1
|
Nwokocha C, Palacios J, Ojukwu VE, Nna VU, Owu DU, Nwokocha M, McGrowder D, Orie NN. Oxidant-induced disruption of vascular K + channel function: implications for diabetic vasculopathy. Arch Physiol Biochem 2024; 130:361-372. [PMID: 35757993 DOI: 10.1080/13813455.2022.2090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Diabetes in humans a chronic metabolic disorder characterised by hyperglycaemia, it is associated with an increased risk of cardiovascular disease, disruptions to metabolism and vascular functions. It is also linked to oxidative stress and its complications. Its role in vascular dysfunctions is generally reported without detailed impact on the molecular mechanisms. Potassium ion channel (K+ channels) are key regulators of vascular tone, and as membrane proteins, are modifiable by oxidant stress associated with diabetes. This review manuscript examined the impact of oxidant stress on vascular K+ channel functions in diabetes, its implication in vascular complications and metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
| | - Javier Palacios
- Department of Pharmacy, Faculty of Health Sciences, Arturo Prat University, Iquique, Chile
| | - Victoria E Ojukwu
- Basic Medical Sciences, University of the West Indies, Mona, Kingston, Jamaica
| | - Victor Udo Nna
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Daniel Udofia Owu
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Magdalene Nwokocha
- Department of Pathology, Faculty of Medical Sciences, University of the West Indies, Mona, Kingston, Jamaica
| | - Donovan McGrowder
- Department of Pathology, Faculty of Medical Sciences, University of the West Indies, Mona, Kingston, Jamaica
| | - Nelson N Orie
- Centre of Metabolism and Inflammation, University College London, London, UK
| |
Collapse
|
2
|
Feng L, Gao L. The role of neurovascular coupling dysfunction in cognitive decline of diabetes patients. Front Neurosci 2024; 18:1375908. [PMID: 38576869 PMCID: PMC10991808 DOI: 10.3389/fnins.2024.1375908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Neurovascular coupling (NVC) is an important mechanism to ensure adequate blood supply to active neurons in the brain. NVC damage can lead to chronic impairment of neuronal function. Diabetes is characterized by high blood sugar and is considered an important risk factor for cognitive impairment. In this review, we provide fMRI evidence of NVC damage in diabetic patients with cognitive decline. Combined with the exploration of the major mechanisms and signaling pathways of NVC, we discuss the effects of chronic hyperglycemia on the cellular structure of NVC signaling, including key receptors, ion channels, and intercellular connections. Studying these diabetes-related changes in cell structure will help us understand the underlying causes behind diabetes-induced NVC damage and early cognitive decline, ultimately helping to identify the most effective drug targets for treatment.
Collapse
Affiliation(s)
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
González I, Lindner C, Schneider I, Diaz E, Morales MA, Rojas A. Emerging and multifaceted potential contributions of polyphenols in the management of type 2 diabetes mellitus. World J Diabetes 2024; 15:154-169. [PMID: 38464365 PMCID: PMC10921170 DOI: 10.4239/wjd.v15.i2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with a considerable impact on human life, long-term health expenditures, and substantial health losses. In this context, the use of dietary polyphenols to prevent and manage T2DM is widely documented. These dietary compounds exert their beneficial effects through several actions, including the protection of pancreatic islet β-cell, the antioxidant capacities of these molecules, their effects on insulin secretion and actions, the regulation of intestinal microbiota, and their contribution to ameliorate diabetic complications, particularly those of vascular origin. In the present review, we intend to highlight these multifaceted actions and the molecular mechanisms by which these plant-derived secondary metabolites exert their beneficial effects on type 2 diabetes patients.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile
| | - Erik Diaz
- Faculty of Medicine, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| |
Collapse
|
4
|
Luo Y, Li C. Advances in Research Related to MicroRNA for Diabetic Retinopathy. J Diabetes Res 2024; 2024:8520489. [PMID: 38375094 PMCID: PMC10876316 DOI: 10.1155/2024/8520489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and is one of the primary causes of blindness in the working-age population in Europe and the United States. At present, no cure is available for DR, but early detection and timely intervention can prevent the rapid progression of the disease. Several treatments for DR are known, primarily ophthalmic treatment based on glycemia, blood pressure, and lipid control, which includes laser photocoagulation, glucocorticoids, vitrectomy, and antivascular endothelial growth factor (anti-VEGF) medications. Despite the clinical efficacy of the aforementioned therapies, none of them can entirely shorten the clinical course of DR or reverse retinopathy. MicroRNAs (miRNAs) are vital regulators of gene expression and participate in cell growth, differentiation, development, and apoptosis. MicroRNAs have been shown to play a significant role in DR, particularly in the molecular mechanisms of inflammation, oxidative stress, and neurodegeneration. The aim of this review is to systematically summarize the signaling pathways and molecular mechanisms of miRNAs involved in the occurrence and development of DR, mainly from the pathogenesis of oxidative stress, inflammation, and neovascularization. Meanwhile, this article also discusses the research progress and application of miRNA-specific therapies for DR.
Collapse
Affiliation(s)
- Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
5
|
González-Domínguez Á, Belmonte T, González-Domínguez R. Childhood obesity, metabolic syndrome, and oxidative stress: microRNAs go on stage. Rev Endocr Metab Disord 2023; 24:1147-1164. [PMID: 37672200 PMCID: PMC10698091 DOI: 10.1007/s11154-023-09834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
The incidence of childhood obesity and metabolic syndrome has grown notably in the last years, becoming major public health burdens in developed countries. Nowadays, oxidative stress is well-recognized to be closely associated with the onset and progression of several obesity-related complications within the framework of a complex crosstalk involving other intertwined pathogenic events, such as inflammation, insulin disturbances, and dyslipidemia. Thus, understanding the molecular basis behind these oxidative dysregulations could provide new approaches for the diagnosis, prevention, and treatment of childhood obesity and associated disorders. In this respect, the transcriptomic characterization of miRNAs bares great potential because of their involvement in post-transcriptional modulation of genetic expression. Herein, we provide a comprehensive literature revision gathering state-of-the-art research into the association between childhood obesity, metabolic syndrome, and miRNAs. We put special emphasis on the potential role of miRNAs in modulating obesity-related pathogenic events, with particular focus on oxidative stress.
Collapse
Affiliation(s)
- Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain.
| | - Thalía Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain
| |
Collapse
|
6
|
Kleibert M, Zygmunciak P, Łakomska K, Mila K, Zgliczyński W, Mrozikiewicz-Rakowska B. Insight into the Molecular Mechanism of Diabetic Kidney Disease and the Role of Metformin in Its Pathogenesis. Int J Mol Sci 2023; 24:13038. [PMID: 37685845 PMCID: PMC10487922 DOI: 10.3390/ijms241713038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of death among patients diagnosed with diabetes mellitus. Despite the growing knowledge about the pathogenesis of DKD, we still do not have effective direct pharmacotherapy. Accurate blood sugar control is essential in slowing down DKD. It seems that metformin has a positive impact on kidneys and this effect is not only mediated by its hypoglycemic action, but also by direct molecular regulation of pathways involved in DKD. The molecular mechanism of DKD is complex and we can distinguish polyol, hexosamine, PKC, and AGE pathways which play key roles in the development and progression of this disease. Each of these pathways is overactivated in a hyperglycemic environment and it seems that most of them may be regulated by metformin. In this article, we summarize the knowledge about DKD pathogenesis and the potential mechanism of the nephroprotective effect of metformin. Additionally, we describe the impact of metformin on glomerular endothelial cells and podocytes, which are harmed in DKD.
Collapse
Affiliation(s)
- Marcin Kleibert
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Przemysław Zygmunciak
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.); (K.M.)
| | - Klaudia Łakomska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Klaudia Mila
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.); (K.M.)
| | - Wojciech Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland;
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland;
| |
Collapse
|
7
|
He W, Chang L, Li X, Mei Y. Research progress on the mechanism of ferroptosis and its role in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1155296. [PMID: 37334304 PMCID: PMC10268817 DOI: 10.3389/fendo.2023.1155296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Ferroptosis is iron-dependent regulatory cell death (RCD). Morphologically, ferroptosis is manifested as mitochondrial atrophy and increased mitochondrial membrane density. Biochemically, ferroptosis is characterized by the depletion of glutathione (GSH), the inactivation of glutathione peroxidase 4 (GPX4), and an increase in lipid peroxides (LPO)and divalent iron ions. Ferroptosis is associated with various diseases, but the relationship with diabetic retinopathy(DR) is less studied. DR is one of the complications of diabetes mellitus and has a severe impact on visual function. The pathology of DR is complex, and the current treatment is unsatisfactory. Therefore, exploring pathogenesis is helpful for the clinical treatment of DR. This paper reviews the pathological mechanism of ferroptosis and DR in recent years and the involvement of ferroptosis in the pathology of DR. In addition, we propose problems that need to be addressed in this research field. It is expected to provide new ideas for treating DR by analyzing the role of ferroptosis in DR.
Collapse
Affiliation(s)
- Wei He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Lu Chang
- Department of Ophthalmology, Kunming Aier Eye Hospital, Kunming, China
| | - Xinlu Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yan Mei
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
8
|
Utsunomiya HSM, Ferraz JVC, Fujiwara GH, Gutierres DM, Fernandes IF, de Lacerda Valverde BS, de Oliveira C, Franco-Belussi L, Fernandes MN, Dos Santos Carvalho C. Changes in blood parameters and metabolism in bullfrog tadpoles, Lithobates catesbeianus, (Shaw, 1802) after exposure to the Sorocaba River (São Paulo, Brazil) water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33419-33431. [PMID: 36480144 DOI: 10.1007/s11356-022-24590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
This study evaluated the genetic damage, oxidative stress, neurotoxicity, and energy metabolism in bullfrog tadpoles (Lithobates catesbeianus) exposed to water from two sites of the Sorocaba River, Ibiúna (PI), and Itupararanga reservoir (PIR), in summer and winter. After 96-h exposure, the erythrocyte number decreased in PI and increase in PIR in summer. Bullfrogs show oxidative unbalance (liver, kidney, and muscle), with alterations in the nitric oxide synthase and glucose 6-phosphate dehydrogenase. Cholinesterase increased in the brain in PI and PIR in the summer and decreased in PI in the winter. It also increased in the muscle in both PI and PIR in the winter. Tadpoles show alterations in the activity of the metabolic enzymes (liver, kidney, and muscle), such as phosphofructokinase, pyruvatokinase, malate dehydrogenase, and lactate dehydrogenase; and in the amount of glucose and triglycerides metabolites. Exposure to the Sorocaba River reflected a stressful situation for L. catesbeianus as the changes caused to their metabolism associated with oxidative stress and neurotoxicity may have effects on the development of tadpoles.
