1
|
de Greef PC, Njeru SN, Benz C, Fillatreau S, Malissen B, Agenès F, de Boer RJ, Kirberg J. The TCR assigns naive T cells to a preferred lymph node. SCIENCE ADVANCES 2024; 10:eadl0796. [PMID: 39047099 PMCID: PMC11268406 DOI: 10.1126/sciadv.adl0796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Naive T cells recirculate between the spleen and lymph nodes where they mount immune responses when meeting dendritic cells presenting foreign antigen. As this may happen anywhere, naive T cells ought to visit all lymph nodes. Here, deep sequencing almost-complete TCR repertoires led to a comparison of different lymph nodes within and between individual mice. We find strong evidence for a deterministic CD4/CD8 lineage choice and a consistent spatial structure. Specifically, some T cells show a preference for one or multiple lymph nodes, suggesting that their TCR interacts with locally presented (self-)peptides. These findings are mirrored in TCR-transgenic mice showing localized CD69 expression, retention, and cell division. Thus, naive T cells intermittently sense antigenically dissimilar niches, which is expected to affect their homeostatic competition.
Collapse
MESH Headings
- Animals
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Mice, Transgenic
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Peter C. de Greef
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | | | - Claudia Benz
- Division of Immunology, Paul-Ehrlich-Institut, IMG53, Langen, Germany
| | - Simon Fillatreau
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Fabien Agenès
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
- Inserm, Délégation Régionale Auvergne Rhône Alpes, 69500 Bron, France
| | - Rob J. de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Jörg Kirberg
- Division of Immunology, Paul-Ehrlich-Institut, IMG53, Langen, Germany
| |
Collapse
|
2
|
Vidard L. 4-1BB and cytokines trigger human NK, γδ T, and CD8 + T cell proliferation and activation, but are not required for their effector functions. Immun Inflamm Dis 2023; 11:e749. [PMID: 36705415 PMCID: PMC9753824 DOI: 10.1002/iid3.749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION This study was designed to compare the costimulatory molecules and cytokines required to trigger the proliferation and activation of natural killer (NK), γδ T, and CD8+ T cells, and gain in-depth insight into the mechanisms shifting tolerance to immunity. METHODS K562-derived artificial antigen-presenting cells (aAPCs); that is, K562 forced to express CD86 and 4-1BBL costimulatory receptors, in the presence of cytokines, were used to mimic dendritic cells (DCs) and provide signals to support the proliferation and activation of NK, γδ T, and CD8+ T cells. RESULTS Three signals are required to trigger optimal proliferation in MART-1-specific CD8+ T cells: activation of T-cell receptors (TCRs) by the major histocompatibility complex (MHC) I/peptide complexes (signal 1); 4-1BB engagement (signal 2); and IL-15 and IL-21 receptor co-signaling (signal 3). NK and γδ T cell proliferation also require three signals, but the precise nature of signal 1 involving cell-to-cell contact was not determined. Once they become effectors, only signal 1 determines the sensitivity or resistance of the target cells to cytolysis by killer lymphocytes. When freshly purified, none had effector functions, except the NK cells, which could be activated by CD16 engagement. CONCLUSIONS Therefore, lymphocytes committed to kill are produced as inactive precursors, and the license to kill is delivered by three signals, allowing for extensive proliferation and effector function acquisition. This data challenges the paradigm of anergy and supports the danger signal theory originally proposed by Polly Matzinger, which states that killer cells are tolerant by default, thereby protecting the mammalian body from autoimmunity.
Collapse
Affiliation(s)
- Laurent Vidard
- Department of Immuno‐OncologySanofiVitry‐sur‐SeineFrance
| |
Collapse
|
3
|
Boustany LM, LaPorte SL, Wong L, White C, Vinod V, Shen J, Yu W, Koditek D, Winter MB, Moore SJ, Mei L, Diep L, Huang Y, Liu S, Vasiljeva O, West J, Richardson J, Irving B, Belvin M, Kavanaugh WM. A Probody T Cell-Engaging Bispecific Antibody Targeting EGFR and CD3 Inhibits Colon Cancer Growth with Limited Toxicity. Cancer Res 2022; 82:4288-4298. [PMID: 36112781 PMCID: PMC9664135 DOI: 10.1158/0008-5472.can-21-2483] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
T cell-engaging bispecific antibodies (TCB) are highly potent therapeutics that can recruit and activate cytotoxic T cells to stimulate an antitumor immune response. However, the development of TCBs against solid tumors has been limited by significant on-target toxicity to normal tissues. Probody therapeutics have been developed as a novel class of recombinant, protease-activated antibody prodrugs that are "masked" to reduce antigen binding in healthy tissues but can become conditionally unmasked by proteases that are preferentially active in the tumor microenvironment (TME). Here, we describe the preclinical efficacy and safety of CI107, a Probody TCB targeting EGFR and CD3. In vitro, the protease-activated, unmasked CI107 effectively bound EGFR and CD3 expressed on the surface of cells and induced T-cell activation, cytokine release, and cytotoxicity toward tumor cells. In contrast, dually masked CI107 displayed a >500-fold reduction in antigen binding and >15,000-fold reduction in cytotoxic activity. In vivo, CI107 potently induced dose-dependent tumor regression of established colon cancer xenografts in mice engrafted with human peripheral blood mononuclear cells. Furthermore, the MTD of CI107 in cynomolgus monkeys was more than 60-fold higher than that of the unmasked TCB, and much lower levels of toxicity were observed in animals receiving CI107. Therefore, by localizing activity to the TME and thus limiting toxicity to normal tissues, this Probody TCB demonstrates the potential to expand clinical opportunities for TCBs as effective anticancer therapies for solid tumor indications. SIGNIFICANCE A conditionally active EGFR-CD3 T cell-engaging Probody therapeutic expands the safety window of bispecific antibodies while maintaining efficacy in preclinical solid tumor settings.
Collapse
Affiliation(s)
| | | | - Laurie Wong
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Clayton White
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Veena Vinod
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Joel Shen
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Wendy Yu
- CytomX Therapeutics, Inc, South San Francisco, California
| | - David Koditek
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | | | - Li Mei
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Linnea Diep
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | - Shouchun Liu
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Olga Vasiljeva
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Jim West
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | - Bryan Irving
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Marcia Belvin
- CytomX Therapeutics, Inc, South San Francisco, California.,Corresponding Author: Marcia Belvin, CytomX Therapeutics, Inc, South San Francisco, CA 94080. Phone: 650-892-9803, E-mail:
| | | |
Collapse
|
4
|
Ndinyanka Fabrice T, Bianda C, Zhang H, Jayachandran R, Ruer-Laventie J, Mori M, Moshous D, Fucile G, Schmidt A, Pieters J. An evolutionarily conserved coronin-dependent pathway defines cell population size. Sci Signal 2022; 15:eabo5363. [DOI: 10.1126/scisignal.abo5363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Maintenance of cell population size is fundamental to the proper functioning of multicellular organisms. Here, we describe a cell-intrinsic cell density–sensing pathway that enabled T cells to reach and maintain an appropriate population size. This pathway operated “kin-to-kin” or between identical or similar T cell populations occupying a niche within a tissue or organ, such as the lymph nodes, spleen, and blood. We showed that this pathway depended on the cell density–dependent abundance of the evolutionarily conserved protein coronin 1, which coordinated prosurvival signaling with the inhibition of cell death until the cell population reached threshold densities. At or above threshold densities, coronin 1 expression peaked and remained stable, thereby resulting in the initiation of apoptosis through kin-to-kin intercellular signaling to return the cell population to the appropriate cell density. This cell population size-controlling pathway was conserved from amoeba to humans, thus providing evidence for the existence of a coronin-regulated, evolutionarily conserved mechanism by which cells are informed of and coordinate their relative population size.
Collapse
Affiliation(s)
| | | | - Haiyan Zhang
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | - Mayumi Mori
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Despina Moshous
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris and Imagine Institute, INSERM UMR1163, Université de Paris, 75015 Paris, France
| | - Geoffrey Fucile
- SIB Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, 4056 Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Saidakova EV. Lymphopenia and Mechanisms of T-Cell Regeneration. CELL AND TISSUE BIOLOGY 2022; 16:302-311. [PMID: 35967247 PMCID: PMC9358362 DOI: 10.1134/s1990519x2204006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Chronic lymphopenia, in particular, T-lymphocyte deficiency, increases the risk of death from cancer, cardiovascular and respiratory diseases and serves as a risk factor for a severe course and poor outcome of infectious diseases such as COVID-19. The regeneration of T-lymphocytes is a complex multilevel process, many questions of which still remain unanswered. The present review considers two main pathways of increasing the T-cell number in lymphopenia: production in the thymus and homeostatic proliferation in the periphery. Literature data on the signals that regulate each pathway are summarized. Their contribution to the quantitative and qualitative restoration of the immune cell pool is analyzed. The features of CD4+ and CD8+ T-lymphocytes’ regeneration are considered.
Collapse
Affiliation(s)
- E. V. Saidakova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences—Branch of Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, 614081 Perm, Russia
| |
Collapse
|
6
|
Mori M, Ruer-Laventie J, Duchemin W, Demougin P, Ndinyanka Fabrice T, Wymann MP, Pieters J. Suppression of caspase 8 activity by a coronin 1-PI3Kδ pathway promotes T cell survival independently of TCR and IL-7 signaling. Sci Signal 2021; 14:eabj0057. [PMID: 34932374 DOI: 10.1126/scisignal.abj0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The control of T cell survival is crucial for defense against infectious pathogens or emerging cancers. Although the survival of peripheral naïve T cells has been proposed to be controlled by interleukin-7 (IL-7) signaling and T cell receptor (TCR) activation by peptide-loaded major histocompatibility complexes (pMHC), the essential roles for these pathways in thymic output and T cell proliferation have complicated the analysis of their contributions to T cell survival. Here, we showed that the WD repeat–containing protein coronin 1, which is dispensable for thymic selection and output, promoted naïve T cell survival in the periphery in a manner that was independent of TCR and IL-7 signaling. Coronin 1 was required for the maintenance of the basal activity of phosphoinositide 3-kinase δ (PI3Kδ), thereby suppressing caspase 8–mediated apoptosis. These results therefore reveal a coronin 1–dependent PI3Kδ pathway that is independent of pMHC:TCR and IL-7 signaling and essential for peripheral T cell survival.
