1
|
Agarwal P, Mathur V, Kasturi M, Srinivasan V, Seetharam RN, S Vasanthan K. A Futuristic Development in 3D Printing Technique Using Nanomaterials with a Step Toward 4D Printing. ACS OMEGA 2024; 9:37445-37458. [PMID: 39281933 PMCID: PMC11391532 DOI: 10.1021/acsomega.4c04123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024]
Abstract
3D bioprinting has shown great promise in tissue engineering and regenerative medicine for creating patient-specific tissue scaffolds and medicinal devices. The quickness, accurate imaging, and design targeting of this emerging technology have excited biomedical engineers and translational medicine researchers. Recently, scaffolds made from 3D bioprinted tissue have become more clinically effective due to nanomaterials and nanotechnology. Because of quantum confinement effects and high surface area/volume ratios, nanomaterials and nanotechnological techniques have unique physical, chemical, and biological features. The use of nanomaterials and 3D bioprinting has led to scaffolds with improved physicochemical and biological properties. Nanotechnology and nanomaterials affect 3D bioprinted tissue engineered scaffolds for regenerative medicine and tissue engineering. Biomaterials and cells that respond to stimuli change the structural shape in 4D bioprinting. With such dynamic designs, tissue architecture can change morphologically. New 4D bioprinting techniques will aid in bioactuation, biorobotics, and biosensing. The potential of 4D bioprinting in biomedical technologies is also discussed in this article.
Collapse
Affiliation(s)
- Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Meghana Kasturi
- Department of Mechanical Engineering, University of Michigan, Dearborn, Michigan 48128, United States
| | - Varadharajan Srinivasan
- Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal 576104, India
| |
Collapse
|
2
|
Nagaraj A, Rekha PD. Development of a bioink using exopolysaccharide from Rhizobium sp. PRIM17. Int J Biol Macromol 2023; 234:123608. [PMID: 36773865 DOI: 10.1016/j.ijbiomac.2023.123608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Biopolymers play a significant role in tissue engineering, including in the formulation of bioinks that require careful selection of the biopolymers having properties ideal for printability and supporting biological entities such as cells. Alginate is one of the most widely explored natural biopolymers for tissue engineering applications due to its biocompatibility, cross-linking ability, hydrophilic nature, and easy incorporation with other polymers. Here, a succinoglycan-like exopolysaccharide (EPS-R17) produced by a bacterial strain Rhizobium sp. PRIM17 was incorporated with alginate for the development of a bioink. The physicochemical characterization of EPS-R17 was performed before formulating the bioink with alginate. The bioink formulation was prepared by mixing different concentrations of EPS with an alginate solution at room temperature under sterile atmosphere. The prepared bioink was characterized for rheological properties, biocompatibility, and a bioplotting experiment was also conducted to mimick the extrusion bioprinting. The EPS-R17 was composed of glucose, galactose, and rhamnose with a molecular weight of 69.98 kDa. It was thermally stable up to 260 °C and showed characteristic FT-IR peaks (1723.3 cm-1) for succinyl groups. The EPS-R17 showed biocompatibility with keratinocytes (HaCaT), and fibroblasts (HDF) in vitro. The rheological properties of EPS-R17-alginate bioink at different combinations showed shear thinning behavior at 25 and 37 °C. Amplitude sweep measurements showed the gel-like nature of the polymer combinations in the solution system superior to alginate or EPS-R17 alone. The combination of 1 % EPS-R17 and 1.5 % alginate showed good compressive strength and swelling behavior. Extrusion bioprinting mimicked using a bioplotting experiment showed the sustained cell viability in the polymer matrix of EPS-R17-alginate bioink. The results indicate that the EPS-R17 can be used in combination with alginate for bioinks for bioprinting applications for providing physical properties and favorable bioactivities.
Collapse
Affiliation(s)
- Athmika Nagaraj
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, India
| | - Punchappady Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, India.
| |
Collapse
|
3
|
Wang D, Zhang X, Ng KW, Rao Y, Wang C, Gharaibeh B, Lin S, Abrams G, Safran M, Cheung E, Campbell P, Weiss L, Ker DFE, Yang YP. Growth and differentiation factor-7 immobilized, mechanically strong quadrol-hexamethylene diisocyanate-methacrylic anhydride polyurethane polymer for tendon repair and regeneration. Acta Biomater 2022; 154:108-122. [PMID: 36272687 DOI: 10.1016/j.actbio.2022.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Biological and mechanical cues are both vital for biomaterial aided tendon repair and regeneration. Here, we fabricated mechanically tendon-like (0 s UV) QHM polyurethane scaffolds (Q: Quadrol, H: Hexamethylene diisocyanate; M: Methacrylic anhydride) and immobilized them with Growth and differentiation factor-7 (GDF-7) to produce mechanically strong and tenogenic scaffolds. In this study, we assessed QHM polymer cytocompatibility, amenability to fibrin-coating, immobilization and persistence of GDF-7, and capability to support GDF-7-mediated tendon differentiation in vitro as well as in vivo in mouse subcutaneous and acute rat rotator cuff tendon resection models. Cytocompatibility studies showed that QHM facilitated cell attachment, proliferation, and viability. Fibrin-coating and GDF-7 retention studies showed that mechanically tendon-like 0 s UV QHM polymer could be immobilized with GDF-7 and retained the growth factor (GF) for at least 1-week ex vivo. In vitro differentiation studies showed that GDF-7 mediated bone marrow-derived human mesenchymal stem cell (hMSC) tendon-like differentiation on 0 s UV QHM. Subcutaneous implantation of GDF-7-immobilized, fibrin-coated, QHM polymer in mice for 2 weeks demonstrated de novo formation of tendon-like tissue while implantation of GDF-7-immobilized, fibrin-coated, QHM polymer in a rat acute rotator cuff resection injury model indicated tendon-like tissue formation in situ and the absence of heterotopic ossification. Together, our work demonstrates a promising synthetic scaffold with human tendon-like biomechanical attributes as well as immobilized tenogenic GDF-7 for tendon repair and regeneration. STATEMENT OF SIGNIFICANCE: Biological activity and mechanical robustness are key features required for tendon-promoting biomaterials. While synthetic biomaterials can be mechanically robust, they often lack bioactivity. To biologically augment synthetic biomaterials, numerous drug and GF delivery strategies exist but the large tissue space within the shoulder is constantly flushed with saline during arthroscopic surgery, hindering efficacious controlled release of therapeutic molecules. Here, we coated QHM polymer (which exhibits human tendon-to-bone-like biomechanical attributes) with fibrin for GF binding. Unlike conventional drug delivery strategies, our approach utilizes immobilized GFs as opposed to released GFs for sustained, localized tissue regeneration. Our data demonstrated that GF immobilization can be broadly applied to synthetic biomaterials for enhancing bioactivity, and GDF-7-immobilized QHM exhibit high clinical translational potential for tendon repair.
Collapse
Affiliation(s)
- Dan Wang
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromuscular Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Wai Ng
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Rao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenyang Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Burhan Gharaibeh
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Sien Lin
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Geoffrey Abrams
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA
| | - Marc Safran
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA
| | - Emilie Cheung
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA
| | - Phil Campbell
- Engineering Research Accelerator, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA; Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Lee Weiss
- Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA; Engineering Research Accelerator, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Dai Fei Elmer Ker
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromuscular Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China.
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA 94304, USA; Department of Material Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Li J, Kim C, Pan CC, Babian A, Lui E, Young JL, Moeinzadeh S, Kim S, Yang YP. Hybprinting for musculoskeletal tissue engineering. iScience 2022; 25:104229. [PMID: 35494239 PMCID: PMC9051619 DOI: 10.1016/j.isci.2022.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review presents bioprinting methods, biomaterials, and printing strategies that may be used for composite tissue constructs for musculoskeletal applications. The printing methods discussed include those that are suitable for acellular and cellular components, and the biomaterials include soft and rigid components that are suitable for soft and/or hard tissues. We also present strategies that focus on the integration of cell-laden soft and acellular rigid components under a single printing platform. Given the structural and functional complexity of native musculoskeletal tissue, we envision that hybrid bioprinting, referred to as hybprinting, could provide unprecedented potential by combining different materials and bioprinting techniques to engineer and assemble modular tissues.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Carolyn Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Aaron Babian
- Department of Biological Sciences, University of California, Davis CA 95616, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey L Young
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Mani MP, Sadia M, Jaganathan SK, Khudzari AZ, Supriyanto E, Saidin S, Ramakrishna S, Ismail AF, Faudzi AAM. A review on 3D printing in tissue engineering applications. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
In tissue engineering, 3D printing is an important tool that uses biocompatible materials, cells, and supporting components to fabricate complex 3D printed constructs. This review focuses on the cytocompatibility characteristics of 3D printed constructs, made from different synthetic and natural materials. From the overview of this article, inkjet and extrusion-based 3D printing are widely used methods for fabricating 3D printed scaffolds for tissue engineering. This review highlights that scaffold prepared by both inkjet and extrusion-based 3D printing techniques showed significant impact on cell adherence, proliferation, and differentiation as evidenced by in vitro and in vivo studies. 3D printed constructs with growth factors (FGF-2, TGF-β1, or FGF-2/TGF-β1) enhance extracellular matrix (ECM), collagen I content, and high glycosaminoglycan (GAG) content for cell growth and bone formation. Similarly, the utilization of 3D printing in other tissue engineering applications cannot be belittled. In conclusion, it would be interesting to combine different 3D printing techniques to fabricate future 3D printed constructs for several tissue engineering applications.