Collapse
Affiliation(s)
- Heidi Samantha Moraes Utsunomiya
- Laboratório de Bioquímica E Microbiologia (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil
| | - João Victor Cassiel Ferraz
- Laboratório de Bioquímica E Microbiologia (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil
| | - Gabriel Hiroshi Fujiwara
- Laboratório de Bioquímica E Microbiologia (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil
| | - Davi Marques Gutierres
- Laboratório de Bioquímica E Microbiologia (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil
| | - Isabela Ferreira Fernandes
- Laboratório de Bioquímica E Microbiologia (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil
- Programa de Pós-Graduação Em Biotecnologia E Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil
| | - Bruno Serra de Lacerda Valverde
- Programa de Pós-Graduação Em Biodiversidade, Universidade Estadual Paulista (UNESP), Campus de São José Do Rio Preto, São José Do Rio Preto, SP, Brazil
| | - Classius de Oliveira
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Campus de São José Do Rio Preto, São José Do Rio Preto, SP, Brazil
| | - Lilian Franco-Belussi
- Laboratório de Patologia Experimental (LAPex), Instituto de Biociências, Universidade Federal de Mato Grosso Do Sul, Campus Campo Grande, Campo Grande, MS, Brazil
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Caixa Postal 676, Rodovia Washington Luís Km 235, São Carlos, SP, CEP 13565-905, Brazil
| | - Cleoni Dos Santos Carvalho
- Laboratório de Bioquímica E Microbiologia (LaBioM), Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil.
- Programa de Pós-Graduação Em Biotecnologia E Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme Dos Santos, Km 110, SP-264, Sorocaba, SP, CEP 18052-780, Brazil.
| |
Collapse
|
9
|
Xia CY, Guo YX, Lian WW, Yan Y, Ma BZ, Cheng YC, Xu JK, He J, Zhang WK. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacol Res 2023; 187:106625. [PMID: 36563870 DOI: 10.1016/j.phrs.2022.106625] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests that the failure of clinical antidepressants may be related with neuroinflammation. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular multiprotein complex, and has been considered as a key contributor to the development of neuroinflammation. Inhibition of NLRP3 inflammasome is an effective method for depression treatment. In this review, we summarized current researches highlighting the role of NLRP3 inflammasome in the pathology of depression. Firstly, we discussed NLRP3 inflammasome activation in patients with depression and animal models. Secondly, we outlined the possible mechanisms driving the activation of NLRP3 inflammasome. Thirdly, we discussed the pathogenetic role of NLRP3 inflammasome in depression. Finally, we overviewed the current and potential antidepressants targeting the NLRP3 inflammasome. Overall, the inhibition of NLRP3 inflammasome activation may be a potential therapeutic strategy for inflammation-related depression.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu-Xuan Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Bing-Zhi Ma
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yung-Chi Cheng
- School of Medicine, Yale University, New Haven, CT, United States
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| |
Collapse
|
10
|
Yin YL, Wang HH, Gui ZC, Mi S, Guo S, Wang Y, Wang QQ, Yue RZ, Lin LB, Fan JX, Zhang X, Mao BY, Liu TH, Wan GR, Zhan HQ, Zhu ML, Jiang LH, Li P. Citronellal Attenuates Oxidative Stress-Induced Mitochondrial Damage through TRPM2/NHE1 Pathway and Effectively Inhibits Endothelial Dysfunction in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:2241. [PMID: 36421426 PMCID: PMC9686689 DOI: 10.3390/antiox11112241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
In type 2 diabetes mellitus (T2DM), oxidative stress induces endothelial dysfunction (ED), which is closely related to the formation of atherosclerosis. However, there are few effective drugs to prevent and cure it. Citronellal (CT) is an aromatic active substance extracted from citronella plants. Recently, CT has been shown to prevent ED, but the underlying mechanism remains unclear. The purpose of this study was to investigate whether CT ameliorated T2DM-induced ED by inhibiting the TRPM2/NHE1 signal pathway. Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable cation channel activated by oxidative stress, which damages endothelial cell barrier function and further leads to ED or atherosclerosis in T2DM. The Na+/H+ exchanger 1 (NHE1), a transmembrane protein, also plays an important role in ED. Whether TRPM2 and NHE1 are involved in the mechanism of CT improving ED in T2DM still needs further study. Through the evaluations of ophthalmoscope, HE and Oil red staining, vascular function, oxidative stress level, and mitochondrial membrane potential evaluation, we observed that CT not only reduced the formation of lipid deposition but also inhibited ED and suppressed oxidative stress-induced mitochondrial damage in vasculature of T2DM rats. The expressions of NHE1 and TRPM2 was up-regulated in the carotid vessels of T2DM rats; NHE1 expression was also upregulated in endothelial cells with overexpression of TRPM2, but CT reversed the up-regulation of NHE1 in vivo and in vitro. In contrast, CT had no inhibitory effect on the expression of NHE1 in TRPM2 knockout mice. Our study show that CT suppressed the expression of NHE1 and TPRM2, alleviated oxidative stress-induced mitochondrial damage, and imposed a protective effect on ED in T2DM rats.
Collapse
Affiliation(s)
- Ya-Ling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Huan-Huan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zi-Chen Gui
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan Mi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Yue Wang
- Sanquan College, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian-Qian Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui-Zhu Yue
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Lai-Biao Lin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Jia-Xin Fan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Bing-Yan Mao
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Tian-Heng Liu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Guang-Rui Wan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - He-Qin Zhan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Mo-Li Zhu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peng Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
11
|
Williamson G. Effects of Polyphenols on Glucose-Induced Metabolic Changes in Healthy Human Subjects and on Glucose Transporters. Mol Nutr Food Res 2022; 66:e2101113. [PMID: 35315210 PMCID: PMC9788283 DOI: 10.1002/mnfr.202101113] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Indexed: 12/30/2022]
Abstract
Dietary polyphenols interact with glucose transporters in the small intestine and modulate glucose uptake after food or beverage consumption. This review assesses the transporter interaction in vitro and how this translates to an effect in healthy volunteers consuming glucose. As examples, the apple polyphenol phlorizin inhibits sodium-glucose linked transporter-1; in the intestinal lumen, it is converted to phloretin, a strong inhibitor of glucose transporter-2 (GLUT2), by the brush border digestive enzyme lactase. Consequently, an apple extract rich in phlorizin attenuates blood glucose and insulin in healthy volunteers after a glucose challenge. On the other hand, the olive phenolic, oleuropein, inhibits GLUT2, but the strength of the inhibition is not enough to modulate blood glucose after a glucose challenge in healthy volunteers. Multiple metabolic effects and oxidative stresses after glucose consumption include insulin, incretin hormones, fatty acids, amino acids, and protein markers. However, apart from acute postprandial effects on glucose, insulin, and some incretin hormones, very little is known about the acute effects of polyphenols on these glucose-induced secondary effects. In summary, attenuation of the effect of a glucose challenge in vivo is only observed when polyphenols are strong inhibitors of glucose transporters.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health SciencesMonash UniversityBASE Facility, 264 Ferntree Gully RoadNotting HillVIC 3168Australia
| |
Collapse
|
12
|
Black HS. A Synopsis of the Associations of Oxidative Stress, ROS, and Antioxidants with Diabetes Mellitus. Antioxidants (Basel) 2022; 11:2003. [PMID: 36290725 PMCID: PMC9598123 DOI: 10.3390/antiox11102003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 07/30/2023] Open
Abstract
The Greek physician, Aretaios, coined the term "diabetes" in the 1st Century A.D. "Mellitus" arose from the observation that the urine exhibits a sweetness due to its elevated glucose levels. Diabetes mellitus (DM) accounted for 6.7 million deaths globally in 2021 with expenditures of USD 966 billion. Mortality is predicted to rise nearly 10-fold by 2030. Oxidative stress, an imbalance between the generation and removal of reactive oxygen species (ROS), is implicated in the pathophysiology of diabetes. Whereas ROS are generated in euglycemic, natural insulin-regulated glucose metabolism, levels are regulated by factors that regulate cellular respiration, e.g., the availability of NAD-linked substrates, succinate, and oxygen; and antioxidant enzymes that maintain the cellular redox balance. Only about 1-2% of total oxygen consumption results in the formation of superoxide anion and hydrogen peroxide under normal reduced conditions. However, under hyperglycemic conditions, about 10% of the respiratory oxygen consumed may be lost as free radicals. Under hyperglycemic conditions, the two-reaction polyol pathway is activated. Nearly 30% of blood glucose can flux through this pathway-a major path contributing to NADH/NAD+ redox imbalance. Under these conditions, protein glycation and lipid peroxidation increase, and inflammatory cytokines are formed, leading to the further formation of ROS. As mitochondria are the major site of intracellular ROS, these organelles are subject to the deleterious effects of ROS themselves and eventually become dysfunctional-a milestone in Metabolic Syndrome (MetS) of which insulin resistance and diabetes predispose to cardiovascular disease.
Collapse
Affiliation(s)
- Homer S Black
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int J Mol Sci 2022; 23:ijms23137273. [PMID: 35806275 PMCID: PMC9266760 DOI: 10.3390/ijms23137273] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Ageing and chronic degenerative pathologies demonstrate the shared characteristics of high bioavailability of reactive oxygen species (ROS) and oxidative stress, chronic/persistent inflammation, glycation, and mitochondrial abnormalities. Excessive ROS production results in nucleic acid and protein destruction, thereby altering the cellular structure and functional outcome. To stabilise increased ROS production and modulate oxidative stress, the human body produces antioxidants, “free radical scavengers”, that inhibit or delay cell damage. Reinforcing the antioxidant defence system and/or counteracting the deleterious repercussions of immoderate reactive oxygen and nitrogen species (RONS) is critical and may curb the progression of ageing and chronic degenerative syndromes. Various therapeutic methods for ROS and oxidative stress reduction have been developed. However, scientific investigations are required to assess their efficacy. In this review, we summarise the interconnected mechanism of oxidative stress and chronic inflammation that contributes to ageing and chronic degenerative pathologies, including neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), cardiovascular diseases CVD, diabetes mellitus (DM), and chronic kidney disease (CKD). We also highlight potential counteractive measures to combat ageing and chronic degenerative diseases.
