragão
- Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13100-104, SP, Brazil; (L.M.A.); (G.H.M.); (A.Z.B.A.); (N.G.Q.); (G.Z.)
| | - Natália Galdi Quel
- Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13100-104, SP, Brazil; (L.M.A.); (G.H.M.); (A.Z.B.A.); (N.G.Q.); (G.Z.)
| | - Gabriel Zazeri
- Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13100-104, SP, Brazil; (L.M.A.); (G.H.M.); (A.Z.B.A.); (N.G.Q.); (G.Z.)
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada;
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Carlos Henrique Inacio Ramos
- Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13100-104, SP, Brazil; (L.M.A.); (G.H.M.); (A.Z.B.A.); (N.G.Q.); (G.Z.)
| |
Collapse
|
3
|
Backe SJ, Sager RA, Heritz JA, Wengert LA, Meluni KA, Aran-Guiu X, Panaretou B, Woodford MR, Prodromou C, Bourboulia D, Mollapour M. Activation of autophagy depends on Atg1/Ulk1-mediated phosphorylation and inhibition of the Hsp90 chaperone machinery. Cell Rep 2023; 42:112807. [PMID: 37453059 PMCID: PMC10529509 DOI: 10.1016/j.celrep.2023.112807] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular homeostasis relies on both the chaperoning of proteins and the intracellular degradation system that delivers cytoplasmic constituents to the lysosome, a process known as autophagy. The crosstalk between these processes and their underlying regulatory mechanisms is poorly understood. Here, we show that the molecular chaperone heat shock protein 90 (Hsp90) forms a complex with the autophagy-initiating kinase Atg1 (yeast)/Ulk1 (mammalian), which suppresses its kinase activity. Conversely, environmental cues lead to Atg1/Ulk1-mediated phosphorylation of a conserved serine in the amino domain of Hsp90, inhibiting its ATPase activity and altering the chaperone dynamics. These events impact a conformotypic peptide adjacent to the activation and catalytic loop of Atg1/Ulk1. Finally, Atg1/Ulk1-mediated phosphorylation of Hsp90 leads to dissociation of the Hsp90:Atg1/Ulk1 complex and activation of Atg1/Ulk1, which is essential for initiation of autophagy. Our work indicates a reciprocal regulatory mechanism between the chaperone Hsp90 and the autophagy kinase Atg1/Ulk1 and consequent maintenance of cellular proteostasis.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jennifer A Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Laura A Wengert
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Katherine A Meluni
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Xavier Aran-Guiu
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, UK
| | - Barry Panaretou
- School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London SE1 9NQ, UK
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
4
|
Jaime-Garza M, Nowotny CA, Coutandin D, Wang F, Tabios M, Agard DA. Hsp90 provides a platform for kinase dephosphorylation by PP5. Nat Commun 2023; 14:2197. [PMID: 37069154 PMCID: PMC10110553 DOI: 10.1038/s41467-023-37659-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/23/2023] [Indexed: 04/19/2023] Open
Abstract
The Hsp90 molecular chaperone collaborates with the phosphorylated Cdc37 cochaperone for the folding and activation of its many client kinases. As with many kinases, the Hsp90 client kinase CRaf is activated by phosphorylation at specific regulatory sites. The cochaperone phosphatase PP5 dephosphorylates CRaf and Cdc37 in an Hsp90-dependent manner. Although dephosphorylating Cdc37 has been proposed as a mechanism for releasing Hsp90-bound kinases, here we show that Hsp90 bound kinases sterically inhibit Cdc37 dephosphorylation indicating kinase release must occur before Cdc37 dephosphorylation. Our cryo-EM structure of PP5 in complex with Hsp90:Cdc37:CRaf reveals how Hsp90 both activates PP5 and scaffolds its association with the bound CRaf to dephosphorylate phosphorylation sites neighboring the kinase domain. Thus, we directly show how Hsp90's role in maintaining protein homeostasis goes beyond folding and activation to include post translationally modifying its client kinases.
Collapse
Affiliation(s)
- Maru Jaime-Garza
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Carlos A Nowotny
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Daniel Coutandin
- Novartis Institutes for BioMedical Research, San Diego, CA, 92121, USA
| | - Feng Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mariano Tabios
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
5
|
Zhang H, Zhang Q, Tu J, You Q, Wang L. Dual function of protein phosphatase 5 (PPP5C): An emerging therapeutic target for drug discovery. Eur J Med Chem 2023; 254:115350. [PMID: 37054560 DOI: 10.1016/j.ejmech.2023.115350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Phosphorylation of proteins is reversibly controlled by the kinases and phosphatases in many posttranslational regulation patterns. Protein phosphatase 5 (PPP5C) is a serine/threonine protein phosphatase showing dual function by simultaneously exerting dephosphorylation and co-chaperone functions. Due to this special role, PPP5C was found to participate in many signal transductions related to various diseases. Abnormal expression of PPP5C results in cancers, obesity, and Alzheimer's disease, making it a potential drug target. However, the design of small molecules targeting PPP5C is struggling due to its special monomeric enzyme form and low basal activity by a self-inhibition mechanism. Through realizing the PPP5C's dual function as phosphatase and co-chaperone, more and more small molecules were found to regulate PPP5C with a different mechanism. This review aims to provide insights into PPP5C's dual function from structure to function, which could provide efficient design strategies for small molecules targeting PPP5C as therapeutic candidates.
Collapse
Affiliation(s)
- Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Tu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
7
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
8
|
Kokot T, Köhn M. Emerging insights into serine/threonine-specific phosphoprotein phosphatase function and selectivity. J Cell Sci 2022; 135:277104. [DOI: 10.1242/jcs.259618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ABSTRACT
Protein phosphorylation on serine and threonine residues is a widely distributed post-translational modification on proteins that acts to regulate their function. Phosphoprotein phosphatases (PPPs) contribute significantly to a plethora of cellular functions through the accurate dephosphorylation of phosphorylated residues. Most PPPs accomplish their purpose through the formation of complex holoenzymes composed of a catalytic subunit with various regulatory subunits. PPP holoenzymes then bind and dephosphorylate substrates in a highly specific manner. Despite the high prevalence of PPPs and their important role for cellular function, their mechanisms of action in the cell are still not well understood. Nevertheless, substantial experimental advancements in (phospho-)proteomics, structural and computational biology have contributed significantly to a better understanding of PPP biology in recent years. This Review focuses on recent approaches and provides an overview of substantial new insights into the complex mechanism of PPP holoenzyme regulation and substrate selectivity.
