1
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Hough RF, Alvira CM, Bastarache JA, Erzurum SC, Kuebler WM, Schmidt EP, Shimoda LA, Abman SH, Alvarez DF, Belvitch P, Bhattacharya J, Birukov KG, Chan SY, Cornfield DN, Dudek SM, Garcia JGN, Harrington EO, Hsia CCW, Islam MN, Jonigk DD, Kalinichenko VV, Kolb TM, Lee JY, Mammoto A, Mehta D, Rounds S, Schupp JC, Shaver CM, Suresh K, Tambe DT, Ventetuolo CE, Yoder MC, Stevens T, Damarla M. Studying the Pulmonary Endothelium in Health and Disease: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2024; 71:388-406. [PMID: 39189891 PMCID: PMC11450313 DOI: 10.1165/rcmb.2024-0330st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.
Collapse
|
3
|
Wibbe N, Ebnet K. Cell Adhesion at the Tight Junctions: New Aspects and New Functions. Cells 2023; 12:2701. [PMID: 38067129 PMCID: PMC10706136 DOI: 10.3390/cells12232701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Tight junctions (TJ) are cell-cell adhesive structures that define the permeability of barrier-forming epithelia and endothelia. In contrast to this seemingly static function, TJs display a surprisingly high molecular complexity and unexpected dynamic regulation, which allows the TJs to maintain a barrier in the presence of physiological forces and in response to perturbations. Cell-cell adhesion receptors play key roles during the dynamic regulation of TJs. They connect individual cells within cellular sheets and link sites of cell-cell contacts to the underlying actin cytoskeleton. Recent findings support the roles of adhesion receptors in transmitting mechanical forces and promoting phase separation. In this review, we discuss the newly discovered functions of cell adhesion receptors localized at the TJs and their role in the regulation of the barrier function.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, D-48419 Münster, Germany
| |
Collapse
|
4
|
Isayama K, Rini DM, Yamamoto Y, Suzuki T. Propionate regulates tight junction barrier by increasing endothelial-cell selective adhesion molecule in human intestinal Caco-2 cells. Exp Cell Res 2023; 425:113528. [PMID: 36842619 DOI: 10.1016/j.yexcr.2023.113528] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
Regulation of the intestinal barrier is closely associated with intestinal microbial metabolism. This study investigated the role of propionate, a major short-chain fatty acid produced by intestinal microorganisms, in the regulation of the tight junction (TJ) barrier in human intestinal Caco-2 cells. Propionate strengthened TJ barrier integrity, as indicated by decreased permeability to macromolecules and increased transepithelial electrical resistance in Caco-2 cells. DNA microarray analysis revealed that propionate upregulated endothelial cell-selective adhesion molecule (ESAM), a TJ-associated protein, without any increase in other TJ proteins. The upregulation of ESAM was confirmed using quantitative reverse transcription-PCR, immunoblotting, and immunofluorescence analyses. Luciferase promoter analysis demonstrated that propionate induced the transcriptional activation of ESAM. The effects of propionate were sensitive to nilotinib inhibition of NR2C2. Overexpression of human ESAM (hESAM) in canine kidney epithelial MDCK-II cells lowered the permeability to macromolecules in a manner similar to that of propionate-treated Caco-2 cells. hESAM overexpression facilitated calcium-induced assembly of the TJ complex in MDCK-II cells. Taken together, propionate strengthened the intestinal TJ barrier by increasing ESAM levels in Caco-2 cells.
Collapse
Affiliation(s)
- Kana Isayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Dina Mustika Rini
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan; Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional "Veteran", Surabaya, Jawa Timur, 60294, Indonesia
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
5
|
Lecca M, Pehlivan D, Suñer DH, Weiss K, Coste T, Zweier M, Oktay Y, Danial-Farran N, Rosti V, Bonasoni MP, Malara A, Contrò G, Zuntini R, Pollazzon M, Pascarella R, Neri A, Fusco C, Marafi D, Mitani T, Posey JE, Bayramoglu SE, Gezdirici A, Hernandez-Rodriguez J, Cladera EA, Miravet E, Roldan-Busto J, Ruiz MA, Bauzá CV, Ben-Sira L, Sigaudy S, Begemann A, Unger S, Güngör S, Hiz S, Sonmezler E, Zehavi Y, Jerdev M, Balduini A, Zuffardi O, Horvath R, Lochmüller H, Rauch A, Garavelli L, Tournier-Lasserve E, Spiegel R, Lupski JR, Errichiello E. Bi-allelic variants in the ESAM tight-junction gene cause a neurodevelopmental disorder associated with fetal intracranial hemorrhage. Am J Hum Genet 2023; 110:681-690. [PMID: 36996813 PMCID: PMC10119151 DOI: 10.1016/j.ajhg.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
The blood-brain barrier (BBB) is an essential gatekeeper for the central nervous system and incidence of neurodevelopmental disorders (NDDs) is higher in infants with a history of intracerebral hemorrhage (ICH). We discovered a rare disease trait in thirteen individuals, including four fetuses, from eight unrelated families associated with homozygous loss-of-function variant alleles of ESAM which encodes an endothelial cell adhesion molecule. The c.115del (p.Arg39Glyfs∗33) variant, identified in six individuals from four independent families of Southeastern Anatolia, severely impaired the in vitro tubulogenic process of endothelial colony-forming cells, recapitulating previous evidence in null mice, and caused lack of ESAM expression in the capillary endothelial cells of damaged brain. Affected individuals with bi-allelic ESAM variants showed profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses. Phenotypic traits observed in individuals with bi-allelic ESAM variants overlap very closely with other known conditions characterized by endothelial dysfunction due to mutation of genes encoding tight junction molecules. Our findings emphasize the role of brain endothelial dysfunction in NDDs and contribute to the expansion of an emerging group of diseases that we propose to rename as "tightjunctionopathies."
Collapse
Affiliation(s)
- Mauro Lecca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Damià Heine Suñer
- Molecular Diagnostics and Clinical Genetics Unit, Hospital Universitari Son Espases, Palma, Illes Balears, Spain; Genomics of Health, Institute of Health Research of the Balearic Islands, Palma, Illes Balears, Spain
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Thibault Coste
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France; Université de Paris, INSERM UMR-1141 Neurodiderot, Paris, France
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey; Department of Medical Biology, School of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | | | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | | | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Laboratory of Biochemistry-Biotechnology and Advanced Diagnostics, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Gianluca Contrò
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Roberta Zuntini
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Marzia Pollazzon
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alberto Neri
- Ophthalmology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer Ellen Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sadik Etka Bayramoglu
- Tertiary ROP Center, Health Science University Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | | | - Emilia Amengual Cladera
- Genomics of Health, Institute of Health Research of the Balearic Islands, Palma, Illes Balears, Spain
| | - Elena Miravet
- Metabolic Pathologies and Pediatric Neurology Unit, Pediatric Service, Hospital Universitari Son Espases, Palma, Illes Balears, Spain
| | - Jorge Roldan-Busto
- Pediatric Radiology Unit, Radiology Service, Hospital Universitari Son Espases, Palma, Illes Balears, Spain
| | - María Angeles Ruiz
- Metabolic Pathologies and Pediatric Neurology Unit, Pediatric Service, Hospital Universitari Son Espases, Palma, Illes Balears, Spain
| | - Cristofol Vives Bauzá
- Neurobiology, Institute of Health Research of the Balearic Islands, Palma, Illes Balears, Spain
| | - Liat Ben-Sira
- Department of Radiology, Division of Pediatric Radiology, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Sabine Sigaudy
- AP-HM, Service de Génétique, Hôpital de la Timone, Marseille, France
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Sheila Unger
- Medical Genetics Service, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Serdal Güngör
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Pediatric Neurology, Malatya, Turkey
| | - Semra Hiz
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey; Department of Pediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Ece Sonmezler
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
| | - Yoav Zehavi
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Department of Pediatrics B, Emek Medical Center, Afula, Israel
| | - Michael Jerdev
- Poriya Medical Center and the Azrieli Faculty of Medicine, Bar-Ilan University, Ramat-Gan, Israel
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PY, UK; Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0PY, UK
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa ON K1H 8L1, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L1, Canada
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisabeth Tournier-Lasserve
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France; Université de Paris, INSERM UMR-1141 Neurodiderot, Paris, France
| | - Ronen Spiegel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Department of Pediatrics B, Emek Medical Center, Afula, Israel
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
6
|
Buncha V, Fopiano KA, Lang L, Williams C, Horuzsko A, Filosa JA, Kapuku G, Bagi Z. Mice with endothelial cell-selective adhesion molecule deficiency develop coronary microvascular rarefaction and left ventricle diastolic dysfunction. Physiol Rep 2023; 11:e15643. [PMID: 36946064 PMCID: PMC10031300 DOI: 10.14814/phy2.15643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
Endothelial cell-selective adhesion molecule (ESAM) regulates inflammatory cell adhesion and transmigration and promotes angiogenesis. Here, we examined the role of ESAM in cardiac vascularization, inflammatory cell infiltration, and left ventricle (LV) diastolic function under basal and hemodynamic stress conditions. We employed mice with homozygous genetic deletion of ESAM (ESAM-/- ) and also performed uninephrectomy and aldosterone infusion (UNX-Aldo) to induce volume and pressure overload. Using echocardiography, we found that ESAM-/- mice display no change in systolic function. However, they develop LV diastolic dysfunction, as indicated by a significantly reduced E/A ratio (E = early, A = late mitral inflow peak velocities), increased E/e' ratio, isovolumic relaxation time (IVRT), and E wave deceleration time. An unbiased automated tracing and 3D reconstruction of coronary vasculature revealed that ESAM-/- mice had reduced coronary vascular density. Arteries of ESAM-/- mice exhibited impaired endothelial sprouting and in cultured endothelial cells siRNA-mediated ESAM knockdown reduced tube formation. Changes in ESAM-/- mice were accompanied by elevated myocardial inflammatory cytokine and myeloperoxidase-positive neutrophil levels. Furthermore, UNX-Aldo procedure in wild type mice induced LV diastolic dysfunction, which was accompanied by significantly increased serum ESAM levels. When compared to wild types, ESAM-/- mice with UNX-Aldo displayed worsening of LV diastolic function, as indicated by increased IVRT and pulmonary edema. Thus, we propose that ESAM plays a mechanistic role in proper myocardial vascularization and the maintenance of LV diastolic function under basal and hemodynamic stress conditions.
