1
|
Yang F, Cao LJ, Nguyen P, Ma ZZ, Chen JC, Song W, Wei SJ. Hierarchical architecture of neo-sex chromosomes and accelerated adaptive evolution in tortricid moths. Genome Res 2025; 35:66-77. [PMID: 39762048 DOI: 10.1101/gr.279569.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025]
Abstract
Sex chromosomes can expand through fusion with autosomes, thereby acquiring unique evolutionary patterns. In butterflies and moths (Lepidoptera), these sex chromosome-autosome (SA) fusions occur relatively frequently, suggesting possible evolutionary advantages. Here, we investigated how SA fusion affects chromosome features and molecular evolution in leafroller moths (Lepidoptera: Tortricidae). Phylogenomic analysis showed that Tortricidae diverged ∼124 million years ago, accompanied by an SA fusion between the Merian elements M(20 + 17) and MZ. In contrast to partial autosomal fusions, the fused neo-Z Chromosome developed a hierarchical architecture, in which the three elements exhibit heterogeneous sequence features and evolutionary patterns. Specifically, the M17 part had a distinct base composition and chromatin domains. Unlike M20 and MZ, M17 was expressed at the same levels as autosomes in both sexes, compensating for the lost gene dosage in females. Concurrently, the SA fusion drove M17 as an evolutionary hotspot, accelerating the evolution of several genes related to ecological adaptation (e.g., ABCCs) and facilitating the divergence of closely related species, whereas the undercompensated M20 did not show such an effect. Thus, accelerated evolution under a novel pattern of dosage compensation may have favored the adaptive radiation of this group. This study demonstrates the association between a karyotype variant and adaptive evolution and explains the recurrent SA fusion in the Lepidoptera.
Collapse
Affiliation(s)
- Fangyuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Petr Nguyen
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 Ceske Budejovice, Czech Republic
| | - Zhong-Zheng Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| |
Collapse
|
2
|
Liu J, Gao Y, Ding S, Zhan S, Yang D, Liu X. Chromosome-level genome assembly of the seasonally polyphenic scorpionfly (Panorpa liui). Sci Data 2025; 12:22. [PMID: 39774111 PMCID: PMC11707234 DOI: 10.1038/s41597-025-04365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Mecoptera is a small relict order of insects within the Holometabola. Panorpidae is the most speciose family in Mecoptera. They are also known as scorpion flies due to the enlarged and upward recurved male genital bulb. Panorpa liui Hua, 1997, a member of Panorpidae, is a bivoltine species of seasonal color polyphenism in the lowland plain of northeastern China. In this study, we applied PacBio HiFi and Hi-C sequencing technologies to generate a chromosome-level genome reference of P. liui. The assembled genome is 678.26 Mbp in size, with 91.3% being anchored onto 23 pseudo-chromosomes. Benchmarking Universal Single-Copy Orthologs (BUSCO) estimation reveals the completeness of this assembly as 95.1%. By integrating full-length transcriptome and homologs of related species, we generated full annotation of this assembly, yielding a total of 15,960 protein-coding genes, of these, 15,892 genes were anchored on the 23 chromosomes. The high-quality genome provides critical genomic resources for population genetics and phylogenetic research on Mecoptera. It also offers valuable information for exploring the mechanisms underlying seasonal color polymorphism.
Collapse
Affiliation(s)
- Jiuzhou Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuetian Gao
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Shuangmei Ding
- The Institute of Scientific and Technical Research on Archives, NAAC, Beijing, 100053, China
| | - Shuai Zhan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing, 100193, China.
| | - Xiaoyan Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Villano DJ, Prahlad M, Singhal A, Sanbonmatsu KY, Landweber LF. Widespread 3D genome reorganization precedes programmed DNA rearrangement in Oxytricha trifallax. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630814. [PMID: 39803579 PMCID: PMC11722245 DOI: 10.1101/2024.12.31.630814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Genome organization recapitulates function, yet ciliates like Oxytricha trifallax possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, Oxytricha's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments. Retained and eliminated DNA must be distinguished and processed separately, but the role of chromatin organization in this process is unknown. We developed tools for studying Oxytricha nuclei and apply them to map the 3D organization of precursor and developmental states using Hi-C. We find that the precursor conformation primes the germline for development, while a massive spatial reorganization during development differentiates retained from eliminated regions before DNA rearrangement. Further experiments suggest a role for RNA-DNA interactions and chromatin remodeling in this process, implying a critical role for 3D architecture in programmed genome rearrangement.
