1
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
2
|
Saeed SI, Kamaruzzaman NF, Gahamanyi N, Nguyen TTH, Hossain D, Kahwa I. Confronting the complexities of antimicrobial management for Staphyloccous aureus causing bovine mastitis: an innovative paradigm. Ir Vet J 2024; 77:4. [PMID: 38418988 PMCID: PMC10900600 DOI: 10.1186/s13620-024-00264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Globally, Mastitis is a disease commonly affecting dairy cattle which leads to the use of antimicrobials. The majority of mastitis etiological agents are bacterial pathogens and Staphylococcus aureus is the predominant causative agent. Antimicrobial treatment is administered mainly via intramammary and intramuscular routes. Due to increasing antimicrobial resistance (AMR) often associated with antimicrobial misuse, the treatment of mastitis is becoming challenging with less alternative treatment options. Besides, biofilms formation and ability of mastitis-causing bacteria to enter and adhere within the cells of the mammary epithelium complicate the treatment of bovine mastitis. In this review article, we address the challenges in treating mastitis through conventional antibiotic treatment because of the rising AMR, biofilms formation, and the intracellular survival of bacteria. This review article describes different alternative treatments including phytochemical compounds, antimicrobial peptides (AMPs), phage therapy, and Graphene Nanomaterial-Based Therapy that can potentially be further developed to complement existing antimicrobial therapy and overcome the growing threat of AMR in etiologies of mastitis.
Collapse
Affiliation(s)
- Shamsaldeen Ibrahim Saeed
- Nanotechnology in Veterinary Medicine Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kelantan, 16100, Malaysia.
- Microbiology Department, Faculty of Veterinary Science, University of Nyala, PO Box 155, Nyala, Sudan.
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology in Veterinary Medicine Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kelantan, 16100, Malaysia
| | - Noel Gahamanyi
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
- Microbiology Unit, National Reference Laboratory, Rwanda Biomedical, P.O. Box 7162, Kigali, Rwanda
| | - Thi Thu Hoai Nguyen
- Research Center for Infectious Diseases, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Delower Hossain
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Lodi, 26900, Italy
- Department of Medicine and Public Health, Faculty of Animal Science and Veterinary Medicine, Sher-e -Bangla Agricultural University (SAU), Dhaka, 1207, Bangladesh
- Udder Health Bangladesh (UHB), Chattogram, 4225, Bangladesh
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| |
Collapse
|
3
|
Hayles A, Bright R, Nguyen NH, Truong VK, Vongsvivut J, Wood J, Kidd SP, Vasilev K. Staphylococcus aureus surface attachment selectively influences tolerance against charged antibiotics. Acta Biomater 2024; 175:369-381. [PMID: 38141932 DOI: 10.1016/j.actbio.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
The threat of infection during implant placement surgery remains a considerable burden for millions of patients worldwide. To combat this threat, clinicians employ a range of anti-infective strategies and practices. One of the most common interventions is the use of prophylactic antibiotic treatment during implant placement surgery. However, these practices can be detrimental by promoting the resilience of biofilm-forming bacteria and enabling them to persist throughout treatment and re-emerge later, causing a life-threatening infection. Thus, it is of the utmost importance to elucidate the events occurring during the initial stages of bacterial surface attachment and determine whether any biological processes may be targeted to improve surgical outcomes. Using gene expression analysis, we identified a cellular mechanism of S. aureus which modifies its cell surface charge following attachment to a medical grade titanium surface. We determined the upregulation of two systems involved in the d-alanylation of teichoic acids and the lysylation of phosphatidylglycerol. We supported these molecular findings by utilizing synchrotron-sourced attenuated total reflection Fourier-transform infrared microspectroscopy to analyze the biomolecular properties of the S. aureus cell surface following attachment. As a direct consequence, S. aureus quickly becomes substantially more tolerant to the positively charged vancomycin, but not the negatively charged cefazolin. The present study can assist clinicians in rationally selecting the most potent antibiotic in prophylaxis treatments. Furthermore, it highlights a cellular process that could potentially be targeted by novel technologies and strategies to improve the outcome of antibiotic prophylaxis during implant placement surgery. STATEMENT OF SIGNIFICANCE: The antibiotic tolerance of bacteria in biofilm is a well-established phenomenon. However, the physiological adaptations employed by Staphylococcus aureus to increase its antibiotic tolerance during the early stages of surface attachment are poorly understood. Using multiple techniques, including gene expression analysis and synchrotron-sourced Fourier-transform infrared microspectroscopy, we generated insights into the physiological response of S. aureus following attachment to a medical grade titanium surface. We showed that this phenotypic transition enables S. aureus to better tolerate the positively charged vancomycin, but not the negatively charged cefazolin. These findings shed light on the antibiotic tolerance mechanisms employed by S. aureus to survive prophylactically administered antibiotics and can help clinicians to protect patients from infections.
Collapse
Affiliation(s)
- Andrew Hayles
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042 Australia.
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042 Australia
| | - Ngoc Huu Nguyen
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042 Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO ‒ Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Jonathan Wood
- Academic Unit of STEM, University of South Australia, Adelaide 5095, South Australia, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042 Australia.
| |
Collapse
|
4
|
Majumder S, Sackey T, Viau C, Park S, Xia J, Ronholm J, George S. Genomic and phenotypic profiling of Staphylococcus aureus isolates from bovine mastitis for antibiotic resistance and intestinal infectivity. BMC Microbiol 2023; 23:43. [PMID: 36803552 PMCID: PMC9940407 DOI: 10.1186/s12866-023-02785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the prevalent etiological agents of contagious bovine mastitis, causing a significant economic burden on the global dairy industry. Given the emergence of antibiotic resistance (ABR) and possible zoonotic spillovers, S aureus from mastitic cattle pose threat to both veterinary and public health. Therefore, assessment of their ABR status and pathogenic translation in human infection models is crucial. RESULTS In this study, 43 S. aureus isolates associated with bovine mastitis obtained from four different Canadian provinces (Alberta, Ontario, Quebec, and Atlantic provinces) were tested for ABR and virulence through phenotypic and genotypic profiling. All 43 isolates exhibited crucial virulence characteristics such as hemolysis, and biofilm formation, and six isolates from ST151, ST352, and ST8 categories showed ABR. Genes associated with ABR (tetK, tetM, aac6', norA, norB, lmrS, blaR, blaZ, etc.), toxin production (hla, hlab, lukD, etc.), adherence (fmbA, fnbB, clfA, clfB, icaABCD, etc.), and host immune invasion (spa, sbi, cap, adsA, etc.) were identified by analyzing whole-genome sequences. Although none of the isolates possessed human adaptation genes, both groups of ABR and antibiotic-susceptible isolates demonstrated intracellular invasion, colonization, infection, and death of human intestinal epithelial cells (Caco-2), and Caenorhabditis elegans. Notably, the susceptibilities of S. aureus towards antibiotics such as streptomycin, kanamycin, and ampicillin were altered when the bacteria were internalized in Caco-2 cells and C. elegans. Meanwhile, tetracycline, chloramphenicol, and ceftiofur were comparatively more effective with ≤ 2.5 log10 reductions of intracellular S. aureus. CONCLUSIONS This study demonstrated the potential of S. aureus isolated from mastitis cows to possess virulence characteristics enabling invasion of intestinal cells thus calling for developing therapeutics capable of targeting drug-resistant intracellular pathogens for effective disease management.
Collapse
Affiliation(s)
- Satwik Majumder
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Trisha Sackey
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Charles Viau
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Soyoun Park
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Jianguo Xia
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada ,grid.14709.3b0000 0004 1936 8649Department of Animal Science, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Jennifer Ronholm
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada ,grid.14709.3b0000 0004 1936 8649Department of Animal Science, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
5
|
Sivakumar R, Pranav PS, Annamanedi M, Chandrapriya S, Isloor S, Rajendhran J, Hegde NR. Genome sequencing and comparative genomic analysis of bovine mastitis-associated Staphylococcus aureus strains from India. BMC Genomics 2023; 24:44. [PMID: 36698060 PMCID: PMC9878985 DOI: 10.1186/s12864-022-09090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Bovine mastitis accounts for significant economic losses to the dairy industry worldwide. Staphylococcus aureus is the most common causative agent of bovine mastitis. Investigating the prevalence of virulence factors and antimicrobial resistance would provide insight into the molecular epidemiology of mastitis-associated S. aureus strains. The present study is focused on the whole genome sequencing and comparative genomic analysis of 41 mastitis-associated S. aureus strains isolated from India. RESULTS The results elucidate explicit knowledge of 15 diverse sequence types (STs) and five clonal complexes (CCs). The clonal complexes CC8 and CC97 were found to be the predominant genotypes comprising 21 and 10 isolates, respectively. The mean genome size was 2.7 Mbp with a 32.7% average GC content. The pan-genome of the Indian strains of mastitis-associated S. aureus is almost closed. The genome-wide SNP-based phylogenetic analysis differentiated 41 strains into six major clades. Sixteen different spa types were identified, and eight isolates were untypeable. The cgMLST analysis of all S. aureus genome sequences reported from India revealed that S. aureus strain MUF256, isolated from wound fluids of a diabetic patient, was the common ancestor. Further, we observed that all the Indian mastitis-associated S. aureus isolates belonging to the CC97 are mastitis-associated. We identified 17 different antimicrobial resistance (AMR) genes among these isolates, and all the isolates used in this study were susceptible to methicillin. We also identified 108 virulence-associated genes and discuss their associations with different genotypes. CONCLUSION This is the first study presenting a comprehensive whole genome analysis of bovine mastitis-associated S. aureus isolates from India. Comparative genomic analysis revealed the genome diversity, major genotypes, antimicrobial resistome, and virulome of clinical and subclinical mastitis-associated S. aureus strains.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Parameswaran Sree Pranav
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | | | - S Chandrapriya
- Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Bengaluru, 560024, India
| | - Shrikrishna Isloor
- Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Bengaluru, 560024, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India.
| | - Nagendra R Hegde
- National Institute of Animal Biotechnology, Hyderabad, 500032, India.
| |
Collapse
|
6
|
Ahmadi A, Khezri A, Nørstebø H, Ahmad R. A culture-, amplification-independent, and rapid method for identification of pathogens and antibiotic resistance profile in bovine mastitis milk. Front Microbiol 2023; 13:1104701. [PMID: 36687564 PMCID: PMC9852903 DOI: 10.3389/fmicb.2022.1104701] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Rapid and accurate diagnosis of causative pathogens in mastitis would minimize the imprudent use of antibiotics and, therefore, reduce the spread of antimicrobial resistance. Whole genome sequencing offers a unique opportunity to study the microbial community and antimicrobial resistance (AMR) in mastitis. However, the complexity of milk samples and the presence of a high amount of host DNA in milk from infected udders often make this very challenging. Methods Here, we tested 24 bovine milk samples (18 mastitis and six non-mastitis) using four different commercial kits (Qiagens' DNeasy® PowerFood® Microbial, Norgens' Milk Bacterial DNA Isolation, and Molzyms' MolYsis™ Plus and Complete5) in combination with filtration, low-speed centrifugation, nuclease, and 10% bile extract of male bovine (Ox bile). Isolated DNA was quantified, checked for the presence/absence of host and pathogen using PCR and sequenced using MinION nanopore sequencing. Bioinformatics analysis was performed for taxonomic classification and antimicrobial resistance gene detection. Results The results showed that kits designed explicitly for bacterial DNA isolation from food and dairy matrices could not deplete/minimize host DNA. Following using MolYsis™ Complete 5 + 10% Ox bile + micrococcal nuclease combination, on average, 17% and 66.5% of reads were classified as bovine and Staphylococcus aureus reads, respectively. This combination also effectively enriched other mastitis pathogens, including Escherichia coli and Streptococcus dysgalactiae. Furthermore, using this approach, we identified important AMR genes such as Tet (A), Tet (38), fosB-Saur, and blaZ. We showed that even 40 min of the MinION run was enough for bacterial identification and detecting the first AMR gene. Conclusion We implemented an effective method (sensitivity of 100% and specificity of 92.3%) for host DNA removal and bacterial DNA enrichment (both gram-negative and positive) directly from bovine mastitis milk. To the best of our knowledge, this is the first culture- and amplification-independent study using nanopore-based metagenomic sequencing for real-time detection of the pathogen (within 5 hours) and the AMR profile (within 5-9 hours), in mastitis milk samples. These results provide a promising and potential future on-farm adaptable approach for better clinical management of mastitis.