Collapse
Affiliation(s)
- Vadym Buncha
- Department of PhysiologyMedical College of Georgia, Augusta UniversityGeorgiaAugustaUSA
| | - Katie Anne Fopiano
- Department of PhysiologyMedical College of Georgia, Augusta UniversityGeorgiaAugustaUSA
| | - Liwei Lang
- Department of PhysiologyMedical College of Georgia, Augusta UniversityGeorgiaAugustaUSA
| | - Celestine Williams
- Department of MedicineGeorgia Prevention Institute, Medical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
| | - Anatolij Horuzsko
- Georgia Cancer CenterMedical College of Georgia, Augusta UniversityGeorgiaAugustaUSA
| | - Jessica Andrea Filosa
- Department of PhysiologyMedical College of Georgia, Augusta UniversityGeorgiaAugustaUSA
| | - Gaston Kapuku
- Department of MedicineGeorgia Prevention Institute, Medical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
| | - Zsolt Bagi
- Department of PhysiologyMedical College of Georgia, Augusta UniversityGeorgiaAugustaUSA
| |
Collapse
|
7
|
Wang J, Chen X. Junctional Adhesion Molecules: Potential Proteins in Atherosclerosis. Front Cardiovasc Med 2022; 9:888818. [PMID: 35872908 PMCID: PMC9302484 DOI: 10.3389/fcvm.2022.888818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Junctional adhesion molecules (JAMs) are cell-cell adhesion molecules of the immunoglobulin superfamily and are involved in the regulation of diverse atherosclerosis-related processes such as endothelial barrier maintenance, leucocytes transendothelial migration, and angiogenesis. To combine and further broaden related results, this review concluded the recent progress in the roles of JAMs and predicted future studies of JAMs in the development of atherosclerosis.
Collapse
Affiliation(s)
- Junqi Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoping Chen,
| |
Collapse
|
8
|
Hansmeier NR, Büschlen IS, Behncke RY, Ulferts S, Bisoendial R, Hägerling R. 3D Visualization of Human Blood Vascular Networks Using Single-Domain Antibodies Directed against Endothelial Cell-Selective Adhesion Molecule (ESAM). Int J Mol Sci 2022; 23:ijms23084369. [PMID: 35457187 PMCID: PMC9028812 DOI: 10.3390/ijms23084369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
High-quality three-dimensional (3D) microscopy allows detailed, unrestricted and non-destructive imaging of entire volumetric tissue specimens and can therefore increase the diagnostic accuracy of histopathological tissue analysis. However, commonly used IgG antibodies are oftentimes not applicable to 3D imaging, due to their relatively large size and consequently inadequate tissue penetration and penetration speed. The lack of suitable reagents for 3D histopathology can be overcome by an emerging class of single-domain antibodies, referred to as nanobodies (Nbs), which can facilitate rapid and superior 2D and 3D histological stainings. Here, we report the generation and experimental validation of Nbs directed against the human endothelial cell-selective adhesion molecule (hESAM), which enables spatial visualization of blood vascular networks in whole-mount 3D imaging. After analysis of Nb binding properties and quality, selected Nb clones were validated in 2D and 3D imaging approaches, demonstrating comparable staining qualities to commercially available hESAM antibodies in 2D, as well as rapid and complete staining of entire specimens in 3D. We propose that the presented hESAM-Nbs can serve as novel blood vessel markers in academic research and can potentially improve 3D histopathological diagnostics of entire human tissue specimens, leading to improved treatment and superior patient outcomes.
Collapse
Affiliation(s)
- Nils Rouven Hansmeier
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (N.R.H.); (I.S.B.); (R.Y.B.); (S.U.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group ‘Development and Disease’, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Ina Sophie Büschlen
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (N.R.H.); (I.S.B.); (R.Y.B.); (S.U.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Rose Yinghan Behncke
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (N.R.H.); (I.S.B.); (R.Y.B.); (S.U.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sascha Ulferts
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (N.R.H.); (I.S.B.); (R.Y.B.); (S.U.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Radjesh Bisoendial
- Department of Rheumatology and Clinical Immunology, Maasstad Hospital, Maasstadweg 21, 3079 DZ Rotterdam, The Netherlands;
- Department of Immunology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - René Hägerling
- Research Group ‘Lymphovascular Medicine and Translational 3D-Histopathology’, Institute of Medical and Human Genetics, Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (N.R.H.); (I.S.B.); (R.Y.B.); (S.U.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
- Research Group ‘Development and Disease’, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|
9
|
Chemerin Effect on the Endometrial Proteome of the Domestic Pig during Implantation Obtained by LC-MS/MS Analysis. Cells 2022; 11:cells11071161. [PMID: 35406725 PMCID: PMC8997736 DOI: 10.3390/cells11071161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Chemerin (CHEM) is a hormone mainly expressed in adipocytes involved in the regulation of energy homeostasis and inflammatory response. CHEM expression has been demonstrated in the structures of the porcine hypothalamic-pituitary-gonadal axis, as well as in the uterus, trophoblasts and conceptuses of pigs. In this study, we performed high-throughput proteomic analyses (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the influence of CHEM (400 ng/mL) on differentially regulated proteins (DRPs) in the porcine endometrial tissue explants during implantation (15 to 16 days of gestation). Among all 352 DRPs, 164 were up-regulated and 188 were down-regulated in CHEM-treated group. DRPs were assigned to 47 gene ontology (GO) terms (p-adjusted < 0.05). Validation of four DRPs (IFIT5, TGFβ1, ACO1 and PGRMC1) by Western blot analysis confirmed the veracity and accuracy of the LC-MS/MS method used in the present study. We suggest that CHEM, by modulating various protein expressions, takes part in the endometrial cell proliferation, migration and invasion at the time of implantation. It also regulates the endometrial immune response, sensitivity to P4 and the formation of new blood vessels. Additionally, CHEM appears to be an important factor involved in endothelial cell dysfunction during the pathogenesis of preeclampsia. The identification of a large number of DRPs under the influence of CHEM provides a valuable resource for understanding the molecular mechanisms of this hormone action during implantation, which is a prerequisite for better control of pig reproduction.
Collapse
|
10
|
Hernández-Nava E, Montaño LF, Rendón-Huerta EP. Transcriptional and Epigenetic Bioinformatic Analysis of Claudin-9 Regulation in Gastric Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5936905. [PMID: 39296813 PMCID: PMC11410435 DOI: 10.1155/2021/5936905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 09/21/2024]
Abstract
Gastric cancer is a heterogeneous disease that represents 5% to 10% of all new cancer cases worldwide. Advances in histological diagnosis and the discovery of new genes have admitted new genomic classifications. Nevertheless, the bioinformatic analysis of gastric cancer databases has favored the detection of specific differentially expressed genes with biological significance. Claudins, a family of proteins involved in tight junction physiology, have emerged as the key regulators of cellular processes, such as growth, proliferation, and migration, associated with cancer progression. The expression of Claudin-9 in the gastric cancer tissue has been linked to poor prognosis, however, its transcriptional and epigenetic regulations demand a more comprehensive analysis. Using the neural network promoter prediction, TransFact, Uniprot-KB, Expasy-SOPMA, protein data bank, proteomics DB, Interpro, BioGRID, String, and the FASTA protein sequence databases and software, we found the following: (1) the promoter sequence has an unconventional structure, including different transcriptional regulation elements distributed throughout it, (2) GATA 4, GATA 6, and KLF5 are the key regulators of Claudin-9 expression, (3) Oct1, NF-κB, AP-1, c-Ets-1, and HNF-3β have the higher binding affinity to the CLDN9 promoter, (4) Claudin-9 interacts with cell differentiation and development proteins, (5) CLDN9 is highly methylated, and (6) Claudin-9 expression is associated with poor survival. In conclusion, Claudin-9 is a protein that should be considered a diagnostic marker as its gene promoter region binds to the transcription factors associated with the deregulation of cell control, enhanced cell proliferation, and metastasis.
Collapse
Affiliation(s)
- Elizabeth Hernández-Nava
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Luis F Montaño
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Erika P Rendón-Huerta
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| |
Collapse
|
11
|
Chen H, Williams KE, Kwan EY, Kapidzic M, Puckett KA, Aburajab RK, Robinson JF, Fisher SJ. Global proteomic analyses of human cytotrophoblast differentiation/invasion. Development 2021; 148:dev199561. [PMID: 34121116 PMCID: PMC8276980 DOI: 10.1242/dev.199561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
During human pregnancy, cytotrophoblasts (CTBs) from the placenta differentiate into specialized subpopulations that play crucial roles in proper fetal growth and development. A subset of these CTBs differentiate along an invasive pathway, penetrating the decidua and anchoring the placenta to the uterus. A crucial hurdle in pregnancy is the ability of these cells to migrate, invade and remodel spiral arteries, ensuring adequate blood flow to nourish the developing fetus. Although advances continue in describing the molecular features regulating the differentiation of these cells, assessment of their global proteomic changes at mid-gestation remain undefined. Here, using sequential window acquisition of all theoretical fragment-ion spectra (SWATH), which is a data-independent acquisition strategy, we characterized the protein repertoire of second trimester human CTBs during their differentiation towards an invasive phenotype. This mass spectrometry-based approach allowed identification of 3026 proteins across four culture time points corresponding to sequential stages of differentiation, confirming the expression dynamics of established molecules and offering new information into other pathways involved. The availability of a SWATH CTB global spectral library serves as a beneficial resource for hypothesis generation and as a foundation for further understanding CTB differentiation dynamics.
