1
|
Haigh S, Brown ZL, Shivers MA, Sellers HG, West MA, Barman SA, Stepp DW, Csanyi G, Fulton DJR. A Reappraisal of the Utility of L-012 to Measure Superoxide from Biologically Relevant Sources. Antioxidants (Basel) 2023; 12:1689. [PMID: 37759992 PMCID: PMC10525458 DOI: 10.3390/antiox12091689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The detection of superoxide anion (O2●-) in biological tissues remains challenging. Barriers to convenient and reproducible measurements include expensive equipment, custom probes, and the need for high sensitivity and specificity. The luminol derivative, L-012, has been used to measure O2●- since 1993 with mixed results and concerns over specificity. The goal of this study was to better define the conditions for use and their specificity. We found that L-012 coupled with depolymerized orthovanadate, a relatively impermeable tyrosine phosphatase inhibitor, yielded a highly sensitive approach to detect extracellular O2●-. In O2●- producing HEK-NOX5 cells, orthovanadate increased L-012 luminescence 100-fold. The combination of L-012 and orthovanadate was highly sensitive, stable, scalable, completely reversed by superoxide dismutase, and selective for O2●- generating NOXes versus NOX4, which produces H2O2. Moreover, there was no signal from cells transfected with NOS3 (NO●) and NOS2(ONOO-). To exclude the effects of altered tyrosine phosphorylation, O2●- was detected using non-enzymatic synthesis with phenazine methosulfate and via novel coupling of L-012 with niobium oxalate, which was less active in inducing tyrosine phosphorylation. Overall, our data shows that L-012 coupled with orthovanadate or other periodic group 5 salts yields a reliable, sensitive, and specific approach to measuring extracellular O2●- in biological systems.
Collapse
Affiliation(s)
- Stephen Haigh
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - Zach L. Brown
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - Mitch A. Shivers
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - Hunter G. Sellers
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - Madison A. West
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - Scott A. Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - David W. Stepp
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - Gabor Csanyi
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
- David Fulton Vascular Biology Center, Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| |
Collapse
|
2
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Hsp90 in Human Diseases: Molecular Mechanisms to Therapeutic Approaches. Cells 2022; 11:cells11060976. [PMID: 35326427 PMCID: PMC8946885 DOI: 10.3390/cells11060976] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The maturation of hemeprotein dictates that they incorporate heme and become active, but knowledge of this essential cellular process remains incomplete. Studies on chaperon Hsp90 has revealed that it drives functional heme maturation of inducible nitric oxide synthase (iNOS), soluble guanylate cyclase (sGC) hemoglobin (Hb) and myoglobin (Mb) along with other proteins including GAPDH, while globin heme maturations also need an active sGC. In all these cases, Hsp90 interacts with the heme-free or apo-protein and then drives the heme maturation by an ATP dependent process before dissociating from the heme-replete proteins, suggesting that it is a key player in such heme-insertion processes. As the studies on globin maturation also need an active sGC, it connects the globin maturation to the NO-sGC (Nitric oxide-sGC) signal pathway, thereby constituting a novel NO-sGC-Globin axis. Since many aggressive cancer cells make Hbβ/Mb to survive, the dependence of the globin maturation of cancer cells places the NO-sGC signal pathway in a new light for therapeutic intervention. Given the ATPase function of Hsp90 in heme-maturation of client hemeproteins, Hsp90 inhibitors often cause serious side effects and this can encourage the alternate use of sGC activators/stimulators in combination with specific Hsp90 inhibitors for better therapeutic intervention.
Collapse
|
4
|
Freitas DF, Colón DF, Silva RL, Santos EM, Guimarães VHD, Ribeiro GHM, de Paula AMB, Guimarães ALS, Dos Reis ST, Cunha FQ, Antunes MM, Menezes GB, Santos SHS. Neutrophil extracellular traps (NETs) modulate inflammatory profile in obese humans and mice: adipose tissue role on NETs levels. Mol Biol Rep 2022; 49:3225-3236. [PMID: 35066770 DOI: 10.1007/s11033-022-07157-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/17/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are a recently discovered neutrophil defense mechanism which modulates several inflammatory conditions contributing to metabolic profile alterations. Therefore, the present study aimed to evaluate the production of NETs in obese patients and mice, verifying the possible mechanisms associated with the release of NETs by the adipose tissue. METHODS AND RESULTS The present study investigated NETs production in human adipose tissue and also showing the neutrophils using intravital microscopy in mouse epididymal adipose tissue. Blood and white adipose tissues were obtained from eutrophic and obese individuals and from mice. Lipid, glycemic and leukocyte profiles were evaluated, as well as the levels of NETs and its markers. Bioinformatics and proteomics analyses were performed and the identified key proteins were measured. The main findings showed that the inflammatory markers interleukin-8 (IL-8), heat shock protein 90 (HSP90) and the E1 heat shock protein family (HSPE1) can be modulated by the NETs levels in obesity. Obesity has also been associated with increased cholesterol, glucose intolerance, ionic calcium and NETs. We also observed an increase in catalase and a decreased superoxide dismutase activity. Bioinformatics and proteomics analyses revealed that IL-8, HSP90 and HSPE1 were associated with obesity, inflammation and NETs release. CONCLUSIONS In conclusion, the present study shows an increase in NETs production during obesity associated with important inflammatory markers in adipose.
Collapse
Affiliation(s)
- Daniela Fernanda Freitas
- Laboratory of Health Science, Postgraduate Program in Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
- Department of Pharmacy Course of College Saint Augustine, Montes Claros, Minas Gerais, Brazil
| | - David Fernando Colón
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Rangel Leal Silva
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Eloá Mangabeira Santos
- Laboratory of Health Science, Postgraduate Program in Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Guilherme Henrique Mendes Ribeiro
- Institute of Agriculture Sciences, Departments of Food Engineering, Federal University of Minas Gerais (UFMG), Bairro Universitário, Montes Claros, Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Postgraduate Program in Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Sidnei Tavares Dos Reis
- Institute of Agriculture Sciences, Departments of Food Engineering, Federal University of Minas Gerais (UFMG), Bairro Universitário, Montes Claros, Minas Gerais, Brazil
| | - Fernando Queiroz Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Maisa Mota Antunes
- Center for Gastrointestinal Biology, Departments of Morphology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departments of Morphology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Sciences, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil.
- Department of Pharmacy Course of College Saint Augustine, Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Randzavola LO, Mortimer PM, Garside E, Dufficy ER, Schejtman A, Roumelioti G, Yu L, Pardo M, Spirohn K, Tolley C, Brandt C, Harcourt K, Nichols E, Nahorski M, Woods G, Williamson JC, Suresh S, Sowerby JM, Matsumoto M, Santos CXC, Kiar CS, Mukhopadhyay S, Rae WM, Dougan GJ, Grainger J, Lehner PJ, Calderwood MA, Choudhary J, Clare S, Speak A, Santilli G, Bateman A, Smith KGC, Magnani F, Thomas DC. EROS is a selective chaperone regulating the phagocyte NADPH oxidase and purinergic signalling. eLife 2022; 11:76387. [PMID: 36421765 PMCID: PMC9767466 DOI: 10.7554/elife.76387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
EROS (essential for reactive oxygen species) protein is indispensable for expression of gp91phox, the catalytic core of the phagocyte NADPH oxidase. EROS deficiency in humans is a novel cause of the severe immunodeficiency, chronic granulomatous disease, but its mechanism of action was unknown until now. We elucidate the role of EROS, showing it acts at the earliest stages of gp91phox maturation. It binds the immature 58 kDa gp91phox directly, preventing gp91phox degradation and allowing glycosylation via the oligosaccharyltransferase machinery and the incorporation of the heme prosthetic groups essential for catalysis. EROS also regulates the purine receptors P2X7 and P2X1 through direct interactions, and P2X7 is almost absent in EROS-deficient mouse and human primary cells. Accordingly, lack of murine EROS results in markedly abnormal P2X7 signalling, inflammasome activation, and T cell responses. The loss of both ROS and P2X7 signalling leads to resistance to influenza infection in mice. Our work identifies EROS as a highly selective chaperone for key proteins in innate and adaptive immunity and a rheostat for immunity to infection. It has profound implications for our understanding of immune physiology, ROS dysregulation, and possibly gene therapy.
Collapse
Affiliation(s)
- Lyra O Randzavola
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Paige M Mortimer
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Emma Garside
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Elizabeth R Dufficy
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - Andrea Schejtman
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Georgia Roumelioti
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Lu Yu
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Mercedes Pardo
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Kerstin Spirohn
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer InstituteBostonUnited States,Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States,Department of Cancer Biology, Dana-Farber Cancer InstituteBostonUnited States
| | | | | | | | - Esme Nichols
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Mike Nahorski
- Cambridge Institute of Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - Geoff Woods
- Cambridge Institute of Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - James C Williamson
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Shreehari Suresh
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - John M Sowerby
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of MedicineKyotoJapan
| | - Celio XC Santos
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College LondonLondonUnited Kingdom
| | - Cher Shen Kiar
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
| | - Subhankar Mukhopadhyay
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
| | - William M Rae
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Gordon J Dougan
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - John Grainger
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Paul J Lehner
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer InstituteBostonUnited States,Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States,Department of Cancer Biology, Dana-Farber Cancer InstituteBostonUnited States
| | - Jyoti Choudhary
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Simon Clare
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
| | | | - Giorgia Santilli
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome CampusHinxtonUnited Kingdom
| | - Kenneth GC Smith
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Francesca Magnani
- Department of Biology and Biotechnology, University of PaviaPaviaItaly
| | - David C Thomas
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
6
|
Effects of Iodonium Analogs on Nadph Oxidase 1 in Human Colon Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10111757. [PMID: 34829628 PMCID: PMC8615264 DOI: 10.3390/antiox10111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
Recent studies suggest that of the molecules postulated to function as inhibitors of the NADPH oxidase family of enzymes iodonium analogs known to broadly interfere with flavin dehydrogenase function demonstrate mechanistic validity as NADPH oxidase poisons. In recent work, we have produced a series of novel iodonium compounds as putative inhibitors of these oxidases. To evaluate the potential utility of two novel molecules with favorable chemical properties, NSC 740104 and NSC 751140, we compared effects of these compounds to the two standard inhibitors of this class, diphenyleneiodonium and di-2-thienyliodonium, with respect to antiproliferative, cell cycle, and gene expression effects in human colon cancer cells that require the function of NADPH oxidase 1. Both new agents blocked NADPH oxidase-related reactive oxygen production, inhibited tumor cell proliferation, produced a G1/S block in cell cycle progression, and inhibited NADPH oxidase 1 expression at the mRNA and protein levels at low nM concentrations in a fashion similar to or better than the parent molecules. These studies suggest that NSC 740104 and NSC 751140 should be developed further as mechanistic tools to better understand the role of NADPH oxidase inhibition as an approach to the development of novel therapeutic agents for colon cancer.