Collapse
Affiliation(s)
- Mayumi Mori
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Wandrille Duchemin
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Scientific Computing (sciCORE), University of Basel, Basel, Switzerland
| | - Philippe Demougin
- Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland
| | | | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Limoges MA, Cloutier M, Nandi M, Ilangumaran S, Ramanathan S. The GIMAP Family Proteins: An Incomplete Puzzle. Front Immunol 2021; 12:679739. [PMID: 34135906 PMCID: PMC8201404 DOI: 10.3389/fimmu.2021.679739] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Overview: Long-term survival of T lymphocytes in quiescent state is essential to maintain their cell numbers in secondary lymphoid organs and in peripheral circulation. In the BioBreeding diabetes-prone strain of rats (BB-DP), loss of functional GIMAP5 (GTPase of the immune associated nucleotide binding protein 5) results in profound peripheral T lymphopenia. This discovery heralded the identification of a new family of proteins initially called Immune-associated nucleotide binding protein (IAN) family. In this review we will use ‘GIMAP’ to refer to this family of proteins. Recent studies suggest that GIMAP proteins may interact with each other and also be involved in the movement of the cellular cargo along the cytoskeletal network. Here we will summarize the current knowledge on the characteristics and functions of GIMAP family of proteins.
Collapse
Affiliation(s)
- Marc-André Limoges
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Clark M, Kroger CJ, Ke Q, Tisch RM. The Role of T Cell Receptor Signaling in the Development of Type 1 Diabetes. Front Immunol 2021; 11:615371. [PMID: 33603744 PMCID: PMC7884625 DOI: 10.3389/fimmu.2020.615371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
T cell receptor (TCR) signaling influences multiple aspects of CD4+ and CD8+ T cell immunobiology including thymic development, peripheral homeostasis, effector subset differentiation/function, and memory formation. Additional T cell signaling cues triggered by co-stimulatory molecules and cytokines also affect TCR signaling duration, as well as accessory pathways that further shape a T cell response. Type 1 diabetes (T1D) is a T cell-driven autoimmune disease targeting the insulin producing β cells in the pancreas. Evidence indicates that dysregulated TCR signaling events in T1D impact the efficacy of central and peripheral tolerance-inducing mechanisms. In this review, we will discuss how the strength and nature of TCR signaling events influence the development of self-reactive T cells and drive the progression of T1D through effects on T cell gene expression, lineage commitment, and maintenance of pathogenic anti-self T cell effector function.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
ROY PRITIKUMAR, ROY AMITKUMAR, KHAILOV EVGENIIN, AL BASIR FAHAD, GRIGORIEVA ELLINAV. A MODEL OF THE OPTIMAL IMMUNOTHERAPY OF PSORIASIS BY INTRODUCING IL-10 AND IL-22 INHIBITORS. J BIOL SYST 2020; 28:609-639. [DOI: 10.1142/s0218339020500084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Psoriasis is a chronic skin disease in which the process of hyper-proliferation (excessive division) of skin cells starts. Externally, psoriasis appears as red papules, on the surface of which there are scales of white–gray color. There is substantial evidence that T-helper cells take vital accountability for creating the hyper-proliferation of keratinocytes (skin cells), which causes itching of skin patches. In this paper, we propose a mathematical model describing the concentrations of T-helper and keratinocyte cell populations to predict cellular behaviors for psoriasis regulation under normal or anomalous immune circumstances. Local and global asymptotic stabilities of the model equilibria are investigated. Additionally, by introducing two scalar bounded controls into the model, the effect of combined immunotherapy using IL-10 and IL-22 inhibitors is analyzed. The optimal control problem of minimizing the cost of immune therapy and simultaneous optimizing the effect of this therapy on T-helper cells and keratinocytes proliferation is formulated and solved by applying the Pontryagin maximum principle. Within the restrictions of the proposed model, the obtained analytical and numerical outcomes suggest that the optimal strategy of injecting IL-10 and IL-22 inhibitors can be effective for psoriasis treatment.
Collapse
Affiliation(s)
- PRITI KUMAR ROY
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - AMIT KUMAR ROY
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - EVGENII N. KHAILOV
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - FAHAD AL BASIR
- Department of Mathematics, Asansol Girls College, Asansol-4, West Bengal 713304, India
| | - ELLINA V. GRIGORIEVA
- Department of Mathematics and Computer Sciences, Texas Woman’s University, Denton, TX 76204, USA
| |
Collapse
|
10
|
Mondino A, Manzo T. To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors. Front Immunol 2020; 11:1915. [PMID: 32973794 PMCID: PMC7481451 DOI: 10.3389/fimmu.2020.01915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The generation of immunological memory is a hallmark of adaptive immunity by which the immune system "remembers" a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also "bad memories"-in the form of antigen-experienced T cell subsets-co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy.
Collapse
Affiliation(s)
- Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
11
|
Kisielow P. How does the immune system learn to distinguish between good and evil? The first definitive studies of T cell central tolerance and positive selection. Immunogenetics 2019; 71:513-518. [PMID: 31418051 PMCID: PMC6790186 DOI: 10.1007/s00251-019-01127-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 12/12/2022]
Abstract
Demonstration that immature CD4 + 8+ thymocytes contain T cell precursors that are subjected to positive and negative selection was the major step towards understanding how the adaptive immune system acquires the ability to distinguish foreign or abnormal (mutated or infected) self-cells from normal (healthy) cells. In the present review, the roles of TCR, CD4, CD8, and MHC molecules in intrathymic selection and some of the crucial experiments that contributed to the solution of the great immunological puzzle of self/nonself discrimination are described in an historical perspective. Recently, these experiments were highlighted by the immunological community by awarding the 2016 Novartis Prize for Immunology to Philippa Marrack, John Kappler, and Harald von Boehmer.
Collapse
Affiliation(s)
- Paweł Kisielow
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl St. 12, 53-114, Wroclaw, Poland.
| |
Collapse
|
12
|
Fischer MR, Schermann AI, Twelkmeyer T, Lorenz B, Wegner J, Jonuleit H, von Stebut E. Humanized mice in cutaneous leishmaniasis—Suitability analysis of human PBMC transfer into immunodeficient mice. Exp Dermatol 2019; 28:1087-1090. [DOI: 10.1111/exd.13999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Michael R. Fischer
- Department of Dermatology University Medical Center, Johannes Gutenberg‐University of Mainz Mainz Germany
| | - Anja I. Schermann
- Department of Dermatology University Medical Center, Johannes Gutenberg‐University of Mainz Mainz Germany
| | - Trix Twelkmeyer
- Department of Dermatology University Medical Center, Johannes Gutenberg‐University of Mainz Mainz Germany
| | - Beate Lorenz
- Department of Dermatology University Medical Center, Johannes Gutenberg‐University of Mainz Mainz Germany
- Department of Dermatology University Medical Center, University of Cologne Cologne Germany
| | - Joanna Wegner
- Department of Dermatology University Medical Center, Johannes Gutenberg‐University of Mainz Mainz Germany
| | - Helmut Jonuleit
- Department of Dermatology University Medical Center, Johannes Gutenberg‐University of Mainz Mainz Germany
| | - Esther von Stebut
- Department of Dermatology University Medical Center, Johannes Gutenberg‐University of Mainz Mainz Germany
- Department of Dermatology University Medical Center, University of Cologne Cologne Germany
| |
Collapse
|
13
|
Abstract
Generating and maintaining a diverse repertoire of naive T cells is essential for protection against pathogens, and developing a mechanistic and quantitative description of the processes involved lies at the heart of our understanding of vertebrate immunity. Here, we review the biology of naive T cells from birth to maturity and outline how the integration of mathematical models and experiments has helped us to develop a full picture of their life histories.
Collapse
Affiliation(s)
- Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, UK
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| |
Collapse
|
14
|
Kisielow J, Obermair FJ, Kopf M. Deciphering CD4 + T cell specificity using novel MHC-TCR chimeric receptors. Nat Immunol 2019; 20:652-662. [PMID: 30858620 DOI: 10.1038/s41590-019-0335-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 01/25/2019] [Indexed: 01/25/2023]
Abstract
αβ T cell antigen receptors (TCRs) bind complexes of peptide and major histocompatibility complex (pMHC) with low affinity, which poses a considerable challenge for the direct identification of αβ T cell cognate peptides. Here we describe a platform for the discovery of MHC class II epitopes based on the screening of engineered reporter cells expressing novel pMHC-TCR (MCR) hybrid molecules carrying cDNA-derived peptides. This technology identifies natural epitopes of CD4+ T cells in an unbiased and efficient manner and allows detailed analysis of TCR cross-reactivity that provides recognition patterns beyond discrete peptides. We determine the cognate peptides of virus- and tumor-specific T cells in mouse disease models and present a proof of concept for human T cells. Furthermore, we use MCR to identify immunogenic tumor neo-antigens and show that vaccination with a peptide naturally recognized by tumor-infiltrating lymphocytes efficiently protects mice from tumor challenge. Thus, the MCR technology holds promise for basic research and clinical applications, allowing the personalized identification of T cell-specific neo-antigens in patients.
