1
|
Deng H, Cao H, Wang Y, Li J, Dai J, Li LF, Qiu HJ, Li S. Viral replication organelles: the highly complex and programmed replication machinery. Front Microbiol 2024; 15:1450060. [PMID: 39144209 PMCID: PMC11322364 DOI: 10.3389/fmicb.2024.1450060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Viral infections usually induce the rearrangement of cellular cytoskeletal proteins and organelle membrane structures, thus creating independent compartments [termed replication organelles (ROs)] to facilitate viral genome replication. Within the ROs, viral replicases, including polymerases, helicases, and ligases, play functional roles during viral replication. These viral replicases are pivotal in the virus life cycle, and numerous studies have demonstrated that the viral replicases could be the potential targets for drugs development. Here, we summarize primarily the key replicases within viral ROs and emphasize the advancements of antiviral drugs targeting crucial viral replicases, providing novel insights into the future development of antiviral strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Saha O, Siddiquee NH, Akter R, Sarker N, Bristi UP, Sultana KF, Remon SMLR, Sultana A, Shishir TA, Rahaman MM, Ahmed F, Hossen F, Amin MR, Akter MS. Antiviral Activity, Pharmacoinformatics, Molecular Docking, and Dynamics Studies of Azadirachta indica Against Nipah Virus by Targeting Envelope Glycoprotein: Emerging Strategies for Developing Antiviral Treatment. Bioinform Biol Insights 2024; 18:11779322241264145. [PMID: 39072258 PMCID: PMC11283663 DOI: 10.1177/11779322241264145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
The Nipah virus (NiV) belongs to the Henipavirus genus is a serious public health concern causing numerous outbreaks with higher fatality rate. Unfortunately, there is no effective medication available for NiV. To investigate possible inhibitors of NiV infection, we used in silico techniques to discover treatment candidates in this work. As there are not any approved treatments for NiV infection, the NiV-enveloped attachment glycoprotein was set as target for our study, which is responsible for binding to and entering host cells. Our in silico drug design approach included molecular docking, post-docking molecular mechanism generalised born surface area (MM-GBSA), absorption, distribution, metabolism, excretion/toxicity (ADME/T), and molecular dynamics (MD) simulations. We retrieved 418 phytochemicals associated with the neem plant (Azadirachta indica) from the IMPPAT database, and molecular docking was used to ascertain the compounds' binding strength. The top 3 phytochemicals with binding affinities of -7.118, -7.074, and -6.894 kcal/mol for CIDs 5280343, 9064, and 5280863, respectively, were selected for additional study based on molecular docking. The post-docking MM-GBSA of those 3 compounds was -47.56, -47.3, and -43.15 kcal/mol, respectively. As evidence of their efficacy and safety, all the chosen drugs had favorable toxicological and pharmacokinetic (Pk) qualities. We also performed MD simulations to confirm the stability of the ligand-protein complex structures and determine whether the selected compounds are stable at the protein binding site. All 3 phytochemicals, Quercetin (CID: 5280343), Cianidanol (CID: 9064), and Kaempferol (CID: 5280863), appeared to have outstanding binding stability to the target protein than control ribavirin, according to the molecular docking, MM-GBSA, and MD simulation outcomes. Overall, this work offers a viable approach to developing novel medications for treating NiV infection.
Collapse
Affiliation(s)
- Otun Saha
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Noimul Hasan Siddiquee
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Rahima Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Nikkon Sarker
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Uditi Paul Bristi
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - SM Lutfor Rahman Remon
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Afroza Sultana
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Tushar Ahmed Shishir
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Foysal Hossen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mohammad Ruhul Amin
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mir Salma Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Xu T, Zhang L. Current understanding of nucleoside analogs inhibiting the SARS-CoV-2 RNA-dependent RNA polymerase. Comput Struct Biotechnol J 2023; 21:4385-4394. [PMID: 37711189 PMCID: PMC10498173 DOI: 10.1016/j.csbj.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Since the outbreak of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) has become a main target for antiviral therapeutics due to its essential role in viral replication and transcription. Thus, nucleoside analogs structurally resemble the natural RdRp substrate and hold great potential as inhibitors. Until now, extensive experimental investigations have been performed to explore nucleoside analogs to inhibit the RdRp, and concerted efforts have been made to elucidate the underlying molecular mechanisms further. This review begins by discussing the nucleoside analogs that have demonstrated inhibition in the experiments. Second, we examine the current understanding of the molecular mechanisms underlying the action of nucleoside analogs on the SARS-CoV-2 RdRp. Recent findings in structural biology and computational research are presented through the classification of inhibitory mechanisms. This review summarizes previous experimental findings and mechanistic investigations of nucleoside analogs inhibiting SARS-CoV-2 RdRp. It would guide the rational design of antiviral medications and research into viral transcriptional mechanisms.
Collapse
Affiliation(s)
- Tiantian Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Fujian 361005, China
| |
Collapse
|
4
|
D'Addiego J, Elaldi N, Wand N, Osman K, Bagci BK, Kennedy E, Pektas AN, Hart E, Slack G, Hewson R. Investigating the effect of ribavirin treatment on genetic mutations in Crimean-Congo haemorrhagic fever virus (CCHFV) through next-generation sequencing. J Med Virol 2023; 95:e28548. [PMID: 36734067 DOI: 10.1002/jmv.28548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is the most widespread tick-borne viral haemorrhagic fever affecting humans, and yet a licensed drug against the virus (CCHFV) is still not available. While several studies have suggested the efficacy of ribavirin against CCHFV, current literature remains inconclusive. In this study, we have utilised next-generation sequencing to investigate the mutagenic effect of ribavirin on the CCHFV genome during clinical disease. Samples collected from CCHF patients receiving ribavirin treatment or supportive care only at Sivas Cumhuriyet University Hospital, Turkey, were analysed. By comparing the frequency of mutations in each group, we found little evidence of an overall mutagenic effect. This suggests that ribavirin, administered at the acute stages of CCHFV infection (at the World Health Organization-recommended dose) is unable to induce lethal mutagenesis that would cause an extinction event in the CCHFV population and reduce viremia.
Collapse
Affiliation(s)
- Jake D'Addiego
- UK Health Security Agency, Salisbury, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nazif Elaldi
- Department of Infectious Diseases and Clinical Microbiology, Sivas Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | | | | | - Binnur Koksal Bagci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Ayse Nur Pektas
- Cumhuriyet University Advanced Technology Application and Research Center (CUTAM), Sivas Cumhuriyet University, Sivas, Turkey
| | | | | | - Roger Hewson
- UK Health Security Agency, Salisbury, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
5
|
Cancela F, Rendon-Marin S, Quintero-Gil C, Houston DR, Gumbis G, Panzera Y, Pérez R, Arbiza J, Mirazo S. Modelling of Hepatitis E virus RNA-dependent RNA polymerase genotype 3 from a chronic patient and in silico interaction analysis by molecular docking with Ribavirin. J Biomol Struct Dyn 2023; 41:705-721. [PMID: 34861797 DOI: 10.1080/07391102.2021.2011416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepatitis E Virus (HEV) infection is an emergent zoonotic disease, where chronic hepatitis E associated to solid organ transplant (SOT) recipients, related to genotype 3, is the clinical manifestation of major concern. In this setting, ribavirin (RBV) treatment is the only available therapy, though drug-resistant variants could emerge leading to a therapeutic failure. Crystallographic structures have not been reported for most of the HEV proteins, including the RNA-polymerase (RdRp). Therefore, the mechanism of action of RBV against HEV and the molecular interactions between this drug and RdRp are largely unknown. In this work, we aimed to model in silico the 3 D structure of a novel HEV3 RdRp (HEV_C1_Uy) from a chronically HEV infected-SOT recipient treated with RBV and to perform a molecular docking simulation between RBV triphosphate (RBVT), 7-methyl-guanosine-5'-triphosphate and the modelled protein. The models were generated using I-TASSER server and validated with multiple bioinformatics tools. The docking analysis were carried out with AutoDock Vina and LeDock software. We obtained a suitable model for HEV_C1_Uy (C-Score=-1.33, RMSD = 10.4 ± 4.6 Å). RBVT displayed a binding affinity of -7.6 ± 0.2 Kcal/mol by molecular docking, mediated by 6 hydrogen-bonds (Q195-O14, S198-O11, E257-O13, S260-O2, O3, S311-O11) between the finger's-palm-domains and a free binding energy of 31.26 ± 16.81 kcal/mol by molecular dynamics simulations. We identified the possible HEV RdRp interacting region for incoming nucleotides or analogs and provide novel insights that will contribute to better understand the molecular interactions of RBV and the enzyme and the mechanism of action of this antiviral drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Florencia Cancela
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Bucaramanga, Bucaramanga, Colombia
| | - Carolina Quintero-Gil
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Bucaramanga, Bucaramanga, Colombia
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, The University of Edinburgh, Edinburgh, UK
| | - Gediminas Gumbis
- Institute of Quantitative Biology, Biochemistry and Biotechnology, The University of Edinburgh, Edinburgh, UK
| | - Yanina Panzera
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Juan Arbiza
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mirazo
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
Shannon A, Canard B. Kill or corrupt: Mechanisms of action and drug-resistance of nucleotide analogues against SARS-CoV-2. Antiviral Res 2023; 210:105501. [PMID: 36567022 PMCID: PMC9773703 DOI: 10.1016/j.antiviral.2022.105501] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Nucleoside/tide analogues (NAs) have long been used in the fight against viral diseases, and now present a promising option for the treatment of COVID-19. Once activated to the 5'-triphosphate state, NAs act by targeting the viral RNA-dependent RNA-polymerase for incorporation into the viral RNA genome. Incorporated analogues can either 'kill' (terminate) synthesis, or 'corrupt' (genetically or chemically) the RNA. Against coronaviruses, the use of NAs has been further complicated by the presence of a virally encoded exonuclease domain (nsp14) with proofreading and repair capacities. Here, we describe the mechanism of action of four promising anti-COVID-19 NAs; remdesivir, molnupiravir, favipiravir and bemnifosbuvir. Their distinct mechanisms of action best exemplify the concept of 'killers' and 'corruptors'. We review available data regarding their ability to be incorporated and excised, and discuss the specific structural features that dictate their overall potency, toxicity, and mutagenic potential. This should guide the synthesis of novel analogues, lend insight into the potential for resistance mutations, and provide a rational basis for upcoming combinations therapies.
Collapse
Affiliation(s)
- Ashleigh Shannon
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille, Cedex 09, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille, Cedex 09, France.
| |
Collapse
|
7
|
Luo X, Wang X, Yao Y, Gao X, Zhang L. Unveiling the "Template-Dependent" Inhibition on the Viral Transcription of SARS-CoV-2. J Phys Chem Lett 2022; 13:7197-7205. [PMID: 35912566 PMCID: PMC9363016 DOI: 10.1021/acs.jpclett.2c01314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Remdesivir is one nucleotide analogue prodrug capable to terminate RNA synthesis in SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) by two distinct mechanisms. Although the "delayed chain termination" mechanism has been extensively investigated, the "template-dependent" inhibitory mechanism remains elusive. In this study, we have demonstrated that remdesivir embedded in the template strand seldom directly disrupted the complementary NTP incorporation at the active site. Instead, the translocation of remdesivir from the +2 to the +1 site was hindered due to the steric clash with V557. Moreover, we have elucidated the molecular mechanism characterizing the drug resistance upon V557L mutation. Overall, our studies have provided valuable insight into the "template-dependent" inhibitory mechanism exerted by remdesivir on SARS-CoV-2 RdRp and paved venues for an alternative antiviral strategy for the COVID-19 pandemic. As the "template-dependent" inhibition occurs across diverse viral RdRps, our findings may also shed light on a common acting mechanism of inhibitors.