Collapse
Affiliation(s)
- Asal Ahmadi
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway,Institute of Clinical Medicine, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway,*Correspondence: Rafi Ahmad,
| |
Collapse
|
7
|
Mastitis: Impact of Dry Period, Pathogens, and Immune Responses on Etiopathogenesis of Disease and its Association with Periparturient Diseases. DAIRY 2022. [DOI: 10.3390/dairy3040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mastitis is an inflammation of the mammary gland initiated by pathogenic bacteria. In fact, mastitis is the second most important reason for the culling of cows from dairy herds, after infertility. In this review we focus on various forms of mastitis, including subclinical and clinical mastitis. We also stress the importance of the dry-off period as an important time when pathogenic bacteria might start their insult to the mammary gland. An important part of the review is the negative effects of mastitis on milk production and composition, as well as economic consequences for dairy farms. The two most important groups of bacteria that are involved in infection of the udder, Gram-negative and Gram-positive bacteria, are also discussed. Although all cows have both innate and adaptive immunity against most pathogens, some are more susceptible to the disease than others. That is why we summarize the most important components of innate and adaptive immunity so that the reader understands the specific immune responses of the udder to pathogenic bacteria. One of the most important sections of this review is interrelationship of mastitis with other diseases, especially retained placenta, metritis and endometritis, ketosis, and laminitis. Is mastitis the cause or the consequence of this disease? Finally, the review concludes with treatment and preventive approaches to mastitis.
Collapse
|
8
|
Staphylococcus aureus from Subclinical Cases of Mastitis in Dairy Cattle in Poland, What Are They Hiding? Antibiotic Resistance and Virulence Profile. Pathogens 2022; 11:pathogens11121404. [PMID: 36558738 PMCID: PMC9781172 DOI: 10.3390/pathogens11121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Bovine mastitis is a common disease worldwide, and staphylococci are one of the most important etiological factors of this disease. Staphylococcus aureus show adaptability to new conditions, by which monitoring their virulence and antibiotic resistance mechanisms is extremely important, as it can lead to the development of new therapies and prevention programs. In this study, we analyzed Staphylococcus aureus (n = 28) obtained from dairy cattle with subclinical mastitis in Poland. The sensitivity of the isolated strains to antibiotics were confirmed by the disc diffusion method. Additionally, minimum inhibitory concentration values were determined for vancomycin, cefoxitin and oxacillin. Genotyping was performed by two methods: PCR melting profile and MLVF-PCR (multiple-locus variable-number tandem-repeat fingerprinting). Furthermore, the presence of antibiotic resistance and virulence genes were checked using PCR reactions. The analyzed strains showed the greatest resistance to penicillin (57%), oxytetracycline (25%) and tetracycline (18%). Among the analyzed staphylococci, the presence of 9 of 15 selected virulence-related genes was confirmed, of which the icaD, clfB and sea genes were confirmed in all staphylococci. Biofilm was observed in the great majority of the analyzed bacteria (at least 70%). In the case of genotyping among the analyzed staphylococci (combined analysis of results from two methods), 14 patterns were distinguished, of which type 2 was the dominant one (n = 10). This study provides new data that highlights the importance of the dominance of biofilm over antibiotic resistance among the analyzed strains.
Collapse
|
9
|
Mastitis: What It Is, Current Diagnostics, and the Potential of Metabolomics to Identify New Predictive Biomarkers. DAIRY 2022. [DOI: 10.3390/dairy3040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Periparturient diseases continue to be the greatest challenge to both farmers and dairy cows. They are associated with a decrease in productivity, lower profitability, and a negative impact on cows’ health as well as public health. This review article discusses the pathophysiology and diagnostic opportunities of mastitis, the most common disease of dairy cows. To better understand the disease, we dive deep into the causative agents, traditional paradigms, and the use of new technologies for diagnosis, treatment, and prevention of mastitis. This paper takes a systems biology approach by highlighting the relationship of mastitis with other diseases and introduces the use of omics sciences, specifically metabolomics and its analytical techniques. Concluding, this review is backed up by multiple studies that show how earlier identification of mastitis through predictive biomarkers can benefit the dairy industry and improve the overall animal health.
Collapse
|
10
|
Yan L, Yang Y, Ma X, Wei L, Wan X, Zhang Z, Ding J, Peng J, Liu G, Gou H, Wang C, Zhang X. Effect of Two Different Drug-Resistant Staphylococcus aureus Strains on the Physiological Properties of MAC-T Cells and Their Transcriptome Analysis. Front Vet Sci 2022; 9:818928. [PMID: 35812882 PMCID: PMC9263607 DOI: 10.3389/fvets.2022.818928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the main pathogens causing mastitis in dairy cows. The current work mainly focuses on the pathway of apoptosis induction in MAC-T cells caused by S. aureus infection or other factors. However, the physiological characteristics of S. aureus infected MAC-T cells and the resulting mRNA expression profile remain unknown particularly in the case of diverse drug resistant strains. Methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains were used to infect MAC-T cells to investigate this issue. The adhesion, invasion and apoptosis ability of MRSA-infected group and MSSA-infected group was assessed over time (2, 4, 6, 8, and 12 h). After 8 h, the RNA sequencing was conducted on the MRSA-infected and the MSSA-infected with uninfected MAC-T cells as controls. The results showed that the adhesion and invasion ability of MRSA-infected and MSSA-infected to MAC-T cells increased and then decreased with infection time, peaking at 8 h. The adhesion and invasion rates of the MSSA-infected were substantially lower than those of the MRSA-infected, and the invasion rate of the MSSA-infected group was nearly non-existent. Then the apoptosis rate of MAC-T cells increased as the infection time increased. The transcriptome analysis revealed 549 differentially expressed mRNAs and 390 differentially expressed mRNAs in MRSA-infected and MSSA-infected MAC-T cells, respectively, compared to the uninfected MAC-T cells. According to GO analysis, these differentially expressed genes were involved in immune response, inflammation, apoptosis, and other processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated the following pathways were linked to adhesion, invasion inflammation and apoptosis, including AMPK, FOXO, HIF-1, IL-17, JAK-STAT, MAPK, mTOR, NF-κB, p53, PI3K-Akt, TNF, Toll-like receptor, Rap1, RAS, prion disease, the bacterial invasion of epithelial cells pathway. We found 86 DEGs from 41 KEGG-enriched pathways associated with adhesion, invasion, apoptosis, and inflammation, all of which were implicated in MAC-T cells resistance to MRSA and MSSA infection. This study offers helpful data toward understanding the effect of different drug-resistant S. aureus on dairy cow mammary epithelial cells and aid in the prevention of mastitis in the dairy industry.
Collapse
Affiliation(s)
- Lijiao Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Xiaojun Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | | | - Xuerui Wan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jucai Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jie Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guo Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huitian Gou
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Chuan Wang
| | - Xiaoli Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Xiaoli Zhang
| |
Collapse
|
11
|
Ness A, Jacob A, Saboraki K, Otero A, Gushue D, Martinez Moreno D, de Peña M, Tang X, Aiken J, Lingle S, McKenzie D. Cellular prion protein distribution in the vomeronasal organ, parotid, and scent glands of white-tailed deer and mule deer. Prion 2022; 16:40-57. [PMID: 35634740 PMCID: PMC9154781 DOI: 10.1080/19336896.2022.2079888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic wasting disease (CWD) is a contagious and fatal transmissible spongiform encephalopathy affecting species of the cervidae family. CWD has an expanding geographic range and complex, poorly understood transmission mechanics. CWD is disproportionately prevalent in wild male mule deer and male white-tailed deer. Sex and species influences on CWD prevalence have been hypothesized to be related to animal behaviours that involve deer facial and body exocrine glands. Understanding CWD transmission potential requires a foundational knowledge of the cellular prion protein (PrPC) in glands associated with cervid behaviours. In this study, we characterized the presence and distribution of PrPC in six integumentary and two non-integumentary tissues of hunter-harvested mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus). We report that white-tailed deer expressed significantly more PrPC than their mule deer in the parotid, metatarsal, and interdigital glands. Females expressed more PrPC than males in the forehead and preorbital glands. The distribution of PrPC within the integumentary exocrine glands of the face and legs were localized to glandular cells, hair follicles, epidermis, and immune cell infiltrates. All tissues examined expressed sufficient quantities of PrPC to serve as possible sites of prion initial infection, propagation, and shedding.
Collapse
Affiliation(s)
- Anthony Ness
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Aradhana Jacob
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Kelsey Saboraki
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Alicia Otero
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Enfermedades Transmisibles Emergentes, Universidad de ZaragozaCentro de Encefalopatías y , Zaragoza, Spain
| | - Danielle Gushue
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Diana Martinez Moreno
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Melanie de Peña
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Xinli Tang
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Lingle
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Staphylococcus aureus mediates pyroptosis in bovine mammary epithelial cell via activation of NLRP3 inflammasome. Vet Res 2022; 53:10. [PMID: 35123552 PMCID: PMC8817610 DOI: 10.1186/s13567-022-01027-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/10/2022] [Indexed: 12/22/2022] Open
Abstract
Cell death and inflammation are intimately linked during mastitis due to Staphylococcus aureus (S. aureus). Pyroptosis, a programmed necrosis triggered by gasdermin protein family, often occurs after inflammatory caspase activation. Many pathogens invade host cells and activate cell-intrinsic death mechanisms, including pyroptosis, apoptosis, and necroptosis. We reported that bovine mammary epithelial cells (MAC-T) respond to S. aureus by NOD-like receptor protein 3 (NLRP3) inflammasome activation through K+ efflux, leading to the recruitment of apoptosis-associated speck-like protein (ASC) and the activation of caspase-1. The activated caspase-1 cleaves gasdermin D (GSDMD) and forms a N-terminal pore forming domain that drives swelling and membrane rupture. Membrane rupture results in the release of the pro-inflammatory cytokines IL-18 and IL-1β, which are activated by caspase-1. Can modulate GSDMD activation by NLRP3-dependent caspase-1 activation and then cause pyroptosis of bovine mammary epithelial cells.
Collapse
|
13
|
Liu B, Li Q, Gong Z, Zhao J, Gu B, Feng S. Staphylococcus aureus lipoproteins play crucial roles in inducing inflammatory responses and bacterial internalization into bovine mammary epithelial cells. Microb Pathog 2021; 162:105364. [PMID: 34921958 DOI: 10.1016/j.micpath.2021.105364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 01/10/2023]
Abstract
Bovine mastitis is caused by bacterial infection and characterized by inflammatory and infectious processes. Staphylococcus aureus frequently causes subclinical mastitis in dairy cows. In this study, we aimed to investigate the roles of S. aureus lipoproteins in inducing inflammatory responses and in mediating bacterial internalization into bovine mammary epithelial cells (bMECs). The results showed that TLR2 expression in bMECs infected with S. aureus isogenic mutant deficient in lipoprotein maturation was decreased compared to that in bMECs infected with wild-type S. aureus. Lipoproteins from S. aureus and the engagement of TLR2 were essential for inducing the activation of MAPK and NF-κB signaling, and stimulating the secretion of the inflammatory mediators tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C-X-C motif chemokine ligand 8 (CXCL8). The production of prostaglandin E2 (PGE2) and the expression of PTGS2 in S. aureus-infected bMECs were dependent on the presence of bacterial lipoproteins. Furthermore, bacterial lipoproteins contributed to S. aureus internalization into bMECs. These findings suggest the S. aureus lipoproteins are key immunobiologically active compounds that trigger inflammatory responses in bMECs and play an important role in S. aureus internalization into bMECs.
Collapse
Affiliation(s)
- Bo Liu
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018, Hohhot, China
| | - Qianru Li
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018, Hohhot, China
| | - Zhiguo Gong
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018, Hohhot, China
| | - Jiamin Zhao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018, Hohhot, China
| | - Baichen Gu
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018, Hohhot, China
| | - Shuang Feng
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018, Hohhot, China.
| |
Collapse
|
14
|
Demontier E, Dubé-Duquette A, Brouillette E, Larose A, Ster C, Lucier JF, Rodrigue S, Park S, Jung D, Ruffini J, Ronholm J, Dufour S, Roy JP, Ramanathan S, Malouin F. Relative virulence of Staphylococcus aureus bovine mastitis strains representing the main Canadian spa types and clonal complexes as determined using in vitro and in vivo mastitis models. J Dairy Sci 2021; 104:11904-11921. [PMID: 34454755 DOI: 10.3168/jds.2020-19904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is one of the main pathogens leading to both clinical and subclinical bovine mastitis in dairy cattle. Prediction of disease evolution based on the characteristics of Staph. aureus isolates that cause intramammary infections and understanding the host-pathogen interactions may improve management of mastitis in dairy herds. For this study, several strains were selected from each of the 6 major Canadian spa types associated with mastitis (t267, t359, t529, t605, t2445, and t13401). Adherence to host cells and intracellular persistence of these strains were studied using a bovine mammary gland epithelial cell line (MAC-T). Additionally, relative virulence and host response (cytokines production) were also studied in vivo using a mouse model of mastitis. Whole-genome sequencing was performed on all strains and associations between clonal complex, sequence type, and presence of certain virulence factors were also investigated. Results show that spa type t2445 was correlated with persistence in MAC-T cells. Strains from spa t359 and t529 showed better ability to colonize mouse mammary glands. The exception was strain sa3154 (spa t529), which showed less colonization of glands compared with other t359 and t529 strains but possessed the highest number of superantigen genes including tst. All strains possessed hemolysins, but spa types t529 and t2445 showed the largest diameter of β-hemolysis on blood agar plates. Although several spa types possessed 2 or 3 serine-aspartate rich proteins (Sdr) believed to be involved in many pathogenic processes, most t529 strains expressed only an allelic variant of sdrE. The spa types t605 (positive for the biofilm associated protein gene; bap+) and t13401 (bap-), that produced the largest amounts of biofilm in vitro, were the least virulent in vivo. Finally, strains from spa type t529 (ST151) elicited a cytokine expression profile (TNF-α, IL-1β and IL-12) that suggests a potential for severe inflammation. This study suggests that determination of the spa type may help predict the severity of the disease and the ability of the immune system to eliminate intramammary infections caused by Staph. aureus.