Collapse
Affiliation(s)
- Hao Chen
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
| | - Katherine E. Williams
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
| | - Elaine Y. Kwan
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Kenisha A. Puckett
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Rayyan K. Aburajab
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F. Robinson
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Susan J. Fisher
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
- Division of Maternal Fetal Medicine, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Human Embryonic Stem Cell Program, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
12
|
Phng LK, Belting HG. Endothelial cell mechanics and blood flow forces in vascular morphogenesis. Semin Cell Dev Biol 2021; 120:32-43. [PMID: 34154883 DOI: 10.1016/j.semcdb.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
The vertebrate cardiovascular system is made up by a hierarchically structured network of highly specialised blood vessels. This network emerges during early embryogenesis and evolves in size and complexity concomitant with embryonic growth and organ formation. Underlying this plasticity are actin-driven endothelial cell behaviours, which allow endothelial cells to change their shape and move within the vascular network. In this review, we discuss the cellular and molecular mechanisms involved in vascular network formation and how these intrinsic mechanisms are influenced by haemodynamic forces provided by pressurized blood flow. While most of this review focusses on in vivo evidence from zebrafish embryos, we also mention complementary findings obtained in other experimental systems.
Collapse
Affiliation(s)
- Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Basel 4056, Switzerland.
| |
Collapse
|
13
|
Kumarasamy M, Sosnik A. Heterocellular spheroids of the neurovascular blood-brain barrier as a platform for personalized nanoneuromedicine. iScience 2021; 24:102183. [PMID: 33718835 PMCID: PMC7921813 DOI: 10.1016/j.isci.2021.102183] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Nanoneuromedicine investigates nanotechnology to target the brain and treat neurological diseases. In this work, we biofabricated heterocellular spheroids comprising human brain microvascular endothelial cells, brain vascular pericytes and astrocytes combined with primary cortical neurons and microglia isolated from neonate rats. The structure and function are characterized by confocal laser scanning and light sheet fluorescence microscopy, electron microscopy, western blotting, and RNA sequencing. The spheroid bulk is formed by neural cells and microglia and the surface by endothelial cells and they upregulate key structural and functional proteins of the blood-brain barrier. These cellular constructs are utilized to preliminary screen the permeability of polymeric, metallic, and ceramic nanoparticles (NPs). Findings reveal that penetration and distribution patterns depend on the NP type and that microglia would play a key role in this pathway, highlighting the promise of this platform to investigate the interaction of different nanomaterials with the central nervous system in nanomedicine, nanosafety and nanotoxicology.
Collapse
Affiliation(s)
- Murali Kumarasamy
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Bldg. Office 607, Technion City, 3200003 Haifa, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Bldg. Office 607, Technion City, 3200003 Haifa, Israel
| |
Collapse
|
14
|
Park JH, Shin HH, Rhyu HS, Kim SH, Jeon ES, Lim BK. Vascular Endothelial Integrity Affects the Severity of Enterovirus-Mediated Cardiomyopathy. Int J Mol Sci 2021; 22:3053. [PMID: 33802680 PMCID: PMC8002520 DOI: 10.3390/ijms22063053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Coxsackievirus and adenovirus receptor (CAR) is present in epithelial and vascular endothelial cell junctions. We have previously shown a hemorrhagic phenotype in germ-line CAR knock-out mouse embryos; we have also found that CAR interacts with ZO-1 and β-catenin. However, the role of CAR in vascular endothelial junction permeability has not been proven. To understand the roles of CAR in the vascular endothelial junctions, we generated endothelium-specific CAR knockout (CAR-eKO) mice. In the absence of CAR, the endothelial cell layer showed an increase in transmembrane electrical resistance (TER, Ω) and coxsackievirus permeability. Evans blue dye and 70 kDa dextran-FITC were delivered by tail vein injection. We observed increased vascular permeability in the hearts of adult CAR-eKO mice compare with wild-type (WT) mice. There was a marked increase in monocyte and macrophage penetration into the peritoneal cavity caused by thioglycolate-induced peritonitis. We found that CAR ablation in endothelial cells was not significantly increased coxsackievirus B3 (CVB3) induced myocarditis in murine model. However, tissue virus titers were significantly higher in CAR-eKO mice compared with WT. Moreover, CVB3 was detected in the brain of CAR-eKO mice. Endothelial CAR deletion affects the expression of major endothelial junction proteins, such as cadherin and platelet endothelial cell adhesion molecule-1 (PECAM-1) in the cultured endothelial cells as well as liver vessel. We suggest that CAR expression is required for normal vascular permeability and endothelial tight junction homeostasis. Furthermore, CVB3 organ penetration and myocarditis severities were dependent on the endothelial CAR level.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| | - Ha-Hyeon Shin
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| | - Hyun-Seung Rhyu
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| | - So-Hee Kim
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| | - Eun-Seok Jeon
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine 50 Irwon dong, Gangnam-gu, Seoul 06351, Korea;
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| |
Collapse
|
15
|
Shingai Y, Yokota T, Okuzaki D, Sudo T, Ishibashi T, Doi Y, Ueda T, Ozawa T, Nakai R, Tanimura A, Ichii M, Shibayama H, Kanakura Y, Hosen N. Autonomous TGFβ signaling induces phenotypic variation in human acute myeloid leukemia. STEM CELLS (DAYTON, OHIO) 2021; 39:723-736. [PMID: 33539590 PMCID: PMC8248163 DOI: 10.1002/stem.3348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Heterogeneity of leukemia stem cells (LSCs) is involved in their collective chemoresistance. To eradicate LSCs, it is necessary to understand the mechanisms underlying their heterogeneity. Here, we aimed to identify signals responsible for heterogeneity and variation of LSCs in human acute myeloid leukemia (AML). Monitoring expression levels of endothelial cell-selective adhesion molecule (ESAM), a hematopoietic stem cell-related marker, was useful to detect the plasticity of AML cells. While healthy human hematopoietic stem/progenitor cells robustly expressed ESAM, AML cells exhibited heterogeneous ESAM expression. Interestingly, ESAM- and ESAM+ leukemia cells obtained from AML patients were mutually interconvertible in culture. KG1a and CMK, human AML clones, also represented the heterogeneity in terms of ESAM expression. Single cell culture with ESAM- or ESAM+ AML clones recapitulated the phenotypic interconversion. The phenotypic alteration was regulated at the gene expression level, and RNA sequencing revealed activation of TGFβ signaling in these cells. AML cells secreted TGFβ1, which autonomously activated TGFβ pathway and induced their phenotypic variation. Surprisingly, TGFβ signaling blockade inhibited not only the variation but also the proliferation of AML cells. Therefore, autonomous activation of TGFβ signaling underlies the LSC heterogeneity, which may be a promising therapeutic target for AML.
Collapse
Affiliation(s)
- Yasuhiro Shingai
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Disease, Osaka University, Suita, Japan
| | - Takao Sudo
- Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohiko Ishibashi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yukiko Doi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoaki Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayuki Ozawa
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ritsuko Nakai
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Tanimura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
16
|
Rathjen FG. The CAR group of Ig cell adhesion proteins–Regulators of gap junctions? Bioessays 2020; 42:e2000031. [DOI: 10.1002/bies.202000031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/01/2020] [Indexed: 12/29/2022]
|
17
|
Hartmann C, Schwietzer YA, Otani T, Furuse M, Ebnet K. Physiological functions of junctional adhesion molecules (JAMs) in tight junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183299. [DOI: 10.1016/j.bbamem.2020.183299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022]
|
18
|
Bruno C, Sieverding K, Freischmidt A, Satoh T, Walther P, Mayer B, Ludolph AC, Akira S, Yilmazer-Hanke D, Danzer KM, Lobsiger CS, Brenner D, Weishaupt JH. Haploinsufficiency of TANK-binding kinase 1 prepones age-associated neuroinflammatory changes without causing motor neuron degeneration in aged mice. Brain Commun 2020; 2:fcaa133. [PMID: 33005894 PMCID: PMC7519725 DOI: 10.1093/braincomms/fcaa133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Loss-of-function mutations in TANK-binding kinase 1 cause genetic amyotrophic lateral sclerosis and frontotemporal dementia. Consistent with incomplete penetrance in humans, haploinsufficiency of TANK-binding kinase 1 did not cause motor symptoms in mice up to 7 months of age in a previous study. Ageing is the strongest risk factor for neurodegenerative diseases. Hypothesizing that age-dependent processes together with haploinsufficiency of TANK-binding kinase 1 could create a double hit situation that may trigger neurodegeneration, we examined mice with hemizygous deletion of Tbk1 (Tbk1 +/- mice) and wild-type siblings up to 22 months. Compared to 4-month old mice, aged, 22-month old mice showed glial activation, deposition of motoneuronal p62 aggregates, muscular denervation and profound transcriptomic alterations in a set of 800 immune-related genes upon ageing. However, we did not observe differences regarding these measures between aged Tbk1 +/- and wild-type siblings. High age did also not precipitate TAR DNA-binding protein 43 aggregation, neurodegeneration or a neurological phenotype in Tbk1+/ - mice. In young Tbk1+/ - mice, however, we found the CNS immune gene expression pattern shifted towards the age-dependent immune system dysregulation observed in old mice. Conclusively, ageing is not sufficient to precipitate an amyotrophic lateral sclerosis or frontotemporal dementia phenotype or spinal or cortical neurodegeneration in a model of Tbk1 haploinsufficiency. We hypothesize that the consequences of Tbk1 haploinsufficiency may be highly context-dependent and require a specific synergistic stress stimulus to be uncovered.