Collapse
|
7
|
Fan Gaskin JC, Shah MH, Chan EC. Oxidative Stress and the Role of NADPH Oxidase in Glaucoma. Antioxidants (Basel) 2021; 10:antiox10020238. [PMID: 33557289 PMCID: PMC7914994 DOI: 10.3390/antiox10020238] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Glaucoma is characterised by loss of retinal ganglion cells, and their axons and many pathophysiological processes are postulated to be involved. It is increasingly understood that not one pathway underlies glaucoma aetiology, but rather they occur as a continuum that ultimately results in the apoptosis of retinal ganglion cells. Oxidative stress is recognised as an important mechanism of cell death in many neurodegenerative diseases, including glaucoma. NADPH oxidase (NOX) are enzymes that are widely expressed in vascular and non-vascular cells, and they are unique in that they primarily produce reactive oxygen species (ROS). There is mounting evidence that NOX are an important source of ROS and oxidative stress in glaucoma and other retinal diseases. This review aims to provide a perspective on the complex role of oxidative stress in glaucoma, in particular how NOX expression may influence glaucoma pathogenesis as illustrated by different experimental models of glaucoma and highlights potential therapeutic targets that may offer a novel treatment option to glaucoma patients.
Collapse
Affiliation(s)
- Jennifer C Fan Gaskin
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Manisha H Shah
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Elsa C Chan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Department of Medicine, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
8
|
Zhao C, Peng C, Wang P, Fan S, Yan L, Qiu L. Identification of co-chaperone Cdc37 in Penaeus monodon: coordination with Hsp90 can reduce cadmium stress-induced lipid peroxidation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111800. [PMID: 33340955 DOI: 10.1016/j.ecoenv.2020.111800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Cell division cycle 37 (Cdc37) is an important cytoplasmic phosphoprotein, which usually functions as a complex with heat shock protein 90 (Hsp90), to effectively reduce the damage caused by heavy metals, such as cadmium (Cd), in aquatic animals. The high toxicity of Cd in aquatic systems generally has a deleterious effect on healthy farming of shrimps. In the present study, a novel Cdc37 gene from Penaeus monodon was identified and designated as PmCdc37. Following exposure to Cd stress, the expression levels of PmCdc37 were upregulated at the transcriptional level in both the hepatopancreas and hemolymph. RNA interference and recombinant protein injection experiments were carried out to determine the function of PmCdc37 in P. monodon following Cd exposure. To clarify the correlations between PmCdc37 and PmHsp90, the respective recombinant proteins were expressed in vitro, and the ATPase activity of PmHsp90, with or without PmCdc37, was assessed. Moreover, a pull-down assay was conducted to detect the correlation between PmCdc37 and PmHsp90. After analyzing the expression patterns of PmHsp90 following Cd challenge, whether PmHsp90 can promote the ability of PmCdc37 to resist Cd stress or not was investigated. The results showed that formation of a PmHsp90/PmCdc37 complex protected shrimp against Cd stress-induced damage. Moreover, we also confirmed that PmSOD is involved in Cd stress, and that the PmHsp90/PmCdc37 complex can regulate SOD enzymatic activity. PmSOD was involved in decreasing the MDA content in shrimp hemolymph caused by Cd stress. We concluded that during exposure to Cd, the PmHsp90/PmCdc37 complex increases SOD enzyme activity, and in turn decreases the MDA content, thereby protecting shrimp against the damage caused by Cd stress. The present studies contribute to understanding the molecular mechanism underlying resistance to Cd stress in shrimp.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Chao Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, China.
| |
Collapse
|
9
|
Abstract
Reactive oxygen species (ROS) are ubiquitous metabolic products and important cellular signaling molecules that contribute to several biological functions. Pathophysiology arises when ROS are generated either in excess or in cell types or subcellular locations that normally do not produce ROS or when non-physiological types of ROS (e.g., superoxide instead of hydrogen peroxide) are formed. In the latter scenario, antioxidants were considered as the apparent remedy but, clinically, have consistently failed and even sometimes induced harm. The obvious reason for that is the non-selective ROS scavenging effects of antioxidants which interfere with both qualities of ROS, physiological and pathological. Therefore, it is essential to overcome this "antidote or neutralizer" strategy. We here review the most promising alternative approach by identifying the disease-relevant enzymatic sources of ROS, target these selectively, but leave physiological ROS signaling through other sources intact. Among all ROS sources, NADPH oxidases (NOX1-5 and DUOX1-2) stand out as their sole function is to produce ROS, whereas most other enzymatic sources only produce ROS as a by-product or upon biochemical uncoupling or damage. This qualifies NOXs as the main potential drug-target candidates in diseases associated with dysfunction in ROS signaling. As a reflection of this, the development of several NOX inhibitors has taken place. Recently, the WHO approved a new stem, "naxib," which refers to NADPH oxidase inhibitors, and thereby recognized NOX inhibitors as a new therapeutic class. This has been announced while clinical trials with the first-in-class compound, setanaxib (initially known as GKT137831) had been initiated. We also review the differences between the seven NOX family members in terms of structure and function in health and disease and then focus on the most advanced NOX inhibitors with an exclusive focus on clinically relevant validations and applications. Therapeutically relevant NADPH oxidase isoforms type 1, 2, 4, and 5 (NOX1, NOX2, NOX4, NOX5). Of note, NOX5 is not present in mice and rats and thus pre-clinically less studied. NOX2, formerly termed gp91phox, has been correlated with many, too many, diseases and is rather relevant as genetic deficiency in chronic granulomatous disease (CGD), treated by gene therapy. Overproduction of ROS through NOX1, NOX4, and NOX5 leads to the indicated diseases states including atherosclerosis (red), a condition where NOX4 is surprisingly protective.
Collapse
Affiliation(s)
- Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, School of MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | | | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School of MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Regulation of Metabolic Processes by Hydrogen Peroxide Generated by NADPH Oxidases. Processes (Basel) 2020. [DOI: 10.3390/pr8111424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important oxidizing molecule that regulates the metabolisms of aerobic organisms. Redox signaling comprises physiological oxidative stress (eustress), while excessive oxidative stress causes damage to molecules. The main enzymatic generators of H2O2 are nicotinamide adenine dinucleotide phosphate oxidases or NADPH oxidases (NOXs) and mitochondrial respiratory chains, as well as various oxidases. The NOX family is constituted of seven enzyme isoforms that produce a superoxide anion (O2−), which can be converted to H2O2 by superoxide dismutase or spontaneously. H2O2 passes through the membranes by some aquaporins (AQPs), known as peroxyporins. It diffuses through cells and tissues to initiate cellular effects, such as proliferation, the recruitment of immune cells, and cell shape changes. Therefore, it has been proposed that H2O2 has the same importance as Ca2+ or adenosine triphosphate (ATP) to act as modulators in signaling and the metabolism. The present overview focuses on the metabolic processes of liver and adipose tissue, regulated by the H2O2 generated by NOXs.
Collapse
|
11
|
Sweeny EA, Schlanger S, Stuehr DJ. Dynamic regulation of NADPH oxidase 5 by intracellular heme levels and cellular chaperones. Redox Biol 2020; 36:101656. [PMID: 32738790 PMCID: PMC7394750 DOI: 10.1016/j.redox.2020.101656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
NADPH oxidase 5 (NOX5) is a transmembrane signaling enzyme that produces superoxide in response to elevated cytosolic calcium. In addition to its association with numerous human diseases, NOX5 has recently been discovered to play crucial roles in the immune response and cardiovascular system. Details of NOX5 maturation, and specifically its response to changes in intracellular heme levels have remained unclear. Here we establish an experimental system in mammalian cells that allows us to probe the influence of heme availability on ROS production by NOX5. We identified a mode of dynamic regulatory control over NOX5 activity through modulation of its heme saturation and oligomeric state by intracellular heme levels and Hsp90 binding. This regulatory mechanism allows for fine-tuning and reversible modulation of NOX5 activity in response to stimuli.
Collapse
Affiliation(s)
- Elizabeth A Sweeny
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Simon Schlanger
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
12
|
Bouzakri K, Veyrat-Durebex C, Holterman C, Arous C, Barbieux C, Bosco D, Altirriba J, Alibashe M, Tournier BB, Gunton JE, Mouche S, Bietiger W, Forterre A, Berney T, Pinget M, Christofori G, Kennedy C, Szanto I. Beta-Cell-Specific Expression of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 5 Aggravates High-Fat Diet-Induced Impairment of Islet Insulin Secretion in Mice. Antioxid Redox Signal 2020; 32:618-635. [PMID: 31931619 DOI: 10.1089/ars.2018.7579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Nicotinamide adenine dinucleotide phosphate oxidases (NOX-es) produce reactive oxygen species and modulate β-cell insulin secretion. Islets of type 2 diabetic subjects present elevated expression of NOX5. Here, we sought to characterize regulation of NOX5 expression in human islets in vitro and to uncover the relevance of NOX5 in islet function in vivo using a novel mouse model expressing NOX5 in doxycycline-inducible, β-cell-specific manner (RIP/rtTA/NOX5 mice). Results:In situ hybridization and immunohistochemistry employed on pancreatic sections demonstrated NOX5 messenger ribonucleic acid (mRNA) and protein expressions in human islets. In cultures of dispersed islets, NOX5 protein was observed in somatostatin-positive (δ) cells in basal (2.8 mM glucose) conditions. Small interfering ribonucleic acid (siRNA)-mediated knockdown of NOX5 in human islets cultured in basal glucose concentrations resulted in diminished glucose-induced insulin secretion (GIIS) in vitro. However, when islets were preincubated in high (16.7 mM) glucose media for 12 h, NOX5 appeared also in insulin-positive (β) cells. In vivo, mice with β-cell NOX5 expression developed aggravated impairment of GIIS compared with control mice when challenged with 14 weeks of high-fat diet. Similarly, in vitro palmitate preincubation resulted in more severe reduction of insulin release in islets of RIP/rtTA/NOX5 mice compared with their control littermates. Decreased insulin secretion was most distinct in response to theophylline stimulation, suggesting impaired cyclic adenosine monophosphate (cAMP)-mediated signaling due to increased phosphodiesterase activation. Innovation and Conclusions: Our data provide the first insight into the complex regulation and function of NOX5 in islets implying an important role for NOX5 in δ-cell-mediated intraislet crosstalk in physiological circumstances but also identifying it as an aggravating factor in β-cell failure in diabetic conditions.