Collapse
|
14
|
Impellizzeri P, Nascimben F, Di Fabrizio D, Antonuccio P, Antonelli E, Peri FM, Calabrese U, Arena S, Romeo C. Pathogenesis of Congenital Malformations: Possible Role of Oxidative Stress. Am J Perinatol 2022; 39:816-823. [PMID: 33167041 DOI: 10.1055/s-0040-1721081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Congenital anomalies are important causes of morbidity and mortality in children. Oxidative stress (OS) is involved in the physiopathology of pregnancy-related congenital malformations. This review summarizes the role of OS in the pathogenesis of congenital malformations; in particular, its purpose is to describe how OS influences the development of heart congenital malformations, oesophageal atresia, biliary atresia, diaphragmatic hernia, and autosomal dominant polycystic kidney disease. STUDY DESIGN Systematic review of previous studies about the role of OS in pregnancy and its possible effects in developing of congenital malformations. One electronic database (PubMed) was searched and reference lists were checked. RESULTS An imbalance between the production of reactive oxygen species (ROS) and antioxidant defense can occur early in pregnancy and continue in the postnatal life, producing OS. It may destroy the signaling pathways needed for a correct embryogenesis leading to birth defects. In fact, cell functions, especially during embryogenesis, needs specific signaling pathways to regulate the development. These pathways are sensitive to both endogenous and exogenous factors; therefore, they can produce structural alterations of the developing fetus. CONCLUSION Because OS plays a significant role in pathogenesis of congenital malformations, studies should be developed in order to better define their OS mechanisms and the beneficial effects of supplemental therapeutic strategies. KEY POINTS · Oxidative stress is involved in the pathogenesis of congenital malformations.. · Heart malformations, oesophageal atresia, biliary atresia, diaphragmatic hernia, and autosomal dominant polycystic kidney are analyzed.. · A knowledge of pathomechanism of OS-related congenital malformations could be useful to prevent them..
Collapse
Affiliation(s)
- Pietro Impellizzeri
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Francesca Nascimben
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Donatella Di Fabrizio
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Pietro Antonuccio
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Enrica Antonelli
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Flora Maria Peri
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Ugo Calabrese
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Salvatore Arena
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Carmelo Romeo
- Unit of Pediatric Surgery, Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
15
|
Qiu Y, Chao CY, Jiang L, Zhang J, Niu QQ, Guo YQ, Song YT, Li P, Zhu ML, Yin YL. Citronellal alleviate macro- and micro-vascular damage in high fat diet / streptozotocin - Induced diabetic rats via a S1P/S1P1 dependent signaling pathway. Eur J Pharmacol 2022; 920:174796. [DOI: 10.1016/j.ejphar.2022.174796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
|
16
|
Lu T, Lee HC. Coronary Large Conductance Ca 2+-Activated K + Channel Dysfunction in Diabetes Mellitus. Front Physiol 2021; 12:750618. [PMID: 34744789 PMCID: PMC8567020 DOI: 10.3389/fphys.2021.750618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus (DM) is an independent risk of macrovascular and microvascular complications, while cardiovascular diseases remain a leading cause of death in both men and women with diabetes. Large conductance Ca2+-activated K+ (BK) channels are abundantly expressed in arteries and are the key ionic determinant of vascular tone and organ perfusion. It is well established that the downregulation of vascular BK channel function with reduced BK channel protein expression and altered intrinsic BK channel biophysical properties is associated with diabetic vasculopathy. Recent efforts also showed that diabetes-associated changes in signaling pathways and transcriptional factors contribute to the downregulation of BK channel expression. This manuscript will review our current understandings on the molecular, physiological, and biophysical mechanisms that underlie coronary BK channelopathy in diabetes mellitus.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
17
|
Larkin BP, Nguyen LT, Hou M, Glastras SJ, Chen H, Wang R, Pollock CA, Saad S. Novel Role of Gestational Hydralazine in Limiting Maternal and Dietary Obesity-Related Chronic Kidney Disease. Front Cell Dev Biol 2021; 9:705263. [PMID: 34485290 PMCID: PMC8416283 DOI: 10.3389/fcell.2021.705263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/30/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Maternal obesity is a risk factor for chronic kidney disease (CKD) in offspring, underpinning the theory of the developmental origins of health and disease. DNA methylation has been implicated in the programming of adult chronic disease by maternal obesity, therefore, DNA demethylating agents may mitigate offspring risk of disease. In rodent models, low-dose hydralazine has previously been shown to reduce renal fibrosis via DNA demethylation. We used mouse models of maternal obesity and offspring obesity to determine whether administration of low-dose hydralazine during gestation can prevent fetal programming of CKD in offspring. METHODS Female C57BL/6 mice received high fat diet (HFD) or chow prior to mating, during gestation and lactation. During gestation, dams received subcutaneous hydralazine (5 mg/kg) or saline thrice-weekly. Male offspring weaned to HFD or chow, which continued until endpoint at 32 weeks. Biometric and metabolic parameters, renal global DNA methylation, renal functional and structural changes, and renal markers of fibrosis, inflammation and oxidative stress were assessed at endpoint. RESULTS Offspring exposed to maternal obesity or diet-induced obesity had significantly increased renal global DNA methylation, together with other adverse renal effects including albuminuria, glomerulosclerosis, renal fibrosis, and oxidative stress. Offspring exposed to gestational hydralazine had significantly reduced renal global DNA methylation. In obese offspring of obese mothers, gestational hydralazine significantly decreased albuminuria, glomerulosclerosis, and serum creatinine. Obese offspring of hydralazine-treated lean mothers displayed reduced markers of renal fibrosis and oxidative stress. CONCLUSION Gestational hydralazine decreased renal global DNA methylation and exerted renoprotective effects in offspring. This supports a potential therapeutic effect of hydralazine in preventing maternal obesity or dietary obesity-related CKD, through an epigenetic mechanism.
Collapse
Affiliation(s)
- Benjamin P. Larkin
- Renal Research Laboratory, Royal North Shore Hospital, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Long T. Nguyen
- Renal Research Laboratory, Royal North Shore Hospital, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Miao Hou
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Sarah J. Glastras
- Renal Research Laboratory, Royal North Shore Hospital, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Hui Chen
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Rosy Wang
- Renal Research Laboratory, Royal North Shore Hospital, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Carol A. Pollock
- Renal Research Laboratory, Royal North Shore Hospital, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Renal Research Laboratory, Royal North Shore Hospital, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Singh E, Matada GSP, Abbas N, Dhiwar PS, Ghara A, Das A. Management of COVID-19-induced cytokine storm by Keap1-Nrf2 system: a review. Inflammopharmacology 2021; 29:1347-1355. [PMID: 34373972 PMCID: PMC8352144 DOI: 10.1007/s10787-021-00860-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
The natural pathway of antioxidant production is mediated through Kelch-like erythroid cell-derived protein with Cap and collar homology [ECH]-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2) system. Keap1 maintains a low level of Nrf2 by holding it in its protein complex. Also, Keap1 facilitates the degradation of Nrf2 by ubiquitination. In other words, Keap1 is a down-regulator of Nrf2. To boost the production of biological antioxidants, Keap1 has to be inhibited and Nrf2 has to be released. Liberated Nrf2 is in an unbound state, so it travels to the nucleus to stimulate the antioxidant response element (ARE) present on the antioxidant genes. AREs activate biosynthesis of biological antioxidants through genes responsible for the production of antioxidants. In some cases of coronavirus disease 2019 (COVID-19), there is an enormous release of cytokines. The antioxidant defense mechanism in the body helps in counteracting symptoms induced by the cytokine storm in COVID-19. So, boosting the production of antioxidants is highly desirable in such a condition. In this review article, we have compiled the role of Keap1-Nrf2 system in antioxidant production. We further propose its potential therapeutic use in managing cytokine storm in COVID-19.
Collapse
Affiliation(s)
- Ekta Singh
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| | | | - Nahid Abbas
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| | - Prasad Sanjay Dhiwar
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| | - Abhishek Ghara
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| | - Arka Das
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| |
Collapse
|
19
|
Nichols BE, Hook JS, Weng K, Ahn C, Moreland JG. Novel neutrophil phenotypic signature in pediatric patients with type 1 diabetes and diabetic ketoacidosis. J Leukoc Biol 2021; 111:849-856. [PMID: 34342036 DOI: 10.1002/jlb.3a1220-826r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic inflammatory condition sometimes complicated by acute diabetic ketoacidosis (DKA). A subset of patients with T1D develop DKA independent of known risk factors. This study tested the hypothesis that circulating polymorphonuclear leukocytes (PMN) from children with T1D and DKA would exhibit a primed phenotype and that the signature would be unique in patients predisposed to have DKA. Using a prospective cohort study design, neutrophil phenotype was assessed in 30 patients with T1D seen in endocrinology clinic for routine care, 30 patients with acute DKA, and 36 healthy donors. Circulating PMN from patients with DKA display a primed phenotype with increased basal cell-surface CD11b, L-selectin shedding, and enhanced fMLF-elicited reactive oxygen species (ROS) production. Moreover, PMN from T1D patients both with and without DKA lack the capacity to be further primed by incubation with TNF-α, a classic priming stimulus. Primed PMN phenotypic signatures demonstrated are independent of hemoglobin A1c, the premier biological marker for DKA risk, and are consistent with a hyperinflammatory state. A single nucleotide polymorphism in TLR-1 (1805G>T), known to be associated with a hyperinflammatory PMN phenotype, correlated with DKA. This study elucidated a novel phenotypic signature in circulating PMN from children with T1D with and without DKA, and suggests the possibility of a previously unrecognized PMN phenotype with potential clinical implications. Immunophenotype and genotype may be applicable as biomarkers for DKA risk stratification in patients with T1D.