Collapse
Affiliation(s)
- Jan Kisielow
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland.
| | | | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
15
|
Balyan R, Gund R, Chawla AS, Khare SP, Pradhan SJ, Rane S, Galande S, Durdik JM, George A, Bal V, Rath S. Correlation of cell-surface CD8 levels with function, phenotype and transcriptome of naive CD8 T cells. Immunology 2018; 156:384-401. [PMID: 30556901 DOI: 10.1111/imm.13036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/27/2022] Open
Abstract
We have previously demonstrated co-receptor level-associated functional heterogeneity in apparently homogeneous naive peripheral CD4 T cells, dependent on MHC-mediated tonic signals. Maturation pathways can differ between naive CD4 and naive CD8 cells, so we tested whether the latter showed similar co-receptor level-associated functional heterogeneity. We report that, when either polyclonal and T-cell receptor (TCR)-transgenic monoclonal peripheral naive CD8 T cells from young mice were separated into CD8hi and CD8lo subsets, CD8lo cells responded poorly, but CD8hi and CD8lo subsets of CD8 single-positive (SP) thymocytes responded similarly. CD8lo naive CD8 T cells were smaller and showed lower levels of some cell-surface molecules, but higher levels of the negative regulator CD5. In addition to the expected peripheral decline in CD8 levels on transferred naive CD8 T cells in wild-type (WT) but not in MHC class I-deficient recipient mice, short-duration naive T-cell-dendritic cell (DC) co-cultures in vitro also caused co-receptor down-modulation in CD8 T cells but not in CD4 T cells. Constitutive pZAP70/pSyk and pERK levels ex vivo were lower in CD8lo naive CD8 T cells and dual-specific phosphatase inhibition partially rescued their hypo-responsiveness. Bulk mRNA sequencing showed major differences in the transcriptional landscapes of CD8hi and CD8lo naive CD8 T cells. CD8hi naive CD8 T cells showed enrichment of genes involved in positive regulation of cell cycle and survival. Our data show that naive CD8 T cells show major differences in their signaling, transcriptional and functional landscapes associated with subtly altered CD8 levels, consistent with the possibility of peripheral cellular aging.
Collapse
Affiliation(s)
- Renu Balyan
- National Institute of Immunology, New Delhi, India.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore city, Singapore
| | - Rupali Gund
- National Institute of Immunology, New Delhi, India
| | | | - Satyajeet P Khare
- Indian Institute of Science Education and Research, Pune, India.,Symbiosis School of Biological Sciences, Pune, India
| | | | - Sanket Rane
- National Institute of Immunology, New Delhi, India
| | - Sanjeev Galande
- Indian Institute of Science Education and Research, Pune, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| | - Vineeta Bal
- National Institute of Immunology, New Delhi, India.,Indian Institute of Science Education and Research, Pune, India
| | | |
Collapse
|
16
|
Mori M, Pieters J. Getting in and Staying Alive: Role for Coronin 1 in the Survival of Pathogenic Mycobacteria and Naïve T Cells. Front Immunol 2018; 9:1592. [PMID: 30042765 PMCID: PMC6049072 DOI: 10.3389/fimmu.2018.01592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/27/2018] [Indexed: 12/02/2022] Open
Abstract
There are many different pathogenic stimuli that are able to activate the immune system, ranging from microbes that include bacteria, viruses, fungi, and parasites to host-derived triggers such as autoantigens that can induce autoimmunity as well as neoantigens involved in tumorigenesis. One of the key interactions shaping immunity toward these triggers involves the encounter of antigen-processing and -presenting cells such as macrophages and dendritic cells with T cells, resulting in immune responses that are highly selective for the antigenic trigger. Research over the past few years has implicated members of the coronin protein family, in particular coronin 1, in responses against several pathogenic triggers. While coronin 1 was initially described as a host factor allowing the intracellular survival of the pathogen Mycobacterium tuberculosis, subsequent work showed it to be a crucial factor for naïve T cell homeostasis. The activity of coronin 1 in allowing the intracellular survival of pathogenic mycobacteria is relatively well characterized, involving the activation of the Ca2+/calcineurin pathway, while coronin 1’s role in modulating naïve T cell homeostasis remains more enigmatic. In this mini review, we discuss the knowledge on the role for coronin 1 in immune cell functioning and provide a number of potential scenarios via which coronin 1 may be able to regulate naïve T cell homeostasis.
Collapse
Affiliation(s)
- Mayumi Mori
- Biozentrum, University of Basel, Basel, Switzerland
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Milam AAV, Bartleson JM, Donermeyer DL, Horvath S, Durai V, Raju S, Yu H, Redmann V, Zinselmeyer B, White JM, Murphy KM, Allen PM. Tuning T Cell Signaling Sensitivity Alters the Behavior of CD4 + T Cells during an Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3429-3437. [PMID: 29618523 PMCID: PMC5940509 DOI: 10.4049/jimmunol.1701422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
Abstract
Intricate processes in the thymus and periphery help curb the development and activation of autoreactive T cells. The subtle signals that govern these processes are an area of great interest, but tuning TCR sensitivity for the purpose of affecting T cell behavior remains technically challenging. Previously, our laboratory described the derivation of two TCR-transgenic CD4 T cell mouse lines, LLO56 and LLO118, which recognize the same cognate Listeria epitope with the same affinity. Despite the similarity of the two TCRs, LLO56 cells respond poorly in a primary infection whereas LLO118 cells respond robustly. Phenotypic examination of both lines revealed a substantial difference in their surface of expression of CD5, which serves as a dependable readout of the self-reactivity of a cell. We hypothesized that the increased interaction with self by the CD5-high LLO56 was mediated through TCR signaling, and was involved in the characteristic weak primary response of LLO56 to infection. To explore this issue, we generated an inducible knock-in mouse expressing the self-sensitizing voltage-gated sodium channel Scn5a. Overexpression of Scn5a in peripheral T cells via the CD4-Cre promoter resulted in increased TCR-proximal signaling. Further, Scn5a-expressing LLO118 cells, after transfer into BL6 recipient mice, displayed an impaired response during infection relative to wild-type LLO118 cells. In this way, we were able to demonstrate that tuning of TCR sensitivity to self can be used to alter in vivo immune responses. Overall, these studies highlight the critical relationship between TCR-self-pMHC interaction and an immune response to infection.
Collapse
Affiliation(s)
- Ashley A Viehmann Milam
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Juliet M Bartleson
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - David L Donermeyer
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen Horvath
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Vivek Durai
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Saravanan Raju
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Haiyang Yu
- Ludwig Institute for Cancer Research, La Jolla, CA 92093; and
| | - Veronika Redmann
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bernd Zinselmeyer
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - J Michael White
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Kenneth M Murphy
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Paul M Allen
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
18
|
Diebner HH, Zerjatke T, Griehl M, Roeder I. Metabolism is the tie: The Bertalanffy-type cancer growth model as common denominator of various modelling approaches. Biosystems 2018; 167:1-23. [PMID: 29605248 DOI: 10.1016/j.biosystems.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Cancer or tumour growth has been addressed from a variety of mathematical modelling perspectives in the past. Examples are single variable growth models, reaction diffusion models, compartment models, individual cell-based models, clonal competition models, to name only a few. In this paper, we show that the so called Bertalanffy-type growth model is a macroscopic model variant that can be conceived as an optimal condensed modelling approach that to a high degree preserves complexity with respect to the aforementioned more complex modelling variants. The derivation of the Bertalanffy-type model is crucially based on features of metabolism. Therefore, this model contains a shape parameter that can be interpreted as a resource utilisation efficiency. This shape parameter reflects features that are usually captured in much more complex models. To be specific, the shape parameter is related to morphological structures of tumours, which in turn depend on metabolic conditions. We, furthermore, show that a single variable variant of the Bertalanffy-type model can straightforwardly be extended to a multiclonal competition model. Since competition is crucially based on available shared or clone-specific resources, the metabolism-based approach is an obvious candidate to capture clonal competition. Depending on the specific context, metabolic reprogramming or other oncogene driven changes either lead to a suppression of cancer cells or to an improved competition resulting in outgrowth of tumours. The parametrisation of the Bertalanffy-type growth model allows to account for this observed variety of cancer characteristics. The shape parameter, conceived as a classifier for healthy and oncogenic phenotypes, supplies a link to survival and evolutionary stability concepts discussed in demographic studies, such as opportunistic versus equilibrium strategies.