Collapse
Affiliation(s)
- Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Madeeha Sadia
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering , NED University of Engineering and Technology , Karachi , Pakistan
| | - Saravana Kumar Jaganathan
- Department of Engineering, Faculty of Science and Engineering , University of Hull , Hull HU6 7RX , UK
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia , Kuala Lumpur 54100 , Malaysia
- School of Electrical Engineering, Faculty of Engineering , Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| | - Ahmad Zahran Khudzari
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Eko Supriyanto
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Syafiqah Saidin
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering , Center for Nanofibers & Nanotechnology Initiative, National University of Singapore , Singapore , Singapore
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| | - Ahmad Athif Mohd Faudzi
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia , Kuala Lumpur 54100 , Malaysia
- School of Electrical Engineering, Faculty of Engineering , Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| |
Collapse
|
6
|
Bakhtiary N, Liu C, Ghorbani F. Bioactive Inks Development for Osteochondral Tissue Engineering: A Mini-Review. Gels 2021; 7:274. [PMID: 34940334 PMCID: PMC8700778 DOI: 10.3390/gels7040274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Nowadays, a prevalent joint disease affecting both cartilage and subchondral bone is osteoarthritis. Osteochondral tissue, a complex tissue unit, exhibited limited self-renewal potential. Furthermore, its gradient properties, including mechanical property, bio-compositions, and cellular behaviors, present a challenge in repairing and regenerating damaged osteochondral tissues. Here, tissue engineering and translational medicine development using bioprinting technology provided a promising strategy for osteochondral tissue repair. In this regard, personalized stratified scaffolds, which play an influential role in osteochondral regeneration, can provide potential treatment options in early-stage osteoarthritis to delay or avoid the use of joint replacements. Accordingly, bioactive scaffolds with possible integration with surrounding tissue and controlling inflammatory responses have promising future tissue engineering perspectives. This minireview focuses on introducing biologically active inks for bioprinting the hierarchical scaffolds, containing growth factors and bioactive materials for 3D printing of regenerative osteochondral substitutes.
Collapse
Affiliation(s)
- Negar Bakhtiary
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14115-114, Iran;
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK;
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| |
Collapse
|
7
|
Yerneni SS, Adamik J, Weiss LE, Campbell PG. Cell trafficking and regulation of osteoblastogenesis by extracellular vesicle associated bone morphogenetic protein 2. J Extracell Vesicles 2021; 10:e12155. [PMID: 34669267 PMCID: PMC8528095 DOI: 10.1002/jev2.12155] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are characterized by complex cargo composition and carry a wide array of signalling cargo, including growth factors (GFs). Beyond surface-associated GFs, it is unclear if EV intralumenal growth factors are biologically active. Here, bone morphogenetic protein-2 (BMP2), loaded directly into the lumen of EVs designated engineered BMP2-EVs (eBMP2-EVs), was comprehensively characterized including its regulation of osteoblastogenesis. eBMP2-EVs and non-EV 'free' BMP2 were observed to similarly regulate osteoblastogenesis. Furthermore, cell trafficking experiments suggest rapid BMP2 recycling and its extracellular release as 'free' BMP2 and natural occurring BMP2-EVs (nBMP2-EVs), with both being osteogenic. Interestingly, BMP2 occurs on the EV surface of nBMP2-EVs and is susceptible to proteolysis, inhibition by noggin and complete dissociation from nBMP2-EVs over 3 days. Whereas, within the eBMP2-EVs, BMP2 is protected from proteolysis, inhibition by noggin and is retained in EV lumen at 100% for the first 24 h and ∼80% after 10 days. Similar to 'free' BMP2, bioprinted eBMP2-EV microenvironments induced osteogenesis in vitro and in vivo in spatial registration to the printed patterns. Taken together, BMP2 signalling involves dynamic BMP2 cell trafficking in and out of the cell involving EVs, with distinct differences between these nBMP2-EVs and eBMP2-EVs attributable to the BMP2 cargo location with EVs. Lastly, eBMP2-EVs appear to deliver BMP2 directly into the cytoplasm, initiating BMP2 signalling within the cell, bypassing its cell surface receptors.
Collapse
Affiliation(s)
| | - Juraj Adamik
- Division of Hematology/Oncology, Department of MedicineUPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Lee E. Weiss
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- The Robotics InstituteCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- The McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Phil G. Campbell
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- The McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Engineering Research Accelerator, College of EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
8
|
Strategies for inclusion of growth factors into 3D printed bone grafts. Essays Biochem 2021; 65:569-585. [PMID: 34156062 DOI: 10.1042/ebc20200130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
There remains a critical need to develop new technologies and materials that can meet the demands of treating large bone defects. The advancement of 3-dimensional (3D) printing technologies has allowed the creation of personalized and customized bone grafts, with specific control in both macro- and micro-architecture, and desired mechanical properties. Nevertheless, the biomaterials used for the production of these bone grafts often possess poor biological properties. The incorporation of growth factors (GFs), which are the natural orchestrators of the physiological healing process, into 3D printed bone grafts, represents a promising strategy to achieve the bioactivity required to enhance bone regeneration. In this review, the possible strategies used to incorporate GFs to 3D printed constructs are presented with a specific focus on bone regeneration. In particular, the strengths and limitations of different methods, such as physical and chemical cross-linking, which are currently used to incorporate GFs to the engineered constructs are critically reviewed. Different strategies used to present one or more GFs to achieve simultaneous angiogenesis and vasculogenesis for enhanced bone regeneration are also covered in this review. In addition, the possibility of combining several manufacturing approaches to fabricate hybrid constructs, which better mimic the complexity of biological niches, is presented. Finally, the clinical relevance of these approaches and the future steps that should be taken are discussed.
Collapse
|
9
|
Zhu J, Wang Y, Zhong L, Pan F, Wang J. Advances in tissue engineering of vasculature through three-dimensional bioprinting. Dev Dyn 2021; 250:1717-1738. [PMID: 34115420 DOI: 10.1002/dvdy.385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND A significant challenge facing tissue engineering is the fabrication of vasculature constructs which contains vascularized tissue constructs to recapitulate viable, complex and functional organs or tissues, and free-standing vascular structures potentially providing clinical applications in the future. Three-dimensional (3D) bioprinting has emerged as a promising technology, possessing a number of merits that other conventional biofabrication methods do not have. Over the last decade, 3D bioprinting has contributed a variety of techniques and strategies to generate both vascularized tissue constructs and free-standing vascular structures. RESULTS This review focuses on different strategies to print two kinds of vasculature constructs, namely vascularized tissue constructs and vessel-like tubular structures, highlighting the feasibility and shortcoming of the current methods for vasculature constructs fabrication. Generally, both direct printing and indirect printing can be employed in vascularized tissue engineering. Direct printing allows for structural fabrication with synchronous cell seeding, while indirect printing is more effective in generating complex architecture. During the fabrication process, 3D bioprinting techniques including extrusion bioprinting, inkjet bioprinting and light-assisted bioprinting should be selectively implemented to exert advantages and obtain the desirable tissue structure. Also, appropriate cells and biomaterials matter a lot to match various bioprinting techniques and thus achieve successful fabrication of specific vasculature constructs. CONCLUSION The 3D bioprinting has been developed to help provide various fabrication techniques, devoting to producing structurally stable, physiologically relevant, and biologically appealing constructs. However, although the optimization of biomaterials and innovation of printing strategies may improve the fabricated vessel-like structures, 3D bioprinting is still in the infant period and has a great gap between in vitro trials and in vivo applications. The article reviews the present achievement of 3D bioprinting in generating vasculature constructs and also provides perspectives on future directions of advanced vasculature constructs fabrication.
Collapse
Affiliation(s)
- Junjin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linna Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangwei Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Wang D, Zhang X, Huang S, Liu Y, Fu BSC, Mak KKL, Blocki AM, Yung PSH, Tuan RS, Ker DFE. Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials 2021; 272:120789. [PMID: 33845368 DOI: 10.1016/j.biomaterials.2021.120789] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Our body systems are comprised of numerous multi-tissue units. For the musculoskeletal system, one of the predominant functional units is comprised of bone, tendon/ligament, and muscle tissues working in tandem to facilitate locomotion. To successfully treat musculoskeletal injuries and diseases, critical consideration and thoughtful integration of clinical, biological, and engineering aspects are necessary to achieve translational bench-to-bedside research. In particular, identifying ideal biomaterial design specifications, understanding prior and recent tissue engineering advances, and judicious application of biomaterial and fabrication technologies will be crucial for addressing current clinical challenges in engineering multi-tissue units. Using rotator cuff tears as an example, insights relevant for engineering a bone-tendon-muscle multi-tissue unit are presented. This review highlights the tissue engineering strategies for musculoskeletal repair and regeneration with implications for other bone-tendon-muscle units, their derivatives, and analogous non-musculoskeletal tissue structures.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yang Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Bruma Sai-Chuen Fu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | | | - Anna Maria Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Patrick Shu-Hang Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
11
|
Tang M, Rich JN, Chen S. Biomaterials and 3D Bioprinting Strategies to Model Glioblastoma and the Blood-Brain Barrier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004776. [PMID: 33326131 PMCID: PMC7854518 DOI: 10.1002/adma.202004776] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/06/2020] [Indexed: 05/13/2023]
Abstract
Glioblastoma (GBM) is the most prevalent and lethal adult primary central nervous system cancer. An immunosuppresive and highly heterogeneous tumor microenvironment, restricted delivery of chemotherapy or immunotherapy through the blood-brain barrier (BBB), together with the brain's unique biochemical and anatomical features result in its universal recurrence and poor prognosis. As conventional models fail to predict therapeutic efficacy in GBM, in vitro 3D models of GBM and BBB leveraging patient- or healthy-individual-derived cells and biomaterials through 3D bioprinting technologies potentially mimic essential physiological and pathological features of GBM and BBB. 3D-bioprinted constructs enable investigation of cellular and cell-extracellular matrix interactions in a species-matched, high-throughput, and reproducible manner, serving as screening or drug delivery platforms. Here, an overview of current 3D-bioprinted GBM and BBB models is provided, elaborating on the microenvironmental compositions of GBM and BBB, relevant biomaterials to mimic the native tissues, and bioprinting strategies to implement the model fabrication. Collectively, 3D-bioprinted GBM and BBB models are promising systems and biomimetic alternatives to traditional models for more reliable mechanistic studies and preclinical drug screenings that may eventually accelerate the drug development process for GBM.
