1
|
Soto P, Thalhuber DT, Luceri F, Janos J, Borgman MR, Greenwood NM, Acosta S, Stoffel H. Protein-lipid interactions and protein anchoring modulate the modes of association of the globular domain of the Prion protein and Doppel protein to model membrane patches. FRONTIERS IN BIOINFORMATICS 2024; 3:1321287. [PMID: 38250434 PMCID: PMC10796588 DOI: 10.3389/fbinf.2023.1321287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
The Prion protein is the molecular hallmark of the incurable prion diseases affecting mammals, including humans. The protein-only hypothesis states that the misfolding, accumulation, and deposition of the Prion protein play a critical role in toxicity. The cellular Prion protein (PrPC) anchors to the extracellular leaflet of the plasma membrane and prefers cholesterol- and sphingomyelin-rich membrane domains. Conformational Prion protein conversion into the pathological isoform happens on the cell surface. In vitro and in vivo experiments indicate that Prion protein misfolding, aggregation, and toxicity are sensitive to the lipid composition of plasma membranes and vesicles. A picture of the underlying biophysical driving forces that explain the effect of Prion protein - lipid interactions in physiological conditions is needed to develop a structural model of Prion protein conformational conversion. To this end, we use molecular dynamics simulations that mimic the interactions between the globular domain of PrPC anchored to model membrane patches. In addition, we also simulate the Doppel protein anchored to such membrane patches. The Doppel protein is the closest in the phylogenetic tree to PrPC, localizes in an extracellular milieu similar to that of PrPC, and exhibits a similar topology to PrPC even if the amino acid sequence is only 25% identical. Our simulations show that specific protein-lipid interactions and conformational constraints imposed by GPI anchoring together favor specific binding sites in globular PrPC but not in Doppel. Interestingly, the binding sites we found in PrPC correspond to prion protein loops, which are critical in aggregation and prion disease transmission barrier (β2-α2 loop) and in initial spontaneous misfolding (α2-α3 loop). We also found that the membrane re-arranges locally to accommodate protein residues inserted in the membrane surface as a response to protein binding.
Collapse
Affiliation(s)
- Patricia Soto
- Department of Physics, Creighton University, Omaha, NE, United States
| | | | - Frank Luceri
- Omaha Central High School, Omaha, NE, United States
| | - Jamie Janos
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, United States
| | - Mason R. Borgman
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, United States
| | - Noah M. Greenwood
- Department of Physics, Creighton University, Omaha, NE, United States
| | - Sofia Acosta
- Omaha North High School, Omaha, NE, United States
| | | |
Collapse
|
2
|
Howell-Bray T, Byrne L. The effect of prions on cellular metabolism: The metabolic impact of the [RNQ +] prion and potential role of native Rnq1p. RESEARCH SQUARE 2023:rs.3.rs-2511186. [PMID: 36909567 PMCID: PMC10002837 DOI: 10.21203/rs.3.rs-2511186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Within the field of amyloid and prion disease there is a need for a more comprehensive understanding of the fundamentals of disease biology. In order to facilitate the progression treatment and underpin comprehension of toxicity, fundamental understanding of the disruption to normal cellular biochemistry and trafficking is needed. Here, by removing the complex biochemistry of the brain, we have utilised known prion forming strains of Saccharomyces cerevisiae carrying different conformational variants of the Rnq1p to obtain Liquid Chromatography-Mass Spectrometry (LC-MS) metabolic profiles and identify key perturbations of prion presence. These studies reveal that prion containing [RNQ+] cells display a significant reduction in amino acid biosynthesis and distinct perturbations in sphingolipid metabolism, with significant downregulation in metabolites within these pathways. Moreover, that native Rnq1p appears to downregulate ubiquinone biosynthesis pathways within cells, suggesting that Rnq1p may play a lipid/mevalonate-based cytoprotective role as a regulator of ubiquinone production. These findings contribute to the understanding of how prion proteins interact in vivo in both their prion and non-prion confirmations and indicate potential targets for the mitigation of these effects. We demonstrate specific sphingolipid centred metabolic disruptions due to prion presence and give insight into a potential cytoprotective role of the native Rnq1 protein. This provides evidence of metabolic similarities between yeast and mammalian cells as a consequence of prion presence and establishes the application of metabolomics as a tool to investigate prion/amyloid-based phenomena.
Collapse
|
3
|
Alves Conceição C, Assis de Lemos G, Barros CA, Vieira TCRG. What is the role of lipids in prion conversion and disease? Front Mol Neurosci 2023; 15:1032541. [PMID: 36704327 PMCID: PMC9871914 DOI: 10.3389/fnmol.2022.1032541] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The molecular cause of transmissible spongiform encephalopathies (TSEs) involves the conversion of the cellular prion protein (PrPC) into its pathogenic form, called prion scrapie (PrPSc), which is prone to the formation of amorphous and amyloid aggregates found in TSE patients. Although the mechanisms of conversion of PrPC into PrPSc are not entirely understood, two key points are currently accepted: (i) PrPSc acts as a seed for the recruitment of native PrPC, inducing the latter's conversion to PrPSc; and (ii) other biomolecules, such as DNA, RNA, or lipids, can act as cofactors, mediating the conversion from PrPC to PrPSc. Interestingly, PrPC is anchored by a glycosylphosphatidylinositol molecule in the outer cell membrane. Therefore, interactions with lipid membranes or alterations in the membranes themselves have been widely investigated as possible factors for conversion. Alone or in combination with RNA molecules, lipids can induce the formation of PrP in vitro-produced aggregates capable of infecting animal models. Here, we discuss the role of lipids in prion conversion and infectivity, highlighting the structural and cytotoxic aspects of lipid-prion interactions. Strikingly, disorders like Alzheimer's and Parkinson's disease also seem to be caused by changes in protein structure and share pathogenic mechanisms with TSEs. Thus, we posit that comprehending the process of PrP conversion is relevant to understanding critical events involved in a variety of neurodegenerative disorders and will contribute to developing future therapeutic strategies for these devastating conditions.
Collapse
Affiliation(s)
- Cyntia Alves Conceição
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Assis de Lemos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Augusto Barros
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Tuane C. R. G. Vieira, ✉
| |
Collapse
|
4
|
van den Brand AD, Bajard L, Steffensen IL, Brantsæter AL, Dirven HAAM, Louisse J, Peijnenburg A, Ndaw S, Mantovani A, De Santis B, Mengelers MJB. Providing Biological Plausibility for Exposure-Health Relationships for the Mycotoxins Deoxynivalenol (DON) and Fumonisin B1 (FB1) in Humans Using the AOP Framework. Toxins (Basel) 2022; 14:279. [PMID: 35448888 PMCID: PMC9030459 DOI: 10.3390/toxins14040279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Humans are chronically exposed to the mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1), as indicated by their widespread presence in foods and occasional exposure in the workplace. This exposure is confirmed by human biomonitoring (HBM) studies on (metabolites of) these mycotoxins in human matrices. We evaluated the exposure-health relationship of the mycotoxins in humans by reviewing the available literature. Since human studies did not allow the identification of unequivocal chronic health effects upon exposure to DON and FB1, the adverse outcome pathway (AOP) framework was used to structure additional mechanistic evidence from in vitro and animal studies on the identified adverse effects. In addition to a preliminary AOP for DON resulting in the adverse outcome (AO) 'reduced body weight gain', we developed a more elaborated AOP for FB1, from the molecular initiating event (MIE) 'inhibition of ceramide synthases' leading to the AO 'neural tube defects'. The mechanistic evidence from AOPs can be used to support the limited evidence from human studies, to focus FB1- and DON-related research in humans to identify related early biomarkers of effect. In order to establish additional human exposure-health relationships in the future, recommendations are given to maximize the information that can be obtained from HBM.
Collapse
Affiliation(s)
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic;
| | - Inger-Lise Steffensen
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Anne Lise Brantsæter
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Hubert A. A. M. Dirven
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), 6708 WB Wageningen, The Netherlands; (J.L.); (A.P.)
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), 6708 WB Wageningen, The Netherlands; (J.L.); (A.P.)
| | - Sophie Ndaw
- Institut National de Recherche et de Sécurité (INRS), 54500 Vandoeuvre-Lés-Nancy, France;
| | - Alberto Mantovani
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (A.M.); (B.D.S.)
| | - Barbara De Santis
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (A.M.); (B.D.S.)
| | - Marcel J. B. Mengelers
- Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| |
Collapse
|
5
|
Activities of curcumin-related compounds in two cell lines persistently infected with different prion strains. Biochim Biophys Acta Gen Subj 2022; 1866:130094. [DOI: 10.1016/j.bbagen.2022.130094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
6
|
do Amaral MJ, Freire MHO, Almeida MS, Pinheiro AS, Cordeiro Y. Phase separation of the mammalian prion protein: physiological and pathological perspectives. J Neurochem 2022. [PMID: 35149997 DOI: 10.1111/jnc.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Abnormal phase transitions have been implicated in the occurrence of proteinopathies. Disordered proteins with nucleic acid binding ability drive the formation of reversible micron-sized condensates capable of controlling nucleic acid processing/transport. This mechanism, achieved via liquid-liquid phase separation (LLPS), underlies the formation of long-studied membraneless organelles (e.g., nucleolus) and various transient condensates formed by driver proteins. The prion protein (PrP) is not a classical nucleic acid-binding protein. However, it binds nucleic acids with high affinity, undergoes nucleocytoplasmic shuttling, contains a long intrinsically disordered region rich in glycines and evenly spaced aromatic residues, among other biochemical/biophysical properties of bona fide drivers of phase transitions. Because of this, our group and others have characterized LLPS of recombinant PrP. In vitro phase separation of PrP is modulated by nucleic acid aptamers, and, depending on the aptamer conformation, the liquid droplets evolve to solid-like species. Herein we discuss recent studies and previous evidence supporting PrP phase transitions. We focus on the central role of LLPS related to PrP physiology and pathology, with a special emphasis on the interaction of PrP with different ligands, such as proteins and nucleic acids, which can play a role in prion disease pathogenesis. Finally, we comment on therapeutic strategies directed at the nonfunctional phase separation that could potentially tackle prion diseases or other protein misfolding disorders.