Collapse
Affiliation(s)
- Karim Bouzakri
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Chet Holterman
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Caroline Arous
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Charlotte Barbieux
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Mohamed Alibashe
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Vulnerability Biomarkers Unit, Division of General Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Jenny E Gunton
- Centre for Diabetes, Obesity and Endocrinology, Westmead Millennium Institute, The University of Sydney, Sydney, Australia.,Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, Australia
| | - Sarah Mouche
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Department of Internal Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Thierry Berney
- Division of Transplantation, Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Michel Pinget
- Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Christopher Kennedy
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Ildiko Szanto
- Department of Internal Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine at the University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Ryoden Y, Fujii T, Segawa K, Nagata S. Functional Expression of the P2X7 ATP Receptor Requires Eros. THE JOURNAL OF IMMUNOLOGY 2019; 204:559-568. [PMID: 31862710 DOI: 10.4049/jimmunol.1900448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 02/04/2023]
Abstract
In response to extracellular ATP, the purinergic receptor P2X7 mediates various biological processes, including phosphatidylserine (PtdSer) exposure, phospholipid scrambling, dye uptake, ion transport, and IL-1β production. A genome-wide CRISPR screen for molecules responsible for ATP-induced PtdSer exposure identified a transmembrane protein, essential for reactive oxygen species (Eros), as a necessary component for P2X7 expression. An Eros-null mouse T cell line lost the ability to expose PtdSer, to scramble phospholipids, and to internalize a dye YO-PRO-1 and Ca2+ ions. Eros-null mutation abolished the ability of an LPS-primed human THP-1 macrophage cell line and mouse bone marrow-derived macrophages to secrete IL-1β in response to ATP. Eros is localized to the endoplasmic reticulum and functions as a chaperone for NADPH oxidase components. Similarly, Eros at the endoplasmic reticulum transiently associated with P2X7 to promote the formation of a stable homotrimeric complex of P2X7. These results indicated that Eros acts as a chaperone not only for NADPH oxidase, but also for P2X7, and contributes to the innate immune reaction.
Collapse
Affiliation(s)
- Yuta Ryoden
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshihiro Fujii
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsumori Segawa
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
15
|
Schiavone S, Tucci P, Trabace L, Morgese MG. Early Celastrol Administration Prevents Ketamine-Induced Psychotic-Like Behavioral Dysfunctions, Oxidative Stress and IL-10 Reduction in The Cerebellum of Adult Mice. Molecules 2019; 24:molecules24213993. [PMID: 31694174 PMCID: PMC6864687 DOI: 10.3390/molecules24213993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Administration of subanesthetic doses of ketamine during brain maturation represents a tool to mimic an early insult to the central nervous system (CNS). The cerebellum is a key player in psychosis pathogenesis, to which oxidative stress also contributes. Here, we investigated the impact of early celastrol administration on behavioral dysfunctions in adult mice that had received ketamine (30 mg/kg i.p.) at postnatal days (PNDs) 7, 9, and 11. Cerebellar levels of 8-hydroxydeoxyguanosine (8-OHdG), NADPH oxidase (NOX) 1 and NOX2, as well as of the calcium-binding protein parvalbumin (PV), were also assessed. Furthermore, celastrol effects on ketamine-induced alterations of proinflammatory (TNF-α, IL-6 and IL-1β) and anti-inflammatory (IL-10) cytokines in this brain region were evaluated. Early celastrol administration prevented ketamine-induced discrimination index decrease at adulthood. The same was found for locomotor activity elevations and increased close following and allogrooming, whereas no beneficial effects on sniffing impairment were detected. Ketamine increased 8-OHdG in the cerebellum of adult mice, which was also prevented by early celastrol injection. Cerebellar NOX1 levels were enhanced at adulthood following postnatal ketamine exposure. Celastrol per se induced NOX1 decrease in the cerebellum. This effect was more significant in animals that were early administered with ketamine. NOX2 levels did not change. Ketamine administration did not affect PV amount in the cerebellum. TNF-α levels were enhanced in ketamine-treated animals; however, this was not prevented by early celastrol administration. While no changes were observed for IL-6 and IL-1β levels, ketamine determined a reduction of cerebellar IL-10 expression, which was prevented by early celastrol treatment. Our results suggest that NOX inhibition during brain maturation prevents the development of psychotic-like behavioral dysfunctions, as well as the increased cerebellar oxidative stress and the reduction of IL-10 in the same brain region following ketamine exposure in postnatal life. This opens novel neuroprotective opportunities against early detrimental insults occurring during brain development.
Collapse
|
16
|
Genetically Modified Heat Shock Protein90s and Polyamine Oxidases in Arabidopsis Reveal Their Interaction under Heat Stress Affecting Polyamine Acetylation, Oxidation and Homeostasis of Reactive Oxygen Species. PLANTS 2019; 8:plants8090323. [PMID: 31484414 PMCID: PMC6783977 DOI: 10.3390/plants8090323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
One Sentence Summary Heat shock proteins90 (HSP90s) induce acetylation of polyamines (PAs) and interact with polyamine oxidases (PAOs) affecting oxidation of PAs and hydrogen peroxide (H2O2) homeostasis in Arabidopsis thaliana. Abstract The chaperones, heat shock proteins (HSPs), stabilize proteins to minimize proteotoxic stress, especially during heat stress (HS) and polyamine (PA) oxidases (PAOs) participate in the modulation of the cellular homeostasis of PAs and reactive oxygen species (ROS). An interesting interaction of HSP90s and PAOs was revealed in Arabidopsis thaliana by using the pLFY:HSP90RNAi line against the four AtHSP90 genes encoding cytosolic proteins, the T-DNA Athsp90-1 and Athsp90-4 insertional mutants, the Atpao3 mutant and pharmacological inhibitors of HSP90s and PAOs. Silencing of all cytosolic HSP90 genes resulted in several-fold higher levels of soluble spermidine (S-Spd), acetylated Spd (N8-acetyl-Spd) and acetylated spermine (N1-acetyl-Spm) in the transgenic Arabidopsis thaliana leaves. Heat shock induced increase of soluble-PAs (S-PAs) and soluble hydrolyzed-PAs (SH-PAs), especially of SH-Spm, and more importantly of acetylated Spd and Spm. The silencing of HSP90 genes or pharmacological inhibition of the HSP90 proteins by the specific inhibitor radicicol, under HS stimulatory conditions, resulted in a further increase of PA titers, N8-acetyl-Spd and N1-acetyl-Spm, and also stimulated the expression of PAO genes. The increased PA titers and PAO enzymatic activity resulted in a profound increase of PAO-derived hydrogen peroxide (H2O2) levels, which was terminated by the addition of the PAO-specific inhibitor guazatine. Interestingly, the loss-of-function Atpao3 mutant exhibited increased mRNA levels of selected AtHSP90 genes. Taken together, the results herein reveal a novel function of HSP90 and suggest that HSP90s and PAOs cross-talk to orchestrate PA acetylation, oxidation, and PA/H2O2 homeostasis.
Collapse
|
17
|
Jha JC, Dai A, Holterman CE, Cooper ME, Touyz RM, Kennedy CR, Jandeleit-Dahm KAM. Endothelial or vascular smooth muscle cell-specific expression of human NOX5 exacerbates renal inflammation, fibrosis and albuminuria in the Akita mouse. Diabetologia 2019; 62:1712-1726. [PMID: 31222503 DOI: 10.1007/s00125-019-4924-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Excessive production of reactive oxygen species (ROS) plays a detrimental role in the progression of diabetic kidney disease (DKD). Renal oxidative stress activates proinflammatory cytokines, chemokines and profibrotic factors in DKD. Increased expression of the prooxidant enzyme NADPH oxidase (NOX) 5 in kidneys of diabetic individuals has been hypothesised to correlate with renal injury and progression of DKD. Since the gene encoding NOX5 is not expressed in the mouse genome, we examined the effect of inducible human NOX5 expression in renal cells, selectively in either endothelial cells or vascular smooth muscle cells (VSMCs)/mesangial cells in a model of insulin-deficient diabetes, the Akita mouse. METHODS Renal structural injury, including glomerulosclerosis, mesangial expansion and extracellular matrix protein accumulation, as well as renal inflammation, ROS formation and albuminuria, were examined in the NOX5 transgenic Akita mouse model of DKD. RESULTS Expression of NOX5 in either endothelial cells or VSMCs/mesangial cells in diabetic Akita mice was associated with increased renal inflammation (monocyte chemoattractant protein-1, NF-κB and toll-like receptor-4) and glomerulosclerosis, as well as upregulation of protein kinase C-α and increased expression of extracellular matrix genes (encoding collagen III, fibronectin and α-smooth muscle actin) and proteins (collagen IV), most likely mediated via enhanced renal ROS production. The effect of VSMC/mesangial cell-specific NOX5 expression resulted in more pronounced renal fibrosis in comparison with endothelial cell-specific NOX5 expression in diabetic mice. In addition, albuminuria was significantly increased in diabetic VEcad+NOX5+ mice (1192 ± 194 μg/24 h) when compared with diabetic VEcad+NOX5- mice (770 ± 98 μg/24 h). Furthermore, the regulatory components of NOX5 activation, including heat shock protein 90 and transient receptor potential cation channel subfamily C member 6, were upregulated only in the presence of both NOX5 and diabetes. CONCLUSIONS/INTERPRETATION The findings from this study highlight the importance of NOX5 in promoting diabetes-related renal injury and provide the rationale for the development of a selective NOX5 inhibitor for the prevention and/or treatment of DKD.
Collapse
Affiliation(s)
- Jay C Jha
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Level 5, Melbourne, VIC, 3004, Australia
| | - Aozhi Dai
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Level 5, Melbourne, VIC, 3004, Australia
| | - Chet E Holterman
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Level 5, Melbourne, VIC, 3004, Australia
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Chris R Kennedy
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Karin A M Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Level 5, Melbourne, VIC, 3004, Australia.
- German Diabetes Centre, Institute for Clinical Diabetology, Leibniz Centre for Diabetes Research, Heinrich-Heine University, Duesseldorf, Germany.
| |
Collapse
|
18
|
Loss of GTPase activating protein neurofibromin stimulates paracrine cell communication via macropinocytosis. Redox Biol 2019; 27:101224. [PMID: 31201114 PMCID: PMC6859534 DOI: 10.1016/j.redox.2019.101224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Neurofibromin, the protein product of the neurofibromatosis type 1 (NF1) tumor suppressor gene, is a negative regulator of Ras signaling. Patients with mutations in NF1 have a strong predisposition for cardiovascular disease, which contributes to their early mortality. Nf1 heterozygous (Nf1+/-) bone marrow to wild type chimeras and mice with heterozygous recombination of Nf1 in myeloid cells recapitulate many of the vascular phenotypes observed in Nf1+/- mutants. Although these results suggest that macrophages play a central role in NF1 vasculopathy, the underlying mechanisms are currently unknown. In the present study, we employed macrophages isolated from either Nf1+/- or Lysm Cre+/Nf1f/f mice to test the hypothesis that loss of Nf1 stimulates macropinocytosis in macrophages. Scanning electron microscopy and flow cytometry analysis of FITC-dextran internalization demonstrated that loss of Nf1 in macrophages stimulates macropinocytosis. We next utilized various cellular and molecular approaches, pharmacological inhibitors and genetically modified mice to identify the signaling mechanisms mediating macropinocytosis in Nf1-deficient macrophages. Our results indicate that loss of Nf1 stimulates PKCδ-mediated p47phox phosphorylation via RAS activation, leading to increased NADPH oxidase 2 activity, reactive oxygen species generation, membrane ruffling and macropinocytosis. Interestingly, we also found that Nf1-deficient macrophages internalize exosomes derived from angiotensin II-treated endothelial cells via macropinocytosis in vitro and in the peritoneal cavity in vivo. As a result of exosome internalization, Nf1-deficient macrophages polarized toward an inflammatory M1 phenotype and secreted increased levels of proinflammatory cytokines compared to controls. In conclusion, the findings of the present study demonstrate that loss of Nf1 stimulates paracrine endothelial to myeloid cell communication via macropinocytosis, leading to proinflammatory changes in recipient macrophages.