Collapse
Affiliation(s)
- Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jeremy N. Rich
- Division of Regenerative Medicine, Department of Medicine, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, Materials Science and Engineering Program, Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
12
|
White KA, Cali VJ, Olabisi RM. Micropatterning biomineralization with immobilized mother of pearl proteins. Sci Rep 2021; 11:2141. [PMID: 33495508 PMCID: PMC7835238 DOI: 10.1038/s41598-021-81534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 11/09/2022] Open
Abstract
In response to the drawbacks of autograft donor-site morbidity and bone morphogenetic protein type 2 (BMP2) carcinogenesis and ectopic bone formation, there has been an increased research focus towards developing alternatives capable of achieving spatial control over bone formation. Here we show for the first time both osteogenic differentiation and mineralization (from solution or mediated by cells) occurring within predetermined microscopic patterns. Our results revealed that both PEGylated BMP2 and nacre proteins induced stem cell osteodifferentiation in microscopic patterns when these proteins were covalently bonded in patterns onto polyethylene glycol diacrylate (PEGDA) hydrogel substrates; however, only nacre proteins induced mineralization localized to the micropatterns. These findings have broad implications on the design and development of orthopedic biomaterials and drug delivery.
Collapse
Affiliation(s)
- Kristopher A White
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
| | - Vincent J Cali
- Department of Anatomy and Physiology, Queens College, City University of New York, Bayside, NY, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
13
|
Adhikari J, Roy A, Das A, Ghosh M, Thomas S, Sinha A, Kim J, Saha P. Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks. Macromol Biosci 2020; 21:e2000179. [PMID: 33017096 DOI: 10.1002/mabi.202000179] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
In this review, few established cell printing techniques along with their parameters that affect the cell viability during bioprinting are considered. 3D bioprinting is developed on the principle of additive manufacturing using biomaterial inks and bioinks. Different bioprinting methods impose few challenges on cell printing such as shear stress, mechanical impact, heat, laser radiation, etc., which eventually lead to cell death. These factors also cause alteration of cells phenotype, recoverable or irrecoverable damages to the cells. Such challenges are not addressed in detail in the literature and scientific reports. Hence, this review presents a detailed discussion of several cellular bioprinting methods and their process-related impacts on cell viability, followed by probable mitigation techniques. Most of the printable bioinks encompass cells within hydrogel as scaffold material to avoid the direct exposure of the harsh printing environment on cells. However, the advantages of printing with scaffold-free cellular aggregates over cell-laden hydrogels have emerged very recently. Henceforth, optimal and favorable crosslinking mechanisms providing structural rigidity to the cell-laden printed constructs with ideal cell differentiation and proliferation, are discussed for improved understanding of cell printing methods for the future of organ printing and transplantation.
Collapse
Affiliation(s)
- Jaideep Adhikari
- J. Adhikari, A. Das, Dr. A. Sinha, M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Avinava Roy
- A. Roy, Dr. M. Ghosh, Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Anindya Das
- J. Adhikari, A. Das, Dr. A. Sinha, M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Manojit Ghosh
- A. Roy, Dr. M. Ghosh, Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Sabu Thomas
- Prof. S. Thomas, School of Chemical Sciences, MG University, Kottayam, Kerala, 686560, India
| | - Arijit Sinha
- J. Adhikari, A. Das, Dr. A. Sinha, M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Jinku Kim
- Prof. J. Kim, Department of Bio and Chemical Engineering, Hongik University, Sejong, 30016, South Korea
| | - Prosenjit Saha
- Dr. P. Saha, Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, Arch Water Front Building, Salt Lake City, Kolkata, 700091, India
| |
Collapse
|
14
|
Dwivedi R, Mehrotra D. 3D bioprinting and craniofacial regeneration. J Oral Biol Craniofac Res 2020; 10:650-659. [PMID: 32983859 PMCID: PMC7493084 DOI: 10.1016/j.jobcr.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Considering the structural and functional complexity of the craniofacial tissues, 3D bioprinting can be a valuable tool to design and create functional 3D tissues or organs in situ for in vivo applications. This review aims to explore the various aspects of this emerging 3D bioprinting technology and its application in the craniofacial bone or cartilage regeneration. METHOD Electronic database searches were undertaken on pubmed, google scholar, medline, embase, and science direct for english language literature, published for 3D bioprinting in craniofacial regeneration. The search items used were 'craniofacial regeneration' OR 'jaw regeneration' OR 'maxillofacial regeneration' AND '3D bioprinting' OR 'three dimensional bioprinting' OR 'Additive manufacturing' OR 'rapid prototyping' OR 'patient specific bioprinting'. Reviews and duplicates were excluded. RESULTS Search with above described criteria yielded 476 articles, which reduced to 108 after excluding reviews. Further screening of individual articles led to 77 articles to which 9 additional articles were included from references, and 18 duplicate articles were excluded. Finally we were left with 68 articles to be included in the review. CONCLUSION Craniofacial tissue and organ regeneration has been reported a success using bioink with different biomaterial and incorporated stem cells in 3D bioprinters. Though several attempts have been made to fabricate craniofacial bone and cartilage, the strive to achieve desired outcome still continues.
Collapse
Affiliation(s)
- Ruby Dwivedi
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
15
|
Ghorbani F, Li D, Zhong Z, Sahranavard M, Qian Z, Ni S, Zhang Z, Zamanian A, Yu B. Bioprinting a cell‐laden matrix for bone regeneration: A focused review. J Appl Polym Sci 2020. [DOI: 10.1002/app.49888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| | - Zeyuan Zhong
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| | - Melika Sahranavard
- Department of Nanotechnology and Advanced Materials Materials and Energy Research Center Karaj Iran
| | - Zhi Qian
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| | - Shuo Ni
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| | - Zhenhua Zhang
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials Materials and Energy Research Center Karaj Iran
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital Fudan University Pudong Medical Center Shanghai China
| |
Collapse
|
16
|
Li X, Liu B, Pei B, Chen J, Zhou D, Peng J, Zhang X, Jia W, Xu T. Inkjet Bioprinting of Biomaterials. Chem Rev 2020; 120:10793-10833. [PMID: 32902959 DOI: 10.1021/acs.chemrev.0c00008] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The inkjet technique has the capability of generating droplets in the picoliter volume range, firing thousands of times in a few seconds and printing in the noncontact manner. Since its emergence, inkjet technology has been widely utilized in the publishing industry for printing of text and pictures. As the technology developed, its applications have been expanded from two-dimensional (2D) to three-dimensional (3D) and even used to fabricate components of electronic devices. At the end of the twentieth century, researchers were aware of the potential value of this technology in life sciences and tissue engineering because its picoliter-level printing unit is suitable for depositing biological components. Currently inkjet technology has been becoming a practical tool in modern medicine serving for drug development, scaffold building, and cell depositing. In this article, we first review the history, principles and different methods of developing this technology. Next, we focus on the recent achievements of inkjet printing in the biological field. Inkjet bioprinting of generic biomaterials, biomacromolecules, DNAs, and cells and their major applications are introduced in order of increasing complexity. The current limitations/challenges and corresponding solutions of this technology are also discussed. A new concept, biopixels, is put forward with a combination of the key characteristics of inkjet printing and basic biological units to bring a comprehensive view on inkjet-based bioprinting. Finally, a roadmap of the entire 3D bioprinting is depicted at the end of this review article, clearly demonstrating the past, present, and future of 3D bioprinting and our current progress in this field.