Collapse
Affiliation(s)
- Mariana J do Amaral
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Rio de Janeiro, RJ, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Large-scale lipidomic profiling identifies novel potential biomarkers for prion diseases and highlights lipid raft-related pathways. Vet Res 2021; 52:105. [PMID: 34289911 PMCID: PMC8296529 DOI: 10.1186/s13567-021-00975-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/30/2021] [Indexed: 02/03/2023] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies induced by the abnormally-folded prion protein (PrPSc), which is derived from the normal prion protein (PrPC). Previous studies have reported that lipid rafts play a pivotal role in the conversion of PrPC into PrPSc, and several therapeutic strategies targeting lipids have led to prolonged survival times in prion diseases. In addition, phosphatidylethanolamine, a glycerophospholipid member, accelerated prion disease progression. Although several studies have shown that prion diseases are significantly associated with lipids, lipidomic analyses of prion diseases have not been reported thus far. We intraperitoneally injected phosphate-buffered saline (PBS) or ME7 mouse prions into mice and sacrificed them at different time points (3 and 7 months) post-injection. To detect PrPSc in the mouse brain, we carried out western blotting analysis of the left hemisphere of the brain. To identify potential novel lipid biomarkers, we performed lipid extraction on the right hemisphere of the brain and liquid chromatography mass spectrometry (LC/MS) to analyze the lipidomic profiling between non-infected mice and prion-infected mice. Finally, we analyzed the altered lipid-related pathways by a lipid pathway enrichment analysis (LIPEA). We identified a total of 43 and 75 novel potential biomarkers at 3 and 7 months in prion-infected mice compared to non-infected mice, respectively. Among these novel potential biomarkers, approximately 75% of total lipids are glycerophospholipids. In addition, altered lipids between the non-infected and prion-infected mice were related to sphingolipid, glycerophospholipid and glycosylphosphatidylinositol (GPI)-anchor-related pathways. In the present study, we found novel potential biomarkers and therapeutic targets of prion disease. To the best of our knowledge, this study reports the first large-scale lipidomic profiling in prion diseases.
Collapse
|
8
|
Overduin M, Wille H, Westaway D. Multisite interactions of prions with membranes and native nanodiscs. Chem Phys Lipids 2021; 236:105063. [PMID: 33600804 DOI: 10.1016/j.chemphyslip.2021.105063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023]
Abstract
Although prions are known as protein-only infectious particles, they exhibit lipid specificities, cofactor dependencies and membrane-dependent activities. Such membrane interactions play key roles in how prions are processed, presented and regulated, and hence have significant functional consequences. The expansive literature related to prion protein interactions with lipids and native nanodiscs is discussed, and provides a unique opportunity to re-evaluate the molecular composition and mechanisms of its infectious and cellular states. A family of crystal and solution structures of prions are analyzed here for the first time using the membrane optimal docking area (MODA) program, revealling the presence of structured binding elements that could mediate specific lipid recognition. A set of motifs centerred around W99, L125, Y169 and Y226 are consistently predicted as being membrane interactive and form an exposed surface which includes α helical, β strand and loop elements involving the prion protein (PrP) structural domain, while the scrapie form is radically different and doubles the size of the membrane interactive site into an extensible surface. These motifs are highly conserved throughout mammalian evolution, suggesting that prions have long been intrinsically attached to membranes at central and N- and C-terminal points, providing several opportunities for stable and specific bilayer interactions as well as multiple complexed orientations. Resistance or susceptibility to prion disease correlates with increased or decreased membrane binding propensity by mutant forms, respectively, indicating a protective role by lipids. The various prion states found in vivo are increasingly resolvable using native nanodiscs formed by styrene maleic acid (SMA) and stilbene maleic acid (STMA) copolymers rather than classical detergents, allowing the endogenous states to be tackled. These copolymers spontaneously fragment intact membranes into water-soluble discs holding a section of native bilayer, and can accommodate prion multimers and mini-fibrils. Such nanodiscs have also proven useful for understanding how β amyloid and α synuclein proteins contribute to Alzheimer's and Parkinson's diseases, providing further biomedical applications. Structural and functional insights of such proteins in styrene maleic acid lipid particles (SMALPs) can be resolved at high resolution by methods including cryo-electron microscopy (cEM), motivating continued progress in polymer design to resolve biological and pathological mechanisms.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Implications of gut microbiota dysbiosis and metabolic changes in prion disease. Neurobiol Dis 2019; 135:104704. [PMID: 31837420 DOI: 10.1016/j.nbd.2019.104704] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023] Open
Abstract
Evidence of the gut microbiota influencing neurodegenerative diseases has been reported for several neural diseases. However, there is little insight regarding the relationship between the gut microbiota and prion disease. Here, using fecal samples of 12 prion-infected mice and 25 healthy controls, we analyzed the structure of the gut microbiota and metabolic changes by 16S rRNA sequencing and LC-MS-based metabolomics respectively as multi-omic analyses. Additionally, SCFAs and common amino acids were detected by GC-MS and UPLC respectively. Enteric changes induced by prion disease affected both structure and abundances of the gut microbiota. The gut microbiota of infected mice displayed greater numbers of Proteobacteria and less Saccharibacteria at the phylum level and more Lactobacillaceae and Helicobacteraceae and less Prevotellaceae and Ruminococcaceae at the family level. A total of 145 fecal metabolites were found to be significantly different in prion infection, and most (114) of these were lipid metabolites. Using KEGG pathway enrichment analysis, we found that 3 phosphatidylcholine (PC) compounds significantly decreased and 4 hydrophobic bile acids significantly increased. Decreases of 8 types of short-chain acids (SCFAs) and increases of Cys and Tyr and decreases of His, Trp, and Arg were observed in prion infection. Correlation analysis indicated that the gut microbiota changes observed in our study may have been the shared outcome of prion disease. These findings suggest that prion disease can cause significant shifts in the gut microbiota. Certain bacterial taxa can then respond to the resulting change to the enteric environment by causing dramatic shifts in metabolite levels. Our data highlight the health impact of the gut microbiota and related metabolites in prion disease.
Collapse
|
10
|
Vanni S, Colini Baldeschi A, Zattoni M, Legname G. Brain aging: A Ianus-faced player between health and neurodegeneration. J Neurosci Res 2019; 98:299-311. [PMID: 30632202 DOI: 10.1002/jnr.24379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022]
Abstract
Neurodegenerative diseases are incurable debilitating disorders characterized by structural and functional neuronal loss. Approximately 30 million people are affected worldwide, and this number is predicted to reach more than 150 million by 2050. Neurodegenerative disorders include Alzheimer's, Parkinson's, and prion diseases among others. These disorders are characterized by the accumulation of aggregating proteins forming amyloid, responsible for the disease-associated pathological lesions. The aggregation of amyloidogenic proteins can result either in gaining of toxic functions, derived from the damage provoked by these deposits in affected tissue, or in a loss of functions, due to the sequestration and the consequent inability of the aggregating protein to ensure its physiological role. While it is widely accepted that aging represents the main risk factor for neurodegeneration, there is still no clear cut-off line between the two conditions. Indeed, many of the pathways that are commonly altered in neurodegeneration-misfolded protein accumulation, chronic inflammation, mitochondrial dysfunction, impaired iron homeostasis, epigenetic modifications-have been often correlated also with healthy aging. This overlap could be explained by the fact that the continuous accumulation of cellular damages, together with a progressive decline in metabolic efficiency during aging, makes the neurons more vulnerable to toxic injuries. When a given threshold is exceeded, all these alterations might give rise to pathological phenotypes that ultimately lead to neurodegeneration.