Collapse
Affiliation(s)
- Danylo J Villano
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Manasa Prahlad
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
- Department of Neurobiology & Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ankush Singhal
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Zhou W, Lin J, Wang Q, Wang X, Yao X, Yan Y, Sun W, Zhu Q, Zhang X, Wang X, Ji B, Ouyang H. Chromatin-site-specific accessibility: A microtopography-regulated door into the stem cell fate. Cell Rep 2024; 44:115106. [PMID: 39723890 DOI: 10.1016/j.celrep.2024.115106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Biomaterials that mimic extracellular matrix topography are crucial in tissue engineering. Previous research indicates that certain biomimetic topography can guide stem cells toward multiple specific lineages. However, the mechanisms by which topographic cues direct stem cell differentiation remain unclear. Here, we demonstrate that microtopography influences nuclear tension in mesenchymal stem cells (MSCs), shaping chromatin accessibility and determining lineage commitment. On aligned substrates, MSCs exhibit high cytoskeletal tension along the fiber direction, creating anisotropic nuclear stress that opens chromatin sites for neurogenic, myogenic, and tenogenic genes via transcription factors like Nuclear receptor TLX (TLX). In contrast, random substrates induce isotropic nuclear stress, promoting chromatin accessibility for osteogenic and chondrogenic genes through Runt-related transcription factors (RUNX). Our findings reveal that aligned and random microtopographies direct site-specific chromatin stretch and lineage-specific gene expression, priming MSCs for distinct lineages. This study introduces a novel framework for understanding how topographic cues govern cell fate in tissue repair and regeneration.
Collapse
Affiliation(s)
- Wenyan Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; School of Medicine, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Junxin Lin
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; School of Medicine, Taizhou University, Taizhou, Zhejiang Province 318000, China
| | - Qianchun Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325000, China
| | - Xianliu Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 200051, China
| | - Xudong Yao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province 322000, China
| | - Yiyang Yan
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China
| | - Wei Sun
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China
| | - Qiuwen Zhu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiaoan Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Xiaozhao Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, Zhejiang Province 310027, China; Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
5
|
Rabuffo C, Schmidt MR, Yadav P, Tong P, Carloni R, Barcons-Simon A, Cosentino RO, Krebs S, Matthews KR, Allshire RC, Siegel TN. Inter-chromosomal transcription hubs shape the 3D genome architecture of African trypanosomes. Nat Commun 2024; 15:10716. [PMID: 39715762 DOI: 10.1038/s41467-024-55285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
The eukaryotic nucleus exhibits a highly organized 3D genome architecture, with RNA transcription and processing confined to specific nuclear structures. While intra-chromosomal interactions, such as promoter-enhancer dynamics, are well-studied, the role of inter-chromosomal interactions remains poorly understood. Investigating these interactions in mammalian cells is challenging due to large genome sizes and the need for deep sequencing. Additionally, transcription-dependent 3D topologies in mixed cell populations further complicate analyses. To address these challenges, we used high-resolution DNA-DNA contact mapping (Micro-C) in Trypanosoma brucei, a parasite with continuous RNA polymerase II (RNAPII) transcription and polycistronic transcription units (PTUs). With approximately 300 transcription start sites (TSSs), this genome organization simplifies data interpretation. To minimize scaffolding artifacts, we also generated a highly contiguous phased genome assembly using ultra-long sequencing reads. Our Micro-C analysis revealed an intricate 3D genome organization. While the T. brucei genome displays features resembling chromosome territories, its chromosomes are arranged around polymerase-specific transcription hubs. RNAPI-transcribed genes cluster, as expected from their localization to the nucleolus. However, we also found that RNAPII TSSs form distinct inter-chromosomal transcription hubs with other RNAPII TSSs. These findings highlight the evolutionary significance of inter-chromosomal transcription hubs and provide new insights into genome organization in T. brucei.