Collapse
Affiliation(s)
- Xueying Luo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002 Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaowei Wang
- Department
of Chemical and Biological Engineering, Department of Mathematics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yuan Yao
- Department
of Mathematics, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xin Gao
- Computer
Science Program, Computer, Electrical and Mathematical Sciences and
Engineering (CEMSE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002 Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100049 Beijing, China
- Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, 361005 Fujian, China
| |
Collapse
|
8
|
Kumar A, Kumar D, Jose J, Giri R, Mysorekar IU. Drugs to limit Zika virus infection and implication for maternal-fetal health. FRONTIERS IN VIROLOGY 2022; 2. [PMID: 37064602 PMCID: PMC10104533 DOI: 10.3389/fviro.2022.928599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the placenta has robust defense mechanisms that protect the fetus from a viral infection, some viruses can manipulate or evade these mechanisms and disrupt physiology or cross the placental barrier. It is well established that the Zika virus is capable of vertical transmission from mother to fetus and can cause malformation of the fetal central nervous system (i.e., microcephaly), as well as Guillain-Barre syndrome in adults. This review seeks to gather and assess the contributions of translational research associated with Zika virus infection, including maternal-fetal vertical transmission of the virus. Nearly 200 inhibitors that have been evaluated in vivo and/or in vitro for their therapeutic properties against the Zika virus are summarized in this review. We also review the status of current vaccine candidates. Our main objective is to provide clinically relevant information that can guide future research directions and strategies for optimized treatment and preventive care of infections caused by Zika virus or similar pathogens.
Collapse
Affiliation(s)
- Ankur Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, State College, United States
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- CORRESPONDENCE Indira U. Mysorekar,
| |
Collapse
|
9
|
Salam AP, Duvignaud A, Jaspard M, Malvy D, Carroll M, Tarning J, Olliaro PL, Horby PW. Ribavirin for treating Lassa fever: A systematic review of pre-clinical studies and implications for human dosing. PLoS Negl Trop Dis 2022; 16:e0010289. [PMID: 35353804 PMCID: PMC9000057 DOI: 10.1371/journal.pntd.0010289] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/11/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Ribavirin is currently the standard of care for treating Lassa fever. However, the human clinical trial data supporting its use suffer from several serious flaws that render the results and conclusions unreliable. We performed a systematic review of available pre-clinical data and human pharmacokinetic data on ribavirin in Lassa. In in-vitro studies, the EC50 of ribavirin ranged from 0.6 μg/ml to 21.72 μg/ml and the EC90 ranged from 1.5 μg/ml to 29 μg/ml. The mean EC50 was 7 μg/ml and the mean EC90 was 15 μg/ml. Human PK data in patients with Lassa fever was sparse and did not allow for estimation of concentration profiles or pharmacokinetic parameters. Pharmacokinetic modelling based on healthy human data suggests that the concentration profiles of current ribavirin regimes only exceed the mean EC50 for less than 20% of the time and the mean EC90 for less than 10% of the time, raising the possibility that the current ribavirin regimens in clinical use are unlikely to reliably achieve serum concentrations required to inhibit Lassa virus replication. The results of this review highlight serious issues with the evidence, which, by today standards, would be unlikely to support the transition of ribavirin from pre-clinical studies to human clinical trials. Additional pre-clinical studies are needed before embarking on expensive and challenging clinical trials of ribavirin in Lassa fever.
Collapse
Affiliation(s)
- Alex P. Salam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- United Kingdom Public Health Rapid Support Team, London, United Kingdom
| | - Alexandre Duvignaud
- Department of Infectious Diseases and Tropical Medicine, Division of Tropical Medicine and Clinical International Health, CHU de Bordeaux, Bordeaux, France
- UMR1219, INSERM, French National Research Institute for Sustainable Development (IRD), and University of Bordeaux, Bordeaux, France
- Programme PAC-CI/ANRS Research Center, CHU de Treichville, Abidjan, Côte d’Ivoire
| | - Marie Jaspard
- UMR1219, INSERM, French National Research Institute for Sustainable Development (IRD), and University of Bordeaux, Bordeaux, France
- Programme PAC-CI/ANRS Research Center, CHU de Treichville, Abidjan, Côte d’Ivoire
- Alliance for International Medical Action, Dakar, Senegal
| | - Denis Malvy
- Department of Infectious Diseases and Tropical Medicine, Division of Tropical Medicine and Clinical International Health, CHU de Bordeaux, Bordeaux, France
- UMR1219, INSERM, French National Research Institute for Sustainable Development (IRD), and University of Bordeaux, Bordeaux, France
- Programme PAC-CI/ANRS Research Center, CHU de Treichville, Abidjan, Côte d’Ivoire
| | - Miles Carroll
- Wellcome Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joel Tarning
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Piero L. Olliaro
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter W. Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Liatsos GD. Controversies’ clarification regarding ribavirin efficacy in measles and coronaviruses: Comprehensive therapeutic approach strictly tailored to COVID-19 disease stages. World J Clin Cases 2021; 9:5135-5178. [PMID: 34307564 PMCID: PMC8283580 DOI: 10.12998/wjcc.v9.i19.5135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/01/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ribavirin is a broad-spectrum nucleoside antiviral drug with multimodal mechanisms of action, which supports its longevity and quality as a clinical resource. It has been widely administered for measles and coronavirus infections. Despite the large amount of data concerning the use of ribavirin alone or in combination for measles, severe acute respiratory syndrome, Middle East respiratory syndrome, and coronavirus disease 2019 (COVID-19) outbreaks, the conclusions of these studies have been contradictory. Underlying reasons for these discrepancies include possible study design inaccuracies and failures and misinterpretations of data, and these potential confounds should be addressed.
AIM To determine the confounding factors of ribavirin treatment studies and propose a therapeutic scheme for COVID-19.
METHODS PubMed database was searched over a period of five decades utilizing the terms “ribavirin” alone or combined with other compounds in measles, severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19 infections. The literature search was performed and described according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Articles were considered eligible when they reported on ribavirin dose regimens and/or specified outcomes concerning its efficacy and/or possible adverse-effects. In vitro and animal studies were also retrieved. A chapter on ribavirin’s pharmacology was included as well.
RESULTS In addition to the difficulties and pressures of an emerging pandemic, there is the burden of designing and conducting well-organized, double-blind, randomized controlled trials. Many studies have succumbed to specific pitfalls, one of which was identified in naturally ribavirin-resistant Vero cell lines in in vitro studies. Other pitfalls include study design inconsistent with the well-established clinical course of disease; inappropriate pharmacology of applied treatments; and the misinterpretation of study results with misconceived generalizations. A comprehensive treatment for COVID-19 is proposed, documented by thorough, long-term investigation of ribavirin regimens in coronavirus infections.
CONCLUSION A comprehensive treatment strictly tailored to distinct disease stages was proposed based upon studies on ribavirin and coronavirus infections.
Collapse
Affiliation(s)
- George D Liatsos
- Department of Internal Medicine, "Hippokration" General Hospital, Athens 11527, Attiki, Greece
| |
Collapse
|
11
|
Geraghty RJ, Aliota MT, Bonnac LF. Broad-Spectrum Antiviral Strategies and Nucleoside Analogues. Viruses 2021; 13:667. [PMID: 33924302 PMCID: PMC8069527 DOI: 10.3390/v13040667] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023] Open
Abstract
The emergence or re-emergence of viruses with epidemic and/or pandemic potential, such as Ebola, Zika, Middle East Respiratory Syndrome (MERS-CoV), Severe Acute Respiratory Syndrome Coronavirus 1 and 2 (SARS and SARS-CoV-2) viruses, or new strains of influenza represents significant human health threats due to the absence of available treatments. Vaccines represent a key answer to control these viruses. However, in the case of a public health emergency, vaccine development, safety, and partial efficacy concerns may hinder their prompt deployment. Thus, developing broad-spectrum antiviral molecules for a fast response is essential to face an outbreak crisis as well as for bioweapon countermeasures. So far, broad-spectrum antivirals include two main categories: the family of drugs targeting the host-cell machinery essential for virus infection and replication, and the family of drugs directly targeting viruses. Among the molecules directly targeting viruses, nucleoside analogues form an essential class of broad-spectrum antiviral drugs. In this review, we will discuss the interest for broad-spectrum antiviral strategies and their limitations, with an emphasis on virus-targeted, broad-spectrum, antiviral nucleoside analogues and their mechanisms of action.
Collapse
Affiliation(s)
- Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA;
| | - Laurent F. Bonnac
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
12
|
Zheng K, Wu SZ, Lv YW, Pang P, Deng L, Xu HC, Shi YC, Chen XY. Carvacrol inhibits the excessive immune response induced by influenza virus A via suppressing viral replication and TLR/RLR pattern recognition. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113555. [PMID: 33152425 DOI: 10.1016/j.jep.2020.113555] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carvacrol, a monoterpene phenol from Mosla chinensis Maxim, which is a commonly Chinese herbal medicine. The most important pharmacology of it is dispelling exogenous evils by increasing perspiration. And it is the gentleman medicine in the Chinese herbal compound prescription of Xin-Jia-Xiang-Ru-Yin, mainly for the treatment of summer colds with dampness including influenza virus A infection. AIM OF THE STUDY Our preliminary study verified that the Xin-Jia-Xiang-Ru-Yin could inhibit acute lung injury of mice with influenza virus A infection. And there have been some reports implicating the high antimicrobial activity of carvacrol for a wide range of product preservation, but little research including the effects of it on viral infection. The aim of this study was to reveal the antiviral effects of carvacrol, the main constituent in Mosla chinensis Maxim. MATERIALS AND METHODS Initially, C57BL/6 mice were grouped and intranasally administered FM1 virus to construct viral infection models. After treatment with ribavirin and carvacrol for 5 days, all mice were euthanized, and specimens were immediately obtained. Histology, flow cytometry and Meso Scale Discovery (MSD) analysis were used to analyze pathological changes in lung tissue, the expression levels of cytokines and the differentiation and proportion of CD4+ T cells subsets, while Western blot and qRT-PCR were used to detect the expression of related proteins and mRNA. RESULTS Carvacrol attenuated lung tissue damage, the proportions of Th1, Th2, Th17 and Treg in CD4+ T cells and the relative proportions of Th1/Th2 and Th17/Treg cells. Carvacrol inhibited the expression of inflammation-associated cytokines including IFN-γ, IL-2, IL-4, IL-5, IL-12 and TNF-ɑ, IL-1, IL-10, IL-6. Decreased levels of TLR7, MyD88, IRAK4, TRAK6, NF-κB, RIG-I, IPS-I and IRF mRNA in carvacrol-treated mice were observed comparing to the mice in VC group. Further, the total expression of RIG-I, MyD88 and NF-κB proteins had increased significantly in the VC group but reduced obviously in the group treated with ribavirin or carvacrol. CONCLUSIONS These results indicate that carvacrol is a potential alternative treatment for the excessive immune response induced by influenza virus A infection, the cold-fighting effect of Mosla chinensis Maxim may depend on the anti-virus of carvacrol.