Collapse
Affiliation(s)
- Silvia Vanni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Arianna Colini Baldeschi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| |
Collapse
|
11
|
Kobayashi A, Qi Z, Shimazaki T, Munesue Y, Miyamoto T, Isoda N, Sawa H, Aoshima K, Kimura T, Mohri S, Kitamoto T, Yamashita T, Miyoshi I. Ganglioside Synthase Knockout Reduces Prion Disease Incubation Time in Mouse Models. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:677-686. [PMID: 30553837 DOI: 10.1016/j.ajpath.2018.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 11/18/2022]
Abstract
Localization of the abnormal and normal isoforms of prion proteins to detergent-resistant membrane microdomains, lipid rafts, is important for the conformational conversion. Lipid rafts are enriched in sialic acid-containing glycosphingolipids (namely, gangliosides). Alteration in the ganglioside composition of lipid rafts can affect the localization of lipid raft-associated proteins. To investigate the role of gangliosides in the pathogenesis of prion diseases, we performed intracerebral transmission study of a scrapie prion strain Chandler and a Gerstmann-Sträussler-Scheinker syndrome prion strain Fukuoka-1 using various knockout mouse strains ablated with ganglioside synthase gene (ie, GD2/GM2 synthase, GD3 synthase, or GM3 synthase). After challenge with the Chandler strain, GD2/GM2 synthase knockout mice showed 20% reduction of incubation time, reduced prion protein deposition in the brain with attenuated glial reactions, and reduced localization of prion proteins to lipid rafts. These results raise the possibility that the gangliosides may have an important role in prion disease pathogenesis by affecting the localization of prion proteins to lipid rafts.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Sapporo, Japan.
| | - Zechen Qi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Sapporo, Japan
| | - Taishi Shimazaki
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Sapporo, Japan
| | - Yoshiko Munesue
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Sapporo, Japan
| | - Tomomi Miyamoto
- Center for Experimental Animal Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Norikazu Isoda
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education, Sapporo, Japan; Unit of Risk Analysis and Management, Sapporo, Japan
| | - Hirofumi Sawa
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education, Sapporo, Japan; Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Keisuke Aoshima
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Sapporo, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Sapporo, Japan
| | - Shirou Mohri
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Ichiro Miyoshi
- Department of Laboratory Animal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
13
|
Roitenberg N, Bejerano-Sagie M, Boocholez H, Moll L, Marques FC, Golodetzki L, Nevo Y, Elami T, Cohen E. Modulation of caveolae by insulin/IGF-1 signaling regulates aging of Caenorhabditis elegans. EMBO Rep 2018; 19:embr.201745673. [PMID: 29945933 DOI: 10.15252/embr.201745673] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 11/09/2022] Open
Abstract
Reducing insulin/IGF-1 signaling (IIS) extends lifespan, promotes protein homeostasis (proteostasis), and elevates stress resistance of worms, flies, and mammals. How these functions are orchestrated across the organism is only partially understood. Here, we report that in the nematode Caenorhabditis elegans, the IIS positively regulates the expression of caveolin-1 (cav-1), a gene which is primarily expressed in neurons of the adult worm and underlies the formation of caveolae, a subtype of lipid microdomains that serve as platforms for signaling complexes. Accordingly, IIS reduction lowers cav-1 expression and lessens the quantity of neuronal caveolae. Reduced cav-1 expression extends lifespan and mitigates toxic protein aggregation by modulating the expression of aging-regulating and signaling-promoting genes. Our findings define caveolae as aging-governing signaling centers and underscore the potential for cav-1 as a novel therapeutic target for the promotion of healthy aging.
Collapse
Affiliation(s)
- Noa Roitenberg
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Michal Bejerano-Sagie
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Hana Boocholez
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Lorna Moll
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Filipa Carvalhal Marques
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Ludmila Golodetzki
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Yuval Nevo
- Computation Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tayir Elami
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| |
Collapse
|
14
|
Ning L, Mu Y. Aggregation of PrP106-126 on surfaces of neutral and negatively charged membranes studied by molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1936-1948. [PMID: 29550288 DOI: 10.1016/j.bbamem.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 01/28/2023]
Abstract
Prion diseases are neurodegenerative disorders characterized by the aggregation of an abnormal form of prion protein. The interaction of prion protein and cellular membrane is crucial to elucidate the occurrence and development of prion diseases. Its fragment, residues 106-126, has been proven to maintain the pathological properties of misfolded prion and was used as a model peptide. In this study, explicit solvent molecular dynamics (MD) simulations were carried out to investigate the adsorption, folding and aggregation of PrP106-126 with different sizes (2-peptides, 4-peptides and 6-peptides) on the surface of both pure neutral POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and negatively charged POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) (3:1) lipids. MD simulation results show that PrP106-126 display strong affinity with POPC/POPG but does not interact with pure POPC. The positively charged and polar residues participating hydrogen bonding with membrane promote the adsorption of PrP106-126. The presence of POPC and POPC/POPG exert limited influence on the secondary structures of PrP106-126 and random coil structures are predominant in all simulation systems. Upon the adsorption on the POPC/POPG surface, the aggregation states of PrP106-126 have been changed and more small oligomers were observed. This work provides insights into the interactions of PrP106-126 and membranes with different compositions in atomic level, which expand our understanding the role membrane plays in the development of prion diseases. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Lulu Ning
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
15
|
Fehlinger A, Wolf H, Hossinger A, Duernberger Y, Pleschka C, Riemschoss K, Liu S, Bester R, Paulsen L, Priola SA, Groschup MH, Schätzl HM, Vorberg IM. Prion strains depend on different endocytic routes for productive infection. Sci Rep 2017; 7:6923. [PMID: 28761068 PMCID: PMC5537368 DOI: 10.1038/s41598-017-07260-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Prions are unconventional agents composed of misfolded prion protein that cause fatal neurodegenerative diseases in mammals. Prion strains induce specific neuropathological changes in selected brain areas. The mechanism of strain-specific cell tropism is unknown. We hypothesised that prion strains rely on different endocytic routes to invade and replicate within their target cells. Using prion permissive cells, we determined how impairment of endocytosis affects productive infection by prion strains 22L and RML. We demonstrate that early and late stages of prion infection are differentially sensitive to perturbation of clathrin- and caveolin-mediated endocytosis. Manipulation of canonical endocytic pathways only slightly influenced prion uptake. However, blocking the same routes had drastic strain-specific consequences on the establishment of infection. Our data argue that prion strains use different endocytic pathways for infection and suggest that cell type-dependent differences in prion uptake could contribute to host cell tropism.
Collapse
Affiliation(s)
- Andrea Fehlinger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Hanna Wolf
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - André Hossinger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Yvonne Duernberger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Catharina Pleschka
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Katrin Riemschoss
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Shu Liu
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Romina Bester
- Institut für Virologie, Technische Universität München, Trogerstr. 30, 81675, München, Germany
| | - Lydia Paulsen
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493, Greifswald-Insel Riems, Germany
| | - Hermann M Schätzl
- Dept. of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Ina M Vorberg
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany. .,Department of Neurology, Rheinische Friedrich-Wilhelms-Universität, 53127, Bonn, Germany.
| |
Collapse
|
16
|
Pan J, Sahoo PK, Dalzini A, Hayati Z, Aryal CM, Teng P, Cai J, Gutierrez HR, Song L. Membrane Disruption Mechanism of a Prion Peptide (106-126) Investigated by Atomic Force Microscopy, Raman and Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2017; 121:5058-5071. [PMID: 28459565 PMCID: PMC5770145 DOI: 10.1021/acs.jpcb.7b02772] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with the membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. A force spectroscopy experiment shows that PrP106-126 reduces Young's modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid atomic vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intrachain conformation, while the interchain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the interchain interaction, while the intrachain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Prasana K. Sahoo
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Annalisa Dalzini
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Zahra Hayati
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Chinta M. Aryal
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Peng Teng
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
17
|
Grigoletto J, Pukaß K, Gamliel A, Davidi D, Katz-Brull R, Richter-Landsberg C, Sharon R. Higher levels of myelin phospholipids in brains of neuronal α-Synuclein transgenic mice precede myelin loss. Acta Neuropathol Commun 2017; 5:37. [PMID: 28482862 PMCID: PMC5421332 DOI: 10.1186/s40478-017-0439-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/26/2017] [Indexed: 01/22/2023] Open
Abstract
α-Synuclein is a protein involved in the pathogenesis of synucleinopathies, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). We investigated the role of neuronal α-Syn in myelin composition and abnormalities. The phospholipid content of purified myelin was determined by 31P NMR in two mouse lines modeling PD, PrP-A53T α-Syn and Thy-1 wt-α-Syn. Significantly higher levels of phospholipids were detected in myelin purified from brains of these α-Syn transgenic mouse models than in control mice. Nevertheless, myelin ultrastructure appeared intact. To further investigate the effect of α-Syn on myelin abnormalities, we systematically analyzed the striatum, a brain region associated with neurodegeneration in PD. An age and disease-dependent loss of myelin basic protein (MBP) signal was detected by immunohistochemistry in striatal striosomes (patches). The age-dependent loss of MBP signal was associated with lower P25α levels in oligodendrocytes. In addition, we found that α-Syn inhibited oligodendrocyte maturation and the formation of membranous sheets in vitro. Based on these results we concluded that neuronal α-Syn is involved in the regulation and/or maintenance of myelin phospholipid. However, axonal hypomyelination in the PD models is evident only in progressive stages of the disease and associated with α-Syn toxicity.
