1
|
Pillet I, Cerrahoğlu B, Philips RV, Dumoulin S, Op de Beeck H. A 7T fMRI investigation of hand and tool areas in the lateral and ventral occipitotemporal cortex. PLoS One 2024; 19:e0308565. [PMID: 39499698 PMCID: PMC11537398 DOI: 10.1371/journal.pone.0308565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/26/2024] [Indexed: 11/07/2024] Open
Abstract
Previous studies demonstrated the existence of hand and tool areas in lateral and ventral occipitotemporal cortex (OTC), as well as an overlap between them. We reinvestigated this organization using 7T fMRI, benefiting from a higher signal-to-noise ratio than 3T. This enabled us to include a wider array of categories to achieve a more holistic perspective, and to omit certain spatial preprocessing steps. Despite these improvements, univariate analysis confirmed the existence of hand-tool overlap across OTC, which is striking given the omission of the spatial preprocessing steps that can influence overlap. There was significantly more overlap between hands and tools, compared to other overlap types in the left hemisphere of OTC. The overlap was also larger in the left lateral OTC as compared to the right lateral OTC. We found in all hand areas a differentiation between tools and other types of objects, although they still responded more to bodies than to tools. Regarding the tool areas, we observed a differentiation between hands and other categories such as faces and non-tool objects. Left hemisphere tool areas also differentiated between hands and bodies. When excluding the overlapping voxels from the hand and tool areas, they still showed a significant response to tools or hands (compared to objects or faces) respectively. Multi-voxel pattern analysis indicated that neural representations in the hand areas showed greater similarity between hands and tools than between hands and other objects. In the tool areas, the neural representations between tools and hands and between tools and other type of objects were all equally similar. To summarize, capitalizing on the benefits of 7T fMRI, we further substantiate the evidence in favor of hand-tool overlap in several regions of occipitotemporal cortex.
Collapse
Affiliation(s)
- Ineke Pillet
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Begüm Cerrahoğlu
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- 2LPN (Laboratoire Lorrain de Psychologie et Neurosciences de la Dynamique des Comportements), Université de Lorraine, Nancy, France
| | - Roxane Victoria Philips
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Cognitive and Behavioral Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Serge Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Experimental and Applied Psychology, Vrije University Amsterdam, Amsterdam, Netherlands
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Hans Op de Beeck
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Mondal P. Bridging the Chasm Between Cognitive Representations and Formal Structures of Linguistic Meanings. Cogn Sci 2024; 48:e13456. [PMID: 38804002 DOI: 10.1111/cogs.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
This paper aims to show that properties of cognitive/conceptual representations and formal-logical structures of linguistic meaning can be inter-translated, recast, transformed into one another, and so united together, even though cognitive/conceptual representations and formal-logical structures of linguistic meaning are apparently distinct in ontology and divergent in their form or character. While cognitive/conceptual representations are ultimately rooted in sensory-motor systems, formal-logical structures of linguistic meaning are abstractions detached from and independent of the actualized world. This paper sketches out the foundations of how representations of linguistic meaning in terms of cognitive/conceptual structures in Cognitive/Conceptual Semantics can be unified with those in terms of formal-logical structures in Formal Semantics. This is done by recasting cognitive/conceptual representations in terms of formal-logical structures of linguistic meaning and re-encoding formal-logical structures of linguistic meaning in terms of cognitive/conceptual representations. Then, these two types of semantic representations, thus shown representationally equivalent, will be related to a series of derivations across levels in neuronal networks and dynamics. The general discussion on unifying cognitive/conceptual representations of linguistic meaning with formal-logical structures is contextualized within the broader context of theorizing in cognitive science.
Collapse
Affiliation(s)
- Prakash Mondal
- Department of Liberal Arts, Indian Institute of Technology Hyderabad
| |
Collapse
|
3
|
Ulanov M, Kopytin G, Bermúdez-Margaretto B, Ntoumanis I, Gorin A, Moiseenko O, Blagovechtchenski E, Moiseeva V, Shestakova A, Jääskeläinen I, Shtyrov Y. Regionally specific cortical lateralization of abstract and concrete verb processing: Magnetic mismatch negativity study. Neuropsychologia 2024; 195:108800. [PMID: 38246413 DOI: 10.1016/j.neuropsychologia.2024.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/03/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
The neural underpinnings of processing concrete and abstract semantics remain poorly understood. Previous fMRI studies have shown that multimodal and amodal neural networks respond differentially to different semantic types; importantly, abstract semantics activates more left-lateralized networks, as opposed to more bilateral activity for concrete words. Due to the lack of temporal resolution, these fMRI results do not allow to easily separate language- and task-specific brain responses and to disentangle early processing stages from later post-comprehension phenomena. To tackle this, we used magnetoencephalography (MEG), a time-resolved neuroimaging technique, in combination with a task-free oddball mismatch negativity (MMN) paradigm, an established approach to tracking early automatic activation of word-specific memory traces in the brain. We recorded the magnetic MMN responses in 30 healthy adults to auditorily presented abstract and concrete action verbs to assess lateralization of word-specific lexico-semantic processing in a set of neocortical areas. We found that MMN responses to these stimuli showed different lateralization patterns of activity in the upper limb motor area (BA4) and parts of Broca's area (BA45/BA47) within ∼100-350 ms after the word disambiguation point. Importantly, the greater leftward response lateralization for abstract semantics was due to the lesser involvement of the right-hemispheric homologues, not increased left-hemispheric activity. These findings suggest differential region-specific involvement of bilateral sensorimotor systems already in the early automatic stages of processing abstract and concrete action semantics.
Collapse
Affiliation(s)
- Maxim Ulanov
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia.
| | - Grigory Kopytin
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | - Beatriz Bermúdez-Margaretto
- Universidad de Salamanca, Facultad de Psicología, Departamento de Psicología Básica, Psicobiología y Metodología de Las Ciencias Del Comportamiento, Salamanca, Spain; Instituto de Integración en La Comunidad - INICO, Salamanca, Spain
| | - Ioannis Ntoumanis
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | - Aleksei Gorin
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | - Olesya Moiseenko
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | | | - Victoria Moiseeva
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | - Anna Shestakova
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | - Iiro Jääskeläinen
- HSE University, Institute for Cognitive Neuroscience, Moscow, Russia
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Hauptman M, Elli G, Pant R, Bedny M. Neural specialization for 'visual' concepts emerges in the absence of vision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.552701. [PMID: 37662234 PMCID: PMC10473738 DOI: 10.1101/2023.08.23.552701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Vision provides a key source of information about many concepts, including 'living things' (e.g., tiger) and visual events (e.g., sparkle). According to a prominent theoretical framework, neural specialization for different conceptual categories is shaped by sensory features, e.g., living things are neurally dissociable from navigable places because living things concepts depend more on visual features. We tested this framework by comparing the neural basis of 'visual' concepts across sighted (n=22) and congenitally blind (n=21) adults. Participants judged the similarity of words varying in their reliance on vision while undergoing fMRI. We compared neural responses to living things nouns (birds, mammals) and place nouns (natural, manmade). In addition, we compared visual event verbs (e.g., 'sparkle') to non-visual events (sound emission, hand motion, mouth motion). People born blind exhibited distinctive univariate and multivariate responses to living things in a temporo-parietal semantic network activated by nouns, including the precuneus (PC). To our knowledge, this is the first demonstration that neural selectivity for living things does not require vision. We additionally observed preserved neural signatures of 'visual' light events in the left middle temporal gyrus (LMTG+). Across a wide range of semantic types, neural representations of sensory concepts develop independent of sensory experience.
Collapse
Affiliation(s)
- Miriam Hauptman
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Giulia Elli
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rashi Pant
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Psychology & Neuropsychology, Universität Hamburg, Germany
| | - Marina Bedny
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Trapp W, Heid A, Röder S, Wimmer F, Weiß H, Hajak G. "Try to Build This Bunny as Fast as Possible without Using Red or Pink Bricks": How Simple Assembly Tasks Might Aid in Detecting People with Mild Cognitive Impairment and Dementia. Brain Sci 2023; 13:1693. [PMID: 38137141 PMCID: PMC10742155 DOI: 10.3390/brainsci13121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Dementia and mild cognitive impairment (MCI) are still underdiagnosed in the general population. Impaired odor identification has been identified as an early marker of MCI and dementia. We aim to investigate whether short tasks, in which simple forms must be assembled from single building blocks based on a template or while considering specific re-strictions, could increase the diagnostic quality of established cognitive screening tests in detecting MCI or dementia. (2) Methods: A brief assembly test, where participants had to assemble simple animal shapes from Lego® Duplo® building blocks, the Frontal Assessment Battery, and the Mini-Mental State Exam (MMSE) were administered to a consecutive series of 197 patients (89 with mild dementia, 62 with mild cognitive impairment, and 46 without cognitive impairment) referred for neuropsychological testing. (3) Results: Both participants with dementia and with MCI performed badly in the assembly tasks. The assembly tasks and the Frontal Assessment Battery were substantially correlated. Complementing MMSE scores with the assembly tasks improved the diagnostic accuracy of individuals with dementia and MCI. (4) Conclusions: People with suspected dementia or MCI may already benefit from simple assembly tasks. Although these tests require little additional time, they can notably increase sensitivity for dementia or MCI.
Collapse
Affiliation(s)
- Wolfgang Trapp
- Department of Psychiatry, Sozialstiftung Bamberg, St.-Getreu-Straße 18, 96049 Bamberg, Germany; (A.H.); (S.R.); (F.W.); (H.W.); (G.H.)