Collapse
Affiliation(s)
- Ke Zheng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China; The Hospital of the People's Liberation Army's 83rd Group, Xinxiang, China.
| | - Si-Zhi Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Yi-Wen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Peng Pang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Hua-Chong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Yu-Cong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Xiao-Yin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
13
|
Kumar R, Mishra S, Shreya, Maurya SK. Recent advances in the discovery of potent RNA-dependent RNA-polymerase (RdRp) inhibitors targeting viruses. RSC Med Chem 2021; 12:306-320. [PMID: 34046618 PMCID: PMC8130609 DOI: 10.1039/d0md00318b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022] Open
Abstract
WHO has declared COVID-19 a pandemic, which has affected the whole world and has caused unprecedented social and economic disruption. Since the emergence of the disease, several druggable targets have been suggested including 3-chymotrypsin-like protease (3CLpro), spike, RNA-dependent RNA polymerase (RdRp), and the papain-like protease (PLpro) computational approach. From the beginning, viral replication has been the main focus for any antiviral drug development for viral diseases, including HCV, influenza virus, zika virus, norovirus, measles, dengue virus, and coronaviruses. This review lists the nucleoside, nucleotide, and non-nucleoside RdRp inhibitor analogues of various viral diseases that may be evaluated for drug development to treat COVID-19.
Collapse
Affiliation(s)
- Rahul Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh-176 061 India
- Academy of Scientific and Innovative Research, CSIR-HRDC Ghaziabad Uttar Pradesh 201 002 India
| | - Sahil Mishra
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh-176 061 India
| | - Shreya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh-176 061 India
| | - Sushil K Maurya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh-176 061 India
- Academy of Scientific and Innovative Research, CSIR-HRDC Ghaziabad Uttar Pradesh 201 002 India
| |
Collapse
|
14
|
Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzymes 2021; 49:315-354. [PMID: 34696837 PMCID: PMC8517576 DOI: 10.1016/bs.enz.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.
Collapse
Affiliation(s)
- Kieran Maheden
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Brendan Todd
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
15
|
Tchesnokov EP, Gordon CJ, Woolner E, Kocinkova D, Perry JK, Feng JY, Porter DP, Götte M. Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action. J Biol Chem 2020; 295:16156-16165. [PMID: 32967965 PMCID: PMC7681019 DOI: 10.1074/jbc.ac120.015720] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/09/2020] [Indexed: 12/29/2022] Open
Abstract
Remdesivir (RDV) is a direct-acting antiviral agent that is used to treat patients with severe coronavirus disease 2019 (COVID-19). RDV targets the viral RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have previously shown that incorporation of the active triphosphate form of RDV (RDV-TP) at position i causes delayed chain termination at position i + 3. Here we demonstrate that the S861G mutation in RdRp eliminates chain termination, which confirms the existence of a steric clash between Ser-861 and the incorporated RDV-TP. With WT RdRp, increasing concentrations of NTP pools cause a gradual decrease in termination and the resulting read-through increases full-length product formation. Hence, RDV residues could be embedded in copies of the first RNA strand that is later used as a template. We show that the efficiency of incorporation of the complementary UTP opposite template RDV is compromised, providing a second opportunity to inhibit replication. A structural model suggests that RDV, when serving as the template for the incoming UTP, is not properly positioned because of a significant clash with Ala-558. The adjacent Val-557 is in direct contact with the template base, and the V557L mutation is implicated in low-level resistance to RDV. We further show that the V557L mutation in RdRp lowers the nucleotide concentration required to bypass this template-dependent inhibition. The collective data provide strong evidence to show that template-dependent inhibition of SARS-CoV-2 RdRp by RDV is biologically relevant.
Collapse
Affiliation(s)
- Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Emma Woolner
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocinkova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Joy Y Feng
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Ali MJ, Hanif M, Haider MA, Ahmed MU, Sundas FNU, Hirani A, Khan IA, Anis K, Karim AH. Treatment Options for COVID-19: A Review. Front Med (Lausanne) 2020; 7:480. [PMID: 32850922 PMCID: PMC7412857 DOI: 10.3389/fmed.2020.00480] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The recent COVID-19 pandemic sweeping the globe has caused great concern worldwide. Due to the limited evidence available on the dynamics of the virus and effective treatment options available, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a huge impact in terms of morbidity and mortality. The economic impact is still to be assessed. Aims: The purpose of this article is to review the evidence for the multiple treatment options available, to consider the future of this global pandemic, and to identify some potential options that could revolutionize the treatment of COVID-19. Moreover, this article underscores the sheer importance of repurposing some of the available antiviral and antimicrobial agents that have long been in use so as to have an effective and expeditious response to this widespread pandemic and the need to conduct a multicenter global randomized controlled trial to find an effective single antiviral agent or a cocktail of available antimicrobial agents. Method: We thoroughly searched and reviewed various case reports, retrospective analyses, and in vitro studies published in PubMed, EMBASE, and Google Scholar regarding the treatment options used for SARS-CoV, MERS-CoV, and SARS-CoV-2 since its outbreak in an attempt to highlight treatments with the most promising results. Conclusion: We are currently facing one of the worst pandemics in history. Although SARS-CoV-2 is associated with a lower mortality rate than are SARS-CoV and MERS-CoV, its higher infectivity is making it a far more serious threat. Unfortunately, no vaccine against SARS-CoV-2 or effective drug regimen for COVID-19 currently exists. Drug repurposing of available antiviral agents may provide a respite; moreover, a cocktail of antiviral agents may be helpful in treating this disease. Here, we have highlighted a few available antimicrobial agents that could be very effective in treating COVID-19; indeed, a number of trials are underway to detect and confirm the efficacy of these agents.
Collapse
Affiliation(s)
- Mukarram Jamat Ali
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Muhammad Hanif
- Department of Medicine, Khyber Medical College, Peshawar, Pakistan
| | | | | | - FNU Sundas
- Department of Medicine, Khyber Medical College, Peshawar, Pakistan
| | - Arham Hirani
- Department of Medicine, Ziauddin University, Karachi, Pakistan
| | - Izhan Ali Khan
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Khurram Anis
- Department of Gastroenterology, Pakistan Kidney and Liver Institute, Lahore, Pakistan
| | - Amin H. Karim
- Department of Cardiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Tchesnokov EP, Bailey-Elkin BA, Mark BL, Götte M. Independent inhibition of the polymerase and deubiquitinase activities of the Crimean-Congo Hemorrhagic Fever Virus full-length L-protein. PLoS Negl Trop Dis 2020; 14:e0008283. [PMID: 32497085 PMCID: PMC7271988 DOI: 10.1371/journal.pntd.0008283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/09/2020] [Indexed: 11/17/2022] Open
Abstract
Background The Crimean-Congo hemorrhagic fever virus (CCHFV) is a segmented negative-sense RNA virus that can cause severe human disease. The World Health Organization (WHO) has listed CCHFVas a priority pathogen with an urgent need for enhanced research activities to develop effective countermeasures. Here we adopted a biochemical approach that targets the viral RNA-dependent RNA polymerase (RdRp). The CCHFV RdRp activity is part of a multifunctional L protein that is unusually large with a molecular weight of ~450 kDa. The CCHFV L-protein also contains an ovarian tumor (OTU) domain that exhibits deubiquitinating (DUB) activity, which was shown to interfere with innate immune responses and viral replication. We report on the expression, characterization and inhibition of the CCHFV full-length L-protein and studied both RNA synthesis and DUB activity. Methodology/Principle findings Recombinant full-length CCHFV L protein was expressed in insect cells and purified to near homogeneity using affinity chromatography. RdRp activity was monitored with model primer/templates during elongation in the presence of divalent metal ions. We observed a 14-mer full length RNA product as well as the expected shorter products when omitting certain nucleotides from the reaction mixture. The D2517N mutation of the putative active site rendered the enzyme inactive. Inhibition of RNA synthesis was studies with the broad-spectrum antivirals ribavirin and favipiravir that mimic nucleotide substrates. The triphosphate form of these compounds act like ATP or GTP; however, incorporation of ATP or GTP is markedly favored over the inhibitors. We also studied the effects of bona fide nucleotide analogues 2’-deoxy-2’-fluoro-CTP (FdC) and 2’-deoxy-2’-amino-CTP and demonstrate increased inhibitory effects due to higher rates of incorporation. We further show that the CCHFV L full-length protein and the isolated OTU domain cleave Lys48- and Lys63-linked polyubiqutin chains. Moreover, the ubiquitin analogue CC.4 inhibits the CCHFV-associated DUB activity of the full-length L protein and the isolated DUB domain to a similar extent. Inhibition of DUB activity does not affect elongation of RNA synthesis, and inhibition of RNA synthesis does not affect DUB activity. Both domains are functionally independent under these conditions. Conclusions/Significance The requirements for high biosafety measures hamper drug discovery and development efforts with infectious CCHFV. The availability of full-length CCHFV L-protein provides an important tool in this regard. High-throughput screening (HTS) campaigns are now feasible. The same enzyme preparations can be employed to identify novel polymerase and DUB inhibitors. The tick-born Crimean-Congo hemorrhagic fever virus (CCHFV) causes severe human disease with high fatality rates. Outbreaks have been documented in a large geographic area from Africa to Asia. Unfortunately, vaccines that would prevent infection with the virus or antiviral drugs that can be administered for disease treatment are not available. Biosafety requirements further impede research in this area. The development of biochemical tools could potentially address this problem. Here we have expressed recombinant viral L-protein in insect cells. The L-protein is unusually large and exhibits RNA synthesis and deubiquitinating activities that are required for efficient viral growth. We have demonstrated that two distinct activities can be monitored in biochemical assays. Inhibition of these activities was shown with prototypic compounds. Hence, the purified L-protein provides an attractive target and tool for future drug discovery and development efforts.
Collapse
Affiliation(s)
- Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Li Ka Shing Institute of Virology at University of Alberta, Edmonton, Alberta, Canada
| | | | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Li Ka Shing Institute of Virology at University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, Götte M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 2020; 295:6785-6797. [PMID: 32284326 PMCID: PMC7242698 DOI: 10.1074/jbc.ra120.013679] [Citation(s) in RCA: 697] [Impact Index Per Article: 139.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2′-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Emma Woolner
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jason K Perry
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Joy Y Feng
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Danielle P Porter
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada .,Gilead Sciences, Inc., Foster City, California 94404
| |
Collapse
|
19
|
|
20
|
Mejer N, Galli A, Ramirez S, Fahnøe U, Benfield T, Bukh J. Ribavirin inhibition of cell-culture infectious hepatitis C genotype 1-3 viruses is strain-dependent. Virology 2019; 540:132-140. [PMID: 31778898 DOI: 10.1016/j.virol.2019.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
Ribavirin remains relevant for successful treatment of chronic hepatitis C virus (HCV) infections in low-income settings, as well as for therapy of difficult-to-treat HCV patients. We studied the effect of ribavirin against cell-culture adapted HCV of genotypes 1, 2 and 3, representing ~80% of global infections. TNcc(1a) was the most sensitive to ribavirin, while J6/JFH1(2a) was the most resistant. EC50s ranged from 21 μM (95%CI: 20-22 μM) to 189 μM (95%CI: 173-207 μM). Substitutions at position 415 of NS5B resulted in little or no change to ribavirin sensitivity (0.7-0.9 fold) but conferred moderate drug resistance during extended treatment of genotype 1 (1.8-fold). NS5A and NS5B sequences could alter ribavirin sensitivity 2-4-fold, although their contribution was not simply additive. Finally, we detected limited accumulation of mutations associated with ribavirin treatment. Our findings show that the antiviral effect of ribavirin on HCV is strain-dependent and is influenced by the specific sequence of multiple HCV nonstructural proteins.