Collapse
|
18
|
Endogenous Brain Lipids Inhibit Prion Amyloid Formation In Vitro. J Virol 2017; 91:JVI.02162-16. [PMID: 28202758 DOI: 10.1128/jvi.02162-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 01/22/2023] Open
Abstract
The normal cellular prion protein (PrPC) resides in detergent-resistant outer membrane lipid rafts in which conversion to the pathogenic misfolded form is believed to occur. Once misfolding occurs, the pathogenic isoform polymerizes into highly stable amyloid fibrils. In vitro assays have demonstrated an intimate association between prion conversion and lipids, specifically phosphatidylethanolamine, which is a critical cofactor in the formation of synthetic infectious prions. In the current work, we demonstrate an alternative inhibitory function of lipids in the prion conversion process as assessed in vitro by real-time quaking-induced conversion (RT-QuIC). Using an alcohol-based extraction technique, we removed the lipid content from chronic wasting disease (CWD)-infected white-tailed deer brain homogenates and found that lipid extraction enabled RT-QuIC detection of CWD prions in a 2-log10-greater concentration of brain sample. Conversely, addition of brain-derived lipid extracts to CWD prion brain or lymph node samples inhibited amyloid formation in a dose-dependent manner. Subsequent lipid analysis demonstrated that this inhibitory function was restricted to the polar lipid fraction in brain. We further investigated three phospholipids commonly found in lipid membranes, phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol, and found all three similarly inhibited RT-QuIC. These results demonstrating polar-lipid, and specifically phospholipid, inhibition of prion-seeded amyloid formation highlight the diverse roles lipid constituents may play in the prion conversion process.IMPORTANCE Prion conversion is likely influenced by lipid interactions, given the location of normal prion protein (PrPC) in lipid rafts and lipid cofactors generating infectious prions in in vitro models. Here, we use real-time quaking-induced conversion (RT-QuIC) to demonstrate that endogenous brain polar lipids can inhibit prion-seeded amyloid formation, suggesting that prion conversion is guided by an environment of proconversion and anticonversion lipids. These experiments also highlight the applicability of RT-QuIC to identify potential therapeutic inhibitors of prion conversion.
Collapse
|
19
|
Vadakkan KI. Neurodegenerative disorders share common features of "loss of function" states of a proposed mechanism of nervous system functions. Biomed Pharmacother 2016; 83:412-430. [PMID: 27424323 DOI: 10.1016/j.biopha.2016.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are highly heterogeneous for the locations affected and the nature of the aggregated proteins. Nearly 80% of the neurodegenerative disorders occur sporadically, indicating that certain factors must combine to initiate the degenerative changes. The contiguous extension of degenerative changes from cell to cell, the association with viral fusion proteins, loss of dendritic spines (postsynaptic terminals), and the eventual degeneration of cells indicate the presence of a unique mechanism for inter-cellular spread of pathology. It is not known whether the "loss of function" states of the still unknown normal nervous system operations can lead to neurodegenerative disorders. Here, the possible loss of function states of a proposed normal nervous system function are examined. A reversible inter-postsynaptic functional LINK (IPL) mechanism, consisting of transient inter-postsynaptic membrane (IPM) hydration exclusion and partial to complete IPM hemifusions, was proposed as a critical step necessary for the binding process and the induction of internal sensations of higher brain functions. When various findings from different neurodegenerative disorders are systematically organized and examined, disease features match the effects of loss of function states of different IPLs. Changes in membrane composition, enlargement of dendritic spines by dopamine and viral fusion proteins are capable of altering the IPLs to form IPM fusion. The latter can lead to the observed lateral spread of pathology, inter-neuronal cytoplasmic content mixing and abnormal protein aggregation. Since both the normal mechanism of reversible IPM hydration exclusion and the pathological process of transient IPM fusion can evade detection, testing their occurrence may provide preventive and therapeutic opportunities for these disorders.
Collapse
|
20
|
Trotter J, Klein C, Krämer EM. GPI-Anchored Proteins and Glycosphingolipid-Rich Rafts: Platforms for Adhesion and Signaling. Neuroscientist 2016. [DOI: 10.1177/107385840000600410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins in mammalian cells play a role in adhesion and signaling. They are sorted in the trans-Golgi network into glycosphingolipid- and cholesterol-rich microdomains termed rafts. Such rafts can be isolated from many cell types including epithelial cells, neural cells, and lymphocytes. In polarized cells, the rafts segregate in distinct regions of the cell. The rafts constitute platforms for signal transduction via raft-associated srcfamily tyrosine kinases. This review compares the sorting, distribution, and signaling of GPI-anchored proteins and rafts in epithelial cells, lymphocytes, and neural cells. A possible involvement of rafts in distinct diseases is also addressed.
Collapse
Affiliation(s)
- Jacqueline Trotter
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany,
| | - Corinna Klein
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Eva-Maria Krämer
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Thackray AM, Bujdoso R. Elevated PrPC Expression Predisposes to Increased HSV-1 Pathogenicity. ACTA ACUST UNITED AC 2016; 17:41-52. [PMID: 16542005 DOI: 10.1177/095632020601700106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PrPC is a ubiquitously expressed glycophos-phatidylinositol-linked cell-surface glycoprotein found primarily in neural tissue. Although its normal function has not been established, there is evidence suggesting that PrPC is involved in cell signalling and cellular homeostasis. This suggests that variation in neuronal expression levels of this protein contributes towards pathogenicity induced by neurotropic agents. We have investigated the pathological response to infection with herpes simplex virus type-1 (HSV-1) in strains of mice that express different levels of PrPC. Prnp−/− mice fail to express PrPC due to an interruption in the open reading frame of the Prnp gene, whilst tg19 and tga20 mice express approximately 5 and 10 times more PrPC protein, respectively, than wild-type animals. Mice that express normal or increased levels of PrPC protein were more susceptible to acute HSV-1 infection than Prnp−/− mice. Following ear pinna inoculation with HSV-1 SC16, the order of susceptibility was tga20>tg19>wild-type> Prnp−/−. This trend was reversed when latent virus was assessed. Prnp−/− mice expressed significantly higher levels of latency-associated transcript-positive neurons in various tissues when compared with wild-type, tg19 and tga20 mice. Collectively, our data show that acute HSV-1 replication proceeds more efficiently in neuronal tissue that expresses PrPC protein and lends support to the view that this protein is involved in regulation of neurotropic viral pathogenesis. This suggests that interference of PrPC expression, or possible biochemical pathways associated with its function, may serve as an effective means of limiting the pathogenesis of acute HSV-1 infection.
Collapse
Affiliation(s)
- Alana M Thackray
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 OES, UK
| | | |
Collapse
|
22
|
Scano P, Rosa A, Incani A, Maestrale C, Santucciu C, Perra D, Vascellari S, Pani A, Ligios C. (1)H NMR brain metabonomics of scrapie exposed sheep. MOLECULAR BIOSYSTEMS 2016; 11:2008-16. [PMID: 25959287 DOI: 10.1039/c5mb00138b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
While neurochemical metabolite modifications, determined by different techniques, have been diffusely reported in human and mice brains affected by transmissible spongiform encephalopathies (TSEs), this aspect has been little studied in the natural animal hosts with the same pathological conditions so far. Herein, we investigated, by high resolution (1)H NMR spectroscopy and multivariate statistical data analysis, the brain metabolite profile of sheep exposed to a scrapie agent in a naturally affected flock. On the basis of clinical examinations and western blotting analysis for the pathological prion protein (PrP(Sc)) in brain tissues, sheep were catalogued as not infected (H), infected with clinical signs (S), and infected without clinical signs (A). By discriminant analysis of spectral data, comparing S vs. H, we found a different metabolite distribution, with inosine, cytosine, creatine, and lactate being higher in S than in H brains, while the branched chain amino acids (leucine, isoleucine, and valine), phenylalanine, uracil, tyrosine, gamma-amino butyric acid, total aspartate (aspartate + N-acetyl aspartate) being lower in S. By a soft independent modelling of class analogy approach, 1 out of 3 A samples was assigned to class H. Furthermore, A brains were found to be higher in choline and choline-containing compounds. By means of partial least squares regression, an excellent correlation was found between the PrP(Sc) amount and the (1)H NMR metabolite profile of infected (S and A) sheep, and the metabolite mostly correlated with PrP(Sc) was alanine. The overall results, obtained using different chemometric tools, were able to describe a brain metabolite profile of infected sheep with and without clinical signs, compared to healthy ones, and indicated alanine as a biomarker for PrP(Sc) amounts in scrapie brains.
Collapse
Affiliation(s)
- Paola Scano
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bate C, Nolan W, Williams A. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation. J Biol Chem 2015; 291:160-70. [PMID: 26553874 DOI: 10.1074/jbc.m115.672394] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Indexed: 01/24/2023] Open
Abstract
The prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into disease-related isoforms (PrP(Sc)). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrP(C) in prion formation was examined using a cell painting technique. PrP(Sc) formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrP(C). In contrast, PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc). Furthermore, the presence of desialylated PrP(C) inhibited the production of PrP(Sc) within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrP(C) contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrP(C). Desialylated PrP(C) was less sensitive to cholesterol depletion than PrP(C) and was not released from cells by treatment with glimepiride. The presence of desialylated PrP(C) in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases.