Collapse
Affiliation(s)
- Claudia Rabuffo
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Markus R Schmidt
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Prateek Yadav
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Pin Tong
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Roberta Carloni
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Raúl O Cosentino
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Stefan Krebs
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Keith R Matthews
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
Nagashima H, Shayne J, Jiang K, Petermann F, Pękowska A, Kanno Y, O'Shea JJ. Remodeling of Il4-Il13-Il5 locus underlies selective gene expression. Nat Immunol 2024; 25:2220-2233. [PMID: 39567762 DOI: 10.1038/s41590-024-02007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
The type 2 cytokines, interleukin (IL)-4, IL-13 and IL-5 reside within a multigene cluster. Both innate (ILC2) and adaptive T helper 2 (TH2) lymphocytes secrete type 2 cytokines with diverse production spectra. Using transcription factor footprint and chromatin accessibility, we systemically cataloged regulatory elements (REs) denoted as SHS-I/II, KHS-I/II, +6.5kbIl13, 5HS-I(a, b, c, d, e), 5HS-II and 5HS-III(a, b, c) across the extended Il4-Il13-Il5 locus in mice. Physical proximities among REs were coordinately remodeled in three-dimensional space after cell activation, leading to divergent compartmentalization of Il4, Il13 and Il5 with varied combinations of REs. Deletions of REs revealed no single RE solely accounted for selective regulation of a given cytokine in vivo. Instead, individual RE differentially contribute to proper genomic positioning of REs and target genes. RE deletions resulted in context-dependent dysregulation of cytokine expression and immune response in tissue. Thus, signal-dependent remodeling of three-dimensional configuration underlies divergent cytokine outputs from the type 2 loci.
Collapse
Affiliation(s)
| | - Justin Shayne
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - Franziska Petermann
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
- NGS Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Aleksandra Pękowska
- Genomics and Immunity Section, NIAMS, NIH, Bethesda, MD, USA
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Zhang W, Li Y, Wang Q, Yu Q, Ma Y, Huang L, Zhang C, Yang Z, Wang J, Xiao H. Chromosome-level genome assembly of the medicinal insect Blaps rhynchopetera using Nanopore and Hi-C technologies. DNA Res 2024; 31:dsae027. [PMID: 39250428 PMCID: PMC11555684 DOI: 10.1093/dnares/dsae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024] Open
Abstract
Blaps rhynchopetera Fairmaire is a significant medicinal resource in southwestern China. We utilized Nanopore and Hi-C technologies in combination to generate a high-quality, chromosome-level assembly of the B. rhynchopetera genome and described its genetic features. Genome surveys revealed that B. rhynchopetera is a highly heterozygous species. The assembled genome was 379.24 Mb in size, of which 96.03% was assigned to 20 pseudochromosomes. A total of 212.93 Mb of repeat sequences were annotated, and 26,824 protein-coding genes and 837 noncoding RNAs were identified. Phylogenetic analysis indicated the divergence of the ancestors of B. rhynchopetera and its closely related species Tenebrio molitor at about 85.6 million years ago. The colinearity analysis showed that some chromosomes of B. rhynchopetera may have had fission events, and it has a good synteny relationship with Tribolium castaneum. Furthermore, in the enrichment analyses, the gene families related to detoxification and immunity of B. rhynchopetera facilitated the understanding of its environmental adaptations, which will serve as a valuable research resource for pest control strategies and conservation efforts of beneficial insects. This high-quality reference genome will also contribute to the conservation of insect species diversity and genetic resources.
Collapse
Affiliation(s)
- Wei Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People’s Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People’s Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People’s Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People’s Republic of China
| | - Yue Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People’s Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People’s Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People’s Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People’s Republic of China
| | - Qi Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People’s Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People’s Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People’s Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People’s Republic of China
| | - Qun Yu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People’s Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People’s Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People’s Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People’s Republic of China
| | - Yuchen Ma
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People’s Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People’s Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People’s Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People’s Republic of China
| | - Lei Huang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People’s Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People’s Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People’s Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People’s Republic of China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People’s Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People’s Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People’s Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People’s Republic of China
| | - Zizhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People’s Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People’s Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People’s Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People’s Republic of China
| | - Jiapeng Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People’s Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People’s Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People’s Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People’s Republic of China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People’s Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People’s Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People’s Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People’s Republic of China
| |
Collapse
|
8
|
Rajput A, Reilly C, Peraza AZ, Wang J, Sioson E, Matt G, Paul R, Lu C, Acic A, Gangwani K, Zhou X. ppHiC: Interactive exploration of Hi-C results on the ProteinPaint web portal. Comput Struct Biotechnol J 2024; 23:3467-3471. [PMID: 39430404 PMCID: PMC11488422 DOI: 10.1016/j.csbj.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
The ProteinPaint Hi-C tool (ppHiC) facilitates web-based visualization and collaborative exploration of Hi-C data, a vital resource for understanding three-dimensional genomic structures. ppHiC allows researchers to easily analyze large Hi-C datasets on a web browser without requiring the computational expertise that has heretofore limited access to this complex genomic data. The platform is compatible with multiple Hi-C data versions and boasts a highly customizable interface, including a configuration panel for the precise adjustment of key visualization parameters. The tool's interactive features offer a broad range of views, from whole-genome landscapes to detailed interactions between pairs of loci, that are accessible within a single, integrated environment. Here, we demonstrate how using ppHiC to visualize an altered chromatin conformational landscape in neuroblastoma can inform understanding of the genomic rearrangements in this cancer.