Collapse
Affiliation(s)
- Clara Bruno
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | | | | | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, 89081 Ulm, Germany
| | - B Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Deniz Yilmazer-Hanke
- Department of Neurology, Clinical Neuroanatomy, Neurology, University of Ulm, 89081 Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | - Christian S Lobsiger
- Institut du Cerveau et de la Moelle Épinière, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, 75013 Paris, France
| | - David Brenner
- Department of Neurology, University of Ulm, 89081 Ulm, Germany.,Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 61867 Mannheim, Germany
| | - Jochen H Weishaupt
- Department of Neurology, University of Ulm, 89081 Ulm, Germany.,Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 61867 Mannheim, Germany
| |
Collapse
|
19
|
Endothelial Cell-Selective Adhesion Molecule Contributes to the Development of Definitive Hematopoiesis in the Fetal Liver. Stem Cell Reports 2020; 13:992-1005. [PMID: 31813828 PMCID: PMC6915804 DOI: 10.1016/j.stemcr.2019.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Endothelial cell-selective adhesion molecule (ESAM) is a lifelong marker of hematopoietic stem cells (HSCs). Although we previously elucidated the functional importance of ESAM in HSCs in stress-induced hematopoiesis in adults, it is unclear how ESAM affects hematopoietic development during fetal life. To address this issue, we analyzed fetuses from conventional or conditional ESAM-knockout mice. Approximately half of ESAM-null fetuses died after mid-gestation due to anemia. RNA sequencing analyses revealed downregulation of adult-type globins and Alas2, a heme biosynthesis enzyme, in ESAM-null fetal livers. These abnormalities were attributed to malfunction of ESAM-null HSCs, which was demonstrated in culture and transplantation experiments. Although crosslinking ESAM directly influenced gene transcription in HSCs, observations in conditional ESAM-knockout fetuses revealed the critical involvement of ESAM expressed in endothelial cells in fetal lethality. Thus, we showed that ESAM had important roles in developing definitive hematopoiesis. Furthermore, we unveiled the importance of endothelial ESAM in this process.
Collapse
|
20
|
Duong CN, Vestweber D. Mechanisms Ensuring Endothelial Junction Integrity Beyond VE-Cadherin. Front Physiol 2020; 11:519. [PMID: 32670077 PMCID: PMC7326147 DOI: 10.3389/fphys.2020.00519] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 12/30/2022] Open
Abstract
Endothelial junctions provide blood and lymph vessel integrity and are essential for the formation of a vascular system. They control the extravasation of solutes, leukocytes and metastatic cells from blood vessels and the uptake of fluid and leukocytes into the lymphatic vascular system. A multitude of adhesion molecules mediate and control the integrity and permeability of endothelial junctions. VE-cadherin is arguably the most important adhesion molecule for the formation of vascular structures, and the stability of their junctions. Interestingly, despite this prominence, its elimination from junctions in the adult organism has different consequences in the vasculature of different organs, both for blood and lymph vessels. In addition, even in tissues where the lack of VE-cadherin leads to strong plasma leaks from venules, the physical integrity of endothelial junctions is preserved. Obviously, other adhesion molecules can compensate for a loss of VE-cadherin and this review will discuss which other adhesive mechanisms contribute to the stability and regulation of endothelial junctions and cooperate with VE-cadherin in intact vessels. In addition to adhesion molecules, endothelial receptors will be discussed, which stimulate signaling processes that provide junction stability by modulating the actomyosin system, which reinforces tension of circumferential actin and dampens pulling forces of radial stress fibers. Finally, we will highlight most recent reports about the formation and control of the specialized button-like junctions of initial lymphatics, which represent the entry sites for fluid and cells into the lymphatic vascular system.
Collapse
Affiliation(s)
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
21
|
Duong CN, Nottebaum AF, Butz S, Volkery S, Zeuschner D, Stehling M, Vestweber D. Interference With ESAM (Endothelial Cell-Selective Adhesion Molecule) Plus Vascular Endothelial-Cadherin Causes Immediate Lethality and Lung-Specific Blood Coagulation. Arterioscler Thromb Vasc Biol 2020; 40:378-393. [DOI: 10.1161/atvbaha.119.313545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective:
Vascular endothelial (VE)-cadherin is of dominant importance for the formation and stability of endothelial junctions, yet induced gene inactivation enhances vascular permeability in the lung but does not cause junction rupture. This study aims at identifying the junctional adhesion molecule, which is responsible for preventing endothelial junction rupture in the pulmonary vasculature in the absence of VE-cadherin.
Approach and Results:
We have compared the relevance of ESAM (endothelial cell-selective adhesion molecule), JAM (junctional adhesion molecule)-A, PECAM (platelet endothelial cell adhesion molecule)-1, and VE-cadherin for vascular barrier integrity in various mouse tissues. Gene inactivation of ESAM enhanced vascular permeability in the lung but not in the heart, skin, and brain. In contrast, deletion of JAM-A or PECAM-1 did not affect barrier integrity in any of these organs. Blocking VE-cadherin with antibodies caused lethality in ESAM
−/−
mice within 30 minutes but had no such effect in JAM-A
−/−
, PECAM-1
−/−
or wild-type mice. Likewise, induced gene inactivation of VE-cadherin caused rapid lethality only in the absence of ESAM. Ultrastructural analysis revealed that only combined interference with VE-cadherin and ESAM disrupted endothelial junctions and caused massive blood coagulation in the lung. Mechanistically, we could exclude a role of platelet ESAM in coagulation, changes in the expression of other junctional proteins or a contribution of cytoplasmic signaling domains of ESAM.
Conclusions:
Despite well-documented roles of JAM-A and PECAM-1 for the regulation of endothelial junctions, only for ESAM, we detected an essential role for endothelial barrier integrity in a tissue-specific way. In addition, we found that it is ESAM which prevents endothelial junction rupture in the lung when VE-cadherin is absent.
Collapse
Affiliation(s)
- Cao Nguyen Duong
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Astrid F. Nottebaum
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Stefan Butz
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Stefan Volkery
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy and Flow Cytometry Unit (D.Z., M.S.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Electron Microscopy and Flow Cytometry Unit (D.Z., M.S.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dietmar Vestweber
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
22
|
Vermeersch E, Nuyttens BP, Tersteeg C, Broos K, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Functional Genomics for the Identification of Modulators of Platelet-Dependent Thrombus Formation. TH OPEN 2019; 2:e272-e279. [PMID: 31249951 PMCID: PMC6524883 DOI: 10.1055/s-0038-1670630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/06/2018] [Indexed: 11/17/2022] Open
Abstract
Despite the absence of the genome in platelets, transcription profiling provides important insights into platelet function and can help clarify abnormalities in platelet disorders. The Bloodomics Consortium performed whole-genome expression analysis comparing in vitro–differentiated megakaryocytes (MKs) with in vitro–differentiated erythroblasts and different blood cell types. This allowed the identification of genes with upregulated expression in MKs compared with all other cell lineages, among the receptors BAMBI, LRRC32, ESAM, and DCBLD2. In a later correlative analysis of genome-wide platelet RNA expression with interindividual human platelet reactivity, LLRFIP and COMMD7 were additionally identified. A functional genomics approach using morpholino-based silencing in zebrafish identified various roles for all of these selected genes in thrombus formation. In this review, we summarize the role of the six identified genes in zebrafish and discuss how they correlate with subsequently performed mouse experiments.
Collapse
Affiliation(s)
- Elien Vermeersch
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
| | | | - Claudia Tersteeg
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Katleen Broos
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
| |
Collapse
|
23
|
|
24
|
Heterocellular molecular contacts in the mammalian stem cell niche. Eur J Cell Biol 2018; 97:442-461. [PMID: 30025618 DOI: 10.1016/j.ejcb.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Adult tissue homeostasis and repair relies on prompt and appropriate intervention by tissue-specific adult stem cells (SCs). SCs have the ability to self-renew; upon appropriate stimulation, they proliferate and give rise to specialized cells. An array of environmental signals is important for maintenance of the SC pool and SC survival, behavior, and fate. Within this special microenvironment, commonly known as the stem cell niche (SCN), SC behavior and fate are regulated by soluble molecules and direct molecular contacts via adhesion molecules providing connections to local supporting cells and the extracellular matrix. Besides the extensively discussed array of soluble molecules, the expression of adhesion molecules and molecular contacts is another fundamental mechanism regulating niche occupancy and SC mobilization upon activation. Some adhesion molecules are differentially expressed and have tissue-specific consequences, likely reflecting the structural differences in niche composition and design, especially the presence or absence of a stromal counterpart. However, the distribution and identity of intercellular molecular contacts for adhesion and adhesion-mediated signaling within stromal and non-stromal SCN have not been thoroughly studied. This review highlights common details or significant differences in cell-to-cell contacts within representative stromal and non-stromal niches that could unveil new standpoints for stem cell biology and therapy.