Collapse
Affiliation(s)
- Thomas Kokot
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg 1 , Freiburg 79104 , Germany
- University of Freiburg, 2 Faculty of Biology , Freiburg 79104 , Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg 1 , Freiburg 79104 , Germany
- University of Freiburg, 2 Faculty of Biology , Freiburg 79104 , Germany
| |
Collapse
|
9
|
Yadav RP, Boyd K, Artemyev NO. Molecular insights into the maturation of phosphodiesterase 6 by the specialized chaperone complex of HSP90 with AIPL1. J Biol Chem 2022; 298:101620. [PMID: 35065964 PMCID: PMC8857470 DOI: 10.1016/j.jbc.2022.101620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Phosphodiesterase 6 (PDE6) is a key effector enzyme in vertebrate phototransduction, and its maturation and function are known to critically depend on a specialized chaperone, aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1). Defects in PDE6 and AIPL1 underlie several severe retinal diseases, including retinitis pigmentosa and Leber congenital amaurosis. Here, we characterize the complex of AIPL1 with HSP90 and demonstrate its essential role in promoting the functional conformation of nascent PDE6. Our analysis suggests that AIPL1 preferentially binds to HSP90 in the closed state with a stoichiometry of 1:2, with the tetratricopeptide repeat domain and the tetratricopeptide repeat helix 7 extension of AIPL1 being the main contributors to the AIPL1/HSP90 interface. We demonstrate that mutations of these determinants markedly diminished both the affinity of AIPL1 for HSP90 and the ability of AIPL1 to cochaperone the maturation of PDE6 in a heterologous expression system. In addition, the FK506-binding protein (FKBP) domain of AIPL1 encloses a unique prenyl-binding site that anchors AIPL1 to posttranslational lipid modifications of PDE6. A mouse model with rod PDE6 lacking farnesylation of its PDE6A subunit revealed normal expression, trafficking, and signaling of the enzyme. Furthermore, AIPL1 was unexpectedly capable of inducing the maturation of unprenylated cone PDE6C, whereas mutant AIPL1 deficient in prenyl binding competently cochaperoned prenylated PDE6C. Thus, we conclude neither sequestration of the prenyl modifications is required for PDE6 maturation to proceed, nor is the FKBP-lipid interaction involved in the conformational switch of the enzyme into the functional state.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
10
|
Agwunobi DO, Wang T, Zhang M, Wang T, Jia Q, Zhang M, Shi X, Yu Z, Liu J. Functional implication of heat shock protein 70/90 and tubulin in cold stress of Dermacentor silvarum. Parasit Vectors 2021; 14:542. [PMID: 34666804 PMCID: PMC8527796 DOI: 10.1186/s13071-021-05056-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Background The tick Dermacentor silvarum Olenev (Acari: Ixodidae) is a vital vector tick species mainly distributed in the north of China and overwinters in the unfed adult stage. The knowledge of the mechanism that underlies its molecular adaptation against cold is limited. In the present study, genes of hsp70 and hsp90 cDNA, named Dshsp70 and Dshsp90, and tubulin were cloned and characterized from D. silvarum, and their functions in cold stress were further evaluated. Methods The genome of the heat shock proteins and tubulin of D. silvarum were sequenced and analyzed using bioinformatics methods. Each group of 20 ticks were injected in triplicate with Dshsp90-, Dshsp70-, and tubulin-derived dsRNA, whereas the control group was injected with GFP dsRNA. Then, the total RNA was extracted and cDNA was synthesized and subjected to RT-qPCR. After the confirmation of knockdown, the ticks were incubated for 24 h and were exposed to − 20 °C lethal temperature (LT50), and then the mortality was calculated. Results Results indicated that Dshsp70 and Dshsp90 contained an open reading frame of 345 and 2190 nucleotides that encoded 114 and 729 amino acid residues, respectively. The transcript Dshsp70 showed 90% similarity with that identified from Dermacentor variabilis, whereas Dshsp90 showed 85% similarity with that identified from Ixodes scapularis. Multiple sequence alignment indicates that the deduced amino acid sequences of D. silvarum Hsp90, Hsp70, and tubulin show very high sequence identity to their corresponding sequences in other species. Hsp90 and Hsp70 display highly conserved and signature amino acid sequences with well-conserved MEEVD motif at the C-terminal in Hsp90 and a variable C-terminal region with a V/IEEVD-motif in Hsp70 that bind to numerous co-chaperones. RNA interference revealed that the mortality of D. silvarum was significantly increased after injection of dsRNA of Dshsp70 (P = 0.0298) and tubulin (P = 0.0448), whereas no significant increases were observed after the interference of Dshsp90 (P = 0.0709). Conclusions The above results suggested that Dshsp70 and tubulin play an essential role in the low-temperature adaptation of ticks. The results of this study can contribute to the understanding of the survival and acclimatization of overwintering ticks. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05056-y.
Collapse
Affiliation(s)
- Desmond O Agwunobi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tongxuan Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Meng Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tianhong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qingying Jia
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Miao Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinyue Shi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
11
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
12
|
Mazaira GI, Echeverría PC, Ciucci SM, Monte M, Gallo LI, Erlejman AG, Galigniana MD. Differential regulation of the glucocorticoid receptor nucleocytoplasmic shuttling by TPR-domain proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119000. [PMID: 33675851 DOI: 10.1016/j.bbamcr.2021.119000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
A dimer of the heat-shock protein of 90-kDa (Hsp90) represents the critical core of the chaperone complex associated to the glucocorticoid receptor (GR) oligomer. The C-terminal end of the Hsp90 dimer shapes a functional acceptor site for co-chaperones carrying tetratricopeptide repeat (TPR) domains, where they bind in a mutually exclusive and competitive manner. They impact on the biological properties of the GR•Hsp90 complex and are major players of the GR transport machinery. Recently, we showed that the overexpression of a chimeric TPR peptide influences the subcellular distribution of GR. In this study, the functional role of endogenous proteins carrying TPR or TPR-like sequences on GR subcellular distribution was characterized. It is demonstrated that, contrarily to the positive influence of FKBP52 on GR nuclear accumulation, FKBP51 and 14-3-3 impaired this property. While SGT1α showed no significant effect, the overexpression of the Ser/Thr phosphatase PP5 resulted in a nearly equal nuclear-cytoplasmic redistribution of GR rather than its typical cytoplasmic localization in the absence of steroid. This observation led to analyse the influence of the phosphorylation status of GR, which resulted not linked to its nucleo-cytoplasmic shuttling mechanism. Nonetheless, it was evidenced that both PP5 and FKBP52 are related to the anchorage of the GR to nucleoskeleton structures. The influence of these TPR domain proteins on the steroid-dependent transcriptional activity of GR was also characterized. It is postulated that the pleiotropic actions of the GR in different cell types may be the consequence of the relative abundance of different TPR-domain interacting co-chaperones.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Pablo C Echeverría
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires 1428, Argentina
| | - Sol M Ciucci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Martin Monte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE)-CONICET, Buenos Aires 1428, Argentina
| | - Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina; Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires 1428, Argentina.
| |
Collapse
|
13
|
Luo M, Meng Z, Moroishi T, Lin KC, Shen G, Mo F, Shao B, Wei X, Zhang P, Wei Y, Guan KL. Heat stress activates YAP/TAZ to induce the heat shock transcriptome. Nat Cell Biol 2020; 22:1447-1459. [PMID: 33199845 PMCID: PMC7757600 DOI: 10.1038/s41556-020-00602-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/09/2020] [Indexed: 02/05/2023]
Abstract
The Hippo pathway plays critical roles in cell growth, differentiation, organ development and tissue homeostasis, whereas its dysregulation can lead to tumorigenesis. YAP and TAZ are transcription co-activators and represent the main downstream effectors of the Hippo pathway. Here, we show that heat stress induces a strong and rapid YAP dephosphorylation and activation. The effect of heat shock on YAP is dominant to other signals known to modulate the Hippo pathway. Heat shock inhibits LATS kinase by promoting HSP90-dependent LATS interaction with and inactivation by protein phosphatase 5. Heat shock also induces LATS ubiquitination and degradation. YAP and TAZ are crucial for cellular heat shock responses, including the heat shock transcriptome and cell viability. This study uncovers previously unknown mechanisms of Hippo regulation by heat shock, as well as physiological functions of YAP, in the heat stress response. Our observations also reveal a potential combinational therapy involving hyperthermia and targeting of the Hippo pathway.
Collapse
Affiliation(s)
- Min Luo
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Molecular and Cellular Pharmacology & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Toshiro Moroishi
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Kimberly C Lin
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Guobo Shen
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
15
|
Schopf FH, Huber EM, Dodt C, Lopez A, Biebl MM, Rutz DA, Mühlhofer M, Richter G, Madl T, Sattler M, Groll M, Buchner J. The Co-chaperone Cns1 and the Recruiter Protein Hgh1 Link Hsp90 to Translation Elongation via Chaperoning Elongation Factor 2. Mol Cell 2019; 74:73-87.e8. [PMID: 30876805 DOI: 10.1016/j.molcel.2019.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/17/2018] [Accepted: 02/07/2019] [Indexed: 12/31/2022]
Abstract
The Hsp90 chaperone machinery in eukaryotes comprises a number of distinct accessory factors. Cns1 is one of the few essential co-chaperones in yeast, but its structure and function remained unknown. Here, we report the X-ray structure of the Cns1 fold and NMR studies on the partly disordered, essential segment of the protein. We demonstrate that Cns1 is important for maintaining translation elongation, specifically chaperoning the elongation factor eEF2. In this context, Cns1 interacts with the novel co-factor Hgh1 and forms a quaternary complex together with eEF2 and Hsp90. The in vivo folding and solubility of eEF2 depend on the presence of these proteins. Chaperoning of eEF2 by Cns1 is essential for yeast viability and requires a defined subset of the Hsp90 machinery as well as the identified eEF2 recruiting factor Hgh1.