Collapse
|
19
|
Yang M, Zhang M, Nakajima H, Yudasaka M, Iijima S, Okazaki T. Time-dependent degradation of carbon nanotubes correlates with decreased reactive oxygen species generation in macrophages. Int J Nanomedicine 2019; 14:2797-2807. [PMID: 31118611 PMCID: PMC6501421 DOI: 10.2147/ijn.s199187] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction and objective: With the increase in carbon nanotube-based products on the commercial market, public concern regarding the possible toxicity of these nanomaterials has attracted much attention. Although previous studies found no obvious toxicity related to carbon nanotubes (CNTs), their safety has not been established because long-term evaluation is still needed. In vitro assays are used to understand the toxicity of nanomaterials. However, the data published so far were generated in short-term assays in which cells are continuously exposed to CNTs. Therefore, the objective of this study is to quantitatively assess the relative long-term cytotoxicity and degradation of CNTs after uptake by macrophages. Methods: We used macrophage cell line of RAW 264.7 and primary rat Kupffer cells to investigate macrophage uptake of CNTs as well as their quantity changes up to a relatively late time point after uptake (7 days) by measuring optical absorbance in the near infrared region and Raman spectra of CNTs in the cell lysates. The time-dependent cytotoxicity was evaluated by measuring reactive oxygen species (ROS), glutathione, cell viability, and caspase 3/7 activity in 1-7 days. Results: CNTs were degraded by approximately 25-30% within first 4 days after uptake; however, and no additional degradation occurred for the remainder of the 7-day test period. Generation of ROS by macrophages decreased as CNT degradation occurred, returning to control levels by Day 7. In the meantime, the glutathione level gradually recovered over time. There were no changes in cell viability or caspase 3/7 activation during CNT degradation. Conclusion: These results confirm that degradation of CNTs by macrophages is associated with ROS generation. The data also suggest that CNT cytotoxicity decreases as they are degraded.
Collapse
Affiliation(s)
- Mei Yang
- Nanotube Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Minfang Zhang
- Nanotube Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Hideaki Nakajima
- Nanotube Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Masako Yudasaka
- Nanotube Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.,Faculty of Science & Technology, Meijo University, Tempaku-ku, Nagoya 468-8502, Japan
| | - Sumio Iijima
- Faculty of Science & Technology, Meijo University, Tempaku-ku, Nagoya 468-8502, Japan
| | - Toshiya Okazaki
- Nanotube Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
20
|
Barman SA, Li X, Haigh S, Kondrikov D, Mahboubi K, Bordan Z, Stepp DW, Zhou J, Wang Y, Weintraub DS, Traber P, Snider W, Jonigk D, Sullivan J, Crislip GR, Butcher JT, Thompson J, Su Y, Chen F, Fulton DJR. Galectin-3 is expressed in vascular smooth muscle cells and promotes pulmonary hypertension through changes in proliferation, apoptosis, and fibrosis. Am J Physiol Lung Cell Mol Physiol 2019; 316:L784-L797. [PMID: 30724100 DOI: 10.1152/ajplung.00186.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A defining characteristic of pulmonary hypertension (PH) is the extensive remodeling of pulmonary arteries (PAs), which results in progressive increases in vascular resistance and stiffness and eventual failure of the right ventricle. There is no cure for PH and identification of novel molecular mechanisms that underlie increased proliferation, reduced apoptosis, and excessive extracellular matrix production in pulmonary artery smooth muscle cells (PASMCs) is a vital objective. Galectin-3 (Gal-3) is a chimeric lectin and potent driver of many aspects of fibrosis, but its role in regulating PASMC behavior in PH remains poorly understood. Herein, we evaluated the importance of increased Gal-3 expression and signaling on PA vascular remodeling and cardiopulmonary function in experimental models of PH. Gal-3 expression was quantified by qRT-PCR, immunoblotting, and immunofluorescence imaging, and its functional role was assessed by specific Gal-3 inhibitors and CRISPR/Cas9-mediated knockout of Gal-3 in the rat. In rat models of PH, we observed increased Gal-3 expression in PASMCs, which stimulated migration and resistance to apoptosis, whereas silencing or genetic deletion reduced cellular migration and PA fibrosis and increased apoptosis. Gal-3 inhibitors attenuated and reversed PA remodeling and fibrosis, as well as hemodynamic indices in monocrotaline (MCT)-treated rats in vivo. These results were supported by genetic deletion of Gal-3 in both MCT and Sugen Hypoxia rat models. In conclusion, our results suggest that elevated Gal-3 levels contribute to inappropriate PA remodeling in PH by enhancing multiple profibrotic mechanisms. Therapeutic strategies targeting Gal-3 may be of benefit in the treatment of PH.
Collapse
Affiliation(s)
- Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Xueyi Li
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Dmitry Kondrikov
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Keyvan Mahboubi
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - David W Stepp
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Yusi Wang
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Daniel S Weintraub
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| | | | - William Snider
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Danny Jonigk
- Department of Pathology, Hannover Medical School , Hannover , Germany
| | - Jennifer Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - G Ryan Crislip
- Department of Physiology, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Joshua T Butcher
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Jennifer Thompson
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Feng Chen
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia.,Department of Forensic Medicine, Nanjing Medical University , Nanjing, Jiangsu , China
| | - David J R Fulton
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University , Augusta, Georgia.,Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| |
Collapse
|
21
|
Abstract
SIGNIFICANCE G protein-coupled receptors (GPCR) are the largest group of cell surface receptors, which link cells to their environment. Reactive oxygen species (ROS) can act as important cellular signaling molecules. The family of NADPH oxidases generates ROS in response to activated cell surface receptors. Recent Advances: Various signaling pathways linking GPCRs and activation of NADPH oxidases have been characterized. CRITICAL ISSUES Still, a more detailed analysis of G proteins involved in the GPCR-mediated activation of NADPH oxidases is needed. In addition, a more precise discrimination of NADPH oxidase activation due to either upregulation of subunit expression or post-translational subunit modifications is needed. Also, the role of noncanonical modulators of NADPH oxidase activation in the response to GPCRs awaits further analyses. FUTURE DIRECTIONS As GPCRs are one of the most popular classes of investigational drug targets, further detailing of G protein-coupled mechanisms in the activation mechanism of NADPH oxidases as well as better understanding of the link between newly identified NADPH oxidase interaction partners and GPCR signaling will provide new opportunities for improved efficiency and decreased off target effects of therapies targeting GPCRs.
Collapse
Affiliation(s)
- Andreas Petry
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich , TU Munich, Munich, Germany
| | - Agnes Görlach
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich , TU Munich, Munich, Germany .,2 DZHK (German Centre for Cardiovascular Research) , Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
22
|
Ghosh A, Stuehr DJ. Hsp90 and Its Role in Heme-Maturation of Client Proteins: Implications for Human Diseases. HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-23158-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Abstract
NOX (NADPH oxidases) are a family of NADPH-dependent transmembrane enzymes that synthesize superoxide and other reactive oxygen species. There are seven isoforms (NOX1-5 and DUOX1-2) which derive from a common ancestral NOX. NOX enzymes are distinguished by different modes of activation, the types of ROS that are produced, the cell types where they are expressed, and distinct functional roles. NOX5 was one of the earliest eukaryotic Nox enzymes to evolve and ironically the last isoform to be discovered in humans. In the time since its discovery, our knowledge of the regulation of NOX5 has expanded tremendously, and we now have a more comprehensive understanding of the molecular mechanisms underlying NOX5-dependent ROS production. In contrast, the cell types where NOX5 is robustly expressed and its functional significance in health and disease remain an underdeveloped area. The goal of this chapter is to provide an up-to-date overview of the mechanisms regulating NOX5 function and its importance in human physiology and pathophysiology.
Collapse
Affiliation(s)
- David J R Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
24
|
Bhat AV, Hora S, Pal A, Jha S, Taneja R. Stressing the (Epi)Genome: Dealing with Reactive Oxygen Species in Cancer. Antioxid Redox Signal 2018; 29:1273-1292. [PMID: 28816066 DOI: 10.1089/ars.2017.7158] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Growing evidence indicates cross-talk between reactive oxygen species (ROS) and several key epigenetic processes such as DNA methylation, histone modifications, and miRNAs in normal physiology and human pathologies including cancer. This review focuses on how ROS-induced oxidative stress, metabolic intermediates, and epigenetic processes influence each other in various cancers. Recent Advances: ROS alter chromatin structure and metabolism that impact the epigenetic landscape in cancer cells. Several site-specific DNA methylation changes have been identified in different cancers and are discussed in the review. We also discuss the interplay of epigenetic enzymes and miRNAs in influencing malignant transformation in an ROS-dependent manner. CRITICAL ISSUES Loss of ROS-mediated signaling mostly by epigenetic regulation may promote tumorigenesis. In contrast, augmented oxidative stress because of high ROS levels may precipitate epigenetic alterations to effect various phases of carcinogenesis. We address both aspects in the review. FUTURE DIRECTIONS Several drugs targeting ROS are under various stages of clinical development. Recent analysis of human cancers has revealed pervasive deregulation of the epigenetic machinery. Thus, a better understanding of the cross-talk between ROS and epigenetic alterations in cancer could lead to the identification of new drug targets and more effective treatment modalities.
Collapse
Affiliation(s)
- Akshay V Bhat
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Shainan Hora
- 2 Cancer Science Institute, National University of Singapore , Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Sudhakar Jha
- 2 Cancer Science Institute, National University of Singapore , Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
25
|
A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin Sci (Lond) 2018; 132:1811-1836. [PMID: 30166499 DOI: 10.1042/cs20171459] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
Abstract
Chronic renal and vascular oxidative stress in association with an enhanced inflammatory burden are determinant processes in the development and progression of diabetic complications including cardiovascular disease (CVD), atherosclerosis and diabetic kidney disease (DKD). Persistent hyperglycaemia in diabetes mellitus increases the production of reactive oxygen species (ROS) and activates mediators of inflammation as well as suppresses antioxidant defence mechanisms ultimately contributing to oxidative stress which leads to vascular and renal injury in diabetes. Furthermore, there is increasing evidence that ROS, inflammation and fibrosis promote each other and are part of a vicious connection leading to development and progression of CVD and kidney disease in diabetes.