Collapse
Affiliation(s)
| | | | | | - Jian Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - Gavriel Matt
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - Robin Paul
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - Congyu Lu
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - Aleksandar Acic
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - Karishma Gangwani
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| |
Collapse
|
9
|
Li J, Sun M, Ye Y, Gao L. DeCGR: an interactive toolkit for deciphering complex genomic rearrangements from Hi-C data. BMC Genomics 2024; 25:1152. [PMID: 39614138 DOI: 10.1186/s12864-024-11085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Complex genomic rearrangements (CGRs) drive the restructuring of chromatin architecture, resulting in significant interactions among rearranged fragments, visible as anomalous interaction blocks in chromatin contact maps generated by chromosome conformation capture technologies such as Hi-C. These blocks not only offer the orientation and genome coordinates of rearranged fragments but also filter out false positive CGRs, thereby facilitating CGR assembly. Despite this, there is a lack of interactive graphical software tailored for this purpose. RESULTS We present DeCGR, a user-friendly Python toolbox specifically designed for deciphering CGRs in Hi-C data. DeCGR consists of four independent execution components. The Breakpoint Filtering module identifies and filters simple rearrangements, providing the coordinates of rearrangement breakpoints. The Fragment Assembly module automatically assembles CGRs and visualizes the assembly process, facilitating the direct association between anomalous interaction blocks and CGR events. The Validation CGRs module verifies the completeness and accuracy of CGRs by generating the Hi-C map with CGRs through a simulation process and examines the difference from the original Hi-C maps. This module displays both the original and the simulated Hi-C map with highlighted rearranged fragment boundaries for rapid review to assess the CGRs. Finally, the Reconstruct Hi-C Map module provides the reconstructed Hi-C map based on the determined CGRs, allowing users to directly observe the impact of rearrangements on chromatin structure. CONCLUSIONS DeCGR is designed specifically for biologists who aim to explore CGRs from Hi-C data. It provides a validation module to ensure the completeness and correctness of CGRs. Additionally, it allows users to generate CGR assembly results and reconstruct the Hi-C map with just one click. DeCGR provides intuitive visualization results for each module, allowing users to easily associate CGRs with Hi-C maps. DeCGR is operable through a user-friendly graphical interface. Source codes are freely available at https://github.com/GaoLabXDU/DeCGR .
Collapse
Affiliation(s)
- Junping Li
- Department of Computer Science, School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Minghui Sun
- Department of Computer Science, School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Yusen Ye
- Department of Computer Science, School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Lin Gao
- Department of Computer Science, School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
| |
Collapse
|
10
|
Yang T, Wang D, Luo L, Yin X, Song Z, Yang M, Zhou Y. PWOs repress gene transcription by regulating chromatin structures in Arabidopsis. Nucleic Acids Res 2024; 52:12918-12929. [PMID: 39526374 PMCID: PMC11602166 DOI: 10.1093/nar/gkae958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
PWWP-DOMAIN INTERACTOR OF POLYCOMBS (PWO) family proteins play a vital role in regulating plant development. However, the molecular mechanisms of how PWOs regulate chromatin structure is elusive. Our data show that the PWO1 binding sites are enriched with positive modifications but exclusive with H3K27me3. Moreover, PWO1 binds to the H3K27me3-enriched compartment domain (H3K27me3-CD) boundary regions, and functions to maintain the boundary strength. Meanwhile, we found that PWOs and Polycomb repressive complex 2 (PRC2) function parallelly in maintaining H3K27me3-CDs' structure. Loss of either PWOs or PRC2 leads to H3K27me3-CD strength reduction, B to A compartment switching as well as the H3K27me3-CD relocating away from the nuclear periphery. Additionally, PWOs and lamin-like proteins collaborate to regulate multiple chromatin structures to repress gene transcription within H3K27me3-CDs. We conclude that PWOs maintain H3K27me3-CDs' repressive state and regulate their spatial position in the nucleus.