Collapse
Affiliation(s)
- Florian H Schopf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Christopher Dodt
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Abraham Lopez
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Maximilian M Biebl
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Daniel A Rutz
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Moritz Mühlhofer
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Gesa Richter
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Michael Sattler
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|
16
|
Sacristan-Reviriego A, Bellingham J, Prodromou C, Boehm AN, Aichem A, Kumaran N, Bainbridge J, Michaelides M, van der Spuy J. The integrity and organization of the human AIPL1 functional domains is critical for its role as a HSP90-dependent co-chaperone for rod PDE6. Hum Mol Genet 2018; 26:4465-4480. [PMID: 28973376 PMCID: PMC5886190 DOI: 10.1093/hmg/ddx334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Biallelic mutations in the photoreceptor-expressed aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) are associated with autosomal recessive Leber congenital amaurosis (LCA), the most severe form of inherited retinopathy in early childhood. AIPL1 functions as a photoreceptor-specific co-chaperone that interacts with the molecular chaperone HSP90 to facilitate the stable assembly of the retinal cyclic GMP (cGMP) phosphodiesterase (PDE6) holoenzyme. In this study, we characterized the functional deficits of AIPL1 variations, some of which induce aberrant pre-mRNA AIPL1 splicing leading to the production of alternative AIPL1 isoforms. We investigated the ability of the AIPL1 variants to mediate an interaction with HSP90 and modulate the rod cGMP PDE6 stability and activity. Our data revealed that both the FK506 binding protein (FKBP)-like domain and the tetratricopeptide repeat (TPR) domain of AIPL1 are required for interaction with HSP90. We further demonstrate that AIPL1 significantly modulates the catalytic activity of heterologously expressed rod PDE6. Although the N-terminal FKBP-like domain of AIPL1 binds the farnesylated PDE6α subunit through direct interaction with the farnesyl moiety, mutations compromising the integrity of the C-terminal TPR domain of AIPL1 also failed to modulate PDE6 activity efficiently. These AIPL1 variants moreover failed to promote the HSP90-dependent stabilization of the PDE6α subunit in the cytosol. In summary, we have successfully validated the disease-causing status of the AIPL1 variations in vitro. Our findings provide insight into the mechanism underlying the co-chaperone role of AIPL1 and will be critical for ensuring an early and effective diagnosis of AIPL1 LCA patients.
Collapse
Affiliation(s)
| | | | - Chrisostomos Prodromou
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Xie J, Han M, Zhang M, Deng H, Wu W. PP5 (PPP5C) is a phosphatase of Dvl2. Sci Rep 2018; 8:2715. [PMID: 29426949 PMCID: PMC5807433 DOI: 10.1038/s41598-018-21124-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/30/2018] [Indexed: 11/09/2022] Open
Abstract
Dishevelled (Dvl) family proteins are key mediators of Wnt signalling and function in both canonical and noncanonical branches. Dvl2, the most studied Dvl protein, is extensively regulated by phosphorylation. Several kinases were found to be critical for Dvl2 localisation, stability control and functional segregation. For example, S143-phosphorylated Dvl2 was detected, together with CK1δ/ε, at the centrosome and basal body of primary cilia and plays pivotal roles during ciliogenesis. However, relatively less is known about Dvl dephosphorylation and the phosphatases involved. Here, we identified PP5 (PPP5C) as a phosphatase of Dvl2. PP5 interacts with and can directly dephosphorylate Dvl2. Knockdown of PP5 caused elevated Dvl2 phosphorylation both at the basal level and upon Wnt stimulation. In the Dvl2 protein, S143, the 10B5 cluster and other sites were dephosphorylated by PP5. Interestingly, comparison of PP5 with PP2A, another known Dvl2 phosphatase, revealed that PP5 and PP2A are not fully redundant in the regulation of Dvl2 phosphorylation status. In hTERT-RPE1 cells, PP5 was found at the basal body of cilia, where S143-phosphorylated Dvl2 also resides. Functional assays revealed modest effects on ciliogenesis after PP5 depletion or over-expression. Taken together, our results provided evidence to suggest PP5 as a new phosphatase for Dvl2.
Collapse
Affiliation(s)
- Jianlei Xie
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Miaojun Zhang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Wu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Protein phosphatase 5 regulates titin phosphorylation and function at a sarcomere-associated mechanosensor complex in cardiomyocytes. Nat Commun 2018; 9:262. [PMID: 29343782 PMCID: PMC5772059 DOI: 10.1038/s41467-017-02483-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022] Open
Abstract
Serine/threonine protein phosphatase 5 (PP5) is ubiquitously expressed in eukaryotic cells; however, its function in cardiomyocytes is unknown. Under basal conditions, PP5 is autoinhibited, but enzymatic activity rises upon binding of specific factors, such as the chaperone Hsp90. Here we show that PP5 binds and dephosphorylates the elastic N2B-unique sequence (N2Bus) of titin in cardiomyocytes. Using various binding and phosphorylation tests, cell-culture manipulation, and transgenic mouse hearts, we demonstrate that PP5 associates with N2Bus in vitro and in sarcomeres and is antagonistic to several protein kinases, which phosphorylate N2Bus and lower titin-based passive tension. PP5 is pathologically elevated and likely contributes to hypo-phosphorylation of N2Bus in failing human hearts. Furthermore, Hsp90-activated PP5 interacts with components of a sarcomeric, N2Bus-associated, mechanosensor complex, and blocks mitogen-activated protein-kinase signaling in this complex. Our work establishes PP5 as a compartmentalized, well-controlled phosphatase in cardiomyocytes, which regulates titin properties and kinase signaling at the myofilaments. Protein phosphatase 5 (PP5) is expressed in many cell types but its role in cardiomyocytes is unknown. Here the authors show that PP5 binds and dephosphorylates elastic titin in cardiac sarcomeres, and that PP5 is increased in heart failure, reducing cardiomyocyte compliance.
Collapse
|
19
|
Stechschulte LA, Lecka-Czernik B. Reciprocal regulation of PPARγ and RUNX2 activities in marrow mesenchymal stem cells: Fine balance between p38 MAPK and Protein Phosphatase 5. ACTA ACUST UNITED AC 2017; 3:107-113. [PMID: 29276666 DOI: 10.1007/s40610-017-0056-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose of review Post-translational modifications (PTMs), specifically serine phosphorylation, are essential for determination and tuning up an activity of many proteins, including those that are involved in the control of gene transcription. Transcription factors PPARγ2 and RUNX2 are essential for mesenchymal stem cell (MSC) commitment to either adipocyte or osteoblast lineage. This review is summarizing current knowledge how serine phosphorylation PTMs regulate activities of both transcription factors and MSCs lineage commitment. Recent finding Both PPARγ2 and RUNX2 transcriptional activities are regulated by similar PTMs, however with an opposite outcome. The same p38 MAPK mediates serine phosphorylation that leads to activation of RUNX2 and inactivation of PPARγ2. The process of protein phosphorylation is balanced with a process of protein dephosphorylation. Protein phosphatase 5 simultaneously dephosphorylates both proteins, which results in activation of PPARγ2 and inactivation of RUNX2. Summary This review provides a summary of the "yinyang" fine-tuned mechanism by which p38 MAPK and PP5 regulate MSCs lineage commitment.
Collapse
Affiliation(s)
- Lance A Stechschulte
- Department of Orthopaedic Surgery.,Center for Diabetes and Endocrine Diseases, University of Toledo Health Sciences Campus, Toledo, Ohio
| | - Beata Lecka-Czernik
- Department of Orthopaedic Surgery.,Physiology and Pharmacology.,Center for Diabetes and Endocrine Diseases, University of Toledo Health Sciences Campus, Toledo, Ohio
| |
Collapse
|
20
|
Assimon VA, Southworth DR, Gestwicki JE. Specific Binding of Tetratricopeptide Repeat Proteins to Heat Shock Protein 70 (Hsp70) and Heat Shock Protein 90 (Hsp90) Is Regulated by Affinity and Phosphorylation. Biochemistry 2015; 54:7120-31. [PMID: 26565746 PMCID: PMC4714923 DOI: 10.1021/acs.biochem.5b00801] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) require the help of tetratricopeptide repeat (TPR) domain-containing cochaperones for many of their functions. Each monomer of Hsp70 or Hsp90 can interact with only a single TPR cochaperone at a time, and each member of the TPR cochaperone family brings distinct functions to the complex. Thus, competition for TPR binding sites on Hsp70 and Hsp90 appears to shape chaperone activity. Recent structural and biophysical efforts have improved our understanding of chaperone-TPR contacts, focusing on the C-terminal EEVD motif that is present in both chaperones. To better understand these important protein-protein interactions on a wider scale, we measured the affinity of five TPR cochaperones, CHIP, Hop, DnaJC7, FKBP51, and FKBP52, for the C-termini of four members of the chaperone family, Hsc70, Hsp72, Hsp90α, and Hsp90β, in vitro. These studies identified some surprising selectivity among the chaperone-TPR pairs, including the selective binding of FKBP51/52 to Hsp90α/β. These results also revealed that other TPR cochaperones are only able to weakly discriminate between the chaperones or between their paralogs. We also explored whether mimicking phosphorylation of serine and threonine residues near the EEVD motif might impact affinity and found that pseudophosphorylation had selective effects on binding to CHIP but not other cochaperones. Together, these findings suggest that both intrinsic affinity and post-translational modifications tune the interactions between the Hsp70 and Hsp90 proteins and the TPR cochaperones.