Collapse
Affiliation(s)
- Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Boxun Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Ben Pei
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianwei Chen
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China.,East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiayi Peng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xinzhi Zhang
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
17
|
Chameettachal S, Yeleswarapu S, Sasikumar S, Shukla P, Hibare P, Bera AK, Bojedla SSR, Pati F. 3D Bioprinting: Recent Trends and Challenges. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00113-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Tao O, Kort-Mascort J, Lin Y, Pham HM, Charbonneau AM, ElKashty OA, Kinsella JM, Tran SD. The Applications of 3D Printing for Craniofacial Tissue Engineering. MICROMACHINES 2019; 10:E480. [PMID: 31319522 PMCID: PMC6680740 DOI: 10.3390/mi10070480] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Three-dimensional (3D) printing is an emerging technology in the field of dentistry. It uses a layer-by-layer manufacturing technique to create scaffolds that can be used for dental tissue engineering applications. While several 3D printing methodologies exist, such as selective laser sintering or fused deposition modeling, this paper will review the applications of 3D printing for craniofacial tissue engineering; in particular for the periodontal complex, dental pulp, alveolar bone, and cartilage. For the periodontal complex, a 3D printed scaffold was attempted to treat a periodontal defect; for dental pulp, hydrogels were created that can support an odontoblastic cell line; for bone and cartilage, a polycaprolactone scaffold with microspheres induced the formation of multiphase fibrocartilaginous tissues. While the current research highlights the development and potential of 3D printing, more research is required to fully understand this technology and for its incorporation into the dental field.
Collapse
Affiliation(s)
- Owen Tao
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Jacqueline Kort-Mascort
- Department of Bioengineering, McGill University, 817 Sherbrook Street West, Montreal, QC H3A 0C3, Canada
| | - Yi Lin
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China
| | - Hieu M Pham
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - André M Charbonneau
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Osama A ElKashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura 22123, Egypt
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University, 817 Sherbrook Street West, Montreal, QC H3A 0C3, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| |
Collapse
|
19
|
Interleukin-10 Does Not Augment Osseous Regeneration in the Scarred Calvarial Defect Achieved with Low-Dose Biopatterned BMP2. Plast Reconstr Surg 2019; 143:1215e-1223e. [PMID: 31136482 DOI: 10.1097/prs.0000000000005640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Large calvarial defects represent a major reconstructive challenge, as they do not heal spontaneously. Infection causes inflammation and scarring, further reducing the healing capacity of the calvaria. Bone morphogenetic protein-2 (BMP2) has been shown to stimulate osteogenesis but has significant side effects in high doses. BMP2 has not been tested in combination with antiinflammatory cytokines such as interleukin-10. METHODS Sixteen New Zealand White rabbits underwent 15 × 15-mm flap calvarectomies. The flap was incubated in Staphylococcus aureus and replaced, and infection and scarring were allowed to develop. The flap was subsequently removed and the wound débrided. A 15 × 15-mm square of acellular dermal matrix biopatterned with low-dose BMP2, interleukin-10, or a combination was implanted. Computed tomographic scans were taken over 42 days. Rabbits were then killed and histology was performed. RESULTS Defects treated with BMP2 showed significantly (p < 0.05) greater osseous regeneration than untreated controls. Interleukin-10 did not significantly augment the healing achieved with BMP2, and interleukin-10 alone did not significantly increase healing compared with controls. Histology showed evidence of bone formation in defects treated with BMP2. Untreated controls and defects treated with interleukin-10 alone showed only fibrous tissue in the defect site. CONCLUSIONS Low-dose BMP2 delivered directly to the scarred calvarial defect augments bony healing. Interleukin-10 at the dose applied did not significantly augment healing alone or in combination with BMP2. Healing had not finished at 42 days and analysis at later time points or the use of higher doses of BMP2 may yield greater healing.
Collapse
|
20
|
Eswaramoorthy SD, Ramakrishna S, Rath SN. Recent advances in three-dimensional bioprinting of stem cells. J Tissue Eng Regen Med 2019; 13:908-924. [PMID: 30866145 DOI: 10.1002/term.2839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
Abstract
In spite of being a new field, three-dimensional (3D) bioprinting has undergone rapid growth in the recent years. Bioprinting methods offer a unique opportunity for stem cell distribution, positioning, and differentiation at the microscale to make the differentiated architecture of any tissue while maintaining precision and control over the cellular microenvironment. Bioprinting introduces a wide array of approaches to modify stem cell fate. This review discusses these methodologies of 3D bioprinting stem cells. Fabricating a fully operational tissue or organ construct with a long life will be the most significant challenge of 3D bioprinting. Once this is achieved, a whole human organ can be fabricated for the defect place at the site of surgery.
Collapse
Affiliation(s)
- Sindhuja D Eswaramoorthy
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India
| | - Seeram Ramakrishna
- Centre for Nanofibers & Nanotechnology, NUS Nanoscience & Nanotechnology Initiative, Singapore
| | - Subha N Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India
| |
Collapse
|
21
|
Ashammakhi N, Hasan A, Kaarela O, Byambaa B, Sheikhi A, Gaharwar AK, Khademhosseini A. Advancing Frontiers in Bone Bioprinting. Adv Healthc Mater 2019; 8:e1801048. [PMID: 30734530 DOI: 10.1002/adhm.201801048] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Three-dimensional (3D) bioprinting of cell-laden biomaterials is used to fabricate constructs that can mimic the structure of native tissues. The main techniques used for 3D bioprinting include microextrusion, inkjet, and laser-assisted bioprinting. Bioinks used for bone bioprinting include hydrogels loaded with bioactive ceramics, cells, and growth factors. In this review, a critical overview of the recent literature on various types of bioinks used for bone bioprinting is presented. Major challenges, such as the vascularity, clinically relevant size, and mechanical properties of 3D printed structures, that need to be addressed to successfully use the technology in clinical settings, are discussed. Emerging approaches to solve these problems are reviewed, and future strategies to design customized 3D printed structures are proposed.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California – Los Angeles Los Angeles CA 90095 USA
- California NanoSystems Institute (CNSI)University of California – Los Angeles Los Angeles CA 90095 USA
- Department of BioengineeringUniversity of California – Los Angeles Los Angeles CA 90095 USA
- Division of Plastic SurgeryDepartment of SurgeryOulu Univesity Hospital Oulu FI‐90014 Finland
| | - Anwarul Hasan
- Department of Mechanical and Industrial EngineeringCollege of EngineeringQatar University Doha 2713 Qatar
- Biomedical Research CenterQatar University Doha 2713 Qatar
| | - Outi Kaarela
- Division of Plastic SurgeryDepartment of SurgeryOulu Univesity Hospital Oulu FI‐90014 Finland
| | - Batzaya Byambaa
- Center for Biomedical EngineeringDepartment of MedicineBrigham and Women's HospitalHarvard Medical School Cambridge MA 02115 USA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of Technology Cambridge MA 02139 USA
| | - Amir Sheikhi
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California – Los Angeles Los Angeles CA 90095 USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical EngineeringDepartment of Materials Science and Engineeringand Center for Remote Health and TechnologiesTexas A&M University College Station TX 77841 USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California – Los Angeles Los Angeles CA 90095 USA
- California NanoSystems Institute (CNSI)University of California – Los Angeles Los Angeles CA 90095 USA
- Department of BioengineeringUniversity of California – Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
22
|
|
23
|
Reconstruction of a Calvarial Wound Complicated by Infection: Comparing the Effects of Biopatterned Bone Morphogenetic Protein 2 and Vascular Endothelial Growth Factor. J Craniofac Surg 2019; 30:260-264. [PMID: 30339591 DOI: 10.1097/scs.0000000000004779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) bioprinted on biological matrix induces osseous regeneration in large calvarial defects in rabbits, both uncomplicated and scarred. Healing in unfavorable defects scarred from previous infection is decreased due in part to the lack of vascularity. This impedes the access of mesenchymal stem cells, key to osseous regeneration and the efficacy of BMP2, to the wound bed. The authors hypothesized that bioprinted vascular endothelial growth factor (VEGF) would augment the osseous regeneration achieved with low dose biopatterned BMP2 alone. Thirteen New Zealand white rabbits underwent subtotal calvariectomy using a dental cutting burr. Care was taken to preserve the underlying dura. A 15 mm × 15 mm flap of bone was cut away and incubated in a 1 × 108 cfu/mL planktonic solution of S aureus before reimplantation. After 2 weeks of subsequent infection the flap was removed and the surgical wound debrided followed by 10 days of antibiotic treatment. On postoperative day 42 the calvarial defects were treated with acellular dermal matrix bioprinted with nothing (control), VEGF, BMP2, BMP2/VEGF combined. Bone growth was analyzed with serial CT and postmortem histology. Defects treated with BMP2 (BMP2 alone and BMP2/VEGF combination) showed significantly greater healing than control and VEGF treated defect (P < 0.5). Vascular endothelial growth factor treated defect demonstrated less healing than control and VEGF/BMP2 combination treatments achieved less healing than BMP2 alone though these differences were nonsignificant. Low dose BMP2-patterned acellular dermal matrix improves healing of scarred calvarial defects. Vascular endothelial growth factor at the doses applied in this study failed to increase healing.