Collapse
Affiliation(s)
- Tingting Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Dingyue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Lingxiao Luo
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Xiaochang Yin
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Zhihan Song
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Minqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
11
|
Hu W, Wang Y, Chen X, Huang J, Kuang J, Wang L, Mao K, Dou L. Genome assembly of an endemic butterfly (Minois Aurata) shed light on the genetic mechanisms underlying ecological adaptation to arid valley habitat. BMC Genomics 2024; 25:1134. [PMID: 39580397 PMCID: PMC11585952 DOI: 10.1186/s12864-024-11058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Hengduan Mountains, one of the global biodiversity hotspots with exceptional species richness and high endemism, contains numerous arid valleys that create a distinctive geographical and ecological landscape. However, the adaptive evolutionary mechanisms of organism in the arid valley remain poorly understood. Minois aurata, an endemic butterfly species found exclusively in the arid valley of the upper Minjiang River, represents an attractive model system for studying adaptive evolutionary mechanisms to arid valley environments. RESULTS Here, we present the first chromosome-level genome assembly for Minois aurata, with a total size of approximately 609.17 Mb, and a scaffold N50 size of 23.88 Mb. These scaffolds were further clustered and anchored onto 29 chromosomes based on Hi-C data. A total of 16,163 protein-coding genes were predicted, of which 91.83% were functionally annotated. The expansion of transposable elements (TEs) accounts for the relatively large genome size of M. aurata, potentially aiding its adaptation to environmental conditions. Phylogenomic analyses based on 3,785 single-copy genes revealed that M. aurata is most closely related to Hipparchia semele. Further mitochondrial genome analysis of four Minois species placed M. aurata in a basal position within the genus, supporting it as an independent species. A total of 185 rapidly evolving and 232 specific gene families were identified in M. aurata. Functional enrichment analysis indicated that these gene families were mainly associated with ultraviolet radiation, heat and hypoxia responses. We also identified 234 positive selected genes in M. aurata, some of which are related to compound eye photoreceptor development, osmotic stress, and light stimulus response. Demographic analysis indicated that the effective population size of M. aurata decreased around 0.4 and 0.04 million years ago, respectively, coinciding with the localized sub-glaciation. CONCLUSION The chromosome-level genome offers a comprehensive genomic basis for understanding the evolutionary and adaptive strategies of Minois aurata in the unique arid valley environment of the Hengduan Mountains, while also providing valuable insights into the broader mechanisms of organism adaptation to such habitats.
Collapse
Affiliation(s)
- Wenqian Hu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yi Wang
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, 610081, China
| | - Xiaoxiao Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jialong Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jingge Kuang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Lei Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Liang Dou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| |
Collapse
|
12
|
Yin L, Xu X, Conacher B, Lin Y, Carrillo GL, Cun Y, Fox MA, Lu X, Xie H. Elevated EGR1 Binding at Enhancers in Excitatory Neurons Correlates with Neuronal Subtype-Specific Epigenetic Regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624733. [PMID: 39605670 PMCID: PMC11601525 DOI: 10.1101/2024.11.21.624733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Brain development and neuronal cell specification are accompanied with epigenetic changes to achieve diverse gene expression regulation. Interacting with cell-type specific epigenetic marks, transcription factors bind to different sets of cis-regulatory elements in different types of cells. Currently, it remains largely unclear how cell-type specific gene regulation is achieved for neurons. In this study, we generated epigenetic maps to perform comparative histone modification analysis between excitatory and inhibitory neurons. We found that neuronal cell-type specific histone modifications are enriched in super enhancer regions containing abundant EGR1 motifs. Further CUT&RUN data validated that more EGR1 binding sites can be detected in excitatory neurons and primarily located in enhancers. Integrative analysis revealed that EGR1 binding is strongly correlated with various epigenetic markers for open chromatin regions and associated with distinct gene pathways with neuronal subtype-specific functions. In inhibitory neurons, the majority of genomic regions hosting EGR1 binding sites become accessible at early embryonic stages. In contrast, the super enhancers in excitatory neurons hosting EGR1 binding sites gained their accessibility during postnatal stages. This study highlights the significance of transcription factor binding to enhancer regions, which may play a crucial role in establishing cell-type specific gene regulation in neurons.