Collapse
Affiliation(s)
- Elodie Demontier
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Alexis Dubé-Duquette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Eric Brouillette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Audrey Larose
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Céline Ster
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jean-François Lucier
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Sébastien Rodrigue
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Soyoun Park
- Faculty of agricultural and environmental sciences, Macdonald campus, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Dongyun Jung
- Faculty of agricultural and environmental sciences, Macdonald campus, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Janina Ruffini
- Faculty of agricultural and environmental sciences, Macdonald campus, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Jennifer Ronholm
- Faculty of agricultural and environmental sciences, Macdonald campus, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Simon Dufour
- Département de pathologie et microbiologie and Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Jean-Philippe Roy
- Département de pathologie et microbiologie and Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Sheela Ramanathan
- Département d'immunologie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
15
|
Bagnicka E, Kawecka-Grochocka E, Pawlina-Tyszko K, Zalewska M, Kapusta A, Kościuczuk E, Marczak S, Ząbek T. MicroRNA expression profile in bovine mammary gland parenchyma infected by coagulase-positive or coagulase-negative staphylococci. Vet Res 2021; 52:41. [PMID: 33676576 PMCID: PMC7937231 DOI: 10.1186/s13567-021-00912-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs, 21-23 nucleotides in length which are known to regulate biological processes that greatly impact immune system activity. The aim of the study was to compare the miRNA expression in non-infected (H) mammary gland parenchyma samples with that of glands infected with coagulase-positive staphylococci (CoPS) or coagulase-negative staphylococci (CoNS) using next-generation sequencing. The miRNA profile of the parenchyma was found to change during mastitis, with its profile depending on the type of pathogen. Comparing the CoPS and H groups, 256 known and 260 potentially new miRNAs were identified, including 32 that were differentially expressed (p ≤ 0.05), of which 27 were upregulated and 5 downregulated. Comparing the CoNS and H groups, 242 known and 171 new unique miRNAs were identified: 10 were upregulated (p ≤ 0.05), and 2 downregulated (p ≤ 0.05). In addition, comparing CoPS with H and CoNS with H, 5 Kyoto Encyclopedia of Genes and Genomes pathways were identified; in both comparisons, differentially-expressed miRNAs were associated with the bacterial invasion of epithelial cells and focal adhesion pathways. Four gene ontology terms were identified in each comparison, with 2 being common to both immune system processes and signal transduction. Our results indicate that miRNAs, especially miR-99 and miR-182, play an essential role in the epigenetic regulation of a range of cellular processes, including immunological systems bacterial growth in dendritic cells and disease pathogenesis (miR-99), DNA repair and tumor progression (miR-182).
Collapse
Affiliation(s)
- Emilia Bagnicka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul Postepu 36A, 05-552, Jastrzębiec, Poland.
| | - Ewelina Kawecka-Grochocka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul Postepu 36A, 05-552, Jastrzębiec, Poland
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, ul Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, The National Research Institute of Animal Production, ul Krakowska 1., 32-083, Balice near Krakow, Poland
| | - Magdalena Zalewska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul Postepu 36A, 05-552, Jastrzębiec, Poland
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, ul Miecznikowa 1, 02-096, Warsaw, Poland
| | - Aleksandra Kapusta
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul Postepu 36A, 05-552, Jastrzębiec, Poland
| | - Ewa Kościuczuk
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul Postepu 36A, 05-552, Jastrzębiec, Poland
| | - Sylwester Marczak
- Experimental Farm, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul Postepu 36A, 05-552, Jastrzębiec, Poland
| | - Tomasz Ząbek
- Department of Animal Molecular Biology, The National Research Institute of Animal Production, ul Krakowska 1., 32-083, Balice near Krakow, Poland
| |
Collapse
|
16
|
Kaczorek-Łukowska E, Małaczewska J, Wójcik R, Naumowicz K, Blank A, Siwicki AK. Streptococci as the new dominant aetiological factors of mastitis in dairy cows in north-eastern Poland: analysis of the results obtained in 2013-2019. Ir Vet J 2021; 74:2. [PMID: 33397491 PMCID: PMC7784345 DOI: 10.1186/s13620-020-00181-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022] Open
Abstract
The objective of our study was to evaluate prevalence of selected bacterial and fungal pathogens of mastitis in dairy cattle in north-eastern Poland. Our study was conducted from 2013 to 2019 in 1,665 clinically and sub-clinically infected quarter milk samples (2013, n = 368; 2014, n = 350; 2015, n = 290; 2016, n = 170; 2017, n = 173; 2018, n = 224; and 2019, n = 90). The isolation and identification of the pathogens were performed in keeping with generally accepted microbiological procedures. In 2013, mastitis was most commonly caused by Staphylococcus aureus (24%), Streptococcus spp. (22%), Streptococcus agalactiae (12%) and coagulase-negative staphylococci (11%). In 2014, the most common pathogens were Streptococcus spp. (25%), Staphylococcus aureus (18%) and coagulase-negative staphylococci (10%); in 2015, 2016, 2017, 2018 and 2019, Streptococcus spp. (from 39–49%) were the most frequent strains isolated from the quarter milk samples. Other pathogens were isolated occasionally (below 15% in all years). In conclusion, the role of environmental bacteria has been gradually increasing in the Warmia Province. The importance of infectious pathogens has been decreasing, indicating the efficacy of the applied preventive programmes and a need for the development of new programmes targeting environmental pathogens.
Collapse
Affiliation(s)
- E Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - J Małaczewska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - R Wójcik
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - K Naumowicz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - A Blank
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - A K Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
17
|
Wang X, Su F, Yu X, Geng N, Li L, Wang R, Zhang M, Liu J, Liu Y, Han B. RNA-Seq Whole Transcriptome Analysis of Bovine Mammary Epithelial Cells in Response to Intracellular Staphylococcus aureus. Front Vet Sci 2020; 7:642. [PMID: 33426011 PMCID: PMC7793973 DOI: 10.3389/fvets.2020.00642] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus), a common mastitis pathogen widespread in the natural environment of dairy farms, is capable of invading mammary epithelial cells making treatment difficult. However, the mechanism of the response of bovine mammary epithelial cell to S. aureus invasion remains elusive. In this study, transcriptomic analysis and bioinformatics tools were applied to explore the differentially expressed RNAs in bovine mammary epithelial cells (bMECs) between the control and S. aureus-treated group. A total of 259 differentially expressed mRNAs (DEmRNAs), 27 differentially expressed microRNAs (DEmiRNAs), and 21 differentially expressed long non-coding RNAs (DElncRNAs) were found. These RNAs mainly enrich the inflammatory response, immune response, endocytosis, and cytokine-cytokine receptor interaction. qRT-PCR was used to analyze the quality of the RNA-seq results. In particular, to the defense mechanism of bovine mammary epithelial cells against intracellular S. aureus, the PPAR signaling pathway and the genes (ACOX2, CROT, and NUDT12) were found to be up-regulated to promote the production of peroxisomes and ROS, DRAM1 expression was also up-regulated to facilitate the activation of autophagy, indicating that the above mechanisms were involved in the elimination of intracellular S. aureus in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Feng Su
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Geng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Liping Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Run Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Meihua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Jianzhu Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Ortega E, Alfonseca-Silva E, Posadas E, Tapia G, Sumano H. A non-inferiority study evaluating a new extended-release preparation of tilmicosin injected subcutaneously vs. ceftiofur administered intramammary, as dry-cow therapy in Holstein Friesian cows. J Vet Sci 2020; 21:e87. [PMID: 33263234 PMCID: PMC7710465 DOI: 10.4142/jvs.2020.21.e87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND A new, extended long-acting tilmicosin (TLAe) preparation was tested against intramammary ceftiofur (CEF) using a non-inferiority trial model during dry-cow therapy (DCT) in a farm with high bovine population density and deficient hygiene application. OBJECTIVES To evaluate the possibility that TLAe administered parenterally can achieve non-inferiority status compared to CEF administered intramammary for DCT. METHODS Cows were randomly assigned to TLAe (20 mg/kg subcutaneous; n = 53) or CEF (CEF-HCl, 125 mg/quarter; n = 38 cows) treatment groups. California mastitis testing, colony-forming unit assessment (CFU/mL), and number of cases positive for Staphylococcus aureus were quantified before DCT and 7 d after calving. A complete cure was defined as no bacteria isolated; partial cure when CFU/mL ranged from 150 to 700, and cure-failure when CFU/mL was above 700. RESULTS TLAe and CEF had overall cure rates of 57% and 53% (p > 0.05) and S. aureus cure rates of 77.7% and 25%, respectively (p < 0.05). The pathogens detected at DCT and 7 days after calving were S. aureus (62.71% and 35.55%), Staphylococcus spp. (22.03% and 35.55%), Streptococcus uberis (10.16% and 13.33%), and Escherichia coli (5.08% and 15.55%). Non-inferiority and binary logistic regression analyses revealed a lack of difference in overall efficacies of TLAe and CEF. Apart from S. aureus, S. uberis was the predominant pathogen found in both groups. CONCLUSIONS This study is the first successful report of parenteral DCT showing comparable efficacy as CEF, the gold-standard. The extended long-term pharmacokinetic activity of TLAe explains these results.
Collapse
Affiliation(s)
- Esteban Ortega
- Department of Animal Production-Ruminants, School of Veterinary Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Edgar Alfonseca-Silva
- Department of Microbiology and Immunology, School of Veterinary Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Eduardo Posadas
- Department of Animal Production-Ruminants, School of Veterinary Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Graciela Tapia
- Department of Genetics and Biostatistics, School of Veterinary Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Hector Sumano
- Department of Physiology and Pharmacology, School of Veterinary Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| |
Collapse
|
19
|
Pena JL, Gonçalves Schwarz DG, Willian de Lima Brasil A, Licursi de Oliveira L, Albuquerque Caldeira JL, Scatamburlo Moreira MA. Differences in the coinfective process of Staphylococcus aureus and Streptococcus agalactiae in bovine mammary epithelial cells infected by Mycobacterium avium subsp. paratuberculosis. Microb Pathog 2020; 149:104476. [PMID: 32941969 DOI: 10.1016/j.micpath.2020.104476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
The interactions between Mycobacterium avium subsp. paratuberculosis (MAP) and the causative agents of bovine mastitis are still relatively unknown. Still, it is suspected that they may contribute to the worsening and persistence of mastitis within the mammary epithelial cells. Considering the growing economic implications of paratuberculosis and subclinical mastitis in dairy herds, this study aimed to determine the coinfection interaction between MAP and S. aureus or S. agalactiae in bovine mammary epithelial cells (MAC-T) in an ex-vivo model. For this purpose, internalisation tests of MAP + S. aureus or MAP + S. agalactiae were performed in MAC-T cells for 10, 30 and 120 min. The qPCR was performed to quantify internalised MAP at the time of exposure. Colony-forming units were counted on BHI agar medium for internalised subclinical mastitis bacteria at each time of infection. Viability tests of MAC-T cells, using the lactate dehydrogenase assay, were performed. The results showed that in the MAC-T cells previously infected by MAP and subsequently by S. aureus, there was a rapid internalisation in the first 10 min, maintaining a higher number of internalised bacteria during all exposure times. Regarding MAP + S. agalactiae, there were no changes in the internalisation patterns. The amount of MAP remained constant at all times evaluated, and there was no compromise in the viability of MAC-T cells during the tests. Thus, the results demonstrate the existence of an interaction between MAP + S. aureus, favouring internalisation and being able to contribute to the persistence of subclinical mastitis in dairy herds.