Collapse
|
24
|
Kérourédan O, Bourget JM, Rémy M, Crauste-Manciet S, Kalisky J, Catros S, Thébaud NB, Devillard R. Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:28. [PMID: 30747358 DOI: 10.1007/s10856-019-6230-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Development of a microvasculature into tissue-engineered bone substitutes represents a current challenge. Seeding of endothelial cells in an appropriate environment can give rise to a capillary-like network to enhance prevascularization of bone substitutes. Advances in biofabrication techniques, such as bioprinting, could allow to precisely define a pattern of endothelial cells onto a biomaterial suitable for in vivo applications. The aim of this study was to produce a microvascular network following a defined pattern and preserve it while preparing the surface to print another layer of endothelial cells. We first optimise the bioink cell concentration and laser printing parameters and then develop a method to allow endothelial cells to survive between two collagen layers. Laser-assisted bioprinting (LAB) was used to pattern lines of tdTomato-labeled endothelial cells cocultured with mesenchymal stem cells seeded onto a collagen hydrogel. Formation of capillary-like structures was dependent on a sufficient local density of endothelial cells. Overlay of the pattern with collagen I hydrogel containing vascular endothelial growth factor (VEGF) allowed capillary-like structures formation and preservation of the printed pattern over time. Results indicate that laser-assisted bioprinting is a valuable technique to pre-organize endothelial cells into high cell density pattern in order to create a vascular network with defined architecture in tissue-engineered constructs based on collagen hydrogel.
Collapse
Affiliation(s)
- Olivia Kérourédan
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France.
- Université de Bordeaux, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France.
- CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, Place Amélie Raba Léon, F-33076, Bordeaux, France.
| | - Jean-Michel Bourget
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- Energie, matériaux et télécommunication, Institut National de Recherche Scientifique, Varenne, QC, Canada
| | - Murielle Rémy
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- Université de Bordeaux, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
| | - Sylvie Crauste-Manciet
- Université de Bordeaux, ARNA Laboratory, team ChemBioPharm, U1212 INSERM - UMR 5320 CNRS, 146 rue Léo Saignat, F-33076, Bordeaux, France
- CHU de Bordeaux, Pharmacie du Groupe Hospitalier Sud, Avenue de Magellan, F-33604, Pessac, France
| | - Jérôme Kalisky
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- Université de Bordeaux, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
| | - Sylvain Catros
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- Université de Bordeaux, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, Place Amélie Raba Léon, F-33076, Bordeaux, France
| | - Noëlie B Thébaud
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- Université de Bordeaux, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, Place Amélie Raba Léon, F-33076, Bordeaux, France
| | - Raphaël Devillard
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- Université de Bordeaux, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, Place Amélie Raba Léon, F-33076, Bordeaux, France
| |
Collapse
|
25
|
Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 2019; 1:100008. [PMID: 32159140 PMCID: PMC7061634 DOI: 10.1016/j.mtbio.2019.100008] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022] Open
Abstract
The native tissues are complex structures consisting of different cell types, extracellular matrix materials, and biomolecules. Traditional tissue engineering strategies have not been able to fully reproduce biomimetic and heterogeneous tissue constructs because of the lack of appropriate biomaterials and technologies. However, recently developed three-dimensional bioprinting techniques can be leveraged to produce biomimetic and complex tissue structures. To achieve this, multicomponent bioinks composed of multiple biomaterials (natural, synthetic, or hybrid natural-synthetic biomaterials), different types of cells, and soluble factors have been developed. In addition, advanced bioprinting technologies have enabled us to print multimaterial bioinks with spatial and microscale resolution in a rapid and continuous manner, aiming to reproduce the complex architecture of the native tissues. This review highlights important advances in heterogeneous bioinks and bioprinting technologies to fabricate biomimetic tissue constructs. Opportunities and challenges to further accelerate this research area are also described.
Collapse
Affiliation(s)
- N. Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, 8000, Finland
| | - S. Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - C. Xu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia
| | - H. Montazerian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - H. Ko
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - R. Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - N. Barros
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - A. Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
26
|
White KA, Olabisi RM. Spatiotemporal Control Strategies for Bone Formation through Tissue Engineering and Regenerative Medicine Approaches. Adv Healthc Mater 2019; 8:e1801044. [PMID: 30556328 DOI: 10.1002/adhm.201801044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Global increases in life expectancy drive increasing demands for bone regeneration. The gold standard for surgical bone repair is autografting, which enjoys excellent clinical outcomes; however, it possesses significant drawbacks including donor site morbidity and limited availability. Although collagen sponges delivered with bone morphogenetic protein, type 2 (BMP2) are a common alternative or supplement, they do not efficiently retain BMP2, necessitating extremely high doses to elicit bone formation. Hence, reports of BMP2 complications are rising, including cancer promotion and ectopic bone formation, the latter inducing complications such as breathing difficulties and neurologic impairments. Thus, efforts to exert spatial control over bone formation are increasing. Several tissue engineering approaches have demonstrated the potential for targeted and controlled bone formation. These approaches include biomaterial scaffolds derived from synthetic sources, e.g., calcium phosphates or polymers; natural sources, e.g., bone or seashell; and immobilized biofactors, e.g., BMP2. Although BMP2 is the only protein clinically approved for use in a surgical device, there are several proteins, small molecules, and growth factors that show promise in tissue engineering applications. This review profiles the tissue engineering advances in achieving control over the location and onset of bone formation (spatiotemporal control) toward avoiding the complications associated with BMP2.
Collapse
Affiliation(s)
- Kristopher A. White
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Road Piscataway NJ 08854 USA
| | - Ronke M. Olabisi
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway NJ 08854 USA
| |
Collapse
|
27
|
Applications of 3D printing on craniofacial bone repair: A systematic review. J Dent 2019; 80:1-14. [DOI: 10.1016/j.jdent.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/09/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
|
28
|
Luo Y, Wei X, Huang P. 3D bioprinting of hydrogel‐based biomimetic microenvironments. J Biomed Mater Res B Appl Biomater 2018; 107:1695-1705. [DOI: 10.1002/jbm.b.34262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/30/2018] [Accepted: 09/23/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yongxiang Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingSchool of Biomedical Engineering, Health Science Center, Shenzhen University Shenzhen, 518060 China
| | - Xiaoyue Wei
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingSchool of Biomedical Engineering, Health Science Center, Shenzhen University Shenzhen, 518060 China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingSchool of Biomedical Engineering, Health Science Center, Shenzhen University Shenzhen, 518060 China
| |
Collapse
|
29
|
Oberoi G, Nitsch S, Edelmayer M, Janjić K, Müller AS, Agis H. 3D Printing-Encompassing the Facets of Dentistry. Front Bioeng Biotechnol 2018; 6:172. [PMID: 30525032 PMCID: PMC6262086 DOI: 10.3389/fbioe.2018.00172] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
This narrative review presents an overview on the currently available 3D printing technologies and their utilization in experimental, clinical and educational facets, from the perspective of different specialties of dentistry, including oral and maxillofacial surgery, orthodontics, endodontics, prosthodontics, and periodontics. It covers research and innovation, treatment modalities, education and training, employing the rapidly developing 3D printing process. Research-oriented advancement in 3D printing in dentistry is witnessed by the rising number of publications on this topic. Visualization of treatment outcomes makes it a promising clinical tool. Educational programs utilizing 3D-printed models stimulate training of dental skills in students and trainees. 3D printing has enormous potential to ameliorate oral health care in research, clinical treatment, and education in dentistry.
Collapse
Affiliation(s)
- Gunpreet Oberoi
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Sophie Nitsch
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Department of Health Sciences, FH Wien, University of Applied Sciences, Vienna, Austria
| | - Michael Edelmayer
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Anna Sonja Müller
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
30
|
Kérourédan O, Ribot EJ, Fricain JC, Devillard R, Miraux S. Magnetic Resonance Imaging for tracking cellular patterns obtained by Laser-Assisted Bioprinting. Sci Rep 2018; 8:15777. [PMID: 30361490 PMCID: PMC6202323 DOI: 10.1038/s41598-018-34226-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022] Open
Abstract
Recent advances in the field of Tissue Engineering allowed to control the three-dimensional organization of engineered constructs. Cell pattern imaging and in vivo follow-up remain a major hurdle in in situ bioprinting onto deep tissues. Magnetic Resonance Imaging (MRI) associated with Micron-sized superParamagnetic Iron Oxide (MPIO) particles constitutes a non-invasive method for tracking cells in vivo. To date, no studies have utilized Cellular MRI as a tool to follow cell patterns obtained via bioprinting technologies. Laser-Assisted Bioprinting (LAB) has been increasingly recognized as a new and exciting addition to the bioprinting’s arsenal, due to its rapidity, precision and ability to print viable cells. This non-contact technology has been successfully used in recent in vivo applications. The aim of this study was to assess the methodology of tracking MPIO-labeled stem cells using MRI after organizing them by Laser-Assisted Bioprinting. Optimal MPIO concentrations for tracking bioprinted cells were determined. Accuracy of printed patterns was compared using MRI and confocal microscopy. Cell densities within the patterns and MRI signals were correlated. MRI enabled to detect cell patterns after in situ bioprinting onto a mouse calvarial defect. Results demonstrate that MRI combined with MPIO cell labeling is a valuable technique to track bioprinted cells in vitro and in animal models.