Collapse
Affiliation(s)
- Liduo Yin
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiguang Xu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Benjamin Conacher
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yu Lin
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Gabriela L. Carrillo
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, 24061, Virginia, USA
| | - Yupeng Cun
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Michael A. Fox
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, 24016, USA
| | - Xuemei Lu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehuang Xie
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, 24061, Virginia, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Genetics, Bioinformatics and Computational Biology program, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
13
|
Jin W, Jiang S, Liu X, He Y, Li T, Ma J, Chen Z, Lu X, Liu X, Shou W, Jin G, Ding J, Zhou Z. Disorganized chromatin hierarchy and stem cell aging in a male patient of atypical laminopathy-based progeria mandibuloacral dysplasia type A. Nat Commun 2024; 15:10046. [PMID: 39567511 PMCID: PMC11579472 DOI: 10.1038/s41467-024-54338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Studies of laminopathy-based progeria offer insights into aging-associated diseases and highlight the role of LMNA in chromatin organization. Mandibuloacral dysplasia type A (MAD) is a largely unexplored form of atypical progeria that lacks lamin A post-translational processing defects. Using iPSCs derived from a male MAD patient carrying homozygous LMNA p.R527C, premature aging phenotypes are recapitulated in multiple mesenchymal lineages, including mesenchymal stem cells (MSCs). Comparison with 26 human aging MSC expression datasets reveals that MAD-MSCs exhibit the highest similarity to senescent primary human MSCs. Lamina-chromatin interaction analysis reveals reorganization of lamina-associating domains (LADs) and repositioning of non-LAD binding peaks may contribute to the observed accelerated senescence. Additionally, 3D genome organization further supports hierarchical chromatin disorganization in MAD stem cells, alongside dysregulation of genes involved in epigenetic modification, stem cell fate maintenance, senescence, and geroprotection. Together, these findings suggest LMNA missense mutation is linked to chromatin alterations in an atypical progeroid syndrome.
Collapse
Affiliation(s)
- Wei Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yi He
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Tuo Li
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Jingchun Ma
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zhihong Chen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaomei Lu
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, China
| | - Weinian Shou
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guoxiang Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
14
|
Zhang R, Sun J, Liu S, Ding J, Xiang M. Multiscale 3D genome rewiring during PTF1A-mediated somatic cell reprogramming into neural stem cells. Commun Biol 2024; 7:1505. [PMID: 39537822 PMCID: PMC11561290 DOI: 10.1038/s42003-024-07230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
The genome is intricately folded into chromatin compartments, topologically associating domains (TADs) and loops unique to each cell type. How this higher-order genome organization regulates cell fate transition remains elusive. Here we show how a single non-neural progenitor transcription factor, PTF1A, reorchestrates the 3D genome during fibroblast transdifferentiation into neural stem cells (NSCs). Multiomics analyses integrating Hi-C data, PTF1A and CTCF DNA-binding profiles, H3K27ac modification, and gene expression, demonstrate that PTF1A binds to subTAD boundaries subsequently associated with elevated CTCF binding and enhanced boundary insulation, and reorganizes chromatin loops, leading to gene expression changes that drive transdifferentiation into NSCs. Moreover, PTF1A activates enhancers and super-enhancers near low-insulation boundaries and modulates H3K27ac deposition, promoting cell fate transitions. Together, our data implicate an involvement of 3D genome in transcriptional and cell fate alterations, and highlight an essential role for PTF1A in gene expression control and multiscale 3D genome remodeling during cell reprogramming.
Collapse
Affiliation(s)
- Rong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Jun Sun
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Junjun Ding
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Huang L, Wang L, Sun HQ, Huai WX, Lin RZ, Wei SJ, Yao YX. The chromosome-level genome assembly and annotation of an invasive forest pest Obolodiplosis robiniae. Sci Data 2024; 11:1227. [PMID: 39543130 PMCID: PMC11564796 DOI: 10.1038/s41597-024-04037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Biological invasion is a major global problem, leading to the loss of biodiversity and species extinction, and causing huge economic losses to countries. Obolodiplosis robiniae is a major invasive forest pest that has caused economic losses in Asia and Europe. Here, the chromosome- level genome of O. robiniae was assembled using the PacBio platform and Hi-C technology. A contig-level genome with a length of 199.49 Mb and a contig N50 of 4.66 Mb was assembled. Approximately 98.05% of contigs were successfully anchored to four chromosomes using Hi-C assisted genome assembly. The genome integrity was assessed to be 90.3% based on BUSCOs analysis. The high-quality genome provides valuable data for the study of invasive species, and a foundation for the understanding the biology and ecology of O. robiniae.