Collapse
|
25
|
Ren HY, Khera A, de Lemos JA, Ayers CR, Rohatgi A. Soluble endothelial cell-selective adhesion molecule and incident cardiovascular events in a multiethnic population. Am Heart J 2017; 191:55-61. [PMID: 28888270 DOI: 10.1016/j.ahj.2017.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/17/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cell adhesion molecules are key regulators of atherosclerotic plaque development, but circulating levels of soluble fragments, such as intercellular adhesion molecule (sICAM-1) and vascular cell adhesion molecule (sVCAM-1), have yielded conflicting associations with atherosclerotic cardiovascular disease (ASCVD). Endothelial cell-selective adhesion molecule (ESAM) is expressed exclusively in platelets and endothelial cells, and soluble ESAM (sESAM) levels have been associated with prevalent subclinical atherosclerosis. We therefore hypothesized that sESAM would be associated with incident ASCVD. METHODS sESAM, sICAM-1, and sVCAM-1 were measured in 2,442 participants without CVD in the Dallas Heart Study, a probability-based population sample aged 30-65 years enrolled between 2000 and 2002. ASCVD was defined as first myocardial infarction, stroke, coronary revascularization, or CV death. A total of 162 ASCVD events were analyzed over 10.4 years. RESULTS Increasing sESAM was associated with ASCVD, independent of risk factors (HR Q4 vs Q1: 2.7, 95% CI 1.6-4.6). Serial adjustment for renal function, sICAM-1, VCAM-1, and prevalent coronary calcium did not attenuate these associations. Continuous ESAM demonstrated similar findings (HR 1.31, 95% CI 1.2-1.4). Addition of sESAM to traditional risk factors improved discrimination and reclassification (delta c-index: P = .009; integrated-discrimination-improvement index P = .001; net reclassification index = 0.42, 95% CI 0.15-0.68). Neither sICAM-1 nor sVCAM-1 was independently associated with ASCVD. CONCLUSIONS sESAM but not sICAM-1 or sVCAM-1 levels are associated with incident ASCVD. Further studies are warranted to investigate the role of sESAM in ASCVD.
Collapse
Affiliation(s)
- Hao-Yu Ren
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Amit Khera
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - James A de Lemos
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Colby R Ayers
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Anand Rohatgi
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
26
|
Domingues MJ, Cao H, Heazlewood SY, Cao B, Nilsson SK. Niche Extracellular Matrix Components and Their Influence on HSC. J Cell Biochem 2017; 118:1984-1993. [PMID: 28112429 DOI: 10.1002/jcb.25905] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/16/2022]
Abstract
Maintenance of hematopoietic stem cells (HSC) takes place in a highly specialized microenvironment within the bone marrow. Technological improvements, especially in the field of in vivo imaging, have helped unravel the complexity of the niche microenvironment and have completely changed the classical concept from what was previously believed to be a static supportive platform, to a dynamic microenvironment tightly regulating HSC homeostasis through the complex interplay between diverse cell types, secreted factors, extracellular matrix molecules, and the expression of different transmembrane receptors. To add to the complexity, non-protein based metabolites have also been recognized as a component of the bone marrow niche. The objective of this review is to discuss the current understanding on how the different extracellular matrix components of the niche regulate HSC fate, both during embryonic development and in adulthood. Special attention will be provided to the description of non-protein metabolites, such as lipids and metal ions, which contribute to the regulation of HSC behavior. J. Cell. Biochem. 118: 1984-1993, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mélanie J Domingues
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Huimin Cao
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Shen Y Heazlewood
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Susan K Nilsson
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
27
|
Sauteur L, Affolter M, Belting HG. Distinct and redundant functions of Esama and VE-cadherin during vascular morphogenesis. Development 2017; 144:1554-1565. [PMID: 28264837 DOI: 10.1242/dev.140038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 02/28/2017] [Indexed: 01/08/2023]
Abstract
The cardiovascular system forms during early embryogenesis and adapts to embryonic growth by sprouting angiogenesis and vascular remodeling. These processes require fine-tuning of cell-cell adhesion to maintain and re-establish endothelial contacts, while allowing cell motility. We have compared the contribution of two endothelial cell-specific adhesion proteins, VE-cadherin (VE-cad/Cdh5) and Esama (endothelial cell-selective adhesion molecule a), during angiogenic sprouting and blood vessel fusion (anastomosis) in the zebrafish embryo by genetic analyses. Different combinations of mutant alleles can be placed into a phenotypic series with increasing defects in filopodial contact formation. Contact formation in esama mutants appears similar to wild type, whereas esama-/-; ve-cad+/- and ve-cad single mutants exhibit intermediate phenotypes. The lack of both proteins interrupts filopodial interaction completely. Furthermore, double mutants do not form a stable endothelial monolayer, and display intrajunctional gaps, dislocalization of Zo-1 and defects in apical-basal polarization. In summary, VE-cadherin and Esama have distinct and redundant functions during blood vessel morphogenesis, and both adhesion proteins are central to endothelial cell recognition during anastomosis.
Collapse
Affiliation(s)
- Loïc Sauteur
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| |
Collapse
|
28
|
Sudo T, Yokota T, Okuzaki D, Ueda T, Ichii M, Ishibashi T, Isono T, Habuchi Y, Oritani K, Kanakura Y. Endothelial Cell-Selective Adhesion Molecule Expression in Hematopoietic Stem/Progenitor Cells Is Essential for Erythropoiesis Recovery after Bone Marrow Injury. PLoS One 2016; 11:e0154189. [PMID: 27111450 PMCID: PMC4844162 DOI: 10.1371/journal.pone.0154189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/11/2016] [Indexed: 02/01/2023] Open
Abstract
Numerous red blood cells are generated every second from proliferative progenitor cells under a homeostatic state. Increased erythropoietic activity is required after myelo-suppression as a result of chemo-radio therapies. Our previous study revealed that the endothelial cell-selective adhesion molecule (ESAM), an authentic hematopoietic stem cell marker, plays essential roles in stress-induced hematopoiesis. To determine the physiological importance of ESAM in erythroid recovery, ESAM-knockout (KO) mice were treated with the anti-cancer drug, 5-fluorouracil (5-FU). ESAM-KO mice experienced severe and prolonged anemia after 5-FU treatment compared to wild-type (WT) mice. Eight days after the 5-FU injection, compared to WT mice, ESAM-KO mice showed reduced numbers of erythroid progenitors in bone marrow (BM) and spleen, and reticulocytes in peripheral blood. Megakaryocyte-erythrocyte progenitors (MEPs) from the BM of 5-FU-treated ESAM-KO mice showed reduced burst forming unit-erythrocyte (BFU-E) capacities than those from WT mice. BM transplantation revealed that hematopoietic stem/progenitor cells from ESAM-KO donors were more sensitive to 5-FU treatment than that from WT donors in the WT host mice. However, hematopoietic cells from WT donors transplanted into ESAM-KO host mice could normally reconstitute the erythroid lineage after a BM injury. These results suggested that ESAM expression in hematopoietic cells, but not environmental cells, is critical for hematopoietic recovery. We also found that 5-FU treatment induces the up-regulation of ESAM in primitive erythroid progenitors and macrophages that do not express ESAM under homeostatic conditions. The phenotypic change seen in macrophages might be functionally involved in the interaction between erythroid progenitors and their niche components during stress-induced acute erythropoiesis. Microarray analyses of primitive erythroid progenitors from 5-FU-treated WT and ESAM-KO mice revealed that various signaling pathways, including the GATA1 system, were impaired in ESAM-KO mice. Thus, our data demonstrate that ESAM expression in hematopoietic progenitors is essential for erythroid recovery after a BM injury.
Collapse
Affiliation(s)
- Takao Sudo
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| | - Daisuke Okuzaki
- DNA Chip Development Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomoaki Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohiko Ishibashi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomomi Isono
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoko Habuchi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenji Oritani
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
29
|
Park M, Kulkarni A, Beatty A, Ganz P, Regan M, Vittinghoff E, Whooley M. Soluble endothelial cell selective adhesion molecule and cardiovascular outcomes in patients with stable coronary disease: A report from the Heart and Soul Study. Atherosclerosis 2015; 243:546-52. [PMID: 26523992 PMCID: PMC4663109 DOI: 10.1016/j.atherosclerosis.2015.10.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/08/2015] [Accepted: 10/21/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Endothelial cell-selective adhesion molecule (ESAM) is selectively expressed on vascular endothelium and is postulated to play a role in atherogenesis. We investigated the association of serum soluble ESAM (sESAM) levels with subsequent cardiovascular outcomes in patients with stable ischemic heart disease. METHODS We measured sESAM levels in 981 patients with stable coronary disease enrolled between September 2000 and December 2002 in a prospective cohort study. Poisson regression models were used to define the relationship between baseline sESAM levels and cardiovascular outcomes, including myocardial infarction, heart failure hospitalization, and mortality. RESULTS There were 293 occurrences of the composite endpoint over a median follow-up of 8.9 years. After adjusting for demographic and clinical risk factors, participants in the highest sESAM quartile (compared to the lower three sESAM quartiles) had a higher rate of the composite endpoint (incident rate ratio (IRR) 1.52 (95% CI 1.16-1.99) as well as of its individual components: myocardial infarction (IRR 1.64 (1.06-2.55)), heart failure hospitalizations (IRR 1.96 (1.32-2.81)), and death (IRR 1.5 (1.2-1.89)). These associations were no longer significant after adjustment for estimated glomerular filtration rate. CONCLUSIONS sESAM levels associate with myocardial infarction, heart failure, and death after adjustment for demographic and clinical risk factors, but not after adjustment for kidney function. sESAM may be involved in the pathogenesis of concurrent kidney and cardiovascular disease.