- Department of Physiological Psychology, Otto-Friedrich University Bamberg, Markusplatz 3, 96045 Bamberg, Germany
| | - Andreas Heid
- Department of Psychiatry, Sozialstiftung Bamberg, St.-Getreu-Straße 18, 96049 Bamberg, Germany; (A.H.); (S.R.); (F.W.); (H.W.); (G.H.)
| | - Susanne Röder
- Department of Psychiatry, Sozialstiftung Bamberg, St.-Getreu-Straße 18, 96049 Bamberg, Germany; (A.H.); (S.R.); (F.W.); (H.W.); (G.H.)
| | - Franziska Wimmer
- Department of Psychiatry, Sozialstiftung Bamberg, St.-Getreu-Straße 18, 96049 Bamberg, Germany; (A.H.); (S.R.); (F.W.); (H.W.); (G.H.)
| | - Helmar Weiß
- Department of Psychiatry, Sozialstiftung Bamberg, St.-Getreu-Straße 18, 96049 Bamberg, Germany; (A.H.); (S.R.); (F.W.); (H.W.); (G.H.)
| | - Göran Hajak
- Department of Psychiatry, Sozialstiftung Bamberg, St.-Getreu-Straße 18, 96049 Bamberg, Germany; (A.H.); (S.R.); (F.W.); (H.W.); (G.H.)
| |
Collapse
|
6
|
Leshinskaya A, Nguyen MA, Ranganath C. Integration of event experiences to build relational knowledge in the human brain. Cereb Cortex 2023; 33:9997-10012. [PMID: 37492008 DOI: 10.1093/cercor/bhad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
We investigated how the human brain integrates experiences of specific events to build general knowledge about typical event structure. We examined an episodic memory area important for temporal relations, anterior-lateral entorhinal cortex, and a semantic memory area important for action concepts, middle temporal gyrus, to understand how and when these areas contribute to these processes. Participants underwent functional magnetic resonance imaging while learning and recalling temporal relations among novel events over two sessions 1 week apart. Across distinct contexts, individual temporal relations among events could either be consistent or inconsistent with each other. Within each context, during the recall phase, we measured associative coding as the difference of multivoxel correlations among related vs unrelated pairs of events. Neural regions that form integrative representations should exhibit stronger associative coding in the consistent than the inconsistent contexts. We found evidence of integrative representations that emerged quickly in anterior-lateral entorhinal cortex (at session 1), and only subsequently in middle temporal gyrus, which showed a significant change across sessions. A complementary pattern of findings was seen with signatures during learning. This suggests that integrative representations are established early in anterior-lateral entorhinal cortex and may be a pathway to the later emergence of semantic knowledge in middle temporal gyrus.
Collapse
Affiliation(s)
- Anna Leshinskaya
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Mitchell A Nguyen
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| |
Collapse
|
7
|
Kabulska Z, Lingnau A. The cognitive structure underlying the organization of observed actions. Behav Res Methods 2023; 55:1890-1906. [PMID: 35788973 PMCID: PMC10250259 DOI: 10.3758/s13428-022-01894-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 11/08/2022]
Abstract
In daily life, we frequently encounter actions performed by other people. Here we aimed to examine the key categories and features underlying the organization of a wide range of actions in three behavioral experiments (N = 378 participants). In Experiment 1, we used a multi-arrangement task of 100 different actions. Inverse multidimensional scaling and hierarchical clustering revealed 11 action categories, including Locomotion, Communication, and Aggressive actions. In Experiment 2, we used a feature-listing paradigm to obtain a wide range of action features that were subsequently reduced to 59 key features and used in a rating study (Experiment 3). A direct comparison of the feature ratings obtained in Experiment 3 between actions belonging to the categories identified in Experiment 1 revealed a number of features that appear to be critical for the distinction between these categories, e.g., the features Harm and Noise for the category Aggressive actions, and the features Targeting a person and Contact with others for the category Interaction. Finally, we found that a part of the category-based organization is explained by a combination of weighted features, whereas a significant proportion of variability remained unexplained, suggesting that there are additional sources of information that contribute to the categorization of observed actions. The characterization of action categories and their associated features serves as an important extension of previous studies examining the cognitive structure of actions. Moreover, our results may serve as the basis for future behavioral, neuroimaging and computational modeling studies.
Collapse
Affiliation(s)
- Zuzanna Kabulska
- Department of Psychology, Faculty of Human Sciences, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Angelika Lingnau
- Department of Psychology, Faculty of Human Sciences, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
8
|
Hodgson VJ, Lambon Ralph MA, Jackson RL. The cross-domain functional organization of posterior lateral temporal cortex: insights from ALE meta-analyses of 7 cognitive domains spanning 12,000 participants. Cereb Cortex 2022; 33:4990-5006. [PMID: 36269034 PMCID: PMC10110446 DOI: 10.1093/cercor/bhac394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
The posterior lateral temporal cortex is implicated in many verbal, nonverbal, and social cognitive domains and processes. Yet without directly comparing these disparate domains, the region's organization remains unclear; do distinct processes engage discrete subregions, or could different domains engage shared neural correlates and processes? Here, using activation likelihood estimation meta-analyses, the bilateral posterior lateral temporal cortex subregions engaged in 7 domains were directly compared. These domains comprised semantics, semantic control, phonology, biological motion, face processing, theory of mind, and representation of tools. Although phonology and biological motion were predominantly associated with distinct regions, other domains implicated overlapping areas, perhaps due to shared underlying processes. Theory of mind recruited regions implicated in semantic representation, tools engaged semantic control areas, and faces engaged subregions for biological motion and theory of mind. This cross-domain approach provides insight into how posterior lateral temporal cortex is organized and why.
Collapse
Affiliation(s)
- Victoria J Hodgson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Rebecca L Jackson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom.,Department of Psychology & York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
9
|
Kim M, Kim H, Seo P, Jung KY, Kim KH. Explainable Machine-Learning-Based Characterization of Abnormal Cortical Activities for Working Memory of Restless Legs Syndrome Patients. SENSORS (BASEL, SWITZERLAND) 2022; 22:7792. [PMID: 36298144 PMCID: PMC9608870 DOI: 10.3390/s22207792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 05/31/2023]
Abstract
Restless legs syndrome (RLS) is a sensorimotor disorder accompanied by a strong urge to move the legs and an unpleasant sensation in the legs, and is known to accompany prefrontal dysfunction. Here, we aimed to clarify the neural mechanism of working memory deficits associated with RLS using machine-learning-based analysis of single-trial neural activities. A convolutional neural network classifier was developed to discriminate the cortical activities between RLS patients and normal controls. A layer-wise relevance propagation was applied to the trained classifier in order to determine the critical nodes in the input layer for the output decision, i.e., the time/location of cortical activities discriminating RLS patients and normal controls during working memory tasks. Our method provided high classification accuracy (~94%) from single-trial event-related potentials, which are known to suffer from high inter-trial/inter-subject variation and low signal-to-noise ratio, after strict separation of training/test/validation data according to leave-one-subject-out cross-validation. The determined critical areas overlapped with the cortical substrates of working memory, and the neural activities in these areas were correlated with some significant clinical scores of RLS.
Collapse
Affiliation(s)
- Minju Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, 1, Yeonsedae-gil, Heungeop-myeon, Wonju-si 26493, Korea
| | - Hyun Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, 1, Yeonsedae-gil, Heungeop-myeon, Wonju-si 26493, Korea
| | - Pukyeong Seo
- Department of Biomedical Engineering, College of Health Science, Yonsei University, 1, Yeonsedae-gil, Heungeop-myeon, Wonju-si 26493, Korea
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Kyung Hwan Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, 1, Yeonsedae-gil, Heungeop-myeon, Wonju-si 26493, Korea
| |
Collapse
|
10
|
Kemmerer D. Revisiting the relation between syntax, action, and left BA44. Front Hum Neurosci 2022; 16:923022. [PMID: 36211129 PMCID: PMC9537576 DOI: 10.3389/fnhum.2022.923022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Among the many lines of research that have been exploring how embodiment contributes to cognition, one focuses on how the neural substrates of language may be shared, or at least closely coupled, with those of action. This paper revisits a particular proposal that has received considerable attention-namely, that the forms of hierarchical sequencing that characterize both linguistic syntax and goal-directed action are underpinned partly by common mechanisms in left Brodmann area (BA) 44, a cortical region that is not only classically regarded as part of Broca's area, but is also a core component of the human Mirror Neuron System. First, a recent multi-participant, multi-round debate about this proposal is summarized together with some other relevant findings. This review reveals that while the proposal is supported by a variety of theoretical arguments and empirical results, it still faces several challenges. Next, a narrower application of the proposal is discussed, specifically involving the basic word order of subject (S), object (O), and verb (V) in simple transitive clauses. Most languages are either SOV or SVO, and, building on prior work, it is argued that these strong syntactic tendencies derive from how left BA44 represents the sequential-hierarchical structure of goal-directed actions. Finally, with the aim of clarifying what it might mean for syntax and action to have "common" neural mechanisms in left BA44, two different versions of the main proposal are distinguished. Hypothesis 1 states that the very same neural mechanisms in left BA44 subserve some aspects of hierarchical sequencing for syntax and action, whereas Hypothesis 2 states that anatomically distinct but functionally parallel neural mechanisms in left BA44 subserve some aspects of hierarchical sequencing for syntax and action. Although these two hypotheses make different predictions, at this point neither one has significantly more explanatory power than the other, and further research is needed to elaborate and test them.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IND, United States
- Department of Psychological Sciences, Purdue University, West Lafayette, IND, United States
| |
Collapse
|
11
|
Giacobbe C, Raimo S, Cropano M, Santangelo G. Neural correlates of embodied action language processing: a systematic review and meta-analytic study. Brain Imaging Behav 2022; 16:2353-2374. [PMID: 35754077 DOI: 10.1007/s11682-022-00680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
The neural correlates of action language processing are still debated within embodied cognition research and little is known about the flexible involvement of modality-specific pre-motor system and multimodal high-level temporo-parietal regions as a function of explicit and implicit tasks. A systematic review and the Activation likelihood estimation (ALE) meta-analyses on functional neuroimaging studies were performed to identify neural correlates of action language processing activated during explicit and implicit tasks. The contrast ALE meta-analysis revealed activation of modality-specific premotor area and inferior frontal areas during explicit action language tasks while a greater activation of posterior temporo-occipital areas emerged for implicit tasks. The conjunction analysis revealed overlap in the temporo-parietal multimodal high-level regions for both types of tasks. Functional specialization of the middle temporal gyrus was found where the more posterior-occipital part resulted activated during implicit action language tasks whereas the antero-lateral part was involved in explicit tasks. Our findings were discussed within a conceptual flexibility perspective about the involvement of both the modality-specific and multimodal brain system during action language processing depending on different types of tasks.