Collapse
Affiliation(s)
- Hans H Diebner
- Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Institute for Medical Informatics and Biometry, Fetscherstrasse 74, D-01307 Dresden, Germany.
| | - Thomas Zerjatke
- Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Institute for Medical Informatics and Biometry, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Max Griehl
- Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Institute for Medical Informatics and Biometry, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Ingo Roeder
- Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Institute for Medical Informatics and Biometry, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
19
|
Marrack P, Krovi SH, Silberman D, White J, Kushnir E, Nakayama M, Crooks J, Danhorn T, Leach S, Anselment R, Scott-Browne J, Gapin L, Kappler J. The somatically generated portion of T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor. eLife 2017; 6:30918. [PMID: 29148973 PMCID: PMC5701794 DOI: 10.7554/elife.30918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Sai Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Daniel Silberman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Eleanor Kushnir
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, United States
| | - James Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Sonia Leach
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Randy Anselment
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | | | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - John Kappler
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
20
|
Le Saout C, Luckey MA, Villarino AV, Smith M, Hasley RB, Myers TG, Imamichi H, Park JH, O'Shea JJ, Lane HC, Catalfamo M. IL-7-dependent STAT1 activation limits homeostatic CD4+ T cell expansion. JCI Insight 2017; 2:96228. [PMID: 29202461 DOI: 10.1172/jci.insight.96228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
IL-7 regulates homeostatic mechanisms that maintain the overall size of the T cell pool throughout life. We show that, under steady-state conditions, IL-7 signaling is principally mediated by activation of signal transducers and activators of transcription 5 (STAT5). In contrast, under lymphopenic conditions, there is a modulation of STAT1 expression resulting in an IL-7-dependent STAT1 and STAT5 activation. Consequently, the IL-7-induced transcriptome is altered with enrichment of IFN-stimulated genes (ISGs). Moreover, STAT1 overexpression was associated with reduced survival in CD4+ T cells undergoing lymphopenia-induced proliferation (LIP). We propose a model in which T cells undergoing LIP upregulate STAT1 protein, "switching on" an alternate IL-7-dependent program. This mechanism could be a physiological process to regulate the expansion and size of the CD4+ T cell pool. During HIV infection, the virus could exploit this pathway, leading to the homeostatic dysregulation of the T cell pools observed in these patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy G Myers
- Genomic Technologies Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, USA
| | | | | | | | | | - Marta Catalfamo
- CMRS/Laboratory of Immunoregulation, NIAID.,Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
21
|
Ellestad KK, Anderson CC. Two Strikes and You’re Out? The Pathogenic Interplay of Coinhibitor Deficiency and Lymphopenia-Induced Proliferation. THE JOURNAL OF IMMUNOLOGY 2017; 198:2534-2541. [DOI: 10.4049/jimmunol.1601884] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
|
22
|
Tuncel J, Haag S, Holmdahl R. MHC class II alleles associated with Th1 rather than Th17 type immunity drive the onset of early arthritis in a rat model of rheumatoid arthritis. Eur J Immunol 2017; 47:563-574. [PMID: 28012172 PMCID: PMC7163699 DOI: 10.1002/eji.201646760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/06/2016] [Accepted: 12/22/2016] [Indexed: 02/06/2023]
Abstract
Polymorphisms in the MHC class II (MHCII) genes are strongly associated with rheumatoid arthritis, supporting the importance of autoreactive T helper (Th) cells for the development of this disease. Here, we used pristane-induced arthritis (PIA), induced by the non-antigenic hydrocarbon pristane, to study the impact of different MHCII alleles on T-cell activation and differentiation. In MHCII-congenic rats with disease-promoting MHCII alleles, pristane primarily induced activation of Th1 cells, whereas activated T cells were Th17 biased in rats with protective MHCII alleles. Neutralization of IFN-γ during T-cell activation abrogated the development of disease, suggesting that Th1 immunity is important for disease induction. Neutralization of IL-17, by contrast, suppressed arthritis only when performed in rats with established disease. Adoptive T-cell transfers showed that T cells acquired arthritogenic capacity earlier in strains with a prevailing Th1 response. Moreover, upon pristane injection, these strains exhibited more Ag-primed OX40+ and proliferating T cells of polyclonal origin. These data show that T cells are polarized upon the first encounter with peptide-MHCII complexes in an allele-dependent fashion. In PIA, the polyclonal expansion of autoreactive Th1 cells was necessary for the onset of arthritis, while IL-17 mediated immunity contributed to the progression to chronic disease.
Collapse
Affiliation(s)
- Jonatan Tuncel
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Sabrina Haag
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Schlöder J, Berges C, Luessi F, Jonuleit H. Dimethyl Fumarate Therapy Significantly Improves the Responsiveness of T Cells in Multiple Sclerosis Patients for Immunoregulation by Regulatory T Cells. Int J Mol Sci 2017; 18:ijms18020271. [PMID: 28134847 PMCID: PMC5343807 DOI: 10.3390/ijms18020271] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/14/2017] [Accepted: 01/22/2017] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease caused by an insufficient suppression of autoreactive T lymphocytes. One reason for the lack of immunological control is the reduced responsiveness of T effector cells (Teff) for the suppressive properties of regulatory T cells (Treg), a process termed Treg resistance. Here we investigated whether the disease-modifying therapy of relapsing-remitting MS (RRMS) with dimethyl fumarate (DMF) influences the sensitivity of T cells in the peripheral blood of patients towards Treg-mediated suppression. We demonstrated that DMF restores responsiveness of Teff to the suppressive function of Treg in vitro, presumably by down-regulation of interleukin-6R (IL-6R) expression on T cells. Transfer of human immune cells into immunodeficient mice resulted in a lethal graft-versus-host reaction triggered by human CD4⁺ Teff. This systemic inflammation can be prevented by activated Treg after transfer of immune cells from DMF-treated MS patients, but not after injection of Treg-resistant Teff from therapy-naïve MS patients. Furthermore, after DMF therapy, proliferation and expansion of T cells and the immigration into the spleen of the animals is reduced and modulated by activated Treg. In summary, our data reveals that DMF therapy significantly improves the responsiveness of Teff in MS patients to immunoregulation.
Collapse
Affiliation(s)
- Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Carsten Berges
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Felix Luessi
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
24
|
Tokarz-Deptuła B, Malinowska M, Adamiak M, Deptuła W. Coronins and their role in immunological phenomena. Cent Eur J Immunol 2017; 41:435-441. [PMID: 28450807 PMCID: PMC5382889 DOI: 10.5114/ceji.2016.65143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/06/2016] [Indexed: 02/05/2023] Open
Abstract
Coronins are a large family of proteins occurring in many eukaryotes. In mammals, seven coronin genes have been identified, evidencing that coronins 1 to 6 present classic coronin structure, while coronin 7 is a tandem coronin particle, without a spiral domain, although the best characterised coronin, in terms of both structure and function, is the mammalian coronin 1. It has been proven that they are related to regulation of actin dynamics, e.g. as a result of interaction with the complex of proteins Arp2/3. These proteins also modulate the activity of immune system cells, including lymphocyte T and B cells, neutrophils and macrophages. They are involved in bacterial infections with Mycobacterium tuberculosis, M. leprae and Helicobacter pylori and participate in the response to viral infections, e.g. infections of lymphocytic choriomeningitis virus (LCMV) and vesicular stomatitis Indiana virus (VSV). Also their involvement in autoimmune diseases such as lupus erythematosus has been recorded.
Collapse
Affiliation(s)
| | | | - Mateusz Adamiak
- Department of Immunology, Faculty of Biology, University of Szczecin, Poland
| | - Wiesław Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Poland
| |
Collapse
|
25
|
Merayo-Chalico J, Rajme-López S, Barrera-Vargas A, Alcocer-Varela J, Díaz-Zamudio M, Gómez-Martín D. Lymphopenia and autoimmunity: A double-edged sword. Hum Immunol 2016; 77:921-929. [DOI: 10.1016/j.humimm.2016.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 06/01/2016] [Accepted: 06/21/2016] [Indexed: 01/09/2023]
|
26
|
Lykken EA, Li QJ. The MicroRNA miR-191 Supports T Cell Survival Following Common γ Chain Signaling. J Biol Chem 2016; 291:23532-23544. [PMID: 27634043 DOI: 10.1074/jbc.m116.741264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 12/21/2022] Open
Abstract
To ensure lifelong immunocompetency, naïve and memory T cells must be adequately maintained in the peripheral lymphoid tissues. Homeostatic maintenance of T cells is controlled by tonic signaling through T cell antigen receptors and common γ chain cytokine receptors. In this study, we identify the highly expressed microRNA miR-191 as a key regulator of naïve, memory, and regulatory T cell homeostasis. Conditional deletion of miR-191 using LckCre resulted in preferential loss of peripheral CD4+ regulatory T cells as well as naïve and memory CD8+ T cells. This preferential loss stemmed from reduced survival following deficient cytokine signaling and STAT5 activation. Mechanistically, insulin receptor substrate 1 (Irs1) is a direct target of miR-191, and dysregulated IRS1 expression antagonizes STAT5 activation. Our study identifies a novel role for microRNAs in fine-tuning immune homeostasis and thereby maintaining the lymphocyte reservoir necessary to mount productive immune responses.
Collapse
Affiliation(s)
- Erik Allen Lykken
- From the Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | - Qi-Jing Li
- From the Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
27
|
Diebner HH, Kirberg J, Roeder I. An evolutionary stability perspective on oncogenesis control in mature T-cell populations. J Theor Biol 2016; 389:88-100. [PMID: 26549469 DOI: 10.1016/j.jtbi.2015.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/05/2015] [Accepted: 10/19/2015] [Indexed: 01/29/2023]
Abstract
Here we present a mathematical model for the dynamics of oncogenesis control in mature T-cell populations within the blood and lymphatic system. T-cell homeostasis is maintained by clonal competition for trophic niches (survival signals stimulated through interactions with self-antigens bound to major histocompatibility molecules), where a clone is defined as the set of T cells carrying the same antigen specific T-cell receptor (TCR). We analytically derive fitness functions of healthy and leukemic clone variants, respectively, that capture the dependency of the stability of the healthy T-cell pool against leukemic invaders on clonal diversity and kinetic parameters. Similar to the stability of ecosystems with high biodiversity, leukemic mutants are suppressed within polyclonal T-cell populations, i.e., in the presence of a huge number of different TCRs. To the contrary, for a low clonal diversity the leukemic clone variants are able to invade the healthy T-cell pool. The model, therefore, describes the experimentally observed phenomenon that preleukemic clone variants prevail in quasi-monoclonal experimental settings (in mice), whereas in polyclonal settings the healthy TCR variants are able to suppress the outgrowth of tumours. Between the two extremal situations of mono- and polyclonality there exists a range of coexistence of healthy and oncogenic clone variants with moderate fitness (stability) each. A variation of cell cycle times considerably changes the dynamics within this coexistence region. Faster proliferating variants increase their chance to dominate. Finally, a simplified niche variation scheme illustrates a possible mechanism to increase clonal T-cell diversity given a small niche diversity.