Collapse
Affiliation(s)
| | | | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158
| |
Collapse
|
21
|
The activity of protein phosphatase 5 towards native clients is modulated by the middle- and C-terminal domains of Hsp90. Sci Rep 2015; 5:17058. [PMID: 26593036 PMCID: PMC4655416 DOI: 10.1038/srep17058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023] Open
Abstract
Protein phosphatase 5 is involved in the regulation of kinases and transcription factors. The dephosphorylation activity is modulated by the molecular chaperone Hsp90, which binds to the TPR-domain of protein phosphatase 5. This interaction is dependent on the C-terminal MEEVD motif of Hsp90. We show that C-terminal Hsp90 fragments differ in their regulation of the phosphatase activity hinting to a more complex interaction. Also hydrodynamic parameters from analytical ultracentrifugation and small-angle X-ray scattering data suggest a compact structure for the Hsp90-protein phosphatase 5 complexes. Using crosslinking experiments coupled with mass spectrometric analysis and structural modelling we identify sites, which link the middle/C-terminal domain interface of C. elegans Hsp90 to the phosphatase domain of the corresponding kinase. Studying the relevance of the domains of Hsp90 for turnover of native substrates we find that ternary complexes with the glucocorticoid receptor (GR) are cooperatively formed by full-length Hsp90 and PPH-5. Our data suggest that the direct stimulation of the phosphatase activity by C-terminal Hsp90 fragments leads to increased dephosphorylation rates. These are further modulated by the binding of clients to the N-terminal and middle domain of Hsp90 and their presentation to the phosphatase within the phosphatase-Hsp90 complex.
Collapse
|
22
|
Quinternet M, Rothé B, Barbier M, Bobo C, Saliou JM, Jacquemin C, Back R, Chagot ME, Cianférani S, Meyer P, Branlant C, Charpentier B, Manival X. Structure/Function Analysis of Protein-Protein Interactions Developed by the Yeast Pih1 Platform Protein and Its Partners in Box C/D snoRNP Assembly. J Mol Biol 2015. [PMID: 26210662 DOI: 10.1016/j.jmb.2015.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In eukaryotes, nucleotide post-transcriptional modifications in RNAs play an essential role in cell proliferation by contributing to pre-ribosomal RNA processing, ribosome assembly and activity. Box C/D small nucleolar ribonucleoparticles catalyze site-specific 2'-O-methylation of riboses, one of the most prevalent RNA modifications. They contain one guide RNA and four core proteins and their in vivo assembly requires numerous factors including (HUMAN/Yeast) BCD1/Bcd1p, NUFIP1/Rsa1p, ZNHIT3/Hit1p, the R2TP complex composed of protein PIH1D1/Pih1p and RPAP3/Tah1p that bridges the R2TP complex to the HSP90/Hsp82 chaperone and two AAA+ ATPases. We show that Tah1p can stabilize Pih1p in the absence of Hsp82 activity during the stationary phase of growth and consequently that the Tah1p:Pih1p interaction is sufficient for Pih1p stability. This prompted us to establish the solution structure of the Tah1p:Pih1p complex by NMR. The C-terminal tail S93-S111 of Tah1p snakes along Pih1p264-344 folded in a CS domain to form two intermolecular β-sheets and one covering loop. However, a thorough inspection of the NMR and crystal structures revealed structural differences that may be of functional importance. In addition, our NMR and isothermal titration calorimetry data revealed the formation of direct contacts between Pih1p257-344 and the Hsp82MC domain in the presence of Tah1p. By co-expression in Escherichia coli, we demonstrate that Pih1p has two other direct partners, the Rsa1p assembly factor and the Nop58p core protein, and in vivo and in vitro experiments mapped the required binding domains. Our data suggest that these two interactions are mutually exclusive. The implication of this finding for box C/D small nucleolar ribonucleoparticle assembly is discussed.
Collapse
Affiliation(s)
- Marc Quinternet
- FR 3209 CNRS-Université de Lorraine, Bioingénierie Moléculaire, Cellulaire et Thérapeutique, Biopôle, Campus Biologie-Santé, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Muriel Barbier
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Claude Bobo
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Jean-Michel Saliou
- BioOrganic Mass Spectrometry Laboratory, IPHC-DSA, UMR 7178 Université de Strasbourg-CNRS, 25 rue Becquerel, 67087 Strasbourg, France
| | - Clémence Jacquemin
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Régis Back
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Marie-Eve Chagot
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory, IPHC-DSA, UMR 7178 Université de Strasbourg-CNRS, 25 rue Becquerel, 67087 Strasbourg, France
| | - Philippe Meyer
- Sorbonne Universités, UPMC University Paris 6, CNRS, UMR 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle, Campus Biologie Santé, 9 Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France.
| |
Collapse
|
23
|
Mutation of essential Hsp90 co-chaperones SGT1 or CNS1 renders yeast hypersensitive to overexpression of other co-chaperones. Curr Genet 2014; 60:265-76. [DOI: 10.1007/s00294-014-0432-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/14/2014] [Accepted: 06/03/2014] [Indexed: 12/14/2022]
|
24
|
Abstract
The prevalence of diabetes is increasing rapidly worldwide. A cardinal feature of most forms of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing β-cells, impaired glucose-sensitive insulin secretion from the β-cell, or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation is an important and versatile mechanism for regulating the biological activity of many intracellular proteins, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to the stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating the phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein, we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis.
Collapse
Affiliation(s)
- Henrik Ortsäter
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Nina Grankvist
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Richard E Honkanen
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Åke Sjöholm
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| |
Collapse
|
25
|
Abstract
Nematodes are amongst the most successful and abundant organisms on the planet with approximately 30 000 species described, although the actual number of species is estimated to be one million or more. Despite sharing a relatively simple and invariant body plan, there is considerable diversity within the phylum. Nematodes have evolved to colonize most ecological niches, and can be free-living or can parasitize plants or animals to the detriment of the host organism. In this review we consider the role of heat shock protein 90 (Hsp90) in the nematode life cycle. We describe studies on Hsp90 in the free-living nematode Caenorhabditis elegans and comparative work on the parasitic species Brugia pahangi, and consider whether a dependence upon Hsp90 can be exploited for the control of parasitic species.
Collapse
|
26
|
Mazalouskas MD, Godoy-Ruiz R, Weber DJ, Zimmer DB, Honkanen RE, Wadzinski BE. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1. J Biol Chem 2013; 289:4219-32. [PMID: 24371145 DOI: 10.1074/jbc.m113.518514] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity. However, PP5 and ERK activity regulates the phosphorylation state of Raf1 kinase, an upstream activator of ERK signaling. Whereas expression of constitutively active Rac1 promotes the assembly of PP5·ERK1/2 complexes, acute activation of ERK1/2 fails to influence the phosphatase-kinase interaction. Introduction of oncogenic HRas (HRas(V12)) has no effect on PP5-ERK1 binding but selectively decreases the interaction of PP5 with ERK2, in a manner that is independent of PP5 and MAPK/ERK kinase (MEK) activity, yet paradoxically requires ERK2 activity. Additional studies conducted with oncogenic variants of KRas4B reveal that KRas(L61), but not KRas(V12), also decreases the PP5-ERK2 interaction. The expression of wild type HRas or KRas proteins fails to reduce PP5-ERK2 binding, indicating that the effect is specific to HRas(V12) and KRas(L61) gain-of-function mutations. These findings reveal a novel, differential responsiveness of PP5-ERK1 and PP5-ERK2 interactions to select oncogenic Ras variants and also support a role for PP5·ERK complexes in regulating the feedback phosphorylation of PP5-associated Raf1.