Collapse
Affiliation(s)
- Clive Bate
- From the Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, United Kingdom and
| | - William Nolan
- From the Department of Pathology and Pathogen Biology, Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, United Kingdom and
| | - Alun Williams
- the Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 OES, United Kingdom
| |
Collapse
|
24
|
Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases. Virus Res 2015; 207:146-54. [DOI: 10.1016/j.virusres.2015.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/01/2014] [Accepted: 01/22/2015] [Indexed: 11/20/2022]
|
25
|
Frid K, Einstein O, Friedman-Levi Y, Binyamin O, Ben-Hur T, Gabizon R. Aggregation of MBP in chronic demyelination. Ann Clin Transl Neurol 2015; 2:711-21. [PMID: 26273684 PMCID: PMC4531054 DOI: 10.1002/acn3.207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/26/2015] [Indexed: 12/14/2022] Open
Abstract
Objectives Misfolding of key disease proteins to an insoluble state is associated with most neurodegenerative conditions, such as prion, Parkinson, and Alzheimer’s diseases. In this work, and by studying animal models of multiple sclerosis, we asked whether this is also the case for myelin basic protein (MBP) in the late and neurodegenerative phases of demyelinating diseases. Methods To this effect, we tested whether MBP, an essential myelin component, present prion-like properties in animal models of MS, as is the case for Cuprizone-induced chronic demyelination or chronic phases of Experimental Autoimmune Encephalomyelitis (EAE). Results We show here that while total levels of MBP were not reduced following extensive demyelination, part of these molecules accumulated thereafter as aggregates inside oligodendrocytes or around neuronal cells. In chronic EAE, MBP precipitated concomitantly with Tau, a marker of diverse neurodegenerative conditions, including MS. Most important, analysis of fractions from Triton X-100 floatation gradients suggest that the lipid composition of brain membranes in chronic EAE differs significantly from that of naïve mice, an effect which may relate to oxidative insults and subsequently prevent the appropriate insertion and compaction of new MBP in the myelin sheath, thereby causing its misfolding and aggregation. Interpretation Prion-like aggregation of MBP following chronic demyelination may result from an aberrant lipid composition accompanying this pathological status. Such aggregation of MBP may contribute to neuronal damage that occurs in the progressive phase of MS.
Collapse
Affiliation(s)
- Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Ofira Einstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Yael Friedman-Levi
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital Jerusalem, 91120, Israel
| |
Collapse
|
26
|
Jin JK, Jang B, Jin HT, Choi EK, Jung CG, Akatsu H, Kim JI, Carp RI, Kim YS. Phosphatidylinositol-glycan-phospholipase D is involved in neurodegeneration in prion disease. PLoS One 2015; 10:e0122120. [PMID: 25867459 PMCID: PMC4395093 DOI: 10.1371/journal.pone.0122120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/17/2015] [Indexed: 11/18/2022] Open
Abstract
PrPSc is formed from a normal glycosylphosphatidylinositol (GPI)-anchored prion protein (PrPC) by a posttranslational modification. Most GPI-anchored proteins have been shown to be cleaved by GPI phospholipases. Recently, GPI-phospholipase D (GPI-PLD) was shown to be a strictly specific enzyme for GPI anchors. To investigate the involvement of GPI-PLD in the processes of neurodegeneration in prion diseases, we examined the mRNA and protein expression levels of GPI-PLD in the brains of a prion animal model (scrapie), and in both the brains and cerebrospinal fluids (CSF) of sporadic and familial Creutzfeldt-Jakob disease (CJD) patients. We found that compared with controls, the expression of GPI-PLD was dramatically down-regulated in the brains of scrapie-infected mice, especially in the caveolin-enriched membrane fractions. Interestingly, the observed decrease in GPI-PLD expression levels began at the same time that PrPSc began to accumulate in the infected brains and this decrease was also observed in both the brain and CSF of CJD patients; however, no differences in expression were observed in either the brains or CSF specimens from Alzheimer’s disease patients. Taken together, these results suggest that the down-regulation of GPI-PLD protein may be involved in prion propagation in the brains of prion diseases.
Collapse
Affiliation(s)
- Jae-Kwang Jin
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 431–060, Korea
| | - Byungki Jang
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 431–060, Korea
| | - Hyoung Tae Jin
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 431–060, Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 431–060, Korea
| | - Cha-Gyun Jung
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate, School of Medical Sciences, Nagoya, Aichi 467–8601, Japan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura Hospital, Toyohashi 441-8124, Japan
| | - Jae-Il Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 608–737, Korea
| | - Richard I. Carp
- Department of Virology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, United States of America
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 431–060, Korea
- * E-mail:
| |
Collapse
|
27
|
Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 2014; 290:3455-67. [PMID: 25505180 DOI: 10.1074/jbc.m114.605253] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are a group of transmissible, fatal neurodegenerative disorders associated with the misfolding of the host-encoded prion protein, PrP(C), into a disease-associated form, PrP(Sc). The transmissible prion agent is principally formed of PrP(Sc) itself and is associated with extracellular vesicles known as exosomes. Exosomes are released from cells both in vitro and in vivo, and have been proposed as a mechanism by which prions spread intercellularly. The biogenesis of exosomes occurs within the endosomal system, through formation of intraluminal vesicles (ILVs), which are subsequently released from cells as exosomes. ILV formation is known to be regulated by the endosomal sorting complexes required for transport (ESCRT) machinery, although an alternative neutral sphingomyelinase (nSMase) pathway has been suggested to also regulate this process. Here, we investigate a role for the nSMase pathway in exosome biogenesis and packaging of PrP into these vesicles. Inhibition of the nSMase pathway using GW4869 revealed a role for the nSMase pathway in both exosome formation and PrP packaging. In agreement, targeted knockdown of nSMase1 and nSMase2 in mouse neurons using lentivirus-mediated RNAi also decreases exosome release, demonstrating the nSMase pathway regulates the biogenesis and release of exosomes. We also demonstrate that PrP(C) packaging is dependent on nSMase2, whereas the packaging of disease-associated PrP(Sc) into exosomes occurs independently of nSMase2. These findings provide further insight into prion transmission and identify a pathway which directly assists exosome-mediated transmission of prions.
Collapse
Affiliation(s)
- Belinda B Guo
- From the Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Australia and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Shayne A Bellingham
- From the Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Australia and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Andrew F Hill
- From the Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Australia and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
28
|
Botto L, Cunati D, Coco S, Sesana S, Bulbarelli A, Biasini E, Colombo L, Negro A, Chiesa R, Masserini M, Palestini P. Role of lipid rafts and GM1 in the segregation and processing of prion protein. PLoS One 2014; 9:e98344. [PMID: 24859148 PMCID: PMC4032283 DOI: 10.1371/journal.pone.0098344] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 05/01/2014] [Indexed: 12/04/2022] Open
Abstract
The prion protein (PrPC) is highly expressed within the nervous system. Similar to other GPI-anchored proteins, PrPC is found in lipid rafts, membrane domains enriched in cholesterol and sphingolipids. PrPC raft association, together with raft lipid composition, appears essential for the conversion of PrPC into the scrapie isoform PrPSc, and the development of prion disease. Controversial findings were reported on the nature of PrPC-containing rafts, as well as on the distribution of PrPC between rafts and non-raft membranes. We investigated PrPC/ganglioside relationships and their influence on PrPC localization in a neuronal cellular model, cerebellar granule cells. Our findings argue that in these cells at least two PrPC conformations coexist: in lipid rafts PrPC is present in the native folding (α-helical), stabilized by chemico-physical condition, while it is mainly present in other membrane compartments in a PrPSc-like conformation. We verified, by means of antibody reactivity and circular dichroism spectroscopy, that changes in lipid raft-ganglioside content alters PrPC conformation and interaction with lipid bilayers, without modifying PrPC distribution or cleavage. Our data provide new insights into the cellular mechanism of prion conversion and suggest that GM1-prion protein interaction at the cell surface could play a significant role in the mechanism predisposing to pathology.
Collapse
Affiliation(s)
- Laura Botto
- Department of Health Science - Medical School, University of Milano-Bicocca, Monza, Italy
- * E-mail:
| | - Diana Cunati
- Department of Health Science - Medical School, University of Milano-Bicocca, Monza, Italy
| | - Silvia Coco
- Department of Health Science - Medical School, University of Milano-Bicocca, Monza, Italy
| | - Silvia Sesana
- Department of Health Science - Medical School, University of Milano-Bicocca, Monza, Italy
| | - Alessandra Bulbarelli
- Department of Health Science - Medical School, University of Milano-Bicocca, Monza, Italy
| | - Emiliano Biasini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Roberto Chiesa
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Massimo Masserini
- Department of Health Science - Medical School, University of Milano-Bicocca, Monza, Italy
| | - Paola Palestini
- Department of Health Science - Medical School, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
29
|
Rouvinski A, Karniely S, Kounin M, Moussa S, Goldberg MD, Warburg G, Lyakhovetsky R, Papy-Garcia D, Kutzsche J, Korth C, Carlson GA, Godsave SF, Peters PJ, Luhr K, Kristensson K, Taraboulos A. Live imaging of prions reveals nascent PrPSc in cell-surface, raft-associated amyloid strings and webs. ACTA ACUST UNITED AC 2014; 204:423-41. [PMID: 24493590 PMCID: PMC3912534 DOI: 10.1083/jcb.201308028] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian prions refold host glycosylphosphatidylinositol-anchored PrP(C) into β-sheet-rich PrP(Sc). PrP(Sc) is rapidly truncated into a C-terminal PrP27-30 core that is stable for days in endolysosomes. The nature of cell-associated prions, their attachment to membranes and rafts, and their subcellular locations are poorly understood; live prion visualization has not previously been achieved. A key obstacle has been the inaccessibility of PrP27-30 epitopes. We overcame this hurdle by focusing on nascent full-length PrP(Sc) rather than on its truncated PrP27-30 product. We show that N-terminal PrP(Sc) epitopes are exposed in their physiological context and visualize, for the first time, PrP(Sc) in living cells. PrP(Sc) resides for hours in unexpected cell-surface, slow moving strings and webs, sheltered from endocytosis. Prion strings observed by light and scanning electron microscopy were thin, micrometer-long structures. They were firmly cell associated, resisted phosphatidylinositol-specific phospholipase C, aligned with raft markers, fluoresced with thioflavin, and were rapidly abolished by anti-prion glycans. Prion strings and webs are the first demonstration of membrane-anchored PrP(Sc) amyloids.