Collapse
|
26
|
Li X, Yu Y, Gorshkov B, Haigh S, Bordan Z, Weintraub D, Rudic RD, Chakraborty T, Barman SA, Verin AD, Su Y, Lucas R, Stepp DW, Chen F, Fulton DJR. Hsp70 Suppresses Mitochondrial Reactive Oxygen Species and Preserves Pulmonary Microvascular Barrier Integrity Following Exposure to Bacterial Toxins. Front Immunol 2018; 9:1309. [PMID: 29951058 PMCID: PMC6008539 DOI: 10.3389/fimmu.2018.01309] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/25/2018] [Indexed: 01/22/2023] Open
Abstract
Pneumonia is a leading cause of death in children and the elderly worldwide, accounting for 15% of all deaths of children under 5 years old. Streptococcus pneumoniae is a common and aggressive cause of pneumonia and can also contribute to meningitis and sepsis. Despite the widespread use of antibiotics, mortality rates for pneumonia remain unacceptably high in part due to the release of bacterial toxins. Pneumolysin (PLY) is a cholesterol-dependent toxin that is produced by Streptococcus, and it is both necessary and sufficient for the development of the extensive pulmonary permeability edema that underlies acute lung injury. The mechanisms by which PLY disrupts the pulmonary endothelial barrier are not fully understood. Previously, we found that reactive oxygen species (ROS) contribute to the barrier destructive effects of PLY and identified an unexpected but potent role of Hsp70 in suppressing ROS production. The ability of Hsp70 to influence PLY-induced barrier dysfunction is not yet described, and the goal of the current study was to identify whether Hsp70 upregulation is an effective strategy to protect the lung microvascular endothelial barrier from G+ bacterial toxins. Overexpression of Hsp70 via adenovirus-mediated gene transfer attenuated PLY-induced increases in permeability in human lung microvascular endothelial cells (HLMVEC) with no evidence of cytotoxicity. To adopt a more translational approach, we employed a pharmacological approach using geranylgeranylacetone (GGA) to acutely upregulate endogenous Hsp70 expression. Following acute treatment (6 h) with GGA, HLMVECs exposed to PLY displayed improved cell viability and enhanced endothelial barrier function as measured by both Electric Cell-substrate Impedance Sensing (ECIS) and transwell permeability assays compared to control treated cells. PLY promoted increased mitochondrial ROS, decreased mitochondrial oxygen consumption, and increased caspase 3 cleavage and cell death, which were collectively improved in cells pretreated with GGA. In mice, IP pretreatment with GGA 24 h prior to IT administration of PLY resulted in significantly less Evans Blue Dye extravasation compared to vehicle, indicating preserved endothelial barrier integrity and suggesting that the acute upregulation of Hsp70 may be an effective therapeutic approach in the treatment of lung injury associated with pneumonia.
Collapse
Affiliation(s)
- Xueyi Li
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yanfang Yu
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia.,Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Daniel Weintraub
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Radu Daniel Rudic
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - David W Stepp
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Feng Chen
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia.,Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
27
|
Thomas DC. The phagocyte respiratory burst: Historical perspectives and recent advances. Immunol Lett 2017; 192:88-96. [PMID: 28864335 DOI: 10.1016/j.imlet.2017.08.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022]
Abstract
When exposed to certain stimuli, phagocytes (including neutrophils, macrophages and eosinophils) undergo marked changes in the way they handle oxygen. Firstly, their rate of oxygen uptake increases greatly. This is accompanied by (i) the production of large amounts of superoxide and hydrogen peroxide and (ii) the metabolism of large quantities of glucose through the hexose monophosphate shunt. We now know that the oxygen used is not for respiration but for the production of powerful microbiocidal agents downstream of the initial production of superoxide. Concomitantly, glucose is oxidised through the hexose monophosphate shunt to re-generate the NADPH that has been consumed through the reduction of molecular oxygen to generate superoxide. This phagocyte respiratory burst is generated by an NADPH oxidase multi-protein complex that has a catalytic core consisting of membrane-bound gp91phox (CYBB) and p22phox (CYBA) sub-units and cytosolic components p47phox (NCF1), p67phox (NCF2) and p40phox (NCF4). Finally, another cytosolic component, the small G-protein Rac (Rac2 in neutrophils and Rac1 in macrophages) is also required for full activation. The importance of the complex in host defence is underlined by chronic granulomatous disease, a severe life-limiting immunodeficiency caused by mutations in the genes encoding the individual subunits. In this review, I will discuss the experimental evidence that underlies our knowledge of the respiratory burst, outlining how elegant biochemical analysis, coupled with study of patients deficient in the various subunits has helped elucidate the function of this essential part of innate immunity. I will also discuss some exciting recent studies that shed new light on how the abundance of the various components is controlled. Finally, I will explore the emerging role of reactive oxygen species such as superoxide and hydrogen peroxide in the pathogenesis of major human diseases including auto-inflammatory diseases.
Collapse
Affiliation(s)
- David C Thomas
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Box 157, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
28
|
Fulton DJR, Li X, Bordan Z, Haigh S, Bentley A, Chen F, Barman SA. Reactive Oxygen and Nitrogen Species in the Development of Pulmonary Hypertension. Antioxidants (Basel) 2017; 6:antiox6030054. [PMID: 28684719 PMCID: PMC5618082 DOI: 10.3390/antiox6030054] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature that involves the loss of endothelial function together with inappropriate smooth muscle cell growth, inflammation, and fibrosis. These changes underlie a progressive remodeling of blood vessels that alters flow and increases pulmonary blood pressure. Elevated pressures in the pulmonary artery imparts a chronic stress on the right ventricle which undergoes compensatory hypertrophy but eventually fails. How PAH develops remains incompletely understood and evidence for the altered production of reactive oxygen and nitrogen species (ROS, RNS respectively) in the pulmonary circulation has been well documented. There are many different types of ROS and RNS, multiple sources, and collective actions and interactions. This review summarizes past and current knowledge of the sources of ROS and RNS and how they may contribute to the loss of endothelial function and changes in smooth muscle proliferation in the pulmonary circulation.
Collapse
Affiliation(s)
- David J R Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Xueyi Li
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Austin Bentley
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
29
|
Ghoshal P, Singla B, Lin H, Feck DM, Cantu-Medellin N, Kelley EE, Haigh S, Fulton D, Csányi G. Nox2-Mediated PI3K and Cofilin Activation Confers Alternate Redox Control of Macrophage Pinocytosis. Antioxid Redox Signal 2017; 26:902-916. [PMID: 27488058 PMCID: PMC5455614 DOI: 10.1089/ars.2016.6639] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIMS Internalization of extracellular fluid and its solute by macropinocytosis requires dynamic reorganization of actin cytoskeleton, membrane ruffling, and formation of large endocytic vacuolar compartments, called macropinosomes, inside the cell. Although instigators of macropinocytosis, such as growth factors and phorbol esters, stimulate NADPH oxidase (Nox) activation and signal transduction mediators upstream of Nox assembly, including Rac1 and protein kinase C (PKC), are involved in macropinocytosis, the role of Nox enzymes in macropinocytosis has never been investigated. This study was designed to examine the role of Nox2 and the potential downstream redox signaling involved in macropinocytosis. RESULTS Phorbol myristate acetate activation of human and murine macrophages stimulated membrane ruffling, macropinosome formation, and subsequent uptake of macromolecules by macropinocytosis. Mechanistically, we found that pharmacological blockade of PKC, transcriptional knockdown of Nox2, and scavenging of intracellular superoxide anion abolished phorbol ester-induced macropinocytosis. We observed that Nox2-derived reactive oxygen species via inhibition of phosphatase and tensin homolog and activation of the phosphoinositide-3-kinase (PI3K)/Akt pathway lead to activation of actin-binding protein cofilin, membrane ruffling, and macropinocytosis. Similarly, activation of macropinocytosis by macrophage colony-stimulating factor involves Nox2-mediated cofilin activation. Furthermore, peritoneal chimera experiments indicate that macropinocytotic uptake of lipids in hypercholesterolemic ApoE-/- mice was attenuated in Nox2y/- macrophages compared with wild-type controls. Innovation and Conclusion: In summary, these findings demonstrate a novel Nox2-mediated mechanism of solute uptake via macropinocytosis, with broad implications for both general cellular physiology and pathological processes. The redox mechanism described here may also identify new targets in atherosclerosis and other disease conditions involving macropinocytosis. Antioxid. Redox Signal. 26, 902-916.
Collapse
Affiliation(s)
- Pushpankur Ghoshal
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - Bhupesh Singla
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - Huiping Lin
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - Douglas M Feck
- 2 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Nadiezhda Cantu-Medellin
- 2 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Eric E Kelley
- 2 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Stephen Haigh
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - David Fulton
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia .,4 Department of Pharmacology and Toxicology, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - Gábor Csányi
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia .,4 Department of Pharmacology and Toxicology, Augusta University , Medical College of Georgia, Augusta, Georgia
| |
Collapse
|
30
|
Thomas DC, Clare S, Sowerby JM, Pardo M, Juss JK, Goulding DA, van der Weyden L, Storisteanu D, Prakash A, Espéli M, Flint S, Lee JC, Hoenderdos K, Kane L, Harcourt K, Mukhopadhyay S, Umrania Y, Antrobus R, Nathan JA, Adams DJ, Bateman A, Choudhary JS, Lyons PA, Condliffe AM, Chilvers ER, Dougan G, Smith KG. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med 2017; 214:1111-1128. [PMID: 28351984 PMCID: PMC5379978 DOI: 10.1084/jem.20161382] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/20/2016] [Accepted: 01/20/2017] [Indexed: 02/02/2023] Open
Abstract
The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox and p22phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox and p22phox Consequently, Eros-deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense.
Collapse
Affiliation(s)
- David C. Thomas
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - John M. Sowerby
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Mercedes Pardo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Jatinder K. Juss
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - David A. Goulding
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Daniel Storisteanu
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Ananth Prakash
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England, UK
| | - Marion Espéli
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Shaun Flint
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - James C. Lee
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Kim Hoenderdos
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, England, UK
| | - Leanne Kane
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Katherine Harcourt
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Subhankar Mukhopadhyay
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Yagnesh Umrania
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, England, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, England, UK
| | - James A. Nathan
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, England, UK
| | - David J. Adams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, England, UK
| | - Jyoti S. Choudhary
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Paul A. Lyons
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Alison M. Condliffe
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, England, UK
| | - Kenneth G.C. Smith
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, England, UK
| |
Collapse
|
31
|
Ma MM, Gao M, Guo KM, Wang M, Li XY, Zeng XL, Sun L, Lv XF, Du YH, Wang GL, Zhou JG, Guan YY. TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase-Derived Reactive Oxygen Species Generation in Hypertension. Hypertension 2017; 69:892-901. [PMID: 28320851 DOI: 10.1161/hypertensionaha.116.08874] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/28/2016] [Accepted: 02/16/2017] [Indexed: 01/09/2023]
Abstract
Ca2+-activated Cl- channels play a crucial role in various physiological processes. However, the role of TMEM16A in vascular endothelial dysfunction during hypertension is unclear. In this study, we investigated the specific involvement of TMEM16A in regulating endothelial function and blood pressure and the underlying mechanism. Reverse transcription-polymerase chain reaction, Western blotting, coimmunoprecipitation, confocal imaging, patch-clamp recordings, and TMEM16A endothelial-specific transgenic and knockout mice were used. We found that TMEM16A was expressed abundantly and functioned as a Ca2+-activated Cl- channel in endothelial cells. Angiotensin II induced endothelial dysfunction with an increase in TMEM16A expression. The knockout of endothelial-specific TMEM16A significantly lowered the blood pressure and ameliorated endothelial dysfunction in angiotensin II-induced hypertension, whereas the overexpression of endothelial-specific TMEM16A resulted in the opposite effects. These results were related to the increased reactive oxygen species production, Nox2-containing NADPH oxidase activation, and Nox2 and p22phox protein expression that were facilitated by TMEM16A on angiotensin II-induced hypertensive challenge. Moreover, TMEM16A directly bound with Nox2 and reduced the degradation of Nox2 through the proteasome-dependent degradation pathway. Therefore, TMEM16A is a positive regulator of endothelial reactive oxygen species generation via Nox2-containing NADPH oxidase, which induces endothelial dysfunction and hypertension. Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated diseases.