Collapse
Affiliation(s)
- Matthew D Mazalouskas
- From the Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | | | | | | | | | | |
Collapse
|
27
|
Connarn JN, Assimon VA, Reed RA, Tse E, Southworth DR, Zuiderweg ERP, Gestwicki JE, Sun D. The molecular chaperone Hsp70 activates protein phosphatase 5 (PP5) by binding the tetratricopeptide repeat (TPR) domain. J Biol Chem 2013; 289:2908-17. [PMID: 24327656 DOI: 10.1074/jbc.m113.519421] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein phosphatase 5 (PP5) is auto-inhibited by intramolecular interactions with its tetratricopeptide repeat (TPR) domain. Hsp90 has been shown to bind PP5 to activate its phosphatase activity. However, the functional implications of binding Hsp70 to PP5 are not yet clear. In this study, we find that both Hsp90 and Hsp70 bind to PP5 using a luciferase fragment complementation assay. A fluorescence polarization assay shows that Hsp90 (MEEVD motif) binds to the TPR domain of PP5 almost 3-fold higher affinity than Hsp70 (IEEVD motif). However, Hsp70 binding to PP5 stimulates higher phosphatase activity of PP5 than the binding of Hsp90. We find that PP5 forms a stable 1:1 complex with Hsp70, but the interaction appears asymmetric with Hsp90, with one PP5 binding the dimer. Solution NMR studies reveal that Hsc70 and PP5 proteins are dynamically independent in complex, tethered by a disordered region that connects the Hsc70 core and the IEEVD-TPR contact area. This tethered binding is expected to allow PP5 to carry out multi-site dephosphorylation of Hsp70-bound clients with a range of sizes and shapes. Together, these results demonstrate that Hsp70 recruits PP5 and activates its phosphatase activity which suggests dual roles for PP5 that might link chaperone systems with signaling pathways in cancer and development.
Collapse
|
28
|
Back R, Dominguez C, Rothé B, Bobo C, Beaufils C, Moréra S, Meyer P, Charpentier B, Branlant C, Allain FHT, Manival X. High-resolution structural analysis shows how Tah1 tethers Hsp90 to the R2TP complex. Structure 2013; 21:1834-47. [PMID: 24012479 DOI: 10.1016/j.str.2013.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
Abstract
The ubiquitous Hsp90 chaperone participates in snoRNP and RNA polymerase assembly through interaction with the R2TP complex. This complex includes the proteins Tah1, Pih1, Rvb1, and Rvb2. Tah1 bridges Hsp90 to R2TP. Its minimal TPR domain includes two TPR motifs and a capping helix. We established the high-resolution solution structures of Tah1 free and in complex with the Hsp90 C-terminal peptide. The TPR fold is similar in the free and bound forms and we show experimentally that in addition to its solvating/stabilizing role, the capping helix is essential for the recognition of the Hsp90 (704)EMEEVD(709) motif. In addition to Lys79 and Arg83 from the carboxylate clamp, this helix bears Tyr82 forming a π/S-CH3 interaction with Hsp90 M(705) from the peptide 310 helix. The Tah1 C-terminal region is unfolded, and we demonstrate that it is essential for the recruitment of the Pih1 C-terminal domain and folds upon binding.
Collapse
Affiliation(s)
- Régis Back
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 Université de Lorraine-CNRS, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 9 Avenue de la forêt de Haye, BP 184, 54505 Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chaperone-interacting TPR proteins in Caenorhabditis elegans. J Mol Biol 2013; 425:2922-39. [PMID: 23727266 DOI: 10.1016/j.jmb.2013.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/30/2013] [Accepted: 05/22/2013] [Indexed: 11/21/2022]
Abstract
The ATP-hydrolyzing molecular chaperones Hsc70/Hsp70 and Hsp90 bind a diverse set of tetratricopeptide repeat (TPR)-containing cofactors via their C-terminal peptide motifs IEEVD and MEEVD. These cochaperones contribute to substrate turnover and confer specific activities to the chaperones. Higher eukaryotic genomes encode a large number of TPR-domain-containing proteins. The human proteome contains more than 200 TPR proteins, and that of Caenorhabditis elegans, about 80. It is unknown how many of them interact with Hsc70 or Hsp90. We systematically screened the C. elegans proteome for TPR-domain-containing proteins that likely interact with Hsc70 and Hsp90 and ranked them due to their similarity with known chaperone-interacting TPRs. We find C. elegans to encode many TPR proteins, which are not present in yeast. All of these have homologs in fruit fly or humans. Highly ranking uncharacterized open reading frames C33H5.8, C34B2.5 and ZK370.8 may encode weakly conserved homologs of the human proteins RPAP3, TTC1 and TOM70. C34B2.5 and ZK370.8 bind both Hsc70 and Hsp90 with low micromolar affinities. Mutation of amino acids involved in EEVD binding disrupts the interaction. In vivo, ZK370.8 is localized to mitochondria in tissues with known chaperone requirements, while C34B2.5 colocalizes with Hsc70 in intestinal cells. The highest-ranking open reading frame with non-conserved EEVD-interacting residues, F52H3.5, did not show any binding to Hsc70 or Hsp90, suggesting that only about 15 of the TPR-domain-containing proteins in C. elegans interact with chaperones, while the many others may have evolved to bind other ligands.
Collapse
|
30
|
Lee MS, Park WS, Kim YH, Kwon SH, Jang YJ, Han D, Morita K, Her S. Antidepressant-like effects of Cortex Mori Radicis extract via bidirectional phosphorylation of glucocorticoid receptors in the hippocampus. Behav Brain Res 2013; 236:56-61. [DOI: 10.1016/j.bbr.2012.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/13/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022]
|
31
|
C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 2012; 32:3101-10. [PMID: 22824801 DOI: 10.1038/onc.2012.314] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heat shock proteins Hsp90 and Hsp70 facilitate protein folding but can also direct proteins for ubiquitin-mediated degradation. The mechanisms regulating these opposite activities involve Hsp binding to co-chaperones including CHIP and HOP at their C-termini. We demonstrated that the extreme C-termini of Hsp70 and Hsp90 contain phosphorylation sites targeted by kinases including CK1, CK2 and GSK3-β in vitro. The phosphorylation of Hsp90 and Hsp70 prevents binding to CHIP and thus enhances binding to HOP. Highly proliferative cells contain phosphorylated chaperones in complex with HOP and phospho-mimetic and non-phosphorylable Hsp mutant proteins show that phosphorylation is directly associated with increased proliferation rate. We also demonstrate that primary human cancers contain high levels of phosphorylated chaperones and show increased levels of HOP protein and mRNA. These data identify C-terminal phosphorylation of Hsp70 and Hsp90 as a switch for regulating co-chaperone binding and indicate that cancer cells possess an elevated protein folding environment by the concerted action of co-chaperone expression and chaperone modifications. In addition to identifying the pathway responsible for regulating chaperone-mediated protein folding/degradation balances in normal cells, the data provide novel mechanisms to account for the aberrant chaperone activities observed in human cancer cells and have implications for the application of anti-chaperone therapies in cancer treatment.
Collapse
|
32
|
Schreiber TB, Mäusbacher N, Soroka J, Wandinger SK, Buchner J, Daub H. Global Analysis of Phosphoproteome Regulation by the Ser/Thr Phosphatase Ppt1 in Saccharomyces cerevisiae. J Proteome Res 2012; 11:2397-408. [DOI: 10.1021/pr201134p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thiemo B. Schreiber
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Nina Mäusbacher
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Joanna Soroka
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Sebastian K. Wandinger
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Henrik Daub
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
33
|
Yamaguchi F, Umeda Y, Shimamoto S, Tsuchiya M, Tokumitsu H, Tokuda M, Kobayashi R. S100 proteins modulate protein phosphatase 5 function: a link between CA2+ signal transduction and protein dephosphorylation. J Biol Chem 2012; 287:13787-98. [PMID: 22399290 DOI: 10.1074/jbc.m111.329771] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PP5 is a unique member of serine/threonine phosphatases comprising a regulatory tetratricopeptide repeat (TPR) domain and functions in signaling pathways that control many cellular responses. We reported previously that Ca(2+)/S100 proteins directly associate with several TPR-containing proteins and lead to dissociate the interactions of TPR proteins with their client proteins. Here, we identified protein phosphatase 5 (PP5) as a novel target of S100 proteins. In vitro binding studies demonstrated that S100A1, S100A2, S100A6, and S100B proteins specifically interact with PP5-TPR and inhibited the PP5-Hsp90 interaction. In addition, the S100 proteins activate PP5 by using a synthetic phosphopeptide and a physiological protein substrate, Tau. Overexpression of S100A1 in COS-7 cells induced dephosphorylation of Tau. However, S100A1 and permanently active S100P inhibited the apoptosis signal-regulating kinase 1 (ASK1) and PP5 interaction, resulting the inhibition of dephosphorylation of phospho-ASK1 by PP5. The association of the S100 proteins with PP5 provides a Ca(2+)-dependent regulatory mechanism for the phosphorylation status of intracellular proteins through the regulation of PP5 enzymatic activity or PP5-client protein interaction.