Collapse
Affiliation(s)
- Blake E Nichols
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kayson Weng
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chul Ahn
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Ouerd S, Idris-Khodja N, Trindade M, Ferreira NS, Berillo O, Coelho SC, Neves MF, Jandeleit-Dahm KA, Paradis P, Schiffrin EL. Endothelium-restricted endothelin-1 overexpression in type 1 diabetes worsens atherosclerosis and immune cell infiltration via NOX1. Cardiovasc Res 2021; 117:1144-1153. [PMID: 32533834 PMCID: PMC7983005 DOI: 10.1093/cvr/cvaa168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/15/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS NADPH oxidase (NOX) 1 but not NOX4-dependent oxidative stress plays a role in diabetic vascular disease, including atherosclerosis. Endothelin (ET)-1 has been implicated in diabetes-induced vascular complications. We showed that crossing mice overexpressing human ET-1 selectively in endothelium (eET-1) with apolipoprotein E knockout (Apoe-/-) mice enhanced high-fat diet-induced atherosclerosis in part by increasing oxidative stress. We tested the hypothesis that ET-1 overexpression in the endothelium would worsen atherosclerosis in type 1 diabetes through a mechanism involving NOX1 but not NOX4. METHODS AND RESULTS Six-week-old male Apoe-/- and eET-1/Apoe-/- mice with or without Nox1 (Nox1-/y) or Nox4 knockout (Nox4-/-) were injected intraperitoneally with either vehicle or streptozotocin (55 mg/kg/day) for 5 days to induce type 1 diabetes and were studied 14 weeks later. ET-1 overexpression increased 2.5-fold and five-fold the atherosclerotic lesion area in the aortic sinus and arch of diabetic Apoe-/- mice, respectively. Deletion of Nox1 reduced aortic arch plaque size by 60%; in contrast, Nox4 knockout increased lesion size by 1.5-fold. ET-1 overexpression decreased aortic sinus and arch plaque alpha smooth muscle cell content by ∼35% and ∼50%, respectively, which was blunted by Nox1 but not Nox4 knockout. Reactive oxygen species production was increased two-fold in aortic arch perivascular fat of diabetic eET-1/Apoe-/- and eET-1/Apoe-/-/Nox4-/- mice but not eET-1/Apoe-/-/Nox1y/- mice. ET-1 overexpression enhanced monocyte/macrophage and CD3+ T-cell infiltration ∼2.7-fold in the aortic arch perivascular fat of diabetic Apoe-/- mice. Both Nox1 and Nox4 knockout blunted CD3+ T-cell infiltration whereas only Nox1 knockout prevented the monocyte/macrophage infiltration in diabetic eET-1/Apoe-/- mice. CONCLUSION Endothelium ET-1 overexpression enhances the progression of atherosclerosis in type 1 diabetes, perivascular oxidative stress, and inflammation through NOX1.
Collapse
MESH Headings
- Animals
- Aorta/enzymology
- Aorta/pathology
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Fibrosis
- Humans
- Macrophages/enzymology
- Macrophages/immunology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Monocytes/enzymology
- Monocytes/immunology
- NADPH Oxidase 1/genetics
- NADPH Oxidase 1/metabolism
- Oxidative Stress
- Plaque, Atherosclerotic
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- Up-Regulation
- Mice
Collapse
Affiliation(s)
- Sofiane Ouerd
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Noureddine Idris-Khodja
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Michelle Trindade
- Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathanne S Ferreira
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Suellen C Coelho
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Mario F Neves
- Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, #B-127 3755 Cote Ste-Catherine Road, Montréal, QC H3T 1E2, Canada
| |
Collapse
|
21
|
Huang S, Chen G, Sun J, Chen Y, Wang N, Dong Y, Shen E, Hu Z, Gong W, Jin L, Cong W. Histone deacetylase 3 inhibition alleviates type 2 diabetes mellitus-induced endothelial dysfunction via Nrf2. Cell Commun Signal 2021; 19:35. [PMID: 33736642 PMCID: PMC7977318 DOI: 10.1186/s12964-020-00681-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The mechanism underlying endothelial dysfunction leading to cardiovascular disease in type 2 diabetes mellitus (T2DM) remains unclear. Here, we show that inhibition of histone deacetylase 3 (HDAC3) reduced inflammation and oxidative stress by regulating nuclear factor-E2-related factor 2 (Nrf2), which mediates the expression of anti-inflammatory- and pro-survival-related genes in the vascular endothelium, thereby improving endothelial function. METHODS Nrf2 knockout (Nrf2 KO) C57BL/6 background mice, diabetic db/db mice, and control db/m mice were used to investigate the relationship between HDAC3 and Nrf2 in the endothelium in vivo. Human umbilical vein endothelial cells (HUVECs) cultured under high glucose-palmitic acid (HG-PA) conditions were used to explore the role of Kelch-like ECH-associated protein 1 (Keap1) -Nrf2-NAPDH oxidase 4 (Nox4) redox signaling in the vascular endothelium in vitro. Activity assays, immunofluorescence, western blotting, qRT-PCR, and immunoprecipitation assays were used to examine the effect of HDAC3 inhibition on inflammation, reactive oxygen species (ROS) production, and endothelial impairment, as well as the activity of Nrf2-related molecules. RESULTS HDAC3 activity, but not its expression, was increased in db/db mice. This resulted in de-endothelialization and increased oxidative stress and pro-inflammatory marker expression in cells treated with the HDAC3 inhibitor RGFP966, which activated Nrf2 signaling. HDAC3 silencing decreased ROS production, inflammation, and damage-associated tube formation in HG-PA-treated HUVECs. The underlying mechanism involved the Keap1-Nrf2-Nox4 signaling pathway. CONCLUSION The results of this study suggest the potential of HDAC3 as a therapeutic target for the treatment of endothelial dysfunction in T2DM. Video Abstract.
Collapse
Affiliation(s)
- Shuai Huang
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Yunjie Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Nan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Yetong Dong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Enzhao Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000 People’s Republic of China
| |
Collapse
|
22
|
Krinock MJ, Singhal NS. Diabetes, stroke, and neuroresilience: looking beyond hyperglycemia. Ann N Y Acad Sci 2021; 1495:78-98. [PMID: 33638222 DOI: 10.1111/nyas.14583] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and mortality among type 2 diabetic patients. Preclinical and translational studies have identified critical pathophysiological mediators of stroke risk, recurrence, and poor outcome in diabetic patients, including endothelial dysfunction and inflammation. Most clinical trials of diabetes and stroke have focused on treating hyperglycemia alone. Pioglitazone has shown promise in secondary stroke prevention for insulin-resistant patients; however, its use is not yet widespread. Additional research into clinical therapies directed at diabetic pathophysiological processes to prevent stroke and improve outcome for diabetic stroke survivors is necessary. Resilience is the process of active adaptation to a stressor. In patients with diabetes, stroke recovery is impaired by insulin resistance, endothelial dysfunction, and inflammation, which impair key neuroresilience pathways maintaining cerebrovascular integrity, resolving poststroke inflammation, stimulating neural plasticity, and preventing neurodegeneration. Our review summarizes the underpinnings of stroke risk in diabetes, the clinical consequences of stroke in diabetic patients, and proposes hypotheses and new avenues of research for therapeutics to stimulate neuroresilience pathways and improve stroke outcome in diabetic patients.
Collapse
Affiliation(s)
- Matthew J Krinock
- Department of Neurology, University of California - San Francisco, San Francisco, California
| | - Neel S Singhal
- Department of Neurology, University of California - San Francisco, San Francisco, California
| |
Collapse
|
23
|
Nensat C, Songjang W, Tohtong R, Suthiphongchai T, Phimsen S, Rattanasinganchan P, Metheenukul P, Kumphune S, Jiraviriyakul A. Porcine placenta extract improves high-glucose-induced angiogenesis impairment. BMC Complement Med Ther 2021; 21:66. [PMID: 33602182 PMCID: PMC7893890 DOI: 10.1186/s12906-021-03243-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
Background High glucose (HG)-induced reactive oxygen species (ROS) overproduction impairs angiogenesis that is one pivotal factor of wound healing process. Angiogenesis impairment induces delayed wound healing, whereby it eventually leads to amputation in cases of poorly controlled diabetes with diabetic ulceration. Porcine placenta extract (PPE) is a natural waste product that comprises plenty of bioactive agents including growth factors and antioxidants. It was reported as an effective compound that prevents ROS generation. The goal of this study was to investigate the in vitro effect of PPE on HG-induced ROS-mediated angiogenesis impairment. Methods Primary endothelial cells (HUVECs) and endothelial cell line (EA.hy926) were treated with HG in the presence of PPE. The endothelial cells (ECs) viability, intracellular ROS generation, migration, and angiogenesis were determined by MTT assay, DCFDA reagent, wound healing assay, and tube formation assay, respectively. Additionally, the molecular mechanism of PPE on HG-induced angiogenesis impairment was investigated by Western blot. The angiogenic growth factor secretion was also investigated by the sandwich ELISA technique. Results HG in the presence of PPE significantly decreased intracellular ROS overproduction compared to HG alone. HG in the presence of PPE significantly increased ECs viability, migration, and angiogenesis compared to HG alone by showing recovery of PI3K/Akt/ERK1/2 activation. HG in the presence of PPE also decreased ECs apoptosis compared to HG alone by decreasing p53/Bax/cleaved caspase 9/cleaved caspase 3 levels and increasing Bcl 2 level. Conclusion PPE attenuated HG-induced intracellular ROS overproduction that improved ECs viability, proliferation, migration, and angiogenesis by showing recovery of PI3K/Akt/ERK1/2 activation and inhibition of ECs apoptosis. This study suggests PPE ameliorated HG-induced ROS-mediated angiogenesis impairment, whereby it potentially provides an alternative treatment for diabetic wounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03243-z.