Collapse
Affiliation(s)
- Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Prion protein misfolding, strains, and neurotoxicity: an update from studies on Mammalian prions. Int J Cell Biol 2013; 2013:910314. [PMID: 24454379 PMCID: PMC3884631 DOI: 10.1155/2013/910314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 11/17/2022] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders affecting humans and other mammalian species. The central event in TSE pathogenesis is the conformational conversion of the cellular prion protein, PrPC, into the aggregate, β-sheet rich, amyloidogenic form, PrPSc. Increasing evidence indicates that distinct PrPSc conformers, forming distinct ordered aggregates, can encipher the phenotypic TSE variants related to prion strains. Prion strains are TSE isolates that, after inoculation into syngenic hosts, cause disease with distinct characteristics, such as incubation period, pattern of PrPSc distribution, and regional severity of histopathological changes in the brain. In analogy with other amyloid forming proteins, PrPSc toxicity is thought to derive from the existence of various intermediate structures prior to the amyloid fiber formation and/or their specific interaction with membranes. The latter appears particularly relevant for the pathogenesis of TSEs associated with GPI-anchored PrPSc, which involves major cellular membrane distortions in neurons. In this review, we update the current knowledge on the molecular mechanisms underlying three fundamental aspects of the basic biology of prions such as the putative mechanism of prion protein conversion to the pathogenic form PrPSc and its propagation, the molecular basis of prion strains, and the mechanism of induced neurotoxicity by PrPSc aggregates.
Collapse
|
31
|
Agostini F, Dotti CG, Pérez-Cañamás A, Ledesma MD, Benetti F, Legname G. Prion protein accumulation in lipid rafts of mouse aging brain. PLoS One 2013; 8:e74244. [PMID: 24040215 PMCID: PMC3769255 DOI: 10.1371/journal.pone.0074244] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/31/2013] [Indexed: 12/20/2022] Open
Abstract
The cellular form of the prion protein (PrPC) is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrPC. In old mice, this change favors PrPC accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrPC translocation into detergent-resistant membranes (DRMs), we looked at PrPC compartmentalization in hippocampi from acid sphingomyelinase (ASM) knockout (KO) mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrPC in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.
Collapse
Affiliation(s)
- Federica Agostini
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- Department of Human Genetics, K.U., Leuven, Leuven, Belgium
| | - Carlos G. Dotti
- Department of Molecular and Developmental Genetics, VIB Center for the Biology of Disease, K.U., Leuven, Leuven, Belgium
- Department of Human Genetics, K.U., Leuven, Leuven, Belgium
| | | | | | - Federico Benetti
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- Italian Institute of Technology, Trieste, Italy
- ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A, AREA Science Park, Basovizza, Trieste, Italy
- * E-mail:
| |
Collapse
|
32
|
Abstract
A common feature of neurodegenerative diseases is the accumulation of disease-specific, aggregated protein species in the nervous system. Transmissible spongiform encephalopathies are universally fatal neurodegenerative diseases involving the transconformation and aggregation of prion proteins. At the cellular level macroautophagy has been identified as an efficient pathway for the clearance of these toxic protein aggregates. Hence, recent research has focused on the pharmacological manipulation of autophagy as a potential treatment for neurodegenerative diseases. Independent of their effects on the estrogen receptor, tamoxifen and its metabolite 4-hydroxytamoxifen are well known inducers of autophagy. However, we recently reported that the ability of 4-hydroxytamoxifen to clear prion infection is independent of autophagy. In contrast, we provide a model whereby perturbation of cholesterol metabolism, and not autophagy, is the main mechanism whereby 4-hydroxytamoxifen is able to exert its anti-prion effects. Thus, while tamoxifen, a widely available pharmaceutical, may have applications in prion therapy, prions may also represent a special case and may require different pharmacological interventions than other proteinopathies.
Collapse
Affiliation(s)
- Duncan Browman
- Institut Pasteur; Unite ́ de traffic membranaire et pathogenèse; Paris, France
| | | |
Collapse
|
33
|
Zhou Z, Xiao G. Conformational conversion of prion protein in prion diseases. Acta Biochim Biophys Sin (Shanghai) 2013; 45:465-76. [PMID: 23580591 DOI: 10.1093/abbs/gmt027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prion diseases are a group of infectious fatal neurodegenerative diseases. The conformational conversion of a cellular prion protein (PrP(C)) into an abnormal misfolded isoform (PrP(Sc)) is the key event in prion diseases pathology. Under normal conditions, the high-energy barrier separates PrP(C) from PrP(Sc) isoform. However, pathogenic mutations, modifications as well as some cofactors, such as glycosaminoglycans, nucleic acids, and lipids, could modulate the conformational conversion process. Understanding the mechanism of conformational conversion of prion protein is essential for the biomedical research and the treatment of prion diseases. Particularly, the characterization of cofactors interacting with prion protein might provide new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | |
Collapse
|
34
|
Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity. Mol Neurodegener 2012; 7:18. [PMID: 22534096 PMCID: PMC3355018 DOI: 10.1186/1750-1326-7-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prion disease transmission and pathogenesis are linked to misfolded, typically protease resistant (PrPres) conformers of the normal cellular prion protein (PrPC), with the former posited to be the principal constituent of the infectious 'prion'. Unexplained discrepancies observed between detectable PrPres and infectivity levels exemplify the complexity in deciphering the exact biophysical nature of prions and those host cell factors, if any, which contribute to transmission efficiency. In order to improve our understanding of these important issues, this study utilized a bioassay validated cell culture model of prion infection to investigate discordance between PrPres levels and infectivity titres at a subcellular resolution. FINDINGS Subcellular fractions enriched in lipid rafts or endoplasmic reticulum/mitochondrial marker proteins were equally highly efficient at prion transmission, despite lipid raft fractions containing up to eight times the levels of detectable PrPres. Brain homogenate infectivity was not differentially enhanced by subcellular fraction-specific co-factors, and proteinase K pre-treatment of selected fractions modestly, but equally reduced infectivity. Only lipid raft associated infectivity was enhanced by sonication. CONCLUSIONS This study authenticates a subcellular disparity in PrPres and infectivity levels, and eliminates simultaneous divergence of prion strains as the explanation for this phenomenon. On balance, the results align best with the concept that transmission efficiency is influenced more by intrinsic characteristics of the infectious prion, rather than cellular microenvironment conditions or absolute PrPres levels.
Collapse
|
35
|
Mattei V, Matarrese P, Garofalo T, Tinari A, Gambardella L, Ciarlo L, Manganelli V, Tasciotti V, Misasi R, Malorni W, Sorice M. Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Mol Biol Cell 2011; 22:4842-53. [PMID: 22031292 PMCID: PMC3237627 DOI: 10.1091/mbc.e11-04-0348] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PrPC is identified as a new component of mitochondrial raft-like microdomains in T cells undergoing CD95/Fas–mediated apoptosis, and microtubular network integrity and function could play a role in the redistribution of PrPC from the plasma membrane to the mitochondria. We examined the possibility that cellular prion protein (PrPC) plays a role in the receptor-mediated apoptotic pathway. We first found that CD95/Fas triggering induced a redistribution of PrPC to the mitochondria of T lymphoblastoid CEM cells via a mechanism that brings into play microtubular network integrity and function. In particular, we demonstrated that PrPC was redistributed to raft-like microdomains at the mitochondrial membrane, as well as at endoplasmic reticulum-mitochondria–associated membranes. Our in vitro experiments also demonstrated that, although PrPC had such an effect on mitochondria, it induced the loss of mitochondrial membrane potential and cytochrome c release only after a contained rise of calcium concentration. Finally, the involvement of PrPC in apoptosis execution was also analyzed in PrPC-small interfering RNA–transfected cells, which were found to be significantly less susceptible to CD95/Fas–induced apoptosis. Taken together, these results suggest that PrPC might play a role in the complex multimolecular signaling associated with CD95/Fas receptor–mediated apoptosis.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Laboratory of Experimental Medicine and Environmental Pathology, Sabina Universitas, 02100 Rieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Molecular Basis for the Glycosphingolipid-Binding Specificity of α-Synuclein: Key Role of Tyrosine 39 in Membrane Insertion. J Mol Biol 2011; 408:654-69. [DOI: 10.1016/j.jmb.2011.03.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 11/23/2022]
|
37
|
Prinetti A, Prioni S, Chiricozzi E, Schuchman EH, Chigorno V, Sonnino S. Secondary Alterations of Sphingolipid Metabolism in Lysosomal Storage Diseases. Neurochem Res 2011; 36:1654-68. [DOI: 10.1007/s11064-010-0380-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2010] [Indexed: 12/20/2022]
|
38
|
Role of Gangliosides and Plasma Membrane-Associated Sialidase in the Process of Cell Membrane Organization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:297-316. [DOI: 10.1007/978-1-4419-7877-6_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Bertoni A, Giuliano P, Galgani M, Rotoli D, Ulianich L, Adornetto A, Santillo MR, Porcellini A, Avvedimento VE. Early and late events induced by polyQ-expanded proteins: identification of a common pathogenic property of polYQ-expanded proteins. J Biol Chem 2010; 286:4727-41. [PMID: 21115499 DOI: 10.1074/jbc.m110.156521] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To find a common pathogenetic trait induced by polyQ-expanded proteins, we have used a conditional expression system in PC12 cells to tune the expression of these proteins and analyze the early and late consequences of their expression. We find that expression for 3 h of a polyQ-expanded protein stimulates cellular reactive oxygen species (ROS) levels and significantly reduces the mitochondrial electrochemical gradient. 24-36 h later, ROS induce DNA damage and activation of the checkpoint kinase, ATM. DNA damage signatures are reversible and persist as long as polyQ-expanded proteins are expressed. Transcription of neural and stress response genes is down-regulated in these cells. Selective inhibition of ATM or histone deacetylase rescues transcription and restores the expression of silenced genes. Eventually, after 1 week, the expression of polyQ-expanded protein also induces endoplasmic reticulum stress. As to the primary mechanism responsible for ROS generation, we find that polyQ-expanded proteins, including native Ataxin-2 and Huntingtin, are selectively sequestered in the lipid raft membrane compartment and interact with gp91, the membrane NADPH-oxidase subunit. Selective inhibition of NADPH oxidase or silencing of H-Ras signaling dissolves the aggregates and eliminates DNA damage. We suggest that targeting of the polyQ-expanded proteins to the lipid rafts activates the resident NADPH oxidase. This triggers a signal linking H-Ras, ROS, and ERK1/2 that maintains and propagates the ROS wave to the nucleus. This mechanism may represent the common pathogenetic signature of all polyQ-expanded proteins independently of the specific context or the function of the native wild type protein.