Collapse
Affiliation(s)
- Fuminori Yamaguchi
- Department of Cell Physiology, Kagawa University Faculty of Medicine, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Ni W, Hutagalung AH, Li S, Epstein HF. The myosin-binding UCS domain but not the Hsp90-binding TPR domain of the UNC-45 chaperone is essential for function in Caenorhabditis elegans. J Cell Sci 2012; 124:3164-73. [PMID: 21914819 DOI: 10.1242/jcs.087320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UNC-45 family of molecular chaperones is expressed in metazoan organisms from Caenorhabditis elegans to humans. The UNC-45 protein is essential in C. elegans for early body-wall muscle cell development and A-band assembly. We show that the myosin-binding UCS domain of UNC-45 alone is sufficient to rescue lethal unc-45 null mutants arrested in embryonic muscle development and temperature-sensitive loss-of-function unc-45 mutants defective in worm A-band assembly. Removal of the Hsp90-binding TPR domain of UNC-45 does not affect rescue. Similar results were obtained with overexpression of the same fragments in wild-type nematodes when assayed for diminution of myosin accumulation and assembly. Titration experiments show that, on a per molecule basis, UCS has greater activity in C. elegans muscle in vivo than full-length UNC-45 protein, suggesting that UNC-45 is inhibited by either the TPR domain or its interaction with the general chaperone Hsp90. In vitro experiments with purified recombinant C. elegans Hsp90 and UNC-45 proteins show that they compete for binding to C. elegans myosin. Our in vivo genetic and in vitro biochemical experiments are consistent with a novel inhibitory role for Hsp90 with respect to UNC-45 action.
Collapse
Affiliation(s)
- Weiming Ni
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
35
|
da Silva VCH, Ramos CHI. The network interaction of the human cytosolic 90 kDa heat shock protein Hsp90: A target for cancer therapeutics. J Proteomics 2012; 75:2790-802. [PMID: 22236519 DOI: 10.1016/j.jprot.2011.12.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
In the cell, proteins interact within a network in which a small number of proteins are highly connected nodes or hubs. A disturbance in the hub proteins usually has a higher impact on the cell physiology than a disturbance in poorly connected nodes. In eukaryotes, the cytosolic Hsp90 is considered to be a hub protein as it interacts with molecular chaperones and co-chaperones, and has key regulatory proteins as clients, such as transcriptional factors, protein kinases and hormone receptors. The large number of Hsp90 partners suggests that Hsp90 is involved in very important functions, such as signaling, proteostasis and epigenetics. Some of these functions are dysregulated in cancer, making Hsp90 a potential target for therapeutics. The number of Hsp90 interactors appears to be so large that a precise answer to the question of how many proteins interact with this chaperone has no definitive answer yet, not even if the question refers to specific Hsp90s as one of the human cytosolic forms. Here we review the major chaperones and co-chaperones that interact with cytosolic Hsp90s, highlighting the latest findings regarding client proteins and the role that posttranslational modifications have on the function and interactions of these molecular chaperones. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- Viviane C H da Silva
- Institute of Chemistry, University of Campinas-UNICAMP. P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | | |
Collapse
|
36
|
Kobayashi Y, Mercado N, Barnes PJ, Ito K. Defects of protein phosphatase 2A causes corticosteroid insensitivity in severe asthma. PLoS One 2011; 6:e27627. [PMID: 22205926 PMCID: PMC3242752 DOI: 10.1371/journal.pone.0027627] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/20/2011] [Indexed: 11/18/2022] Open
Abstract
Background Corticosteroid insensitivity is a major barrier of treatment for some chronic inflammatory diseases, such as severe asthma, but the molecular mechanism of the insensitivity has not been fully elucidated. The object of this study is to investigate the role of protein phosphate 2A (PP2A), a serine/threonine phosphatase, on corticosteroid sensitivity in severe asthma. Methodology/Principal Findings Corticosteroid sensitivity was determined by the dexamethasone ability to inhibit TNFα-induced IL-8 or LPS-induced TNFα production. PP2A expression, glucocorticoid receptor (GR) nuclear translocation defined as the nuclear/cytoplasmic GR ratio and phosphorylation of GR-Ser226, c-Jun N-terminal kinase 1 (JNK1) and PP2A were analysed by Western-blotting. Phosphatase activity was measured by fluorescence-based assay. Okadaic acid (OA), a PP2A inhibitor, reduced corticosteroid sensitivity with reduced GR nuclear translocation and increased GR phosphorylation in U937 monocytic cells. PP2A knockdown by RNA interference showed similar effects. IL-2/IL-4 treatment to U937 reduced corticosteroid sensitivity, and PP2A expression/activity. In peripheral blood mononuclear cells (PBMCs) from severe asthma, the PP2A expression and activity were significantly reduced with concomitant enhancement of PP2AC-Tyr307 phosphorylation compared with those in healthy volunteers. As the results, GR-Ser226 and JNK1 phosphorylation were increased. The expression and activity of PP2A were negatively correlated with phosphorylation levels of GR-Ser226. Furthermore, co-immunoprecipitation assay in U937 cells revealed that PP2A associated with GR and JNK1 and IL-2/IL-4 exposure caused dissociation of each molecule. Lastly, PP2A overexpression increased corticosteroid sensitivity in U937 cells. Conclusions/Significance PP2A regulates GR nuclear translocation and corticosteroid sensitivity possibly by dephosphorylation of GR-Ser226 via dephosphorylation of upstream JNK1. This novel mechanism will provide new insight for the development of new therapy for severe asthma.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicolas Mercado
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter J. Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Banasavadi-Siddegowda YK, Mai J, Fan Y, Bhattacharya S, Giovannucci DR, Sanchez ER, Fischer G, Wang X. FKBP38 peptidylprolyl isomerase promotes the folding of cystic fibrosis transmembrane conductance regulator in the endoplasmic reticulum. J Biol Chem 2011; 286:43071-80. [PMID: 22030396 DOI: 10.1074/jbc.m111.269993] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
FK506-binding protein 38 (FKBP38), a membrane-anchored, tetratricopeptide repeat (TPR)-containing immunophilin, associates with nascent plasma membrane ion channels in the endoplasmic reticulum (ER). It promotes the maturation of the human ether-à-go-go-related gene (HERG) potassium channel and maintains the steady state level of the cystic fibrosis transmembrane conductance regulator (CFTR), but the underlying mechanisms remain unclear. Using a combination of steady state and pulse-chase analyses, we show that FKBP38 knockdown increases protein synthesis but inhibits the post-translational folding of CFTR, leading to reduced steady state levels of CFTR in the ER, decreased processing, and impaired cell surface functional expression in Calu-3 human airway epithelial cells. The membrane anchorage of FKBP38 is necessary for the inhibition of protein synthesis but not for CFTR post-translational folding. In contrast, the peptidylprolyl cis/trans isomerase active site is utilized to promote CFTR post-translational folding but is not important for regulation of protein synthesis. Uncoupling FKBP38 from Hsp90 by substituting a conserved lysine in the TPR domain modestly enhances CFTR maturation and further reduces its synthesis. Removing the N-terminal glutamate-rich domain (ERD) slightly enhances CFTR synthesis but reduces its maturation, suggesting that the ERD contributes to FKBP38 biological activities. Our data support a dual role for FKBP38 in regulating CFTR synthesis and post-translational folding. In contrast to earlier prediction but consistent with in vitro enzymological studies, FKBP38 peptidylprolyl cis/trans isomerase plays an important role in membrane protein biogenesis on the cytoplasmic side of the ER membrane, whose activity is negatively regulated by Hsp90 through the TPR domain.