Collapse
Affiliation(s)
- Niels Mejer
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Andrea Galli
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark.
| |
Collapse
|
21
|
Development of a fluorescence-based method for the rapid determination of Zika virus polymerase activity and the screening of antiviral drugs. Sci Rep 2019; 9:5397. [PMID: 30932009 PMCID: PMC6444013 DOI: 10.1038/s41598-019-41998-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) is an emerging pathogen that has been associated with large numbers of cases of severe neurologic disease, including Guillain-Barré syndrome and microcephaly. Despite its recent establishment as a serious global public health concern there are no licensed therapeutics to control this virus. Accordingly, there is an urgent need to develop methods for the high-throughput screening of antiviral agents. We describe here a fluorescence-based method to monitor the real-time polymerization activity of Zika virus RNA-dependent RNA polymerase (RdRp). By using homopolymeric RNA template molecules, de novo RNA synthesis can be detected with a fluorescent dye, which permits the specific quantification and kinetics of double-strand RNA formation. ZIKV RdRp activity detected using this fluorescence-based assay positively correlated with traditional assays measuring the incorporation of radiolabeled nucleotides. We also validated this method as a suitable assay for the identification of ZIKV inhibitors targeting the viral polymerase using known broad-spectrum inhibitors. The assay was also successfully adapted to detect RNA polymerization activity by different RdRps, illustrated here using purified RdRps from hepatitis C virus and foot-and-mouth disease virus. The potential of fluorescence-based approaches for the enzymatic characterization of viral polymerases, as well as for high-throughput screening of antiviral drugs, are discussed.
Collapse
|
22
|
Nyström K, Waldenström J, Tang KW, Lagging M. Ribavirin: pharmacology, multiple modes of action and possible future perspectives. Future Virol 2019. [DOI: 10.2217/fvl-2018-0166] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribavirin is a unique guanosine analog with broad-spectrum activity against many RNA and DNA viruses. In addition to its mutational properties, ribavirin exerts extensive perturbation of cellular and viral gene expression. Furthermore, recent advances indicate that the impact of ribavirin on divergent cellular and viral pathways may be concentration dependent. This review aims at providing an overview of the pharmacology and multiple modes of action of ribavirin as well as pointing to possible novel future uses.
Collapse
Affiliation(s)
- Kristina Nyström
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Västra Götaland Region, Sweden
| | - Jesper Waldenström
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Västra Götaland Region, Sweden
| | - Ka-Wei Tang
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Västra Götaland Region, Sweden
| | - Martin Lagging
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Västra Götaland Region, Sweden
| |
Collapse
|
23
|
Yu ML, Hung CH, Huang YH, Peng CY, Lin CY, Cheng PN, Chien RN, Hsu SJ, Liu CH, Huang CF, Su CW, Huang JF, Liu CJ, Kao JH, Chuang WL, Chen PJ, Chen DS. Efficacy and safety of 12 weeks of daclatasvir, asunaprevir plus ribavirin for HCV genotype-1b infection without NS5A resistance-associated substitutions. J Formos Med Assoc 2019; 118:556-564. [PMID: 30527566 DOI: 10.1016/j.jfma.2018.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/PURPOSE Treatment with daclatasvir plus asunaprevir (DCV + ASV) for 24 weeks provided a sustained virologic response (SVR) rate of over 90% in hepatitis C virus genotype 1b (HCV-1b) infected patients without non-structural 5A (NS5A) resistance-associated substitutions (RASs) at the L31 and Y93 sites. In this study, we investigated whether adding ribavirin to the DCV + ASV combination could shorten the original treatment regimen to 12 weeks without compromising the treatment efficacy for HCV-1b patients without NS5A RASs. METHODS In the prospective, open-label, single-arm, nationwide multi-center phase III study, a total of 70 interferon-naïve or interferon-experienced HCV-1b patients without baseline L31/Y93 RASs received daclatasvir (60 mg/day) and asunaprevir (100 mg twice daily) plus weight-based ribavirin (1000-1200 mg/day) for 12 weeks, with a 12-week post-treatment follow-up. The primary end-point was the rate of undetectable HCV RNA 12 weeks post-treatment (SVR12). RESULTS The SVR12 rate was 97.1% (68/70) and 100% (68/68) in the full-analysis-set and the per-protocol population, respectively. None of the 68 patients who completed the 12-week treatment experienced relapse during post-treatment follow-up. Two patients withdrew from the study at treatment days 21 and 34 due to anorexia and fatigue, which were considered ribavirin-related and resolved post medication cessation. A total of 4 serious adverse events were reported and considered treatment-unrelated. No deaths or grade 4 adverse events requiring hospitalization was observed throughout the study. CONCLUSION Truncated regimen of DCV + ASV plus ribavirin for 12 weeks was highly effective and safe in HCV-1b patients without NS5A L31/Y93 RAS.
Collapse
Affiliation(s)
- Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao-Hung Hung
- Division of Hepatogastroenterology, Department of Internal Medicine, ChiaYi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Yuan Peng
- Division of Hepatology and Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Yen Lin
- Division of Hepatology, Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taiwan
| | - Pin-Nan Cheng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Rong-Nan Chien
- Division of Hepatology, Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taiwan
| | - Shih-Jer Hsu
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yunlin, Taiwan
| | - Chen-Hua Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Wei Su
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Jen Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jia-Horng Kao
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Pei-Jer Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ding-Shinn Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
24
|
Rusanov T, Kent T, Saeed M, Hoang TM, Thomas C, Rice CM, Pomerantz RT. Identification of a Small Interface between the Methyltransferase and RNA Polymerase of NS5 that is Essential for Zika Virus Replication. Sci Rep 2018; 8:17384. [PMID: 30478404 PMCID: PMC6255901 DOI: 10.1038/s41598-018-35511-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
The spread of Zika virus (ZIKV) has caused an international health emergency due to its ability to cause microcephaly in infants. Yet, our knowledge of how ZIKV replicates at the molecular level is limited. For example, how the non-structural protein 5 (NS5) performs replication, and in particular whether the N-terminal methytransferase (MTase) domain is essential for the function of the C-terminal RNA-dependent RNA polymerase (RdRp) remains unclear. In contrast to previous reports, we find that MTase is absolutely essential for all activities of RdRp in vitro. For instance, the MTase domain confers stability onto the RdRp elongation complex (EC) and and is required for de novo RNA synthesis and nucleotide incorporation by RdRp. Finally, structure function analyses identify key conserved residues at the MTase-RdRp interface that specifically activate RdRp elongation and are essential for ZIKV replication in Huh-7.5 cells. These data demonstrate the requirement for the MTase-RdRp interface in ZIKV replication and identify a specific site within this region as a potential site for therapeutic development.
Collapse
Affiliation(s)
- Timur Rusanov
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tatiana Kent
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA
| | - Trung M Hoang
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Crystal Thomas
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA
| | - Richard T Pomerantz
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
25
|
Nyström K, Wanrooij PH, Waldenström J, Adamek L, Brunet S, Said J, Nilsson S, Wind-Rotolo M, Hellstrand K, Norder H, Tang KW, Lagging M. Inosine Triphosphate Pyrophosphatase Dephosphorylates Ribavirin Triphosphate and Reduced Enzymatic Activity Potentiates Mutagenesis in Hepatitis C Virus. J Virol 2018; 92:e01087-18. [PMID: 30045981 PMCID: PMC6146798 DOI: 10.1128/jvi.01087-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
A third of humans carry genetic variants of the ITP pyrophosphatase (ITPase) gene (ITPA) that lead to reduced enzyme activity. Reduced ITPase activity was earlier reported to protect against ribavirin-induced hemolytic anemia and to diminish relapse following ribavirin and interferon therapy for hepatitis C virus (HCV) genotype 2 or 3 infections. While several hypotheses have been put forward to explain the antiviral actions of ribavirin, details regarding the mechanisms of interaction between reduced ITPase activity and ribavirin remain unclear. The in vitro effect of reduced ITPase activity was assessed by means of transfection of hepatocytes (Huh7.5 cells) with a small interfering RNA (siRNA) directed against ITPA or a negative-control siRNA in the presence or absence of ribavirin in an HCV culture system. Low ribavirin concentrations strikingly depleted intracellular GTP levels in HCV-infected hepatocytes whereas higher ribavirin concentrations induced G-to-A and C-to-U single nucleotide substitutions in the HCV genome, with an ensuing reduction of HCV RNA expression and HCV core antigen production. Ribavirin triphosphate (RTP) was dephosphorylated in vitro by recombinant ITPase to a similar extent as ITP, a naturally occurring substrate of ITPase, and reducing ITPA expression in Huh 7.5 cells by siRNA increased intracellular levels of RTP in addition to increasing HCV mutagenesis and reducing progeny virus production. Our results extend the understanding of the biological impact of reduced ITPase activity, demonstrate that RTP is a substrate of ITPase, and may point to personalized ribavirin dosage according to ITPA genotype in addition to novel antiviral strategies.IMPORTANCE This study highlights the multiple modes of action of ribavirin, including depletion of intracellular GTP and increased hepatitis C virus mutagenesis. In cell culture, reduced ITP pyrophosphatase (ITPase) enzyme activity affected the intracellular concentrations of ribavirin triphosphate (RTP) and augmented the impact of ribavirin on the mutation rate and virus production. Additionally, our results imply that RTP, similar to ITP, a naturally occurring substrate of ITPase, is dephosphorylated in vitro by ITPase.
Collapse
Affiliation(s)
- Kristina Nyström
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Paulina H Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jesper Waldenström
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ludmila Adamek
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Brunet
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joanna Said
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Kristoffer Hellstrand
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helene Norder
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ka-Wei Tang
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Lagging
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Mejer N, Fahnøe U, Galli A, Ramirez S, Benfield T, Bukh J. Ribavirin-induced mutagenesis across the complete open reading frame of hepatitis C virus genotypes 1a and 3a. J Gen Virol 2018; 99:1066-1077. [PMID: 29927371 DOI: 10.1099/jgv.0.001095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ribavirin (RBV) has been used for the last 20 years to treat patients with chronic hepatitis C virus (HCV) infection. This pluripotent drug is believed to induce mutagenesis in HCV RNA. However, for cell-cultured HCV (HCVcc) this phenomenon has only been investigated in genotype 2a recombinants. Here we studied the mutations that developed in HCVcc of genotypes 1a and 3a treated with RBV or ribavirin triphosphate (RBV-TP) compared to non-treated controls. Analysis was performed on the amplified full-length open reading frame (ORF) of recovered viruses following next-generation sequencing and clonal analyses. Compared to non-treated controls, the spread of TNcc(1a) and DBN3acc(3a) HCVcc was delayed by RBV and RBV-TP at concentrations of 40 µM or higher. The delay in HCVcc spread was associated with increased new single-nucleotide polymorphisms (SNP). Significantly higher numbers of new SNP were observed in TNcc(1a) viruses treated with RBV or RBV-TP compared to matched non-treated controls. RBV or RBV-TP treatment led to significantly increased proportions of new G-to-A and C-to-U SNP compared to non-treated TNcc(1a). Clonal analyses confirmed a significantly increased mutation rate in RBV-treated TNcc(1a). Synonymous pairwise distances increased in both viruses across the complete ORF under RBV and RBV-TP treatment compared to controls. Consensus-shifts in single samples of RBV- or RBV-TP-treated TNcc(1a) viruses occurred in proteins E1, p7, NS3 and NS4B. No non-synonymous consensus changes were observed in DBN3acc(3a). This study supports a biased G-to-A and C-to-U mutagenic effect of RBV and RBV-TP throughout the entire ORF of HCV genotypes 1a and 3a.