Collapse
Affiliation(s)
- Hans H Diebner
- Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Institute for Medical Informatics and Biometry, Fetscherstrasse 74, D-01307 Dresden, Germany.
| | - Jörg Kirberg
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Ingo Roeder
- Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Institute for Medical Informatics and Biometry, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
28
|
Nogueira JDS, Canto FBD, Nunes CFCG, Vianna PHO, Paiva LDS, Nóbrega A, Bellio M, Fucs R. Enhanced renewal of regulatory T cells in relation to CD4(+) conventional T lymphocytes in the peripheral compartment. Immunology 2015; 147:221-39. [PMID: 26572097 DOI: 10.1111/imm.12555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022] Open
Abstract
CD4(+) Foxp3(+) regulatory T (Treg) cells are necessary for the maintenance of self-tolerance and T-cell homeostasis. This population is kept at stable frequencies in secondary lymphoid organs for the majority of the lifetime, despite permanent thymic emigration or in the face of thymic involution. Continuous competition is expected to occur between recently thymus-emigrated and resident Treg cells (either natural or post-thymically induced). In the present work, we analysed the renewal dynamics of Treg cells compared with CD4(+) Foxp3- conventional T cells (Tconv), using protocols of single or successive T-cell transfers into syngeneic euthymic or lymphopenic (nu/nu or RAG2(-/-)) mice, respectively. Our results show a higher turnover for Treg cells in the peripheral compartment, compared with Tconv cells, when B cell-sufficient euthymic or nude hosts are studied. This increased renewal within the Treg pool, shown by the greater replacement of resident Treg cells by donor counterparts, correlates with augmented rates of proliferation and is not modified following temporary environmental perturbations induced by inflammatory state or microbiota alterations. Notably, the preferential substitution of Treg lymphocytes was not observed in RAG2(-/-) hosts. We showed that limited B-cell replenishment in the RAG2(-/-) hosts decisively contributed to the altered peripheral T-cell homeostasis. Accordingly, weekly transfers of B cells to RAG2(-/-) hosts rescued the preferential substitution of Treg lymphocytes. Our study discloses a new aspect of T-cell homeostasis that depends on the presence of B lymphocytes to regulate the relative incorporation of recently arrived Treg and Tconv cells in the peripheral compartment.
Collapse
Affiliation(s)
- Jeane de Souza Nogueira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Barrozo do Canto
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Fraga Cabral Gomes Nunes
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Henrique Oliveira Vianna
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana de Souza Paiva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Alberto Nóbrega
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita Fucs
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Chan SL, Lindquist LD, Hansen MJ, Girtman MA, Pease LR, Bram RJ. Calcium-Modulating Cyclophilin Ligand Is Essential for the Survival of Activated T Cells and for Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2015; 195:5648-56. [PMID: 26561552 DOI: 10.4049/jimmunol.1500308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/18/2015] [Indexed: 01/26/2023]
Abstract
Calcium-modulating cyclophilin ligand (CAML) is an endoplasmic reticulum resident protein that is widely expressed. Although it has been demonstrated to participate in the tail-anchored protein insertion pathway, its physiological role in the mature immune system is unknown. In this work, we show that mature, peripheral T cells require CAML for survival specifically following TCR-induced activation. In this study, we examined mature T cells from spleen and lymph nodes of tamoxifen-inducible CAML knockout mice (tCAML(-/-)). Whereas CAML-deficient T cells were able to express the early activation markers CD25 and CD69, and produce IL-2 normally upon stimulation, deficient cells proliferated less and died. Cells did not require CAML for entry into the S phase of the cell cycle, thus implicating its survival function at a relatively late step in the T cell activation sequence. In addition, CAML was required for homeostatic proliferation and for Ag-dependent cell killing in vivo. These results demonstrate that CAML critically supports T cell survival and cell division downstream of T cell activation.
Collapse
Affiliation(s)
- Siaw-Li Chan
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | - Lonn D Lindquist
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905
| | | | - Megan A Girtman
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | - Larry R Pease
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | - Richard J Bram
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
30
|
Jayachandran R, Pieters J. Regulation of immune cell homeostasis and function by coronin 1. Int Immunopharmacol 2015; 28:825-8. [DOI: 10.1016/j.intimp.2015.03.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
|
31
|
Zhang B, Wu J, Jiao Y, Bock C, Dai M, Chen B, Chao N, Zhang W, Zhuang Y. Differential Requirements of TCR Signaling in Homeostatic Maintenance and Function of Dendritic Epidermal T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:4282-91. [PMID: 26408667 DOI: 10.4049/jimmunol.1501220] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/01/2015] [Indexed: 01/17/2023]
Abstract
Dendritic epidermal T cells (DETCs) are generated exclusively in the fetal thymus and maintained in the skin epithelium throughout postnatal life of the mouse. DETCs have restricted antigenic specificity as a result of their exclusive usage of a canonical TCR. Although the importance of the TCR in DETC development has been well established, the exact role of TCR signaling in DETC homeostasis and function remains incompletely defined. In this study, we investigated TCR signaling in fully matured DETCs by lineage-restricted deletion of the Lat gene, an essential signaling molecule downstream of the TCR. We found that Lat deletion impaired TCR-dependent cytokine gene activation and the ability of DETCs to undergo proliferative expansion. However, linker for activation of T cells-deficient DETCs were able to maintain long-term population homeostasis, although with a reduced proliferation rate. Mice with Lat deletion in DETCs exhibited delayed wound healing accompanied by impaired clonal expansion within the wound area. Our study revealed differential requirements for TCR signaling in homeostatic maintenance of DETCs and in their effector function during wound healing.
Collapse
Affiliation(s)
- Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Jianxuan Wu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Yiqun Jiao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Cheryl Bock
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| | - Meifang Dai
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Benny Chen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Nelson Chao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; Department of Medicine, Duke University Medical Center, Durham, NC 27710; and Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
32
|
Straetemans T, Gründer C, Heijhuurs S, Hol S, Slaper-Cortenbach I, Bönig H, Sebestyen Z, Kuball J. Untouched GMP-Ready Purified Engineered Immune Cells to Treat Cancer. Clin Cancer Res 2015; 21:3957-68. [PMID: 25991821 DOI: 10.1158/1078-0432.ccr-14-2860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/04/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Engineering T cells with receptors to redirect the immune system against cancer has most recently been described as a scientific breakthrough. However, a main challenge remains the GMP-grade purification of immune cells selectively expressing the introduced receptor in order to reduce potential side effects due to poorly or nonengineered cells. EXPERIMENTAL DESIGN In order to test a novel purification strategy, we took advantage of a model γδT cell receptor (TCR), naturally interfering with endogenous TCR expression and designed the optimal retroviral expression cassette to achieve maximal interference with endogenous TCR chains. Following retroviral transduction, nonengineered and poorly engineered immune cells characterized by a high endogenous αβTCR expression were efficiently depleted with GMP-grade anti-αβTCR beads. Next, the engineered immune cells were validated for TCR expression, function against a panel of tumor cell lines and primary tumors and potential allo-reactivity. Engineered immune cells were further validated in two humanized mouse tumor models. RESULTS The untouched enrichment of engineered immune cells translated into highly purified receptor-engineered cells with strong antitumor reactivity both in vitro and in vivo. Importantly, this approach eliminated residual allo-reactivity of engineered immune cells. Our data demonstrate that even with long-term suboptimal interference with endogenous TCR chains such as in resting cells, allo-reactivity remained absent and tumor control preserved. CONCLUSIONS We present a novel enrichment method for the production of untouched engineered immune cells, ready to be translated into a GMP-grade method and potentially applicable to all receptor-modified cells even if interference with endogenous TCR chains is far from complete.
Collapse
Affiliation(s)
- Trudy Straetemans
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cordula Gründer
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sabine Heijhuurs
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Samantha Hol
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University, Frankfurt, Germany
| | - Zsolt Sebestyen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jürgen Kuball
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
33
|
Abstract
Memory T cells are usually considered to be a feature of a successful immune response against a foreign antigen, and such cells can mediate potent immunity. However, in mice, alternative pathways have been described, through which naïve T cells can acquire the characteristics and functions of memory T cells without encountering specific foreign antigen or the typical signals required for conventional T cell differentiation. Such cells reflect a response to the internal rather the external environment, and hence such cells are called innate memory T cells. In this review, we describe how innate memory subsets were identified, the signals that induce their generation and their functional properties and potential role in the normal immune response. The existence of innate memory T cells in mice raises questions about whether parallel populations exist in humans, and we discuss the evidence for such populations during human T cell development and differentiation.
Collapse
Affiliation(s)
- Stephen C Jameson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| | - You Jeong Lee
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kristin A Hogquist
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| |
Collapse
|
34
|
Khailaie S, Robert PA, Toker A, Huehn J, Meyer-Hermann M. A signal integration model of thymic selection and natural regulatory T cell commitment. THE JOURNAL OF IMMUNOLOGY 2014; 193:5983-96. [PMID: 25392533 DOI: 10.4049/jimmunol.1400889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The extent of TCR self-reactivity is the basis for selection of a functional and self-tolerant T cell repertoire and is quantified by repeated engagement of TCRs with a diverse pool of self-peptides complexed with self-MHC molecules. The strength of a TCR signal depends on the binding properties of a TCR to the peptide and the MHC, but it is not clear how the specificity to both components drives fate decisions. In this study, we propose a TCR signal-integration model of thymic selection that describes how thymocytes decide among distinct fates, not only based on a single TCR-ligand interaction, but taking into account the TCR stimulation history. These fates are separated based on sustained accumulated signals for positive selection and transient peak signals for negative selection. This spans up the cells into a two-dimensional space where they are either neglected, positively selected, negatively selected, or selected as natural regulatory T cells (nTregs). We show that the dynamics of the integrated signal can serve as a successful basis for extracting specificity of thymocytes to MHC and detecting the existence of cognate self-peptide-MHC. It allows to select a self-MHC-biased and self-peptide-tolerant T cell repertoire. Furthermore, nTregs in the model are enriched with MHC-specific TCRs. This allows nTregs to be more sensitive to activation and more cross-reactive than conventional T cells. This study provides a mechanistic model showing that time integration of TCR-mediated signals, as opposed to single-cell interaction events, is needed to gain a full view on the properties emerging from thymic selection.