Collapse
|
38
|
Park JH, Lee SY, Kim WY, Jung YJ, Chae HB, Jung HS, Kang CH, Shin MR, Kim SY, Su'udi M, Yun DJ, Lee KO, Kim MG, Lee SY. Heat-induced chaperone activity of serine/threonine protein phosphatase 5 enhances thermotolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 191:692-705. [PMID: 21564098 DOI: 10.1111/j.1469-8137.2011.03734.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
• This study reports that Arabidopsis thaliana protein serine/threonine phosphatase 5 (AtPP5) plays a pivotal role in heat stress resistance. A high-molecular-weight (HMW) form of AtPP5 was isolated from heat-treated A. thaliana suspension cells. AtPP5 performs multiple functions, acting as a protein phosphatase, foldase chaperone, and holdase chaperone. The enzymatic activities of this versatile protein are closely associated with its oligomeric status, ranging from low oligomeric protein species to HMW complexes. • The phosphatase and foldase chaperone functions of AtPP5 are associated primarily with the low-molecular-weight (LMW) form, whereas the HMW form exhibits holdase chaperone activity. Transgenic over-expression of AtPP5 conferred enhanced heat shock resistance to wild-type A. thaliana and a T-DNA insertion knock-out mutant was defective in acquired thermotolerance. A recombinant phosphatase mutant (H290N) showed markedly increased holdase chaperone activity. • In addition, enhanced thermotolerance was observed in transgenic plants over-expressing H290N, which suggests that the holdase chaperone activity of AtPP5 is primarily responsible for AtPP5-mediated thermotolerance. • Collectively, the results from this study provide the first evidence that AtPP5 performs multiple enzymatic activities that are mediated by conformational changes induced by heat-shock stress.
Collapse
Affiliation(s)
- Jin Ho Park
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Sun Yong Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Woe Yeon Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Young Jun Jung
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Ho Byoung Chae
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Hyun Suk Jung
- Division of Electron Microscopic Research, Korea Basic Science Institute, 52 Eoeun-dong, Daejeon 305-333, Korea
| | - Chang Ho Kang
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Mi Rim Shin
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Sun Young Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Mukhamad Su'udi
- National Academy of Agricultural Science, RDA, Suwon 441-856, Korea
| | - Dae Jin Yun
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Kyun Oh Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| | - Min Gab Kim
- National Academy of Agricultural Science, RDA, Suwon 441-856, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
39
|
Abstract
Germline mutations in the aryl hydrocarbon receptor-interacting protein gene (AIP) predispose to young-onset pituitary tumours, most often to GH- or prolactin-secreting adenomas, and most of these patients belong to familial isolated pituitary adenoma families. The molecular pathway initiated by the loss-of-function AIP mutations leading to pituitary tumour formation is unknown. AIP, a co-chaperone of heat-shock protein 90 and various nuclear receptors, belongs to the family of tetratricopeptide repeat (TPR)-containing proteins. It has three antiparallel α-helix motifs (TPR domains) that mediate the interaction of AIP with most of its partners. In this review, we summarise the known interactions of AIP described so far. The identification of AIP partners and the understanding of how AIP interacts with these proteins might help to explain the specific phenotype of the families with heterozygous AIP mutations, to gain deeper insight into the pathological process of pituitary tumour formation and to identify novel drug targets.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- Department of Endocrinology, Bart's and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | | |
Collapse
|
40
|
Allan RK, Ratajczak T. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 2011; 16:353-67. [PMID: 21153002 PMCID: PMC3118826 DOI: 10.1007/s12192-010-0248-0] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/21/2010] [Accepted: 11/24/2010] [Indexed: 12/30/2022] Open
Abstract
The tetratricopeptide repeat (TPR) motif is one of many repeat motifs that form structural domains in proteins that can act as interaction scaffolds in the formation of multi-protein complexes involved in numerous cellular processes such as transcription, the cell cycle, protein translocation, protein degradation and host defence against invading pathogens. The crystal structures of many TPR domain-containing proteins have been determined, showing TPR motifs as two anti-parallel α-helices packed in tandem arrays to form a structure with an amphipathic groove which can bind a target peptide. This is however not the only mode of target recognition by TPR domains, with short amino acid insertions and alternative TPR motif conformations also shown to contribute to protein interactions, highlighting diversity in TPR domains and the versatility of this structure in mediating biological events.
Collapse
Affiliation(s)
- Rudi Kenneth Allan
- Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009 Australia
- The Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009 Australia
| | - Thomas Ratajczak
- Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009 Australia
- The Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009 Australia
| |
Collapse
|
41
|
Stechschulte LA, Sanchez ER. FKBP51-a selective modulator of glucocorticoid and androgen sensitivity. Curr Opin Pharmacol 2011; 11:332-7. [PMID: 21565552 DOI: 10.1016/j.coph.2011.04.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 11/28/2022]
Abstract
FK506-binding protein 51 (FKBP51) is gaining increased recognition for its essential roles in cell biology. Originally discovered as a component of steroid receptor complexes, it is now known to regulate a diverse set of transcription factors, enzymes and structural proteins. Its cellular properties suggest numerous possible functions for FKBP51 in physiology, and the best clue to its potential importance may be the following: FKBP51 is a glucocorticoid-induced negative regulator of the glucocorticoid receptor. Thus, FKBP51 is intricately involved in regulation of the most pleiotropic hormone known to biology. In contrast to glucocorticoid receptor, FKBP51 is a positive regulator of the androgen receptor, suggesting that it functions as a reciprocal modulator of glucocorticoid-mediated and androgen-mediated physiology. In this work, we evaluate this hypothesis by examining recent cellular and physiological evidence.
Collapse
Affiliation(s)
- Lance A Stechschulte
- Center for Diabetes and Endocrine Research, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | |
Collapse
|
42
|
Skarra DV, Goudreault M, Choi H, Mullin M, Nesvizhskii AI, Gingras AC, Honkanen RE. Label-free quantitative proteomics and SAINT analysis enable interactome mapping for the human Ser/Thr protein phosphatase 5. Proteomics 2011; 11:1508-16. [PMID: 21360678 DOI: 10.1002/pmic.201000770] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/12/2011] [Accepted: 01/24/2011] [Indexed: 11/07/2022]
Abstract
Affinity purification coupled to mass spectrometry (AP-MS) represents a powerful and proven approach for the analysis of protein-protein interactions. However, the detection of true interactions for proteins that are commonly considered background contaminants is currently a limitation of AP-MS. Here using spectral counts and the new statistical tool, Significance Analysis of INTeractome (SAINT), true interaction between the serine/threonine protein phosphatase 5 (PP5) and a chaperonin, heat shock protein 90 (Hsp90), is discerned. Furthermore, we report and validate a new interaction between PP5 and an Hsp90 adaptor protein, stress-induced phosphoprotein 1 (STIP1; HOP). Mutation of PP5, replacing key basic amino acids (K97A and R101A) in the tetratricopeptide repeat (TPR) region known to be necessary for the interactions with Hsp90, abolished both the known interaction of PP5 with cell division cycle 37 homolog and the novel interaction of PP5 with stress-induced phosphoprotein 1. Taken together, the results presented demonstrate the usefulness of label-free quantitative proteomics and statistical tools to discriminate between noise and true interactions, even for proteins normally considered as background contaminants.
Collapse
Affiliation(s)
- Dana V Skarra
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kutuzov MA, Bennett N, Andreeva AV. Protein phosphatase with EF-hand domains 2 (PPEF2) is a potent negative regulator of apoptosis signal regulating kinase-1 (ASK1). Int J Biochem Cell Biol 2010; 42:1816-22. [PMID: 20674765 DOI: 10.1016/j.biocel.2010.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
The function of protein phosphatases with EF-hand domains (PPEF) in mammals is not known. Large-scale expression profiling experiments suggest that PPEF expression may correlate with stress protective responses, cell survival, growth, proliferation, or neoplastic transformation. Apoptosis signal regulating kinase-1 (ASK1) is a MAP kinase kinase kinase implicated in cancer, cardiovascular and neurodegenerative diseases. ASK1 is activated by oxidative stress and induces pro-apoptotic or inflammatory signalling, largely via sustained activation of MAP kinases p38 and/or JNK. We identify human PPEF2 as a novel interacting partner and a negative regulator of ASK1. In COS-7 or HEK 293A cells treated with H(2)O(2), expression of PPEF2 abrogated sustained activation of p38 and one of the JNK p46 isoforms, and prevented ASK1-dependent caspase-3 cleavage and activation. PPEF2 efficiently suppressed H(2)O(2)-induced activation of ASK1. Overexpessed as well as endogenous ASK1 co-immunoprecipitated with PPEF2. PPEF2 was considerably more potent both as a suppressor of ASK1 activation and as its interacting partner as compared to protein phosphatase 5 (PP5), a well-known negative regulator of ASK1. PPEF2 was found to form complexes with endogenous Hsp70 and to a lesser extent Hsp90, which are also known interacting partners of PP5. These data identify, for the first time, a possible downstream signalling partner of a mammalian PPEF phosphatase, and suggest that, despite structural divergence, PPEF and PP5 phosphatases may share common interacting partners and functions.