Collapse
Affiliation(s)
- Chatchai Nensat
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worawat Songjang
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Suchada Phimsen
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Pornphimon Metheenukul
- Department of Veterinary Technology, Faculty of Veterinery Technology, Kasetsart University, Bangkok, 10900, Thailand
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Arunya Jiraviriyakul
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand. .,Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
24
|
Williamson G, Sheedy K. Effects of Polyphenols on Insulin Resistance. Nutrients 2020; 12:E3135. [PMID: 33066504 PMCID: PMC7602234 DOI: 10.3390/nu12103135] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance (IR) is apparent when tissues responsible for clearing glucose from the blood, such as adipose and muscle, do not respond properly to appropriate signals. IR is estimated based on fasting blood glucose and insulin, but some measures also incorporate an oral glucose challenge. Certain (poly)phenols, as supplements or in foods, can improve insulin resistance by several mechanisms including lowering postprandial glucose, modulating glucose transport, affecting insulin signalling pathways, and by protecting against damage to insulin-secreting pancreatic β-cells. As shown by intervention studies on volunteers, the most promising candidates for improving insulin resistance are (-)-epicatechin, (-)-epicatechin-containing foods and anthocyanins. It is possible that quercetin and phenolic acids may also be active, but data from intervention studies are mixed. Longer term and especially dose-response studies on mildly insulin resistant participants are required to establish the extent to which (poly)phenols and (poly)phenol-rich foods may improve insulin resistance in compromised groups.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia;
| | | |
Collapse
|
25
|
Yu L, Zhang SD, Zhao XL, Ni HY, Song XR, Wang W, Yao LP, Zhao XH, Fu YJ. Cyanidin-3-glucoside protects liver from oxidative damage through AMPK/Nrf2 mediated signaling pathway in vivo and in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
26
|
Toualbi LA, Adnane M, Abderrezak K, Ballouti W, Arab M, Toualbi C, Chader H, Tahae R, Seba A. Oxidative stress accelerates the carotid atherosclerosis process in patients with chronic kidney disease. Arch Med Sci Atheroscler Dis 2020; 5:e245-e254. [PMID: 33305063 PMCID: PMC7717441 DOI: 10.5114/amsad.2020.98945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/15/2020] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION The atherosclerosis process is highly accelerated in patients with chronic kidney disease (CKD). Oxidative stress is considered as one of the pro-atherogenic factors involved in accelerating the atherosclerosis process of the carotid artery. The aim of the present study was to determine the relationship between oxidative stress markers and the progression of carotid atherosclerosis in CKD patients. MATERIAL AND METHODS The study was conducted on 162 patients with CKD and 40 controls, and the disease stage was scored between 2 and 5D. Blood samples were taken and advanced oxidative protein product, myeloperoxidases, malondialdehyde, nitric oxide, glutathione, and oxidised low-density lipoprotein were measured. Furthermore, we studied the correlations between these biomarkers and clinical and para-clinical cardiovascular complications. RESULTS The average age of patients was 56.5 years. The oxidative stress markers average ± SD levels in CKD groups compared to the control were as follows: advanced oxidation protein product (61.89 ±1.4 vs. 26.65 ±1.05 µmol/l), myeloperoxidase (59.89 ±1.98 vs. 38.45 ±1.98 UI/ml), malondialdehyde (6.1 ±0.12 vs. 3.26 ±0.03 µmol/l), nitric oxide (65.82 ±1.06 vs. 52.19 ±2.1 µmol/l), glutathione (52.21 ±1.3 vs. 89.4 ±2.6 IU/ml), and oxLDL (15.57 ±1.07 vs. 1.72 ±0.82 µmol/l). While the glutathione level decreased significantly in advanced CKD stage (p < 0.05), the concentrations of all the other biomarkers increased significantly in accordance with CKD score (p < 0.05). CONCLUSIONS Cardiovascular diseases, mainly atherosclerosis, can be diagnosed indirectly by measuring oxidative stress markers. Furthermore, theses markers can be used to predict the progression of CKD, for better management of the disease.
Collapse
Affiliation(s)
| | - Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret,
Tiaret, Algeria
| | - Khelfi Abderrezak
- Departement of Toxicology, Hospital University of Bab el oued, Algiers, Algeria
| | - Wafa Ballouti
- Department of Biochemistry, Hospital of Hussein Dey, Algiers, Algeria
| | - Medina Arab
- Department of Biochemestry, Hospital University of Mustapha Bacha, Algiers, Algeria
| | - Chahine Toualbi
- Department of Orthopedic Surgery, Hospital of Bejaia, Bejaia Algeria
| | - Henni Chader
- Department of Pharmacology, Pastor Institute, Algiers, Algeria
| | - Ryne Tahae
- Department of Nephrology, Hospital University of Hussein Dey, Algiers, Algeria
| | - Atmane Seba
- Department of Nephrology, Hospital University of Tizi ouzou, Tizi Ouzou, Algeria
| |
Collapse
|
27
|
Urner S, Ho F, Jha JC, Ziegler D, Jandeleit-Dahm K. NADPH Oxidase Inhibition: Preclinical and Clinical Studies in Diabetic Complications. Antioxid Redox Signal 2020; 33:415-434. [PMID: 32008354 DOI: 10.1089/ars.2020.8047] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Oxidative stress plays a critical role in the development and progression of serious micro- and macrovascular complications of diabetes. Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-derived reactive oxygen species (ROS) significantly contribute to oxidative stress-associated inflammatory pathways that lead to tissue damage of different organs, including the kidneys, retina, brain, nerves, and the cardiovascular system. Recent Advances: Preclinical studies, including genetic-modified mouse models or cell culture models, have revealed the role of specific NOX isoforms in different diabetic complications, and suggested them as a promising target for the treatment of these diseases. Critical Issues: In this review, we provide an overview of the role of ROS and oxidative stress in macrovascular complications, such as stroke, myocardial infarction, coronary artery disease, and peripheral vascular disease that are all mainly driven by atherosclerosis, as well as microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy. We summarize conducted genetic deletion studies of different Nox isoforms as well as pharmacological intervention studies using NOX inhibitors in the context of preclinical as well as clinical research on diabetic complications. Future Directions: We outline the isoforms that are most promising for future clinical trials in the context of micro- and macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Sofia Urner
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Florence Ho
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Jay C Jha
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Karin Jandeleit-Dahm
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
28
|
Gao S, Hua B, Liu Q, Liu H, Li W, Li H. Role of peroxisome proliferators-activated receptor-gamma in advanced glycation end product-mediated functional loss of voltage-gated potassium channel in rat coronary arteries. BMC Cardiovasc Disord 2020; 20:337. [PMID: 32664860 PMCID: PMC7362521 DOI: 10.1186/s12872-020-01613-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/06/2020] [Indexed: 11/23/2022] Open
Abstract
Background High blood glucose impairs voltage-gated K+ (Kv) channel-mediated vasodilation in rat coronary artery smooth muscle cells (CSMCs) via oxidative stress. Advanced glycation end product (AGE) and receptor for AGE (RAGE) axis has been found to impair coronary dilation by reducing Kv channel activity in diabetic rat small coronary arteries (RSCAs). However, its underlying mechanism remain unclear. Here, we used isolated arteries and primary CSMCs to investigate the effect of AGE incubation on Kv channel-mediated coronary dilation and the possible involvement of peroxisome proliferators-activated receptor (PPAR) -γ pathway. Methods The RSCAs and primary CSMCs were isolated, cultured, and treated with bovine serum albumin (BSA), AGE-BSA, alagrebrium (ALA, AGE cross-linking breaker), pioglitazone (PIO, PPAR-γ activator) and/or GW9662 (PPAR-γ inhibitor). The groups were accordingly divided as control, BSA, AGE, AGE + ALA, AGE + PIO, or AGE + PIO + GW9662. Kv channel-mediated dilation was analyzed using wire myograph. Histology and immunohistochemistry of RSCAs were performed. Western blot was used to detect the protein expression of RAGE, major Kv channel subunits expressed in CSMCs (Kv1.2 and Kv1.5), PPAR-γ, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-2 (NOX-2). Results AGE markedly reduced Forskolin-induced Kv channel-mediated dilation of RSCAs by engaging with RAGE, and ALA or PIO significantly reversed the functional loss of Kv channel. In both RSCAs and CSMCs, AGE reduced Kv1.2/1.5 expression, increased RAGE and NOX-2 expression, and inhibited PPAR-γ expression, while ALA or PIO treatment partially reversed the inhibiting effects of AGE on Kv1.2/1.5 expression, accompanied by the downregulation of RAGE and decreased oxidative stress. Meanwhile, silencing of RAGE with siRNA remarkably alleviated the AGE-induced downregulation of Kv1.2/1.5 expression in CSMCs. Conclusion AGE reduces the Kv channel expression in CSMCs and further impairs the Kv channel-mediated dilation in RSCAs. The AGE/RAGE axis may enhance oxidative stress by inhibiting the downstream PPAR-γ pathway, thus playing a critical role in the dysfunction of Kv channels.
Collapse
Affiliation(s)
- Side Gao
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng, Beijing, 100050, P. R. China
| | - Bing Hua
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng, Beijing, 100050, P. R. China
| | - Qingbo Liu
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng, Beijing, 100050, P. R. China
| | - Huirong Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, 100069, P. R. China
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng, Beijing, 100050, P. R. China. .,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, 100069, P. R. China.
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng, Beijing, 100050, P. R. China. .,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, 100069, P. R. China. .,Department of Internal Medicine, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China.
| |
Collapse
|
29
|
McElwain C, McCarthy CM. Investigating mitochondrial dysfunction in gestational diabetes mellitus and elucidating if BMI is a causative mediator. Eur J Obstet Gynecol Reprod Biol 2020; 251:60-65. [PMID: 32480181 DOI: 10.1016/j.ejogrb.2020.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance which is diagnosed during pregnancy and poses considerable health risks for mother and child. Maternal body mass index (BMI) correlates with GDM diagnosis and the pathophysiology of this link may be explained through oxidative stress and mitochondrial dysfunction. In this study we investigate if mitochondrial dysfunction is evident in GDM by measuring cell free mitochondrial DNA concentration and determine if a potential relationship exists between maternal mitochondrial function and GDM diagnosis. STUDY DESIGN Plasma samples were taken at 20 weeks' gestation from women who subsequently developed GDM (n = 44) and matched with women with uncomplicated pregnancies (n = 85) as controls. Control group 1 was matched by maternal age and BMI (n = 41) to GDM cases, while control group 2 was matched by maternal age alone (n = 44). Prediction potential was determined by binary regression analysis. Statistical analysis was performed on SPSS Statistics v25. RESULTS Binary regression analysis showed a statistically significant association between mtDNA concentration and GDM diagnosis (p = 0.032) in GDM cases versus control group 2, indicating that GDM patients have higher circulating mtDNA concentrations relative to healthy control patients. The lack of statistical significance in control group 1 suggests that BMI may be linked to mitochondrial function in GDM patients. CONCLUSION These results demonstrate a potential pathogenic role for mitochondrial dysfunction in GDM, with BMI presenting as a likely physiological mediator.