Collapse
Affiliation(s)
- Chiara Giacobbe
- Department of Psychology, University of Campania Luigi Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Simona Raimo
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Maria Cropano
- Department of Psychology, University of Campania Luigi Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania Luigi Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| |
Collapse
|
12
|
Graneri J, Dansilio S, Martínez-Cuitiño M, Grasso L, Cantore MS, Brasca L. Dissociation between function and manipulation in semantic representations of motor impaired subjects: A new test. Cogn Neuropsychol 2022; 39:208-226. [PMID: 36056549 DOI: 10.1080/02643294.2022.2114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A fundamental problem in semantic cognition is the representation of human concepts in the brain. Much of the knowledge acquired in the last decades comes from the study of dissociations found in patients with acquired difficulties in language, perception, and action. In particular, some deficits involve loss of knowledge about tools. The dissociation between two relevant aspects of tools, function and manipulation, has been the focus of several studies. In this paper, a new test designed to study the dissociation between function and manipulation is proposed and normative values for a control population are provided. This novel test was additionally administered to and evaluated in a group of Parkinson's disease patients. The Graded-Controlled Hub-and-Spoke model of Lambon Ralph, Jefferies, Patterson and Rogers was used as a theoretical guide to interpret the results.
Collapse
Affiliation(s)
- Jorge Graneri
- Institute of Mathematics and Statistics Prof. Ing. Rafael Laguardia (IMERL), Faculty of Engineering, University of the Republic, Montevideo, Uruguay
| | - Sergio Dansilio
- Department of Neuropsychology, Clinical Hospital, Faculty of Medicine, University of the Republic, Montevideo, Uruguay.,Institute of Fundamentals in Psychology, Faculty of Psychology, University of the Republic, Montevideo, Uruguay
| | - Macarena Martínez-Cuitiño
- Neuropsychology and Language Laboratory Research, LINL, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Council (CONICET), Argentina.,Faculty of Psychology, University of Buenos Aires, Buenos Aires, Argentina
| | - Lina Grasso
- Psychology and Psychopedagogy Centre Research (CIPP) Catholic University of Argentina, Buenos Aires, Argentina.,Spanish Hospital of Buenos Aires, Buenos Aires, Argentina
| | | | - Luciana Brasca
- Research and Rehabilitation Centre Dr. Esteban Laureano Maradona, Santa Fe, Argentina
| |
Collapse
|
13
|
Duff MC, Morrow EL, Edwards M, McCurdy R, Clough S, Patel N, Walsh K, Covington NV. The Value of Patient Registries to Advance Basic and Translational Research in the Area of Traumatic Brain Injury. Front Behav Neurosci 2022; 16:846919. [PMID: 35548696 PMCID: PMC9082794 DOI: 10.3389/fnbeh.2022.846919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/29/2022] [Indexed: 01/16/2023] Open
Abstract
The number of individuals affected by traumatic brain injury (TBI) is growing globally. TBIs may cause a range of physical, cognitive, and psychiatric deficits that can negatively impact employment, academic attainment, community independence, and interpersonal relationships. Although there has been a significant decrease in the number of injury related deaths over the past several decades, there has been no corresponding reduction in injury related disability over the same time period. We propose that patient registries with large, representative samples and rich multidimensional and longitudinal data have tremendous value in advancing basic and translational research and in capturing, characterizing, and predicting individual differences in deficit profile and outcomes. Patient registries, together with recent theoretical and methodological advances in analytic approaches and neuroscience, provide powerful tools for brain injury research and for leveraging the heterogeneity that has traditionally been cited as a barrier inhibiting progress in treatment research and clinical practice. We report on our experiences, and challenges, in developing and maintaining our own patient registry. We conclude by pointing to some future opportunities for discovery that are afforded by a registry model.
Collapse
Affiliation(s)
- Melissa C. Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Meharry Medical College, Nashville, TN, United States
| | - Emily L. Morrow
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Malcolm Edwards
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Meharry Medical College, Nashville, TN, United States
| | - Ryan McCurdy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sharice Clough
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nirav Patel
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kimberly Walsh
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Natalie V. Covington
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Nakayama Y, Sugawara SK, Fukunaga M, Hamano YH, Sadato N, Nishimura Y. The dorsal premotor cortex encodes the step-by-step planning processes for goal-directed motor behavior in humans. Neuroimage 2022; 256:119221. [PMID: 35447355 DOI: 10.1016/j.neuroimage.2022.119221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022] Open
Abstract
The dorsal premotor cortex (PMd) plays an essential role in visually guided goal-directed motor behavior. Although there are several planning processes for achieving goal-directed behavior, the separate neural processes are largely unknown. Here, we created a new visuo-goal task to investigate the step-by-step planning processes for visuomotor and visuo-goal behavior in humans. Using functional magnetic resonance imaging, we found activation in different portions of the bilateral PMd during each processing step. In particular, the activated area for rule-based visuomotor and visuo-goal mapping was located at the ventrorostral portion of the bilateral PMd, that for action plan specification was at the dorsocaudal portion of the left PMd, that for transformation was at the rostral portion of the left PMd, and that for action preparation was at the caudal portion of the bilateral PMd. Thus, the left PMd was involved throughout all of the processes, but the right PMd was involved only in rule-based visuomotor and visuo-goal mapping and action preparation. The locations related to each process were generally spatially separated from each other, but they overlapped partially. These findings revealed that there are functional subregions in the bilateral PMd in humans and these subregions form a functional gradient to achieve goal-directed behavior.
Collapse
Affiliation(s)
- Yoshihisa Nakayama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya, Tokyo 156-8506, Japan; Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| | - Sho K Sugawara
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya, Tokyo 156-8506, Japan; Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yuki H Hamano
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
15
|
Frith E, Gerver CR, Benedek M, Christensen AP, Beaty RE. Neural Representations of Conceptual Fixation during Creative Imagination. CREATIVITY RESEARCH JOURNAL 2022. [DOI: 10.1080/10400419.2021.2008699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
McCollum G. Sensorimotor Underpinnings of Mathematical Imagination: Qualitative Analysis. Front Psychol 2022; 12:692602. [PMID: 35115977 PMCID: PMC8803901 DOI: 10.3389/fpsyg.2021.692602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Many mathematicians have a rich internal world of mental imagery. Using elementary mathematical skills, this study probes the mathematical imagination's sensorimotor foundations. Mental imagery is perturbed using body position: having the head and vestibular system in different positions with respect to gravity. No two mathematicians described the same imagery. Eight out of 11 habitually visualize, one uses sensorimotor imagery, and two do not habitually used mental imagery. Imagery was both intentional and partly autonomous. For example, coordinate planes rotated, drifted, wobbled, or slid down from vertical to horizontal. Parabolae slid into place or, on one side, a parabola arm reached upward in gravity. The sensorimotor foundation of imagery was evidenced in several ways. The imagery was placed with respect to the body. Further, the imagery had a variety of relationships to the body, such as the body being the coordinate system or the coordinate system being placed in front of the eyes for easy viewing by the mind's eye. The mind's eye, mind's arm, and awareness almost always obeyed the geometry of the real eye and arm. The imagery and body behaved as a dyad, so that the imagery moved or placed itself for the convenience of the mind's eye or arm, which in turn moved to follow the imagery. With eyes closed, participants created a peripersonal imagery space, along with the peripersonal space of the unseen environment. Although mathematics is fundamentally abstract, imagery was sometimes concrete or used a concrete substrate or was placed to avoid being inside concrete objects, such as furniture. Mathematicians varied in the numbers of components of mental imagery and the ways they interacted. The autonomy of the imagery was sometimes of mathematical interest, suggesting that the interaction of imagery habits and autonomy can be a source of mathematical creativity.
Collapse
|
17
|
Stoll SEM, Finkel L, Buchmann I, Hassa T, Spiteri S, Liepert J, Randerath J. 100 years after Liepmann-Lesion correlates of diminished selection and application of familiar versus novel tools. Cortex 2021; 146:1-23. [PMID: 34801831 DOI: 10.1016/j.cortex.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 07/30/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023]
Abstract
100 years ago, Liepmann highlighted the role of left ventro-dorsal lesions for impairments in conceptual (rather ventral) and motor (more dorsal) related aspects of apraxia. Many studies thereafter attributed to an extended left fronto-temporo-parietal network. Yet, to date there are only few studies that looked at apraxic performance in the selection and application of familiar versus novel tools. In the current study we applied modern voxel-based lesion-symptom mapping (VLSM) to analyze neural correlates of impaired selection and application of familiar versus novel tools. 58 left (LBD) and 51 right brain damaged (RBD) stroke patients participated in the Novel Tools Test (NTT) and the Familiar Tools Test (FTT) of the Diagnostic Instrument for Limb Apraxia (DILA-S). We further assessed performance in control tasks, namely semantic knowledge (BOSU), visuo-spatial working memory (Corsi Block Tapping) and meaningless imitation of gestures (IML). Impaired tool use was most pronounced after LBD. Our VLSM results in the LBD group suggested that selection- versus application-related aspects of praxis and semantics of familiar versus novel tool use can be behaviorally and neuro-anatomically differentiated. For impairments in familiar tool tasks, the major focus of lesion maps was rather ventral while deficiencies in novel tool tasks went along with rather dorsal lesions. Affected selection processes were linked to rather anterior lesions, while impacted application processes went along with rather posterior lesion maps. In our study, particular tool selection processes were rather specific for familiar versus novel tools. Foci for lesion overlaps of experimental and control tasks were noticed ventrally for semantic knowledge and FTT, in fronto-parietal regions for working memory and NTT, and ventro-dorsally for imitation of meaningless gestures and the application of NTT and FTT. We visualized our current interpretation within a neuroanatomical model for apraxia of tool use.
Collapse
Affiliation(s)
- Sarah E M Stoll
- University of Konstanz, Konstanz, Germany; Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany
| | - Lisa Finkel
- University of Konstanz, Konstanz, Germany; Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany
| | - Ilka Buchmann
- University of Konstanz, Konstanz, Germany; Rehaklinik Zihlschlacht, Center for Neurological Rehabilitation, Zihlschlacht, Switzerland
| | - Thomas Hassa
- Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany; Kliniken Schmieder, Allensbach, Germany
| | - Stefan Spiteri
- Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany; Kliniken Schmieder, Allensbach, Germany
| | - Joachim Liepert
- Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany; Kliniken Schmieder, Allensbach, Germany
| | - Jennifer Randerath
- University of Konstanz, Konstanz, Germany; Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany.
| |
Collapse
|
18
|
Kemmerer D. What modulates the Mirror Neuron System during action observation?: Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Prog Neurobiol 2021; 205:102128. [PMID: 34343630 DOI: 10.1016/j.pneurobio.2021.102128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Seeing an agent perform an action typically triggers a motor simulation of that action in the observer's Mirror Neuron System (MNS). Over the past few years, it has become increasingly clear that during action observation the patterns and strengths of responses in the MNS are modulated by multiple factors. The first aim of this paper is therefore to provide the most comprehensive survey to date of these factors. To that end, 22 distinct factors are described, broken down into the following sets: six involving the action; two involving the actor; nine involving the observer; four involving the relationship between actor and observer; and one involving the context. The second aim is to consider the implications of these findings for four prominent theoretical models of the MNS: the Direct Matching Model; the Predictive Coding Model; the Value-Driven Model; and the Associative Model. These assessments suggest that although each model is supported by a wide range of findings, each one is also challenged by other findings and relatively unaffected by still others. Hence, there is now a pressing need for a richer, more inclusive model that is better able to account for all of the modulatory factors that have been identified so far.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Psychological Sciences, Department of Speech, Language, and Hearing Sciences, Lyles-Porter Hall, Purdue University, 715 Clinic Drive, United States.
| |
Collapse
|
19
|
Zhang Z, Niki K, Luo J. Elucidating the nature of linguistic processing in insight. Psych J 2021; 10:534-549. [PMID: 34028206 DOI: 10.1002/pchj.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 11/08/2022]
Abstract
The relationship between language and thinking has long been a matter of debate and a research focus in studies on thinking and problem solving, including creativity. Previous behavioral studies have found that verbalization of one's internal thoughts does not participate in or even interfere with the creative insight process, thus suggesting that insight may take place nonverbally. In contrast to this hypothesis, the present study proposes a new one. That is, given that the basic categories or fundamental functions of key concepts or objects are critically changed or expanded during insightful thinking, the linguistic processing accompanying insight can be reflected as category-related representation and recategorization processes, which can be critically mediated by the posterior middle temporal gyrus and the angular gyrus (pMTG/AG). Using constraint-relaxation insight riddles as materials in a guided-insight experimental design with external hints to trigger the insightful representational change, this preliminary neuroimaging study of 11 participants found the involvement of pMTG/AG during moments of induced insight, but did not find the activation of left ventral frontal areas which are typically involved in verbalizing of one's internal thoughts. Although this observation still cannot exclude the possibility of internal verbalization in insightful restructuring, it implies that linguistic processing in insight may take the more fundamental form of category-related processing.
Collapse
Affiliation(s)
- Ze Zhang
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Kazuhisa Niki
- Graduate School of Human Relations, Keio University, Tokyo, Japan
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China.,Center for Brain, Mind and Education, Shaoxing University, Shaoxing, China
| |
Collapse
|
20
|
Breining BL, Faria AV, Caffo B, Meier EL, Sheppard SM, Sebastian R, Tippett DC, Hillis AE. Neural regions underlying object and action naming: Complementary evidence from acute stroke and primary progressive aphasia. APHASIOLOGY 2021; 36:732-760. [PMID: 35832655 PMCID: PMC9272983 DOI: 10.1080/02687038.2021.1907291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Naming impairment is commonly noted in individuals with aphasia. However, object naming receives more attention than action naming. Furthermore, most studies include participants with aphasia due to only one aetiology, commonly stroke. We developed a new assessment, the Hopkins Action Naming Assessment (HANA), to evaluate action naming impairments. AIMS Our aims were to show that the HANA is a useful tool that can (1) identify action naming impairments and (2) be used to investigate the neural substrates underlying naming. We paired the HANA with the Boston Naming Test (BNT) to compare action and object naming. We considered participants with aphasia due to primary progressive aphasia (PPA) or acute left hemisphere stroke to provide a more comprehensive picture of brain-behaviour relationships critical for naming. Behaviourally, we hypothesised that there would be a double dissociation between object and action naming performance. Neuroanatomically, we hypothesised that different neural substrates would be implicated in object vs. action naming and that different lesion-deficit associations would be identified in participants with PPA vs. acute stroke. METHODS & PROCEDURES Participants (N=138 with PPA, N=37 with acute stroke) completed the BNT and HANA. Behavioural performance was compared. A subset of participants (N=31 with PPA, N=37 with acute stroke) provided neuroimaging data. The whole brain was automatically segmented into regions of interest (ROIs). For participants with PPA, the image variables were the ROI volumes, normalised by the brain volume. For participants with acute stroke, the image variables were the percentage of each ROI affected by the lesion. The relationship between ROIs likely to be involved in naming performance was modelled with LASSO regression. OUTCOMES & RESULTS Behavioural results showed a double dissociation in performance: in each group, some participants displayed intact performance relative to healthy controls on actions but not objects and/or significantly better performance on actions than objects, while others showed the opposite pattern. These results support the need to assess both objects and actions when evaluating naming deficits. Neuroimaging results identified different regions associated with object vs. action naming, implicating overlapping but distinct networks of regions. Furthermore, results differed for participants with PPA vs. acute stroke, indicating that critical information may be missed when only one aetiology is considered. CONCLUSIONS Overall, the study provides a more comprehensive picture of the neural bases of naming, underscoring the importance of assessing both objects and actions and considering different aetiologies of damage. It demonstrates the utility of the HANA.
Collapse
Affiliation(s)
- Bonnie L. Breining
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Andreia V. Faria
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD 21287, USA
| | - Erin L. Meier
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Shannon M. Sheppard
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Communication Sciences & Disorders, Chapman University, Irvine, CA 92618, USA
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Donna C. Tippett
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
21
|
Pastore-Wapp M, Nyffeler T, Nef T, Bohlhalter S, Vanbellingen T. Non-invasive brain stimulation in limb praxis and apraxia: A scoping review in healthy subjects and patients with stroke. Cortex 2021; 138:152-164. [PMID: 33691224 DOI: 10.1016/j.cortex.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/09/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques are widely used in research settings to investigate brain mechanisms and increasingly being used for treatment purposes. The aim of this study was to systematically identify and review the current literature on NIBS studies of limb praxis and apraxia in healthy subjects and stroke patients with a scoping review using PRISMA-ScR guidelines. MEDLINE-PubMed, EMBASE and PsycINFO were searched. Inclusion criteria were English peer-reviewed studies focusing on the investigation of limb praxis/apraxia using repetitive transcranial magnetic stimulation (rTMS), or transcranial direct current stimulation (tDCS). Fourteen out of 139 records met the inclusion criteria, including thirteen studies with healthy subjects and one with stroke patients. The results of our systematic review suggest that in healthy subjects NIBS over left inferior parietal lobe (IPL) mainly interfered with gesture processing, by either affecting reaction times in judgment tasks or real gesturing. First promising results suggest that inhibitory continuous theta burst stimulation (cTBS) over right IPL may enhance gesturing in healthy subjects, explained by transcallosal facilitation of left IPL. In stroke patients, excitatory anodal tDCS over left IPL may improve limb apraxia. However, larger well powered and sham-controlled clinical trials are needed to expand on these proof-of-concept results, before NIBS could be a treatment option to improve limb apraxia in stroke patients.
Collapse
Affiliation(s)
- Manuela Pastore-Wapp
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland; ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University Bern, Switzerland
| | - Thomas Nyffeler
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Biomedical Research (DBMR) and Department of Neurology, University of Bern, and Inselspital, Bern University Hospital, Bern, Switzerland
| | - Tobias Nef
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University Bern, Switzerland
| | - Stephan Bohlhalter
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland; University of Zurich, Zurich, Switzerland
| | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland; ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University Bern, Switzerland.
| |
Collapse
|
22
|
Zhang Z, Liu L, Li Y, Tan T, Niki K, Luo J. The function of medial temporal lobe and posterior middle temporal gyrus in forming creative associations. Hippocampus 2020; 30:1257-1267. [DOI: 10.1002/hipo.23253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/27/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Ze Zhang
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
| | - Lulu Liu
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
- Graduate School of Chinese Academy of Agricultural Sciences Beijing China
| | - Yue Li
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
| | - Tengteng Tan
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
| | - Kazuhisa Niki
- Human Informatics Research Institute, Advanced Industrial Science and Technology Tsukuba Japan
- Keio University Graduate School of Human Relations Keio University Tokyo Japan
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
- Department of Psychology Shaoxing University Shaoxing China
| |
Collapse
|
23
|
The functional relevance of dorsal motor systems for processing tool nouns– evidence from patients with focal lesions. Neuropsychologia 2020; 141:107384. [DOI: 10.1016/j.neuropsychologia.2020.107384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/17/2019] [Accepted: 02/09/2020] [Indexed: 02/03/2023]
|
24
|
Ren J, Huang F, Zhou Y, Zhuang L, Xu J, Gao C, Qin S, Luo J. The function of the hippocampus and middle temporal gyrus in forming new associations and concepts during the processing of novelty and usefulness features in creative designs. Neuroimage 2020; 214:116751. [PMID: 32194284 DOI: 10.1016/j.neuroimage.2020.116751] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Creative thought relies on the reorganization of existing knowledge to generate novel and useful concepts. However, how these new concepts are formed, especially through the processing of novelty and usefulness (which are usually regarded as the key properties of creativity), is not clear. Taking familiar and useful (FU) objects/designs as the starting point or fundamental baseline, we modified them into novel and useless (NS) objects/designs or novel and useful (NU) ones (i.e., truly creative ones) to investigate how the features of novelty and usefulness are processed (processing of novelty: NU minus FU; processing of usefulness: NU minus NS). Specifically, we predicted that the creative integration of novelty and usefulness entails not only the formation of new associations, which could be critically mediated by the hippocampus and adjacent medial temporal lobe (MTL) areas, but also the formation of new concepts or categories, which is supported by the middle temporal gyrus (MTG). We found that both the MTL and the MTG were involved in the processing of novelty and usefulness. The MTG showed distinctive patterns of information processing, reflected by strengthened functional connectivity with the hippocampus to construct new concepts and strengthened functional connectivity with the executive control system to break the boundaries of old concepts. Additionally, participants' subjective evaluations of concept distance showed that the distance between the familiar concept (FU) and the successfully constructed concept (NU) was larger than that between the FU and the unsuccessfully constructed concept (NS), and this pattern was found to correspond to the patterns of their neural representations in the MTG. These findings demonstrate the critical mechanism by which new associations and concepts are formed during novelty and usefulness processing in creative design; this mechanism may be critically mediated by the hippocampus-MTG connection.
Collapse
Affiliation(s)
- Jingyuan Ren
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China
| | - Ying Zhou
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Liping Zhuang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, 100875, China
| | - Jiahua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, 100875, China
| | - Chuanji Gao
- Department of Psychology, Institute of Mind and Brain, University of South Carolina, Columbia, 29201, USA
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, 100875, China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
Riccardi N, Yourganov G, Rorden C, Fridriksson J, Desai R. Degradation of Praxis Brain Networks and Impaired Comprehension of Manipulable Nouns in Stroke. J Cogn Neurosci 2020; 32:467-483. [PMID: 31682566 PMCID: PMC10274171 DOI: 10.1162/jocn_a_01495] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Distributed brain systems contribute to representation of semantic knowledge. Whether sensory and motor systems of the brain are causally involved in representing conceptual knowledge is an especially controversial question. Here, we tested 57 chronic left-hemisphere stroke patients using a semantic similarity judgment task consisting of manipulable and nonmanipulable nouns. Three complementary methods were used to assess the neuroanatomical correlates of semantic processing: voxel-based lesion-symptom mapping, resting-state functional connectivity, and gray matter fractional anisotropy. The three measures provided converging evidence that injury to the brain networks required for action observation, execution, planning, and visuomotor coordination are associated with specific deficits in manipulable noun comprehension relative to nonmanipulable items. Damage or disrupted connectivity of areas such as the middle posterior temporal gyrus, anterior inferior parietal lobe, and premotor cortex was related specifically to the impairment of manipulable noun comprehension. These results suggest that praxis brain networks contribute especially to the comprehension of manipulable object nouns.
Collapse
|
26
|
Stairways to the brain: Transcutaneous spinal direct current stimulation (tsDCS) modulates a cerebellar-cortical network enhancing verb recovery. Brain Res 2020; 1727:146564. [DOI: 10.1016/j.brainres.2019.146564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/01/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
|
27
|
A network underlying human higher-order motor control: Insights from machine learning-based lesion-behaviour mapping in apraxia of pantomime. Cortex 2019; 121:308-321. [DOI: 10.1016/j.cortex.2019.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/06/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022]
|
28
|
Riccardi N, Yourganov G, Rorden C, Fridriksson J, Desai RH. Dissociating action and abstract verb comprehension post-stroke. Cortex 2019; 120:131-146. [PMID: 31302507 PMCID: PMC6825884 DOI: 10.1016/j.cortex.2019.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/30/2019] [Accepted: 05/23/2019] [Indexed: 11/30/2022]
Abstract
The neural bases of action and abstract concept representations remain a topic of debate. While several lines of research provide evidence for grounding of action-related conceptual content into sensory-motor systems, results of traditional lesion-deficit studies have been somewhat inconsistent. Further, few studies have directly compared the neural substrates of action and relatively abstract verb comprehension post-stroke. Here, we investigated the impact of the disruption of two neural networks on comprehension of action and relatively abstract verbs in 48 unilateral left-hemisphere stroke patients using two methodologies: 1) lesion-deficit association and 2) resting-state functional connectivity (RSFC) analyses. Disruption of RSFC between the left inferior frontal gyrus and right hemisphere primary and secondary sensory-motor areas predicted greater relative impairment of action semantics. Voxel-based lesion-symptom mapping revealed that damage to frontal white matter, extending towards the inferior frontal gyrus, also predicted greater relative impairment of action semantics. On the other hand, damage to the left anterior middle temporal gyrus significantly impaired the more abstract category relative to action. These findings support the view that action and non-action/abstract semantic processing rely on partially dissociable brain networks, with action concepts relying more heavily on sensory-motor areas. The results also have wider implications for lesion-deficit association studies and show how the contralateral hemisphere can play a compensatory role following unilateral stroke.
Collapse
Affiliation(s)
- Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Grigori Yourganov
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA; Institute for Mind and Brain, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA; Institute for Mind and Brain, University of South Carolina, Columbia, SC, USA
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, USA; Institute for Mind and Brain, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
29
|
Akinina Y, Dragoy O, Ivanova MV, Iskra EV, Soloukhina OA, Petryshevsky AG, Fedinа ON, Turken AU, Shklovsky VM, Dronkers NF. Grey and white matter substrates of action naming. Neuropsychologia 2019; 131:249-265. [PMID: 31129278 PMCID: PMC6650369 DOI: 10.1016/j.neuropsychologia.2019.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Despite a persistent interest in verb processing, data on the neural underpinnings of verb retrieval are fragmentary. The present study is the first to analyze the contributions of both grey and white matter damage affecting verb retrieval through action naming in stroke. We used voxel-based lesion-symptom mapping (VLSM) with an action naming task in 40 left-hemisphere stroke patients. Within the grey matter, we revealed the critical involvement of the left precentral and inferior frontal gyri, insula, and parts of basal ganglia. An overlay of white matter tract probability masks on the VLSM lesion map revealed involvement of left-hemisphere long and short association tracts with terminations in the frontal areas; and several projection tracts. The involvement of these structures is interpreted in the light of existing picture naming models, semantic control processes, and the embodiment cognition framework. Our results stress the importance of both cortico-cortical and cortico-subcortical networks of language processing.
Collapse
Affiliation(s)
- Yu Akinina
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia; University of Groningen, Graduate School for the Humanities, P.O. Box 716, NL-9700, AS Groningen, Groningen, the Netherlands.
| | - O Dragoy
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia; Federal Center for Cerebrovascular Pathology and Stroke, Department of Medical Rehabilitation, 1/10 Ostrovityanova Street, 117342, Moscow, Russia
| | - M V Ivanova
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia; University of California, Berkeley, Dept. of Psychology, 2121 Berkeley Way, 94704, Berkeley, CA, USA; Center for Aphasia and Related Disorders, VA Northern California Health Care System, 150 Muir Road 126R, 94553, Martinez, CA, USA
| | - E V Iskra
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia; Center for Speech Pathology and Neurorehabilitation, 20 Nikoloyamskaya Street, 109240, Moscow, Russia
| | - O A Soloukhina
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia
| | - A G Petryshevsky
- Center for Speech Pathology and Neurorehabilitation, 20 Nikoloyamskaya Street, 109240, Moscow, Russia
| | - O N Fedinа
- Center for Speech Pathology and Neurorehabilitation, 20 Nikoloyamskaya Street, 109240, Moscow, Russia; Medicine and Nuclear Technology Ltd., 1/133 Akademika Kurchatova Street, 123182, Moscow, Russia
| | - A U Turken
- Center for Aphasia and Related Disorders, VA Northern California Health Care System, 150 Muir Road 126R, 94553, Martinez, CA, USA
| | - V M Shklovsky
- Center for Speech Pathology and Neurorehabilitation, 20 Nikoloyamskaya Street, 109240, Moscow, Russia
| | - N F Dronkers
- University of California, Berkeley, Dept. of Psychology, 2121 Berkeley Way, 94704, Berkeley, CA, USA; Center for Aphasia and Related Disorders, VA Northern California Health Care System, 150 Muir Road 126R, 94553, Martinez, CA, USA; University of California, Davis, Dept. of Neurology, Sacramento, CA, USA
| |
Collapse
|
30
|
Teige C, Cornelissen PL, Mollo G, Gonzalez Alam TRDJ, McCarty K, Smallwood J, Jefferies E. Dissociations in semantic cognition: Oscillatory evidence for opposing effects of semantic control and type of semantic relation in anterior and posterior temporal cortex. Cortex 2019; 120:308-325. [PMID: 31394366 PMCID: PMC6854548 DOI: 10.1016/j.cortex.2019.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/04/2019] [Accepted: 07/07/2019] [Indexed: 01/20/2023]
Abstract
How does the brain represent and process different types of knowledge? The Dual Hub account postulates that anterior temporal lobes (ATL) support taxonomic relationships based on shared physical features (mole – cat), while temporoparietal regions, including posterior middle temporal gyrus (pMTG), support thematic associations (mole – earth). Conversely, the Controlled Semantic Cognition account proposes that ATL supports both aspects of knowledge, while left pMTG contributes to controlled retrieval. This study used magnetoencephalography to test these contrasting predictions of functional dissociations within the temporal lobe. ATL and pMTG responded more strongly to taxonomic and thematic trials respectively, matched for behavioural performance, in line with predictions of the Dual Hub account. In addition, ATL showed a greater response to strong than weak thematic associations, while pMTG showed the opposite pattern, supporting a key prediction of the Controlled Semantic Cognition account. ATL showed a stronger response for word pairs that were more semantically coherent, either because they shared physical features (in taxonomic trials) or a strong thematic association. These effects largely coincided in time and frequency (although an early oscillatory response in ATL was specific to taxonomic trials). In contrast, pMTG showed non-overlapping effects of semantic control demands and thematic judgements: this site showed a larger oscillatory response to weak associations, when ongoing retrieval needed to be shaped to suit the task demands, and also a larger response to thematic judgements contrasted with taxonomic trials (which was reduced but not eliminated when the thematic trials were easier). Consequently, time-sensitive neuroimaging supports a complex pattern of functional dissociations within the left temporal lobe, which reflects both coherence versus control and distinctive oscillatory responses for taxonomic overlap (in ATL) and thematic relations (in pMTG).
Collapse
Affiliation(s)
- Catarina Teige
- Department of Psychology and York Neuroimaging Centre, University of York, UK
| | | | - Giovanna Mollo
- Department of Psychology and York Neuroimaging Centre, University of York, UK
| | | | | | - Jonathan Smallwood
- Department of Psychology and York Neuroimaging Centre, University of York, UK
| | - Elizabeth Jefferies
- Department of Psychology and York Neuroimaging Centre, University of York, UK.
| |
Collapse
|
31
|
Bracci S, Caramazza A, Peelen MV. View-invariant representation of hand postures in the human lateral occipitotemporal cortex. Neuroimage 2018; 181:446-452. [DOI: 10.1016/j.neuroimage.2018.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/28/2018] [Accepted: 07/01/2018] [Indexed: 12/14/2022] Open
|
32
|
Pritchett BL, Hoeflin C, Koldewyn K, Dechter E, Fedorenko E. High-level language processing regions are not engaged in action observation or imitation. J Neurophysiol 2018; 120:2555-2570. [PMID: 30156457 DOI: 10.1152/jn.00222.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A set of left frontal, temporal, and parietal brain regions respond robustly during language comprehension and production (e.g., Fedorenko E, Hsieh PJ, Nieto-Castañón A, Whitfield-Gabrieli S, Kanwisher N. J Neurophysiol 104: 1177-1194, 2010; Menenti L, Gierhan SM, Segaert K, Hagoort P. Psychol Sci 22: 1173-1182, 2011). These regions have been further shown to be selective for language relative to other cognitive processes, including arithmetic, aspects of executive function, and music perception (e.g., Fedorenko E, Behr MK, Kanwisher N. Proc Natl Acad Sci USA 108: 16428-16433, 2011; Monti MM, Osherson DN. Brain Res 1428: 33-42, 2012). However, one claim about overlap between language and nonlinguistic cognition remains prominent. In particular, some have argued that language processing shares computational demands with action observation and/or execution (e.g., Rizzolatti G, Arbib MA. Trends Neurosci 21: 188-194, 1998; Koechlin E, Jubault T. Neuron 50: 963-974, 2006; Tettamanti M, Weniger D. Cortex 42: 491-494, 2006). However, the evidence for these claims is indirect, based on observing activation for language and action tasks within the same broad anatomical areas (e.g., on the lateral surface of the left frontal lobe). To test whether language indeed shares machinery with action observation/execution, we examined the responses of language brain regions, defined functionally in each individual participant (Fedorenko E, Hsieh PJ, Nieto-Castañón A, Whitfield-Gabrieli S, Kanwisher N. J Neurophysiol 104: 1177-1194, 2010) to action observation ( experiments 1, 2, and 3a) and action imitation ( experiment 3b). With the exception of the language region in the angular gyrus, all language regions, including those in the inferior frontal gyrus (within "Broca's area"), showed little or no response during action observation/imitation. These results add to the growing body of literature suggesting that high-level language regions are highly selective for language processing (see Fedorenko E, Varley R. Ann NY Acad Sci 1369: 132-153, 2016 for a review). NEW & NOTEWORTHY Many have argued for overlap in the machinery used to interpret language and others' actions, either because action observation was a precursor to linguistic communication or because both require interpreting hierarchically-structured stimuli. However, existing evidence is indirect, relying on group analyses or reverse inference. We examined responses to action observation in language regions defined functionally in individual participants and found no response. Thus language comprehension and action observation recruit distinct circuits in the modern brain.
Collapse
Affiliation(s)
- Brianna L Pritchett
- Department of Brain and Cognitive Sciences/McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Caitlyn Hoeflin
- Department of Brain and Cognitive Sciences/McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Kami Koldewyn
- School of Psychology, Bangor University, Gwynedd, United Kingdom
| | - Eyal Dechter
- Department of Brain and Cognitive Sciences/McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences/McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Psychiatry, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
33
|
Disentangling representations of shape and action components in the tool network. Neuropsychologia 2018; 117:199-210. [DOI: 10.1016/j.neuropsychologia.2018.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/06/2018] [Accepted: 05/29/2018] [Indexed: 11/22/2022]
|
34
|
Garcea FE, Chen Q, Vargas R, Narayan DA, Mahon BZ. Task- and domain-specific modulation of functional connectivity in the ventral and dorsal object-processing pathways. Brain Struct Funct 2018; 223:2589-2607. [PMID: 29536173 PMCID: PMC6252262 DOI: 10.1007/s00429-018-1641-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 03/01/2018] [Indexed: 01/08/2023]
Abstract
A whole-brain network of regions collectively supports the ability to recognize and use objects-the Tool Processing Network. Little is known about how functional interactions within the Tool Processing Network are modulated in a task-dependent manner. We designed an fMRI experiment in which participants were required to either generate object pantomimes or to carry out a picture matching task over the same images of tools, while holding all aspects of stimulus presentation constant across the tasks. The Tool Processing Network was defined with an independent functional localizer, and functional connectivity within the network was measured during the pantomime and picture matching tasks. Relative to tool picture matching, tool pantomiming led to an increase in functional connectivity between ventral stream regions and left parietal and frontal-motor areas; in contrast, the matching task was associated with an increase in functional connectivity among regions in ventral temporo-occipital cortex, and between ventral temporal regions and the left inferior parietal lobule. Graph-theory analyses over the functional connectivity data indicated that the left premotor cortex and left lateral occipital complex were hub-like (exhibited high betweenness centrality) during tool pantomiming, while ventral stream regions (left medial fusiform gyrus and left posterior middle temporal gyrus) were hub-like during the picture matching task. These results demonstrate task-specific modulation of functional interactions among a common set of regions, and indicate dynamic coupling of anatomically remote regions in task-dependent manner.
Collapse
Affiliation(s)
- Frank E Garcea
- Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, NY, 14627-0268, USA
- Center for Visual Science, University of Rochester, Rochester, USA
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - Quanjing Chen
- Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, NY, 14627-0268, USA
| | - Roger Vargas
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, USA
| | - Darren A Narayan
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, USA
| | - Bradford Z Mahon
- Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, NY, 14627-0268, USA.
- Center for Visual Science, University of Rochester, Rochester, USA.
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, USA.
- Department of Neurology, University of Rochester Medical Center, Rochester, USA.
| |
Collapse
|
35
|
Chen Q, Garcea FE, Jacobs RA, Mahon BZ. Abstract Representations of Object-Directed Action in the Left Inferior Parietal Lobule. Cereb Cortex 2018; 28:2162-2174. [PMID: 28605410 PMCID: PMC6019004 DOI: 10.1093/cercor/bhx120] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/28/2017] [Indexed: 11/14/2022] Open
Abstract
Prior neuroimaging and neuropsychological research indicates that the left inferior parietal lobule in the human brain is a critical substrate for representing object manipulation knowledge. In the present functional MRI study we used multivoxel pattern analyses to test whether action similarity among objects can be decoded in the inferior parietal lobule independent of the task applied to objects (identification or pantomime) and stimulus format in which stimuli are presented (pictures or printed words). Participants pantomimed the use of objects, cued by printed words, or identified pictures of objects. Classifiers were trained and tested across task (e.g., training data: pantomime; testing data: identification), stimulus format (e.g., training data: word format; testing format: picture) and specific objects (e.g., training data: scissors vs. corkscrew; testing data: pliers vs. screwdriver). The only brain region in which action relations among objects could be decoded across task, stimulus format and objects was the inferior parietal lobule. By contrast, medial aspects of the ventral surface of the left temporal lobe represented object function, albeit not at the same level of abstractness as actions in the inferior parietal lobule. These results suggest compulsory access to abstract action information in the inferior parietal lobe even when simply identifying objects.
Collapse
Affiliation(s)
- Quanjing Chen
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627-0268, USA
| | - Frank E Garcea
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627-0268, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627-0268, USA
| | - Robert A Jacobs
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627-0268, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627-0268, USA
| | - Bradford Z Mahon
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627-0268, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627-0268, USA
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14627-0268, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14627-0268, USA
| |
Collapse
|
36
|
Mollo G, Jefferies E, Cornelissen P, Gennari SP. Context-dependent lexical ambiguity resolution: MEG evidence for the time-course of activity in left inferior frontal gyrus and posterior middle temporal gyrus. BRAIN AND LANGUAGE 2018; 177-178:23-36. [PMID: 29421269 PMCID: PMC5840520 DOI: 10.1016/j.bandl.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/22/2017] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
An MEG study investigated the role of context in semantic interpretation by examining the comprehension of ambiguous words in contexts leading to different interpretations. We compared high-ambiguity words in minimally different contexts (to bowl, the bowl) to low-ambiguity counterparts (the tray, to flog). Whole brain beamforming revealed the engagement of left inferior frontal gyrus (LIFG) and posterior middle temporal gyrus (LPMTG). Points of interest analyses showed that both these sites showed a stronger response to verb-contexts by 200 ms post-stimulus and displayed overlapping ambiguity effects that were sustained from 300 ms onwards. The effect of context was stronger for high-ambiguity words than for low-ambiguity words at several different time points, including within the first 100 ms post-stimulus. Unlike LIFG, LPMTG also showed stronger responses to verb than noun contexts in low-ambiguity trials. We argue that different functional roles previously attributed to LIFG and LPMTG are in fact played out at different periods during processing.
Collapse
|
37
|
Bracci S, Daniels N, Op de Beeck H. Task Context Overrules Object- and Category-Related Representational Content in the Human Parietal Cortex. Cereb Cortex 2018; 27:310-321. [PMID: 28108492 PMCID: PMC5939221 DOI: 10.1093/cercor/bhw419] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 12/15/2022] Open
Abstract
The dorsal, parietal visual stream is activated when seeing objects, but the exact nature of parietal object representations is still under discussion. Here we test 2 specific hypotheses. First, parietal cortex is biased to host some representations more than others, with a different bias compared with ventral areas. A prime example would be object action representations. Second, parietal cortex forms a general multiple-demand network with frontal areas, showing similar task effects and representational content compared with frontal areas. To differentiate between these hypotheses, we implemented a human neuroimaging study with a stimulus set that dissociates associated object action from object category while manipulating task context to be either action- or category-related. Representations in parietal as well as prefrontal areas represented task-relevant object properties (action representations in the action task), with no sign of the irrelevant object property (category representations in the action task). In contrast, irrelevant object properties were represented in ventral areas. These findings emphasize that human parietal cortex does not preferentially represent particular object properties irrespective of task, but together with frontal areas is part of a multiple-demand and content-rich cortical network representing task-relevant object properties.
Collapse
Affiliation(s)
- Stefania Bracci
- Laboratory of Biological Psychology, KU Leuven3000, Leuven, Belgium
| | - Nicky Daniels
- Laboratory of Biological Psychology, KU Leuven3000, Leuven, Belgium
| | - Hans Op de Beeck
- Laboratory of Biological Psychology, KU Leuven3000, Leuven, Belgium
| |
Collapse
|
38
|
Abstract
Although the parietal lobe was considered by many of the earliest investigators of disordered language to be a major component of the neural systems instantiating language, most views of the anatomic substrate of language emphasize the role of temporal and frontal lobes in language processing. We review evidence from lesion studies as well as functional neuroimaging, demonstrating that the left parietal lobe is also crucial for several aspects of language. First, we argue that the parietal lobe plays a major role in semantic processing, particularly for "thematic" relationships in which information from multiple sensory and motor domains is integrated. Additionally, we review a number of accounts that emphasize the role of the left parietal lobe in phonologic processing. Although the accounts differ somewhat with respect to the nature of the linguistic computations subserved by the parietal lobe, they share the view that the parietal lobe is essential for the processes by which sound-based representations are transcoded into a format that can drive action systems. We suggest that investigations of the linguistic capacities of the parietal lobe constrained by the understanding of the parietal lobe in action and multimodal sensory integration may serve to enhance not only our understanding of language, but also the relationship between language and more basic brain functions.
Collapse
Affiliation(s)
- H Branch Coslett
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
| | - Myrna F Schwartz
- Moss Rehabilitation Research Institute, Elkins Park, PA, United States
| |
Collapse
|
39
|
Abstract
Cognitive neuroscience research on conceptual knowledge often is discussed with respect to "embodiment" or "grounding." We tried to disentangle at least three distinct claims made using these terms. One of these, the view that concepts are entirely reducible to sensory-motor representations, is untenable and diminishing in the literature. A second is the view that concepts and sensory-motor representations "interact," and a third view addresses the question of how concepts are neurally organized-the neural partitions among concepts of different kinds, and where these partitions are localized in cortex. We argue that towards the second and third issues, much fruitful research can be pursued, but that no position on them is specifically related to "grounding." Furthermore, to move forward on them, it is important to precisely distinguish different kinds of representations-conceptual vs. sensory-motor-from each other theoretically and empirically. Neuroimaging evidence often lacks such specificity. We take an approach that distinguishes conceptual from sensory-motor representations by virtue of two properties: broad generality and tolerance to the absence of sensory-motor associations. We review three of our recent experiments that employ these criteria in order to localize neural representations of several specific kinds of nonsensory attributes: functions, intentions, and belief traits. Building on past work, we find that neuroimaging evidence can be used fruitfully to distinguish interesting hypotheses about neural organization. On the other hand, most such evidence does not speak to any clear notion of "grounding" or "embodiment," because these terms do not make clear, specific, empirical predictions. We argue that cognitive neuroscience will proceed most fruitfully by relinquishing these terms.
Collapse
|
40
|
Pulvermüller F. Neural reuse of action perception circuits for language, concepts and communication. Prog Neurobiol 2017; 160:1-44. [PMID: 28734837 DOI: 10.1016/j.pneurobio.2017.07.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/12/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Neurocognitive and neurolinguistics theories make explicit statements relating specialized cognitive and linguistic processes to specific brain loci. These linking hypotheses are in need of neurobiological justification and explanation. Recent mathematical models of human language mechanisms constrained by fundamental neuroscience principles and established knowledge about comparative neuroanatomy offer explanations for where, when and how language is processed in the human brain. In these models, network structure and connectivity along with action- and perception-induced correlation of neuronal activity co-determine neurocognitive mechanisms. Language learning leads to the formation of action perception circuits (APCs) with specific distributions across cortical areas. Cognitive and linguistic processes such as speech production, comprehension, verbal working memory and prediction are modelled by activity dynamics in these APCs, and combinatorial and communicative-interactive knowledge is organized in the dynamics within, and connections between APCs. The network models and, in particular, the concept of distributionally-specific circuits, can account for some previously not well understood facts about the cortical 'hubs' for semantic processing and the motor system's role in language understanding and speech sound recognition. A review of experimental data evaluates predictions of the APC model and alternative theories, also providing detailed discussion of some seemingly contradictory findings. Throughout, recent disputes about the role of mirror neurons and grounded cognition in language and communication are assessed critically.
Collapse
Affiliation(s)
- Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy & Humanities, WE4, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10099 Berlin, Germany; Einstein Center for Neurosciences, Berlin 10117 Berlin, Germany.
| |
Collapse
|
41
|
Jones LL, Wurm LH, Calcaterra RD, Ofen N. Integrative Priming of Compositional and Locative Relations. Front Psychol 2017; 8:359. [PMID: 28360872 PMCID: PMC5350123 DOI: 10.3389/fpsyg.2017.00359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/24/2017] [Indexed: 11/24/2022] Open
Abstract
Integrative priming refers to the facilitated recognition of a target word (bench) as a real word following a prime (park). Prior integrative priming studies have used a wide variety of integrative relations including temporal (summer rain), topical (travel book), locative (forest river), and compositional (peach pie) relations. Yet differences in the types of integrative relations may yield differences in the underlying explanatory processes of integrative priming. In this study, we compared the magnitude, time course, and three theoretically based correlates of integrative priming for compositional (stone table) and locative (patio table) pairs in a lexical decision task across four stimulus onset asynchronies (SOAs; 50, 300, 800, and 1,600 ms). Based on the Complementary Role Activation theory, integrative ratings (the extent to which the prime and target can be combined into a meaningful phrase) were predicted to facilitate target RTs. Based on the Embodied Conceptual Combination (ECCo) theory, the local co-occurrence of the prime and target, and the ability to perceptually simulate (visually experience) the prime-target pair were tested as predictors. In comparison to unrelated pairs (nose table), target RTs were faster for the compositional and locative pairs, though did not differ between these relations. In support of the Complementary Role Activation theory, integrative ratings predicted target RTs above and beyond our control variables. In support of the ECCo theory, co-occurrence emerged as an early predictor of target RTs, and visual experience ratings was a reliable predictor at the 300 ms SOA, though only for the compositional relations.
Collapse
Affiliation(s)
- Lara L Jones
- Department of Psychology, Wayne State University Detroit, MI, USA
| | - Lee H Wurm
- Department of Psychology, Wayne State University Detroit, MI, USA
| | | | - Noa Ofen
- Department of Psychology, Wayne State UniversityDetroit, MI, USA; Institute of Gerontology, Wayne State UniversityDetroit, MI, USA
| |
Collapse
|
42
|
Valchev N, Tidoni E, Hamilton AFDC, Gazzola V, Avenanti A. Primary somatosensory cortex necessary for the perception of weight from other people's action: A continuous theta-burst TMS experiment. Neuroimage 2017; 152:195-206. [PMID: 28254507 PMCID: PMC5440175 DOI: 10.1016/j.neuroimage.2017.02.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/10/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022] Open
Abstract
The presence of a network of areas in the parietal and premotor cortices, which are active both during action execution and observation, suggests that we might understand the actions of other people by activating those motor programs for making similar actions. Although neurophysiological and imaging studies show an involvement of the somatosensory cortex (SI) during action observation and execution, it is unclear whether SI is essential for understanding the somatosensory aspects of observed actions. To address this issue, we used off-line transcranial magnetic continuous theta-burst stimulation (cTBS) just before a weight judgment task. Participants observed the right hand of an actor lifting a box and estimated its relative weight. In counterbalanced sessions, we delivered sham and active cTBS over the hand region of the left SI and, to test anatomical specificity, over the left motor cortex (M1) and the left superior parietal lobule (SPL). Active cTBS over SI, but not over M1 or SPL, impaired task performance relative to sham cTBS. Moreover, active cTBS delivered over SI just before participants were asked to evaluate the weight of a bouncing ball did not alter performance compared to sham cTBS. These findings indicate that SI is critical for extracting somatosensory features (heavy/light) from observed action kinematics and suggest a prominent role of SI in action understanding. TMS over the somatosensory cortex disrupts performance on a weight judgment task. Disruption is specific for judgements based on observed human actions. No TMS effect is found for judgements based on observed non-human motion. No effect is found when TMS is administered over nearby frontal and parietal region.
Collapse
Affiliation(s)
- Nikola Valchev
- BCN Neuroimaging Centre, Department of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands; Department of Psychiatry, Yale University, CMHC S110, 34 Park Street, New Haven, CT 06519, USA
| | - Emmanuele Tidoni
- Centre for Studies and Research in Cognitive Neuroscience and Department of Psychology, University of Bologna, Campus Cesena, 47521 Cesena, Italyhe somatosensory aspects of the actions of others rem; IRCSS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Antonia F de C Hamilton
- School of Psychology, University of Nottingham, Nottingham, UK; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK
| | - Valeria Gazzola
- BCN Neuroimaging Centre, Department of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands; The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands; Brain and Cognition, Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129 B, 1001 NK Amsterdam, The Netherlands.
| | - Alessio Avenanti
- Centre for Studies and Research in Cognitive Neuroscience and Department of Psychology, University of Bologna, Campus Cesena, 47521 Cesena, Italyhe somatosensory aspects of the actions of others rem; IRCSS Fondazione Santa Lucia, 00179 Rome, Italy.
| |
Collapse
|
43
|
Vukovic N, Feurra M, Shpektor A, Myachykov A, Shtyrov Y. Primary motor cortex functionally contributes to language comprehension: An online rTMS study. Neuropsychologia 2017; 96:222-229. [PMID: 28122198 DOI: 10.1016/j.neuropsychologia.2017.01.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/23/2016] [Accepted: 01/21/2017] [Indexed: 11/19/2022]
Abstract
Among various questions pertinent to grounding human cognitive functions in a neurobiological substrate, the association between language and motor brain structures is a particularly debated one in neuroscience and psychology. While many studies support a broadly distributed model of language and semantics grounded, among other things, in the general modality-specific systems, theories disagree as to whether motor and sensory cortex activity observed during language processing is functional or epiphenomenal. Here, we assessed the role of motor areas in linguistic processing by investigating the responses of 28 healthy volunteers to different word types in semantic and lexical decision tasks, following repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex. We found that early rTMS (delivered within 200ms of word onset) produces a left-lateralised and meaning-specific change in reaction speed, slowing down behavioural responses to action-related words, and facilitating abstract words - an effect present only during semantic, but not lexical, decision. We interpret these data in light of action-perception theory of language, bolstering the claim that motor cortical areas play a functional role in language comprehension.