Collapse
Affiliation(s)
- Junnia Luísa Pena
- Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | | | - Arthur Willian de Lima Brasil
- Department of Morphology, Universidade Federal da Paraíba, Campus I Centro de Ciências da Saúde, João Pessoa, PA, Brazil.
| | | | | | | |
Collapse
|
20
|
Ji X, Zhang X, Sun L, Hou X, Song J, Tan X, Song H, Qiu X, Li M, Tang L, Han L, Li Z. Mce1C and Mce1D facilitate N. farcinica invasion of host cells and suppress immune responses by inhibiting innate signaling pathways. Sci Rep 2020; 10:14908. [PMID: 32913259 PMCID: PMC7484815 DOI: 10.1038/s41598-020-71860-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
Abstract
The mammalian cell entry (Mce) family of proteins consists of invasin-like membrane-associated proteins. The roles of Mce1C and Mce1D proteins in host–pathogen interactions have not been investigated. In this study, we demonstrate that Mce1C and Mce1D protein is localized in the cell wall fraction of N. farcinica. Both N. farcinica Mce1C and Mce1D proteins are expressed at the level of protein and mRNA and elicit antibody responses during infection. Mce1C and Mce1D facilitate the internalization of Escherichia coli expressing Mce1C protein or latex beads coated with Mce1D protein by HeLa cells, respectively. We further demonstrate that Mce1C and Mce1D can suppress the secretion of the proinflammatory factors TNF-α and IL-6 in macrophages infected with Mycobacterium smegmatis expressing Mce1C or Mce1D and promote the survival of M. smegmatis expressing Mce1C or Mce1D in macrophages. In addition, Mce1C and Mce1D supress the activation of the NF-κB and MAPK signaling pathways by blocking the phosphorylation of AKT, P65, ERK1/2, JNK, or P38 in macrophages. These findings suggest that Mce1C and Mce1D proteins facilitate N. farcinica invasion of HeLa cells and suppress host innate immune responses by manipulating NF-κB and MAPK signaling pathways, which may provide a target for N. farcinica treatment.
Collapse
Affiliation(s)
- Xingzhao Ji
- Shandong Academy of Clinical Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Xiujuan Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lina Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Xuexin Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Jingdong Song
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoluo Tan
- Chenzhou Center for Disease Control and Prevention, Chenzhou, China
| | - Han Song
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Xiaotong Qiu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Minghui Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Lu Tang
- First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lichao Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China.
| |
Collapse
|
21
|
Genomic Analysis of Bovine Staphylococcus aureus Isolates from Milk To Elucidate Diversity and Determine the Distributions of Antimicrobial and Virulence Genes and Their Association with Mastitis. mSystems 2020; 5:5/4/e00063-20. [PMID: 32636332 PMCID: PMC7343304 DOI: 10.1128/msystems.00063-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus causes persistent clinical and subclinical bovine intramammary infections (IMI) worldwide. However, there is a lack of comprehensive information regarding genetic diversity, the presence of antimicrobial resistance (AMR), and virulence genes for S. aureus in bovine milk in Canada. Here, we performed whole-genome sequencing (WGS) of 119 Canadian bovine milk S. aureus isolates and determined they belonged to 8 sequence types (ST151, ST352, ST351, ST2187, ST2270, ST126, ST133, and ST8), 5 clonal complexes (CC151, CC97, CC126, CC133, and CC8), and 18 distinct Spa types. Pan-, core, and accessory genomes were composed of 6,340, 1,279, and 2,431 genes, respectively. Based on phenotypic screening for AMR, resistance was common against beta-lactams (19% of isolates) and sulfonamides (7% of isolates), whereas resistance against pirlimycin, tetracycline, ceftiofur, and erythromycin and to the combination of penicillin and novobiocin was uncommon (3, 3, 3, 2, and 2% of all isolates, respectively). We also determined distributions of 191 virulence factors (VFs) in 119 S. aureus isolates after classifying them into 5 functional categories (adherence [n = 28], exoenzymes [n = 21], immune evasion [n = 20], iron metabolism [n = 29], and toxins [n = 93]). Additionally, we calculated the pathogenic potential of distinct CCs and STs and determined that CC151 (ST151 and ST351) had the highest pathogenic potential (calculated by subtracting core-VFs from total VFs), followed by CC97 (ST352 and ST2187) and CC126 (ST126 and ST2270), potentially linked to their higher prevalence in bovine IMI worldwide. However, there was no statistically significant link between the presence of VF genes and mastitis.IMPORTANCE Staphylococcus aureus is a major cause of bovine intramammary infections, leading to significant economic losses to dairy industry in Canada and worldwide. There is a lack of knowledge regarding genetic diversity, the presence of antimicrobial resistance (AMR), and virulence genes for S. aureus isolated from bovine milk in Canada. Based on whole-genome sequencing and genomic analysis, we have determined the phylogeny and diversity of S. aureus in bovine milk and concluded that it had a large accessory genome, limited distribution of AMR genes, variable VF gene profiles and sequence types (ST), and clonal complex (CC)-specific pathogenic potentials. Comprehensive information on the population structure, as well as the virulence and resistance characteristics of S. aureus from bovine milk, will allow for source attribution, risk assessment, and improved therapeutic approaches in cattle.
Collapse
|
22
|
Carlson SK, Erickson DL, Wilson E. Staphylococcus aureus metal acquisition in the mastitic mammary gland. Microb Pathog 2020; 144:104179. [DOI: 10.1016/j.micpath.2020.104179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022]
|
23
|
Zhao Y, Tang J, Yang D, Tang C, Chen J. Staphylococcal enterotoxin M induced inflammation and impairment of bovine mammary epithelial cells. J Dairy Sci 2020; 103:8350-8359. [PMID: 32622596 DOI: 10.3168/jds.2019-17444] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/20/2020] [Indexed: 01/04/2023]
Abstract
Staphylococcus aureus is one of the major etiological pathogens of bovine mastitis. Its invasion into mammary epithelial cells has been proven to be a key event in the pathogenesis of mastitis. However, the specific pathogenic factors have not been clearly identified. Staphylococcus aureus often triggers infections by releasing virulence factor. Recent several studies reported that staphylococcal enterotoxin M was one of the most frequently found enterotoxin genes associated with bovine mastitis. Thus, the effect of staphylococcal enterotoxin M on inflammation and damage of the bovine mammary epithelial bovine mammary gland epithelial cell line (MAC-T) cells with 48 h treatment was explored in the present study. First, staphylococcal enterotoxin M protein was purified by a Ni-NTA spin column (GE Life Science, Westborough, MA). The levels of tumor necrosis factor-α, IL-6, and monocyte chemoattractant protein 1 (MCP-1) secretion were measured with the corresponding ELISA kits (R&D Systems, Abingdon, UK). Second, cell viability was assessed with a Cell Counting Kit-8 (Bioswamp, Wuhan, China) and the apoptotic percentage of cells was determined by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI; Beyotime, Nanjing, China) staining. Third, ATP concentration, reactive oxygen species (ROS) generation and lactate dehydrogenase (LDH) release were assayed with commercial kits, then mitochondrial membrane potential (ΔΨm) was estimated using fluorescent probe JC-1 (Beyotime). Finally, the production intercellular cell adhesion molecule-1 (ICAM-1), microtubule-associated protein 1A/1B-light chain 3 I/II (LC3 I/II), p62 (Proteintech, Rosemont, IL), and phosphorylation of IκBα, caspase 3, and mammalian target of rapamycin were detected by Western blot. The results showed that staphylococcal enterotoxin M induced inflammation of epithelial cells (upregulating tumor necrosis factor-α, IL-6, MCP-1, and ICAM-1 production) and activated NF-κB (promoting phosphorylation of IκBα). Furthermore, staphylococcal enterotoxin M impaired MAC-T cells via cell necrosis (enhancing LDH release), apoptosis (annexin V-FITC/PI stain, exacerbating oxidative stress, decreasing ΔΨm and intracellular ATP concentration, and activating caspase 3), but independent of autophagy (nonsignificantly increasing LC3-II, decreasing p62 expression, and activating mammalian target of rapamycin). Thereby, staphylococcal enterotoxin M induced the inflammatory property of bovine mammary epithelial cells by boosting cytokine, chemokine, and adhesion molecule production. Furthermore, it caused epithelial cell dysfunction via depressing cell viability and initiating cell necrosis and apoptosis. Because epithelial cells played important roles in orchestrating the inflammatory response and protecting bovine mammary tissue from mastitis, our results indicated that staphylococcal enterotoxin M may be associated with mastitis.
Collapse
Affiliation(s)
- Yanying Zhao
- Key Laboratory of Qinghai-Tibetan Plateau, Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, China, 610041
| | - Junni Tang
- Key Laboratory of Qinghai-Tibetan Plateau, Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, China, 610041.
| | - Danru Yang
- Key Laboratory of Qinghai-Tibetan Plateau, Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, China, 610041
| | - Cheng Tang
- Key Laboratory of Qinghai-Tibetan Plateau, Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, China, 610041
| | - Juan Chen
- Key Laboratory of Qinghai-Tibetan Plateau, Animal Genetic Resource Reservation and Utilization of Ministry of Education, College of Life Science and Technology, Southwest Minzu University, Chengdu, China, 610041
| |
Collapse
|
24
|
Zhan K, Yang T, Feng B, Zhu X, Chen Y, Huo Y, Zhao G. The protective roles of tea tree oil extracts in bovine mammary epithelial cells and polymorphonuclear leukocytes. J Anim Sci Biotechnol 2020; 11:62. [PMID: 32549980 PMCID: PMC7294674 DOI: 10.1186/s40104-020-00468-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/01/2020] [Indexed: 11/23/2022] Open
Abstract
Background Tea tree oil (TTO) plays an important role in antibacterial activity and alleviating the inflammatory responses. Bovine mammary epithelium and polymorphonuclear leukocytes (PMNL) can actively respond to bovine mastitis infection. However, regulatory effects of TTO extracts on the innate immune response of bovine mammary epithelial cells (BMECs) and PMNL remain not reported. Therefore, aim of the study was to evaluate the effects of TTO extracts on the mRNA levels of the genes involved in the innate immune response of BMECs and PMNL. Results Our results demonstrated that addition of 0.025% and 0.05% TTO increased the proliferation of BMECs, and significantly enhanced (P < 0.05) the viability of BMECs exposed to Staphylococcus aureus (S. aureus). An inhibitory effect was observed against the growth of S. aureus by TTO incubation. The 0.05% TTO reduced S. aureus biofilm formation, association and invasion of S. aureus to BMECs, and changed the morphological and structural features of S. aureus. The proinflammatory cytokines IL-1β, IL-6, and TNF-α were decreased (P < 0.001) by the incubation of TTO. Interestingly, the expression of IL-8 known for PMNL chemotactic function was elevated (P < 0.05) by 0.05% TTO treatment. Consistently, 0.05% TTO increased the migration of PMNL in S. aureus-exposed BMECs when compared with S. aureus treatment alone (P < 0.05). In addition, PMNL incubated with 0.05% TTO decreased the levels of NFKB inhibitor alpha (NFKBIA) and TNF-α. Conclusions Our results indicate that use of TTO can relieve the BMECs pro-inflammatory response caused by S. aureus and promote the migration of PMNL to mount the innate immune responses, and it may be novel strategy for the treatment of bovine mastitis caused by S. aureus.
Collapse
Affiliation(s)
- Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Tianyu Yang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Baobao Feng
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Xinyu Zhu
- Wuxi Chenfang Biotechnology Co., Ltd., Wuxi, China
| | - Yinyin Chen
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Yongjiu Huo
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
25
|
Pacha PA, Munoz MA, Paredes-Osses E, Latorre AA. Short communication: Virulence profiles of Staphylococcus aureus isolated from bulk tank milk and adherences on milking equipment on Chilean dairy farms. J Dairy Sci 2020; 103:4732-4737. [PMID: 32113752 DOI: 10.3168/jds.2019-17794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/05/2020] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus is an important intramammary pathogen for dairy cows that also is remarkably important for public health. Multiple virulence factors can be involved simultaneously during the pathogenesis of a staphylococcal disease, including adhesion proteins, extracellular enzymes, and toxins. The main objective of this study was to assess virulence factors that are associated with cow intramammary infection (IMI) and of human health concern among Staph. aureus isolates obtained from bulk tank milk (BTM) and adherences on milking equipment surfaces. A total of 166 Staph. aureus isolates from 23 dairy farms were characterized according to their virulence profiles. For virulence factors of importance in IMI, the presence of the virulence markers thermonuclease (nuc) and coagulase (coa) and virulence genes such as fibronectin (fnbA) and intercellular adhesion (icaA, icaD) were assessed. For virulence factors of public health concern, presence of antimicrobial resistance (mecA and mecC) and enterotoxin (sea and seb) genes were analyzed. Among all Staph. aureus isolates, 5 virulence profiles were found; the profile nuc(+)coa(+)fnbA(+)icaA(+)icaD(+)mecA(-)mecC(-)sea(-)seb(-) was the most frequently observed (21 out of 23 dairy farms). No differences were found between the virulence profile frequencies of Staph. aureus from BTM and adherences on milking equipment surfaces. The virulence profiles most frequently observed included genes involved in the adherence and biofilm-forming ability of Staph. aureus, which could represent a potential advantage for the bacterium during the early stages of IMI colonization and for persistence on surfaces. Our results indicate a greater frequency of virulence factors of importance for IMI pathogenesis than virulence factors of public health concern, consistent with the dairy origin of isolates. The mecA, mecC, and seb genes were not observed among Staph. aureus isolates analyzed in this study. However, the sea gene was detected in 3 Staph. aureus isolated from BTM, thus posing a potential public health threat. Our results emphasize the importance of understanding the epidemiology and dynamics of Staph. aureus on dairy farms as a tool for the improvement of udder health and milk safety.