Collapse
Affiliation(s)
- Olivia Kérourédan
- INSERM, Bioingénierie Tissulaire, U1026, F-33076, Bordeaux, France. .,CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076, Bordeaux, France.
| | - Emeline Julie Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/Univ. Bordeaux, F-33076, Bordeaux, France
| | - Jean-Christophe Fricain
- INSERM, Bioingénierie Tissulaire, U1026, F-33076, Bordeaux, France.,CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076, Bordeaux, France.,ART BioPrint, INSERM, U1026, F-33076, Bordeaux, France
| | - Raphaël Devillard
- INSERM, Bioingénierie Tissulaire, U1026, F-33076, Bordeaux, France.,CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/Univ. Bordeaux, F-33076, Bordeaux, France
| |
Collapse
|
31
|
Bittner SM, Guo JL, Melchiorri A, Mikos AG. Three-dimensional Printing of Multilayered Tissue Engineering Scaffolds. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:861-874. [PMID: 30450010 PMCID: PMC6233733 DOI: 10.1016/j.mattod.2018.02.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The field of tissue engineering has produced new therapies for the repair of damaged tissues and organs, utilizing biomimetic scaffolds that mirror the mechanical and biological properties of host tissue. The emergence of three-dimensional printing (3DP) technologies has enabled the fabrication of highly complex scaffolds which offer a more accurate replication of native tissue properties and architecture than previously possible. Of strong interest to tissue engineers is the construction of multilayered scaffolds that target distinct regions of complex tissues. Musculoskeletal and dental tissues in particular, such as the osteochondral unit and periodontal complex, are composed of multiple interfacing tissue types, and thus benefit from the usage of multilayered scaffold fabrication. Traditional 3DP technologies such as extrusion printing and selective laser sintering have been used for the construction of scaffolds with gradient architectures and mixed material compositions. Additionally, emerging bioprinting strategies have been used for the direct printing and spatial patterning of cells and chemical factors, capturing the complex organization found in the body. To better replicate the varied and gradated properties of larger tissues, researchers have created scaffolds composed of multiple materials spanning natural polymers, synthetic polymers, and ceramics. By utilizing high precision 3DP techniques and judicious material selection, scaffolds can thus be designed to address the regeneration of previously challenging musculoskeletal, dental, and other heterogeneous target tissues. These multilayered 3DP strategies show great promise in the future of tissue engineering.
Collapse
Affiliation(s)
- Sean M Bittner
- Department of Bioengineering, Rice University, Houston, TX
- Center for Engineering Complex Tissues
| | - Jason L Guo
- Department of Bioengineering, Rice University, Houston, TX
| | - Anthony Melchiorri
- Department of Bioengineering, Rice University, Houston, TX
- Center for Engineering Complex Tissues
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX
- Center for Engineering Complex Tissues
| |
Collapse
|
32
|
Howie RN, Durham E, Oakes B, Grey Z, Smith J, Campbell P, LaRue A, Steed M, Muise-Helmericks R, Cray J. Testing a novel nanofibre scaffold for utility in bone tissue regeneration. J Tissue Eng Regen Med 2018; 12:2055-2066. [PMID: 30058251 DOI: 10.1002/term.2740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
Abstract
Many variables serve to alter the process of bone remodelling and diminish regeneration including the size and nature of the wound bed and health status of the individual. To overcome these inhibitory factors, tissue-engineered osteoconductive scaffolds paired with various growth factors have been utilized clinically. However, many limitations still remain, for example, bone morphogenetic protein 2 (BMP2) can lead to rampant inflammation, ectopic bone formation, and graft failure. Here, we studied the ability for a nanofiber scaffold (Talymed) to accelerate BMP2 growth factor-induced bone healing compared with the traditional absorbable collagen sponge (ACS) delivery system. One hundred fifty-five adult wild type mice were arranged in 16 groups by time, 4 and 8 weeks, and treatment, ACS or Talymed, loaded with control, low, medium, or high dosages of BMP2. Skulls were subjected to microCT, biomechanical, and histological analysis to assess bone regeneration. The use of Talymed within the defect site was found to decrease the bone volume, bone formation rate, and alkaline phosphatase activity compared with ACS/BMP2 combinations. Interestingly, though Talymed regenerated less bone, the regenerate was found to have a greater hardness value than that of bone within the ACS groups. However, the difference in bone hardness between scaffolds was not detectable by 8 weeks. Based on these results, we found that the nanofiber scaffold generated a better quality of bone regenerate at 4 weeks but, due to the lack of overall bone formation and the inhibition of normal remodelling processes, was not as efficacious as the current clinical standard ACS/BMP2 therapy.
Collapse
Affiliation(s)
- R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Emily Durham
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Brayden Oakes
- College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Zachary Grey
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Jason Smith
- Engineering Reseacher Accelerated and Integrated Innovation Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Phil Campbell
- Institute for Complex Engineering Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Amanda LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, and Ralph H. Johnston Department of Veterans Affairs, Charleston, South Carolina
| | - Martin Steed
- Department of Oral and Maxillofacial Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Robin Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - James Cray
- Division of Anatomy, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Tasnim N, De la Vega L, Anil Kumar S, Abelseth L, Alonzo M, Amereh M, Joddar B, Willerth SM. 3D Bioprinting Stem Cell Derived Tissues. Cell Mol Bioeng 2018; 11:219-240. [PMID: 31719887 PMCID: PMC6816617 DOI: 10.1007/s12195-018-0530-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Stem cells offer tremendous promise for regenerative medicine as they can become a variety of cell types. They also continuously proliferate, providing a renewable source of cells. Recently, it has been found that 3D printing constructs using stem cells, can generate models representing healthy or diseased tissues, as well as substitutes for diseased and damaged tissues. Here, we review the current state of the field of 3D printing stem cell derived tissues. First, we cover 3D printing technologies and discuss the different types of stem cells used for tissue engineering applications. We then detail the properties required for the bioinks used when printing viable tissues from stem cells. We give relevant examples of such bioprinted tissues, including adipose tissue, blood vessels, bone, cardiac tissue, cartilage, heart valves, liver, muscle, neural tissue, and pancreas. Finally, we provide future directions for improving the current technologies, along with areas of focus for future work to translate these exciting technologies into clinical applications.
Collapse
Affiliation(s)
- Nishat Tasnim
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968 USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968 USA
| | - Laura De la Vega
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2 Canada
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968 USA
| | - Shweta Anil Kumar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968 USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968 USA
| | - Laila Abelseth
- Biomedical Engineering Program, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2 Canada
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968 USA
| | - Matthew Alonzo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968 USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968 USA
| | - Meitham Amereh
- Faculty of Engineering, University of British Columbia-Okanagan Campus, Kelowna, Canada
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968 USA
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968 USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968 USA
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2 Canada
| | - Stephanie M. Willerth
- Biomedical Engineering Program, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2 Canada
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968 USA
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2 Canada
- International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9 Canada
| |
Collapse
|
34
|
Tuzmen C, Verdelis K, Weiss L, Campbell P. Crosstalk between substance P and calcitonin gene-related peptide during heterotopic ossification in murine Achilles tendon. J Orthop Res 2018; 36:1444-1455. [PMID: 29227562 PMCID: PMC6449576 DOI: 10.1002/jor.23833] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) is abnormal bone formation within soft tissue, usually predisposed by neurogenic or musculoskeletal trauma. Inflammation resulting from trauma is considered to be the main trigger for HO by eliciting changes within the injury site, including elevation of bone morphogenetic proteins (BMPs). Recent research, however, has also associated changes in sensory neuropeptide expression with HO. Substance P (SP) and calcitonin gene-related peptide (CGRP) are two of those neuropeptides that have been implicated with various aspects of HO, including regulation of inflammation and BMP signaling. Despite discoveries associating SP and CGRP with soft tissue HO, it remains unclear whether SP and CGRP have a direct role in the induction of HO. Here, we investigated the effect of SP and CGRP in vivo with the aid of inkjet-based biopatterning technology to controllably deliver these neuropeptides onto a murine Achilles tendon. While we did not observe any significant effect with CGRP, SP alone promoted HO in vivo with increased expression of BMP2. Remarkably, when SP and CGRP were delivered together, CGRP counteracted the effect of SP and essentially blocked SP-induced HO. This report contributes to the understanding of the complex problem of HO pathophysiology and warrants more study to better elucidate the interplay between SP and CGRP in the induction of HO. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1444-1455, 2018.
Collapse
Affiliation(s)
- Ceren Tuzmen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Kostas Verdelis
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lee Weiss
- Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Phil Campbell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci 2018; 6:915-946. [PMID: 29492503 PMCID: PMC6439477 DOI: 10.1039/c7bm00765e] [Citation(s) in RCA: 629] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioprinting is an emerging technology with various applications in making functional tissue constructs to replace injured or diseased tissues. It is a relatively new approach that provides high reproducibility and precise control over the fabricated constructs in an automated manner, potentially enabling high-throughput production. During the bioprinting process, a solution of a biomaterial or a mixture of several biomaterials in the hydrogel form, usually encapsulating the desired cell types, termed the bioink, is used for creating tissue constructs. This bioink can be cross-linked or stabilized during or immediately after bioprinting to generate the final shape, structure, and architecture of the designed construct. Bioinks may be made from natural or synthetic biomaterials alone, or a combination of the two as hybrid materials. In certain cases, cell aggregates without any additional biomaterials can also be adopted for use as a bioink for bioprinting processes. An ideal bioink should possess proper mechanical, rheological, and biological properties of the target tissues, which are essential to ensure correct functionality of the bioprinted tissues and organs. In this review, we provide an in-depth discussion of the different bioinks currently employed for bioprinting, and outline some future perspectives in their further development.