Collapse
Affiliation(s)
- Alessandra Bertoni
- Department of Molecular and Cellular Biology and Pathology, School of Medicine, Federico II University of Naples, Naples 80131 Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang F, Yin S, Wang X, Zha L, Sy MS, Ma J. Role of the highly conserved middle region of prion protein (PrP) in PrP-lipid interaction. Biochemistry 2010; 49:8169-76. [PMID: 20718504 DOI: 10.1021/bi101146v] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Converting normal prion protein (PrP(C)) to the pathogenic PrP(Sc) isoform is central to prion disease. We previously showed that, in the presence of lipids, recombinant mouse PrP (rPrP) can be converted into the highly infectious conformation, suggesting a crucial role of lipid-rPrP interaction in PrP conversion. To understand the mechanism of lipid-rPrP interaction, we analyzed the ability of various rPrP mutants to bind anionic lipids and to gain lipid-induced proteinase K (PK) resistance. We found that the N-terminal positively charged region contributes to electrostatic rPrP-lipid binding but does not affect lipid-induced PK resistance. In contrast, the highly conserved middle region of PrP, consisting of a positively charged region and a hydrophobic domain, is essential for lipid-induced rPrP conversion. The hydrophobic domain deletion mutant significantly weakened the hydrophobic rPrP-lipid interaction and abolished the lipid-induced C-terminal PK resistance. The rPrP mutant without positive charges in the middle region reduced the amount of the lipid-induced PK-resistant rPrP form. Consistent with a critical role of the middle region in lipid-induced rPrP conversion, both disease-associated P105L and P102L mutations, localized between lysine residues in the positively charged region, significantly affected lipid-induced rPrP conversion. The hydrophobic domain-localized 129 polymorphism altered the strength of hydrophobic rPrP-lipid interaction. Collectively, our results suggest that the interaction between the middle region of PrP and lipids is essential for the formation of the PK-resistant conformation. Moreover, the influence of disease-associated PrP mutations and the 129 polymorphism on PrP-lipid interaction supports the relevance of PrP-lipid interaction to the pathogenesis of prion disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
41
|
Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases. Expert Rev Mol Med 2010; 12:e27. [PMID: 20807455 PMCID: PMC2931503 DOI: 10.1017/s1462399410001602] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer, Parkinson and other neurodegenerative diseases involve a series of brain
proteins, referred to as ‘amyloidogenic proteins’, with exceptional
conformational plasticity and a high propensity for self-aggregation. Although the
mechanisms by which amyloidogenic proteins kill neural cells are not fully understood, a
common feature is the concentration of unstructured amyloidogenic monomers on
bidimensional membrane lattices. Membrane-bound monomers undergo a series of
lipid-dependent conformational changes, leading to the formation of oligomers of varying
toxicity rich in β-sheet structures (annular pores, amyloid fibrils) or in
α-helix structures (transmembrane channels). Condensed membrane nano- or
microdomains formed by sphingolipids and cholesterol are privileged sites for the binding
and oligomerisation of amyloidogenic proteins. By controlling the balance between
unstructured monomers and α or β conformers (the chaperone effect),
sphingolipids can either inhibit or stimulate the oligomerisation of amyloidogenic
proteins. Cholesterol has a dual role: regulation of protein–sphingolipid
interactions through a fine tuning of sphingolipid conformation (indirect effect), and
facilitation of pore (or channel) formation through direct binding to amyloidogenic
proteins. Deciphering this complex network of molecular interactions in the context of
age- and disease-related evolution of brain lipid expression will help understanding of
how amyloidogenic proteins induce neural toxicity and will stimulate the development of
innovative therapies for neurodegenerative diseases.
Collapse
|
42
|
Tanaka M, Hara H, Nishina H, Hanada K, Hagiwara K, Maehama T. An improved method for cell-to-cell transmission of infectious prion. Biochem Biophys Res Commun 2010; 397:505-8. [PMID: 20515650 DOI: 10.1016/j.bbrc.2010.05.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 05/27/2010] [Indexed: 11/30/2022]
Abstract
Prion diseases are characterized by the accumulation of a pathological form of prion protein (PrP(Sc)), which behaves as an infectious agent. Here we developed an in vitro co-culture system to analyze the PrP(Sc) transmission from ScN2a cell, which persistently retains PrP(Sc), to naïve N2a cell. In this cell-to-cell transmission system, PrP(Sc) transmitted to recipient N2a cell was able to be detected within 5-7days. Further characterization showed that higher cell density greatly facilitated the transmission of PrP(Sc). This improved in vitro transmission method may become a useful tool for unveiling the molecular mechanism of PrP(Sc) transmission.
Collapse
Affiliation(s)
- Masahiko Tanaka
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Deleault NR, Kascsak R, Geoghegan JC, Supattapone S. Species-dependent differences in cofactor utilization for formation of the protease-resistant prion protein in vitro. Biochemistry 2010; 49:3928-34. [PMID: 20377181 DOI: 10.1021/bi100370b] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cofactor preferences for in vitro propagation of the protease-resistant isoforms of the prion protein (PrP(Sc)) from various rodent species were investigated using the serial protein misfolding cyclic amplification (sPMCA) technique. Whereas RNA molecules facilitate hamster PrP(Sc) propagation, RNA and several other polyanions do not promote the propagation of mouse and vole PrP(Sc) molecules. Pretreatment of crude Prnp(0/0) (PrP knockout) brain homogenate with RNase A or micrococcal nuclease inhibited hamster but not mouse PrP(Sc) propagation in a reconstituted system. Mouse PrP(Sc) propagation could be reconstituted by mixing PrP(C) substrate with homogenates prepared from either brain or liver, but not from several other tissues that were tested. These results reveal species-specific differences in cofactor utilization for PrP(Sc) propagation in vitro and also demonstrate the existence of an endogenous cofactor present in brain tissue not composed of nucleic acids.
Collapse
Affiliation(s)
- Nathan R Deleault
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
44
|
Hayashi T, Fujimoto M. Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol Pharmacol 2010; 77:517-28. [PMID: 20053954 PMCID: PMC2845942 DOI: 10.1124/mol.109.062539] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/06/2010] [Indexed: 01/04/2023] Open
Abstract
Sigma-1 receptors (Sig-1Rs) that bind diverse synthetic and endogenous compounds have been implicated in the pathophysiology of several human diseases such as drug addiction, depression, neurodegenerative disorders, pain-related disorders, and cancer. Sig-1Rs were identified recently as novel ligand-operated molecular chaperones. Although Sig-1Rs are predominantly expressed at endoplasmic reticulum (ER) subdomains apposing mitochondria [i.e., the mitochondria-associated ER membrane (MAM)], they dynamically change the cellular distribution, thus regulating both MAM-specific and plasma membrane proteins. However, what determines the location of Sig-1R at the MAM and how the receptor translocation is initiated is unknown. Here we report that the detergent-resistant membranes (DRMs) play an important role in anchoring Sig-1Rs to the MAM. The MAM, which is highly capable of accumulating ceramides, is enriched with both cholesterol and simple sphingolipids, thus forming Triton X-114-resistant DRMs. Sig-1Rs associate with MAM-derived DRMs but not with those from microsomes. A lipid overlay assay found that solubilized Sig-1Rs preferentially associate with simple sphingolipids such as ceramides. Disrupting DRMs by lowering cholesterol or inhibiting de novo synthesis of ceramides at the ER largely decreases Sig-1R at DRMs and causes translocation of Sig-1R from the MAM to ER cisternae. These findings suggest that the MAM, bearing cholesterol and ceramide-enriched microdomains at the ER, may use the microdomains to anchor Sig-1Rs to the location; thus, it serves to stage Sig-1R at ER-mitochondria junctions.