Collapse
Affiliation(s)
- P A Pacha
- Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, 3812120, Chile
| | - M A Munoz
- Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, 3812120, Chile
| | - E Paredes-Osses
- Instituto de Salud Pública, Department of Environmental Health, Ñuñoa, Santiago 7750000, Chile
| | - A A Latorre
- Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, 3812120, Chile.
| |
Collapse
|
26
|
Penadés M, Viana D, García-Quirós A, Muñoz-Silvestre A, Moreno-Grua E, Pérez-Fuentes S, Pascual JJ, Corpa JM, Selva L. Differences in virulence between the two more prevalent Staphylococcus aureus clonal complexes in rabbitries (CC121 and CC96) using an experimental model of mammary gland infection. Vet Res 2020; 51:11. [PMID: 32054530 PMCID: PMC7020377 DOI: 10.1186/s13567-020-0740-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/19/2020] [Indexed: 01/03/2023] Open
Abstract
Staphylococcal mastitis is a major health problem in humans and livestock that leads to economic loss running in millions. This process is currently one of the main reasons for culling adult rabbit does. Surprisingly, the two most prevalent S. aureus lineages isolated from non-differentiable natural clinical mastitis in rabbits (ST121 and ST96) generate different immune responses. This study aimed to genetically compare both types of strains to search for possible dissimilarities to explain differences in immune response, and to check whether they showed similar virulence in in vitro tests as in experimental intramammary in vivo infection. The main differences were observed in the enterotoxin gene cluster (egc) and the immune-evasion-cluster (IEC) genes. While isolate ST121 harboured all six egc cluster members (seg, sei, selm, seln, selo, selu), isolate ST96 lacked the egc cluster. Strain ST96 carried a phage integrase Sa3 (Sa3int), compatible with a phage integrated into the hlb gene (β-haemolysin-converting bacteriophages) with IEC type F, while isolate ST121 lacked IEC genes and the hlb gene was intact. Moreover, the in vitro tests confirmed a different virulence capacity between strains as ST121 showed greater cytotoxicity for erythrocytes, polymorphonuclear leukocytes and macrophages than strain ST96. Differences were also found 7 days after experimental intramammary infection with 100 colony-forming units. The animals inoculated with strain ST121 developed more severe gross and histological mastitis, higher counts of macrophages in tissue and of all the cell populations in peripheral blood, and a significantly larger total number of bacteria than those infected by strain ST96.
Collapse
Affiliation(s)
- Mariola Penadés
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - David Viana
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Ana García-Quirós
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Asunción Muñoz-Silvestre
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Elena Moreno-Grua
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Sara Pérez-Fuentes
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Juan José Pascual
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera 14, 46071, Valencia, Spain
| | - Juan M Corpa
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain.
| | - Laura Selva
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. C/Tirant lo Blanc 7, Alfara del Patriarca, 46115, Valencia, Spain.
| |
Collapse
|
27
|
Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics (Basel) 2020; 9:E59. [PMID: 32028684 PMCID: PMC7167820 DOI: 10.3390/antibiotics9020059] [Citation(s) in RCA: 417] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Recognition of the fact that bacterial biofilm may play a role in the pathogenesis of disease has led to an increased focus on identifying diseases that may be biofilm-related. Biofilm infections are typically chronic in nature, as biofilm-residing bacteria can be resilient to both the immune system, antibiotics, and other treatments. This is a comprehensive review describing biofilm diseases in the auditory, the cardiovascular, the digestive, the integumentary, the reproductive, the respiratory, and the urinary system. In most cases reviewed, the biofilms were identified through various imaging technics, in addition to other study approaches. The current knowledge on how biofilm may contribute to the pathogenesis of disease indicates a number of different mechanisms. This spans from biofilm being a mere reservoir of pathogenic bacteria, to playing a more active role, e.g., by contributing to inflammation. Observations also indicate that biofilm does not exclusively occur extracellularly, but may also be formed inside living cells. Furthermore, the presence of biofilm may contribute to development of cancer. In conclusion, this review shows that biofilm is part of many, probably most chronic infections. This is important knowledge for development of effective treatment strategies for such infections.
Collapse
Affiliation(s)
- Lene K. Vestby
- Department of Immunology and Virology, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway;
| | - Torstein Grønseth
- Department of Otolaryngology, Head and Neck Surgery, Oslo University Hospital HF, Postboks 4950 Nydalen, 0424 Oslo, Norway;
| | - Roger Simm
- Institute of Oral Biology, University of Oslo, P.O. Box 1052, Blindern, 0316 Oslo, Norway;
| | - Live L. Nesse
- Department of Food Safety and Animal Health Research, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| |
Collapse
|
28
|
Supa-Amornkul S, Mongkolsuk P, Summpunn P, Chaiyakunvat P, Navaratdusit W, Jiarpinitnun C, Chaturongakul S. Alternative Sigma Factor B in Bovine Mastitis-Causing Staphylococcus aureus: Characterization of Its Role in Biofilm Formation, Resistance to Hydrogen Peroxide Stress, Regulon Members. Front Microbiol 2019; 10:2493. [PMID: 31787937 PMCID: PMC6853994 DOI: 10.3389/fmicb.2019.02493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
This study examines treatments of the bacterial pathogen Staphylococcus aureus, namely, in the context of its being a major cause of subclinical bovine mastitis. Such infections caused by S. aureus among dairy cows are difficult to detect and can easily become chronic, leading to reduced productivity and large losses for dairy manufacturers. In this study, the role of alternative sigma factor B (σB), which has been shown to be a global regulator for S. aureus infections, was explored in a mastitis-causing S. aureus strain, RF122. For comparison with the wild-type strain, a sigB null (ΔsigB) mutant was constructed and analyzed for its phenotypes and transcriptome. Our study found that σB is essential for biofilm formation as the ΔsigB mutant strain produced significantly less biofilm than did the wild-type strain at 48 h. σB is involved in response to H2O2 stress. However, σB plays a minor or no role in resistance to antiseptics (e.g., povidone-iodine and chlorhexidine), resistance to tested antibiotics, hemolysin activity, and invasion ability. RNA sequencing identified 225 σB-dependent genes, of which 171 are positively regulated and 54 are negatively regulated. The identified genes are involved in stress response, pathogenesis, and metabolic mechanisms. Quantitative TaqMan RT-PCR was performed to verify the RNA sequencing results; i.e., σB is a positive regulator for asp23, sarA, katA, yabJ, sodA, SAB2006c, and nrdD expressions. In the RF122 strain, σB plays a role in biofilm formation, general stress response (e.g., H2O2), and regulation of virulence factors and virulence-associated genes.
Collapse
Affiliation(s)
- Sirirak Supa-Amornkul
- Mahidol International Dental School, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Paninee Mongkolsuk
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pijug Summpunn
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Pongkorn Chaiyakunvat
- Department of Chemistry and Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Warisara Navaratdusit
- Department of Chemistry and Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chutima Jiarpinitnun
- Department of Chemistry and Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Soraya Chaturongakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
29
|
Amiri Fahliyani S, Beheshti-Maal K, Ghandehari F. Novel lytic bacteriophages of Klebsiella oxytoca ABG-IAUF-1 as the potential agents for mastitis phage therapy. FEMS Microbiol Lett 2019; 365:5096019. [PMID: 30212876 DOI: 10.1093/femsle/fny223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/09/2018] [Indexed: 01/05/2023] Open
Abstract
Mastitis is an inflammation of the mammary gland that occurs when pathogenic microorganisms enter the udder. Even though tremendous advancements in veterinary diagnosis and therapeutics, mastitis is still the most frequent and costly disease of dairy herds overall the world. The purpose of this research was to isolate and identify the lytic phages as a potential method for biological control of bovine mastitis. In this study Klebsiella oxytoca was isolated from contaminated milk samples of Isfahan dairy herds, Isfahan, Iran and characterized as K. oxytoca ABG-IAUF-1 and its 16s-rRNA sequence was deposited in GenBank under the accession numbers of MF175803.1. Then, the four novel specific lytic bacteriophages of K. oxytoca ABG-IAUF-1 from Isfahan public wastewater were isolated and identified. The results of transmission electron microscopy indicated that theses isolated phages were related to Myoviridae and Podoviridae families of bacteriophages. Also the analysis of the growth curve of K. oxytoca ABG-IAUF-1 before and after treatment with lytic phage showed the 97% success rate of the phages in preventing of bacterial growth. This is the first report indicating the use of bacteriophages as the potential agents for eliminating the pathogenic bacteria responsible for bovine mastitis in Iran. The applications of these lytic phages could be an asset for biocontrolling of pathogenic agents in medical and veterinary biotechnology.
Collapse
Affiliation(s)
- Sara Amiri Fahliyani
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan 84515/155, Isfahan, Iran
| | - Keivan Beheshti-Maal
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan 84515/155, Isfahan, Iran
| | - Fereshteh Ghandehari
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan 84515/155, Isfahan, Iran
| |
Collapse
|
30
|
Lipid-Rich Extract from Mexican Avocado Seed ( Persea americana var. drymifolia) Reduces Staphylococcus aureus Internalization and Regulates Innate Immune Response in Bovine Mammary Epithelial Cells. J Immunol Res 2019; 2019:7083491. [PMID: 31612151 PMCID: PMC6757280 DOI: 10.1155/2019/7083491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
Bovine mammary epithelial cells (bMECs) are capable of initiating an innate immune response (IIR) to invading bacteria. Staphylococcus aureus is not classically an intracellular pathogen, although it has been shown to be internalized into bMECs. S. aureus internalizes into nonprofessional phagocytes, which allows the evasion of the IIR and turns antimicrobial therapy unsuccessful. An alternative treatment to control this pathogen is the modulation of the innate immune response of the host. The Mexican avocado (Persea americana var. drymifolia) is a source of molecules with anti-inflammatory and immunomodulatory properties. Hence, we analyze the effect of a lipid-rich extract from avocado seed (LEAS) on S. aureus internalization into bMECs and their innate immunity response. The effects of LEAS (1-500 ng/ml) on the S. aureus growth and bMEC viability were assessed by turbidimetry and MTT assays, respectively. LEAS did not show neither antimicrobial nor cytotoxic effects. S. aureus internalization into bMECs was analyzed by gentamicin protection assays. Interestingly, LEAS (1-200 ng/ml) decreased bacterial internalization (60-80%) into bMECs. This effect correlated with NO production and the induction of the gene expression of IL-10, while the expression of the proinflammatory cytokine TNF-α was reduced. These effects could be related to the inhibition of MAPK p38 (∼60%) activation by LEAS. In conclusion, our results showed that LEAS inhibits the S. aureus internalization into bMECs and modulates the IIR, which indicates that avocado is a source of metabolites for control of mastitis pathogens.
Collapse
|
31
|
Khemiri M, Abbassi MS, Elghaieb H, Zouari M, Dhahri R, Pomba C, Hammami S. High occurrence of enterotoxigenic isolates and low antibiotic resistance rates of Staphylococcus aureus isolated from raw milk from cows and ewes. Lett Appl Microbiol 2019; 68:573-579. [PMID: 30924159 DOI: 10.1111/lam.13152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 11/28/2022]
Abstract
This study aimed to analyse the frequency of genes encoding virulence factors and to characterize resistance profiles of Staphylococcus aureus isolated from raw milk. In total, 47 and 9 S. aureus isolates were recovered from 150 and 100 raw bovine and ovine milk samples, respectively, in Tunisia. The majority of isolates was resistant to penicillin, and no methicillin-resistant S. aureus was detected. Eighteen and two isolates harboured etd and eta genes respectively. Sixteen enterotoxin-encoding genes were detected (n, %): sed (25, 44·6%), sec (16, 28·6%), sei (16, 28·6%), seh (13, 23·2%), seln (13, 23·2%), sell (10, 17·8%), seg (9, 16%), selu (8, 14·3%), selq (7, 12·5%), selo (7, 12·5%), selm (7, 12·5%), seb (7, 12·5%), sea (6, 10·7%), selk (3, 5·4%), ser (1, 1·8%) and selp (1, 1·8%). Ten isolates carried the tsst1 gene. All isolates carried the haemolysin toxin (hla, hld and hlg). The immune evasion cluster system-type B was predominant (20 isolates) followed by C (3 isolates), A and E (1 isolate each). The occurrence of enterotoxigenic S. aureus in raw milk constitutes a potential risk for human health. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper describes the characteristics of Staphylococcus aureus isolated from raw milk samples from healthy cows and ewes collected from small family farms in Tunisia. Fifty-six strains were analysed by determining their antibiotic susceptibility and genes encoding antibiotic resistance and virulence factors. Methicillin-resistant strains were not detected, and overall low level of antimicrobial resistance was reported. However, our strains harboured several genes encoding virulence factors and 87·5% of them carried at least one gene encoding for enterotoxins showing a high risk of spread of food-borne diseases.