Collapse
Affiliation(s)
- Meyeon Park
- Division of Nephrology, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| | | | - Alexis Beatty
- Division of Cardiology, VA Puget Sound Health Care System, University of Washington, USA
| | - Peter Ganz
- Division of Cardiology, VA Puget Sound Health Care System, University of Washington, USA; Division of Cardiology, University of California San Francisco and San Francisco General Hospital, USA
| | - Mathilda Regan
- Department of Medicine, San Francisco VA Hospital, San Francisco, CA, USA
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Mary Whooley
- Department of Medicine, San Francisco VA Hospital, San Francisco, CA, USA; Department of Medicine, UCSF, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| |
Collapse
|
30
|
Kacso IM, Potra AR, Bondor CI, Moldovan D, Rusu C, Patiu IM, Racasan S, Orasan R, Moldovan R, Ghigolea B, Vladutiu D, Spanu C, Nita C, Rusu A. ESAM predicts cardiovascular mortality in diabetic hemodialysis patients. Biomarkers 2015; 20:323-7. [PMID: 26329529 DOI: 10.3109/1354750x.2015.1068866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM To assess endothelial cell selective adhesion molecule (ESAM) as predictor of cardiovascular mortality in diabetic dialysis patients (DDPs). METHODS ESAM, clinical and laboratory parameters were assessed in 73 DDP. Cardiovascular mortality was recorded in a 2 years' prospective observational study. RESULTS Baseline ESAM was 17.1 (10.05-24.8) ng/ml and was correlated to phosphate (r = -0.42, p = 0.008), parathormone (r = -0.36, p = 0.048), albumin (r = -0.24, p = 0.048). ESAM significantly predicted cardiovascular death in univariate [HR = 1.03, 95% CI (1.006-1.054), p = 0.01] and multivariate [HR = 1.034, 95% CI (1.003-1.066), p = 0.03] Cox analysis. Time to cardiovascular death was shorter for patients with ESAM >12.44 ng/ml, p = 0.0045. CONCLUSION ESAM is an independent predictor of cardiovascular mortality in DDP.
Collapse
|
31
|
Cheng LE, Sullivan BM, Retana LE, Allen CDC, Liang HE, Locksley RM. IgE-activated basophils regulate eosinophil tissue entry by modulating endothelial function. ACTA ACUST UNITED AC 2015; 212:513-24. [PMID: 25779634 PMCID: PMC4387286 DOI: 10.1084/jem.20141671] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/11/2015] [Indexed: 01/22/2023]
Abstract
Basophils orchestrate eosinophil recruitment during IgE-dependent dermatitis by interacting with inflamed endothelium and producing IL-4. IL-4 in turn induces endothelial VCAM-1 expression, which is required for subsequent eosinophil accumulation. Vertebrate immunity has evolved a modular architecture in response to perturbations. Allergic inflammation represents such a module, with signature features of antigen-specific IgE and tissue eosinophilia, although the cellular and molecular circuitry coupling these responses remains unclear. Here, we use genetic and imaging approaches in models of IgE-dependent eosinophilic dermatitis to demonstrate a requisite role for basophils. After antigenic inflammation, basophils initiate transmigration like other granulocytes but, upon activation via their high-affinity IgE receptor, alter their migratory kinetics to persist at the endothelium. Prolonged basophil–endothelial interactions, in part dependent on activation of focal adhesion kinases, promote delivery of basophil-derived IL-4 to the endothelium and subsequent induction of endothelial vascular cell adhesion molecule-1 (VCAM-1), which is required for eosinophil accumulation. Thus, basophils are gatekeepers that link adaptive immunity with innate effector programs by altering access to tissue sites by activation-induced interactions with the endothelium.
Collapse
Affiliation(s)
- Laurence E Cheng
- Department of Pediatrics, Department of Medicine, Department of Anatomy, Sandler Asthma Basic Research Center, Cardiovascular Research Institute, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143 Department of Pediatrics, Department of Medicine, Department of Anatomy, Sandler Asthma Basic Research Center, Cardiovascular Research Institute, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Brandon M Sullivan
- Department of Pediatrics, Department of Medicine, Department of Anatomy, Sandler Asthma Basic Research Center, Cardiovascular Research Institute, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Lizett E Retana
- Department of Pediatrics, Department of Medicine, Department of Anatomy, Sandler Asthma Basic Research Center, Cardiovascular Research Institute, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Christopher D C Allen
- Department of Pediatrics, Department of Medicine, Department of Anatomy, Sandler Asthma Basic Research Center, Cardiovascular Research Institute, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143 Department of Pediatrics, Department of Medicine, Department of Anatomy, Sandler Asthma Basic Research Center, Cardiovascular Research Institute, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143 Department of Pediatrics, Department of Medicine, Department of Anatomy, Sandler Asthma Basic Research Center, Cardiovascular Research Institute, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Hong-Erh Liang
- Department of Pediatrics, Department of Medicine, Department of Anatomy, Sandler Asthma Basic Research Center, Cardiovascular Research Institute, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Richard M Locksley
- Department of Pediatrics, Department of Medicine, Department of Anatomy, Sandler Asthma Basic Research Center, Cardiovascular Research Institute, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143 Department of Pediatrics, Department of Medicine, Department of Anatomy, Sandler Asthma Basic Research Center, Cardiovascular Research Institute, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143 Department of Pediatrics, Department of Medicine, Department of Anatomy, Sandler Asthma Basic Research Center, Cardiovascular Research Institute, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143 Department of Pediatrics, Department of Medicine, Department of Anatomy, Sandler Asthma Basic Research Center, Cardiovascular Research Institute, Department of Microbiology and Immunology, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
32
|
Bauer HC, Krizbai IA, Bauer H, Traweger A. "You Shall Not Pass"-tight junctions of the blood brain barrier. Front Neurosci 2014; 8:392. [PMID: 25520612 PMCID: PMC4253952 DOI: 10.3389/fnins.2014.00392] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
Abstract
The structure and function of the barrier layers restricting the free diffusion of substances between the central nervous system (brain and spinal cord) and the systemic circulation is of great medical interest as various pathological conditions often lead to their impairment. Excessive leakage of blood-borne molecules into the parenchyma and the concomitant fluctuations in the microenvironment following a transient breakdown of the blood-brain barrier (BBB) during ischemic/hypoxic conditions or because of an autoimmune disease are detrimental to the physiological functioning of nervous tissue. On the other hand, the treatment of neurological disorders is often hampered as only minimal amounts of therapeutic agents are able to penetrate a fully functional BBB or blood cerebrospinal fluid barrier. An in-depth understanding of the molecular machinery governing the establishment and maintenance of these barriers is necessary to develop rational strategies allowing a controlled delivery of appropriate drugs to the CNS. At the basis of such tissue barriers are intimate cell-cell contacts (zonulae occludentes, tight junctions) which are present in all polarized epithelia and endothelia. By creating a paracellular diffusion constraint TJs enable the vectorial transport across cell monolayers. More recent findings indicate that functional barriers are already established during development, protecting the fetal brain. As an understanding of the biogenesis of TJs might reveal the underlying mechanisms of barrier formation during ontogenic development numerous in vitro systems have been developed to study the assembly and disassembly of TJs. In addition, monitoring the stage-specific expression of TJ-associated proteins during development has brought much insight into the “developmental tightening” of tissue barriers. Over the last two decades a detailed molecular map of transmembrane and cytoplasmic TJ-proteins has been identified. These proteins not only form a cell-cell adhesion structure, but integrate various signaling pathways, thereby directly or indirectly impacting upon processes such as cell-cell adhesion, cytoskeletal rearrangement, and transcriptional control. This review will provide a brief overview on the establishment of the BBB during embryonic development in mammals and a detailed description of the ultrastructure, biogenesis, and molecular composition of epithelial and endothelial TJs will be given.
Collapse
Affiliation(s)
- Hans-Christian Bauer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury and Tissue Regeneration Center Salzburg Salzburg, Austria ; Department of Traumatology and Sports Injuries, Paracelsus Medical University Salzburg, Austria ; Austrian Cluster for Tissue Regeneration Vienna, Austria
| | - István A Krizbai
- Biological Research Centre, Institute of Biophysics, Hungarian Academy of Sciences Szeged, Hungary ; Institute of Life Sciences, Vasile Goldis Western University of Arad Arad, Romania
| | - Hannelore Bauer
- Department of Organismic Biology, University of Salzburg Salzburg, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury and Tissue Regeneration Center Salzburg Salzburg, Austria ; Austrian Cluster for Tissue Regeneration Vienna, Austria
| |
Collapse
|
33
|
The Ig CAM CAR is Implicated in Cardiac Development and Modulates Electrical Conduction in the Mature Heart. J Cardiovasc Dev Dis 2014. [DOI: 10.3390/jcdd1010111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
34
|
Miranda DN, Coletta DK, Mandarino LJ, Shaibi GQ. Increases in insulin sensitivity among obese youth are associated with gene expression changes in whole blood. Obesity (Silver Spring) 2014; 22:1337-44. [PMID: 24470352 PMCID: PMC4008712 DOI: 10.1002/oby.20711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/22/2014] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Lifestyle intervention can improve insulin sensitivity in obese youth, yet few studies have examined the molecular signatures associated with these improvements. Therefore, the purpose of this study was to explore gene expression changes in whole blood that are associated with intervention-induced improvements in insulin sensitivity. METHODS Fifteen (7M/8F) overweight/obese (BMI percentile = 96.3 ± 1.1) Latino adolescents (15.0 ± 0.9 years) completed a 12-week lifestyle intervention that included weekly nutrition education and 180 minutes of moderate-vigorous exercise per week. Insulin sensitivity was estimated by an oral glucose tolerance test and the Matsuda Index. Global microarray analysis profiling from whole blood was performed to examine changes in gene expression and to explore biological pathways that were significantly changed in response to the intervention. RESULTS A total of 1,459 probes corresponding to mRNA transcripts (717 up, 742 down) were differentially expressed with a fold change ≥1.2. These genes were mapped within eight significant pathways identified, including insulin signaling, type 1 diabetes, and glycerophospholipid metabolism. Participants with increased insulin sensitivity exhibited five times the number of significant genes altered compared with nonresponders (1,144 vs. 230). CONCLUSIONS These findings suggest that molecular signatures from whole blood are associated with lifestyle-induced health improvements among high-risk Latino youth.