Collapse
Affiliation(s)
- Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Aras Toker
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology, and Bioinformatics, University of Technology Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
35
|
Morel PA, Faeder JR, Hawse WF, Miskov-Zivanov N. Modeling the T cell immune response: a fascinating challenge. J Pharmacokinet Pharmacodyn 2014; 41:401-13. [PMID: 25155903 PMCID: PMC4210366 DOI: 10.1007/s10928-014-9376-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/13/2014] [Indexed: 12/11/2022]
Abstract
The immune system is designed to protect the organism from infection and to repair damaged tissue. An effective response requires recognition of the threat, the appropriate effector mechanism to clear the pathogen and a return to homeostasis with minimal damage to self-tissues. T cells play a central role in orchestrating the immune response at all stages of the response and have been the subject of intense study by both experimental immunologists and modelers. This review examines some of the more critical questions in T cell biology and describes the latest attempts to address those questions using approaches that combine mathematical modeling and experiments.
Collapse
Affiliation(s)
- Penelope A Morel
- Departments of Immunology, University of Pittsburgh, 200 Lothrop Street, BST E1055, Pittsburgh, PA, 15261, USA,
| | | | | | | |
Collapse
|
36
|
Autoreactive T cells specific for insulin B:11-23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. Proc Natl Acad Sci U S A 2014; 111:14840-5. [PMID: 25267644 DOI: 10.1073/pnas.1416864111] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previous studies in type 1 diabetes (T1D) in the nonobese diabetic mouse demonstrated that a crucial insulin epitope (B:9-23) is presented to diabetogenic CD4 T cells by IA(g7) in a weakly bound register. The importance of antigenic peptides with low-affinity HLA binding in human autoimmune disease remains less clear. The objective of this study was to investigate T-cell responses to a low-affinity self-epitope in subjects with T1D. HLA-DQ8 tetramers loaded with a modified insulin peptide designed to improve binding the low-affinity register were used to visualize T-cell responses following in vitro stimulation. Positive responses were only detectable in T1D patients. Because the immunogenic register of B:9-23 presented by DQ8 has not been conclusively demonstrated, T-cell assays using substituted peptides and DQ8 constructs engineered to express and present B:9-23 in fixed binding registers were used to determine the immunogenic register of this peptide. Tetramer-positive T-cell clones isolated from T1D subjects that responded to stimulation by B:11-23 peptide and denatured insulin protein were conclusively shown to recognize B:11-23 bound to HLA-DQ8 in the low-affinity register 3. These T cells also responded to homologous peptides derived from microbial antigens, suggesting that their initial priming could occur via molecular mimicry. These results are in accord with prior observations from the nonobese diabetic mouse model, suggesting a mechanism shared by mouse and man through which T cells that recognize a weakly bound peptide can circumvent tolerance mechanisms and play a role in the initiation of autoimmune diseases, such as T1D.
Collapse
|
37
|
Cosgun KN, Rahmig S, Mende N, Reinke S, Hauber I, Schäfer C, Petzold A, Weisbach H, Heidkamp G, Purbojo A, Cesnjevar R, Platz A, Bornhäuser M, Schmitz M, Dudziak D, Hauber J, Kirberg J, Waskow C. Kit regulates HSC engraftment across the human-mouse species barrier. Cell Stem Cell 2014; 15:227-38. [PMID: 25017720 DOI: 10.1016/j.stem.2014.06.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 03/04/2014] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
Abstract
In-depth analysis of the cellular and molecular mechanisms regulating human HSC function will require a surrogate host that supports robust maintenance of transplanted human HSCs in vivo, but the currently available options are problematic. Previously we showed that mutations in the Kit receptor enhance engraftment of transplanted HSCs in the mouse. To generate an improved model for human HSC transplantation and analysis, we developed immune-deficient mouse strains containing Kit mutations. We found that mutation of the Kit receptor enables robust, uniform, sustained, and serially transplantable engraftment of human HSCs in adult mice without a requirement for irradiation conditioning. Using this model, we also showed that differential KIT expression identifies two functionally distinct subpopulations of human HSCs. Thus, we have found that the capacity of this Kit mutation to open up stem cell niches across species barriers has significant potential and broad applicability in human HSC research.
Collapse
Affiliation(s)
- Kadriye Nehir Cosgun
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Susann Rahmig
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Nicole Mende
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Sören Reinke
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Ilona Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Carola Schäfer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Anke Petzold
- Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Henry Weisbach
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Gordon Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Research Module II, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstrasse 14, 91052 Erlangen, Germany
| | - Ariawan Purbojo
- Department of Paediatric Cardiac Surgery, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | - Robert Cesnjevar
- Department of Paediatric Cardiac Surgery, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany
| | - Alexander Platz
- DKMS Lifeline Cord Blood Bank, Blasewitzer Strasse 43, 01307 Dresden, Germany
| | - Martin Bornhäuser
- Department of Hematology/Oncology, University Hospital, TU Dresden, Fetscherstr 74, 01307 Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Research Module II, University Hospital of Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstrasse 14, 91052 Erlangen, Germany
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Jörg Kirberg
- Paul Ehrlich Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
38
|
Hagenbeek TJ, Wu X, Choy L, Sanchez-Irizarry C, Seshagiri S, Stinson J, Siebel CW, Spits H. Murine Pten−/− T-ALL requires non-redundant PI3K/mTOR and DLL4/Notch1 signals for maintenance and γc/TCR signals for thymic exit. Cancer Lett 2014; 346:237-48. [DOI: 10.1016/j.canlet.2013.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 12/11/2022]
|
39
|
Kalscheuer H, Onoe T, Dahmani A, Li HW, Hölzl M, Yamada K, Sykes M. Xenograft tolerance and immune function of human T cells developing in pig thymus xenografts. THE JOURNAL OF IMMUNOLOGY 2014; 192:3442-50. [PMID: 24591363 DOI: 10.4049/jimmunol.1302886] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transplantation of xenogeneic thymus tissue allows xenograft tolerance induction in the highly disparate pig-to-mouse model. Fetal swine thymus (SW THY) can support the generation of a diverse human T cell repertoire that is tolerant of the pig in vitro. We demonstrate that SW THY generates all human T cell subsets, including regulatory T cells (Tregs), in similar numbers as fetal human thymus (HU THY) grafts in immunodeficient mice receiving the same human CD34(+) cells. Peripheral T cells are specifically tolerant to the mouse and to the human and porcine donors, with robust responses to nondonor human and pig Ags. Specific tolerance is observed to pig skin grafts sharing the THY donor MHC. SW THY-generated peripheral Tregs show similar function, but include lower percentages of naive-type Tregs compared with HU THY-generated Tregs. Tregs contribute to donor-pig specific tolerance. Peripheral human T cells generated in SW THY exhibit reduced proportions of CD8(+) T cells and reduced lymphopenia-driven proliferation and memory-type conversion, accelerated decay of memory-type cells, and reduced responses to protein Ags. Thus, SW thymus transplantation is a powerful xenotolerance approach for human T cells. However, immune function may be further enhanced by strategies to permit positive selection by autologous HLA molecules.
Collapse
Affiliation(s)
- Hannes Kalscheuer
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | | | | | | | | | | | | |
Collapse
|
40
|
Persaud SP, Parker CR, Lo WL, Weber KS, Allen PM. Intrinsic CD4+ T cell sensitivity and response to a pathogen are set and sustained by avidity for thymic and peripheral complexes of self peptide and MHC. Nat Immunol 2014; 15:266-74. [PMID: 24487322 PMCID: PMC3944141 DOI: 10.1038/ni.2822] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022]
Abstract
Interactions of T cell antigen receptors (TCRs) with complexes of self peptide and major histocompatibility complex (MHC) are crucial to T cell development, but their role in peripheral T cell responses remains unclear. Specific and nonspecific stimulation of LLO56 and LLO118 T cells, which transgenically express a TCR specific for the same Listeria monocytogenes epitope, elicited distinct interleukin 2 (IL-2) and phosphorylated kinase Erk responses, the strength of which was set in the thymus and maintained in the periphery in proportion to the avidity of the binding of the TCR to the self peptide-MHC complex. Deprivation of self peptide-MHC substantially compromised the population expansion of LLO56 T cells in response to L. monocytogenes in vivo. Despite their very different self-reactivity, LLO56 T cells and LLO118 T cells bound cognate peptide-MHC with an identical affinity, which challenges associations made between these parameters. Our findings highlight a crucial role for selecting ligands encountered during thymic 'education' in determining the intrinsic functionality of CD4+ T cells.