Collapse
Affiliation(s)
- M Khemiri
- Institut de la Recherche Vétérinaire de Tunisie, Université de Tunis El Manar, Tunis, Tunisia.,Laboratory of Antimicrobial and Biocide Resistance, CIISA, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - M S Abbassi
- Institut de la Recherche Vétérinaire de Tunisie, Université de Tunis El Manar, Tunis, Tunisia.,Laboratoire de 'Résistance aux antibiotiques', Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - H Elghaieb
- Institut de la Recherche Vétérinaire de Tunisie, Université de Tunis El Manar, Tunis, Tunisia
| | - M Zouari
- OTD Centre avicole de Mateur, Bizerte, Tunisia
| | - R Dhahri
- Complexe Sanitaire de Jebel Ouest, Zaghouan, Tunisia
| | - C Pomba
- Laboratory of Antimicrobial and Biocide Resistance, CIISA, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - S Hammami
- Université de la Manouba, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, Tunis, Tunisia
| |
Collapse
|
32
|
Martínez-Cortés I, Acevedo-Domínguez NA, Olguin-Alor R, Cortés-Hernández A, Álvarez-Jiménez V, Campillo-Navarro M, Sumano-López HS, Gutiérrez-Olvera L, Martínez-Gómez D, Maravillas-Montero JL, Loor JJ, García-Zepeda EA, Soldevila G. Tilmicosin modulates the innate immune response and preserves casein production in bovine mammary alveolar cells during Staphylococcus aureus infection. J Anim Sci 2019; 97:644-656. [PMID: 30517644 DOI: 10.1093/jas/sky463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/01/2018] [Indexed: 12/15/2022] Open
Abstract
Tilmicosin is an antimicrobial agent used to treat intramammary infections against Staphylococcus aureus and has clinical anti-inflammatory effects. However, the mechanism by which it modulates the inflammatory process in the mammary gland is unknown. We evaluated the effect of tilmicosin treatment on the modulation of the mammary innate immune response after S. aureus infection and its effect on casein production in mammary epithelial cells. To achieve this goal, we used immortalized mammary epithelial cells (MAC-T), pretreated for 12 h or treated with tilmicosin after infection with S. aureus (ATCC 27543). Our data showed that tilmicosin decreases intracellular infection (P < 0.01) and had a protective effect on MAC-T reducing apoptosis after infection by 80% (P < 0.01). Furthermore, tilmicosin reduced reactive oxygen species (ROS) (P < 0.01), IL-1β (P < 0.01), IL-6 (P < 0.01), and TNF-α (P < 0.05) production. In an attempt to investigate the signaling pathways involved in the immunomodulatory effect of tilmicosin, mitogen-activated protein kinase (MAPK) phosphorylation was measured by fluorescent-activated cell sorting. Pretreatment with tilmicosin increased ERK1/2 (P < 0.05) but decreased P38 phosphorylation (P < 0.01). In addition, the anti-inflammatory effect of tilmicosin helped to preserve casein synthesis in mammary epithelial cells (P < 0.01). This result indicates that tilmicosin could be an effective modulator inflammation in the mammary gland. Through regulation of MAPK phosphorylation, ROS production and pro-inflammatory cytokine secretion tilmicosin can provide protection from cellular damage due to S. aureus infection and help to maintain normal physiological functions of the bovine mammary epithelial cell.
Collapse
Affiliation(s)
- Ismael Martínez-Cortés
- Chemokine Biology Research Laboratory, UNAM, Ciudad de México, Mexico.,Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| | - Naray A Acevedo-Domínguez
- Chemokine Biology Research Laboratory, UNAM, Ciudad de México, Mexico.,Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| | - Roxana Olguin-Alor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| | - Arimelek Cortés-Hernández
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| | - Violeta Álvarez-Jiménez
- Chemokine Biology Research Laboratory, UNAM, Ciudad de México, Mexico.,Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| | - Marcia Campillo-Navarro
- Laboratorio de Inmunología Integrativa-INER, Ismael Cosio Villegas. Ciudad de México, Mexico
| | | | | | | | | | - Juan J Loor
- Mammalian NutriPhysioGenomics-University of Illinois, Urbana, IL
| | - Eduardo A García-Zepeda
- Chemokine Biology Research Laboratory, UNAM, Ciudad de México, Mexico.,Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| |
Collapse
|
33
|
Sheet OH, Grabowski NT, Klein G, Reich F, Abdulmawjood A. Characterisation of mecA gene negative Staphylococcus aureus isolated from bovine mastitis milk from Northern Germany. Folia Microbiol (Praha) 2019; 64:845-855. [PMID: 30888635 DOI: 10.1007/s12223-019-00698-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus (S. aureus) is an important causative agent of contagious intermammary infections in dairy cattle. S. aureus is also considered as an important foodborne pathogen and cause of food poisoning cases and outbreaks worldwide. In order to understand the molecular ecology of S. aureus, the present study compared phenotypic and genotypic characteristics of 70 S. aureus isolates from bovine mastitis milk samples collected during the period from August 2001 to March 2014 in different regions of Northern Germany. The S. aureus isolates were characterised phenotypically, as well as genotypically for their genetic diversity using multi-locus sequence typing (MLST), spa typing and the presence of virulence genes encoding 16 staphylococcal enterotoxins (sea-selu), toxic shock syndrome toxin (tst), thermonuclease (nuc), clumping factor (clfA and clfB), coagulase (coa) and the methicillin resistance gene mecA. A total of 16 sequence types were grouped into eight clonal complexes (CCs), and 17 spa types were identified. These included six novel sequence types and one novel spa type. The majority of bovine mastitis milk-associated sequence types belonged to the clonal complex CC5, CC97, CC133, and CC151 and showed closely related genotypes or lineages with sequence types of human origin. The genotype CC133 (ST133-t1403) was predominant, constituting 27.1% of the isolates. In addition, the S. aureus isolates displayed nine different enterotoxigenic profiles. All S. aureus were methicillin-susceptible (MSSA). The current study provides new information on phenotypic and genotypic traits of S. aureus isolates from bovine mastitis. The comparison of characteristics of isolates from the present study originating from mastitis milk showed similarities with human isolates. This might help to better understand the distribution of S. aureus in the one health context.
Collapse
Affiliation(s)
- O H Sheet
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Mosul, Mosul, Iraq
| | - N T Grabowski
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - G Klein
- Institute of Food Quality and Food Safety, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - F Reich
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.,German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - A Abdulmawjood
- Institute of Food Quality and Food Safety, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
34
|
Božić A, Anderson RC, Arzola-Alvarez C, Ruiz-Barrera O, Corral-Luna A, Castillo-Castillo Y, Arzola-Rubio A, Poole TL, Harvey RB, Hume ME, Beier RC, Nisbet DJ. Inhibition of multidrug-resistant Staphylococci by sodium chlorate and select nitro- and medium chain fatty acid compounds. J Appl Microbiol 2019; 126:1508-1518. [PMID: 30803130 DOI: 10.1111/jam.14232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 11/28/2022]
Abstract
AIMS Determine the antimicrobial effects of 5 μmol ml-1 sodium chlorate, 9 μmol ml-1 nitroethane or 2-nitropropanol as well as lauric acid, myristic acid and the glycerol ester of lauric acid Lauricidin® , each at 5 mg ml-1 , against representative methicillin-resistant staphylococci, important mastitis- and opportunistic dermal-pathogens of humans and livestock. METHODS AND RESULTS Three methicillin-resistant Staphylococcus aureus and two methicillin-resistant coagulase-negative staphylococci were cultured at 39°C in 5 μmol ml-1 nitrate-supplemented half-strength Brain Heart Infusion broth treated without or with the potential inhibitors. Results revealed that 2-nitropropanol was the most potent and persistent of all compounds tested, achieving 58-99% decreases in mean specific growth rates and maximum optical densities when compared with untreated controls. Growth inhibition did not persist by cultures treated solely with chlorate or nitroethane, with adaptation occurring by different mechanisms after 7 h. Adaptation did not occur in cultures co-treated with nitroethane and chlorate. The medium chain fatty acid compounds had modest effects on all the staphylococci tested except the coagulase-negative Staphylococcus epidermidis strain NKR1. CONCLUSIONS The antimicrobial activity of nitrocompounds, chlorate and medium chain fatty acid compounds against different methicillin-resistant staphylococci varied in potency. SIGNIFICANCE AND IMPACT OF THE STUDY Results suggest that differential antimicrobial activities exhibited by mechanistically dissimilar inhibitors against methicillin-resistant staphylococci may yield potential opportunities to combine the treatments to overcome their individual limitations and broaden their activity against other mastitis and dermal pathogens.
Collapse
Affiliation(s)
- A Božić
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - R C Anderson
- United States Department of Agriculture/Agricultural Research Service, Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - C Arzola-Alvarez
- College of Animal Science and Ecology, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - O Ruiz-Barrera
- College of Animal Science and Ecology, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - A Corral-Luna
- College of Animal Science and Ecology, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Y Castillo-Castillo
- College of Animal Science and Ecology, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - A Arzola-Rubio
- College of Animal Science and Ecology, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - T L Poole
- United States Department of Agriculture/Agricultural Research Service, Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - R B Harvey
- United States Department of Agriculture/Agricultural Research Service, Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - M E Hume
- United States Department of Agriculture/Agricultural Research Service, Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - R C Beier
- United States Department of Agriculture/Agricultural Research Service, Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - D J Nisbet
- United States Department of Agriculture/Agricultural Research Service, Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, College Station, TX, USA
| |
Collapse
|
35
|
Sarentonglaga B, Sugiyama T, Fukumori R, Nagao Y. Effects of a tunnel ventilation system within the tie-stall barn environment upon the productivity of dairy cattle during the winter season. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:748-756. [PMID: 30208693 PMCID: PMC6502728 DOI: 10.5713/ajas.18.0436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/03/2018] [Indexed: 11/27/2022]
Abstract
Objective The objective of this study was to examine the effect of using a tunnel ventilation system within the dairy barn environment upon the productivity of dairy cows during the winter season. Methods The study was performed at the University Farm, Faculty of Agriculture, Utsunomiya University. Twenty-one Holstein dairy cows (5 heifers and 16 multiparous) were enclosed in a stall barn. Unventilated (UV) and tunnel-ventilated (TV) was operated by turns every other week, and a number of key parameters were measured in the barn, including tunnel ventilation output, temperature, relative humidity, gas concentrations (oxygen [O2], carbon dioxide [CO2], and ammonia [NH3]). Also, skin and rectal temperature, respiratory rate, blood gas concentrations, and bacterial count were measured from nipple attachments on ten cows. The amount of fodder left uneaten, and general components and somatic cell count of the milk were measured. Results As for our dairy barn environment, air temperature dropped significantly with the passage of time with TV. Humidity was significantly higher with TV at 0600 h compared to UV, while CO2 and NH3 concentrations with UV were significantly higher than with TV at 0000 h and 0600 h. Skin temperature was significantly lower with TV compared to UV at 0000 h and 0600 h. Respiratory rate was also significantly lower at 0600 h with TV than with UV. Bacterial count for the nipple attachments was significantly lower with TV than with UV at 0600 h. The amount of leftover fodder was significantly less with TV in comparison with UV. Conclusion Our results suggest that a TV system in the winter barn results in environmental improvements, such as reductions in unfavorable gas concentrations and bacterial growth. Consequently, it is expected that barns utilizing a TV system will be beneficial for both animal health and production.