Collapse
Affiliation(s)
- Lan Huang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Li Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Hui-Quan Sun
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Wen-Xia Huai
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Ruo-Zhu Lin
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Shu-Jun Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Yan-Xia Yao
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| |
Collapse
|
16
|
Gao VR, Yang R, Das A, Luo R, Luo H, McNally DR, Karagiannidis I, Rivas MA, Wang ZM, Barisic D, Karbalayghareh A, Wong W, Zhan YA, Chin CR, Noble WS, Bilmes JA, Apostolou E, Kharas MG, Béguelin W, Viny AD, Huangfu D, Rudensky AY, Melnick AM, Leslie CS. ChromaFold predicts the 3D contact map from single-cell chromatin accessibility. Nat Commun 2024; 15:9432. [PMID: 39487131 PMCID: PMC11530433 DOI: 10.1038/s41467-024-53628-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Identifying cell-type-specific 3D chromatin interactions between regulatory elements can help decipher gene regulation and interpret disease-associated non-coding variants. However, achieving this resolution with current 3D genomics technologies is often infeasible given limited input cell numbers. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps, including regulatory interactions, from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility across metacells, and a CTCF motif track as inputs and employs a lightweight architecture to train on standard GPUs. Trained on paired scATAC-seq and Hi-C data in human samples, ChromaFold accurately predicts the 3D contact map and peak-level interactions across diverse human and mouse test cell types. Compared to leading contact map prediction models that use ATAC-seq and CTCF ChIP-seq, ChromaFold achieves state-of-the-art performance using only scATAC-seq. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations.
Collapse
Affiliation(s)
- Vianne R Gao
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | - Rui Yang
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | - Arnav Das
- University of Washington, Seattle, WA, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Hanzhi Luo
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dylan R McNally
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ioannis Karagiannidis
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Martin A Rivas
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Biochemistry & Molecular Biology; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhong-Min Wang
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darko Barisic
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alireza Karbalayghareh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wilfred Wong
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | - Yingqian A Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher R Chin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Effie Apostolou
- Joan and Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Aaron D Viny
- Departments of Medicine, Division of Hematology & Oncology, and of Genetics & Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
17
|
Zhu C, Li S, Zhang D, Zhang J, Wang G, Zhou B, Zheng J, Xu W, Wang Z, Gao X, Liu Q, Xue T, Zhang H, Li C, Ge B, Liu Y, Qiu Q, Zhang H, Huang J, Tang B, Wang K. Convergent Degenerated Regulatory Elements Associated with Limb Loss in Limbless Amphibians and Reptiles. Mol Biol Evol 2024; 41:msae239. [PMID: 39530343 PMCID: PMC11600591 DOI: 10.1093/molbev/msae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Limbs are a defining characteristic of tetrapods, yet numerous taxa, primarily among amphibians and reptiles, have independently lost limbs as an adaptation to new ecological niches. To elucidate the genetic factors contributing to this convergent limb loss, we present a 12 Gb chromosome-level assembly of the Banna caecilian (Ichthyophis bannanicus), a limbless amphibian. Our comparative analysis, which includes the reconstruction of amphibian karyotype evolution, reveals constrained gene length evolution in a subset of developmental genes across 3 large genomes. Investigation of limb development genes uncovered the loss of Grem1 in caecilians and Tulp3 in snakes. Interestingly, caecilians and snakes share a significantly larger number of convergent degenerated conserved noncoding elements than limbless lizards, which have a shorter evolutionary history of limb loss. These convergent degenerated conserved noncoding elements overlap significantly with active genomic regions during mouse limb development and are conserved in limbed species, suggesting their essential role in limb patterning in the tetrapod common ancestor. While most convergent degenerated conserved noncoding elements emerged in the jawed vertebrate ancestor, coinciding with the origin of paired appendage, more recent degenerated conserved noncoding elements also contribute to limb development, as demonstrated through functional experiments. Our study provides novel insights into the regulatory elements associated with limb development and loss, offering an evolutionary perspective on the genetic basis of morphological specialization.