Collapse
Affiliation(s)
- Stephen P Persaud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chelsea R Parker
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wan-Lin Lo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
41
|
Rodriguez-Pinto D, Saravia NG, McMahon-Pratt D. CD4 T cell activation by B cells in human Leishmania (Viannia) infection. BMC Infect Dis 2014; 14:108. [PMID: 24568275 PMCID: PMC3937821 DOI: 10.1186/1471-2334-14-108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/21/2014] [Indexed: 11/20/2022] Open
Abstract
Background An effective adaptive immune response requires activation of specific CD4 T cells. The capacity of B cells to activate CD4 T cells in human cutaneous leishmaniasis caused by Leishmania (Viannia) has not been evaluated. Methods CD4 T cell activation by B cells of cutaneous leishmaniasis patients was evaluated by culture of PBMCs or purified B cells and CD4 T cells with Leishmania panamensis antigens. CD4 T cell and B cell activation markers were evaluated by flow cytometry and 13 cytokines were measured in supernatants with a bead-based capture assay. The effect of Leishmania antigens on BCR-mediated endocytosis of ovalbumin was evaluated in the Ramos human B cell line by targeting the antigen with anti-IgM-biotin and anti-biotin-ovalbumin-FITC. Results Culture of PBMCs from cutaneous leishmaniasis patients with Leishmania antigens resulted in upregulation of the activation markers CD25 and CD69 as well as increased frequency of CD25hiCD127- cells among CD4 T cells. Concomitantly, B cells upregulated the costimulatory molecule CD86. These changes were not observed in PBMCs from healthy subjects, indicating participation of Leishmania-specific lymphocytes expanded in vivo. Purified B cells from these patients, when interacting with purified CD4 T cells and Leishmania antigens, were capable of inducing significant increases in CD25 and CD69 expression and CD25hiCD127- frequency in CD4 T cells. These changes were associated with upregulation of CD86 in B cells. Comparison of changes in CD4 T cell activation parameters between PBMC and B cell/CD4 T cell cultures showed no statistically significant differences; further, significant secretion of IFN-γ, TNF-α, IL-6 and IL-13 was induced in both types of cultures. Additionally, culture with Leishmania antigens enhanced BCR-mediated endocytosis of ovalbumin in Ramos human B cells. Conclusions The capacity of B cells specific for Leishmania antigens in peripheral blood of cutaneous leishmaniasis patients to activate CD4 T cells and induce cytokine secretion is similar to that of all cell populations present in PBMCs. This capacity implicates B cells as a plausible target for modulation of the immune response to Leishmania infection as a therapeutic strategy.
Collapse
Affiliation(s)
- Daniel Rodriguez-Pinto
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia.
| | | | | |
Collapse
|
42
|
Tuncel J, Haag S, Yau ACY, Norin U, Baud A, Lönnblom E, Maratou K, Ytterberg AJ, Ekman D, Thordardottir S, Johannesson M, Gillett A, Stridh P, Jagodic M, Olsson T, Fernández-Teruel A, Zubarev RA, Mott R, Aitman TJ, Flint J, Holmdahl R. Natural polymorphisms in Tap2 influence negative selection and CD4∶CD8 lineage commitment in the rat. PLoS Genet 2014; 10:e1004151. [PMID: 24586191 PMCID: PMC3930506 DOI: 10.1371/journal.pgen.1004151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 12/16/2013] [Indexed: 12/17/2022] Open
Abstract
Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells. Peptides from degraded cytoplasmic proteins are transported via TAP into the endoplasmic reticulum for loading onto MHC class I molecules. TAP is encoded by Tap1 and Tap2, which in rodents are located close to the MHC class I genes. In the rat, genetic variation in Tap2 gives rise to two different transporters: a promiscuous A variant (TAP-A) and a more restrictive B variant (TAP-B). It has been proposed that the class I molecule in the DA rat (RT1-Aa) has co-evolved with TAP-A and it has been shown that RT1-Aa antigenicity is changed when co-expressed with TAP-B. To study the contribution of different allelic combinations of RT1-A and Tap2 to the variation in MHC expression and T cell selection, we generated DA rats with either congenic or background alleles in the RT1-A and Tap2 loci. We found increased numbers of mature CD8SP cells in the thymus of rats which co-expressed RT1-Aa and TAP-B. This increase of CD8 cells could be explained by reduced negative selection, but did not correlate with RT1-Aa expression levels on thymic antigen presenting cells. Thus, our results identify a crucial role of the TAP and the quality of the MHC class I repertoire in regulating T cell selection.
Collapse
Affiliation(s)
- Jonatan Tuncel
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (JT); (RH)
| | - Sabrina Haag
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anthony C. Y. Yau
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Norin
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amelie Baud
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Erik Lönnblom
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Klio Maratou
- Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - A. Jimmy Ytterberg
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
- Medical Proteomics, Department of Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Diana Ekman
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Soley Thordardottir
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martina Johannesson
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alan Gillett
- Department of Clinical Neuroscience, Karolinska Institutet, Neuroimmunology Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Pernilla Stridh
- Department of Clinical Neuroscience, Karolinska Institutet, Neuroimmunology Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Neuroimmunology Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Neuroimmunology Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Roman A. Zubarev
- Medical Proteomics, Department of Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Richard Mott
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Timothy J. Aitman
- Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Jonathan Flint
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (JT); (RH)
| |
Collapse
|
43
|
Gerdes S, Newrzela S, Glauche I, von Laer D, Hansmann ML, Roeder I. Mathematical modeling of oncogenesis control in mature T-cell populations. Front Immunol 2013; 4:380. [PMID: 24409176 PMCID: PMC3836208 DOI: 10.3389/fimmu.2013.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/03/2013] [Indexed: 11/18/2022] Open
Abstract
T-cell receptor (TCR) polyclonal mature T cells are surprisingly resistant to oncogenic transformation after retroviral insertion of T-cell oncogenes. In a mouse model, it has been shown that mature T-cell lymphoma/leukemia (MTCLL) is not induced upon transplantation of mature, TCR polyclonal wild-type (WT) T cells, transduced with gammaretroviral vectors encoding potent T-cell oncogenes, into RAG1-deficient recipients. However, further studies demonstrated that quasi-monoclonal T cells treated with the same protocol readily induced MTCLL in the recipient mice. It has been hypothesized that in the TCR polyclonal situation, outgrowth of preleukemic cells and subsequent conversion to overt malignancy is suppressed through regulation of clonal abundances on a per-clone basis due to interactions between TCRs and self-peptide-MHC-complexes (spMHCs), while these mechanisms fail in the quasi-monoclonal situation. To quantitatively study this hypothesis, we applied a mathematical modeling approach. In particular, we developed a novel ordinary differential equation model of T-cell homeostasis, in which T-cell fate depends on spMHC-TCR-interaction-triggered stimulatory signals from antigen-presenting cells (APCs). Based on our mathematical modeling approach, we identified parameter configurations of our model, which consistently explain the observed phenomena. Our results suggest that the preleukemic cells are less competent than healthy competitor cells in acquiring survival stimuli from APCs, but that proliferation of these preleukemic cells is less dependent on survival stimuli from APCs. These predictions now call for experimental validation.
Collapse
Affiliation(s)
- Sebastian Gerdes
- Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus , Dresden , Germany
| | - Sebastian Newrzela
- Senckenberg Institute of Pathology, Goethe-University Hospital Frankfurt , Frankfurt , Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus , Dresden , Germany
| | - Dorothee von Laer
- Department of Hygiene, Medical University Innsbruck , Innsbruck , Austria
| | - Martin-Leo Hansmann
- Senckenberg Institute of Pathology, Goethe-University Hospital Frankfurt , Frankfurt , Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus , Dresden , Germany
| |
Collapse
|
44
|
Wada S, Harris TJ, Tryggestad E, Yoshimura K, Zeng J, Yen HR, Getnet D, Grosso JF, Bruno TC, De Marzo AM, Netto GJ, Pardoll DM, DeWeese TL, Wong J, Drake CG. Combined treatment effects of radiation and immunotherapy: studies in an autochthonous prostate cancer model. Int J Radiat Oncol Biol Phys 2013; 87:769-76. [PMID: 24064321 PMCID: PMC4417352 DOI: 10.1016/j.ijrobp.2013.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/19/2013] [Accepted: 07/12/2013] [Indexed: 11/17/2022]
Abstract
PURPOSE To optimize the combination of ionizing radiation and cellular immunotherapy using a preclinical autochthonous model of prostate cancer. METHODS AND MATERIALS Transgenic mice expressing a model antigen under a prostate-specific promoter were treated using a platform that integrates cone-beam CT imaging with 3-dimensional conformal therapy. Using this technology we investigated the immunologic and therapeutic effects of combining ionizing radiation with granulocyte/macrophage colony-stimulating factor-secreting cellular immunotherapy for prostate cancer in mice bearing autochthonous prostate tumors. RESULTS The combination of ionizing radiation and immunotherapy resulted in a significant decrease in pathologic tumor grade and gross tumor bulk that was not evident with either single-modality therapy. Furthermore, combinatorial therapy resulted in improved overall survival in a preventive metastasis model and in the setting of established micrometastases. Mechanistically, combined therapy resulted in an increase of the ratio of effector-to-regulatory T cells for both CD4 and CD8 tumor-infiltrating lymphocytes. CONCLUSIONS Our preclinical model establishes a potential role for the use of combined radiation-immunotherapy in locally advanced prostate cancer, which warrants further exploration in a clinical setting.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adenocarcinoma/mortality
- Adenocarcinoma/pathology
- Adenocarcinoma/therapy
- Adoptive Transfer/methods
- Animals
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cell Line, Tumor
- Combined Modality Therapy/methods
- Combined Modality Therapy/mortality
- Cone-Beam Computed Tomography/methods
- Hemagglutinins/immunology
- Hemagglutinins/metabolism
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/mortality
- Lymphocytes, Tumor-Infiltrating/cytology
- Male
- Mice
- Mice, Transgenic
- Neoplasm Grading
- Neoplasm Micrometastasis/prevention & control
- Organs at Risk/diagnostic imaging
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/mortality
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/therapy
- Radionuclide Imaging
- Radiotherapy Dosage
- Radiotherapy, Conformal/methods
- Radiotherapy, Conformal/mortality
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Regulatory/cytology
- Tumor Burden
- Urinary Bladder/diagnostic imaging
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Timothy J. Harris
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Erik Tryggestad
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Kiyoshi Yoshimura
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Jing Zeng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Hung-Rong Yen
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Derese Getnet
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Joseph F. Grosso
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Tullia C. Bruno
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - George J. Netto
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
- Department of Pathology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Drew M. Pardoll
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Theodore L. DeWeese
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| | - Charles G. Drake
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101
| |
Collapse
|
45
|
Silaeva YY, Kalinina AA, Vagida MS, Khromykh LM, Deikin AV, Ermolkevich TG, Sadchikova ER, Goldman IL, Kazansky DB. Decrease in pool of T lymphocytes with surface phenotypes of effector and central memory cells under influence of TCR transgenic β-chain expression. BIOCHEMISTRY (MOSCOW) 2013; 78:549-59. [PMID: 23848158 DOI: 10.1134/s0006297913050143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral T lymphocytes can be subdivided into naïve and antigen-experienced T cells. The latter, in turn, are represented by effector and central memory cells that are identified by different profiles of activation markers expression, such as CD44 and CD62L in mice. These markers determine different traffic of T lymphocytes in the organism, but hardly reproduce real antigenic experience of a T lymphocyte. Mechanisms of homeostasis maintenance of T lymphocytes with different activation phenotypes remain largely unknown. To investigate impact of T cell receptor (TCR) transgenic chains on formation of T lymphocytes, their peripheral survival and activation surface phenotypes, we have generated the transgenic mouse strain expressing transgenic β-chain of TCR 1D1 (belonging to the Vβ6 family) on the genetic background B10.D2(R101). Intrathymic development of T cells in these transgenic mice is not impaired. The repertoire of peripheral T lymphocytes in these mice contains 70-80% of T cells expressing transgenic β-chain and 20-30% of T cells expressing endogenous β-chains. The ratio of peripheral CD4⁺CD8⁻ and CD4⁻CD8⁺ T lymphocytes remained unchanged in the transgenic animals, but the percent of T lymphocytes with the "naïve" phenotype CD44⁻CD62L⁺ was significantly increased, whereas the levels of effector memory CD44⁺CD62L⁻ and central memory CD44⁺CD62L⁺ T lymphocytes were markedly decreased in both subpopulations. On the contrary, T lymphocytes expressing endogenous β-chains had surface phenotype of activated T cells CD44⁺. Thus, for the first time we have shown that the pool of T lymphocytes with different activation phenotypes depends on the structure of T cell receptors.