Collapse
Affiliation(s)
| | - Tatsuhiro Sugiyama
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan
| | - Rika Fukumori
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan.,Department of Health and Environmental Science, School of Veteruinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Yoshikazu Nagao
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi 321-4415, Japan
| |
Collapse
|
36
|
Beccaria C, Silvestrini P, Renna MS, Ortega HH, Calvinho LF, Dallard BE, Baravalle C. Panax ginseng extract reduces Staphylococcus aureus internalization into bovine mammary epithelial cells but does not affect macrophages phagocytic activity. Microb Pathog 2018; 122:63-72. [DOI: 10.1016/j.micpath.2018.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
|
37
|
Gong XX, Su XS, Zhan K, Zhao GQ. The protective effect of chlorogenic acid on bovine mammary epithelial cells and neutrophil function. J Dairy Sci 2018; 101:10089-10097. [PMID: 30146292 DOI: 10.3168/jds.2017-14328] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/30/2018] [Indexed: 01/11/2023]
Abstract
Chlorogenic acid (CGA) is the ester of caffeic acid and quinic acid and plays an important role in antibacterial activity and anti-inflammatory properties. The objective of this study was to examine the effects of CGA on the growth of Staphylococcus aureus and the mRNA levels of the genes encoding the inflammatory response cytokines, κ-casein, and neutrophil function in bovine mammary epithelial cells (BMEC) exposed to S. aureus. Chlorogenic acid has important antibacterial, antioxidant, and anti-inflammatory functions; however, the effect of CGA on BMEC and neutrophils exposed to S. aureus has not been investigated previously. Our results demonstrated that 10, 20, and 30 μg/mL CGA had no cytotoxic effects on BMEC in culture, and that 20 μg/mL CGA enhanced the viability of BMEC exposed to S. aureus, whereas 30 μg/mL CGA reduced S. aureus growth after 9 h compared with controls. The rate of S. aureus invasion into BMEC was also attenuated by 30 μg/mL CGA compared with controls, whereas this treatment led to reduced abundance of IL6, IL8, and TLR2 mRNA in S. aureus-exposed BMEC. Migration of bovine polymorphonuclear leukocytes was significantly decreased in S. aureus-exposed BMEC with 10 and 20 μg/mL CGA treatment when compared with S. aureus treatment alone. In addition, incubation with 20 or 30 μg/mL CGA enhanced the phagocytic ability of polymorphonuclear leukocytes compared with the control group. Importantly, levels of κ-casein were enhanced by treatment of S. aureus-exposed BMEC with CGA. Our results suggest that the use of CGA may be a potent therapeutic tool against bovine mastitis caused by S. aureus.
Collapse
Affiliation(s)
- X X Gong
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - X S Su
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - K Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - G Q Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
38
|
Development and evaluation of vaccine against Staphylococcus aureus recovered from naturally occurring mastitis in she-camels. Microb Pathog 2018; 117:341-347. [DOI: 10.1016/j.micpath.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/26/2018] [Accepted: 03/02/2018] [Indexed: 12/25/2022]
|
39
|
Josse J, Laurent F, Diot A. Staphylococcal Adhesion and Host Cell Invasion: Fibronectin-Binding and Other Mechanisms. Front Microbiol 2017; 8:2433. [PMID: 29259603 PMCID: PMC5723312 DOI: 10.3389/fmicb.2017.02433] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/23/2017] [Indexed: 02/02/2023] Open
Abstract
Opportunistic bacteria from the genus Staphylococcus can cause life-threatening infections such as pneumonia, endocarditis, bone and joint infections, and sepsis. This pathogenicity is closely related to their capacity to bind directly to the extracellular matrix or to host cells. Adhesion is indeed the first step in the formation of biofilm or the invasion of host cells, which protect the bacteria from the host immune system and facilitate chronic infection. Adhesion relies on the expression of a repertoire of surface proteins called adhesins, notably microbial surface components recognizing adhesive matrix molecules. In this short review, we discuss the main pathway (FnBP-Fn-α5β1 integrin), as well as alternatives, through which Staphylococcus aureus adheres to and then invades non-professional phagocytic cells. We then examine the corresponding mechanisms for coagulase negative staphylococci. There is currently a little understanding of the molecular mechanisms that lead to internalization. Filling this gap in the literature would therefore be an important step toward limiting the duration of staphylococci infections in clinical practice.
Collapse
Affiliation(s)
- Jérôme Josse
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France
| | - Frédéric Laurent
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France.,Institute for Infectious Agents, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,French National Reference Centre for Staphylococci, Lyon, France.,Microbiology-Mycology Department, Institut des Sciences Pharmaceutiques et Biologiques de Lyon, Lyon, France
| | - Alan Diot
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, ENS Lyon, Lyon 1 University, Lyon, France
| |
Collapse
|
40
|
Rainard P, Foucras G, Fitzgerald JR, Watts JL, Koop G, Middleton JR. Knowledge gaps and research priorities in Staphylococcus aureus mastitis control. Transbound Emerg Dis 2017; 65 Suppl 1:149-165. [PMID: 28984427 DOI: 10.1111/tbed.12698] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/31/2022]
Abstract
This study assessed knowledge gaps and suggested research priorities in the field of Staphylococcus aureus mastitis. Staphylococcus aureus infecting the mammary gland remains a major problem to the dairy industry worldwide because of its pathogenicity, contagiousness, persistence in the cow environment, colonization of skin or mucosal epithelia, and the poor curing efficacy of treatments. Staphylococcus aureus also constitutes a threat to public health due to food safety and antibiotic usage issues and the potential for bidirectional transmission of strains between humans and dairy animals (cows and small ruminants). Gaps have been identified in (i) understanding the molecular basis for pathogenesis of S. aureus mastitis, (ii) identifying staphylococcal antigens inducing protection and (iii) determining the cell-mediated immune responses to infection and vaccination. The recommended priorities for research are (i) improved diagnostic methods for early detection of infection and intervention through treatment or management, (ii) development of experimental models to investigate the strategies used by S. aureus to survive within the mammary gland and resist treatment with anti-microbials, (iii) investigation of the basis for cow-to-cow variation in response to S. aureus mastitis, (iv) identification of the immune responses (adaptive and innate) induced by infection or vaccination and (v) antibacterial discovery programmes to develop new, more effective, narrow spectrum antibacterial agents for the treatment of S. aureus mastitis. With the availability and ongoing improvement of molecular research tools, these objectives may not be out of reach in the future.
Collapse
Affiliation(s)
- P Rainard
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France
| | - G Foucras
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - J R Fitzgerald
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - J L Watts
- Zoetis, External Innovation-Anti-Infectives, VMRD, Kalamazoo, MI, USA
| | - G Koop
- Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - J R Middleton
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| |
Collapse
|
41
|
Chen W, Liu Y, Zhang L, Gu X, Liu G, Shahid M, Gao J, Ali T, Han B. Nocardia cyriacigeogica from Bovine Mastitis Induced In vitro Apoptosis of Bovine Mammary Epithelial Cells via Activation of Mitochondrial-Caspase Pathway. Front Cell Infect Microbiol 2017; 7:194. [PMID: 28573110 PMCID: PMC5435817 DOI: 10.3389/fcimb.2017.00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
Nocardia is one of the causing agents of bovine mastitis and increasing prevalence of nocardial mastitis in shape of serious outbreaks has been reported from many countries. However, the mechanisms by which this pathogen damages the bovine mammary epithelial cells (bMECs) is not yet studied. Therefore, this study was designed with the aim to evaluate the apoptotic effects elicited by Nocardia and to investigate the pathway by which the Nocardia induce apoptosis in bMECs. Clinical Nocardia cyriacigeorgica strain from bovine mastitis was used to infect the bMECs for different time intervals, viz. 1, 3, 6, 12, and 18 h, and then the induced effects on bMECs were studied using adhesion and invasion assays, release of lactate dehydrogenase (LDH), apoptosis analysis by annexin V and propidium iodide (PI) double staining, morphological, and ultrastructural observations under scanning electron microscope (SEM) and transmission electron microscope (TEM), mitochondrial transmembrane potential (ΔΨm) assay using flow cytometry, and the protein quantification of mitochondrial cytochrome c and caspase-9 and caspase-3 by western blotting. The results of this study showed that N. cyriacigeorgica possessed the abilities of adhesion and invasion to bMECs. N. cyriacigeorgica was found to collapse mitochondrial transmembrane potential, significantly (p < 0.05) release mitochondrial cytochrome c and ultimately induce cell apoptosis. Additionally, it promoted casepase-9 (p < 0.01) and casepase-3 (p < 0.05) levels, significantly (p < 0.01) increased the release of LDH and promoted DNA fragmentation which further confirmed the apoptosis. Furthermore, N. cyriacigeorgica induced apoptosis/necrosis manifested specific ultrastructure features under TEM, such as swollen endoplasmic reticulum, cristae degeneration, and swelling of mitochondria, vesicle formation on the cell surface, rupturing of cell membrane and nuclear membrane, clumping, fragmentation, and margination of chromatin. The present study is the first comprehensive insight into patho-morphological ultrastructural features of apoptosis/necrosis induced by N. cyriacigeorgica, which concluded that the clinical N. cyriacigeorgica induced apoptotic changes in the bMECs through mitochondrial-caspase dependent apoptotic pathway.
Collapse
Affiliation(s)
- Wei Chen
- Department of Veterinary Clinics, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Yongxia Liu
- Department of Veterinary Clinics, College of Veterinary Medicine, Shandong Agricultural UniversityTai'an, China
| | - Limei Zhang
- Department of Veterinary Clinics, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Xiaolong Gu
- Department of Veterinary Clinics, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Gang Liu
- Department of Veterinary Clinics, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Muhammad Shahid
- Department of Veterinary Clinics, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Jian Gao
- Department of Veterinary Clinics, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Tariq Ali
- Department of Veterinary Clinics, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Bo Han
- Department of Veterinary Clinics, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| |
Collapse
|
42
|
Wei Z, Xiao C, Guo C, Zhang X, Wang Y, Wang J, Yang Z, Fu Y. Sodium acetate inhibits Staphylococcus aureus internalization into bovine mammary epithelial cells by inhibiting NF-κB activation. Microb Pathog 2017; 107:116-121. [PMID: 28351710 DOI: 10.1016/j.micpath.2017.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
Bovine mastitis is one of the most costly and prevalent disease affecting dairy cows worldwide. It was reported that Staphylococcus aureus could internalize into bovine mammary epithelial cells (bMEC) and induce mastitis. Some short chain fatty acids (SCFA) have shown to suppress S. aureus invasion into bMEC and regulate antimicrobial peptides expression. But it has not been evaluated that sodium acetate has the similar effect. The aim of this study was to investigate the effect of sodium acetate on the invasion of bovine mammary epithelial cells (bMEC) by S. aureus. Gentamicin protection assay showed that the invasion of S. aureus into bMEC was inhibited by sodium acetate in a dose-dependent manner. Sodium acetate (0.25-5 mM) did not affect S. aureus growth and bMEC viability. The TAP gene level was decreased, while the BNBD5 mRNA level was enhanced in sodium acetate treated bMEC. In sodium acetate treated and S. aureus challenged bMEC, the TAP gene expression was increased and BNBD5 gene expression was not modified at low concentrations, but decreased at high concentrations. The Nitric oxide (NO) production of bMEC after S. aureus stimulation was decreased by sodium acetate treatment. Furthermore, sodium acetate treatment suppressed S. aureus-induced NF-κB activation in bMEC in a dose manner. In conclusion, our results suggested that sodium acetate exerts an inhibitory property on S. aureus internalization and modulates antimicrobial peptides gene expression.
Collapse
Affiliation(s)
- Zhengkai Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Chong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Changming Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Xu Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Yanan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Jingjing Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Zhengtao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China; Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| |
Collapse
|
43
|
Alva-Murillo N, Ochoa-Zarzosa A, López-Meza JE. Sodium Octanoate Modulates the Innate Immune Response of Bovine Mammary Epithelial Cells through the TLR2/P38/JNK/ERK1/2 Pathway: Implications during Staphylococcus aureus Internalization. Front Cell Infect Microbiol 2017; 7:78. [PMID: 28361042 PMCID: PMC5350129 DOI: 10.3389/fcimb.2017.00078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/27/2017] [Indexed: 12/19/2022] Open
Abstract
Bovine mammary epithelial cells (bMECs) contribute to mammary gland defense against invading pathogens, such as Staphylococcus aureus (intracellular facultative), which is recognized by TLR2. In a previous report, we showed that sodium octanoate [NaO, a medium chain fatty acid (C8)] induces (0.25 mM) or inhibits (1 mM) S. aureus internalization into bMECs and differentially regulates the innate immune response (IIR). However, the molecular mechanisms have not been described, which was the aim of this study. The results showed that α5β1 integrin membrane abundance (MA) was increased in 0.25 mM NaO-treated cells, but TLR2 or CD36 MA was not modified. When these receptors were blocked individually, 0.25 mM NaO-increased S. aureus internalization was notably reduced. Interestingly, in this condition, the IIR of the bMECs was impaired because MAPK (p38, JNK, and ERK1/2) phosphorylation and the activation of transcription factors related to these pathways were decreased. In addition, the 1 mM NaO treatment induced TLR2 MA, but neither the integrin nor CD36 MA was modified. The reduction in S. aureus internalization induced by 1 mM NaO was increased further when TLR2 was blocked. In addition, the phosphorylation levels of the MAPKs increased, and 13 transcriptional factors related to the IIR were slightly activated (CBF, CDP, c-Myb, AP-1, Ets-1/Pea-3, FAST-1, GAS/ISRE, AP-2, NFAT-1, OCT-1, RAR/DR-5, RXR/DR-1, and Stat-3). Moreover, the 1 mM NaO treatment up-regulated gene expression of IL-8 and RANTES and secretion of IL-1β. Notably, when 1 mM NaO-treated bMECs were challenged with S. aureus, the gene expression of IL-8 and IL-10 increased, while IL-1β secretion was reduced. In conclusion, our results showed that α5β1 integrin, TLR2 and CD36 are involved in 0.25 mM NaO-increased S. aureus internalization in bMECs. In addition, 1 mM NaO activates bMECs via the TLR2 signaling pathways (p38, JNK, and ERK1/2), which improves IIR before S. aureus invasion. Additionally, NaO (1 mM) might exert anti-inflammatory effects after bacterial internalization.