Collapse
Affiliation(s)
- Danielle N. Miranda
- Mayo Graduate School, Mayo Clinic, Rochester, MN
- Mayo/ASU Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
| | - Dawn K. Coletta
- School of Life Science, Arizona State University, Tempe, AZ
- Mayo/ASU Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
| | - Lawrence J. Mandarino
- School of Life Science, Arizona State University, Tempe, AZ
- Mayo/ASU Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
| | - Gabriel Q. Shaibi
- Mayo/ASU Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona
- College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
- Southwest Interdisciplinary Research Center, Arizona State University, Phoenix, AZ
| |
Collapse
|
35
|
Zeng Q, Wu Z, Duan H, Jiang X, Tu T, Lu D, Luo Y, Wang P, Song L, Feng J, Yang D, Yan X. Impaired tumor angiogenesis and VEGF-induced pathway in endothelial CD146 knockout mice. Protein Cell 2014; 5:445-56. [PMID: 24756564 PMCID: PMC4026419 DOI: 10.1007/s13238-014-0047-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/23/2013] [Indexed: 11/04/2022] Open
Abstract
CD146 is a newly identified endothelial biomarker that has been implicated in angiogenesis. Though in vitro angiogenic function of CD146 has been extensively reported, in vivo evidence is still lacking. To address this issue, we generated endothelial-specific CD146 knockout (CD146EC-KO) mice using the Tg(Tek-cre) system. Surprisingly, these mice did not exhibit any apparent morphological defects in the development of normal retinal vasculature. To evaluate the role of CD146 in pathological angiogenesis, a xenograft tumor model was used. We found that both tumor volume and vascular density were significantly lower in CD146EC-KO mice when compared to WT littermates. Additionally, the ability for sprouting, migration and tube formation in response to VEGF treatment was impaired in endothelial cells (ECs) of CD146EC-KO mice. Mechanistic studies further confirmed that VEGF-induced VEGFR-2 phosphorylation and AKT/p38 MAPKs/NF-κB activation were inhibited in these CD146-null ECs, which might present the underlying cause for the observed inhibition of tumor angiogenesis in CD146EC-KO mice. These results suggest that CD146 plays a redundant role in physiological angiogenic processes, but becomes essential during pathological angiogenesis as observed in tumorigenesis.
Collapse
Affiliation(s)
- Qiqun Zeng
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Luissint AC, Nusrat A, Parkos CA. JAM-related proteins in mucosal homeostasis and inflammation. Semin Immunopathol 2014; 36:211-26. [PMID: 24667924 DOI: 10.1007/s00281-014-0421-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/25/2014] [Indexed: 02/06/2023]
Abstract
Mucosal surfaces are lined by epithelial cells that form a physical barrier protecting the body against external noxious substances and pathogens. At a molecular level, the mucosal barrier is regulated by tight junctions (TJs) that seal the paracellular space between adjacent epithelial cells. Transmembrane proteins within TJs include junctional adhesion molecules (JAMs) that belong to the cortical thymocyte marker for Xenopus family of proteins. JAM family encompasses three classical members (JAM-A, JAM-B, and JAM-C) and related molecules including JAM4, JAM-like protein, Coxsackie and adenovirus receptor (CAR), CAR-like membrane protein and endothelial cell-selective adhesion molecule. JAMs have multiple functions that include regulation of endothelial and epithelial paracellular permeability, leukocyte recruitment during inflammation, angiogenesis, cell migration, and proliferation. In this review, we summarize the current knowledge regarding the roles of the JAM family members in the regulation of mucosal homeostasis and leukocyte trafficking with a particular emphasis on barrier function and its perturbation during pathological inflammation.
Collapse
Affiliation(s)
- Anny-Claude Luissint
- Epithelial pathobiology and mucosal inflammation research unit, Department of Pathology and Laboratory Medicine, Emory University, 615 Michael Street, 30306, Atlanta, GA, USA
| | | | | |
Collapse
|
37
|
Similarities and differences in the regulation of leukocyte extravasation and vascular permeability. Semin Immunopathol 2014; 36:177-92. [PMID: 24638889 DOI: 10.1007/s00281-014-0419-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
Leukocyte extravasation is regulated and mediated by a multitude of adhesion and signaling molecules. Many of them enable the capturing and docking of leukocytes to the vessel wall. Others allow leukocytes to crawl on the apical surface of endothelial cells to appropriate sites of exit. While these steps are well understood and the adhesion molecules mediating these interactions are largely identified, a still growing number of adhesion receptors mediate the diapedesis process, the actual migration of leukocytes through the endothelial cell layer, and the underlying basement membrane. In most cases, it is not known which molecular processes they actually mediate, whether they enable the migration of leukocytes through the endothelial cell layer or whether they are involved in the destabilization of endothelial junctions. In addition, leukocytes are able to circumvent junctions and transcytose directly through the body of endothelial cells. While this latter route indeed exists, recent work has highlighted in vivo the junctional pathway as the prevalent way of leukocyte exit in various inflamed tissues. Recent work elucidating molecular mechanisms that regulate endothelial junctions and thereby leukocyte extravasation and vascular permeability will be discussed.
Collapse
|
38
|
Garrido-Urbani S, Bradfield PF, Imhof BA. Tight junction dynamics: the role of junctional adhesion molecules (JAMs). Cell Tissue Res 2014; 355:701-15. [DOI: 10.1007/s00441-014-1820-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/16/2014] [Indexed: 12/27/2022]
|
39
|
Yap EH, Rosche T, Almo S, Fiser A. Functional clustering of immunoglobulin superfamily proteins with protein-protein interaction information calibrated hidden Markov model sequence profiles. J Mol Biol 2014; 426:945-61. [PMID: 24246499 PMCID: PMC3946809 DOI: 10.1016/j.jmb.2013.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/26/2013] [Accepted: 11/11/2013] [Indexed: 11/19/2022]
Abstract
Secreted and cell-surface-localized members of the immunoglobulin superfamily (IgSF) play central roles in regulating adaptive and innate immune responses and are prime targets for the development of protein-based therapeutics. An essential activity of the ectodomains of these proteins is the specific recognition of cognate ligands, which are often other members of the IgSF. In this work, we provide functional insight for this important class of proteins through the development of a clustering algorithm that groups together extracellular domains of the IgSF with similar binding preferences. Information from hidden Markov model-based sequence profiles and domain architecture is calibrated against manually curated protein interaction data to define functional families of IgSF proteins. The method is able to assign 82% of the 477 extracellular IgSF protein to a functional family, while the rest are either single proteins with unique function or proteins that could not be assigned with the current technology. The functional clustering of IgSF proteins generates hypotheses regarding the identification of new cognate receptor-ligand pairs and reduces the pool of possible interacting partners to a manageable level for experimental validation.
Collapse
Affiliation(s)
- Eng-Hui Yap
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Tyler Rosche
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steve Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
40
|
Kacso IM, Potra AR, Rusu A, Moldovan D, Rusu CC, Kacso G, Hancu ND, Muresan A, Bondor CI. Relationship of endothelial cell selective adhesion molecule to markers of oxidative stress in type 2 diabetes. Scandinavian Journal of Clinical and Laboratory Investigation 2014; 74:170-6. [DOI: 10.3109/00365513.2013.869700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Schreiber J, Langhorst H, Jüttner R, Rathjen FG. The IgCAMs CAR, BT-IgSF, and CLMP: Structure, Function, and Diseases. ADVANCES IN NEUROBIOLOGY 2014; 8:21-45. [DOI: 10.1007/978-1-4614-8090-7_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Choi YI, Duke-Cohan JS, Tan J, Gui J, Singh MK, Epstein JA, Reinherz EL. Plxnd1 expression in thymocytes regulates their intrathymic migration while that in thymic endothelium impacts medullary topology. Front Immunol 2013; 4:392. [PMID: 24312099 PMCID: PMC3832804 DOI: 10.3389/fimmu.2013.00392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/07/2013] [Indexed: 02/02/2023] Open
Abstract
An important role for plexinD1 in thymic development is inferred from studies of germline Plxnd1 knockout (KO) mice where mislocalized CD69+ thymocytes as well as ectopic thymic subcapsular medullary structures were observed. Given embryonic lethality of the Plxnd1−/− genotype, fetal liver transplantation was employed in these prior analyses. Such embryonic hematopoietic reconstitution may have transferred Plxnd1 KO endothelial and/or epithelial stem cells in addition to Plxnd1 KO lymphoid progenitors, thereby contributing to that phenotype. Here we use Plxnd1flox/flox mice crossed to pLck-Cre, pKeratin14-Cre, or pTek-Cre transgenic animals to create cell-type specific conditional knockout (CKO) lines involving thymocytes (D1ThyCKO), thymic epithelium (D1EpCKO), and thymic endothelium (D1EnCKO), respectively. These CKOs allowed us to directly assess the role of plexinD1 in each lineage. Loss of plexinD1 expression on double positive (DP) thymocytes leads to their aberrant migration and cortical retention after TCR-mediated positive selection. In contrast, ectopic medulla formation is a consequence of loss of plexinD1 expression on endothelial cells, in turn linked to dysregulation of thymic angiogenesis. D1EpCKO thymi manifest neither abnormality. Collectively, our findings underscore the non-redundant roles for plexinD1 on thymocytes and endothelium, including the dynamic nature of medulla formation resulting from crosstalk between these thymic cellular components.