Collapse
Affiliation(s)
- Colm McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland.
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
30
|
Arad M, Waldman M, Abraham NG, Hochhauser E. Therapeutic approaches to diabetic cardiomyopathy: Targeting the antioxidant pathway. Prostaglandins Other Lipid Mediat 2020; 150:106454. [PMID: 32413571 DOI: 10.1016/j.prostaglandins.2020.106454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
The global epidemic of cardiovascular disease continues unabated and remains the leading cause of death both in the US and worldwide. We hereby summarize the available therapies for diabetes and cardiovascular disease in diabetics. Clearly, the current approaches to diabetic heart disease often target the manifestations and certain mediators but not the specific pathways leading to myocardial injury, remodeling and dysfunction. Better understanding of the molecular events determining the evolution of diabetic cardiomyopathy will provide insight into the development of specific and targeted therapies. Recent studies largely increased our understanding of the role of enhanced inflammatory response, ROS production, as well as the contribution of Cyp-P450-epoxygenase-derived epoxyeicosatrienoic acid (EET), Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α (PGC-1α), Heme Oxygenase (HO)-1 and 20-HETE in pathophysiology and therapy of cardiovascular disease. PGC-1α increases production of the HO-1 which has a major role in protecting the heart against oxidative stress, microcirculation and mitochondrial dysfunction. This review describes the potential drugs and their downstream targets, PGC-1α and HO-1, as major loci for developing therapeutic approaches beside diet and lifestyle modification for the treatment and prevention of heart disease associated with obesity and diabetes.
Collapse
Affiliation(s)
- Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Maayan Waldman
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
31
|
Guo Z, Mo Z. Keap1‐Nrf2 signaling pathway in angiogenesis and vascular diseases. J Tissue Eng Regen Med 2020; 14:869-883. [PMID: 32336035 DOI: 10.1002/term.3053] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Zi Guo
- Department of EndocrinologyThe Third Xiangya Hospital, Central South University Changsha China
| | - Zhaohui Mo
- Department of EndocrinologyThe Third Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
32
|
Schiffer TA, Lundberg JO, Weitzberg E, Carlström M. Modulation of mitochondria and NADPH oxidase function by the nitrate-nitrite-NO pathway in metabolic disease with focus on type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165811. [PMID: 32339643 DOI: 10.1016/j.bbadis.2020.165811] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria play fundamental role in maintaining cellular metabolic homeostasis, and metabolic disorders including type 2 diabetes (T2D) have been associated with mitochondrial dysfunction. Pathophysiological mechanisms are coupled to increased production of reactive oxygen species and oxidative stress, together with reduced bioactivity/signaling of nitric oxide (NO). Novel strategies restoring these abnormalities may have therapeutic potential in order to prevent or even treat T2D and associated cardiovascular and renal co-morbidities. A diet rich in green leafy vegetables, which contains high concentrations of inorganic nitrate, has been shown to reduce the risk of T2D. To this regard research has shown that in addition to the classical NO synthase (NOS) dependent pathway, nitrate from our diet can work as an alternative precursor for NO and other bioactive nitrogen oxide species via serial reductions of nitrate (i.e. nitrate-nitrite-NO pathway). This non-conventional pathway may act as an efficient back-up system during various pathological conditions when the endogenous NOS system is compromised (e.g. acidemia, hypoxia, ischemia, aging, oxidative stress). A number of experimental studies have demonstrated protective effects of nitrate supplementation in models of obesity, metabolic syndrome and T2D. Recently, attention has been directed towards the effects of nitrate/nitrite on mitochondrial functions including beiging/browning of white adipose tissue, PGC-1α and SIRT3 dependent AMPK activation, GLUT4 translocation and mitochondrial fusion-dependent improvements in glucose homeostasis, as well as dampening of NADPH oxidase activity. In this review, we examine recent research related to the effects of bioactive nitrogen oxide species on mitochondrial function with emphasis on T2D.
Collapse
Affiliation(s)
- Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
33
|
Gharib HM, Abajy MY, Omaren A. Investigating the effect of some fluoroquinolones on C-reactive protein levels and ACh-Induced blood pressure reduction deviations after aging of diabetes in STZ-Induced diabetic wistar rats. Heliyon 2020; 6:e03812. [PMID: 32368653 PMCID: PMC7186571 DOI: 10.1016/j.heliyon.2020.e03812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/22/2019] [Accepted: 04/16/2020] [Indexed: 11/22/2022] Open
Abstract
The treatment of infections in diabetic patients by fluoroquinolone antibiotics is associated with a reduced risk of coronary artery disease, and may improve endothelium-derived hyperpolarizing factor (EDHF) efficacy. The inflammatory marker C-reactive protein (CRP) is an important predictor of cardiovascular events, and vascular endothelium dysfunction, which makes this marker a target for drug-based treatment. This study aims to investigate the relation between the treatment by fluoroquinolones with CRP plasma levels, as well as acetylecholine (ACh)-induced small conductance calcium-activated potassium channels (SKCa)-dependent blood pressure (BP) reduction deviations in wistar rats after inducing a type 2-like diabetes with aging state after four months of streptozotocin (STZ) injection. Experimental animals were divided into four groups, group 1: diabetic animals were treated with moxifloxacin (n = 15), group 2: diabetic animals were treated with levofloxacin (n = 15), group 3: diabetic control animals (n = 15), and group 4: non-diabetic control animals (n = 6). The levels of plasma CRP, as well as ACh-induced SKCa-dependent BP reduction deviations were compared four months after the development of diabetes, after that; two groups were treated with fluoroquinolones, four months after the treatment; CRP-plasma levels, as well as ACh-induced SKCa-dependent BP reduction deviations were also evaluated and compared for all groups. Sustained hyperglycemia after the induction of diabetes elevated CRP plasma levels, and reduced ACh-induced SKCa-dependent BP reduction, observed diabetes-induced variations were minimal in fluoroquinolones treated diabetic groups compared with diabetic control group, In conclusion, the treatment with fluoroquinolone antibiotics in diabetic wistars may be associated with a lowering in CRP levels progression, and improvement in SKCa vitality, which indicates the importance of treating infections in diabetics by fluoroquinolones to mitigate some vascular complications signs that lead to morbidity and mortality in diabetes.
Collapse
Affiliation(s)
- Hussam M. Gharib
- Department of Pharmacology, Faculty of Pharmacy, Damascus University, Syria
| | - Mohammad Y. Abajy
- Department of Biochemistry, Faculty of Pharmacy, Aleppo University, Syria
| | - Abdulnaser Omaren
- Department of Pharmacology, Faculty of Pharmacy, Damascus University, Syria
| |
Collapse
|
34
|
Effect of diabetes blood-stasis syndrome and Xuefu Zhuyu decoction on ROS-ERK1/2 signaling pathway in rat retina Müller cells. Cytotechnology 2020; 72:303-314. [PMID: 32112164 DOI: 10.1007/s10616-020-00379-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
This research aimed to investigate whether diabetic blood-stasis syndrome had a relationship with ROS-ERK1/2 signaling pathway in rat retina Müller cells and explore the effects of traditional Chinese drugs designed for promoting blood circulation to remove blood stasis on diabetic retinopathy (DR) treatment. Immunofluorescence was applied to determine purity of Müller cells. The diabetes was induced in rats by streptozotocin (STZ). Müller cells were stimulated by blood serum obtained from rats with blood-stasis syndrome and then treated by Xuefu Zhuyu decoction. Kits for reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) were used for corresponding detection. Western blot analysis was used to determine the phosphorylation of ERK1/2. The results indicated that stimulation of Müller cells by blood serum of rats with diabetic blood-stasis syndrome increased the expression of ROS, inhibited SOD and GSH, and activated ERK1/2 signaling pathway. Treatment of Xuefu Zhuyu decoction could weaken this phenomenon. What's more, similar effects of ERK1/2 inhibitor U0126 with Xuefu Zhuyu decoction proved the involvement of ERK1/2 signaling pathway. Therefore, our results suggested that traditional Chinese drugs for promoting blood circulation to remove blood stasis would be an effective therapy to treat DR.
Collapse
|
35
|
Oxidative Stress and Microvascular Alterations in Diabetic Retinopathy: Future Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4940825. [PMID: 31814880 PMCID: PMC6878793 DOI: 10.1155/2019/4940825] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023]
Abstract
Diabetes is a disease that can be treated with oral antidiabetic agents and/or insulin. However, patients' metabolic control is inadequate in a high percentage of them and a major cause of chronic diseases like diabetic retinopathy. Approximately 15% of patients have some degree of diabetic retinopathy when diabetes is first diagnosed, and most will have developed this microvascular complication after 20 years. Early diagnosis of the disease is the best tool to prevent or delay vision loss and reduce the involved costs. However, diabetic retinopathy is an asymptomatic disease and its development to advanced stages reduces the effectiveness of treatments. Today, the recommended treatment for severe nonproliferative and proliferative diabetic retinopathy is photocoagulation with an argon laser and intravitreal injections of anti-VEGF associated with, or not, focal laser for diabetic macular oedema. The use of these therapeutic approaches is severely limited, such as uncomfortable administration for patients, long-term side effects, the costs they incur, and the therapeutic effectiveness of the employed management protocols. Hence, diabetic retinopathy is the widespread diabetic eye disease and a leading cause of blindness in adults in developed countries. The growing interest in using polyphenols, e.g., resveratrol, in treatments related to oxidative stress diseases has spread to diabetic retinopathy. This review focuses on analysing the sources and effects of oxidative stress and inflammation on vascular alterations and diabetic retinopathy development. Furthermore, current and antioxidant therapies, together with new molecular targets, are postulated for diabetic retinopathy treatment.