Collapse
Affiliation(s)
- Chenglong Zhu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shengyou Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Daizhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Jinjin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Botong Zhou
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiangmin Zheng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenjie Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Xueli Gao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Tingfeng Xue
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Huabin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Chunhui Li
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Baoming Ge
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Yuxuan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiang Qiu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Kun Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
18
|
Ali M, Younas L, Liu J, He H, Zhang X, Zhou Q. Development and evolution of Drosophila chromatin landscape in a 3D genome context. Nat Commun 2024; 15:9452. [PMID: 39487148 PMCID: PMC11530545 DOI: 10.1038/s41467-024-53892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Little is known about how the epigenomic states change during development and evolution in a 3D genome context. Here we use Drosophila pseudoobscura with complex turnover of sex chromosomes as a model to address this, by collecting massive epigenomic and Hi-C data from five developmental stages and three adult tissues. We reveal that over 60% of the genes and transposable elements (TE) exhibit at least one developmental transition of chromatin state. Transitions on specific but not housekeeping enhancers are associated with specific chromatin loops and topologically associated domain borders (TABs). While evolutionarily young TEs are generally silenced, old TEs more often have been domesticated as interacting TABs or specific enhancers. But on the recently evolved X chromosome, young TEs are instead often active and recruited as TABs, due to acquisition of dosage compensation. Overall we characterize how Drosophila epigenomic landscapes change during development and in response to chromosome evolution, and highlight the important roles of TEs in genome organization and regulation.
Collapse
Affiliation(s)
- Mujahid Ali
- Center for Reproductive Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- Institute of Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Lubna Younas
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Jing Liu
- Center for Evolutionary & Organismal Biology & Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huangyi He
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xinpei Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qi Zhou
- Center for Reproductive Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
- Center for Evolutionary & Organismal Biology & Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China.
| |
Collapse
|
19
|
Cai X, Liu J, Lin C, Cao W, Zhang L, Ding S, Yang D, Liu X. Chromosome-level genome assembly of Scathophaga stercoraria provides new insights into the evolutionary adaptations of dung flies. Int J Biol Macromol 2024; 281:136424. [PMID: 39393738 DOI: 10.1016/j.ijbiomac.2024.136424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
The yellow dung fly Scathophaga stercoraria is a widely distributed species in high-altitude regions of the Northern Hemisphere. It plays important roles as a decomposer, predator, and pollinator in the ecosystem. As a staple model organism, S. stercoraria serves as a standard test species for assessing the toxicity of drug residues in livestock dung and has been the focus of numerous studies. The genetic mechanisms underlying the ecological adaptability of S. stercoraria remain poorly understood. To fill the gap, we first assembled a high-quality chromosome-level genome of S. stercoraria, resulting in a final assembly size of 549.64 Mb, with a contig N50 of 4.06 Mb, and 92.53 % of the sequence anchored to six chromosomes. Gene family analysis revealed an expansion of Toll (Toll1), GNBP3, Cyp303a1, Cyp4d14, Cyp6g1, OR67d, and yolk protein genes in the S. stercoraria genome. Transcriptome analysis indicated that most genes in the trypsin and carboxypeptidase gene families are predominantly expressed during the larval stage, whereas the α-Amylase gene family is mainly expressed during the adult stage. Additionally, PGRP-SC is highly expressed during the larval stage, OBPs are primarily expressed during the adult stage, and yolk protein genes exhibit female-biased expression. Our study not only provides a new resource for the dung flies genomic pool, but also identifies the expression patterns of key ecologically adaptative genes and gene families at the developmental stages, which provides new insights into the ecological adaptive evolution of dung flies.
Collapse
Affiliation(s)
- Xiaodong Cai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiuzhou Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chen Lin
- Institute of Life Science and Technology, Inner Mongolia Normal University, Huhhot, 010022, China
| | - Wenqiang Cao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Leyou Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuangmei Ding
- The Institute of Scientific and Technical Research on Archives, National Archives Administration of China, Beijing 100053, China
| | - Ding Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiaoyan Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology of Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
20
|
Bista B, González-Rodelas L, Álvarez-González L, Wu ZQ, Montiel EE, Lee LS, Badenhorst DB, Radhakrishnan S, Literman R, Navarro-Dominguez B, Iverson JB, