1
|
Li Y, Chen Y, Dai X, Pan K, Mi X, Qiao D, Chen J, Chen Z, Shen Q, Zhang X. A comprehensive study of the physiology and chemistry of tea withering based on untargeted metabolomic, transcriptomic, and biochemical analyses. Food Chem 2025; 464:141713. [PMID: 39467504 DOI: 10.1016/j.foodchem.2024.141713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Withering is an important process for achieving high-quality flavor in tea. In this study, histological, metabolomics, transcriptomics, and biochemical analyses were combined to comprehensively explore the accumulation and molecular regulatory profiles of quality metabolites during tea withering. The results of tissue staining indicated that as the water content decreased, the vitality of the nucleus weakened, cytoplasmic content increased, flavone content decreased, and proteins degraded. Omics analysis showed that the total content of soluble sugars, free amino acids, and terpenoids increased, whereas that of catechins decreased significantly, although the caffeine content barely changed. Biochemical analysis revealed that the translated products of genes CSA010827 and CSA001819 catalyzed the biosynthesis of galactose and flavanol 3-O-glycosides, respectively, thereby increasing the content of soluble sugars and contributing to the astringent taste. Overall, by combining omics with histological and biochemical analyses, we revealed the metabolic profile and possible molecular mechanisms during the withering process of tea.
Collapse
Affiliation(s)
- Yan Li
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Yao Chen
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Xinlong Dai
- College of Tea Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ke Pan
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Xiaozeng Mi
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Dahe Qiao
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Juan Chen
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
| | - Zhengwu Chen
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China.
| | - Qiang Shen
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China.
| | - Xiaoqin Zhang
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China.
| |
Collapse
|
2
|
Yu S, Li P, Liu H, Zhang X, Gao Y, Liu J, Yuan C, Liu X, Yao Y, Song L, Zhao J. A CCA1-like MYB subfamily member CsMYB128 participates in chilling sensitivity and cold tolerance in tea plants (Camellia sinensis). Int J Biol Macromol 2025:139473. [PMID: 39756759 DOI: 10.1016/j.ijbiomac.2025.139473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
While flavonoid accumulation, light radiation, and cold stress are intrinsically connected in tea plants, yet the underlying mechanisms remain elusive. The circadian protein CCA1 and CCA1-like MYB transcription factors (TFs) play important roles in coordinating light and temperature signals in plant-environment interactions, their homologs in tea plants have not been addressed. Here we analyzed CsCCA1-like MYB family in tea genome and found one member, a circadian gene CsMYB128 responding to cold stress. Antisense knockdown of CsMYB128 in tea buds rendered cold tolerance in cold tolerance tests. Metabolite profiling, yeast hybrid and promoter trans-activation assays further demonstrated that CsMYB128 negatively regulated flavonol biosynthesis by repressing CsFLS1 in flavonol biosynthesis and CsCBF1 in cold tolerance. Given CsCBF1 also activated CsMYB128 transcription, the negative feedback regulation loop indicates a balance between tea plant growth promoted by CsMYB128 and cold tolerance meanwhile growth inhibition by CsCBF1. Moreover, CsICE1 interacted with and inhibited CsMYB128 repressor activity to promote cold tolerance. CsMYB128 is thus characterized as an early cold-responsive gene negatively regulating tea plant cold response and balancing tea plant growth and cold tolerance. This study provides insights into the roles of CCA1 subfamily MYB TFs in regulating tea plant growth and interactions with environments.
Collapse
Affiliation(s)
- Shuwei Yu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China
| | - Hongjie Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xiaojia Zhang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying Gao
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiaojiao Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Changbo Yuan
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xinyu Liu
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuantao Yao
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lubing Song
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Xu Y, Zhou Q, Wang X, Meng X, Zhang Z, Zhang X, Zhang X, Niu S, Chen G, Liu L, Shen T. Metabolome and transcriptomics analyses reveal quality differences between Camellia tachangensis F. C. Zhang and C. sinensis (L.) O. Kunzte. PLoS One 2024; 19:e0314595. [PMID: 39637125 PMCID: PMC11620563 DOI: 10.1371/journal.pone.0314595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Tea ranks among the top three most beloved non-alcoholic beverages worldwide and boasts significant economic and health benefits. In addition to Camellia sinensis (L.) O. Kuntze, and other Camellia plants in China are consumed by residents as tea drinks, which also have important economic value. The present study introduces one of the wild tea species, namely, Camellia tachangensis F. C. Zhang. We analyzed changes in metabolite abundance and gene expression patterns of C. tachangensis and C. sinensis using metabonomics and transcriptomics. We found 1056 metabolites, including 256 differential metabolites (67 upregulated and 189 downregulated). Additionally, transcriptome analysis revealed 8049 differentially expressed genes, with 4418 upregulated and 3631 downregulated genes. C. sinensis boasts a notable abundance of Amino acids, which can be attributed to its specific genetic makeup. In Theanine and Caffeine metabolic pathways, the levels of the majority of amino acids and caffeine tend to decrease. In Flavonoid biosynthesis, the levels of the Flavanone Fustin and Epicatechin are higher in C. tachangensis, while Epigallocatechin and Gallocatechin levels are higher in C. sinensis. This indicates that the metabolic components of C. sinensis and C. tachangensis are not identical, which may result in a unique flavor.
Collapse
Affiliation(s)
- Yunfei Xu
- Guizhou Key Laboratory of Advanced Computing, Guizhou Normal University, Guiyang, China
- School of Cyber Science and Technology, Guizhou Normal University, Guiyang, China
| | - Qihang Zhou
- School of Mathematical Sciences, Guizhou Normal University, Guiyang, China
| | - Xinglin Wang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Xingpan Meng
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Zhengdong Zhang
- College of Computer Science, Guiyang University, Guiyang, China
| | - Xu Zhang
- Guizhou Caohai Wetland Ecosystem National Observation and Research Station, Guizhou Academy of Forestry Sciences, Guiyang, China
| | - Ximin Zhang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Suzhen Niu
- Institute of Agricultural and biological engineering, Guizhou University, Guiyang, China
| | - Guiping Chen
- School of International Education, Guizhou Normal University, Guiyang, China
| | - Lunxian Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Tie Shen
- Guizhou Key Laboratory of Advanced Computing, Guizhou Normal University, Guiyang, China
- School of Cyber Science and Technology, Guizhou Normal University, Guiyang, China
- School of Mathematical Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang, China
| |
Collapse
|
4
|
An H, Ou X, Chen Y, Huang Y, Ying J, Jiang Y, Yuan Y, Tan Y, Xie Y, Liu Z, Huang J, Li S. Scenting: An effective processing technology for enriching key flavor compounds and optimizing flavor quality of decaffeinated tea. Food Chem 2024; 467:142372. [PMID: 39657485 DOI: 10.1016/j.foodchem.2024.142372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Decaffeinated teas (DTs) are preferred for their low caffeine content, but their flavor was unsatisfactory. To explore and optimize the flavor of DT decaffeinated by supercritical carbon dioxide (SCD), the volatiles and non-volatiles were analyzed using mass spectrometry. Results showed that SCD results in the loss of the original tea flavor by reducing the volatiles associated with floral aroma and non-volatiles related to sweet and mellow. Scenting significantly optimized the comprehensive flavor of DTs by blending DTs with fresh jasmine. The aroma of DTs was improved by absorbing the high concentration of volatiles released by jasmine, and their jasmine taste resulted from the subsequent release of methyl anthranilate dissolved in tea infusion. Jasmine decaffeinated tea with a powerful and long-lasting jasmine aroma can be obtained with 100 % amount of flowers. The scenting provided in this study can effectively optimize the flavor of DTs, thereby positively impacting the development of DTs.
Collapse
Affiliation(s)
- Huimin An
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Xingchang Ou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Hunan Co - Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yiwen Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Jiaqi Ying
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Youcang Jiang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Yong Yuan
- Hunan Tea Group Co., Ltd, Changsha 410125, China
| | - Yueping Tan
- Hunan Tea Group Co., Ltd, Changsha 410125, China
| | - Yongxing Xie
- Hunan Tea Group Co., Ltd, Changsha 410125, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Hunan Co - Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| | - Shi Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
5
|
Zhang Y, Wang J, Xiao Y, Wu Y, Li N, Ding C, Hao X, Yu Y, Wang L, Wang X. CsWRKY12 interacts with CsVQ4L to promote the accumulation of galloylated catechins in tender leaves of tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2861-2873. [PMID: 39570713 DOI: 10.1111/tpj.17150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Galloylated catechins in tea leaves, primarily epigallocatechin-3-gallate (EGCG) and epicatechin gallate (ECG), possess prominent biological activities. It is well established that EGCG and ECG are abundantly present in tender leaves but are less prevalent in mature leaves. However, the fundamental regulatory mechanisms underlying this distribution remain unknown. In this study, we integrated transcriptome data and catechin component levels in tea leaves from six leaf positions using weighted gene co-expression network analysis. This analysis revealed a positive correlation between variations in CsWRKY12 expression and EGCG and ECG levels. Further investigation using yeast one-hybrid and dual-luciferase assays, as well as electrophoretic mobility shift assay, demonstrated that CsWRKY12 activated the transcription of CsSCPL4 and CsSCPL5, which encode enzymes responsible for galloylated catechins biosynthesis, by directly binding to W-box elements in their promoters. Overexpression of CsWRKY12 in tea leaves promoted the expression of CsSCPL4 and CsSCPL5, leading to an increase in EGCG and ECG content. Moreover, we found that a VQ motif-containing protein, CsVQ4L, interacted with CsWRKY12 and facilitated its transcriptional function by regulating the expression of CsSCPL4 and CsSCPL5. Collectively, our findings suggest that the interaction between CsWRKY12 and CsVQ4L contributes to the accumulation of galloylated catechins in tender leaves of tea plants.
Collapse
Affiliation(s)
- Yongheng Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Jie Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Yezi Xiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yedie Wu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Nana Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Changqing Ding
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Xinyuan Hao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Xinchao Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| |
Collapse
|
6
|
Yu S, Zuo H, Li P, Lu L, Li J, Zhou Z, Zhao S, Huang J, Liu Z, Zhu M, Zhao J. Strigolactones Regulate Secondary Metabolism and Nitrogen/Phosphate Signaling in Tea Plants via Transcriptional Reprogramming and Hormonal Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25860-25878. [PMID: 39520368 DOI: 10.1021/acs.jafc.4c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Strigolactones (SLs) are known to regulate plant architecture formation, nitrogen (N) and phosphorus (P) responses, and secondary metabolism, but their effects in tea plants remain unclear. We demonstrated that the application of a bioactive SL analogue GR24 either to tea roots or leaves initially stimulated but later inhibited catechins, theanine, and caffeine biosynthesis. GR24 treatment also promoted the accumulation of flavonols and insoluble proanthocyanidins in a time- and dose-dependent manner. GR24 influenced flavonoid and theanine biosynthesis genes, such as up-regulating CsTT2c, CsMYB12, and CsbZIP1, modulating N-responsive and assimilation genes (CsNRT1,1, CsGSI/TS1, CsHRS1, CsPHR1, CsNLA1, and CsLBD37/38/39), and repressing N/P transport and signaling genes (CsPHO2, CsPHT1s, CsNRT2,2, CsHHO1, and CsWRKY38). GR24-induced changes in secondary metabolites were also observed in the leaves of tea plants. GR24-regulated CsLBD37a interacted with CsTT8a and CsTT2c, repressing catechins biosynthesis by interrupting MBW complex formation. GR24 regulated caffeine biosynthesis and regulator genes CsS40 and CsNAC7 and may thereby suppress caffeine production. GR24 altered the transcriptomic profiles of multiple hormone biosynthesis and signaling genes that potentially regulate tea characteristic metabolism and N/P signaling. This study provides new insights into SL-induced transcriptional reprogramming that leads to changes in N/P nutrition, secondary metabolism, and hormone signaling in tea plants.
Collapse
Affiliation(s)
- Shuwei Yu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Tea Research institute, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| | - Hao Zuo
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Ping Li
- College of Tea Sciences, Institute of Plant Health & Medicine, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Litang Lu
- College of Tea Sciences, Institute of Plant Health & Medicine, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shancen Zhao
- Beijing Life Science Academy, Beijing 102200, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - MingZhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Jia X, Luo S, Ye X, Liu L, Wen W. Evolution of the biochemistry underpinning purine alkaloid metabolism in plants. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230366. [PMID: 39343019 PMCID: PMC11449220 DOI: 10.1098/rstb.2023.0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 10/01/2024] Open
Abstract
Purine alkaloids are naturally occurring nitrogenous methylated derivatives of purine nucleotide degradation products, having essential roles in medicine, food and various other aspects of our daily lives. They are generated through convergent evolution in different plant species. The pivotal reaction steps within the purine alkaloid metabolic pathways have been largely elucidated, and the convergent evolution of purine alkaloids has been substantiated through bioinformatic, biochemical and other research perspectives within S-adenosyl-ʟ-methionine-dependent N-methyltransferases. Currently, the biological and ecological roles of purine alkaloids, further refinement of the purine alkaloid metabolic pathways and the investigation of purine alkaloid adaptive evolutionary mechanisms continue to attract widespread research interest. The exploration of the purine alkaloid metabolic pathways also enhances our comprehension of the biochemical mechanism, providing insights into inter-species interactions and adaptive evolution and offering potential value in drug development and agricultural applications. Here, we review the progress of research in the distribution, metabolic pathway elucidation and regulation, evolutionary mechanism and ecological roles of purine alkaloids in plants. The opportunities and challenges involved in elucidating the biochemical basis and evolutionary mechanisms of the purine alkaloid metabolic pathways, as well as other research aspects, are also discussed. This article is part of the theme issue 'The evolution of plant meta-bolism'.
Collapse
Affiliation(s)
- Xinxin Jia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Shijie Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Xiali Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Lin Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| |
Collapse
|
8
|
Li J, Ren J, Zhang Q, Lei X, Feng Z, Tang L, Bai J, Gong C. Strigolactone enhances tea plant adaptation to drought and Phyllosticta theicola petch by regulating caffeine content via CsbHLH80. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109161. [PMID: 39378645 DOI: 10.1016/j.plaphy.2024.109161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Strigolactones (SLs) play crucial roles in both plant growth and stress responses. However, their impact on the secondary metabolites of woody plants remains elusive. Here, we found that exogenous strigolactone analogue GR24 positively regulates tea plant flavor secondary metabolites, concurrently inhibiting caffeine biosynthesis and promoting the accumulation of caffeine catabolic pathway products. In this process, SL directly or indirectly inhibits the expression of CsSAMSs by inducing CsbHLH80, thereby reducing caffeine biosynthesis. Furthermore, CsbHLH80 enhances caffeine degradation, leading to increased allantoin. Under normal conditions, heightened allantoin reduces abscisic acid (ABA) accumulation. This inhibition reverses under drought stress. Increased ABA significantly enhances tea plant tolerance to both drought and Phyllosticta theicola Petch. In summary, this study offers novel insights for improving tea plant adaptation and quality in arid regions, particularly emphasizing the selection of stress-tolerant varieties and the refinement of production measures with a focus on high-quality production and environmentally friendly biological control methods.
Collapse
Affiliation(s)
- Jiayang Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Jiejie Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Qiqi Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Xingyu Lei
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Zongqi Feng
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Lei Tang
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Juan Bai
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Lin S, Zhang Y, Zhang S, Wei Y, Han M, Deng Y, Guo J, Zhu B, Yang T, Xia E, Wan X, Lucas WJ, Zhang Z. Root-specific theanine metabolism and regulation at the single-cell level in tea plants ( Camellia sinensis). eLife 2024; 13:RP95891. [PMID: 39401074 PMCID: PMC11473105 DOI: 10.7554/elife.95891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Root-synthesized secondary metabolites are critical quality-conferring compounds of foods, plant-derived medicines, and beverages. However, information at a single-cell level on root-specific secondary metabolism remains largely unexplored. L-Theanine, an important quality component of tea, is primarily synthesized in roots, from which it is then transported to new shoots of tea plant. In this study, we present a single-cell RNA sequencing (scRNA-seq)-derived map for the tea plant root, which enabled cell-type-specific analysis of glutamate and ethylamine (two precursors of theanine biosynthesis) metabolism, and theanine biosynthesis, storage, and transport. Our findings support a model in which the theanine biosynthesis pathway occurs via multicellular compartmentation and does not require high co-expression levels of transcription factors and their target genes within the same cell cluster. This study provides novel insights into theanine metabolism and regulation, at the single-cell level, and offers an example for studying root-specific secondary metabolism in other plant systems.
Collapse
Affiliation(s)
- Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yiwen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Shupei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yijie Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Mengxue Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yamei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Jiayi Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, DavisDavisUnited States
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| |
Collapse
|
10
|
Fu M, Tian L, Zheng D, Gao Y, Sun C, Zhang S, Zhang Z, Wan X, Chen Q. Visualization of metabolite distribution based on matrix-assisted laser desorption/ionization-mass spectrometry imaging of tea seedlings ( Camellia sinensis). HORTICULTURE RESEARCH 2024; 11:uhae218. [PMID: 39398949 PMCID: PMC11469920 DOI: 10.1093/hr/uhae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024]
Abstract
Tea seedlings (Camellia sinensis) have a well-developed root system with a strong taproot and lateral roots. Compared with ordinary cuttings, tea has stronger vitality and environmental adaptability, thus facilitating the promotion of good varieties. However, there is less of detailed research on the rooting and germination process of tea seeds. In this study, matrix-assisted laser desorption ionization time-of-flight-mass spectrometry was used to conduct non-targeted spatial mass spectrometry imaging of the main organs during growth of tea seedlings. A total of 1234 compounds were identified, which could be divided into 24 classes. Among them, theanine, as the most prominent nitrogen compound, was synthesized rapidly at the early stage of embryo germination, accounting for >90% of the total free amino acids in the radicle, and it was then transferred to each meristem region through the mesocolumnar sheath, indicating that theanine-based nitrogen flow plays a decisive role in organ formation during the development of tea seedlings. Nutrients stored in the cotyledon were rapidly hydrolyzed to dextrin and 3-phosphoglyceraldehyde at the early stages of germination, and subsequently converted to other forms that provided carbon and energy for development, such as raffinose and d-galactose (glucose), which were mainly distributed in the growing zones of the root apex and the apical meristems of the stem. This study provides a new perspective on the synthesis and metabolism of substances during the development of tea seedlings and contributes to a better understanding of the biological characteristics of tea varieties.
Collapse
Affiliation(s)
- Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Liying Tian
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dongqiao Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yang Gao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chenyi Sun
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shihua Zhang
- College of Computer Science, South-Central Minzu University, Wuhan 430074, China
| | - ZhaoLiang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
12
|
Guo Z, Li C, Li X, Shao S, Rogers KM, Li Q, Li D, Guo H, Huang T, Yuan Y. Fertilizer Effects on the Nitrogen Isotope Composition of Soil and Different Leaf Locations of Potted Camellia sinensis over a Growing Season. PLANTS (BASEL, SWITZERLAND) 2024; 13:1628. [PMID: 38931060 PMCID: PMC11207308 DOI: 10.3390/plants13121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The nitrogen-stable isotopes of plants can be used to verify the source of fertilizers, but the fertilizer uptake patterns in tea (Camellia sinensis) plants are unclear. In this study, potted tea plants were treated with three types of organic fertilizers (OFs), urea, and a control. The tea leaves were sampled over seven months from the top, middle, and base of the plants and analyzed for the δ15N and nitrogen content, along with the corresponding soil samples. The top tea leaves treated with the rapeseed cake OF had the highest δ15N values (up to 6.6‱), followed by the chicken manure, the cow manure, the control, and the urea fertilizer (6.5‱, 4.1‱, 2.2‱, and 0.6‱, respectively). The soil treated with cow manure had the highest δ15N values (6.0‱), followed by the chicken manure, rapeseed cake, control, and urea fertilizer (4.8‱, 4.0‱, 2.5‱, and 1.9‱, respectively). The tea leaves fertilized with rapeseed cake showed only slight δ15N value changes in autumn but increased significantly in early spring and then decreased in late spring, consistent with the delivery of a slow-release fertilizer. Meanwhile, the δ15N values of the top, middle, and basal leaves from the tea plants treated with the rapeseed cake treatment were consistently higher in early spring and lower in autumn and late spring, respectively. The urea and control samples had lower tea leaf δ15N values than the rapeseed cake-treated tea and showed a generalized decrease in the tea leaf δ15N values over time. The results clarify the temporal nitrogen patterns and isotope compositions of tea leaves treated with different fertilizer types and ensure that the δ15N tea leaf values can be used to authenticate the organic fertilizer methods across different harvest periods and leaf locations. The present results based on a pot experiment require further exploration in open agricultural soils in terms of the various potential fertilizer effects on the different variations of nitrogen isotope ratios in tea plants.
Collapse
Affiliation(s)
- Zuchuang Guo
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Chunlin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
| | - Shengzhi Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| | - Karyne M. Rogers
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
- National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Qingsheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.L.)
| | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Q.L.)
| | - Haowei Guo
- Tea Research Institute, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tao Huang
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (C.L.); (K.M.R.)
| |
Collapse
|
13
|
Ruan H, Gao L, Fang Z, Lei T, Xing D, Ding Y, Rashid A, Zhuang J, Zhang Q, Gu C, Qian W, Zhang N, Qian T, Li K, Xia T, Wang Y. A flavonoid metabolon: cytochrome b 5 enhances B-ring trihydroxylated flavan-3-ols synthesis in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1793-1814. [PMID: 38461478 DOI: 10.1111/tpj.16710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Flavan-3-ols are prominent phenolic compounds found abundantly in the young leaves of tea plants. The enzymes involved in flavan-3-ol biosynthesis in tea plants have been extensively investigated. However, the localization and associations of these numerous functional enzymes within cells have been largely neglected. In this study, we aimed to investigate the synthesis of flavan-3-ols in tea plants, particularly focusing on epigallocatechin gallate. Our analysis involving the DESI-MSI method to reveal a distinct distribution pattern of B-ring trihydroxylated flavonoids, primarily concentrated in the outer layer of buds. Subcellular localization showed that CsC4H, CsF3'H, and CsF3'5'H localizes endoplasmic reticulum. Protein-protein interaction studies demonstrated direct associations between CsC4H, CsF3'H, and cytoplasmic enzymes (CHS, CHI, F3H, DFR, FLS, and ANR), highlighting their interactions within the biosynthetic pathway. Notably, CsF3'5'H, the enzyme for B-ring trihydroxylation, did not directly interact with other enzymes. We identified cytochrome b5 isoform C serving as an essential redox partner, ensuring the proper functioning of CsF3'5'H. Our findings suggest the existence of distinct modules governing the synthesis of different B-ring hydroxylation compounds. This study provides valuable insights into the mechanisms underlying flavonoid diversity and efficient synthesis and enhances our understanding of the substantial accumulation of B-ring trihydroxylated flavan-3-ols in tea plants.
Collapse
Affiliation(s)
- Haixiang Ruan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhou Fang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ting Lei
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Dawei Xing
- School of Biological and Environmental Engineering, Chaohu University, Chaohu, Anhui, 238024, China
| | - Yan Ding
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Arif Rashid
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Juhua Zhuang
- College of Tea Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qiang Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chunyang Gu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Wei Qian
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Niuniu Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Tao Qian
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Kongqing Li
- College of Humanities and Social Development, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
14
|
Yan X, Zhang A, Guan Y, Jiao J, Ghanim M, Zhang Y, He X, Shi R. Comparative Metabolome and Transcriptome Analyses Reveal Differential Enrichment of Metabolites with Age in Panax notoginseng Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:1441. [PMID: 38891250 PMCID: PMC11175106 DOI: 10.3390/plants13111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Panax notoginseng is a perennial plant well known for its versatile medicinal properties, including hepatoprotective, antioxidant, anti-inflammatory, anti-tumor, estrogen-like, and antidepressant characteristics. It has been reported that plant age affects the quality of P. notoginseng. This study aimed to explore the differential metabolome and transcriptome of 2-year (PN2) and 3-year-old (PN3) P. notoginseng plant root samples. Principal component analysis of metabolome and transcriptome data revealed major differences between the two groups (PN2 vs. PN3). A total of 1813 metabolites and 28,587 genes were detected in this study, of which 255 metabolites and 3141 genes were found to be differential (p < 0.05) between PN2 vs. PN3, respectively. Among differential metabolites and genes, 155 metabolites and 1217 genes were up-regulated, while 100 metabolites and 1924 genes were down-regulated. The KEGG pathway analysis revealed differentially enriched metabolites belonging to class lipids ("13S-hydroperoxy-9Z, 11E-octadecadionic acid", "9S-hydroxy-10E, 12Z-octadecadionic acid", "9S-oxo-10E, 12Z-octadecadionic acid", and "9,10,13-trihydroxy-11-octadecadionic acid"), nucleotides and derivatives (guanine and cytidine), and phenolic acids (chlorogenic acid) were found to be enriched (p < 0.05) in PN3 compared to PN2. Further, these differentially enriched metabolites were found to be significantly (p < 0.05) regulated via linoleic acid metabolism, nucleotide metabolism, plant hormone signal transduction, and arachidonic acid metabolism pathways. Furthermore, the transcriptome analysis showed the up-regulation of key genes MAT, DMAS, SDH, gallate 1-beta-glucosyltransferase, and beta-D-glucosidase in various plants' secondary metabolic pathways and SAUR, GID1, PP2C, ETR, CTR1, EBF1/2, and ERF1/2 genes observed in phytohormone signal transduction pathway that is involved in plant growth and development, and protection against the various stressors. This study concluded that the roots of a 3-year-old P. notoginseng plant have better metabolome and transcriptome profiles compared to a 2-year-old plant with importantly enriched metabolites and genes in pathways related to metabolism, plant hormone signal transduction, and various biological processes. These findings provide insights into the plant's dynamic biochemical and molecular changes during its growth that have several implications regarding its therapeutic use.
Collapse
Affiliation(s)
- Xinru Yan
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Ao Zhang
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Yiming Guan
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
| | - Jinlong Jiao
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Murad Ghanim
- Department of Entomology, Institute of Plant Protection, 68 Hamaccabim Road, Rishon LeZion 7505101, Israel;
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Rui Shi
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| |
Collapse
|
15
|
Duan Y, Wang T, Zhang P, Zhao X, Jiang J, Ma Y, Zhu X, Fang W. The effect of intercropping leguminous green manure on theanine accumulation in the tea plant: A metagenomic analysis. PLANT, CELL & ENVIRONMENT 2024; 47:1141-1159. [PMID: 38098148 DOI: 10.1111/pce.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 03/05/2024]
Abstract
Intercropping is a widely recognised technique that contributes to agricultural sustainability. While intercropping leguminous green manure offers advantages for soil health and tea plants growth, the impact on the accumulation of theanine and soil nitrogen cycle are largely unknown. The levels of theanine, epigallocatechin gallate and soluble sugar in tea leaves increased by 52.87% and 40.98%, 22.80% and 6.17%, 22.22% and 29.04% in intercropping with soybean-Chinese milk vetch rotation and soybean alone, respectively. Additionally, intercropping significantly increased soil amino acidnitrogen content, enhanced extracellular enzyme activities, particularly β-glucosidase and N-acetyl-glucosaminidase, as well as soil multifunctionality. Metagenomics analysis revealed that intercropping positively influenced the relative abundances of several potentially beneficial microorganisms, including Burkholderia, Mycolicibacterium and Paraburkholderia. Intercropping resulted in lower expression levels of nitrification genes, reducing soil mineral nitrogen loss and N2 O emissions. The expression of nrfA/H significantly increased in intercropping with soybean-Chinese milk vetch rotation. Structural equation model analysis demonstrated that the accumulation of theanine in tea leaves was directly influenced by the number of intercropping leguminous green manure species, soil ammonium nitrogen and amino acid nitrogen. In summary, the intercropping strategy, particularly intercropping with soybean-Chinese milk vetch rotation, could be a novel way for theanine accumulation.
Collapse
Affiliation(s)
- Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ting Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Peixi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xinjie Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Qiu H, Zhang X, Zhang Y, Jiang X, Ren Y, Gao D, Zhu X, Usadel B, Fernie AR, Wen W. Depicting the genetic and metabolic panorama of chemical diversity in the tea plant. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1001-1016. [PMID: 38048231 PMCID: PMC10955498 DOI: 10.1111/pbi.14241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
As a frequently consumed beverage worldwide, tea is rich in naturally important bioactive metabolites. Combining genetic, metabolomic and biochemical methodologies, here, we present a comprehensive study to dissect the chemical diversity in tea plant. A total of 2837 metabolites were identified at high-resolution with 1098 of them being structurally annotated and 63 of them were structurally identified. Metabolite-based genome-wide association mapping identified 6199 and 7823 metabolic quantitative trait loci (mQTL) for 971 and 1254 compounds in young leaves (YL) and the third leaves (TL), respectively. The major mQTL (i.e., P < 1.05 × 10-5, and phenotypic variation explained (PVE) > 25%) were further interrogated. Through extensive annotation of the tea metabolome as well as network-based analysis, this study broadens the understanding of tea metabolism and lays a solid foundation for revealing the natural variations in the chemical composition of the tea plant. Interestingly, we found that galloylations, rather than hydroxylations or glycosylations, were the largest class of conversions within the tea metabolome. The prevalence of galloylations in tea is unusual, as hydroxylations and glycosylations are typically the most prominent conversions of plant specialized metabolism. The biosynthetic pathway of flavonoids, which are one of the most featured metabolites in tea plant, was further refined with the identified metabolites. And we demonstrated the further mining and interpretation of our GWAS results by verifying two identified mQTL (including functional candidate genes CsUGTa, CsUGTb, and CsCCoAOMT) and completing the flavonoid biosynthetic pathway of the tea plant.
Collapse
Affiliation(s)
- Haiji Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Xiaoliang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Youjun Zhang
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Xiaohui Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yujia Ren
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Dawei Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xiang Zhu
- Thermo Fisher ScientificShanghaiChina
| | - Björn Usadel
- Institute of Bio‐ and Geosciences, IBG‐4: Bioinformatics, CEPLAS, Forschungszentrum JülichJülichGermany
- Institute for Biological Data ScienceHeinrich Heine UniversityDüsseldorfGermany
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
17
|
Han M, Lin S, Zhu B, Tong W, Xia E, Wang Y, Yang T, Zhang S, Wan X, Liu J, Niu Q, Zhu J, Bao S, Zhang Z. Dynamic DNA Methylation Regulates Season-Dependent Secondary Metabolism in the New Shoots of Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3984-3997. [PMID: 38357888 DOI: 10.1021/acs.jafc.3c08568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Plant secondary metabolites are critical quality-conferring compositions of plant-derived beverages, medicines, and industrial materials. The accumulations of secondary metabolites are highly variable among seasons; however, the underlying regulatory mechanism remains unclear, especially in epigenetic regulation. Here, we used tea plants to explore an important epigenetic mark DNA methylation (5mC)-mediated regulation of plant secondary metabolism in different seasons. Multiple omics analyses were performed on spring and summer new shoots. The results showed that flavonoids and theanine metabolism dominated in the metabolic response to seasons in the new shoots. In summer new shoots, the genes encoding DNA methyltransferases and demethylases were up-regulated, and the global CG and CHG methylation reduced and CHH methylation increased. 5mC methylation in promoter and gene body regions influenced the seasonal response of gene expression; the amplitude of 5mC methylation was highly correlated with that of gene transcriptions. These differentially methylated genes included those encoding enzymes and transcription factors which play important roles in flavonoid and theanine metabolic pathways. The regulatory role of 5mC methylation was further verified by applying a DNA methylation inhibitor. These findings highlight that dynamic DNA methylation plays an important role in seasonal-dependent secondary metabolism and provide new insights for improving tea quality.
Collapse
Affiliation(s)
- Mengxue Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Hefei, Anhui 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Hefei, Anhui 230036, China
| | - Yuanrong Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Hefei, Anhui 230036, China
| | - Shupei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Hefei, Anhui 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Hefei, Anhui 230036, China
| | - Jianjun Liu
- College of Tea Sciences, Guizhou University, Guiyang 550025, China
| | - Qingfeng Niu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jianhua Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Hefei, Anhui 230036, China
| |
Collapse
|
18
|
Xin W, Zhang J, Yu Y, Tian Y, Li H, Chen X, Li W, Liu Y, Lu T, He B, Xiong Y, Yang Z, Xu T, Tang W. Root microbiota of tea plants regulate nitrogen homeostasis and theanine synthesis to influence tea quality. Curr Biol 2024; 34:868-880.e6. [PMID: 38366595 DOI: 10.1016/j.cub.2024.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/26/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
The flavor profile of tea is influenced not only by different tea varieties but also by the surrounding soil environment. Recent studies have indicated the regulatory role of soil microbes residing in plant roots in nutrient uptake and metabolism. However, the impact of this regulatory mechanism on tea quality remains unclear. In this study, we showed that a consortium of microbes isolated from tea roots enhanced ammonia uptake and facilitated the synthesis of theanine, a key determinant of tea taste. Variations were observed in the composition of microbial populations colonizing tea roots and the rhizosphere across different seasons and tea varieties. By comparing the root microorganisms of the high-theanine tea variety Rougui with the low-theanine variety Maoxie, we identified a specific group of microbes that potentially modulate nitrogen metabolism, subsequently influencing the theanine levels in tea. Furthermore, we constructed a synthetic microbial community (SynCom) mirroring the microbe population composition found in Rougui roots. Remarkably, applying SynCom resulted in a significant increase in the theanine content of tea plants and imparted greater tolerance to nitrogen deficiency in Arabidopsis. Our study provides compelling evidence supporting the use of root microorganisms as functional microbial fertilizers to enhance tea quality.
Collapse
Affiliation(s)
- Wei Xin
- College of Horticulture, School of Future Technology, and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, Fujian, China
| | - Jianming Zhang
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, Fujian, China
| | - Yongdong Yu
- College of Horticulture, School of Future Technology, and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yunhe Tian
- College of Horticulture, School of Future Technology, and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hao Li
- College of Horticulture, School of Future Technology, and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaolu Chen
- College of Horticulture, School of Future Technology, and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wei Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanlin Liu
- College of Horticulture, School of Future Technology, and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ting Lu
- College of Horticulture, School of Future Technology, and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Biyun He
- College of Horticulture, School of Future Technology, and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yan Xiong
- College of Horticulture, School of Future Technology, and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhenbiao Yang
- College of Horticulture, School of Future Technology, and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, P.R. China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P.R. China.
| | - Tongda Xu
- College of Horticulture, School of Future Technology, and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Wenxin Tang
- College of Horticulture, School of Future Technology, and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
19
|
Zhang J, Yu Y, Qian X, Zhang X, Li X, Sun X. Recent Advances in the Specialized Metabolites Mediating Resistance to Insect Pests and Pathogens in Tea Plants ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2024; 13:323. [PMID: 38276780 PMCID: PMC10818678 DOI: 10.3390/plants13020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Tea is the second most popular nonalcoholic beverage consumed in the world, made from the buds and young leaves of the tea plants (Camellia sinensis). Tea trees, perennial evergreen plants, contain abundant specialized metabolites and suffer from severe herbivore and pathogen attacks in nature. Thus, there has been considerable attention focusing on investigating the precise function of specialized metabolites in plant resistance against pests and diseases. In this review, firstly, the responses of specialized metabolites (including phytohormones, volatile compounds, flavonoids, caffeine, and L-theanine) to different attacks by pests and pathogens were compared. Secondly, research progress on the defensive functions and action modes of specialized metabolites, along with the intrinsic molecular mechanisms in tea plants, was summarized. Finally, the critical questions about specialized metabolites were proposed for better future research on phytohormone-dependent biosynthesis, the characteristics of defense responses to different stresses, and molecular mechanisms. This review provides an update on the biological functions of specialized metabolites of tea plants in defense against two pests and two pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoling Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Z.); (Y.Y.); (X.Q.); (X.Z.); (X.L.)
| |
Collapse
|
20
|
Lang Z, Xu Z, Li L, He Y, Zhao Y, Zhang C, Hong G, Zhang X. Comprehensive Genomic Analysis of Trihelix Family in Tea Plant ( Camellia sinensis) and Their Putative Roles in Osmotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 13:70. [PMID: 38202377 PMCID: PMC10780335 DOI: 10.3390/plants13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In plants, Trihelix transcription factors are responsible for regulating growth, development, and reaction to various abiotic stresses. However, their functions in tea plants are not yet fully understood. This study identified a total of 40 complete Trihelix genes in the tea plant genome, which are classified into five clades: GT-1 (5 genes), GT-2 (8 genes), GTγ (2 genes), SH4 (7 genes), and SIP1 (18 genes). The same subfamily exhibits similar gene structures and functional domains. Chromosomal mapping analysis revealed that chromosome 2 has the most significant number of trihelix family members. Promoter analysis identified cis-acting elements in C. sinensis trihelix (CsTH), indicating their potential to respond to various phytohormones and stresses. The expression analysis of eight representative CsTH genes from four subfamilies showed that all CsTHs were expressed in more tissues, and three CsTHs were significantly induced under ABA, NaCl, and drought stress. This suggests that CsTHs plays an essential role in tea plant growth, development, and response to osmotic stress. Furthermore, yeast strains have preliminarily proven that CsTH28, CsTH36, and CsTH39 can confer salt and drought tolerance. Our study provides insights into the phylogenetic relationships and functions of the trihelix transcription factors in tea plants. It also presents new candidate genes for stress-tolerance breeding.
Collapse
Affiliation(s)
- Zhuoliang Lang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Zelong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Gaojie Hong
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| |
Collapse
|
21
|
Zhang Y, Wang L, Kong X, Chen Z, Zhong S, Li X, Shan R, You X, Wei K, Chen C. Integrated Analysis of Metabolome and Transcriptome Revealed Different Regulatory Networks of Metabolic Flux in Tea Plants [ Camellia sinensis (L.) O. Kuntze] with Varied Leaf Colors. Int J Mol Sci 2023; 25:242. [PMID: 38203412 PMCID: PMC10779186 DOI: 10.3390/ijms25010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Leaf color variations in tea plants were widely considered due to their attractive phenotypes and characteristic flavors. The molecular mechanism of color formation was extensively investigated. But few studies focused on the transformation process of leaf color change. In this study, four strains of 'Baijiguan' F1 half-sib generation with similar genetic backgrounds but different colors were used as materials, including Green (G), Yellow-Green (Y-G), Yellow (Y), and Yellow-Red (Y-R). The results of broadly targeted metabolomics showed that 47 metabolites were differentially accumulated in etiolated leaves (Y-G, Y, and Y-R) as compared with G. Among them, lipids were the main downregulated primary metabolites in etiolated leaves, which were closely linked with the thylakoid membrane and chloroplast structure. Flavones and flavonols were the dominant upregulated secondary metabolites in etiolated leaves, which might be a repair strategy for reducing the negative effects of dysfunctional chloroplasts. Further integrated analysis with the transcriptome indicated different variation mechanisms of leaf phenotype in Y-G, Y, and Y-R. The leaf color formation of Y-G and Y was largely determined by the increased content of eriodictyol-7-O-neohesperidoside and the enhanced activities of its modification process, while the color formation of Y-R depended on the increased contents of apigenin derivates and the vigorous processes of their transportation and transcription factor regulation. The key candidate genes, including UDPG, HCT, CsGSTF1, AN1/CsMYB75, and bHLH62, might play important roles in the flavonoid pathway.
Collapse
Affiliation(s)
- Yazhen Zhang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China;
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Zhihui Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Sitong Zhong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Ruiyang Shan
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Xiaomei You
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China;
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| |
Collapse
|
22
|
Lei X, Li H, Li P, Zhang H, Han Z, Yang B, Duan Y, Njeri NS, Yang D, Zheng J, Ma Y, Zhu X, Fang W. Genome-Wide Association Studies of Biluochun Tea Plant Populations in Dongting Mountain and Comprehensive Identification of Candidate Genes Associated with Core Agronomic Traits by Four Analysis Models. PLANTS (BASEL, SWITZERLAND) 2023; 12:3719. [PMID: 37960075 PMCID: PMC10650078 DOI: 10.3390/plants12213719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
The elite germplasm resources are key to the beautiful appearance and pleasant flavor of Biluochun tea. We collected and measured the agronomic traits of 95 tea plants to reveal the trait diversity and breeding value of Biluochun tea plant populations. The results revealed that the agronomic traits of Biluochun tea plant populations were diverse and had high breeding value. Additionally, we resequenced these tea plant populations to reveal genetic diversity, population structure, and selection pressure. The Biluochun tea plant populations contained two groups and were least affected by natural selection based on the results of population structure and selection pressure. More importantly, four non-synonymous single nucleotide polymorphisms (nsSNPs) and candidate genes associated with (-)-gallocatechin gallate (GCG), (-)-gallocatechin (GC), and caffeine (CAF) were detected using at least two GWAS models. The results will promote the development and application of molecular markers and the utilization of elite germplasm from Biluochun populations.
Collapse
Affiliation(s)
- Xiaogang Lei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Haoyu Li
- Dongshan Agriculture and Forestry Service Station, Suzhou 215100, China; (H.L.); (D.Y.); (J.Z.)
| | - Pingping Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Huan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Zhaolan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Bin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Ndombi Salome Njeri
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Daqiang Yang
- Dongshan Agriculture and Forestry Service Station, Suzhou 215100, China; (H.L.); (D.Y.); (J.Z.)
| | - Junhua Zheng
- Dongshan Agriculture and Forestry Service Station, Suzhou 215100, China; (H.L.); (D.Y.); (J.Z.)
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (P.L.); (H.Z.); (Z.H.); (B.Y.); (Y.D.); (N.S.N.); (Y.M.); (X.Z.)
| |
Collapse
|
23
|
Wang X, Zhou R, Zhao S, Niu S. An Integrated Analysis of microRNAs and the Transcriptome Reveals the Molecular Mechanisms Underlying the Regulation of Leaf Development in Xinyang Maojian Green Tea ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2023; 12:3665. [PMID: 37960023 PMCID: PMC10649745 DOI: 10.3390/plants12213665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Xinyang Maojian (XYMJ) tea is one of the world's most popular green teas; the development of new sprouts directly affects the yield and quality of tea products, especially for XYMJ, which has hairy tips. Here, we used transcriptome and small RNA sequencing to identify mRNAs and miRNAs, respectively, involved in regulating leaf development in different plant tissues (bud, leaf, and stem). We identified a total of 381 conserved miRNAs. Given that no genomic data for XYMJ green tea are available, we compared the sequencing data for XYMJ green tea with genomic data from a closely related species (Tieguanyin) and the Camellia sinensis var. sinensis database; we identified a total of 506 and 485 novel miRNAs, respectively. We also identified 11 sequence-identical novel miRNAs in the tissues of XYMJ tea plants. Correlation analyses revealed 97 miRNA-mRNA pairs involved in leaf growth and development; the csn-miR319-2/csnTCP2 and miR159-csnMYB modules were found to be involved in leaf development in XYMJ green tea. Quantitative real-time PCR was used to validate the expression levels of the miRNAs and mRNAs. The miRNAs and target genes identified in this study might shed new light on the molecular mechanisms underlying the regulation of leaf development in tea plants.
Collapse
Affiliation(s)
- Xianyou Wang
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Ruijin Zhou
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Shanshan Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shengyang Niu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
24
|
Zhang Y, Zhang Q, Wang Y, Lin S, Chen M, Cheng P, Du M, Jia X, Ye J, Wang H. Study on the effect of magnesium on leaf metabolites, growth and quality of tea tree. FRONTIERS IN PLANT SCIENCE 2023; 14:1192151. [PMID: 37746019 PMCID: PMC10514580 DOI: 10.3389/fpls.2023.1192151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
Magnesium (Mg) is one of the essential elements for the growth of tea trees. In this study, we investigated changes in metabolites, photosynthetic fluorescence parameters and quality indexes of tea leaves under different concentrations of magnesium treatment, and the results showed that there were no significant differences in the quantity and total content of metabolites in tea leaves under different Mg concentrations. The results of volcano map analysis showed that the content of 235 metabolites in tea leaves showed an increasing trend and the content of 243 metabolites showed a decreasing trend with the increase of Mg concentration. The results of the combined analysis of the OPLS-DA model and bubble map showed that 45 characteristic metabolites were screened at different concentrations of Mg. Among these, the content of 24 characteristic metabolites showed an increasing trend and 21 characteristic metabolites showed a decreasing trend with the increase of Mg concentrations. The results of KEEG pathway enrichment showed that 24 characteristic metabolites with a upward trend were significantly enriched in saccharides metabolism, nucleic acid metabolism and vitamin metabolism, while the 21 characteristic metabolites with a downward trend were enriched in the synthesis of plant secondary metabolites, phenylpropanoid biosynthesis, biosynthesis of terpenoids, synthesis and metabolism of alkaloids, and synthesis and metabolism of amino acids. It can be inferred that Mg regulation was beneficial to enhance the photosynthetic capacity of tea trees, improve the accumulation and metabolism of carbohydrate substances in tea trees, and thus promoted the growth of tea trees, but was not conducive to the synthesis of secondary metabolites and amino acids related to tea quality. The results of photosynthetic fluorescence parameters and quality indexes of the tea tree confirmed the conclusion predicted by metabolomics. This study provided a reference for regulating of the growth and quality of tea trees with Mg fertilizer in tea plantations.
Collapse
Affiliation(s)
- Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyuan Cheng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengru Du
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
25
|
Li Y, Chen Y, Chen J, Shen C. Flavonoid metabolites in tea plant (Camellia sinensis) stress response: Insights from bibliometric analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107934. [PMID: 37572493 DOI: 10.1016/j.plaphy.2023.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
In the context of global climate change, tea plants are at risk from elevating environmental stress factors. Coping with this problem relies upon the understanding of tea plant stress response and its underlying mechanisms. Over the past two decades, research in this field has prospered with the contributions of scientists worldwide. Aiming in providing a comprehensive perspective of the research field related to tea plant stress response, we present a bibliometric analysis of the this area. Our results demonstrate the most studied stresses, global contribution, authorship and collaboration, and trending research topics. We highlight the importance of flavonoid metabolites in tea plant stress response, particularly their role in maintaining redox homeostasis, yield, and adjusting tea quality under stress conditions. Further research on the flavonoid response under various stress conditions can promote the development of cultivation measures, thereby improving stress resistance and tea quality.
Collapse
Affiliation(s)
- YunFei Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - YiQin Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - JiaHao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - ChengWen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
26
|
Du Y, Lin Y, Zhang K, Rothenberg DO, Zhang H, Zhou H, Su H, Zhang L. The Chemical Composition and Transcriptome Analysis Reveal the Mechanism of Color Formation in Tea ( Camellia sinensis) Pericarp. Int J Mol Sci 2023; 24:13198. [PMID: 37686006 PMCID: PMC10487661 DOI: 10.3390/ijms241713198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
To elucidate the molecular mechanisms underlying the differential metabolism of albino (white), green, and purple pericarp coloration, biochemical profiling and transcriptome sequencing analyses were performed on three different tea pericarps, Zhongbaiyihao (Camellia sinensis L. var. Zhongbai), Jinxuan (Camellia sinensis L. var. Jinxuan), and Baitangziya (Camellia sinensis L. var. Baitang). Results of biochemical analysis revealed that low chlorophyll content and low chlorophyll/carotene ratio may be the biochemical basis for albino characteristics in the 'Zhongbaiyihao' pericarp. The differentially expressed genes (DEGs) involved in anthocyanin biosynthesis, including DFR, F3'5'H, CCoAOMT, and 4-coumaroyl-CoA, were highly expressed in the purple 'Baitangziya' pericarp. In the chlorophyll synthesis of white pericarp, GUN5 (Genome Uncoupled 5) and 8-vinyl-reductase both showed high expression levels compared to the green one, which indicated that albino 'Zhongbaiyihao' pericarp had a higher chlorophyll synthesis capacity than 'Jinxuan'. Meanwhile, chlorophyllase (CLH, CSS0004684) was lower in 'Baitang' than in 'Jinxuan' and 'Zhongbaiyihao' pericarp. Among the differentially expressed transcription factors, MYB59, WRKY41-like2 (CS ng17509), bHLH62 like1 (CS ng6804), and bHLH62-like3 (CSS0039948) were downregulated in Jinxuan pericarp, suggesting that transcription factors played a role in regulating tea pericarp coloration. These findings provide a better understanding of the molecular mechanisms and theoretical basis for utilizing functional components of tea pericarp.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lingyun Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510640, China; (Y.D.); (Y.L.); (K.Z.); (D.O.R.); (H.Z.); (H.Z.); (H.S.)
| |
Collapse
|
27
|
Li H, Song K, Zhang X, Wang D, Dong S, Liu Y, Yang L. Application of Multi-Perspectives in Tea Breeding and the Main Directions. Int J Mol Sci 2023; 24:12643. [PMID: 37628823 PMCID: PMC10454712 DOI: 10.3390/ijms241612643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tea plants are an economically important crop and conducting research on tea breeding contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the requirements of the public. This study reviews the current status of tea plants germplasm resources and their utilization, which has provided genetic material for the application of multi-omics, including genomics and transcriptomics in breeding. Various molecular markers for breeding were designed based on multi-omics, and available approaches in the direction of high yield, quality and resistance in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-cellomics, pangenomics, plant-microbe interactions and epigenetics are proposed and provided as references. This study aims to provide inspiration and guidance for advancing the development of genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
28
|
Zhao X, Li P, Zuo H, Peng A, Lin J, Li P, Wang K, Tang Q, Tadege M, Liu Z, Zhao J. CsMYBL2 homologs modulate the light and temperature stress-regulated anthocyanin and catechins biosynthesis in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1051-1070. [PMID: 37162381 DOI: 10.1111/tpj.16279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Anthocyanin and catechin production in tea (Camellia sinensis) leaves can positively affect tea quality; however, their regulatory mechanisms are not fully understood. Here we report that, while the CsMYB75- or CsMYB86-directed MYB-bHLH-WD40 (MBW) complexes differentially activate anthocyanin or catechin biosynthesis in tea leaves, respectively, CsMYBL2a and CsMYBL2b homologs negatively modified the light- and temperature-induced anthocyanin and catechin production in both Arabidopsis and tea plants. The MBW complexes activated both anthocyanin synthesis genes and the downstream repressor genes CsMYBL2a and CsMYBL2b. Overexpression of CsMYBL2b, but not CsMYBL2a, repressed Arabidopsis leaf anthocyanin accumulation and seed coat proanthocyanin production. CsMYBL2b strongly and CsMYBL2a weakly repressed the activating effects of CsMYB75/CsMYB86 on CsDFR and CsANS, due to their different EAR and TLLLFR domains and interactions with CsTT8/CsGL3, interfering with the functions of activating MBW complexes. CsMYBL2b and CsMYBL2a in tea leaves play different roles in fine-tuning CsMYB75/CsMYB86-MBW activation of biosynthesis of anthocyanins and catechins, respectively. The CsbZIP1-CsmiR858a-CsMYBL2 module mediated the UV-B- or cold-activated CsMYB75/CsMYB86 regulation of anthocyanin/catechin biosynthesis by repressing CsMYBL2a and CsMYBL2b. Similarly, the CsCOP1-CsbZIP1-CsPIF3 module, and BR signaling as well, mediated the high temperature repression of anthocyanin and catechin biosynthesis through differentially upregulating CsMYBL2b and CsMYBL2a, respectively. The present study provides new insights into the complex regulatory networks in environmental stress-modified flavonoid production in tea plant leaves.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Anqi Peng
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Junming Lin
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
29
|
Mo L, Yao X, Tang H, Li Y, Jiao Y, He Y, Jiang Y, Tian S, Lu L. Genome-Wide Investigation and Functional Analysis Reveal That CsKCS3 and CsKCS18 Are Required for Tea Cuticle Wax Formation. Foods 2023; 12:2011. [PMID: 37238828 PMCID: PMC10217411 DOI: 10.3390/foods12102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cuticular wax is a complex mixture of very long-chain fatty acids (VLCFAs) and their derivatives that constitute a natural barrier against biotic and abiotic stresses on the aerial surface of terrestrial plants. In tea plants, leaf cuticular wax also contributes to the unique flavor and quality of tea products. However, the mechanism of wax formation in tea cuticles is still unclear. The cuticular wax content of 108 germplasms (Niaowang species) was investigated in this study. The transcriptome analysis of germplasms with high, medium, and low cuticular wax content revealed that the expression levels of CsKCS3 and CsKCS18 were strongly associated with the high content of cuticular wax in leaves. Hence, silencing CsKCS3 and CsKCS18 using virus-induced gene silencing (VIGS) inhibited the synthesis of cuticular wax and caffeine in tea leaves, indicating that expression of these genes is necessary for the synthesis of cuticular wax in tea leaves. The findings contribute to a better understanding of the molecular mechanism of cuticular wax formation in tea leaves. The study also revealed new candidate target genes for further improving tea quality and flavor and cultivating high-stress-resistant tea germplasms.
Collapse
Affiliation(s)
- Lilai Mo
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Hu Tang
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yan Li
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
- Department of Agricultural Engineering, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Yujie Jiao
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yumei He
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yihe Jiang
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Shiyu Tian
- Department of Agricultural Engineering, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Litang Lu
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| |
Collapse
|
30
|
Chang M, Ma J, Sun Y, Fu M, Liu L, Chen Q, Zhang Z, Song C, Sun J, Wan X. Role of Endophytic Bacteria in the Remobilization of Leaf Nitrogen Mediated by CsEGGT in Tea Plants ( Camellia sinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5208-5218. [PMID: 36970979 DOI: 10.1021/acs.jafc.2c08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important economic plant, tea (Camellia sinensis) has a good economic value and significant health effects. Theanine is an important nitrogen reservoir, and its synthesis and degradation are considered important for nitrogen storage and remobilization in tea plants. Our previous research indicated that the endophyte CsE7 participates in the synthesis of theanine in tea plants. Here, the tracking test confirmed that CsE7 tended to be exposed to mild light and preferentially colonized mature tea leaves. CsE7 also participated in glutamine, theanine, and glutamic acid circulatory metabolism (Gln-Thea-Glu) and contributed to nitrogen remobilization, mediated by the γ-glutamyl-transpeptidase (CsEGGT) with hydrolase preference. The reisolation and inoculation of endophytes further verified their role in accelerating the remobilization of nitrogen, especially in the reuse of theanine and glutamine. This is the first report about the photoregulated endophytic colonization and the positive effect of endophytes on tea plants mediated and characterized by promoting leaf nitrogen remobilization.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| |
Collapse
|
31
|
Tan X, Li H, Zhang Z, Yang Y, Jin Z, Chen W, Tang D, Wei C, Tang Q. Characterization of the Difference between Day and Night Temperatures on the Growth, Photosynthesis, and Metabolite Accumulation of Tea Seedlings. Int J Mol Sci 2023; 24:ijms24076718. [PMID: 37047691 PMCID: PMC10095163 DOI: 10.3390/ijms24076718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Currently, the effects of the differences between day and night temperatures (DIFs) on tea plant are poorly understood. In order to investigate the influence of DIFs on the growth, photosynthesis, and metabolite accumulation of tea plants, the plants were cultivated under 5 °C (25/20 °C, light/dark), 10 °C (25/15 °C, light/dark), and 15 °C (25/10 °C, light/dark). The results showed that the growth rate of the new shoots decreased with an increase in the DIFs. There was a downward trend in the photosynthesis among the treatments, as evidenced by the lowest net photosynthetic rate and total chlorophyll at a DIF of 15 °C. In addition, the DIFs significantly affected the primary and secondary metabolites. In particular, the 10 °C DIF treatment contained the lowest levels of soluble sugars, tea polyphenols, and catechins but was abundant in caffeine and amino acids, along with high expression levels of theanine synthetase (TS3) and glutamate synthase (GOGAT). Furthermore, the transcriptome data revealed that the differentially expressed genes were enriched in valine, leucine, and isoleucine degradation, flavone/flavonol biosyntheses, flavonoid biosynthesis, etc. Therefore, we concluded that a DIF of 10 °C was suitable for the protected cultivation of tea plants in terms of the growth and the quality of a favorable flavor of tea, which provided a scientific basis for the protected cultivation of tea seedlings.
Collapse
Affiliation(s)
- Xiaoqin Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huili Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongyue Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanjuan Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen Jin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dandan Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoling Wei
- The State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
32
|
Han J, Wang X, Niu S. Genome-Wide Identification of 2-Oxoglutarate and Fe (II)-Dependent Dioxygenase (2ODD-C) Family Genes and Expression Profiles under Different Abiotic Stresses in Camellia sinensis (L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1302. [PMID: 36986990 PMCID: PMC10051519 DOI: 10.3390/plants12061302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
The 2-oxoglutarate and Fe (II)-dependent dioxygenase (2ODD-C) family of 2-oxoglutarate-dependent dioxygenases potentially participates in the biosynthesis of various metabolites under various abiotic stresses. However, there is scarce information on the expression profiles and roles of 2ODD-C genes in Camellia sinensis. We identified 153 Cs2ODD-C genes from C. sinensis, and they were distributed unevenly on 15 chromosomes. According to the phylogenetic tree topology, these genes were divided into 21 groups distinguished by conserved motifs and an intron/exon structure. Gene-duplication analyses revealed that 75 Cs2ODD-C genes were expanded and retained after WGD/segmental and tandem duplications. The expression profiles of Cs2ODD-C genes were explored under methyl jasmonate (MeJA), polyethylene glycol (PEG), and salt (NaCl) stress treatments. The expression analysis showed that 14, 13, and 49 Cs2ODD-C genes displayed the same expression pattern under MeJA and PEG treatments, MeJA and NaCl treatments, and PEG and NaCl treatments, respectively. A further analysis showed that two genes, Cs2ODD-C36 and Cs2ODD-C21, were significantly upregulated and downregulated after MeJA, PEG, and NaCl treatments, indicating that these two genes played positive and negative roles in enhancing the multi-stress tolerance. These results provide candidate genes for the use of genetic engineering technology to modify plants by enhancing multi-stress tolerance to promote phytoremediation efficiency.
Collapse
|
33
|
Yang G, Meng Q, Shi J, Zhou M, Zhu Y, You Q, Xu P, Wu W, Lin Z, Lv H. Special tea products featuring functional components: Health benefits and processing strategies. Compr Rev Food Sci Food Saf 2023; 22:1686-1721. [PMID: 36856036 DOI: 10.1111/1541-4337.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
The functional components in tea confer various potential health benefits to humans. To date, several special tea products featuring functional components (STPFCs) have been successfully developed, such as O-methylated catechin-rich tea, γ-aminobutyric acid-rich tea, low-caffeine tea, and selenium-rich tea products. STPFCs have some unique and enhanced health benefits when compared with conventional tea products, which can meet the specific needs and preferences of different groups and have huge market potential. The processing strategies to improve the health benefits of tea products by regulating the functional component content have been an active area of research in food science. The fresh leaves of some specific tea varieties rich in functional components are used as raw materials, and special processing technologies are employed to prepare STPFCs. Huge progress has been achieved in the research and development of these STPFCs. However, the current status of these STPFCs has not yet been systematically reviewed. Here, studies on STPFCs have been comprehensively reviewed with a focus on their potential health benefits and processing strategies. Additionally, other chemical components with the potential to be developed into special teas and the application of tea functional components in the food industry have been discussed. Finally, suggestions on the promises and challenges for the future study of these STPFCs have been provided. This paper might shed light on the current status of the research and development of these STPFCs. Future studies on STPFCs should focus on screening specific tea varieties, identifying new functional components, evaluating health-promoting effects, improving flavor quality, and elucidating the interactions between functional components.
Collapse
Affiliation(s)
- Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiushuang You
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
34
|
Peng A, Yu K, Yu S, Li Y, Zuo H, Li P, Li J, Huang J, Liu Z, Zhao J. Aluminum and Fluoride Stresses Altered Organic Acid and Secondary Metabolism in Tea ( Camellia sinensis) Plants: Influences on Plant Tolerance, Tea Quality and Safety. Int J Mol Sci 2023; 24:4640. [PMID: 36902071 PMCID: PMC10003434 DOI: 10.3390/ijms24054640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Tea plants have adapted to grow in tropical acidic soils containing high concentrations of aluminum (Al) and fluoride (F) (as Al/F hyperaccumulators) and use secret organic acids (OAs) to acidify the rhizosphere for acquiring phosphorous and element nutrients. The self-enhanced rhizosphere acidification under Al/F stress and acid rain also render tea plants prone to accumulate more heavy metals and F, which raises significant food safety and health concerns. However, the mechanism behind this is not fully understood. Here, we report that tea plants responded to Al and F stresses by synthesizing and secreting OAs and altering profiles of amino acids, catechins, and caffeine in their roots. These organic compounds could form tea-plant mechanisms to tolerate lower pH and higher Al and F concentrations. Furthermore, high concentrations of Al and F stresses negatively affected the accumulation of tea secondary metabolites in young leaves, and thereby tea nutrient value. The young leaves of tea seedlings under Al and F stresses also tended to increase Al and F accumulation in young leaves but lower essential tea secondary metabolites, which challenged tea quality and safety. Comparisons of transcriptome data combined with metabolite profiling revealed that the corresponding metabolic gene expression supported and explained the metabolism changes in tea roots and young leaves via stresses from high concentrations of Al and F. The study provides new insight into Al- and F-stressed tea plants with regard to responsive metabolism changes and tolerance strategy establishment in tea plants and the impacts of Al/F stresses on metabolite compositions in young leaves used for making teas, which could influence tea nutritional value and food safety.
Collapse
Affiliation(s)
- Anqi Peng
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Keke Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shuwei Yu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Yingying Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| |
Collapse
|
35
|
Li P, Lin J, Zhu M, Zuo H, Shen Y, Li J, Wang K, Li P, Tang Q, Liu Z, Zhao J. Variations of stomata development in tea plant ( Camellia sinensis) leaves in different light and temperature environments and genetic backgrounds. HORTICULTURE RESEARCH 2023; 10:uhac278. [PMID: 36793755 PMCID: PMC9926154 DOI: 10.1093/hr/uhac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
Stomata perform important functions in plant photosynthesis, respiration, gas exchange, and interactions with environments. However, tea plant stomata development and functions are not known. Here, we show morphological changes during stomata development and genetic dissection of stomata lineage genes regulating stomata formation in tea developing leaves. Different tea plant cultivars displayed clear variations in the stomata development rate, density and size, which are closely related to their tolerance against dehydration capabilities. Whole sets of stomata lineage genes were identified to display predicted functions in regulating stomatal development and formation. The stomata development and lineage genes were tightly regulated by light intensities and high or low temperature stresses, which affected stomata density and function. Furthermore, lower stomatal density and larger size were observed in triploid tea varieties as compared to those in diploid plant. Key stomata lineage genes such as CsSPCHs, CsSCRM, and CsFAMA showed much lower expression levels, whereas negative regulators CsEPF1 and CsYODAs had higher expression levels in triploid than in diploid tea varieties. Our study provides new insight into tea plant stomatal morphological development and the genetic regulatory mechanisms on stomata development under abiotic stresses and genetic backgrounds. The study lays a foundation for future exploring of the genetic improvement of water use efficiency in tea plants for living up to the challenge of global climate change.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Junming Lin
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yihua Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jian Zhao
- Corresponding authors. E-mails: zhaojian@ hunau.edu.cn;
| |
Collapse
|
36
|
Zuo H, Si X, Li P, Li J, Chen Z, Li P, Chen C, Liu Z, Zhao J. Dynamic change of tea (Camellia sinensis) leaf cuticular wax in white tea processing for contribution to tea flavor formation. Food Res Int 2023; 163:112182. [PMID: 36596123 DOI: 10.1016/j.foodres.2022.112182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Despite some studies on tea leaf cuticular wax, their component changes during dehydration and withering treatments in tea processing and suspected relation with tea flavor quality formation remain unknown. Here, we showed that tea leaf cuticular wax changed drastically in tea leaf development, dehydration, or withering treatment during tea processing, which affected tea flavor formation. Caffeine was found as a major component of leaf cuticular wax. Caffeine and inositol contents in leaf cuticular wax increased during dehydration and withering treatments. Comparisons showed that tea varieties with higher leaf cuticular wax loading produced more aroma than these with lower cuticular wax loading, supporting a positive correlation between tea leaf cuticular wax loading and degradation with white tea aroma formation. Dehydration or withering treatment of tea leaves also increased caffeine and inositol levels in leaf cuticular wax and triggered cuticular wax degradation into various molecules, that could be related to tea flavor formation. Thus, tea leaf cuticular waxes not only protect tea plants but also contribute to tea flavor formation. The study provides new insight into the dynamic changes of tea leaf cuticular waxes for tea plant protection and tea flavor quality formation in tea processing.
Collapse
Affiliation(s)
- Hao Zuo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiongyuan Si
- Biotechnology Center, Anhui Agricultural University, Hefei 230036, China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhihui Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
37
|
Wan C, Ouyang J, Li M, Rengasamy KRR, Liu Z. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Crit Rev Food Sci Nutr 2022; 64:5719-5747. [PMID: 36533409 DOI: 10.1080/10408398.2022.2157372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is one of the major non-communicable diseases accounting for millions of death annually and increasing economic burden. Hyperglycemic condition in diabetes creates oxidative stress that plays a pivotal role in developing diabetes complications affecting multiple organs such as the heart, liver, kidney, retina, and brain. Green tea from the plant Camellia sinensis is a common beverage popular in many countries for its health benefits. Green tea extract (GTE) is rich in many biologically active compounds, e.g., epigallocatechin-3-O-gallate (EGCG), which acts as a potent antioxidant. Recently, several lines of evidence have shown the promising results of GTE and EGCG for diabetes management. Here, we have critically reviewed the effects of GTE and EGCC on diabetes in animal models and clinical studies. The concerns and challenges regarding the clinical use of GTE and EGCG against diabetes are also briefly discussed. Numerous beneficial effects of green tea and its catechins, particularly EGCG, make this natural product an attractive pharmacological agent that can be further developed to treat diabetes and its complications.
Collapse
Affiliation(s)
- Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
38
|
Zhang Y, Wei K, Guo L, Lei Y, Cheng H, Chen C, Wang L. Functional identification of purine permeases reveals their roles in caffeine transport in tea plants ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:1033316. [PMID: 36589051 PMCID: PMC9798130 DOI: 10.3389/fpls.2022.1033316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Caffeine is a characteristic secondary metabolite in tea plants. It confers tea beverage with unique flavor and excitation effect on human body. The pathway of caffeine biosynthesis has been generally established, but the mechanism of caffeine transport remains unclear. Here, eight members of purine permeases (PUPs) were identified in tea plants. They had diverse expression patterns in different tissues, suggesting their broad roles in caffeine metabolism. In this study, F1 strains of "Longjing43" ♂ × "Baihaozao" ♀ and different tea cultivars were used as materials to explore the correlation between caffeine content and gene expression. The heterologous expression systems of yeast and Arabidopsis were applied to explore the function of CsPUPs. Correlation analysis showed that the expressions of CsPUP1, CsPUP3.1, and CsPUP10.1 were significantly negatively correlated with caffeine content in tea leaves of eight strains and six cultivars. Furthermore, subcellular localization revealed that the three CsPUPs were not only located in plasma membrane but also widely distributed as circular organelles in cells. Functional complementation assays in yeast showed that the three CsPUPs could partly or completely rescue the defective function of fcy2 mutant in caffeine transport. Among them, transgenic yeast of CsPUP10.1 exhibited the strongest transport capacity for caffeine. Consistent phenotypes and functions were further identified in the CsPUP10.1-over-expression Arabidopsis lines. Taken together, it suggested that CsPUPs were involved in caffeine transport in tea plants. Potential roles of CsPUPs in the intracellular transport of caffeine among different subcellular organelles were proposed. This study provides a theoretical basis for further research on the PUP genes and new insights for caffeine metabolism in tea plants.
Collapse
Affiliation(s)
- Yazhen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Lingling Guo
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Yuping Lei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| |
Collapse
|
39
|
Zhang X, Li L, Lang Z, Li D, He Y, Zhao Y, Tao H, Wei J, Li Q, Hong G. Genome-wide characterization of NAC transcription factors in Camellia sinensis and the involvement of CsNAC28 in drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1065261. [PMID: 36507457 PMCID: PMC9731689 DOI: 10.3389/fpls.2022.1065261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The NAM, ATAF1/2, and CUC2 (NAC) transcription factors, which are members of a plant-specific gene family, play critical roles during the growth and development of plants and in their adaption to environmental stress. Few NAC transcription factors have been functionally characterized in tea plants (Camellia sinensis). Based on the analysis of the gene structure, motif pattern, and evolutionary relationship, we identified 104 NAC genes in C. sinensis. Among them, CsNAC28 is constitutively expressed in all organs, and most significantly, exhibiting remarkable responsiveness to abscisic acid (ABA) treatment and drought stress. ABA is a primary stress-related hormone. Recently, ABA-responsive element binding factor 2 (CsABF2) was identified in the ABA pathway of C. sinensis. However, the involvement of the CsABF2-mediated ABA pathway in regulating CsNACs was not known. Herein, a series of biochemical and genetic approaches supported the fact that CsNAC28 could potentially act as a transcription factor in the downstream of CsABF2. Furthermore, we investigated the function of CsNAC28 in the adapting of a plant to drought stress. The results showed that overexpression of CsNAC28 in Arabidopsis conferred hypersensitivity to ABA treatment and decreased the accumulation of reactive oxygen species (ROS), resulting in improved dehydration tolerance. Under conditions of drought, the expression levels of ABA pathway-related genes and drought stress‒inducible genes were greater in CsNAC28 overexpression lines than in the wild type. Our study's comprehensive characterization of NAC genes in C. sinensis could serve as a foundation for exploring the molecular mechanism of CsNAC-mediated drought responsiveness.
Collapse
Affiliation(s)
- Xueying Zhang
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Linying Li
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhuoliang Lang
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuqing He
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yao Zhao
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Han Tao
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiqian Wei
- Ecology and Energy Section, Hangzhou Agricultural Technology Extension Center, Hangzhou, China
| | - Qingsheng Li
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Gaojie Hong
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
40
|
Chen T, Ma J, Li H, Lin S, Dong C, Xie Y, Yan X, Zhang S, Yang T, Wan X, Zhang Z. CsGDH2.1 negatively regulates theanine accumulation in late-spring tea plants ( Camellia sinensis var. sinensis). HORTICULTURE RESEARCH 2022; 10:uhac245. [PMID: 36643747 PMCID: PMC9832843 DOI: 10.1093/hr/uhac245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/23/2022] [Indexed: 06/17/2023]
Abstract
Theanine, a unique and the most abundant non-proteinogenic amino acid in tea plants, endows tea infusion with the umami taste and anti-stress effects. Its content in tea correlates highly with green tea quality. Theanine content in new shoots of tea plants is high in mid-spring and greatly decreases in late spring. However, how the decrease is regulated is largely unknown. In a genetic screening, we observed that a yeast mutant, glutamate dehydrolase 2 (gdh2), was hypersensitive to 40 mM theanine and accumulated more theanine. This result implied a role of CsGDH2s in theanine accumulation in tea plants. Therefore, we identified the two homologs of GDH2, CsGDH2.1 and CsGDH2.2, in tea plants. Yeast complementation assay showed that the expression of CsGDH2.1 in yeast gdh2 mutant rescued the theanine hypersensitivity and hyperaccumulation of this mutant. Subcellular localization and tissue-specific expression showed CsGDH2.1 localized in the mitochondria and highly expressed in young tissues. Importantly, CsGDH2.1 expression was low in early spring, and increased significantly in late spring, in the new shoots of tea plants. These results all support the idea that CsGDH2.1 regulates theanine accumulation in the new shoots. Moreover, the in vitro enzyme assay showed that CsGDH2.1 had glutamate catabolic activity, and knockdown of CsGDH2.1 expression increased glutamate and theanine accumulation in the new shoots of tea plants. These findings suggested that CsGDH2.1-mediated glutamate catabolism negatively regulates theanine accumulation in the new shoots in late spring, and provides a functional gene for improving late-spring green tea quality.
Collapse
Affiliation(s)
| | | | | | - Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Chunxia Dong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yunxia Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shupei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | | |
Collapse
|
41
|
The use of ecological analytical tools as an unconventional approach for untargeted metabolomics data analysis: the case of Cecropia obtusifolia and its adaptive responses to nitrate starvation. Funct Integr Genomics 2022; 22:1467-1493. [PMID: 36199002 DOI: 10.1007/s10142-022-00904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/04/2022]
Abstract
Plant metabolomics studies haves revealed new bioactive compounds. However, like other omics disciplines, the generated data are not fully exploited, mainly because the commonly performed analyses focus on elucidating the presence/absence of distinctive metabolites (and/or their precursors) and not on providing a holistic view of metabolomic changes and their participation in organismal adaptation to biotic and abiotic stress conditions. Therefore, spectral libraries generated from Cecropia obtusifolia cell suspension cultures in a previous study were considered as a case study and were reanalyzed herein. These libraries were obtained from a time-course experiment under nitrate starvation conditions using both electrospray ionization modes. The applied methodology included the use of ecological analytical tools in a systematic four-step process, including a population analysis of metabolite α diversity, richness, and evenness (i); a chemometrics analysis to identify discriminant groups (ii); differential metabolic marker identification (iii); and enrichment analyses and annotation of active metabolic pathways enriched by differential metabolites (iv). Our species α diversity results referring to the diversity of metabolites represented by mass-to-charge ratio (m/z) values detected at a specific retention time (rt) (an uncommon way to analyze untargeted metabolomic data) suggest that the metabolome is dynamic and is modulated by abiotic stress. A total of 147 and 371 m/z_rt pairs was identified as differential markers responsive to nitrate starvation in ESI- and ESI+ modes, respectively. Subsequent enrichment analysis showed a high degree of completeness of biosynthetic pathways such as those of brassinosteroids, flavonoids, and phenylpropanoids.
Collapse
|
42
|
Tang D, Shen Y, Li F, Yue R, Duan J, Ye Z, Lin Y, Zhou W, Yang Y, Chen L, Wang H, Zhao J, Li P. Integrating metabolite and transcriptome analysis revealed the different mechanisms of characteristic compound biosynthesis and transcriptional regulation in tea flowers. FRONTIERS IN PLANT SCIENCE 2022; 13:1016692. [PMID: 36247612 PMCID: PMC9557745 DOI: 10.3389/fpls.2022.1016692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The flowers of tea plants (Camellia sinensis), as well as tea leaves, contain abundant secondary metabolites and are big potential resources for the extraction of bioactive compounds or preparation of functional foods. However, little is known about the biosynthesis and transcriptional regulation mechanisms of those metabolites in tea flowers, such as terpenoid, flavonol, catechins, caffeine, and theanine. This study finely integrated target and nontarget metabolism analyses to explore the metabolic feature of developing tea flowers. Tea flowers accumulated more abundant terpenoid compounds than young leaves. The transcriptome data of developing flowers and leaves showed that a higher expression level of later genes of terpenoid biosynthesis pathway, such as Terpene synthases gene family, in tea flowers was the candidate reason of the more abundant terpenoid compounds than in tea leaves. Differently, even though flavonol and catechin profiling between tea flowers and leaves was similar, the gene family members of flavonoid biosynthesis were selectively expressed by tea flowers and tea leaves. Transcriptome and phylogenetic analyses indicated that the regulatory mechanism of flavonol biosynthesis was perhaps different between tea flowers and leaves. However, the regulatory mechanism of catechin biosynthesis was perhaps similar between tea flowers and leaves. This study not only provides a global vision of metabolism and transcriptome in tea flowers but also uncovered the different mechanisms of biosynthesis and transcriptional regulation of those important compounds.
Collapse
Affiliation(s)
- Dingkun Tang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yihua Shen
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Fangdong Li
- College of Science, Anhui Agricultural University, Hefei, China
| | - Rui Yue
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianwei Duan
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhili Ye
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ying Lin
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yilin Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lixiao Chen
- Municipal Research Institute for Processing of Agricultural and Featured Products, Shiyan Academy of Agricultural Science, Shiyan, China
| | - Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
43
|
Aktar S, Bai P, Wang L, Xun H, Zhang R, Wu L, He M, Cheng H, Wang L, Wei K. Identification of a BAHD Acyltransferase Gene Involved in Plant Growth and Secondary Metabolism in Tea Plants. PLANTS 2022; 11:plants11192483. [PMID: 36235354 PMCID: PMC9572432 DOI: 10.3390/plants11192483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
Plant acyl-CoA dominated acyltransferases (named BAHD) comprise a large appointed protein superfamily and play varied roles in plant secondary metabolism like synthesis of modified anthocyanins, flavonoids, volatile esters, etc. Tea (Camellia sinensis) is an important non-alcoholic medicinal and fragrancy plant synthesizing different secondary metabolites, including flavonoids. In the tea (C.A sinensis) cultivar Longjing 43 (LJ43), eight samples were performed into three groups for transcriptome analysis under three biological replications. Among the BAHD acyltransferase genes in tea cultivars, the expression of TEA031065 was highest in buds and young leaves following the RNA sequencing data, which was coincident with the tissue rich in catechins and other flavonoids. We then transformed this gene into wild-type Arabidopsis as an over-expression (OX) line 1 and line 2 in ½ MS media to verify its function. In the wild types (WT), the primary root length, number of secondary roots, and total root weight were significantly higher at 24%, 15%, and 53.92%, respectively, compared to the transgenic lines (OX1 and OX2). By contrast, the leaves displayed larger rosettes (21.58%), with higher total leaf weight (32.64%) in the transgenic lines than in the wild type (WT). This result is consistent with DCR mutant At5g23940 gene in Arabidopsis thaliana. Here, anthocyanin content in transgenic lines was also increased (21.65%) as compared to WT. According to the RNA sequencing data, a total of 22 growth regulatory genes and 31 structural genes with TFs (transcription factors) that are correlative with plant growth and anthocyanin accumulation were identified to be differentially expressed in the transgenic lines. It was found that some key genes involved in IAA (Auxin) and GA (Gibberellin) biosynthesis were downregulated in the transgenic lines, which might be correlated with the phenotype changes in roots. Moreover, the upregulation of plant growth regulation genes, such as UGT73C4 (zeatin), ARR15, GH3.5, ETR2, ERS2, APH4, and SAG113 might be responsible for massive leaf growth. In addition, transgenic lines shown high anthocyanin accumulation due to the upregulation of the (1) 3AT1 and (3) GSTF, particularly, GSTF12 genes in the flavonoid biosynthesis pathway. However, the TFs such as, CCoAMT, bHLH, WRKY, CYP, and other MYBs were also significantly upregulated in transgenic lines, which increased the content of anthocyanins in A. thaliana seedlings. In conclusion, a BAHD acyltransferase (TEA031065) was identified, which might play a vital role in tea growth and secondary metabolites regulation. This study increases our knowledge concerning the combined functionality of the tea BAHD acyltransferase gene (TEA031065).
Collapse
Affiliation(s)
- Shirin Aktar
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peixian Bai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Liubin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Hanshuo Xun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Rui Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Liyun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Mengdi He
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
- Correspondence: (L.W.); (K.W.); Tel.:+86-571-86650575 (L.W.); +86-13656637415 (K.W.)