Collapse
|
36
|
Zhang X, Lee MD, Wilson C, McCarron JG. Hydrogen peroxide depolarizes mitochondria and inhibits IP 3-evoked Ca 2+ release in the endothelium of intact arteries. Cell Calcium 2019; 84:102108. [PMID: 31715384 PMCID: PMC6891240 DOI: 10.1016/j.ceca.2019.102108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
Abstract
H2O2 is produced by several cell processes including mitochondria and may act as an intracellular messenger and cell-cell signalling molecule. Spontaneous local Ca2+ signals and IP3-evoked Ca2+ increases were inhibited by H2O2. H2O2 suppression of IP3-evoked Ca2+ signalling may be mediated by mitochondria via a decrease in the mitochondrial membrane potential. H2O2-induced mitochondrial depolarization and inhibition of IP3-evoked Ca2+ release, may protect mitochondria from Ca2+ overload during IP3-linked Ca2+ signals.
Hydrogen peroxide (H2O2) is a mitochondrial-derived reactive oxygen species (ROS) that regulates vascular signalling transduction, vasocontraction and vasodilation. Although the physiological role of ROS in endothelial cells is acknowledged, the mechanisms underlying H2O2 regulation of signalling in native, fully-differentiated endothelial cells is unresolved. In the present study, the effects of H2O2 on Ca2+ signalling were investigated in the endothelium of intact rat mesenteric arteries. Spontaneous local Ca2+ signals and acetylcholine evoked Ca2+ increases were inhibited by H2O2. H2O2 inhibition of acetylcholine-evoked Ca2+ signals was reversed by catalase. H2O2 exerts its inhibition on the IP3 receptor as Ca2+ release evoked by photolysis of caged IP3 was supressed by H2O2. H2O2 suppression of IP3-evoked Ca2+ signalling may be mediated by mitochondria. H2O2 depolarized mitochondria membrane potential. Acetylcholine-evoked Ca2+ release was inhibited by depolarisation of the mitochondrial membrane potential by the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP) or complex 1 inhibitor, rotenone. We propose that the suppression of IP3-evoked Ca2+ release by H2O2 arises from the decrease in mitochondrial membrane potential. These results suggest that mitochondria may protect themselves against Ca2+ overload during IP3-linked Ca2+ signals by a H2O2 mediated negative feedback depolarization of the organelle and inhibition of IP3-evoked Ca2+ release.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
37
|
Bi C, Li PL, Liao Y, Rao HY, Li PB, Yi J, Wang WY, Su WW. Pharmacodynamic effects of Dan-hong injection in rats with blood stasis syndrome. Biomed Pharmacother 2019; 118:109187. [DOI: 10.1016/j.biopha.2019.109187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 01/23/2023] Open
|
38
|
Xu F, Liu Y, Zhu X, Li S, Shi X, Li Z, Ai M, Sun J, Hou B, Cai W, Sun H, Ni L, Zhou Y, Qiu L. Protective Effects and Mechanisms of Vaccarin on Vascular Endothelial Dysfunction in Diabetic Angiopathy. Int J Mol Sci 2019; 20:ijms20184587. [PMID: 31533227 PMCID: PMC6769517 DOI: 10.3390/ijms20184587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular complications are a major leading cause of mortality in patients suffering from type 2 diabetes mellitus (T2DM). Vascular endothelial dysfunction is a core pathophysiological event in the early stage of T2DM and eventually leads to cardiovascular disease. Vaccarin (VAC), an active flavonoid glycoside extracted from vaccariae semen, exhibits extensive biological activities including vascular endothelial cell protection effects. However, little is known about whether VAC is involved in endothelial dysfunction regulation under high glucose (HG) or hyperglycemia conditions. Here, in an in vivo study, we found that VAC attenuated increased blood glucose, increased glucose and insulin tolerance, relieved the disorder of lipid metabolism and oxidative stress, and improved endothelium-dependent vasorelaxation in STZ/HFD-induced T2DM mice. Furthermore, in cultured human microvascular endothelial cell-1 (HMEC-1) cells, we showed that pretreatment with VAC dose-dependently increased nitric oxide (NO) generation and the phosphorylation of eNOS under HG conditions. Mechanistically, VAC-treated HMEC-1 cells exhibited higher AMPK phosphorylation, which was attenuated by HG stimulation. Moreover, HG-triggered miRNA-34a upregulation was inhibited by VAC pretreatment, which is in accordance with pretreatment with AMPK inhibitor compound C (CC). In addition, both reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) and VAC abolished HG-evoked dephosphorylation of AMPK and eNOS, increased miRNA-34a expression, and decreased NO production. These results suggest that VAC impedes HG-induced endothelial dysfunction via inhibition of the ROS/AMPK/miRNA-34a/eNOS signaling cascade.
Collapse
Affiliation(s)
- Fei Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Yixiao Liu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Shuangshuang Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Xuelin Shi
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Zhongjie Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Min Ai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Jiangnan Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Lulu Ni
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Yuetao Zhou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214100, China.
| |
Collapse
|
39
|
Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J Clin Med 2019; 8:jcm8091385. [PMID: 31487953 PMCID: PMC6780404 DOI: 10.3390/jcm8091385] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia and insulin resistance in which oxidative stress is thought to be a primary cause. Considering that mitochondria are the main source of ROS, we have set out to provide a general overview on how oxidative stress is generated and related to T2D. Enhanced generation of reactive oxygen species (ROS) and oxidative stress occurs in mitochondria as a consequence of an overload of glucose and oxidative phosphorylation. Endoplasmic reticulum (ER) stress plays an important role in oxidative stress, as it is also a source of ROS. The tight interconnection between both organelles through mitochondrial-associated membranes (MAMs) means that the ROS generated in mitochondria promote ER stress. Therefore, a state of stress and mitochondrial dysfunction are consequences of this vicious cycle. The implication of mitochondria in insulin release and the exposure of pancreatic β-cells to hyperglycemia make them especially susceptible to oxidative stress and mitochondrial dysfunction. In fact, crosstalk between both mechanisms is related with alterations in glucose homeostasis and can lead to the diabetes-associated insulin-resistance status. In the present review, we discuss the current knowledge of the relationship between oxidative stress, mitochondria, ER stress, inflammation, and lipotoxicity in T2D.
Collapse
|
40
|
Meza CA, La Favor JD, Kim DH, Hickner RC. Endothelial Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS? Int J Mol Sci 2019; 20:ijms20153775. [PMID: 31382355 PMCID: PMC6696313 DOI: 10.3390/ijms20153775] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
NADPH oxidases (NOX) are enzyme complexes that have received much attention as key molecules in the development of vascular dysfunction. NOX have the primary function of generating reactive oxygen species (ROS), and are considered the main source of ROS production in endothelial cells. The endothelium is a thin monolayer that lines the inner surface of blood vessels, acting as a secretory organ to maintain homeostasis of blood flow. The enzymatic production of nitric oxide (NO) by endothelial NO synthase (eNOS) is critical in mediating endothelial function, and oxidative stress can cause dysregulation of eNOS and endothelial dysfunction. Insulin is a stimulus for increases in blood flow and endothelium-dependent vasodilation. However, cardiovascular disease and type 2 diabetes are characterized by poor control of the endothelial cell redox environment, with a shift toward overproduction of ROS by NOX. Studies in models of type 2 diabetes demonstrate that aberrant NOX activation contributes to uncoupling of eNOS and endothelial dysfunction. It is well-established that endothelial dysfunction precedes the onset of cardiovascular disease, therefore NOX are important molecular links between type 2 diabetes and vascular complications. The aim of the current review is to describe the normal, healthy physiological mechanisms involved in endothelial function, and highlight the central role of NOX in mediating endothelial dysfunction when glucose homeostasis is impaired.
Collapse
Affiliation(s)
- Cesar A Meza
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Justin D La Favor
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Do-Houn Kim
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Robert C Hickner
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
- Institute of Sports Sciences and Medicine, College of Human Sciences, Florida State University, Tallahassee, FL 32306, USA.
- Department of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville 4041, South Africa.
| |
Collapse
|
41
|
Flavin Oxidase-Induced ROS Generation Modulates PKC Biphasic Effect of Resveratrol on Endothelial Cell Survival. Biomolecules 2019; 9:biom9060209. [PMID: 31151226 PMCID: PMC6628153 DOI: 10.3390/biom9060209] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death. Methods: Using human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined. Results: While high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic Bax, while downregulating the antiapoptotic Bcl-2, at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes, c-myc, ornithine decarboxylase (ODC) and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations. Conclusions: Our results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants.
Collapse
|
42
|
Venditti P, Reed TT, Victor VM, Di Meo S. Insulin resistance and diabetes in hyperthyroidism: a possible role for oxygen and nitrogen reactive species. Free Radic Res 2019; 53:248-268. [PMID: 30843740 DOI: 10.1080/10715762.2019.1590567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to insulin, glycemic control involves thyroid hormones. However, an excess of thyroid hormone can disturb the blood glucose equilibrium, leading to alterations of carbohydrate metabolism and, eventually, diabetes. Indeed, experimental and clinical hyperthyroidism is often accompanied by abnormal glucose tolerance. A common characteristic of hyperthyroidism and type 2 diabetes is the altered mitochondrial efficiency caused by the enhanced production of reactive oxygen and nitrogen species. It is known that an excess of thyroid hormone leads to increased oxidant production and mitochondrial oxidative damage. It can be hypothesised that these species represent the link between hyperthyroidism and development of insulin resistance and diabetes, even though direct evidence of this relationship is lacking. In this review, we examine the literature concerning the effects of insulin and thyroid hormones on glucose metabolism and discuss alterations of glucose metabolism in hyperthyroid conditions and the cellular and molecular mechanisms that may underline them.