Collapse
Affiliation(s)
- Yu Yu Silaeva
- Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Kashirskoe Shosse 24, 115478 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Büchner SM, Sliva K, Bonig H, Völker I, Waibler Z, Kirberg J, Schnierle BS. Delayed onset of graft-versus-host disease in immunodeficent human leucocyte antigen-DQ8 transgenic, murine major histocompatibility complex class II-deficient mice repopulated by human peripheral blood mononuclear cells. Clin Exp Immunol 2013; 173:355-64. [PMID: 23607364 DOI: 10.1111/cei.12121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 01/16/2023] Open
Abstract
Haematopoietic humanization of mice is used frequently to study the human immune system and its reaction upon experimental intervention. Immunocompromised non-obese diabetic (NOD)-Rag1(-/-) mice, additionally deficient for the common gamma chain of cytokine receptors (γc) (NOD-Rag1(-/-) γc(-/-) mice), lack B, T and natural killer (NK) cells and allow for efficient human peripheral mononuclear cell (PBMC) engraftment. However, a major experimental drawback for studies using these mice is the rapid onset of graft-versus-host disease (GVHD). In order to elucidate the contribution of the xenogenic murine major histocompatibility complex (MHC) class II in this context, we generated immunodeficient mice expressing human MHC class II [human leucocyte antigen (HLA)-DQ8] on a mouse class II-deficient background (Aβ(-/-) ). We studied repopulation and onset of GVHD in these mouse strains following transplantation of DQ8 haplotype-matched human PBMCs. The presence of HLA class II promoted the repopulation rates significantly in these mice. Virtually all the engrafted cells were CD3(+) T cells. The presence of HLA class II did not advance B cell engraftment, such that humoral immune responses were undetectable. However, the overall survival of DQ8-expressing mice was prolonged significantly compared to mice expressing mouse MHC class II molecules, and correlated with an increased time span until onset of GVHD. Our data thus demonstrate that this new mouse strain is useful to study GVHD, and the prolonged animal survival and engraftment rates make it superior for experimental intervention following PBMC engraftment.
Collapse
Affiliation(s)
- S M Büchner
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Soluble GARP has potent antiinflammatory and immunomodulatory impact on human CD4+ T cells. Blood 2013; 122:1182-91. [DOI: 10.1182/blood-2012-12-474478] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Key Points
GARP efficiently represses proliferation of naïve and resting CD4+ T cells and is involved in the induction of adaptive regulatory T cells. In vivo, GARP prevents T cell–mediated destructive inflammation in a preclinical humanized mouse model of GVHD.
Collapse
|
48
|
Wooldridge L. Individual MHCI-Restricted T-Cell Receptors are Characterized by a Unique Peptide Recognition Signature. Front Immunol 2013; 4:199. [PMID: 23888160 PMCID: PMC3719040 DOI: 10.3389/fimmu.2013.00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/03/2013] [Indexed: 11/13/2022] Open
Abstract
Effective immunity requires that a limited TCR repertoire is able to recognize a vast number of foreign peptide-MHCI (peptide-major histocompatibility complex class I) molecules. This challenge is overcome by the ability of individual TCRs to recognize large numbers of peptides. Recently, it was demonstrated that MHCI-restricted TCRs can recognize up to 106 peptides of a defined length. Astonishingly, this remarkable level of promiscuity does not extend to peptides of different lengths, a fundamental observation that has broad implications for CD8+ T-cell immunity. In particular, the findings suggest that effective immunity can only be achieved by mobilization of “length-matched” CD8+ T-cell clonotypes. Overall, recent findings suggest that every TCR is specific for a unique set of peptides, which can be described as a unique “peptide recognition signature” (PRS) and consists of three components: (1) peptide length preference, (2) number of peptides recognized; and, (3) sequence identity (e.g., self versus pathogen derived). In future, the ability to de-convolute peptide recognition signatures across the normal and pathogenic repertoire will be essential for understanding the system requirements for effective CD8+ T-cell immunity and elucidating mechanisms which underlie CD8+ T-cell mediated disease.
Collapse
Affiliation(s)
- Linda Wooldridge
- Institute of Infection and Immunity, Cardiff University School of Medicine , Heath Park, Cardiff , UK
| |
Collapse
|
49
|
Pieters J, Müller P, Jayachandran R. On guard: coronin proteins in innate and adaptive immunity. Nat Rev Immunol 2013; 13:510-8. [PMID: 23765056 DOI: 10.1038/nri3465] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent work has implicated members of the evolutionarily conserved family of coronin proteins - in particular coronin 1 - in immune homeostasis. Coronins are involved in processes as diverse as pathogen survival in phagocytes and homeostatic T cell signalling. Notably, in both mice and humans, coronin mutations are associated with immune deficiencies and resistance to autoimmunity. In this article, we review what is currently known about these conserved molecules and discuss a potential common mechanism that underlies their diverse activities, which seem to involve cytoskeletal interactions as well as calcium-calcineurin signalling.
Collapse
Affiliation(s)
- Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
50
|
Hogan T, Shuvaev A, Commenges D, Yates A, Callard R, Thiebaut R, Seddon B. Clonally diverse T cell homeostasis is maintained by a common program of cell-cycle control. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:3985-93. [PMID: 23475214 PMCID: PMC3619530 DOI: 10.4049/jimmunol.1203213] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/05/2013] [Indexed: 12/12/2022]
Abstract
Lymphopenia induces T cells to undergo cell divisions as part of a homeostatic response mechanism. The clonal response to lymphopenia is extremely diverse, and it is unknown whether this heterogeneity represents distinct mechanisms of cell-cycle control or whether a common mechanism can account for the diversity. We addressed this question by combining in vivo and mathematical modeling of lymphopenia-induced proliferation (LIP) of two distinct T cell clonotypes. OT-I T cells undergo rapid LIP accompanied by differentiation that superficially resembles Ag-induced proliferation, whereas F5 T cells divide slowly and remain naive. Both F5 and OT-I LIP responses were most accurately described by a single stochastic division model where the rate of cell division was exponentially decreased with increasing cell numbers. The model successfully identified key biological parameters of the response and accurately predicted the homeostatic set point of each clone. Significantly, the model was successful in predicting interclonal competition between OT-I and F5 T cells, consistent with competition for the same resource(s) required for homeostatic proliferation. Our results show that diverse and heterogeneous clonal T cell responses can be accounted for by a single common model of homeostasis.
Collapse
Affiliation(s)
- Thea Hogan
- Institute of Child Health, University College London, London, WC1N 1EH, United Kingdom
| | - Andrey Shuvaev
- INSERM U897, Institut de Santé Publique, d'Épidémiologie et de Développement, Université Bordeaux Segalen, Bordeaux 33076, France
| | - Daniel Commenges
- INSERM U897, Institut de Santé Publique, d'Épidémiologie et de Développement, Université Bordeaux Segalen, Bordeaux 33076, France
| | - Andrew Yates
- Albert Einstein College of Medicine, Bronx, NY10461
| | - Robin Callard
- Institute of Child Health, University College London, London, WC1N 1EH, United Kingdom
| | - Rodolphe Thiebaut
- INSERM U897, Institut de Santé Publique, d'Épidémiologie et de Développement, Université Bordeaux Segalen, Bordeaux 33076, France
| | - Benedict Seddon
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, NW7 1AA, United Kingdom
| |
Collapse
|