Collapse
Affiliation(s)
- Teruo Hayashi
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | | |
Collapse
|
45
|
Piccinini M, Scandroglio F, Prioni S, Buccinnà B, Loberto N, Aureli M, Chigorno V, Lupino E, DeMarco G, Lomartire A, Rinaudo MT, Sonnino S, Prinetti A. Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 2010; 41:314-40. [PMID: 20127207 DOI: 10.1007/s12035-009-8096-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/22/2009] [Indexed: 12/13/2022]
Abstract
Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron-glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid-protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid beta peptide in Alzheimer's disease, huntingtin in Huntington's disease, alpha-synuclein in Parkinson's disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.
Collapse
Affiliation(s)
- Marco Piccinini
- Section of Biochemistry, Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Transmissible spongiform encephalopathies, or prion diseases, are fatal neurodegenerative disorders. In aetiological viewpoint, human prion diseases are classified into 1) sporadic Creutzfeldt-Jakob disease (CJD) which comprises 80-90% of the total population of human prion disaeses, 2) inherited forms, and 3) acquired types by prion-contaminated surgical instruments, biopharmaceuticals or foodstuffs. The diseases cause an accumulation of the disease-associated form(s) of prion protein (PrP(Sc)) in the central nervous system. PrP(Sc) is regarded as the entity of prion agents and generally exerts infectivity, irrespective of its origin being from the sporadic cases or the inherited cases. Variant CJD (vCJD), first identified in the United Kingdom (UK) in 1996, is an acquired type of human CJD by oral intake of BSE prion. Cumulative numbers of 215 patients in the world have been reported for definite or probable vCJD cases according to the UK National Creutzfeldt-Jakob Disease Surveillance Unit by September, 2009. Different from sporadic CJD cases, vCJD patients show an accumulation of PrP(Sc) in spleen and tonsils. Such distribution of PrP(Sc) in lymphoid tissues raised clinical concern about the potential infectivity in the blood or blood components used for blood transfusion. To date, five instances of probable transfusion-mediated transmission of vCJD prion have been found in UK. Here we review the past and the present issues about the acquired human prion diseases.
Collapse
Affiliation(s)
- Ken'ichi Hagiwara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | |
Collapse
|
47
|
Sanghera N, Swann MJ, Ronan G, Pinheiro TJ. Insight into early events in the aggregation of the prion protein on lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2245-51. [DOI: 10.1016/j.bbamem.2009.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/06/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
|
48
|
Caughey B, Baron GS, Chesebro B, Jeffrey M. Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu Rev Biochem 2009; 78:177-204. [PMID: 19231987 DOI: 10.1146/annurev.biochem.78.082907.145410] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prion (infectious protein) concept has evolved with the discovery of new self-propagating protein states in organisms as diverse as mammals and fungi. The infectious agent of the mammalian transmissible spongiform encephalopathies (TSE) has long been considered the prototypical prion, and recent cell-free propagation and biophysical analyses of TSE infectivity have now firmly established its prion credentials. Other disease-associated protein aggregates, such as some amyloids, can also have prion-like characteristics under certain experimental conditions. However, most amyloids appear to lack the natural transmissibility of TSE prions. One feature that distinguishes the latter from the former is the glycophosphatidylinositol membrane anchor on prion protein, the molecule that is corrupted in TSE diseases. The presence of this anchor profoundly affects TSE pathogenesis, which involves major membrane distortions in the brain, and may be a key reason for the greater neurovirulence of TSE prions relative to many other autocatalytic protein aggregates.
Collapse
Affiliation(s)
- Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | | | |
Collapse
|
49
|
Marijanovic Z, Caputo A, Campana V, Zurzolo C. Identification of an intracellular site of prion conversion. PLoS Pathog 2009; 5:e1000426. [PMID: 19424437 PMCID: PMC2673690 DOI: 10.1371/journal.ppat.1000426] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 04/13/2009] [Indexed: 01/01/2023] Open
Abstract
Prion diseases are fatal, neurodegenerative disorders in humans and animals and are characterized by the accumulation of an abnormally folded isoform of the cellular prion protein (PrPC), denoted PrPSc, which represents the major component of infectious scrapie prions. Characterization of the mechanism of conversion of PrPC into PrPSc and identification of the intracellular site where it occurs are among the most important questions in prion biology. Despite numerous efforts, both of these questions remain unsolved. We have quantitatively analyzed the distribution of PrPC and PrPSc and measured PrPSc levels in different infected neuronal cell lines in which protein trafficking has been selectively impaired. Our data exclude roles for both early and late endosomes and identify the endosomal recycling compartment as the likely site of prion conversion. These findings represent a fundamental step towards understanding the cellular mechanism of prion conversion and will allow the development of new therapeutic approaches for prion diseases. The misfolded form (PrPSc or prion) of the naturally occuring prion protein (PrPC or cellular PrP) is responsible for neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (BSE) (also known as ‘mad cow disease’) and a new variant of CJD (vCJD), which is thought to be caused by ingestion of cattle-derived foodstuffs contaminated with prions. These diseases are characterized by the accumulation of protein deposits in the central nervous system (CNS). However, unlike other neurodegenerative diseases, prion diseases are infectious and prions are able to propagate in a chain reaction by imposing their malconformed state onto the properly folded cellular proteins. Understanding where the conversion of PrPC into PrPSc occurs in cells has been an unsolved question until now. By analysing the intracellular localization of PrPC and PrPSc and measuring the levels of PrPSc produced in infected neuronal cell lines under conditions in which intracellular trafficking of the protein is impaired, we found that prion conversion occurs in the endosomal recycling compartment (ERC) where it transits after being internalized from the cell surface. This study will help to clarify the cellular mechanism of the disease and it opens the way to new therapeutic strategies aimed at the conversion compartment.
Collapse
Affiliation(s)
- Zrinka Marijanovic
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris, France
| | - Anna Caputo
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris, France
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli ‘Federico II’, Naples, Italy
| | - Vincenza Campana
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris, France
| | - Chiara Zurzolo
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris, France
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli ‘Federico II’, Naples, Italy
- * E-mail: or
| |
Collapse
|
50
|
Mattei V, Barenco MG, Tasciotti V, Garofalo T, Longo A, Boller K, Löwer J, Misasi R, Montrasio F, Sorice M. Paracrine diffusion of PrP(C) and propagation of prion infectivity by plasma membrane-derived microvesicles. PLoS One 2009; 4:e5057. [PMID: 19337375 PMCID: PMC2659799 DOI: 10.1371/journal.pone.0005057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 02/23/2009] [Indexed: 11/18/2022] Open
Abstract
Cellular prion protein (PrPc) is a physiological constituent of eukaryotic cells. The cellular pathways underlying prions spread from the sites of prions infection/peripheral replication to the central nervous system are still not elucidated. Membrane-derived microvesicles (MVs) are submicron (0.1–1 µm) particles, that are released by cells during plasma membrane shedding processes. They are usually liberated from different cell types, mainly upon activation as well as apoptosis, in this case, one of their hallmarks is the exposure of phosphatidylserine in the outer leaflet of the membrane. MVs are also characterized by the presence of adhesion molecules, MHC I molecules, as well as of membrane antigens typical of their cell of origin. Evidence exists that MVs shedding provide vehicles to transfer molecules among cells, and that MVs are important modulators of cell-to-cell communication. In this study we therefore analyzed the potential role of membrane-derived MVs in the mechanism(s) of PrPC diffusion and prion infectivity transmission. We first identified PrPC in association with the lipid raft components Fyn, flotillin-2, GM1 and GM3 in MVs from plasma of healthy human donors. Similar findings were found in MVs from cell culture supernatants of murine neuronal cells. Furthermore we demonstrated that PrPSc is released from infected murine neuronal cells in association with plasma membrane-derived MVs and that PrPSc-bearing MVs are infectious both in vitro and in vivo. The data suggest that MVs may contribute both to the intercellular mechanism(s) of PrPC diffusion and signaling as well as to the process of prion spread and neuroinvasion.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Dipartimento di Medicina Sperimentale, “Sapienza” University, Rome, Italy
- Laboratorio di Medicina Sperimentale e Patologia Ambientale, “Sapienza” University, Polo Universitario di Rieti “Sabina Universitas“, Rieti, Italy
| | - Maria Grazia Barenco
- Prion Research Group, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse, Langen, Germany
| | - Vincenzo Tasciotti
- Dipartimento di Medicina Sperimentale, “Sapienza” University, Rome, Italy
- Laboratorio di Medicina Sperimentale e Patologia Ambientale, “Sapienza” University, Polo Universitario di Rieti “Sabina Universitas“, Rieti, Italy
| | - Tina Garofalo
- Dipartimento di Medicina Sperimentale, “Sapienza” University, Rome, Italy
| | - Agostina Longo
- Dipartimento di Medicina Sperimentale, “Sapienza” University, Rome, Italy
| | - Klaus Boller
- Prion Research Group, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse, Langen, Germany
| | - Johannes Löwer
- Prion Research Group, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse, Langen, Germany
| | - Roberta Misasi
- Dipartimento di Medicina Sperimentale, “Sapienza” University, Rome, Italy
| | - Fabio Montrasio
- Prion Research Group, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse, Langen, Germany
| | - Maurizio Sorice
- Dipartimento di Medicina Sperimentale, “Sapienza” University, Rome, Italy
- Laboratorio di Medicina Sperimentale e Patologia Ambientale, “Sapienza” University, Polo Universitario di Rieti “Sabina Universitas“, Rieti, Italy
- * E-mail:
| |
Collapse
|