Collapse
Affiliation(s)
- Nikola Vukovic
- Center of Functionally Integrative Neuroscience, Institute for Clinical Medicine, Aarhus University, Denmark; Center for Cognition and Decision Making, Higher School of Economics, Moscow, Russian Federation.
| | - Matteo Feurra
- Center for Cognition and Decision Making, Higher School of Economics, Moscow, Russian Federation
| | - Anna Shpektor
- Center for Cognition and Decision Making, Higher School of Economics, Moscow, Russian Federation
| | - Andriy Myachykov
- Center for Cognition and Decision Making, Higher School of Economics, Moscow, Russian Federation; Department of Psychology, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience, Institute for Clinical Medicine, Aarhus University, Denmark; Center for Cognition and Decision Making, Higher School of Economics, Moscow, Russian Federation; Medical Research Council Cognition and Brain Sciences Unit, Cambridge, United Kingdom
| |
Collapse
|
44
|
Carota F, Kriegeskorte N, Nili H, Pulvermüller F. Representational Similarity Mapping of Distributional Semantics in Left Inferior Frontal, Middle Temporal, and Motor Cortex. Cereb Cortex 2017; 27:294-309. [PMID: 28077514 PMCID: PMC6044349 DOI: 10.1093/cercor/bhw379] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 10/03/2016] [Indexed: 12/26/2022] Open
Abstract
Language comprehension engages a distributed network of frontotemporal, parietal, and sensorimotor regions, but it is still unclear how meaning of words and their semantic relationships are represented and processed within these regions and to which degrees lexico-semantic representations differ between regions and semantic types. We used fMRI and representational similarity analysis to relate word-elicited multivoxel patterns to semantic similarity between action and object words. In left inferior frontal (BA 44-45-47), left posterior middle temporal and left precentral cortex, the similarity of brain response patterns reflected semantic similarity among action-related verbs, as well as across lexical classes-between action verbs and tool-related nouns and, to a degree, between action verbs and food nouns, but not between action verbs and animal nouns. Instead, posterior inferior temporal cortex exhibited a reverse response pattern, which reflected the semantic similarity among object-related nouns, but not action-related words. These results show that semantic similarity is encoded by a range of cortical areas, including multimodal association (e.g., anterior inferior frontal, posterior middle temporal) and modality-preferential (premotor) cortex and that the representational geometries in these regions are partly dependent on semantic type, with semantic similarity among action-related words crossing lexical-semantic category boundaries.
Collapse
Affiliation(s)
- Francesca Carota
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB,UK
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
- Department of Philosophy and Humanities, Brain Language Laboratory, WE4, Freie Universität Berlin, 19145 Berlin, Germany
| | | | - Hamed Nili
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK
- Department of Experimental Psychology, University of Oxford, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK
| | - Friedemann Pulvermüller
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
- Department of Philosophy and Humanities, Brain Language Laboratory, WE4, Freie Universität Berlin, 19145 Berlin, Germany
| |
Collapse
|
45
|
Park JE. Apraxia: Review and Update. J Clin Neurol 2017; 13:317-324. [PMID: 29057628 PMCID: PMC5653618 DOI: 10.3988/jcn.2017.13.4.317] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Praxis, the ability to perform skilled or learned movements is essential for daily living. Inability to perform such praxis movements is defined as apraxia. Apraxia can be further classified into subtypes such as ideomotor, ideational and limb-kinetic apraxia. Relevant brain regions have been found to include the motor, premotor, temporal and parietal cortices. Apraxia is found in a variety of highly prevalent neurological disorders including dementia, stroke and Parkinsonism. Furthermore, apraxia has been shown to negatively affect quality of life. Therefore, recognition and treatment of this disorder is critical. This article provides an overview of apraxia and highlights studies dealing with the neurophysiology of this disorder, opening up novel perspectives for the use of motor training and noninvasive brain stimulation as treatment.
Collapse
Affiliation(s)
- Jung E Park
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea.
| |
Collapse
|
46
|
Kim C, Hur M, Oh Y, Choi JH, Jeong JJ. The Effect of the Running-Man Emergency Exit Sign and Its Installed Location on Human Directional Choice. APPLIED COGNITIVE PSYCHOLOGY 2016. [DOI: 10.1002/acp.3293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chobok Kim
- Department of Psychology; Kyungpook National University; Daegu South Korea
| | - Minyoung Hur
- Department of Psychology; Kyungpook National University; Daegu South Korea
| | - Yoonkyung Oh
- Department of Psychology; Kyungpook National University; Daegu South Korea
| | - Jun-Ho Choi
- Department of Fire Protection Engineering; Pukyong National University; Busan South Korea
| | - Jong-Jin Jeong
- Department of Research and Development; Korea Fire Institute; Yongin Gyeonggi-do South Korea
| |
Collapse
|
47
|
Króliczak G, Piper BJ, Frey SH. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance. Neuropsychologia 2016; 93:501-512. [PMID: 27020138 PMCID: PMC5036996 DOI: 10.1016/j.neuropsychologia.2016.03.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/27/2016] [Accepted: 03/21/2016] [Indexed: 11/27/2022]
Abstract
Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., "pounding") or intransitive (e.g. "waving") action words. In linguistic control trials, cues denoted non-physical actions (e.g., "believing"). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one's motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations-the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely on dissociable mechanisms.
Collapse
Affiliation(s)
- Gregory Króliczak
- Institute of Psychology, Action & Cognition Laboratory, Adam Mickiewicz University in Poznań, Poland
| | - Brian J Piper
- Neuroscience Program, Bowdoin College, Brunswick, ME 04011, USA
| | - Scott H Frey
- Department of Psychological Sciences, Rehabilitation Neuroscience Laboratory; Brain Imaging Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
48
|
Yang Y, Wang J, Bailer C, Cherkassky V, Just MA. Commonality of neural representations of sentences across languages: Predicting brain activation during Portuguese sentence comprehension using an English-based model of brain function. Neuroimage 2016; 146:658-666. [PMID: 27771346 DOI: 10.1016/j.neuroimage.2016.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to test the cross-language generative capability of a model that predicts neural activation patterns evoked by sentence reading, based on a semantic characterization of the sentence. In a previous study on English monolingual speakers (Wang et al., submitted), a computational model performed a mapping from a set of 42 concept-level semantic features (Neurally Plausible Semantic Features, NPSFs) as well as 6 thematic role markers to neural activation patterns (assessed with fMRI), to predict activation levels in a network of brain locations. The model used two types of information gained from the English-based fMRI data to predict the activation for individual sentences in Portuguese. First, it used the mapping weights from NPSFs to voxel activation levels derived from the model for English reading. Second, the brain locations for which the activation levels were predicted were derived from a factor analysis of the brain activation patterns during English reading. These meta-language locations were defined by the clusters of voxels with high loadings on each of the four main dimensions (factors), namely people, places, actions and feelings, underlying the neural representations of the stimulus sentences. This cross-language model succeeded in predicting the brain activation patterns associated with the reading of 60 individual Portuguese sentences that were entirely new to the model, attaining accuracies reliably above chance level. The prediction accuracy was not affected by whether the Portuguese speaker was monolingual or Portuguese-English bilingual. The model's confusion errors indicated an accurate capture of the events or states described in the sentence at a conceptual level. Overall, the cross-language predictive capability of the model demonstrates the neural commonality between speakers of different languages in the representations of everyday events and states, and provides an initial characterization of the common meta-language neural basis.
Collapse
Affiliation(s)
- Ying Yang
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jing Wang
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Cyntia Bailer
- Department of Foreign Language and Literature, Federal University of Santa Catarina, Brazil
| | | | - Marcel Adam Just
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Right sensory-motor functional networks subserve action observation therapy in aphasia. Brain Imaging Behav 2016; 11:1397-1411. [DOI: 10.1007/s11682-016-9635-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Collette C, Bonnotte I, Jacquemont C, Kalénine S, Bartolo A. The Development of Object Function and Manipulation Knowledge: Evidence from a Semantic Priming Study. Front Psychol 2016; 7:1239. [PMID: 27602004 PMCID: PMC4994700 DOI: 10.3389/fpsyg.2016.01239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/04/2016] [Indexed: 11/13/2022] Open
Abstract
Object semantics include object function and manipulation knowledge. Function knowledge refers to the goal attainable by using an object (e.g., the function of a key is to open or close a door) while manipulation knowledge refers to gestures one has to execute to use an object appropriately (e.g., a key is held between the thumb and the index, inserted into the door lock and then turned). To date, several studies have assessed function and manipulation knowledge in brain lesion patients as well as in healthy adult populations. In patients with left brain damage, a double dissociation between these two types of knowledge has been reported; on the other hand, behavioral studies in healthy adults show that function knowledge is processed faster than manipulation knowledge. Empirical evidence has shown that object interaction in children differs from that in adults, suggesting that the access to function and manipulation knowledge in children might also differ. To investigate the development of object function and manipulation knowledge, 51 typically developing 8-9-10 year-old children and 17 healthy young adults were tested on a naming task associated with a semantic priming paradigm (190-ms SOA; prime duration: 90 ms) in which a series of line drawings of manipulable objects were used. Target objects could be preceded by three priming contexts: related (e.g., knife-scissors for function; key-screwdriver for manipulation), unrelated but visually similar (e.g., glasses-scissors; baseball bat-screwdriver), and purely unrelated (e.g., die-scissors; tissue-screwdriver). Results showed a different developmental pattern of function and manipulation priming effects. Function priming effects were not present in children and emerged only in adults, with faster naming responses for targets preceded by objects sharing the same function. In contrast, manipulation priming effects were already present in 8-year-olds with faster naming responses for targets preceded by objects sharing the same manipulation and these decreased linearly between 8 and 10 years of age, 10-year-olds not differing from adults. Overall, results show that the access to object function and manipulation knowledge changes during development by favoring manipulation knowledge in childhood and function knowledge in adulthood.
Collapse
Affiliation(s)
- Cynthia Collette
- Univ. Lille, CNRS, CHU Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives Lille, France
| | - Isabelle Bonnotte
- Univ. Lille, CNRS, CHU Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives Lille, France
| | - Charlotte Jacquemont
- Univ. Lille, CNRS, CHU Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives Lille, France
| | - Solène Kalénine
- Univ. Lille, CNRS, CHU Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives Lille, France
| | - Angela Bartolo
- Univ. Lille, CNRS, CHU Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences AffectivesLille, France; Institut Universitaire de FranceParis, France
| |
Collapse
|