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
- Correspondence: (L.W.); (K.W.); Tel.:+86-571-86650575 (L.W.); +86-13656637415 (K.W.)
| |
Collapse
|
44
|
Yue C, Peng H, Li W, Tong Z, Wang Z, Yang P. Untargeted Metabolomics and Transcriptomics Reveal the Mechanism of Metabolite Differences in Spring Tender Shoots of Tea Plants of Different Ages. Foods 2022; 11:foods11152303. [PMID: 35954069 PMCID: PMC9368032 DOI: 10.3390/foods11152303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolites in the tender shoots of the tea plant are the material basis for the determination of tea quality. The composition and abundance of these metabolites are affected by many key factors, and the tea plant’s age is one of them. However, the effect of plant age on the tender shoot metabolites of tea cultivars of different genotypes is poorly understood. Therefore, we used a combination of untargeted metabolomics and transcriptomics to analyze the differential mechanism behind the differences in the metabolites of the spring tender shoots of 7- and 40-year-old tea plants of two tea cultivars of different genotypes. We found that plant age could significantly change the metabolites in the spring tender shoots of tea plants and that flavonoids, and amino acids and their derivatives, were predominant among the differential metabolites. The quantities of most flavonoids in the aged tea plants of different genotypes were upregulated, which was caused by the upregulated expression of differential genes in the flavonoid biosynthesis pathway. We further discovered that 11 key structural genes play key regulatory roles in the changes in the flavonoid contents of tea plants of different plant ages. However, the influence of plant age on amino acids and their derivatives might be cultivar-specific. By characterizing and evaluating the quality-related metabolites of tea cultivars of two different genotypes at different plant ages, we found that whether an old tea plant (40 years old) can produce high-quality tea is related to the genotype of the tea plant.
Collapse
Affiliation(s)
- Cuinan Yue
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (C.Y.); (H.P.); (W.L.); (Z.T.); (Z.W.)
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang 330202, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Hua Peng
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (C.Y.); (H.P.); (W.L.); (Z.T.); (Z.W.)
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang 330202, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Wenjin Li
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (C.Y.); (H.P.); (W.L.); (Z.T.); (Z.W.)
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang 330202, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Zhongfei Tong
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (C.Y.); (H.P.); (W.L.); (Z.T.); (Z.W.)
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang 330202, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Zhihui Wang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (C.Y.); (H.P.); (W.L.); (Z.T.); (Z.W.)
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang 330202, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Puxiang Yang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (C.Y.); (H.P.); (W.L.); (Z.T.); (Z.W.)
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang 330202, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
- Correspondence: ; Tel.: +86-0791-85021391
| |
Collapse
|
45
|
Wu Q, Tong W, Zhao H, Ge R, Li R, Huang J, Li F, Wang Y, Mallano AI, Deng W, Wang W, Wan X, Zhang Z, Xia E. Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite evolution of 116 Camellia plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:406-421. [PMID: 35510493 DOI: 10.1111/tpj.15799] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Camellia plants include more than 200 species of great diversity and immense economic, ornamental, and cultural values. We sequenced the transcriptomes of 116 Camellia plants from almost all sections of the genus Camellia. We constructed a pan-transcriptome of Camellia plants with 89 394 gene families and then resolved the phylogeny of genus Camellia based on 405 high-quality low-copy core genes. Most of the inferred relationships are well supported by multiple nuclear gene trees and morphological traits. We provide strong evidence that Camellia plants shared a recent whole genome duplication event, followed by large expansions of transcription factor families associated with stress resistance and secondary metabolism. Secondary metabolites, particularly those associated with tea quality such as catechins and caffeine, were preferentially heavily accumulated in the Camellia plants from section Thea. We thoroughly examined the expression patterns of hundreds of genes associated with tea quality, and found that some of them exhibited significantly high expression and correlations with secondary metabolite accumulations in Thea species. We also released a web-accessible database for efficient retrieval of Camellia transcriptomes. The reported transcriptome sequences and obtained novel findings will facilitate the efficient conservation and utilization of Camellia germplasm towards a breeding program for cultivated tea, camellia, and oil-tea plants.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Huijuan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruoheng Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruopei Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yanli Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ali Inayat Mallano
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wenjie Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
46
|
Li P, Ye Z, Fu J, Xu Y, Shen Y, Zhang Y, Tang D, Li P, Zuo H, Tong W, Wang S, Fernie AR, Zhao J. CsMYB184 regulates caffeine biosynthesis in tea plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1012-1014. [PMID: 35332639 PMCID: PMC9129078 DOI: 10.1111/pbi.13814] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 03/20/2022] [Indexed: 05/28/2023]
Affiliation(s)
- Penghui Li
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Zhili Ye
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Yihua Shen
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Dingkun Tang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene EditingSchool of Life SciencesLinyi UniversityLinyiChina
| | | | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
47
|
Zhao S, Cheng H, Xu P, Wang Y. Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant ( Camellia sinensis): A review. Crit Rev Food Sci Nutr 2022; 63:10520-10535. [PMID: 35608014 DOI: 10.1080/10408398.2022.2078787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the process of adapting to the environment, tea plants (Camellia sinensis) endow tea with unique flavor and health functions, which should be attributed to secondary metabolites, including catechins, L-theanine, caffeine and terpene volatiles. Since the content of these flavor-contributing metabolites are mainly determined by the growth of tea plant, it is very important to understand their alteration and regulation mechanisms. In the present work, we first summarize the distribution, change characteristics of the main flavor-contributing metabolites in different cultivars, organs and under environmental stresses of tea plant. Subsequently, we discuss the regulating mechanisms involved in the biosynthesis of these metabolites based on the existing evidence. Finally, we propose the remarks and perspectives on the future study relating flavor-contributing metabolites. This review would contribute to the acceleration of research on the characteristic secondary metabolites and the breeding programs in tea plants.
Collapse
Affiliation(s)
- Shiqi Zhao
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Haiyan Cheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Li P, Xia E, Fu J, Xu Y, Zhao X, Tong W, Tang Q, Tadege M, Fernie AR, Zhao J. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1144-1165. [PMID: 35277905 DOI: 10.1111/tpj.15729] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 05/20/2023]
Abstract
Tea (Camellia sinensis) is concocted from tea plant shoot tips that produce catechins, caffeine, theanine, and terpenoids, which collectively determine the rich flavors and health benefits of the infusion. However, little is known about the integrated regulation of shoot tip development and characteristic secondary metabolite biosynthesis in tea plants. Here, we demonstrate that MYB transcription factors (TFs) play key and yet diverse roles in regulating leaf and stem development, secondary metabolite biosynthesis, and environmental stress responses in tea plants. By integrating transcriptomic and metabolic profiling data in different tissues at a series of developmental stages or under various stress conditions, alongside biochemical and genetic analyses, we predicted the MYB TFs involved in regulating shoot development (CsMYB2, 98, 107, and 221), epidermal cell initiation (CsMYB184, 41, 139, and 219), stomatal initiation (CsMYB113 and 153), and the biosynthesis of flavonoids (including catechins, anthocyanins, and flavonols; CsMYB8 and 99), caffeine (CsMYB85 and 86), theanine (CsMYB9 and 49), carotenoids (CsMYB110), mono-/sesquiterpenoid volatiles (CsMYB68, 147, 148, and 193), lignin (CsMYB164 and 192), and indolic compounds (CsMYB139, 162, and 198), as well as the MYB TFs that are likely involved in hormone signaling-mediated environmental stress and defense responses. We characterized the functions of some key MYBs in regulating flavonoid and carotenoid biosynthesis for tea quality and flavor. This study provides a cross-family analysis of MYBs in tea alongside new insights into the coordinated regulation of tea plant shoot development and secondary metabolism, paving the way towards understanding of tea quality trait formation and genetic improvement of quality tea plants.
Collapse
Affiliation(s)
- Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xuecheng Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma, 73401, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
49
|
Li P, Fu J, Xu Y, Shen Y, Zhang Y, Ye Z, Tong W, Zeng X, Yang J, Tang D, Li P, Zuo H, Wu Q, Xia E, Wang S, Zhao J. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. THE NEW PHYTOLOGIST 2022; 234:902-917. [PMID: 35167117 PMCID: PMC9311817 DOI: 10.1111/nph.18026] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/02/2022] [Indexed: 05/09/2023]
Abstract
Tea trichomes synthesize numerous specialized metabolites to protect plants from environmental stresses and contribute to tea flavours, but little is known about the regulation of trichome development. Here, we showed that CsMYB1 is involved in the regulation of trichome formation and galloylated cis-catechins biosynthesis in tea plants. The variations in CsMYB1 expression levels are closely correlated with trichome indexes and galloylated cis-catechins contents in tea plant populations. Genome resequencing showed that CsMYB1 may be selected in modern tea cultivars, since a 192-bp insertion in CsMYB1 promoter was found exclusively in modern tea cultivars but not in the glabrous wild tea Camellia taliensis. Several enhancers in the 192-bp insertion increased CsMYB1 transcription in modern tea cultivars that coincided with their higher galloylated cis-catechins contents and trichome indexes. Biochemical analyses and transgenic data showed that CsMYB1 interacted with CsGL3 and CsWD40 and formed a MYB-bHLH-WD40 (MBW) transcriptional complex to activate the trichome regulator genes CsGL2 and CsCPC, and the galloylated cis-catechins biosynthesis genes anthocyanidin reductase and serine carboxypeptidase-like 1A. CsMYB1 integratively regulated trichome formation and galloylated cis-catechins biosynthesis. Results suggest that CsMYB1, trichome and galloylated cis-catechins are coincidently selected during tea domestication by harsh environments for improved adaption and by breeders for better tea flavours.
Collapse
Affiliation(s)
- Penghui Li
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Yihua Shen
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Zhili Ye
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Xiangsheng Zeng
- College of AgronomyAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Dingkun Tang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene EditingSchool of Life SciencesLinyi UniversityShuangling RoadLinyi276000China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural University130 West Changjiang RoadHefei230036China
| |
Collapse
|
50
|
Ruan H, Shi X, Gao L, Rashid A, Li Y, Lei T, Dai X, Xia T, Wang Y. Functional analysis of the dihydroflavonol 4-reductase family of Camellia sinensis: exploiting key amino acids to reconstruct reduction activity. HORTICULTURE RESEARCH 2022; 9:uhac098. [PMID: 35795397 PMCID: PMC9250652 DOI: 10.1093/hr/uhac098] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 05/28/2023]
Abstract
Anthocyanins and proanthocyanidins (PAs) are important types of flavonoids, plant secondary metabolites with a wide range of industrial and pharmaceutical applications. DFR (dihydroflavonol 4-reductase) is a pivotal enzyme that plays an important role in the flavonoid pathway. Here, four CsDFR genes were isolated from Camellia sinensis, and their overexpression was analyzed in vitro and in vivo. Based on transcription and metabolic analyses, CsDFR expression was closely consistent with catechins and PAs accumulation. Moreover, enzyme activity analyses revealed that the two recombinant proteins CsDFRa and CsDFRc exhibited DFR activity, converting dihydroflavonols into leucoanthocyanins in vitro, but CsDFRb1 and CsDFRb3 did not. CsDFRa and CsDFRc overexpression in AtDFR mutants (tt3) revealed that CsDFRs are involved in the biosynthesis of anthocyanins and PAs, as CsDFRa and CsDFRc restored not only the purple petiole phenotype but also the seed coat color. Site-directed mutagenesis revealed that the two amino acid residues S117 and T123 of CsDFRa play a prominent role in controlling DFR reductase activity. Enzymatic assays indicated that CsDFRa and CsDFRc exhibited a higher affinity for DHQ and DHK, respectively, whereas CsDFRb1N120S and CsDFRb1C126T exhibited a higher affinity for DHM. Our findings comprehensively characterize the DFRs from C. sinensis and shed light on their critical role in metabolic engineering.
Collapse
Affiliation(s)
- Haixiang Ruan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xingxing Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- College of Tea Science, Guizhou University, Guiyang Guizhou 550025, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Arif Rashid
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yan Li
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ting Lei
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinlong Dai
- College of Tea Science, Guizhou University, Guiyang Guizhou 550025, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunsheng Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|