Collapse
Affiliation(s)
- Niels Mejer
- 1Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,2Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Ulrik Fahnøe
- 1Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,2Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Andrea Galli
- 1Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,2Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Santseharay Ramirez
- 1Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,2Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Thomas Benfield
- 2Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark.,3Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- 1Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,2Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| |
Collapse
|
27
|
Bertoli A, Sorbo MC, Aragri M, Lenci I, Teti E, Polilli E, Di Maio VC, Gianserra L, Biliotti E, Masetti C, Magni CF, Babudieri S, Nicolini LA, Milana M, Cacciatore P, Sarmati L, Pellicelli A, Paolucci S, Craxì A, Morisco F, Palitti VP, Siciliano M, Coppola N, Iapadre N, Puoti M, Rizzardini G, Taliani G, Pasquazzi C, Andreoni M, Parruti G, Angelico M, Perno CF, Cento V, Ceccherini-Silberstein F. Prevalence of Single and Multiple Natural NS3, NS5A and NS5B Resistance-Associated Substitutions in Hepatitis C Virus Genotypes 1-4 in Italy. Sci Rep 2018; 8:8988. [PMID: 29895871 PMCID: PMC5997636 DOI: 10.1038/s41598-018-26862-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Natural resistance-associated substitutions (RASs) are reported with highly variable prevalence across different HCV genotypes (GTs). Frequency of natural RASs in a large Italian real-life cohort of patients infected with the 4 main HCV-GTs was investigated. NS3, NS5A and NS5B sequences were analysed in 1445 HCV-infected DAA-naïve patients. Sanger-sequencing was performed by home-made protocols on 464 GT1a, 585 GT1b, 92 GT2c, 199 GT3a, 16 GT4a and 99 GT4d samples. Overall, 20.7% (301/1455) of patients showed natural RASs, and the prevalence of multiclass-resistance was 7.3% (29/372 patients analysed). NS3-RASs were particularly common in GT1a and GT1b (45.2-10.8%, respectively), mainly due to 80K presence in GT1a (17%). Almost all GTs showed high prevalence of NS5A-RASs (range: 10.2-45.4%), and especially of 93H (5.1%). NS5A-RASs with fold-change >100x were detected in 6.8% GT1a (30H/R-31M-93C/H), 10.3% GT1b (31V-93H), 28.4% GT2c (28C-31M-93H), 8.5% GT3a (30K-93H), 45.5% GT4a (28M-30R-93H) and 3.8% GT4d (28V-30S-93H). Sofosbuvir RAS 282T was never detected, while the 159F and 316N RASs were found in GT1b (13.4-19.1%, respectively). Natural RASs are common in Italian patients infected with HCV-GTs 1-4. High prevalence of clinically-relevant RASs (such as Y93H) supports the appropriateness of HCV resistance-test to properly guide DAA-based therapy.
Collapse
Affiliation(s)
- Ada Bertoli
- Department Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Maria Chiara Sorbo
- Department Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Marianna Aragri
- Department Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Ilaria Lenci
- Hepatology Unit, University Hospital of Rome "Tor Vergata", 00133, Rome, Italy
| | - Elisabetta Teti
- Infectious Diseases Unit, University Hospital of Rome "Tor Vergata", 00133, Rome, Italy
| | - Ennio Polilli
- Infectious Diseases Unit, Pescara General Hospital, 65124, Pescara, Italy
| | - Velia Chiara Di Maio
- Department Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Laura Gianserra
- Infectious Diseases Unit, Sant'Andrea Hospital - "Sapienza" University, 00189, Rome, Italy
| | - Elisa Biliotti
- Tropical Diseases, Umberto I Hospital -"Sapienza" University, 00161, Rome, Italy
| | - Chiara Masetti
- Hepatology Unit, University Hospital of Rome "Tor Vergata", 00133, Rome, Italy
| | - Carlo F Magni
- 1st Division of Infectious Diseases, ASST Fatebenefratelli Sacco, 20157, Milan, Italy
| | - Sergio Babudieri
- Clinical and Experimental Medicine, University of Sassari, 07100, Sassari, Italy
| | - Laura A Nicolini
- Infectious Diseases Unit, IRCCS AOU San Martino - IST, 16132, Genoa, Italy
| | - Martina Milana
- Hepatology Unit, University Hospital of Rome "Tor Vergata", 00133, Rome, Italy
| | | | - Loredana Sarmati
- Infectious Diseases Unit, University Hospital of Rome "Tor Vergata", 00133, Rome, Italy
| | | | - Stefania Paolucci
- Molecular Virology, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Antonio Craxì
- Gastroenterology, "P. Giaccone" University Hospital, 90127, Palermo, Italy
| | - Filomena Morisco
- Gastroenterology, "Federico II" University, 80131, Naples, Italy
| | | | | | - Nicola Coppola
- Infectious Diseases Unit, "L. Vanvitelli" University of Campania, 80138, Naples, Italy
| | - Nerio Iapadre
- Infectious Diseases Unit, S. Salvatore Hospital, 67100, L'Aquila, Italy
| | - Massimo Puoti
- Infectious Diseases Unit, Niguarda Ca' Granda Hospital, 20162, Milan, Italy
| | - Giuliano Rizzardini
- 1st Division of Infectious Diseases, ASST Fatebenefratelli Sacco, 20157, Milan, Italy
| | - Gloria Taliani
- Tropical Diseases, Umberto I Hospital -"Sapienza" University, 00161, Rome, Italy
| | - Caterina Pasquazzi
- Infectious Diseases Unit, Sant'Andrea Hospital - "Sapienza" University, 00189, Rome, Italy
| | - Massimo Andreoni
- Infectious Diseases Unit, University Hospital of Rome "Tor Vergata", 00133, Rome, Italy
| | - Giustino Parruti
- Infectious Diseases Unit, Pescara General Hospital, 65124, Pescara, Italy
| | - Mario Angelico
- Hepatology Unit, University Hospital of Rome "Tor Vergata", 00133, Rome, Italy
| | | | - Valeria Cento
- Department Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | | |
Collapse
|
28
|
Sofosbuvir and Ribavirin Liver Pharmacokinetics in Patients Infected with Hepatitis C Virus. Antimicrob Agents Chemother 2018; 62:AAC.02587-17. [PMID: 29439971 DOI: 10.1128/aac.02587-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/07/2018] [Indexed: 12/27/2022] Open
Abstract
Sofosbuvir and ribavirin exert their anti-hepatitis C virus (anti-HCV) activity following metabolic activation in the liver. However, intrahepatic concentrations of the pharmacologically active nucleotide metabolites in humans are poorly characterized due to the inaccessibility of tissue and technical challenges with measuring nucleotide levels. A clinical study assessing the efficacy of sofosbuvir and ribavirin administered prior to liver transplantation to prevent HCV recurrence provided a unique opportunity to quantify nucleotide concentrations in human liver. We analyzed nucleotides using high-performance liquid chromatography coupled to tandem mass spectrometry in liver tissue from 30 HCV-infected patients with hepatocellular carcinoma who were administered sofosbuvir (400 mg/day) and ribavirin (1,000 to 1,200 mg/day) for 3 to 52 weeks prior to liver transplantation. Median total hepatic metabolite concentrations (the sum of nucleoside and mono-, di-, and triphosphates) were 77.1 μM for sofosbuvir and 361 μM for ribavirin in patients on therapy at the time of transplantation. Ribavirin and sofosbuvir efficiently loaded the liver, with total hepatic metabolite concentrations exceeding maximal levels in plasma by approximately 30-fold. Ribavirin metabolite levels suggest that its monophosphate is in great excess of its inhibition constant for IMP dehydrogenase and that its triphosphate is approaching the binding constant for incorporation by the HCV NS5B RNA-dependent RNA polymerase. In accordance with the potent antiviral activity of sofosbuvir, these results demonstrate that the liver triphosphate levels achieved following sofosbuvir administration greatly exceed the inhibition constant for HCV NS5B. In conclusion, this study expands the quantitative understanding of the pharmacology of sofosbuvir and ribavirin by establishing efficient hepatic delivery in the clinic. (This study has been registered at ClinicalTrials.gov under identifier NCT01559844.).
Collapse
|
29
|
Bhardwaj N, Ragonnet-Cronin M, Murrell B, Chodavarapu K, Martin R, Chang S, Miller MD, Feld JJ, Sulkowski M, Mangia A, Wertheim JO, Osinusi A, McNally J, Brainard D, Mo H, Svarovskaia ES. Intrapatient viral diversity and treatment outcome in patients with genotype 3a hepatitis C virus infection on sofosbuvir-containing regimens. J Viral Hepat 2018; 25:344-353. [PMID: 29112331 DOI: 10.1111/jvh.12825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 12/27/2022]
Abstract
Treatment with the direct-acting antiviral agent (DAA) sofosbuvir (SOF), an NS5B inhibitor, and velpatasvir (VEL), an NS5A inhibitor, demonstrates viral cure rates of ≥95% in hepatitis C virus (HCV) genotypes (GT) 1-6. Here, we investigated intrapatient HCV diversity in NS5A and NS5B using Shannon entropy to examine the relationship between viral diversity and treatment outcome. At baseline, HCV diversity was lowest in patients infected with HCV GT3 as compared to the other GTs, and viral diversity was greater in NS5A than NS5B (P < .0001). Treatment outcome with SOF/VEL or the comparator regimen of SOF with ribavirin (RBV) was not correlated with baseline diversity. However, among persons treated with SOF/VEL, a decrease in diversity from baseline was observed at relapse in the majority virologic failures, consistent with a viral bottleneck event at relapse. In contrast, an increase in diversity was observed in 27% of SOF+RBV virologic failures. We investigated whether the increase in diversity was due to an increase in the transition rate, one mode of potential RBV-mediated mutagenesis; however, we found no evidence of this mechanism. Overall, we did not observe that viral diversity at baseline influenced treatment outcome, but the diversity changes observed at relapse can improve our understanding of RBV viral suppression in vivo.
Collapse
Affiliation(s)
- N Bhardwaj
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | | | - B Murrell
- University of California San Diego, San Diego, CA, USA
| | - K Chodavarapu
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - R Martin
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - S Chang
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - M D Miller
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - J J Feld
- Toronto Centre for Liver Disease, University of Toronto, Toronto, ON, Canada
| | - M Sulkowski
- Johns Hopkins University, Baltimore, MD, USA
| | - A Mangia
- Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - J O Wertheim
- University of California San Diego, San Diego, CA, USA
| | - A Osinusi
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - J McNally
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - D Brainard
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | - H Mo
- Clinical Virology, Gilead Sciences, Foster City, CA, USA
| | | |
Collapse
|
30
|
Antiviral Effect of Ribavirin against HCV Associated with Increased Frequency of G-to-A and C-to-U Transitions in Infectious Cell Culture Model. Sci Rep 2018. [PMID: 29545599 DOI: 10.1038/s41598–018–22620–2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ribavirin (RBV) is a broad-spectrum antiviral active against a wide range of RNA viruses. Despite having been used for decades in the treatment of chronic hepatitis C virus (HCV) infection, the precise mechanism of action of RBV is unknown. In other viruses, it inhibits propagation by increasing the rate of G-to-A and C-to-U transitions. Here, we utilized the J6/JFH1 HCV cell-culture system to investigate whether RBV inhibits HCV through the same mechanism. Infected Huh7.5 cells were treated with increasing concentrations of RBV or its phosphorylated forms. A fragment of the HCV NS5B-polymerase gene was amplified, cloned, and sequenced to estimate genetic distances. We confirm that the antiviral effect of all three RBV-drug forms on HCV relies on induction of specific transitions (G-to-A and C-to-U). These mutations lead to generation of non-infectious virions, reflected by decreased spread of HCV in cell culture despite relatively limited effect on virus genome titers. Moreover, treatment experiments conducted on a novel Huh7.5 cell line stably overexpressing adenosine kinase, a key enzyme for RBV activation, yielded comparable results. This study indicates that RBV action on HCV in hepatoma cell-culture is exerted through increase in mutagenesis, mediated by RBV triphosphate, and leading to production of non-infectious viruses.