Collapse
Affiliation(s)
- Young I Choi
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute , Boston, MA , USA ; Department of Medicine, Harvard Medical School , Boston, MA , USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Daniel AE, van Buul JD. Endothelial junction regulation: a prerequisite for leukocytes crossing the vessel wall. J Innate Immun 2013; 5:324-35. [PMID: 23571667 DOI: 10.1159/000348828] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/12/2013] [Indexed: 12/13/2022] Open
Abstract
The leukocytes of the innate immune system, especially neutrophils and monocytes, exit the circulation early in the response to local inflammation and infection. This is necessary to control and prevent the spread of infections before an adaptive immune response can be raised. The endothelial cells and the intercellular junctions that connect them form a barrier that leukocytes need to pass in order to get to the site of inflammation. The junctions are tightly regulated which ensures that leukocytes only exit when and where they are needed. This regulation is disturbed in many chronic inflammatory diseases which are characterized by ongoing recruitment and interstitial accumulation of leukocytes. In this review, we summarize the molecular mechanisms that regulate endothelial cell-cell junctions and prevent or permit leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Anna E Daniel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
44
|
Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70:631-59. [PMID: 22782113 PMCID: PMC11113843 DOI: 10.1007/s00018-012-1070-x] [Citation(s) in RCA: 891] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 12/13/2022]
Abstract
The gastrointestinal epithelium forms the boundary between the body and external environment. It effectively provides a selective permeable barrier that limits the permeation of luminal noxious molecules, such as pathogens, toxins, and antigens, while allowing the appropriate absorption of nutrients and water. This selective permeable barrier is achieved by intercellular tight junction (TJ) structures, which regulate paracellular permeability. Disruption of the intestinal TJ barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases. In this context, much effort has been taken to understand the roles of extracellular factors, including cytokines, pathogens, and food factors, for the regulation of the intestinal TJ barrier. Here, I discuss the regulation of the intestinal TJ barrier together with its implications for the pathogenesis of diseases.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
45
|
Manduteanu I, Simionescu M. Inflammation in atherosclerosis: a cause or a result of vascular disorders? J Cell Mol Med 2013; 16:1978-90. [PMID: 22348535 PMCID: PMC3822968 DOI: 10.1111/j.1582-4934.2012.01552.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sound data support the concept that in atherosclerosis, inflammation and dyslipidemia intersect each other and that irrespective of the initiator, both participate from the early stages to the ultimate fate of the atheromatous plaque. The two partakers manoeuvre a vicious circle in atheroma formation: dyslipidaemia triggers an inflammatory process and inflammation elicits dyslipidaemia. Independent of the initial cause, the atherosclerotic lesions occur focally, in particular arterial-susceptible sites, by a process that, although continuous, can be arbitrarily divided into a sequence of consecutive stages that lead from fatty streak to the fibro-lipid plaque and ultimately to plaque rupture and thrombosis. In the process, the initial event is a change in endothelial cells (EC) constitutive properties. Then, the molecular alarm signals send by dysfunctional EC are decoded by specific blood immune cells (monocytes, T lymphocytes, neutrophils, mast cells) and by the resident vascular cells, that respond by initiating a robust inflammatory process, in which the cells and the factors they secrete hasten the atheroma development. Direct and indirect crosstalk between the cells housed within the nascent plaque, complemented by the increase in risk factors of atherosclerosis lead to atheroma development and outcome. The initial inflammatory response can be regarded as a defense/protective reaction mechanism, but its further amplification, speeds up atherosclerosis. In this review, we provide an overview on the role of inflammation and dyslipidaemia and their intersection in atherogenesis. The data may add to the foundation of a novel attitude in the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ileana Manduteanu
- Institute of Cellular Biology and Pathology Nicolae Simionescu, Romanian Academy, Bucharest, Romania
| | | |
Collapse
|
46
|
Kacso IM, Bondor CI, Kacso G. Low serum endothelial cell-selective adhesion molecule predicts increase in albuminuria in type 2 diabetes patients. Int Urol Nephrol 2013; 45:1319-26. [PMID: 23292509 DOI: 10.1007/s11255-012-0365-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 12/12/2012] [Indexed: 01/18/2023]
Abstract
PURPOSE The newly discovered endothelial cell-selective adhesion molecule (ESAM) stabilizes the interendothelial tight junction; it circulates in serum as a soluble fraction. In experimental diabetes, reduced ESAM expression in the kidney is associated with albuminuria. We investigated, for the first time, serum ESAM as a predictor of progression of kidney disease in type 2 diabetes (T2D). METHODS T2D non-nephrotic patients with glomerular filtration rate (GFR) > 30 ml/min were included. History, medication and laboratory evaluation were assessed at inclusion and the end of study; ESAM was determined at baseline. RESULTS Eighty-eight patients--mean age 63 ± 10.84 years, 49 (55.68 %) males--were prospectively followed up for 20 months. Baseline GFR was 76.37 ± 29.56 ml/min, and urinary albumin/creatinine ratio (UACR) 21.63(7.08-94.52) mg/g; ESAM was 12.85(6.13-19.83) ng/ml. Difference (Δ) in UACR between end of study and baseline was inversely related to serum albumin (r = -0.27, p = 0.017) and ESAM (r = -0.21, p = 0.047); ΔGFR correlated to glycated hemoglobin (r = 0.22, p = 0.05). In multiple regression, introducing variables susceptible to influence progression of kidney disease, ΔUACR was significantly related to log ESAM (p = 0.005) and ΔGFR to glycated hemoglobin (p = 0.016). CONCLUSION Serum ESAM is a predictor of worsening of albuminuria in T2D patients without advanced kidney disease.
Collapse
Affiliation(s)
- Ina Maria Kacso
- University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj Napoca, Dornei 47 street, 400171, Cluj Napoca, Romania
| | | | | |
Collapse
|
47
|
|
48
|
Abstract
BACKGROUND Endothelial cell-selective adhesion molecule (ESAM) contributes to the integrity of tight junctions and modulates endothelial function. ESAM has been linked to experimental diabetic nephropathy; its soluble fraction is related to atherosclerosis in humans. In this cross-sectional observational study, we describe for the first time serum ESAM in type 2 diabetic patients with different stages of chronic kidney disease (CKD) and its relationship to vascular endothelial growth factor-A (VEGF-A). Materials and methods We included diabetic patients with different stages of CKD and controls. History, laboratory evaluation, serum ESAM and VEGF-A and urinary albumin/creatinine ratio were obtained. RESULTS Endothelial cell-selective adhesion molecule was higher in non-CKD diabetic patients 13.80 (6.15-18.70) ng/mL (n=45) than controls 7.30 (4.60-9.40) ng/mL (n=48), P=0.001. VEGF-A had a similar pattern: 71.3 (54.75-120.70) vs. 43.20 (30.1-65.90) pg/mL, P<0.0001. ESAM was 10.4 (5.6-17.4) ng/mL in predialysis CKD patients (n=59) and 22.35 (8.55-29.95) ng/mL in dialysis patients (n=36), P<0.001. Patients with glomerular filtration rate (GFR)<15 mL/min had the highest ESAM (P=0.003). ESAM was similar in normoalbuminuric, microalbuminuric and proteinuric patients. ESAM was directly correlated with the duration of diabetes (r(2)=0.048, P=0.009), C-reactive protein (r(2)=0.028, P=0.05), VEGF-A (r(2)=0.040, P=0.01) and inversely with HbA1C (r(2)=0.036, P=0.03), haemoglobin (r(2)=0.062, P=0.005) and albumin (r(2)=0.0·40, P=0.026). In multiple regression diabetes duration, HbA1C and VEGF-A were significant predictors of ESAM. In controls, ESAM was inversely related to VEGF (r(2)=037, P=0.01). CONCLUSION Endothelial cell-selective adhesion molecule and VEGF-A are higher in patients with diabetes than in controls. The highest ESAM is found in dialysis patients. ESAM correlates with diabetes duration and control, inflammation and VEGF-A in patients with diabetes, but not in controls.
Collapse
Affiliation(s)
- Ina M Kacso
- Departments of Nephrology Oncology, University of Medicine and Pharmacy 'Iuliu Hatieganu' Cluj, Cluj Napoca, Romania
| | | |
Collapse
|
49
|
Function of junctional adhesion molecules (JAMs) in leukocyte migration and homeostasis. Arch Immunol Ther Exp (Warsz) 2012; 61:15-23. [PMID: 22940878 DOI: 10.1007/s00005-012-0199-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/23/2012] [Indexed: 01/09/2023]
Abstract
Homeostasis is a word widely used in the scientific community to refer to the property of a system to maintain its uniformity and functionality. In living organisms, the word refers to the concept enunciated 150 years ago by C. Bernard by which external variations must be compensated for in order to maintain internal conditions compatible with life. This is especially true in the case of highly dynamic system such as the hematopoietic system that requires the coordinated control of cell proliferation and death within specialized microenvironments that are anatomically distinct. As a consequence, hematopoietic cell adhesion and migration must be tightly controlled in order for hematopoietic cells to reach and to be maintained in appropriate microenvironments. The junctional adhesion molecules (JAMs) are adhesion molecules that belong to the immunoglobulin superfamily (IgSf) and that have been initially identified as important players controlling vascular permeability and leukocyte transendothelial migration. This involves the regulated localization of the JAMs at lateral endothelial cell/cell borders and their interaction with leukocyte integrins. More recently, some of the JAM family members have also been found to be expressed by stromal cells and to regulate chemokine secretion within lymphoid organs, acting not only on leukocyte transendothelial migration, but also on hematopoietic cell retention within specialized microenvironments. This review summarizes recent progress in understanding the role of the JAMs in leukocyte adhesion and migration to tentatively draw an integrated view of the homeostatic function of the JAMs within the hematopoietic system.
Collapse
|
50
|
Abstract
The epithelial tight junction (TJ) is the apical-most intercellular junction and serves as a gatekeeper for the paracellular pathway by permitting regulated passage of fluid and ions while restricting movement of large molecules. In addition to these vital barrier functions, TJ proteins are emerging as major signaling molecules that mediate crosstalk between the extracellular environment, the cell surface, and the nucleus. Biochemical studies have recently determined that epithelial TJs contain over a hundred proteins that encompass transmembrane proteins, scaffolding molecules, cytoskeletal components, regulatory elements, and signaling molecules. Indeed, many of these proteins have defined roles in regulating epithelial polarity, differentiation, and proliferation. This review will focus on recent findings that highlight a role for TJ proteins in controlling cell proliferation during epithelial homeostasis, wound healing, and carcinogenesis.
Collapse
Affiliation(s)
- Attila E Farkas
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|