Collapse
Affiliation(s)
- P Selcan Gungor-Ozkerim
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
36
|
Gohil SV, Wang L, Rowe DW, Nair LS. Spatially controlled rhBMP-2 mediated calvarial bone formation in a transgenic mouse model. Int J Biol Macromol 2018; 106:1159-1165. [DOI: 10.1016/j.ijbiomac.2017.08.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022]
|
37
|
Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defects. J Surg Res 2017; 223:115-122. [PMID: 29433862 DOI: 10.1016/j.jss.2017.10.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/09/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vascularized bone tissue transfer, commonly used to reconstruct large mandibular defects, is challenged by long operative times, extended hospital stay, donor-site morbidity, and resulting health care. 3D-printed osseoconductive tissue-engineered scaffolds may provide an alternative solution for reconstruction of significant mandibular defects. This pilot study presents a novel 3D-printed bioactive ceramic scaffold with osseoconductive properties to treat segmental mandibular defects in a rabbit model. METHODS Full-thickness mandibulectomy defects (12 mm) were created at the mandibular body of eight adult rabbits and replaced by 3D-printed ceramic scaffold made of 100% β-tricalcium phosphate, fit to defect based on computed tomography imaging. After 8 weeks, animals were euthanized, the mandibles were retrieved, and bone regeneration was assessed. Bone growth was qualitatively assessed with histology and backscatter scanning electron microscopy, quantified both histologically and with micro computed tomography and advanced 3D image reconstruction software, and compared to unoperated mandible sections (UMSs). RESULTS Histology quantified scaffold with newly formed bone area occupancy at 54.3 ± 11.7%, compared to UMS baseline bone area occupancy at 55.8 ± 4.4%, and bone area occupancy as a function of scaffold free space at 52.8 ± 13.9%. 3D volume occupancy quantified newly formed bone volume occupancy was 36.3 ± 5.9%, compared to UMS baseline bone volume occupancy at 33.4 ± 3.8%, and bone volume occupancy as a function of scaffold free space at 38.0 ± 15.4%. CONCLUSIONS 3D-printed bioactive ceramic scaffolds can restore critical mandibular segmental defects to levels similar to native bone after 8 weeks in an adult rabbit, critical sized, mandibular defect model.
Collapse
|
38
|
Wang X, Ao Q, Tian X, Fan J, Tong H, Hou W, Bai S. Gelatin-Based Hydrogels for Organ 3D Bioprinting. Polymers (Basel) 2017; 9:E401. [PMID: 30965706 PMCID: PMC6418925 DOI: 10.3390/polym9090401] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a family of enabling technologies that can be used to manufacture human organs with predefined hierarchical structures, material constituents and physiological functions. The main objective of these technologies is to produce high-throughput and/or customized organ substitutes (or bioartificial organs) with heterogeneous cell types or stem cells along with other biomaterials that are able to repair, replace or restore the defect/failure counterparts. Gelatin-based hydrogels, such as gelatin/fibrinogen, gelatin/hyaluronan and gelatin/alginate/fibrinogen, have unique features in organ 3D bioprinting technologies. This article is an overview of the intrinsic/extrinsic properties of the gelatin-based hydrogels in organ 3D bioprinting areas with advanced technologies, theories and principles. The state of the art of the physical/chemical crosslinking methods of the gelatin-based hydrogels being used to overcome the weak mechanical properties is highlighted. A multicellular model made from adipose-derived stem cell proliferation and differentiation in the predefined 3D constructs is emphasized. Multi-nozzle extrusion-based organ 3D bioprinting technologies have the distinguished potential to eventually manufacture implantable bioartificial organs for purposes such as customized organ restoration, high-throughput drug screening and metabolic syndrome model establishment.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Qiang Ao
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Xiaohong Tian
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jun Fan
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Hao Tong
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Weijian Hou
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Shuling Bai
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
39
|
Cunniffe GM, Gonzalez-Fernandez T, Daly A, Sathy BN, Jeon O, Alsberg E, Kelly DJ. * Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering. Tissue Eng Part A 2017; 23:891-900. [PMID: 28806146 DOI: 10.1089/ten.tea.2016.0498] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regeneration of complex bone defects remains a significant clinical challenge. Multi-tool biofabrication has permitted the combination of various biomaterials to create multifaceted composites with tailorable mechanical properties and spatially controlled biological function. In this study we sought to use bioprinting to engineer nonviral gene activated constructs reinforced by polymeric micro-filaments. A gene activated bioink was developed using RGD-γ-irradiated alginate and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA). This ink was combined with bone marrow-derived mesenchymal stem cells (MSCs) and then co-printed with a polycaprolactone supporting mesh to provide mechanical stability to the construct. Reporter genes were first used to demonstrate successful cell transfection using this system, with sustained expression of the transgene detected over 14 days postbioprinting. Delivery of a combination of therapeutic genes encoding for bone morphogenic protein and transforming growth factor promoted robust osteogenesis of encapsulated MSCs in vitro, with enhanced levels of matrix deposition and mineralization observed following the incorporation of therapeutic pDNA. Gene activated MSC-laden constructs were then implanted subcutaneously, directly postfabrication, and were found to support superior levels of vascularization and mineralization compared to cell-free controls. These results validate the use of a gene activated bioink to impart biological functionality to three-dimensional bioprinted constructs.
Collapse
Affiliation(s)
- Gráinne M Cunniffe
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Tomas Gonzalez-Fernandez
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Andrew Daly
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Binulal N Sathy
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland , Dublin, Ireland .,4 Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University , Kochi, India
| | - Oju Jeon
- 5 Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio
| | - Eben Alsberg
- 5 Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio.,6 Department of Orthopaedic Surgery, Case Western Reserve University , Cleveland, Ohio.,7 National Centre for Regenerative Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Daniel J Kelly
- 1 Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland , Dublin, Ireland
| |
Collapse
|
40
|
Abstract
This review focuses on developments in the field of bioprinting for musculoskeletal tissue engineering, along with discussion on the various approaches for bone, cartilage and connective tissue fabrication. All approaches (cell-laden, cell-free and a combination of both) aim to obtain complex, living tissues able to develop and mature, using the same fundamental technology. To date, co-printing of cell-laden and cell-free materials has been revealed to be the most promising approach for musculoskeletal applications because materials with good bioactivity and good mechanical strength can be combined within the same constructs. Bioprinting for musculoskeletal applications is a developing field, and detailed discussion on the current challenges and future perspectives is also presented in this review.
Collapse
Affiliation(s)
- Alexander Popov
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - Sara Malferrari
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - Deepak M Kalaskar
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| |
Collapse
|
41
|
Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater 2017; 56:3-13. [PMID: 28342878 PMCID: PMC5544968 DOI: 10.1016/j.actbio.2017.03.030] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/24/2017] [Accepted: 03/21/2017] [Indexed: 12/27/2022]
Abstract
To accurately mimic the native tissue environment, tissue engineered scaffolds often need to have a highly controlled and varied display of three-dimensional (3D) architecture and geometrical cues. Additive manufacturing in tissue engineering has made possible the development of complex scaffolds that mimic the native tissue architectures. As such, architectural details that were previously unattainable or irreproducible can now be incorporated in an ordered and organized approach, further advancing the structural and chemical cues delivered to cells interacting with the scaffold. This control over the environment has given engineers the ability to unlock cellular machinery that is highly dependent upon the intricate heterogeneous environment of native tissue. Recent research into the incorporation of physical and chemical gradients within scaffolds indicates that integrating these features improves the function of a tissue engineered construct. This review covers recent advances on techniques to incorporate gradients into polymer scaffolds through additive manufacturing and evaluate the success of these techniques. As covered here, to best replicate different tissue types, one must be cognizant of the vastly different types of manufacturing techniques available to create these gradient scaffolds. We review the various types of additive manufacturing techniques that can be leveraged to fabricate scaffolds with heterogeneous properties and discuss methods to successfully characterize them. STATEMENT OF SIGNIFICANCE Additive manufacturing techniques have given tissue engineers the ability to precisely recapitulate the native architecture present within tissue. In addition, these techniques can be leveraged to create scaffolds with both physical and chemical gradients. This work offers insight into several techniques that can be used to generate graded scaffolds, depending on the desired gradient. Furthermore, it outlines methods to determine if the designed gradient was achieved. This review will help to condense the abundance of information that has been published on the creation and characterization of gradient scaffolds and to provide a single review discussing both methods for manufacturing gradient scaffolds and evaluating the establishment of a gradient.
Collapse
Affiliation(s)
- Laura G Bracaglia
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Brandon T Smith
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Emma Watson
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Navein Arumugasaamy
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, D.C. 20010, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA.
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
42
|
Jessop ZM, Al-Sabah A, Gardiner MD, Combellack E, Hawkins K, Whitaker IS. 3D bioprinting for reconstructive surgery: Principles, applications and challenges. J Plast Reconstr Aesthet Surg 2017; 70:1155-1170. [PMID: 28734756 DOI: 10.1016/j.bjps.2017.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
Despite the increasing laboratory research in the growing field of 3D bioprinting, there are few reports of successful translation into surgical practice. This review outlines the principles of 3D bioprinting including software and hardware processes, biocompatible technological platforms and suitable bioinks. The advantages of 3D bioprinting over traditional tissue engineering techniques in assembling cells, biomaterials and biomolecules in a spatially controlled manner to reproduce native tissue macro-, micro- and nanoarchitectures are discussed, together with an overview of current progress in bioprinting tissue types relevant for plastic and reconstructive surgery. If successful, this platform technology has the potential to biomanufacture autologous tissue for reconstruction, obviating the need for donor sites or immunosuppression. The biological, technological and regulatory challenges are highlighted, with strategies to overcome these challenges by using an integrated approach from the fields of engineering, biomaterial science, cell biology and reconstructive microsurgery.