Collapse
Affiliation(s)
- Ming-Ming Ma
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.).
| | - Min Gao
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Kai-Min Guo
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Mi Wang
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Xiang-Yu Li
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Xue-Lin Zeng
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Lu Sun
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Xiao-Fei Lv
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Yan-Hua Du
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Guan-Lei Wang
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Jia-Guo Zhou
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| | - Yong-Yuan Guan
- From the Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (M.-M.M., X.-Y.L., X.-L.Z., L.S., X.-F.L., Y.-H.D., G.-L.W., J.-G.Z., Y.-Y.G.); Department of Pharmacy, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China (M.G.); Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China (K.-M.G.); and Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (M.W.)
| |
Collapse
|
32
|
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12:7. [PMID: 28095923 PMCID: PMC5240251 DOI: 10.1186/s13024-017-0150-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a common denominator in the pathology of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, as well as in ischemic and traumatic brain injury. The brain is highly vulnerable to oxidative damage due to its high metabolic demand. However, therapies attempting to scavenge free radicals have shown little success. By shifting the focus to inhibit the generation of damaging free radicals, recent studies have identified NADPH oxidase as a major contributor to disease pathology. NADPH oxidase has the primary function to generate free radicals. In particular, there is growing evidence that the isoforms NOX1, NOX2, and NOX4 can be upregulated by a variety of neurodegenerative factors. The majority of recent studies have shown that genetic and pharmacological inhibition of NADPH oxidase enzymes are neuroprotective and able to reduce detrimental aspects of pathology following ischemic and traumatic brain injury, as well as in chronic neurodegenerative disorders. This review aims to summarize evidence supporting the role of NADPH oxidase in the pathology of these neurological disorders, explores pharmacological strategies of targeting this major oxidative stress pathway, and outlines obstacles that need to be overcome for successful translation of these therapies to the clinic.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Medical Drive, San Antonio, TX, 78229, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA.
| |
Collapse
|
33
|
Li H, Zhang Z, He C, Qin G, Tian S. Comparative Proteomics Reveals the Potential Targets of BcNoxR, a Putative Regulatory Subunit of NADPH Oxidase of Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:990-1003. [PMID: 27898285 DOI: 10.1094/mpmi-11-16-0227-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The NADPH oxidase (NOX) complex has been shown to play a crucial role in stress response and in the virulence of various fungal pathogens. The underlying molecular mechanisms of NOX, however, remain largely unknown. In the present study, a comparative proteomic analysis compared changes in protein abundance in wild-type Botrytis cinerea and ΔbcnoxR mutants in which the regulatory subunit of NOX was deleted. The ΔbcnoxR mutants exhibited reduced growth, sporulation, and impaired virulence. A total of 60 proteins, representing 49 individual genes, were identified in ΔbcnoxR mutants that exhibited significant differences in abundance relative to wild-type. Reverse transcription-quantitative polymerase chain reaction analysis demonstrated that the differences in transcript levels for 36 of the genes encoding the identified proteins were in agreement with the proteomic analysis, while the remainder exhibited reverse levels. Functional analysis of four proteins that decreased abundance in the ΔbcnoxR mutants indicated that 6-phosphogluconate dehydrogenase (BcPGD) played a role in the growth and sporulation of B. cinerea. The Δbcpgd mutants also displayed impaired virulence on various hosts, such as apple, strawberry, and tomato fruit. These results suggest that NOX can influence the expression of BcPGD, which has an impact on growth, sporulation, and virulence of B. cinerea.
Collapse
Affiliation(s)
- Hua Li
- 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; and
- 2 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; and
| | - Chang He
- 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; and
- 2 University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozheng Qin
- 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; and
| | - Shiping Tian
- 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; and
- 2 University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Chen F, Li X, Aquadro E, Haigh S, Zhou J, Stepp DW, Weintraub NL, Barman SA, Fulton DJR. Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension. Free Radic Biol Med 2016; 99:167-178. [PMID: 27498117 PMCID: PMC5240036 DOI: 10.1016/j.freeradbiomed.2016.08.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Excessive levels of reactive oxygen species (ROS) and increased expression of NADPH oxidases (Nox) have been proposed to contribute to pulmonary artery hypertension (PAH) and other cardiovascular diseases (CVD). Nox enzymes are major sources of ROS but the mechanisms regulating changes in Nox expression in disease states remain poorly understood. Epigenetics encompasses a number of mechanisms that cells employ to regulate the ability to read and transcribe DNA. Histone acetylation is a prominent example of an epigenetic mechanism regulating the expression of numerous genes by altering chromatin accessibility. The goal of this study was to determine whether inhibition of histone deacetylases (HDAC) affects the expression of Nox isoforms and reduces pulmonary hypertension. In immune cells, we found that multiple HDAC inhibitors robustly decreased Nox2 mRNA and protein expression in a dose-dependent manner concomitant with reduced superoxide production. This effect was not restricted to Nox2 as expression of Nox1, Nox4 and Nox5 was also reduced by HDAC inhibition. Surprisingly, Nox promoter-luciferase activity was unchanged in the presence of HDAC inhibitors. In macrophages and lung fibroblasts, ChIP experiments revealed that HDAC inhibitors block the binding of RNA polymerase II and the histone acetyltransferase p300 to the Nox2, Nox4 and Nox5 promoter regions and decrease histones activation marks (H3K4me3 and H3K9ac) at these promoter sites. We further show that the ability of CRISPR-ON to drive transcription of Nox1, Nox2, Nox4 and Nox5 genes is blocked by HDAC inhibitors. In a monocrotaline (MCT) rat model of PAH, multiple HDAC isoforms are upregulated in isolated pulmonary arteries, and HDAC inhibitors attenuate Nox expression in isolated pulmonary arteries and reduce indices of PAH. In conclusion, HDAC inhibitors potently suppress Nox gene expression both in vitro and in vivo via epigenetically regulating chromatin accessibility.
Collapse
Affiliation(s)
- Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029 China; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.
| | - Xueyi Li
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Emily Aquadro
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Stephen Haigh
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Jiliang Zhou
- Department of Pharmacology, Augusta University, Augusta, GA 30912, USA
| | - David W Stepp
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Scott A Barman
- Department of Pharmacology, Augusta University, Augusta, GA 30912, USA
| | - David J R Fulton
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
35
|
Barabutis N, Verin A, Catravas JD. Regulation of pulmonary endothelial barrier function by kinases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L832-L845. [PMID: 27663990 DOI: 10.1152/ajplung.00233.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
The pulmonary endothelium is the target of continuous physiological and pathological stimuli that affect its crucial barrier function. The regulation, defense, and repair of endothelial barrier function require complex biochemical processes. This review examines the role of endothelial phosphorylating enzymes, kinases, a class with profound, interdigitating influences on endothelial permeability and lung function.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, Georgia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, .,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
36
|
Schiavone S, Neri M, Mhillaj E, Pomara C, Trabace L, Turillazzi E. The role of the NADPH oxidase derived brain oxidative stress in the cocaine-related death associated with excited delirium: A literature review. Toxicol Lett 2016; 258:29-35. [DOI: 10.1016/j.toxlet.2016.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 01/26/2023]
|
37
|
Chen F, Yin C, Dimitropoulou C, Fulton DJR. Cloning, Characteristics, and Functional Analysis of Rabbit NADPH Oxidase 5. Front Physiol 2016; 7:284. [PMID: 27486403 PMCID: PMC4950256 DOI: 10.3389/fphys.2016.00284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022] Open
Abstract
Background: Nox5 was the last member of the Nox enzyme family to be identified. Functionally distinct from the other Nox isoforms, our understanding of its physiological significance has been hampered by the absence of Nox5 in mouse and rat genomes. Nox5 is present in the genomes of other species such as the rabbit that have broad utility as models of cardiovascular disease. However, the mRNA sequence, characteristics, and functional analysis of rabbit Nox5 has not been fully defined and were the goals of the current study. Methods: Rabbit Nox5 was amplified from rabbit tissue, cloned, and sequenced. COS-7 cells were employed for expression and functional analysis via Western blotting and measurements of superoxide. We designed and synthesized miRNAs selectively targeting rabbit Nox5. The nucleotide and amino acid sequences of rabbit Nox5 were aligned with those of putative rabbit isoforms (X1, X2, X3, and X4). A phylogenetic tree was generated based on the mRNA sequence for Nox5 from rabbit and other species. Results: Sequence alignment revealed that the identified rabbit Nox5 was highly conserved with the predicted sequence of rabbit Nox5. Cell based experiments reveal that rabbit Nox5 was robustly expressed and produced superoxide at rest and in a calcium and PMA-dependent manner that was susceptible to superoxide dismutase and the flavoprotein inhibitor, DPI. miRNA-1 was shown to be most effective in down-regulating the expression of rabbit Nox5. Phylogenetic analysis revealed a close relationship between rabbit and armadillo Nox5. Rabbit Nox5 was relatively closely related to human Nox5, but lies in a distinct cluster. Conclusion: Our study establishes the suitability of the rabbit as a model organism to further our understanding of the role of Nox5 in cardiovascular and other diseases and provides new information on the genetic relationship of Nox5 genes in different species.
Collapse
Affiliation(s)
- Feng Chen
- Department of Forensic Medicine, Nanjing Medical UniversityNanjing, Jiangsu, China; Vascular Biology Center, Medical College of Georgia at Augusta UniversityAugusta, GA, USA
| | - Caiyong Yin
- Department of Forensic Medicine, Nanjing Medical University Nanjing, Jiangsu, China
| | | | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University Augusta, GA, USA
| |
Collapse
|
38
|
Abstract
Purpose of review Extensive data indicate a role for reactive oxygen species (ROS) and redox signaling in vascular damage in hypertension. However, molecular mechanisms underlying these processes remain unclear, but oxidative post-translational modification of vascular proteins is critical. This review discusses how proteins are oxidatively modified and how redox signaling influences vascular smooth muscle cell growth and vascular remodeling in hypertension. We also highlight Nox5 as a novel vascular ROS-generating oxidase. Recent findings Oxidative stress in hypertension leads to oxidative imbalance that affects vascular cell function through redox signaling. Many Nox isoforms produce ROS in the vascular wall, and recent findings show that Nox5 may be important in humans. ROS regulate signaling by numerous processes including cysteine oxidative post-translational modification such as S-nitrosylation, S-glutathionylation and sulfydration. In vascular smooth muscle cells, this influences cellular responses to oxidative stimuli promoting changes from a contractile to a proliferative phenotype. Summary In hypertension, Nox-induced ROS production is increased, leading to perturbed redox signaling through oxidative modifications of vascular proteins. This influences mitogenic signaling and cell cycle regulation, leading to altered cell growth and vascular remodeling in hypertension.