Collapse
Affiliation(s)
- Paola Venditti
- a Dipartimento di Biologia , Università di Napoli Federico II , Napoli , Italy
| | - Tanea T Reed
- b Department of Chemistry , Eastern Kentucky University , Richmond , KY , USA
| | - Victor M Victor
- c Service of Endocrinology, Dr. Peset University Hospital, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO) , Valencia , Spain.,d Department of Physiology , University of Valencia , Valencia , Spain
| | - Sergio Di Meo
- a Dipartimento di Biologia , Università di Napoli Federico II , Napoli , Italy
| |
Collapse
|
43
|
Akoumianakis I, Antoniades C. Impaired Vascular Redox Signaling in the Vascular Complications of Obesity and Diabetes Mellitus. Antioxid Redox Signal 2019; 30:333-353. [PMID: 29084432 DOI: 10.1089/ars.2017.7421] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Oxidative stress, a crucial regulator of vascular disease pathogenesis, may be involved in the vascular complications of obesity, systemic insulin resistance (IR), and diabetes mellitus (DM). Recent Advances: Excessive production of reactive oxygen species in the vascular wall has been linked with vascular disease pathogenesis. Recent evidence has revealed that vascular redox state is dysregulated in cases of obesity, systemic IR, and DM, potentially participating in the well-known vascular complications of these disease entities. Critical Issues: The detrimental effects of obesity and the metabolic syndrome on vascular biology have been extensively described at a clinical level. Further, vascular oxidative stress has often been associated with the presence of obesity and IR as well as with a variety of detrimental vascular phenotypes. However, the mechanisms of vascular redox state regulation under conditions of obesity and systemic IR, as well as their clinical relevance, are not adequately explored. In addition, the notion of vascular IR, and its relationship with systemic parameters of obesity and systemic IR, is not fully understood. In this review, we present all the important components of vascular redox state and the evidence linking oxidative stress with obesity and IR. Future Directions: Future studies are required to describe the cellular effects and the translational potential of vascular redox state in the context of vascular disease. In addition, further elucidation of the direct vascular effects of obesity and IR is required for better management of the vascular complications of DM.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, University of Oxford , Oxford, United Kingdom
| | | |
Collapse
|
44
|
Soloviev AI, Kizub IV. Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction. Biochem Pharmacol 2018; 159:121-139. [PMID: 30508525 DOI: 10.1016/j.bcp.2018.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Ionizing radiation (IR) leads to a variety of the cardiovascular diseases, including the arterial hypertension. A number of studies have demonstrated that blood vessels represent important target for IR, and the endothelium is one of the most vulnerable components of the vascular wall. IR causes an inhibition of nitric oxide (NO)-mediated endothelium-dependent vasodilatation and generation of reactive oxygen (ROS) and nitrogen (RNS) species trigger this process. Inhibition of NO-mediated vasodilatation could be due to endothelial NO synthase (eNOS) down-regulation, inactivation of endothelium-derived NO, and abnormalities in diffusion of NO from the endothelial cells (ECs) leading to a decrease in NO bioavailability. Beside this, IR suppresses endothelial large conductance Ca2+-activated K+ channels (BKCa) activity, which control NO synthesis. IR also leads to inhibition of the BKCa current in vascular smooth muscle cells (SMCs) which is mediated by protein kinase C (PKC). On the other hand, IR-evoked enhanced vascular contractility may result from PKC-mediated increase in SMCs myofilament Ca2+ sensitivity. Also, IR evokes vascular wall inflammation and atherosclerosis development. Vascular function damaged by IR can be effectively restored by quercetin-filled phosphatidylcholine liposomes and mesenchymal stem cells injection. Using RNA-interference technique targeted to different PKC isoforms can also be a perspective approach for pharmacological treatment of IR-induced vascular dysfunction.
Collapse
Affiliation(s)
- Anatoly I Soloviev
- Department of Pharmacology of Cellular Signaling Systems and Experimental Therapy, Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, 14 Eugene Pottier Street, Kiev 03068, Ukraine
| | - Igor V Kizub
- Department of Pharmacology, New York Medical College, 15 Dana Road, Valhalla 10595, NY, United States.
| |
Collapse
|
45
|
Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother 2018; 107:306-328. [PMID: 30098549 DOI: 10.1016/j.biopha.2018.07.157] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/15/2018] [Accepted: 07/31/2018] [Indexed: 02/09/2023] Open
Abstract
Chronic exposure of glucose rich environment creates several physiological and pathophysiological changes. There are several pathways by which hyperglycemia exacerbate its toxic effect on cells, tissues and organ systems. Hyperglycemia can induce oxidative stress, upsurge polyol pathway, activate protein kinase C (PKC), enhance hexosamine biosynthetic pathway (HBP), promote the formation of advanced glycation end-products (AGEs) and finally alters gene expressions. Prolonged hyperglycemic condition leads to severe diabetic condition by damaging the pancreatic β-cell and inducing insulin resistance. Numerous complications have been associated with diabetes, thus it has become a major health issue in the 21st century and has received serious attention. Dysregulation in the cardiovascular and reproductive systems along with nephropathy, retinopathy, neuropathy, diabetic foot ulcer may arise in the advanced stages of diabetes. High glucose level also encourages proliferation of cancer cells, development of osteoarthritis and potentiates a suitable environment for infections. This review culminates how elevated glucose level carries out its toxicity in cells, metabolic distortion along with organ dysfunction and elucidates the complications associated with chronic hyperglycemia.
Collapse
Affiliation(s)
- Biplab Giri
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India; Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India.
| | - Sananda Dey
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India; Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Tanaya Das
- Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Mrinmoy Sarkar
- Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India.
| |
Collapse
|
46
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
The Role of Nrf2 Signaling in PPAR β/ δ-Mediated Vascular Protection against Hyperglycemia-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5852706. [PMID: 30046379 PMCID: PMC6036815 DOI: 10.1155/2018/5852706] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/18/2018] [Indexed: 12/31/2022]
Abstract
Hyperglycemia induces oxidative stress and plays a substantial role in the progression of vascular diseases. Here, we demonstrated the potentiality of peroxisome proliferator-activated receptor (PPAR)β/δ activation in attenuating high glucose-induced oxidative stress in endothelial cells and diabetic rats, pointing to the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2). HUVECs exposed to high glucose showed increased levels of reactive oxygen species (ROS) and upregulated NOX-2, NOX-4, Nrf2, and NQO-1 effects that were significantly reversed by the PPARβ/δ agonists GW0742 and L165041. Both PPARβ/δ agonists, in a concentration-dependent manner, induced transcriptional and protein upregulation of heme oxygenase-1 (HO-1) under low- and high-glucose conditions. All effects of PPARβ/δ agonists were reversed by either pharmacological inhibition or siRNA-based downregulation of PPARβ/δ. These in vitro findings were confirmed in diabetic rats treated with GW0742. In conclusion, PPARβ/δ activation confers vascular protection against hyperglycemia-induced oxidative stress by suppressing NOX-2 and NOX-4 expression plus a direct induction of HO-1; with the subsequent downregulation of the Nrf2 pathway. Thus, PPARβ/δ activation could be of interest to prevent the progression of diabetic vascular complications.
Collapse
|
48
|
Hasanvand D, Amiri I, Soleimani Asl S, Saidijam M, Shabab N, Artimani T. Effects of CeO 2 nanoparticles on the HO-1, NQO1, and GCLC expression in the testes of diabetic rats. Can J Physiol Pharmacol 2018; 96:963-969. [PMID: 29894645 DOI: 10.1139/cjpp-2017-0784] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CeO2 nanoparticles (CNPs) as effective ROS scavengers exhibit potent antioxidant activity. In this study the effect of CNPs investigated was on HO-1, NQO1, and GCLC expression in the streptozotocin (STZ)-induced diabetic rats. Twenty-four male Wistar rats were divided into 4 groups: controls did not receive any treatment; diabetic rats received STZ (60 mg/kg daily); CNPs group received CNPs 30 mg/kg daily for 2 weeks; and rats in STZ + CNPs group received CNPs 30 mg/kg daily for 2 weeks following STZ injection. Oxidative stress was evaluated by measurement of total antioxidant capacity (TAC) and total oxidative status (TOS levels). HO-1, NQO1, and GCLC expression was measured using quantitative real-time PCR. Following STZ injection, significant lower levels of TAC and higher levels of TOS were observed. CNPs could alleviate deleterious effects of diabetes through the enhancement of TAC levels and a significant decline in TOS levels. HO-1, NQO1, and GCLC expression in the diabetic rats were lower than controls. HO-1, NQO1, and GCLC was upregulated in the diabetic rats treated with CNPs. There were significant correlations between NQO1 and GCLC, NQO1 and HO-1, and between HO-1 and GCLC expression. Moreover, Nrf2 was associated with NQO1, GCLC, and HO-1 expression. CNPs as Nrf2 upregulator confer protection against oxidative stress in the testes of STZ-induced diabetic rats by upregulating HO-1, GCLC, and NQO1 cytoprotective genes.
Collapse
Affiliation(s)
- Davood Hasanvand
- a Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- b Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- b Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- c Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nooshin Shabab
- c Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayebe Artimani
- b Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
49
|
Peliciari-Garcia RA, Darley-Usmar V, Young ME. An overview of the emerging interface between cardiac metabolism, redox biology and the circadian clock. Free Radic Biol Med 2018; 119:75-84. [PMID: 29432800 PMCID: PMC6314011 DOI: 10.1016/j.freeradbiomed.2018.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/17/2023]
Abstract
At various biological levels, mammals must integrate with 24-hr rhythms in their environment. Daily fluctuations in stimuli/stressors of cardiac metabolism and oxidation-reduction (redox) status have been reported over the course of the day. It is therefore not surprising that the heart exhibits dramatic oscillations in various cellular processes over the course of the day, including transcription, translation, ion homeostasis, metabolism, and redox signaling. This temporal partitioning of cardiac processes is governed by a complex interplay between intracellular (e.g., circadian clocks) and extracellular (e.g., neurohumoral factors) influences, thus ensuring appropriate responses to daily stimuli/stresses. The purpose of the current article is to review knowledge regarding control of metabolism and redox biology in the heart over the course of the day, and to highlight whether disruption of these daily rhythms contribute towards cardiac dysfunction observed in various disease states.
Collapse
Affiliation(s)
- Rodrigo A Peliciari-Garcia
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
50
|
The role of NADPH oxidases in diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1908-1913. [DOI: 10.1016/j.bbadis.2017.07.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022]
|