Collapse
|
31
|
Galli A, Mens H, Gottwein JM, Gerstoft J, Bukh J. Antiviral Effect of Ribavirin against HCV Associated with Increased Frequency of G-to-A and C-to-U Transitions in Infectious Cell Culture Model. Sci Rep 2018; 8:4619. [PMID: 29545599 PMCID: PMC5854589 DOI: 10.1038/s41598-018-22620-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/26/2018] [Indexed: 01/18/2023] Open
Abstract
Ribavirin (RBV) is a broad-spectrum antiviral active against a wide range of RNA viruses. Despite having been used for decades in the treatment of chronic hepatitis C virus (HCV) infection, the precise mechanism of action of RBV is unknown. In other viruses, it inhibits propagation by increasing the rate of G-to-A and C-to-U transitions. Here, we utilized the J6/JFH1 HCV cell-culture system to investigate whether RBV inhibits HCV through the same mechanism. Infected Huh7.5 cells were treated with increasing concentrations of RBV or its phosphorylated forms. A fragment of the HCV NS5B-polymerase gene was amplified, cloned, and sequenced to estimate genetic distances. We confirm that the antiviral effect of all three RBV-drug forms on HCV relies on induction of specific transitions (G-to-A and C-to-U). These mutations lead to generation of non-infectious virions, reflected by decreased spread of HCV in cell culture despite relatively limited effect on virus genome titers. Moreover, treatment experiments conducted on a novel Huh7.5 cell line stably overexpressing adenosine kinase, a key enzyme for RBV activation, yielded comparable results. This study indicates that RBV action on HCV in hepatoma cell-culture is exerted through increase in mutagenesis, mediated by RBV triphosphate, and leading to production of non-infectious viruses.
Collapse
Affiliation(s)
- Andrea Galli
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helene Mens
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gerstoft
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Díaz-Martínez L, Brichette-Mieg I, Pineño-Ramos A, Domínguez-Huerta G, Grande-Pérez A. Lethal mutagenesis of an RNA plant virus via lethal defection. Sci Rep 2018; 8:1444. [PMID: 29362502 PMCID: PMC5780445 DOI: 10.1038/s41598-018-19829-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Lethal mutagenesis is an antiviral therapy that relies on increasing the viral mutation rate with mutagenic nucleoside or base analogues. Currently, the molecular mechanisms that lead to virus extinction through enhanced mutagenesis are not fully understood. Increasing experimental evidence supports the lethal defection model of lethal mutagenesis of RNA viruses, where replication-competent-defectors drive infective virus towards extinction. Here, we address lethal mutagenesis in vivo using 5-fluorouracil (5-FU) during the establishment of tobacco mosaic virus (TMV) systemic infections in N. tabacum. The results show that 5-FU decreased the infectivity of TMV without affecting its viral load. Analysis of molecular clones spanning two genomic regions showed an increase of the FU-related base transitions A → G and U → C. Although the mutation frequency or the number of mutations per molecule did not increase, the complexity of the mutant spectra and the distribution of the mutations were altered. Overall, our results suggest that 5-FU antiviral effect on TMV is associated with the perturbation of the mutation-selection balance in the genomic region of the RNA-dependent RNA polymerase (RdRp). Our work supports the lethal defection model for lethal mutagenesis in vivo in a plant RNA virus and opens the way to study lethal mutagens in plant-virus systems.
Collapse
Affiliation(s)
- Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Isabel Brichette-Mieg
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Axier Pineño-Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Guillermo Domínguez-Huerta
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental "La Mayora", 29750, Algarrobo-Costa, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain.
| |
Collapse
|
33
|
Talal AH, Dumas EO, Bauer B, Rejman RM, Ocque A, Morse GD, Lucic D, Cloherty GA, King J, Zha J, Zhang H, Cohen DE, Shulman N, Pawlotsky JM, Hézode C. Hepatic Pharmacokinetics and Pharmacodynamics With Ombitasvir/Paritaprevir/Ritonavir Plus Dasabuvir Treatment and Variable Ribavirin Dosage. J Infect Dis 2018; 217:474-482. [PMID: 29228392 PMCID: PMC5853515 DOI: 10.1093/infdis/jix495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022] Open
Abstract
Background It is unknown whether ribavirin (RBV) coadministration modifies the early rate of decline of hepatitis C virus (HCV) RNA in the liver versus plasma compartments, specifically. Methods This partially randomized, open-label, phase 2 study enrolled treatment-naive, noncirrhotic patients with HCV genotype 1a. Patients were randomized 1:1 into Arms A and B, and then enrolled in Arm C. Patients received ombitasvir/paritaprevir/ritonavir plus dasabuvir for 12 weeks with either: no RBV for the first 2 weeks followed by weight-based dosing thereafter (Arm A), weight-based RBV for all 12 weeks (Arm B), or low-dose RBV (600 mg) once daily for all 12 weeks. Fine needle aspiration (FNA) was used to determine HCV RNA decline within liver. Results Baseline HCV RNA was higher and declined more rapidly in plasma than liver; however, RBV dosing did not impact either median plasma or liver HCV RNA decline during the first 2 weeks of treatment. Liver-to-plasma drug concentrations were variable over time. The most common adverse event was pain associated with FNA. Conclusions Coadministration of RBV had minimal visible impact on the plasma or liver kinetics of HCV RNA decline during the first 2 weeks of treatment, regardless of RBV dosing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jean-Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C and D, Department of Virology, Hôpital Henri Mondor, Université Paris-Est
- INSERM U955
| | - Christophe Hézode
- INSERM U955
- Department of Hepatology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| |
Collapse
|
34
|
Zika Virus Replication Is Substantially Inhibited by Novel Favipiravir and Interferon Alpha Combination Regimens. Antimicrob Agents Chemother 2017; 62:AAC.01983-17. [PMID: 29109164 DOI: 10.1128/aac.01983-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) is a major public health concern due to its overwhelming spread into the Americas. Currently, there are neither licensed vaccines nor antiviral therapies available for the treatment of ZIKV. We aimed to identify and rationally optimize effective therapeutic regimens for ZIKV by evaluating the antiviral potentials of the approved broad-spectrum antiviral agents favipiravir (FAV), interferon alpha (IFN), and ribavirin (RBV) as single agents and in combinations. For these studies, Vero cells were infected with ZIKV in the presence of increasing concentrations of FAV, IFN, or/and RBV for 4 days. Supernatants were harvested daily, and the viral burden was quantified by a plaque assay on Vero cells. The time course of the viral burden during treatment in vitro was characterized by a novel translational, mechanism-based model, which was subsequently used to rationally optimize combination dosage regimens. The combination regimen of FAV plus IFN provided the greatest extent of viral inhibition without cytotoxicity, reducing the viral burden by 4.4 log10 PFU/ml at concentrations of 250 μM FAV and 100 IU/ml IFN. Importantly, these concentrations are achievable in humans. The translational, mechanism-based model yielded unbiased and reasonably precise curve fits. Simulations with the model predicted that clinically relevant regimens of FAV plus IFN would markedly reduce viral burdens in humans, resulting in at least a 10,000-fold reduction in the amount of the virus during the first 4 days of treatment. These findings highlight the substantial promise of rationally optimized combination dosage regimens of FAV plus IFN, which should be further investigated to combat ZIKV.
Collapse
|
35
|
Xu S, Yamamoto N. mRNA-Seq reveals accumulation followed by reduction of small nuclear and nucleolar RNAs in yeast exposed to antiviral ribavirin. FEMS Yeast Res 2017; 17:4085638. [PMID: 28934414 DOI: 10.1093/femsyr/fox067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
Ribavirin is an antiviral drug that is used to treat a wide range of human viral infections. However, the side effects are reported, and the mechanisms on eukaryotic cells are still largely unknown. Here we report our observation of accumulation followed by reduction of small nuclear (sn)RNAs and small nucleolar (sno)RNAs in Saccharomyces cerevisiae exposed to ribavirin. The three strains reported to contain dsRNA virus-like particle(s) were exposed to 100 μM of ribavirin, and snRNAs and snoRNAs from a total of 31 snR genes were differentially detected between the samples exposed to ribavirin and the respective negative controls by mRNA-Seq. Our results suggest that polyadenylated snRNAs and snoRNAs accumulated at 1 h but reduced to the subbasal levels at 4 h of ribavirin exposure. The tendency was reproducible across the three tested strains. Our study showed ribavirin affected snRNAs and snoRNAs in yeast. There may be a need to scrutinize the relationships between the side effects and such non-coding RNAs in humans who are treated with ribavirin.
Collapse
Affiliation(s)
- Siyu Xu
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, South Korea
| | - Naomichi Yamamoto
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
36
|
Kamiyama N, Soma R, Hidano S, Watanabe K, Umekita H, Fukuda C, Noguchi K, Gendo Y, Ozaki T, Sonoda A, Sachi N, Runtuwene LR, Miura Y, Matsubara E, Tajima S, Takasaki T, Eshita Y, Kobayashi T. Ribavirin inhibits Zika virus (ZIKV) replication in vitro and suppresses viremia in ZIKV-infected STAT1-deficient mice. Antiviral Res 2017; 146:1-11. [PMID: 28818572 PMCID: PMC7113888 DOI: 10.1016/j.antiviral.2017.08.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/27/2017] [Accepted: 08/13/2017] [Indexed: 02/08/2023]
Abstract
Zika fever, a mosquito-borne infectious disease caused by Zika virus (ZIKV), is an epidemic disease for which no effective therapy has been established. The recent outbreaks of ZIKV in Brazil and French Polynesia have been linked to a considerable increase in the incidence of fetal microcephaly and other diseases such as Guillain-Barre syndrome. Because there is currently no specific therapy or vaccine, the early exploitation of a method to prevent expansion of ZIKV is a high priority. To validate commonly used antiviral drugs, we evaluated the effect of ribavirin, a drug used to treat hepatitis C with interferon-β (IFN-β), on ZIKV replication. In mammalian cells, we observed an inhibitory effect of ribavirin on ZIKV replication and ZIKV-induced cell death without cytotoxic effect. Furthermore, we found that STAT1-deficient mice, which lack type I IFN signaling, were highly sensitive to ZIKV infection and exhibited lethal outcome. Ribavirin abrogated viremia in ZIKV-infected STAT-1-deficient mice. These data suggest that the inhibition of viral RNA-dependent RNA polymerases may be effective for treatment of ZIKV infection. Our data provide a new insight into the mechanisms for inhibition of ZIKV replication and prevention of Zika fever. Ribavirin inhibits ZIKV replication in mammalian cells. Ribavirin prevents ZIKV-induced apoptosis and cell death. Ribavirin administration abrogates viremia in ZIKV-infected STAT1-deficient mice. Leading to a prolonged survival.