Collapse
|
39
|
Lee SA, Kim J, Sim J, Kim SG, Kook YH, Park CG, Kim HR, Kim BJ. A telomerase-derived peptide regulates reactive oxygen species and hepatitis C virus RNA replication in HCV-infected cells via heat shock protein 90. Biochem Biophys Res Commun 2016; 471:156-62. [PMID: 26828270 DOI: 10.1016/j.bbrc.2016.01.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/25/2016] [Indexed: 12/11/2022]
Abstract
GV1001, a synthetic peptide derived from human telomerase, has a range of diverse biological activities, including an antioxidant function. Here, we investigated the role of GV1001 in hepatitis C virus (HCV)-infected Huh7.5 (JFH-1) cells. We showed that GV1001 inhibited the production of ROS with decreased MAP kinase signaling. Interestingly, GV1001 lost its antioxidant activity as ROS levels decreased, resulting in a reduction in extracellular heat shock protein 90 (eHSP90) as low-density lipoprotein receptor-related protein 1 (LRP1) was blocked or knocked-down. GV1001 binds to eHSP90 and is delivered into the cell by endocytosis via LRP1. Endocytosed GV1001 finally suppressed ROS generation, presumably by hindering the interaction between eHSP90 and NADPH oxidase (NOX). Importantly, GV1001 suppressed HCV RNA replication in JFH-1 cells by inhibiting the binding of HSP90 to FKBP8, a member of the FK506-binding protein family. We also found that HSP90 expression was high in HCV-infected hepatocytes. Therefore, our data suggest that GV1001 may be a good therapeutic agent by controlling HCV RNA replication, as well as by preferentially targeting cells under conditions of oxidative stress.
Collapse
Affiliation(s)
- Seoung-Ae Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jinhee Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Republic of Korea
| | - Jihyun Sim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang-Gyune Kim
- Digestive Disease Center and Research Institute, SoonChunHyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Medical Research Institute for Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Medical Research Institute for Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hang-Rae Kim
- Medical Research Institute for Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Medical Research Institute for Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
40
|
Chen F, Haigh S, Yu Y, Benson T, Wang Y, Li X, Dou H, Bagi Z, Verin AD, Stepp DW, Csanyi G, Chadli A, Weintraub NL, Smith SME, Fulton DJR. Nox5 stability and superoxide production is regulated by C-terminal binding of Hsp90 and CO-chaperones. Free Radic Biol Med 2015; 89:793-805. [PMID: 26456056 PMCID: PMC4751585 DOI: 10.1016/j.freeradbiomed.2015.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/15/2015] [Accepted: 09/03/2015] [Indexed: 10/22/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that orchestrates the folding and stability of proteins that regulate cellular signaling, proliferation and inflammation. We have previously shown that Hsp90 controls the production of reactive oxygen species by modulating the activity of Noxes1-3 and 5, but not Nox4. The goal of the current study was to define the regions on Nox5 that bind Hsp90 and determine how Hsp90 regulates enzyme activity. In isolated enzyme activity assays, we found that Hsp90 inhibitors selectively decrease superoxide, but not hydrogen peroxide, production. The addition of Hsp90 alone only modestly increases Nox5 enzyme activity but in combination with the co-chaperones, Hsp70, HOP, Hsp40, and p23 it robustly stimulated superoxide, but not hydrogen peroxide, production. Proximity ligation assays reveal that Nox5 and Hsp90 interact in intact cells. In cell lysates using a co-IP approach, Hsp90 binds to Nox5 but not Nox4, and the degree of binding can be influenced by calcium-dependent stimuli. Inhibition of Hsp90 induced the degradation of full length, catalytically inactive and a C-terminal fragment (aa398-719) of Nox5. In contrast, inhibition of Hsp90 did not affect the expression levels of N-terminal fragments (aa1-550) suggesting that Hsp90 binding maintains the stability of C-terminal regions. In Co-IP assays, Hsp90 was bound only to the C-terminal region of Nox5. Further refinement using deletion analysis revealed that the region between aa490-550 mediates Hsp90 binding. Converse mapping experiments show that the C-terminal region of Nox5 bound to the M domain of Hsp90 (aa310-529). In addition to Hsp90, Nox5 bound other components of the foldosome including co-chaperones Hsp70, HOP, p23 and Hsp40. Silencing of HOP, Hsp40 and p23 reduced Nox5-dependent superoxide. In contrast, increased expression of Hsp70 decreased Nox5 activity whereas a mutant of Hsp70 failed to do so. Inhibition of Hsp90 results in the loss of higher molecular weight complexes of Nox5 and decreased interaction between monomers. Collectively these results show that the C-terminal region of Nox5 binds to the M domain of Hsp90 and that the binding of Hsp90 and select co-chaperones facilitate oligomerization and the efficient production of superoxide.
Collapse
Affiliation(s)
- Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029 China; Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA.
| | - Steven Haigh
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Yanfang Yu
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Tyler Benson
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Yusi Wang
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Xueyi Li
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Huijuan Dou
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Zsolt Bagi
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Alexander D Verin
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - David W Stepp
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Gabor Csanyi
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Ahmed Chadli
- Cancer Research Center, Molecular Chaperones Program, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw GA 30152, USA
| | - David J R Fulton
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia 30912, USA.
| |
Collapse
|
41
|
Altenhöfer S, Radermacher KA, Kleikers PWM, Wingler K, Schmidt HHHW. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. Antioxid Redox Signal 2015; 23:406-27. [PMID: 24383718 PMCID: PMC4543484 DOI: 10.1089/ars.2013.5814] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. RECENT ADVANCES Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. CRITICAL ISSUES Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. FUTURE DIRECTIONS The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition.
Collapse
Affiliation(s)
- Sebastian Altenhöfer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kim A Radermacher
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Pamela W M Kleikers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| |
Collapse
|
42
|
Sarkar A, Dai Y, Haque MM, Seeger F, Ghosh A, Garcin ED, Montfort WR, Hazen SL, Misra S, Stuehr DJ. Heat Shock Protein 90 Associates with the Per-Arnt-Sim Domain of Heme-free Soluble Guanylate Cyclase: IMplications for Enzyme Maturation. J Biol Chem 2015; 290:21615-28. [PMID: 26134567 DOI: 10.1074/jbc.m115.645515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein 90 (hsp90) drives heme insertion into the β1 subunit of soluble guanylate cyclase (sGC) β1, which enables it to associate with a partner sGCα1 subunit and mature into a nitric oxide (NO)-responsive active form. We utilized fluorescence polarization measurements and hydrogen-deuterium exchange mass spectrometry to define molecular interactions between the specific human isoforms hsp90β and apo-sGCβ1. hsp90β and its isolated M domain, but not its isolated N and C domains, bind with low micromolar affinity to a heme-free, truncated version of sGCβ1 (sGCβ1(1-359)-H105F). Surprisingly, hsp90β and its M domain bound to the Per-Arnt-Sim (PAS) domain of apo-sGC-β1(1-359), which lies adjacent to its heme-binding (H-NOX) domain. The interaction specifically involved solvent-exposed regions in the hsp90β M domain that are largely distinct from sites utilized by other hsp90 clients. The interaction strongly protected two regions of the sGCβ1 PAS domain and caused local structural relaxation in other regions, including a PAS dimerization interface and a segment in the H-NOX domain. Our results suggest a means by which the hsp90β interaction could prevent apo-sGCβ1 from associating with its partner sGCα1 subunit while enabling structural changes to assist heme insertion into the H-NOX domain. This mechanism would parallel that in other clients like the aryl hydrocarbon receptor and HIF1α, which also interact with hsp90 through their PAS domains to control protein partner and small ligand binding interactions.
Collapse
Affiliation(s)
| | - Yue Dai
- From the Departments of Pathobiology
| | | | - Franziska Seeger
- the Department of Chemistry and Biochemistry, University of Maryland at Baltimore County, Baltimore, Maryland 21250, and
| | | | - Elsa D Garcin
- the Department of Chemistry and Biochemistry, University of Maryland at Baltimore County, Baltimore, Maryland 21250, and
| | - William R Montfort
- the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | | | - Saurav Misra
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | | |
Collapse
|
43
|
Tukaj S, Zillikens D, Kasperkiewicz M. Heat shock protein 90: a pathophysiological factor and novel treatment target in autoimmune bullous skin diseases. Exp Dermatol 2015; 24:567-71. [DOI: 10.1111/exd.12760] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Stefan Tukaj
- Department of Dermatology; University of Lübeck; Lübeck Germany
| | | | | |
Collapse
|
44
|
Chen F, Barman S, Yu Y, Haigh S, Wang Y, Black SM, Rafikov R, Dou H, Bagi Z, Han W, Su Y, Fulton DJR. Caveolin-1 is a negative regulator of NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 2014; 73:201-13. [PMID: 24835767 PMCID: PMC4228786 DOI: 10.1016/j.freeradbiomed.2014.04.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 01/14/2023]
Abstract
Changes in the expression and function of caveolin-1 (Cav-1) have been proposed as a pathogenic mechanism underlying many cardiovascular diseases. Cav-1 binds to and regulates the activity of numerous signaling proteins via interactions with its scaffolding domain. In endothelial cells, Cav-1 has been shown to reduce reactive oxygen species (ROS) production, but whether Cav-1 regulates the activity of NADPH oxidases (Noxes), a major source of cellular ROS, has not yet been shown. Herein, we show that Cav-1 is primarily expressed in the endothelium and adventitia of pulmonary arteries (PAs) and that Cav-1 expression is reduced in isolated PAs from multiple models of pulmonary artery hypertension (PH). Reduced Cav-1 expression correlates with increased ROS production in the adventitia of hypertensive PA. In vitro experiments revealed a significant ability of Cav-1 and its scaffolding domain to inhibit Nox1-5 activity and it was also found that Cav-1 binds to Nox5 and Nox2 but not Nox4. In addition to posttranslational actions, in primary cells, Cav-1 represses the mRNA and protein expression of Nox2 and Nox4 through inhibition of the NF-κB pathway. Last, in a mouse hypoxia model, the genetic ablation of Cav-1 increased the expression of Nox2 and Nox4 and exacerbated PH. Together, these results suggest that Cav-1 is a negative regulator of Nox function via two distinct mechanisms, acutely through direct binding and chronically through alteration of expression levels. Accordingly, the loss of Cav-1 expression in cardiovascular diseases such as PH may account for the increased Nox activity and greater production of ROS.