Collapse
Affiliation(s)
- Nayeli Alva-Murillo
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de OcampoSahuayo, Mexico
| | - Alejandra Ochoa-Zarzosa
- Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de HidalgoMorelia, Mexico
| | - Joel E. López-Meza
- Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de HidalgoMorelia, Mexico
| |
Collapse
|
44
|
Chen X, Gao MQ, Liang D, Yin S, Yao K, Zhang Y. Safety assessment of genetically modified milk containing human beta-defensin-3 on rats by a 90-day feeding study. Food Chem Toxicol 2017; 100:34-41. [DOI: 10.1016/j.fct.2016.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 01/05/2023]
|
45
|
Mushtaq S, Rather MA, Qazi PH, Aga MA, Shah AM, Shah A, Ali MN. Isolation and characterization of three benzylisoquinoline alkaloids from Thalictrum minus L. and their antibacterial activity against bovine mastitis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:221-226. [PMID: 27426505 DOI: 10.1016/j.jep.2016.07.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/13/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE The roots of Thalictrum minus are traditionally used in the treatment of inflammation and infectious diseases such as bovine mastitis. However, there are no reports available in literature till date regarding the antibacterial studies of T. minus against bovine mastitis. AIM OF THE STUDY The present study was undertaken to evaluate the antibacterial potential of crude extract of T. minus (root) and some of its isolated constituents against bovine mastitis in order to scientifically validate its traditional use. MATERIALS AND METHODS A total of three alkaloid compounds were isolated from the DCM: MeOH extract of roots of T. minus using silica gel column chromatography. Structural elucidation of the isolated compounds was done by using spectroscopic techniques like mass spectrometry and NMR spectroscopy. Pathogens were isolated from cases of bovine mastitis and identified by using 16S rRNA gene sequencing. The broth micro-dilution method was used to evaluate the antibacterial activities of DCM: MeOH extract and isolated compounds against mastitis pathogens. RESULTS The three isolated compounds were identified as benzylisoquinoline alkaloids (1) 5'-Hydroxythalidasine, (2) Thalrugosaminine and (3) O-Methylthalicberine. Compounds (2) and (3) are reported for the first time from the roots of T. minus. Five mastitis pathogens viz., Staphylococcus xylosus, Staphylococcus lentus, Staphylococcus equorum, Enterococcus faecalis and Pantoea agglomerans were identified on the basis of sequence analysis of isolates using the nucleotide BLAST algorithm. This study reports for the first time the isolation and molecular characterization of mastitis pathogens from Kashmir valley, India. The DCM: MeOH extract exhibited broad spectrum antibacterial activities that varied between the bacterial species (MIC=250-500µg/ml). 5'-Hydroxythalidasine and Thalrugosaminine showed promising antibacterial activity with MIC values of 64-128µg/ml while Staphylococcus species were found to be the most sensitive strains. CONCLUSIONS The antibacterial activities of the DCM: MeOH extract and isolated compounds support the traditional use of T. minus in the treatment of bovine mastitis.
Collapse
Affiliation(s)
- Saleem Mushtaq
- Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanatnagar, 190005 Srinagar, Jammu & Kashmir, India; Cytogenetics and Molecular Biology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Hazratbal, 190006 Srinagar, Jammu & Kashmir, India
| | - Muzafar Ahmad Rather
- Clinical Pharmacology and PK/PD Division, CSIR - Indian Institute of Integrative Medicine, Sanatnagar, 190005 Srinagar, Jammu & Kashmir, India
| | - Parvaiz H Qazi
- Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanatnagar, 190005 Srinagar, Jammu & Kashmir, India.
| | - Mushtaq A Aga
- Bioorganic Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Sanatnagar, 190005 Srinagar, Jammu & Kashmir, India
| | - Aabid Manzoor Shah
- Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanatnagar, 190005 Srinagar, Jammu & Kashmir, India
| | - Aiyatullah Shah
- Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanatnagar, 190005 Srinagar, Jammu & Kashmir, India
| | - Md Niamat Ali
- Cytogenetics and Molecular Biology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Hazratbal, 190006 Srinagar, Jammu & Kashmir, India.
| |
Collapse
|
46
|
Biofilm production and beta-lactamic resistance in Brazilian Staphylococcus aureus isolates from bovine mastitis. Braz J Microbiol 2016; 48:118-124. [PMID: 27913076 PMCID: PMC5221365 DOI: 10.1016/j.bjm.2016.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 05/30/2016] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus spp. play an important role in the etiology of bovine mastitis. Staphylococcus aureus is considered the most relevant species due to the production of virulence factors such as slime, which is required for biofilm formation. This study aimed to evaluate biofilm production and its possible relation to beta-lactamic resistance in 20 S. aureus isolates from bovine mastitic milk. The isolates were characterized by pheno-genotypic and MALDI TOF-MS assays and tested for genes such as icaA, icaD, bap, agr RNAIII, agr I, agr II, agr III, and agr IV, which are related to slime production and its regulation. Biofilm production in microplates was evaluated considering the intervals determined along the bacterial growth curve. In addition, to determine the most suitable time interval for biofilm analysis, scanning electron microscopy was performed. Furthermore, genes such as mecA and blaZ that are related to beta-lactamic resistance and oxacillin susceptibility were tested. All the studied isolates were biofilm producers and mostly presented icaA and icaD. The Agr type II genes were significantly prevalent. According to the SEM, gradual changes in the bacterial arrangement were observed during biofilm formation along the growth curve phases, and the peak was reached at the stationary phase. In this study, the penicillin resistance was related to the production of beta-lactamase, and the high minimal bactericidal concentration for cefoxitin was possibly associated with biofilm protection. Therefore, further studies are warranted to better understand biofilm formation, possibly contributing to our knowledge about bacterial resistance in vivo.
Collapse
|
47
|
Zhang L, Li Y, Bao H, Wei R, Zhou Y, Zhang H, Wang R. Population structure and antimicrobial profile of Staphylococcus aureus strains associated with bovine mastitis in China. Microb Pathog 2016; 97:103-9. [PMID: 27265679 DOI: 10.1016/j.micpath.2016.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 01/29/2023]
Abstract
Staphylococcus aureus is a significant bacterial pathogen associated with bovine mastitis. The aim of the present study was to investigate and characterize of S. aureus strains isolated from the milk of cows suffering from mastitis in the mid-east of China. Among the 200 milk samples analyzed, 58 were positive for S. aureus, of these isolates, 11 isolates were methicillin-resistant Staphylococcus aureus (MRSA). All of the 58 S. aureus strains were classified in agr group I, while seven different sequence type (ST) patterns were identified and among them the most common was ST630 followed by ST188. All of the S. aureus isolates belonging to ST630 were resistant to more than four antimicrobials, and 22.2% of isolates belonging to ST188 were resistant to eight antimicrobials. Interestingly, while strong biofilm producers demonstrated higher resistance to multiple antimicrobials, they exhibited lower intracellular survival rates. The results of this study illustrated the distribution, antimicrobial susceptibility profiles, genotype, and the ability of biofilm production and mammary epithelial cells invasion of these S. aureus isolates. This study can provide the basis for the development of a disease prevention program in dairy farms to reduce the potential risk in both animal and human health.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality Ministry of Agriculture, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yuchen Li
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality Ministry of Agriculture, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hongduo Bao
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality Ministry of Agriculture, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ruicheng Wei
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality Ministry of Agriculture, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yan Zhou
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality Ministry of Agriculture, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hui Zhang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality Ministry of Agriculture, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ran Wang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality Ministry of Agriculture, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
48
|
Eckel EF, Ametaj BN. Invited review: Role of bacterial endotoxins in the etiopathogenesis of periparturient diseases of transition dairy cows. J Dairy Sci 2016; 99:5967-5990. [PMID: 27209132 DOI: 10.3168/jds.2015-10727] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/02/2016] [Indexed: 12/19/2022]
Abstract
The dairy industry continues to suffer severe economic losses due to the increased disease incidence cows experience during the transition period. It has long been the classical view that the major contributing factor to the development of these periparturient diseases is the considerable increase in nutritional demands for milk production. This classical view, however, fails to account for the substantial correlation between both metabolic and infectious diseases and the detrimental effects that can occur with the provision of high-energy diets to support these nutritional demands. Currently, increasing evidence implicates bacterial endotoxins in the etiopathology of most periparturient diseases. Bacterial endotoxins are components of the outer cell wall of gram-negative and gram-positive bacteria that are highly immunostimulatory and can trigger proinflammatory immune responses. The ability of endotoxins to translocate from the mucosal tissues, including the gastrointestinal tract, mammary gland, and uterus, into the systemic circulation has been observed. Once they have entered the circulation, endotoxins potentially contribute to disease either directly, through eliciting an inflammatory response, or indirectly through other factors such as the overreaction of the natural protective mechanisms of the host. Although the evidence implicating a role of endotoxins in the pathogenesis of transition diseases continues to grow, our current knowledge of the host response to mucosal endotoxin exposure and pathogenic mechanisms remain largely unknown. Developing our understanding of the connection between endotoxemia and dairy cattle disease holds significant potential for the future development of preventative measures that could benefit the productivity of the dairy industry as well as animal welfare.
Collapse
Affiliation(s)
- Emily F Eckel
- Department of Agriculture, Food and Nutritional Science, University of Alberta Edmonton, AB T6G 2P5, Canada
| | - Burim N Ametaj
- Department of Agriculture, Food and Nutritional Science, University of Alberta Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
49
|
Federman C, Joo J, Almario J, Salaheen S, Biswas D. Citrus-derived oil inhibits Staphylococcus aureus growth and alters its interactions with bovine mammary cells. J Dairy Sci 2016; 99:3667-3674. [DOI: 10.3168/jds.2015-10538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/01/2016] [Indexed: 12/22/2022]
|
50
|
Díaz-Murillo V, Medina-Estrada I, López-Meza JE, Ochoa-Zarzosa A. Defensin γ-thionin from Capsicum chinense has immunomodulatory effects on bovine mammary epithelial cells during Staphylococcus aureus internalization. Peptides 2016; 78:109-18. [PMID: 26939717 DOI: 10.1016/j.peptides.2016.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/20/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022]
Abstract
β-Defensins are members of the antimicrobial peptide superfamily that are produced in various species from different kingdoms, including plants. Plant defensins exhibit primarily antifungal activities, unlike those from animals that exhibit a broad-spectrum antimicrobial action. Recently, immunomodulatory roles of mammal β-defensins have been observed to regulate inflammation and activate the immune system. Similar roles for plant β-defensins remain unknown. In addition, the regulation of the immune system by mammalian β-defensins has been studied in humans and mice models, particularly in immune cells, but few studies have investigated these peptides in epithelial cells, which are in intimate contact with pathogens. The aim of this work was to evaluate the effect of the chemically synthesized β-defensin γ-thionin from Capsicum chinense on the innate immune response of bovine mammary epithelial cells (bMECs) infected with Staphylococcus aureus, the primary pathogen responsible for bovine mastitis, which is capable of living within bMECs. Our results indicate that γ-thionin at 0.1 μg/ml was able to reduce the internalization of S. aureus into bMECs (∼50%), and it also modulates the innate immune response of these cells by inducing the mRNA expression (∼5-fold) and membrane abundance (∼3-fold) of Toll-like receptor 2 (TLR2), as well as by inducing genes coding for the pro-inflammatory cytokines TNF-α and IL-1β (∼14 and 8-fold, respectively) before and after the bacterial infection. γ-Thionin also induces the expression of the mRNA of anti-inflammatory cytokine IL-10 (∼12-fold). Interestingly, the reduction in bacterial internalization coincides with the production of other antimicrobial products by bMECs, such as NO before infection, and the secretion into the medium of the endogenous antimicrobial peptide DEFB1 after infection. The results from this work support the potential use of β-defensins from plants as immunomodulators of the mammalian innate immune response.
Collapse
Affiliation(s)
- Violeta Díaz-Murillo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr. Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico, Mexico
| | - Ivan Medina-Estrada
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr. Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico, Mexico
| | - Joel E López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr. Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr. Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico, Mexico.
| |
Collapse
|