Collapse
Affiliation(s)
- Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan.
| | - Ryusuke Soma
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Kei Watanabe
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Hiroshi Umekita
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Chiaki Fukuda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Kaori Noguchi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Yoshiko Gendo
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Takashi Ozaki
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Akira Sonoda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Lucky Ronald Runtuwene
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Yumako Miura
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tomohiko Takasaki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yuki Eshita
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita 879-5593, Japan.
| |
Collapse
|
37
|
Ganta KK, Mandal A, Debnath S, Hazra B, Chaubey B. Anti-HCV Activity from Semi-purified Methanolic Root Extracts of Valeriana wallichii. Phytother Res 2017; 31:433-440. [PMID: 28078810 DOI: 10.1002/ptr.5765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 01/10/2023]
Abstract
Hepatitis C virus (HCV) is a serious global health problem affecting approximately 130-150 million individuals. Presently available direct-acting anti-HCV drugs have higher barriers to resistance and also improved success rate; however, cost concerns limit their utilization, especially in developing countries like India. Therefore, development of additional agents to combat HCV infection is needed. In the present study, we have evaluated anti-HCV potential of water, chloroform, and methanol extracts from roots of Valeriana wallichii, a traditional Indian medicinal plant. Huh-7.5 cells infected with J6/JFH chimeric HCV strain were treated with water, chloroform, and methanol extracts at different concentrations. Semi-quantitative reverse transcription polymerase chain reaction result demonstrated that methanolic extract showed reduction in HCV replication. The methanolic extract was fractionated by thin layer chromatography, and the purified fractions (F1, F2, F3, and F4) were checked for anti-HCV activity. Significant viral inhibition was noted only in F4 fraction. Further, intrinsic fluorescence assay of purified HCV RNA-dependent RNA polymerase NS5B in the presence of F4 resulted in sharp quenching of intrinsic fluorescence with increasing amount of plant extract. Our results indicated that methanolic extract of V. wallichii and its fraction (F4) inhibited HCV by binding with HCV NS5B protein. The findings would be further investigated to identify the active principle/lead molecule towards development of complementary and alternative therapeutics against HCV. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Krishna Kumar Ganta
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anirban Mandal
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sukalyani Debnath
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Binay Chaubey
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| |
Collapse
|
38
|
Lee DU, Je SH, Yoo SJ, Kwon T, Shin JY, Byun JJ, Park JH, Jeong KW, Ku JM, Lyoo YS. Hematological adverse effects and pharmacokinetics of ribavirin in pigs following intramuscular administration. J Vet Pharmacol Ther 2017; 40:561-568. [PMID: 28205288 DOI: 10.1111/jvp.12394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/14/2016] [Indexed: 11/28/2022]
Abstract
Ribavirin (RBV) is a synthetic guanosine analog that is used as a drug against various viral diseases in humans. The in vitro antiviral effects of ribavirin against porcine viruses were demonstrated in several studies. The purposes of this study were to evaluate the adverse effects and pharmacokinetics of ribavirin following its intramuscular (IM) injection in pigs. Ribavirin was formulated as a double-oil emulsion (RBV-DOE) and gel (RBV-Gel), which were injected into the pigs as single-dose IM injections. After injection of RBV, all of the pigs were monitored. The collected serum and whole blood samples were analyzed by liquid chromatography-tandem mass spectrometry and complete blood count analysis, respectively. All of the ribavirin-treated pigs showed significant decreases in body weight compared to the control groups. Severe clinical signs including dyspnea, anorexia, weakness, and depression were present in ribavirin-treated pigs until 5 days postinjection (dpi). The ribavirin-treated groups showed significant decrease in the number of red blood cells and hemoglobin concentration until 8 dpi. The mean half-life of the RBV-DOE and RBV-Gel was 27.949 ± 2.783 h and 37.374 ± 3.502 h, respectively. The mean peak serum concentration (Cmax ) and area under the serum concentration-time curve from time zero to infinity (AUCinf ) of RBV-DOE were 8340.000 ± 2562.577 ng/mL and 16 0095.430 ± 61 253.400 h·ng/mL, respectively. The Cmax and AUCinf of RBV-Gel were 15 300.000 ± 3764.306 ng/mL and 207526.260 ± 63656.390 h·ng/mL, respectively. The results of this study provided the index of side effect and pharmacokinetics of ribavirin in pigs, which should be considered before clinical application.
Collapse
Affiliation(s)
- D-U Lee
- Department of Immunopathology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - S H Je
- Department of Immunopathology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - S J Yoo
- Department of Immunopathology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - T Kwon
- Department of Immunopathology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - J Y Shin
- Department of Immunopathology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - J J Byun
- Department of Immunopathology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - J-H Park
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - K-W Jeong
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, Suwon-si, South Korea
| | - J-M Ku
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, Suwon-si, South Korea
| | - Y S Lyoo
- Department of Immunopathology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
39
|
Feld JJ, Jacobson IM, Sulkowski MS, Poordad F, Tatsch F, Pawlotsky J. Ribavirin revisited in the era of direct-acting antiviral therapy for hepatitis C virus infection. Liver Int 2017; 37:5-18. [PMID: 27473533 PMCID: PMC5216450 DOI: 10.1111/liv.13212] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022]
Abstract
Over the past two decades, ribavirin has been an integral component of treatment for hepatitis C virus (HCV) infection, where it has been shown to improve the efficacy of (pegylated) interferon. However, because of treatment-limiting side effects and its additive toxicity with interferon, the search for interferon- and ribavirin-free regimens has been underway. The recent approvals of all-oral direct acting antivirals (DAAs) have revolutionized the HCV therapeutic landscape, and initially it was expected that the role of ribavirin with DAA regimens would be eliminated. On the contrary, what we have witnessed is that ribavirin retains an important role in the optimal treatment of some subgroups of patients, particularly those that historically have been considered the most difficult to cure. Fortunately, it has also been recognized that the safety profile of ribavirin is improved when co-administered with all-oral DAA combinations in the absence of interferon. Despite the antiviral mechanism of action of ribavirin being poorly understood, we now have a range of novel insights into the potential role of ribavirin in all-oral DAA HCV treatment and greater insight into the antiviral mechanism by which it continues to provide clinical benefit for defined patient groups.
Collapse
Affiliation(s)
- Jordan J. Feld
- Toronto Centre for Liver DiseaseToronto General HospitalTorontoONCanada
| | | | | | - Fred Poordad
- Texas Liver InstituteUniversity of Texas Health Science CenterSan AntonioTXUSA
| | | | - Jean‐Michel Pawlotsky
- Department of VirologyNational Reference Center for Viral Hepatitis B, C and DeltaHôpital Henri MondorUniversité Paris‐EstCréteilFrance
- INSERM U955CréteilFrance
| |
Collapse
|
40
|
Tomei L, Altamura S, Paonessa G, De Francesco R, Migliaccio G. Review HCV Antiviral Resistance: The Impact of in vitro Studies on the Development of Antiviral Agents Targeting the Viral NS5B Polymerase. ACTA ACUST UNITED AC 2016; 16:225-45. [PMID: 16130521 DOI: 10.1177/095632020501600403] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The high prevalence of the disease caused by hepatitis C virus (HCV) and the limited efficacy of interferon-based therapies have stimulated the search for safer and more effective drugs. The development of inhibitors of the HCV NS5B RNA polymerase represents a promising strategy for identifying novel anti-HCV therapeutics. However, the high genetic diversity, mutation rate and turnover of HCV are expected to favour the emergence of drug resistance, limiting the clinical usefulness of polymerase inhibitors. Thus, the characterization of the drug-resistance profile of these antiviral agents is considered crucial for identifying the inhibitors with a higher probability of clinical success. In the absence of an efficient in vitro infection system, HCV sub-genomic replicons have been used to study viral resistance to both nucleoside and non-nucleoside NS5B inhibitors. While these studies suggest that drug-resistant viruses are likely to evolve in vivo, they provide a wealth of information that should help in the identification of inhibitors with improved and distinct resistance profiles that might be used for combination therapy.
Collapse
Affiliation(s)
- Licia Tomei
- Istituto di Ricerche di Biologia Molecolare P Angeletti, Pomezia-Roma, Italy
| | | | | | | | | |
Collapse
|
41
|
Fülöp B, Mihm U, Rohde P, Buggisch P, Schlosser B, Biermer M, Brodzinski A, Fischer J, Böhm S, van Bömmel F, Sarrazin C, Berg T. Hepatitis C viral dynamics during ribavirin priming differ according to prior treatment response and HCV type. J Viral Hepat 2016; 23:866-872. [PMID: 27346846 DOI: 10.1111/jvh.12562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/08/2016] [Indexed: 12/09/2022]
Abstract
The mode of action of ribavirin is not completely understood. Ribavirin monotherapy has a measurable antiviral effect, which shows great variability. It might lead to an earlier steady state of plasma concentration and therefore enhance the effect of following combination treatment. The aim of this study was to evaluate the antiviral effect of ribavirin priming and its influence on sustained virologic response after combination treatment in a group of patients with different hepatitis C virus (HCV) types with or without prior treatment experience. Retrospective analysis of 75 patients (37 treatment naïve, 20 prior relapse, 16 prior nonresponse, genotype 1 present in 60 patients) from five centres who received ribavirin priming as part of an individual strategy in order to improve treatment outcome. All patients received ribavirin monotherapy with a mean dose of 14.5 mg kg-1 body weight for a mean of 28 days. After ribavirin priming, dual combination treatment with pegylated interferon alfa and ribavirin was started. The mean HCV RNA decline after ribavirin priming was 0.6 log10 IU mL-1 (P<.001). The initial viral decline depended on HCV type and previous treatment status being highest among prior relapsers (0.8 log10 IU mL-1 ; P=.002) and HCV type 2/3 (1.2 log10 IU mL-1 ; P=.05) and lowest among those with prior nonresponse (0.3 log10 IU mL-1 , P=.01). IFNL4 (formerly IL28B) genotype for rs12979860 and IFNL3 genotype rs8099917 did not influence the initial viral decline. The study demonstrates a significant variability in the viral dynamics and antiviral efficacy of ribavirin monotherapy, which is mainly influenced by prior treatment status. The fact that the lowest response pattern was observed in prior nonresponder patients to pegylated interferon alfa plus ribavirin combination therapy can be taken as a hint that not only the individual interferon, but also the ribavirin sensitivity contributes significantly to the nonresponsive state.
Collapse
Affiliation(s)
- B Fülöp
- Liver and Study Center Checkpoint, Berlin, Germany.,Section of Hepatology, Clinic of Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - U Mihm
- J.W. Goethe University Hospital, Frankfurt/M, Germany
| | - P Rohde
- Clinic of Gastroenterology, St. Marien-Hospital Hamm, Hamm, Germany
| | - P Buggisch
- Institute for Interdisciplinary Medicine, Hamburg, Germany
| | | | | | - A Brodzinski
- Section of Hepatology, Clinic of Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - J Fischer
- Section of Hepatology, Clinic of Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - S Böhm
- Janssen-Cilag GmbH, Neuss, Germany
| | - F van Bömmel
- Section of Hepatology, Clinic of Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - C Sarrazin
- J.W. Goethe University Hospital, Frankfurt/M, Germany
| | - T Berg
- Section of Hepatology, Clinic of Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
42
|
Affiliation(s)
- Yen H Pham
- Texas Children's Hospital, Baylor College of Medicine, 18200 Katy Freeway, Suite 250, Houston, TX 77094, USA.
| | - Philip Rosenthal
- UCSF Benioff Children's Hospital, University of California San Francisco, 550 16th Street, 5th Floor, San Francisco, CA 94143, USA
| |
Collapse
|
43
|
Graci JD, Cameron CE. Challenges for the Development of Ribonucleoside Analogues as Inducers of Error Catastrophe. ACTA ACUST UNITED AC 2016; 15:1-13. [PMID: 15074710 DOI: 10.1177/095632020401500101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
RNA viruses are responsible for numerous human diseases; some of these viruses are also potential agents of bioterrorism. In general, the replication of RNA viruses results in the incorporation of at least one mutation per round of replication, leading to a heterogeneous population, termed a qua-sispecies. The antiviral nucleoside ribavirin has been shown to cause an increase in the mutation frequency of RNA viruses. This increase in mutation frequency leads to a loss of viability due to error catastrophe. In this article, we review lethal mutagenesis as an antiviral strategy, emphasizing the challenges remaining for the development of lethal mutagenesis into a practical clinical approach.