Collapse
Affiliation(s)
- Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Ayesha Al-Sabah
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | | | - Emman Combellack
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Karl Hawkins
- Rheology Research Group, Swansea University Medical School, Swansea, UK
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK.
| |
Collapse
|
43
|
Mir TA, Nakamura M. Three-Dimensional Bioprinting: Toward the Era of Manufacturing Human Organs as Spare Parts for Healthcare and Medicine. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:245-256. [DOI: 10.1089/ten.teb.2016.0398] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tanveer Ahmad Mir
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
- Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan
| | - Makoto Nakamura
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
- Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan
| |
Collapse
|
44
|
Keriquel V, Oliveira H, Rémy M, Ziane S, Delmond S, Rousseau B, Rey S, Catros S, Amédée J, Guillemot F, Fricain JC. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep 2017; 7:1778. [PMID: 28496103 PMCID: PMC5431768 DOI: 10.1038/s41598-017-01914-x] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Bioprinting has emerged as a novel technological approach with the potential to address unsolved questions in the field of tissue engineering. We have recently shown that Laser Assisted Bioprinting (LAB), due to its unprecedented cell printing resolution and precision, is an attractive tool for the in situ printing of a bone substitute. Here, we show that LAB can be used for the in situ printing of mesenchymal stromal cells, associated with collagen and nano-hydroxyapatite, in order to favor bone regeneration, in a calvaria defect model in mice. Also, by testing different cell printing geometries, we show that different cellular arrangements impact on bone tissue regeneration. This work opens new avenues on the development of novel strategies, using in situ bioprinting, for the building of tissues, from the ground up.
Collapse
Affiliation(s)
- Virginie Keriquel
- University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France.,Inserm, Tissue Bioengineering, U1026, F-33076, Bordeaux, France
| | - Hugo Oliveira
- University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France. .,Inserm, Tissue Bioengineering, U1026, F-33076, Bordeaux, France. .,ART BioPrint, Inserm, U1026, F-33076, Bordeaux, France.
| | - Murielle Rémy
- University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France.,Inserm, Tissue Bioengineering, U1026, F-33076, Bordeaux, France
| | - Sophia Ziane
- University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France.,Inserm, Tissue Bioengineering, U1026, F-33076, Bordeaux, France
| | - Samantha Delmond
- Clinical Research Center - Technological Innovation, Inserm, Bordeaux University Hospital, Pessac, 33600, France
| | - Benoit Rousseau
- Animalerie A2, Université Bordeaux Segalen, Bordeaux, France
| | - Sylvie Rey
- University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France.,Inserm, Tissue Bioengineering, U1026, F-33076, Bordeaux, France
| | - Sylvain Catros
- University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France.,Inserm, Tissue Bioengineering, U1026, F-33076, Bordeaux, France.,CHU Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076, Bordeaux, France
| | - Joelle Amédée
- University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France.,Inserm, Tissue Bioengineering, U1026, F-33076, Bordeaux, France
| | - Fabien Guillemot
- University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France.,Inserm, Tissue Bioengineering, U1026, F-33076, Bordeaux, France
| | - Jean-Christophe Fricain
- University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France.,Inserm, Tissue Bioengineering, U1026, F-33076, Bordeaux, France.,CHU Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076, Bordeaux, France
| |
Collapse
|
45
|
|
46
|
Brünler R, Aibibu D, Wöltje M, Anthofer AM, Cherif C. In silico modeling of structural and porosity properties of additive manufactured implants for regenerative medicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:810-817. [PMID: 28482595 DOI: 10.1016/j.msec.2017.03.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/12/2017] [Indexed: 12/25/2022]
Abstract
Additive manufacturing technologies are a promising technology towards patient-specific implants for applications in regenerative medicine. The Net-Shape-Nonwoven technology is used to manufacture structures from short fibers with interconnected pores and large functional surfaces that are predestined for cell adhesion and growth. The present study reports on a modeling approach with a particular focus on the specific structural properties. The overall porosities and mean pore-sizes of the digital models are simulated according to liquid-displacement porosity in a tool implemented in the modeling software. This allows adjusting the process parameters fiber length and fiber diameter to generate biomimetic structures with pore-sizes adapted to the requirements of the tissue that is to be replaced. Modeling the structural and porosity properties of scaffolds and implants leads to an efficient use of the processed biomaterials as the trial-and-error method is avoided.
Collapse
Affiliation(s)
- Ronny Brünler
- Institute of Textile Machinery and High Performance Material Technology (ITM), Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany.
| | - Dilbar Aibibu
- Institute of Textile Machinery and High Performance Material Technology (ITM), Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Michael Wöltje
- Institute of Textile Machinery and High Performance Material Technology (ITM), Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Anna-Maria Anthofer
- Institute of Textile Machinery and High Performance Material Technology (ITM), Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Chokri Cherif
- Institute of Textile Machinery and High Performance Material Technology (ITM), Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
47
|
Kashte S, Jaiswal AK, Kadam S. Artificial Bone via Bone Tissue Engineering: Current Scenario and Challenges. Tissue Eng Regen Med 2017; 14:1-14. [PMID: 30603457 PMCID: PMC6171575 DOI: 10.1007/s13770-016-0001-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 04/11/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022] Open
Abstract
Bone provides mechanical support, and flexibility to the body as a structural frame work along with mineral storage, homeostasis, and blood pH regulation. The repair and/or replacement of injured or defective bone with healthy bone or bone substitute is a critical problem in orthopedic treatment. Recent advances in tissue engineering have shown promising results in developing bone material capable of substituting the conventional autogenic or allogenic bone transplants. In the present review, we have discussed natural and synthetic scaffold materials such as metal and metal alloys, ceramics, polymers, etc. which are widely being used along with their cellular counterparts such as stem cells in bone tissue engineering with their pros and cons.
Collapse
Affiliation(s)
- Shivaji Kashte
- Department of Biosciences and Technology, Defence Institute of Advanced Technology, Girinagar, Pune, MS 411025 India
- Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur, 416006 India
| | - Amit Kumar Jaiswal
- Center for Biomaterials, Cellular and Molecular Theranostics, VIT University, Vellore, 632104 India
| | - Sachin Kadam
- Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur, 416006 India
| |
Collapse
|
48
|
Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 2017. [DOI: 10.1039/c7py00826k] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last decade, interest in the field of three-dimensional (3D) bioprinting has increased enormously. This review describes all the currently used bio-printing inks, including polymeric hydrogels, polymer bead microcarriers, cell aggregates and extracellular matrix proteins.
Collapse
Affiliation(s)
- Ilze Donderwinkel
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- Department of Bio-organic Chemistry
| | - Jan C. M. van Hest
- Department of Bio-organic Chemistry
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
- Department of Chemical Engineering and Chemistry
| | - Neil R. Cameron
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- School of Engineering
| |
Collapse
|
49
|
Zhang W, Gorantla VS, Campbell PG, Li Y, Yang Y, Komatsu C, Weiss LE, Zheng XX, Solari MG. Biopatterned CTLA4/Fc Matrices Facilitate Local Immunomodulation, Engraftment, and Glucose Homeostasis After Pancreatic Islet Transplantation. Diabetes 2016; 65:3660-3666. [PMID: 27650855 DOI: 10.2337/db16-0320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/07/2016] [Indexed: 11/13/2022]
Abstract
Pancreatic islet transplantation (PIT) represents a potential therapy to circumvent the need for exogenous insulin in type 1 diabetes. However, PIT remains limited by lack of donor islets and the need for long-term multidrug immunosuppression to prevent alloimmune islet rejection. Our goal was to evaluate a local immunoregulatory strategy that sustains islet allograft survival and restores glucose homeostasis in the absence of systemic immunosuppression. Nanogram quantities of murine CTLA4/Fc fusion protein were controllably delivered within human acellular dermal matrix scaffolds using an inkjet-based biopatterning technology and cotransplanted with allogeneic islets under the renal capsule to create an immunoregulatory microenvironment around the islet allograft. We achieved long-term engraftment of small loads of allogeneic islet cells with 40% of MHC-mismatched mouse recipients maintaining sustained normoglycemia following pancreatic β-cell ablation by streptozotocin. Biopatterned CTLA4/Fc local therapy was associated with expansion of Foxp3+ regulatory T cells and shifts in cytokine production and gene expression from proinflammatory to regulatory profiles, thus substantially benefiting islet allografts survival and function. This study is a new paradigm for targeted therapies in PIT that demonstrates the favorable effects of immune alterations in the transplant milieu and suggests a unique strategy for minimizing systemic immunosuppression and promoting islet allograft survival.
Collapse
Affiliation(s)
- Wensheng Zhang
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Vijay S Gorantla
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Phil G Campbell
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Yang Li
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yang Yang
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chiaki Komatsu
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Lee E Weiss
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
| | - Xin Xiao Zheng
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Transplantation Medical Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
50
|
Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E. A Review of Three-Dimensional Printing in Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:298-310. [DOI: 10.1089/ten.teb.2015.0464] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nick A. Sears
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Dhruv R. Seshadri
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Prachi S. Dhavalikar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | | |
Collapse
|