Collapse
Affiliation(s)
- Mikhail A Kutuzov
- Department of Pharmacology (MC 868), University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
44
|
FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol Cell Biol 2010; 30:1243-53. [PMID: 20048054 DOI: 10.1128/mcb.01891-08] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prostate cancer progression to the androgen-independent (AI) state involves acquisition of pathways that allow tumor growth under low-androgen conditions. We hypothesized that expression of molecular chaperones that modulate androgen binding to AR might be altered in prostate cancer and contribute to progression to the AI state. Here, we report that the Hsp90 cochaperone FKBP51 is upregulated in LAPC-4 AI tumors grown in castrated mice and describe a molecular mechanism by which FKBP51 regulates AR activity. Using recombinant proteins, we show that FKBP51 stimulates recruitment of the cochaperone p23 to the ATP-bound form of Hsp90, forming an FKBP51-Hsp90-p23 superchaperone complex. In cells, FKBP51 expression promotes superchaperone complex association with AR and increases the number of AR molecules that undergo androgen binding. FKBP51 stimulates androgen-dependent transcription and cell growth, and FKBP51 is part of a positive feedback loop that is regulated by AR and androgen. Finally, depleting FKBP51 levels by short hairpin RNA reduces the transcript levels of genes regulated by AR and androgen. Because the superchaperone complex plays a critical role in determining the ligand-binding competence and transcription function of AR, it provides an attractive target for inhibiting AR activity in prostate cancer cells.
Collapse
|
45
|
Maeda T, Kiguchi N, Kobayashi Y, Ozaki M, Kishioka S. Increment of Activated Serine/Threonine Protein Phosphatase in Brain Membrane Fraction Synchronized with Antinociceptive Effect of Morphine in Mice. Biol Pharm Bull 2010; 33:1011-4. [DOI: 10.1248/bpb.33.1011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Masanobu Ozaki
- Department of Toxicology, Niigata University of Pharmacy and Applied Life Science
| | | |
Collapse
|
46
|
The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol Cell Biol 2009; 30:1285-98. [PMID: 20038533 DOI: 10.1128/mcb.01190-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we demonstrate that the subcellular localization of the mineralocorticoid receptor (MR) is regulated by tetratricopeptide domain (TPR) proteins. The high-molecular-weight immunophilin (IMM) FKBP52 links the MR-hsp90 complex to dynein/dynactin motors favoring the cytoplasmic transport of MR to the nucleus. Replacement of this hsp90-binding IMM by FKBP51 or the TPR peptide favored the cytoplasmic localization of MR. The complete movement machinery, including dynein and tubulin, could be recovered from paclitaxel/GTP-stabilized cytosol and was fully reassembled on stripped MR immune pellets. The whole MR-hsp90-based heterocomplex was transiently recovered in the soluble fraction of the nucleus after 10 min of incubation with aldosterone. Moreover, cross-linked MR-hsp90 heterocomplexes accumulated in the nucleus in a hormone-dependent manner, demonstrating that the heterocomplex can pass undissociated through the nuclear pore. On the other hand, a peptide that comprises the DNA-binding domain of MR impaired the nuclear export of MR, suggesting the involvement of this domain in the process. This study represents the first report describing the entire molecular system that commands MR nucleocytoplasmic trafficking and proposes that the MR-hsp90-TPR protein heterocomplex is dissociated in the nucleus rather than in the cytoplasm.
Collapse
|
47
|
Echeverria PC, Picard D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:641-9. [PMID: 20006655 DOI: 10.1016/j.bbamcr.2009.11.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
Steroid hormone receptors (SHRs) are notorious intracellular travellers, transiting among different cellular compartments as they mature, are subjected to regulation and exert their biological functions. Understanding the processes governing the intracellular traffic of SHRs is important, since their unbalanced or erroneous localization could lead to the development of diseases. In this review, we not only explore the functions of the heat-shock protein 90 (Hsp90) molecular chaperone machine for the intracellular transport of SHRs, but also for the regulation of their nuclear mobility, for their recycling and for the regulation of their transcriptional output.
Collapse
Affiliation(s)
- Pablo C Echeverria
- Département de Biologie Cellulaire, Université de Genève, 1211 Genève 4, Switzerland
| | | |
Collapse
|
48
|
The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy. Proc Natl Acad Sci U S A 2009. [PMID: 19965370 DOI: 10.1073/pnas.0908151106.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heat shock protein 90-alpha (Hsp90alpha) is an intracellular molecular chaperone. However, it can also be secreted with the underlying regulatory mechanism remaining far from clear. Here we show that the secreted Hsp90alpha is a C-terminal truncated form and its secretion is regulated by the C-terminal EEVD motif via interacting with proteins containing tetratricopeptide repeat domains. We also demonstrate that secretion of Hsp90alpha is determined by the phosphorylation status at residue Thr-90, regulated by protein kinase A and protein phosphatase 5. We further demonstrate that the secretion of Hsp90alpha is a prerequisite for its proinvasiveness function and blocking the secreted Hsp90alpha results in significant inhibition of tumor metastasis. Meanwhile, the level of plasma Hsp90alpha is positively correlated with tumor malignancy in clinical cancer patients. In sum, our results reveal the regulatory mechanism of Hsp90alpha secretion, and its function in tumor invasiveness, indicating it can be a promising diagnostic marker for tumor malignancy in clinical application.
Collapse
|
49
|
Chatterjee A, Wang L, Armstrong DL, Rossie S. Activated Rac1 GTPase translocates protein phosphatase 5 to the cell membrane and stimulates phosphatase activity in vitro. J Biol Chem 2009; 285:3872-3882. [PMID: 19948726 DOI: 10.1074/jbc.m109.088427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Physiological studies of ion channel regulation have implicated the Ser/Thr protein phosphatase 5 (PP5) as an effector of Rac1 GTPase signaling, but direct biochemical evidence for PP5 regulation by Rac1 is lacking. In this study we used immunoprecipitation, in vitro binding, cellular fractionation, and immunofluorescence techniques to show that the tetratricopeptide repeat domain of PP5 interacts specifically and directly with active Rac1. Consequently, activation of Rac1 promoted PP5 translocation to the plasma membrane in intact cells and stimulated PP5 phosphatase activity in vitro. In contrast, neither constitutively active RhoA-V14 nor dominant negative Rac1N17, which preferentially binds GDP and retains an inactive conformation, bound PP5 or stimulated its activity. In addition, Rac1N17 and Rac1(PBRM), a mutant lacking the C-terminal polybasic region required for Rac1 association with the membrane, both failed to cause membrane translocation of PP5. Mutation of predicted contact residues in the PP5 tetratricopeptide repeat domain or within Rac1 also disrupted co-immunoprecipitation of Rac1-PP5 complexes and membrane translocation of PP5. Specific binding of PP5 to activated Rac1 provides a direct mechanism by which PP5 can be stimulated and recruited to participate in Rac1-mediated signaling pathways.
Collapse
Affiliation(s)
- Anindya Chatterjee
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and
| | - Ling Wang
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and
| | - David L Armstrong
- the Environmental Biology Program, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Sandra Rossie
- From the Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and.
| |
Collapse
|
50
|
The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy. Proc Natl Acad Sci U S A 2009; 106:21288-93. [PMID: 19965370 DOI: 10.1073/pnas.0908151106] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heat shock protein 90-alpha (Hsp90alpha) is an intracellular molecular chaperone. However, it can also be secreted with the underlying regulatory mechanism remaining far from clear. Here we show that the secreted Hsp90alpha is a C-terminal truncated form and its secretion is regulated by the C-terminal EEVD motif via interacting with proteins containing tetratricopeptide repeat domains. We also demonstrate that secretion of Hsp90alpha is determined by the phosphorylation status at residue Thr-90, regulated by protein kinase A and protein phosphatase 5. We further demonstrate that the secretion of Hsp90alpha is a prerequisite for its proinvasiveness function and blocking the secreted Hsp90alpha results in significant inhibition of tumor metastasis. Meanwhile, the level of plasma Hsp90alpha is positively correlated with tumor malignancy in clinical cancer patients. In sum, our results reveal the regulatory mechanism of Hsp90alpha secretion, and its function in tumor invasiveness, indicating it can be a promising diagnostic marker for tumor malignancy in clinical application.
Collapse
|