Collapse
Affiliation(s)
- Jason D Graci
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, Pa., USA
| | | |
Collapse
|
44
|
Agudo R, de la Higuera I, Arias A, Grande-Pérez A, Domingo E. Involvement of a joker mutation in a polymerase-independent lethal mutagenesis escape mechanism. Virology 2016; 494:257-66. [PMID: 27136067 PMCID: PMC7111656 DOI: 10.1016/j.virol.2016.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 02/05/2023]
Abstract
We previously characterized a foot-and-mouth disease virus (FMDV) with three amino acid replacements in its polymerase (3D) that conferred resistance to the mutagenic nucleoside analogue ribavirin. Here we show that passage of this mutant in the presence of high ribavirin concentrations resulted in selection of viruses with the additional replacement I248T in 2C. This 2C substitution alone (even in the absence of replacements in 3D) increased FMDV fitness mainly in the presence of ribavirin, prevented an incorporation bias in favor of A and U associated with ribavirin mutagenesis, and conferred the ATPase activity of 2C decreased sensitivity to ribavirin-triphosphate. Since in previous studies we described that 2C with I248T was selected under different selective pressures, this replacement qualifies as a joker substitution in FMDV evolution. The results have identified a role of 2C in nucleotide incorporation, and have unveiled a new polymerase-independent mechanism of virus escape to lethal mutagenesis. A replacement in FMDV protein 2C confers reduced sensitivity to the mutagen ribavirin. The effect of the replacement is to prevent a mutational bias evoked by ribavirin. 2C has an effect in nucleotide incorporation by the FMDV polymerase. We describe a new molecular mechanism of escape to ribavirin-mediated extinction.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | - Ignacio de la Higuera
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | - Armando Arias
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas, (IHSM-UMA-CSIC) Área de Genética, Campus de Teatinos, 29071 Málaga, Spain
| | - Esteban Domingo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
45
|
Trends in Antiviral Strategies. VIRUS AS POPULATIONS 2016. [PMCID: PMC7149557 DOI: 10.1016/b978-0-12-800837-9.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral populations are true moving targets regarding the genomic sequences to be targeted in antiviral designs. Experts from different fields have expressed the need of new paradigms for antiviral interventions and viral disease control. This chapter reviews several strategies that aim at counteracting the adaptive capacity of viral quasispecies. The proposed designs are based on combinations of different antiviral drugs and immune modulators, or in the administration of virus-specific mutagenic agents, in an approach termed lethal mutagenesis of viruses. It consists of decreasing viral fitness by an excess of mutations that render viral proteins sub-optimal or non-functional. Viral extinction by lethal mutagenesis involves several sequential, overlapping steps that recapitulate the major concepts of intra-population interactions and genetic information stability discussed in preceding chapters. Despite the magnitude of the challenge, the chapter closes with some optimistic prospects for an effective control of viruses displaying error-prone replication, based on the combined targeting of replication fidelity and the induction of the innate immune response.
Collapse
|
46
|
Shuldiner SR, Gong L, Muir AJ, Altman RB, Klein TE. PharmGKB summary: peginterferon-α pathway. Pharmacogenet Genomics 2015; 25:465-74. [PMID: 26111151 PMCID: PMC4757589 DOI: 10.1097/fpc.0000000000000158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Li Gong
- Department of Genetics, Stanford University, Stanford, California
| | - Andrew J. Muir
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Russ B. Altman
- Department of Genetics, Stanford University, Stanford, California
- Department of Bioengineering, Stanford University, Stanford, California
| | - Teri E. Klein
- Department of Genetics, Stanford University, Stanford, California
| |
Collapse
|
47
|
Development of antiviral agents toward enterovirus 71 infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 48:1-8. [DOI: 10.1016/j.jmii.2013.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/16/2013] [Indexed: 01/20/2023]
|
48
|
Jimmerson LC, Ray ML, Bushman LR, Anderson PL, Klein B, Rower JE, Zheng JH, Kiser JJ. Measurement of intracellular ribavirin mono-, di- and triphosphate using solid phase extraction and LC-MS/MS quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 978-979:163-72. [PMID: 25555148 PMCID: PMC4297558 DOI: 10.1016/j.jchromb.2014.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/30/2014] [Accepted: 11/29/2014] [Indexed: 12/18/2022]
Abstract
Ribavirin (RBV) is a nucleoside analog used to treat a variety of DNA and RNA viruses. RBV undergoes intracellular phosphorylation to a mono- (MP), di- (DP), and triphosphate (TP). The phosphorylated forms have been associated with the mechanisms of antiviral effect observed in vitro, but the intracellular pharmacology of the drug has not been well characterized in vivo. A highly sensitive LC-MS/MS method was developed and validated for the determination of intracellular RBV MP, DP, and TP in multiple cell matrix types. For this method, the individual MP, DP, and TP fractions were isolated from lysed intracellular matrix using strong anion exchange solid phase extraction, dephosphorylated to parent RBV, desalted and concentrated and quantified using LC-MS/MS. The method utilized a stable labeled internal standard (RBV-(13)C5) which facilitated accuracy (% deviation within ±15%) and precision (coefficient of variation of ≤15%). The quantifiable linear range for the assay was 0.50 to 200 pmol/sample. The method was applied to the measurement of RBV MP, DP, and TP in human peripheral blood mononuclear cells (PBMC), red blood cells (RBC), and dried blood spot (DBS) samples obtained from patients taking RBV for the treatment of chronic Hepatitis C virus infection.
Collapse
Affiliation(s)
- Leah C Jimmerson
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, 12850 E Montview Blvd, V20-4102, Aurora, CO 80045, USA.
| | - Michelle L Ray
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, 12850 E Montview Blvd, V20-4102, Aurora, CO 80045, USA.
| | - Lane R Bushman
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, 12850 E Montview Blvd, V20-4102, Aurora, CO 80045, USA.
| | - Peter L Anderson
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, 12850 E Montview Blvd, V20-4102, Aurora, CO 80045, USA.
| | - Brandon Klein
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, 12850 E Montview Blvd, V20-4102, Aurora, CO 80045, USA.
| | - Joseph E Rower
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, 12850 E Montview Blvd, V20-4102, Aurora, CO 80045, USA.
| | - Jia-Hua Zheng
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, 12850 E Montview Blvd, V20-4102, Aurora, CO 80045, USA.
| | - Jennifer J Kiser
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, 12850 E Montview Blvd, V20-4102, Aurora, CO 80045, USA.
| |
Collapse
|
49
|
Arias A, Thorne L, Goodfellow I. Favipiravir elicits antiviral mutagenesis during virus replication in vivo. eLife 2014; 3:e03679. [PMID: 25333492 PMCID: PMC4204012 DOI: 10.7554/elife.03679] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022] Open
Abstract
Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses. DOI:http://dx.doi.org/10.7554/eLife.03679.001 Viruses can infect, take control of and replicate themselves inside the living cells of other organisms. Some viral diseases can be treated with antiviral drugs, which stop viral infections either by making it more difficult for viruses to enter cells or by preventing the virus replicating once inside. As antiviral drugs are currently only available to treat a handful of viral infections, efforts are underway to develop and test experimental antiviral drugs. One such experimental drug is called favipiravir, which is proving to be effective against several viruses that store their genetic information in the form of RNA molecules. These viruses include those that cause diseases such as influenza, gastroenteritis, and Ebola. Along with ongoing work determining how safe and effective favipiravir is for treating viral infections, researchers are also attempting to better understand how favipiravir works. Whenever a strand of RNA is copied to allow a new virus to form, there is a risk that mistakes—or mutations—that could harm the virus are introduced into the genetic code. Previous experiments performed on cells grown in the laboratory suggested that favipiravir works against RNA viruses by increasing how often these mutations occur. RNA viruses naturally experience a large number of mutations and the ability to make mutations is in fact a benefit for viruses as it allows them to evolve rapidly and to escape immune responses. However, there is a limit to how many mutations can be tolerated in the viral genome before it can no longer replicate. Therefore, a slight increase in how often mutations occur—as thought to be caused by favipiravir—is able to stop the RNA virus replicating and halt the infection. However, favipiravir's mode of action had yet to be confirmed in living animals. Using mice, Arias et al. tested favipiravir's ability to treat a persistent infection by norovirus—the most common cause of viral gastroenteritis in humans and also responsible for life-threatening chronic diarrhoea in immunodeficient patients. Treatment increased the number of mutations that occurred when the viral RNA replicated and could reduce the amount of virus in the mice to undetectable levels. In addition, favipiravir did not show toxicity in mice after 8 weeks of treatment. This suggests that favipiravir has the potential to be used safely and effectively to treat norovirus and other RNA viruses, although further studies are required before it can be developed into a clinical treatment. DOI:http://dx.doi.org/10.7554/eLife.03679.002
Collapse
Affiliation(s)
- Armando Arias
- Division of Virology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Lucy Thorne
- Division of Virology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ian Goodfellow
- Division of Virology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Deval J, Symons JA, Beigelman L. Inhibition of viral RNA polymerases by nucleoside and nucleotide analogs: therapeutic applications against positive-strand RNA viruses beyond hepatitis C virus. Curr Opin Virol 2014; 9:1-7. [PMID: 25194816 PMCID: PMC7102778 DOI: 10.1016/j.coviro.2014.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
New therapies for infections caused by positive-strand RNA viruses are needed. Novel nucleoside and nucleotide analogs that inhibit HCV have been developed. Some of these molecules also inhibit other positive-strand RNA viruses. Optimization of antiviral potency and/or target delivery is necessary.
A number of important human infections are caused by positive-strand RNA viruses, yet almost none can be treated with small molecule antiviral therapeutics. One exception is the chronic infection caused by hepatitis C virus (HCV), against which new generations of potent inhibitors are being developed. One of the main molecular targets for anti-HCV drugs is the viral RNA-dependent RNA polymerase, NS5B. This review summarizes the search for nucleoside and nucleotide analogs that inhibit HCV NS5B, which led to the FDA approval of sofosbuvir in 2013. Advances in anti-HCV therapeutics have also stimulated efforts to develop nucleoside analogs against other positive-strand RNA viruses. Although it remains to be validated in the clinic, the prospect of using nucleoside analogs to treat acute infections caused by RNA viruses represents an important paradigm shift and a new frontier for future antiviral therapies.
Collapse
Affiliation(s)
- Jerome Deval
- Alios BioPharma, Inc., 260 East Grand Avenue, South San Francisco, CA 94080, USA.
| | - Julian A Symons
- Alios BioPharma, Inc., 260 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Leo Beigelman
- Alios BioPharma, Inc., 260 East Grand Avenue, South San Francisco, CA 94080, USA.
| |
Collapse
|