Collapse
Affiliation(s)
- Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Vascular Biology Center and Georgia Regents University, Augusta, GA 30912, USA.
| | - Scott Barman
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Yanfang Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Vascular Biology Center and Georgia Regents University, Augusta, GA 30912, USA
| | - Steven Haigh
- Vascular Biology Center and Georgia Regents University, Augusta, GA 30912, USA
| | - Yusi Wang
- Vascular Biology Center and Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | - Zsolt Bagi
- Vascular Biology Center and Georgia Regents University, Augusta, GA 30912, USA
| | - Weihong Han
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - David J R Fulton
- Vascular Biology Center and Georgia Regents University, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
45
|
Wang Y, Chen F, Le B, Stepp DW, Fulton DJR. Impact of Nox5 polymorphisms on basal and stimulus-dependent ROS generation. PLoS One 2014; 9:e100102. [PMID: 24992705 PMCID: PMC4081039 DOI: 10.1371/journal.pone.0100102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023] Open
Abstract
Nox5 is an EF-hand containing, calcium-dependent isoform of the NADPH oxidase family of reactive oxygen species (ROS) generating enzymes. Altered expression and activity of Nox5 has been reported in cardiovascular diseases and cancers but the absence of Nox5 in rodents has precluded a greater understanding of its physiological and pathophysiological roles. Multiple polymorphisms have been identified within the coding sequence of human Nox5, but whether this translates into altered enzyme function is unknown. Herein, we have generated 15 novel mutants of Nox5β to evaluate the effect of exonic SNPs on basal and stimulated enzyme activity. Compared to the WT enzyme, ROS production was unchanged or slightly modified in the majority of mutants, but significantly decreased in 7. Focusing on M77K, Nox5 activity was dramatically reduced in unstimulated cells and following challenge with both calcium- and phosphorylation-dependent stimuli despite equivalent levels of expression. The M77K mutation did not influence the Nox5 phosphorylation or the ability to bind Hsp90, but in cell-free assays with excess co-factors and calcium, ROS production was dramatically reduced. A more conservative substitution M77V arising from another SNP yielded a different profile of enzyme activity and suggests a critical role of M77 in calcium-dependent ROS production. Two C-terminal mutants, R530H and G542R, were observed that had little to no activity and relatively high minor allele frequency (MAF). In conclusion, we have identified 7 missense SNPs in Nox5 that result in little or no enzyme activity. Whether humans with dysfunctional Nox5 variants have altered physiology or disease remains to be determined.
Collapse
Affiliation(s)
- Yusi Wang
- Vascular Biology Center, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
| | - Feng Chen
- Vascular Biology Center, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Brian Le
- Vascular Biology Center, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
| | - David W. Stepp
- Vascular Biology Center, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
- Department of Physiology, Georgia Regents University, Augusta, Georgia, United States of America
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
- Department of Pharmacology, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
46
|
Barman SA, Chen F, Su Y, Dimitropoulou C, Wang Y, Catravas JD, Han W, Orfi L, Szantai-Kis C, Keri G, Szabadkai I, Barabutis N, Rafikova O, Rafikov R, Black SM, Jonigk D, Giannis A, Asmis R, Stepp DW, Ramesh G, Fulton DJR. NADPH oxidase 4 is expressed in pulmonary artery adventitia and contributes to hypertensive vascular remodeling. Arterioscler Thromb Vasc Biol 2014; 34:1704-15. [PMID: 24947524 DOI: 10.1161/atvbaha.114.303848] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Pulmonary hypertension (PH) is a progressive disease arising from remodeling and narrowing of pulmonary arteries (PAs) resulting in high pulmonary blood pressure and ultimately right ventricular failure. Elevated production of reactive oxygen species by NADPH oxidase 4 (Nox4) is associated with increased pressure in PH. However, the cellular location of Nox4 and its contribution to aberrant vascular remodeling in PH remains poorly understood. Therefore, we sought to identify the vascular cells expressing Nox4 in PAs and determine the functional relevance of Nox4 in PH. APPROACH AND RESULTS Elevated expression of Nox4 was detected in hypertensive PAs from 3 rat PH models and human PH using qualititative real-time reverse transcription polymerase chain reaction, Western blot, and immunofluorescence. In the vascular wall, Nox4 was detected in both endothelium and adventitia, and perivascular staining was prominently increased in hypertensive lung sections, colocalizing with cells expressing fibroblast and monocyte markers and matching the adventitial location of reactive oxygen species production. Small-molecule inhibitors of Nox4 reduced adventitial reactive oxygen species generation and vascular remodeling as well as ameliorating right ventricular hypertrophy and noninvasive indices of PA stiffness in monocrotaline-treated rats as determined by morphometric analysis and high-resolution digital ultrasound. Nox4 inhibitors improved PH in both prevention and reversal protocols and reduced the expression of fibroblast markers in isolated PAs. In fibroblasts, Nox4 overexpression stimulated migration and proliferation and was necessary for matrix gene expression. CONCLUSION These findings indicate that Nox4 is prominently expressed in the adventitia and contributes to altered fibroblast behavior, hypertensive vascular remodeling, and development of PH.
Collapse
Affiliation(s)
- Scott A Barman
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary.
| | - Feng Chen
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary.
| | - Yunchao Su
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Christiana Dimitropoulou
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Yusi Wang
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - John D Catravas
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Weihong Han
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Laszlo Orfi
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Csaba Szantai-Kis
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Gyorgy Keri
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Istvan Szabadkai
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Nektarios Barabutis
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Olga Rafikova
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Ruslan Rafikov
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Stephen M Black
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Danny Jonigk
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Athanassios Giannis
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Reto Asmis
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - David W Stepp
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - Ganesan Ramesh
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary
| | - David J R Fulton
- From the Department of Forensic Medicine, Nanjing Medical University, Jiangsu, China (F.C.); Department of Pharmacology and Toxicology (S.A.B., Y.S., W.H., D.J.R.F.) and Vascular Biology Center (F.C., C.D., Y.W., J.D.S., N.B., O.R., R.R., S.M.B., D.W.S., G.R., D.J.R.F.), Georgia Regents University, Augusta; Vichem Chemie, Ltd, Budapest, Hungary (L.O., C.S.-K., G.K., I.S.); Institute for Organic Chemistry, University of Leipzig, Leipzig, Germany (A.G.); Institute for Pathology, Hannover Medical School, Hannover, Germany (D.J.); Departments of Clinical Laboratories and Biochemistry, University of Texas Health Science Center at San Antonio (R.A.); and Pathobiochemical Research Group of Hungarian Academy of Sciences (G.K.) and Department of Pharmaceutical Chemistry (L.O.), Semmelweis University, Budapest, Hungary.
| |
Collapse
|
47
|
Meitzler JL, Antony S, Wu Y, Juhasz A, Liu H, Jiang G, Lu J, Roy K, Doroshow JH. NADPH oxidases: a perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal 2014; 20:2873-89. [PMID: 24156355 PMCID: PMC4026372 DOI: 10.1089/ars.2013.5603] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) promote genomic instability, altered signal transduction, and an environment that can sustain tumor formation and growth. The NOX family of NADPH oxidases, membrane-bound epithelial superoxide and hydrogen peroxide producers, plays a critical role in the maintenance of immune function, cell growth, and apoptosis. The impact of NOX enzymes in carcinogenesis is currently being defined and may directly link chronic inflammation and NOX ROS-mediated tumor formation. RECENT ADVANCES Increased interest in the function of NOX enzymes in tumor biology has spurred a surge of investigative effort to understand the variability of NOX expression levels in tumors and the effect of NOX activity on tumor cell proliferation. These initial efforts have demonstrated a wide variance in NOX distribution and expression levels across numerous cancers as well as in common tumor cell lines, suggesting that much remains to be discovered about the unique role of NOX-related ROS production within each system. Progression from in vitro cell line studies toward in vivo tumor tissue screening and xenograft models has begun to provide evidence supporting the importance of NOX expression in carcinogenesis. CRITICAL ISSUES A lack of universally available, isoform-specific antibodies and animal tumor models of inducible knockout or over-expression of NOX isoforms has hindered progress toward the completion of in vivo studies. FUTURE DIRECTIONS In vivo validation experiments and the use of large, existing gene expression data sets should help define the best model systems for studying the NOX homologues in the context of cancer.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- 1 Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
SIGNIFICANCE Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. RECENT ADVANCES Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. CRITICAL ISSUES Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. FUTURE DIRECTIONS We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between Noxes and the ER may provide relevant insights in Nox-related (patho)physiology.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine , São Paulo, Brazil
| | | | | |
Collapse
|
49
|
De Deken X, Corvilain B, Dumont JE, Miot F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 2014; 20:2776-93. [PMID: 24161126 DOI: 10.1089/ars.2013.5602] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Among the NADPH oxidases, the dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially called thyroid oxidases, based on their high level of expression in thyroid tissue. Genetic alterations causing inherited hypothyroidism clearly demonstrate their physiological implication in thyroid hormonogenesis. However, a growing list of biological functions triggered by DUOX-dependent reactive oxygen species (ROS) in highly differentiated mucosae have recently emerged. RECENT ADVANCES A role of DUOX enzymes as ROS providers for lactoperoxidase-mediated killing of invading pathogens has been well established and a role in bacteria chemorepulsion has been proposed. Control of DUOX expression and activity by inflammatory molecules and immune receptor activation consolidates their contributions to innate immune defense of mucosal surfaces. Recent studies conducted in ancestral organisms have identified effectors of DUOX redox signaling involved in wound healing including epithelium regeneration and leukocyte recruitment. Moreover, local generation of hydrogen peroxide (H2O2) by DUOX has also been suggested to constitute a positive feedback loop to promote receptor signaling activation. CRITICAL ISSUES A correct balance between H2O2 generation and detoxification mechanisms must be properly maintained to avoid oxidative damages. Overexpression of DUOX genes has been associated with an increasing number of chronic inflammatory diseases. Furthermore, H2O2-mediated DNA damage supports a mutagenic function promoting tumor development. FUTURE DIRECTIONS Despite the high sequence similarity shared between DUOX1 and DUOX2, the two isoforms present distinct regulations, tissue expression and catalytic functions. The phenotypic characterization of novel DUOX/DUOXA invalidated animal models will be very useful for defining their medical importance in pathological conditions.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | | | | | | |
Collapse
|
50
|
Chen YJ, Liu YL, Zhong Q, Yu YF, Su HL, Toque HA, Dang YH, Chen F, Xu M, Chen T. Tetrahydropalmatine protects against methamphetamine-induced spatial learning and memory impairment in mice. Neurosci Bull 2014; 28:222-32. [PMID: 22622821 DOI: 10.1007/s12264-012-1236-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the effect of methamphetamine (MA) on spatial learning and memory and the role of tetrahydropalmatine (THP) in MA-induced changes in these phenomena in mice. METHODS Male C57BL/6 mice were randomly divided into eight groups, according to different doses of MA, different doses of THP, treatment with both MA and THP, and saline controls. Spatial learning and memory were assessed using the Morris water maze. Western blot was used to detect the expression of extracellular signal-regulated protein kinase (ERK) in the mouse prefrontal cortex (PFC) and hippocampus. RESULTS Repeated MA treatment significantly increased the escape latency in the learning phase and decreased the number of platform site crossings in the memory-test phase. ERK1/2 expression was decreased in the PFC but not in the hippocampus of the MA-treated mice. Repeated THP treatment alone did not affect the escape latency, the number of platform site crossings or the total ERK1/2 expression in the brain. Statistically significantly shorter escape latencies and more platform site crossings occurred in MA+THP-treated mice than in MA-treated mice. CONCLUSION Repeated MA administration impairs spatial learning and memory in mice, and its co-administration with THP prevents this impairment, which is probably attributable to changed ERK1/2 expression in the PFC. This study contributes to uncovering the mechanism underlying MA abuse, and to exploring potential therapies.
Collapse
Affiliation(s)
- Yan-Jiong Chen
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|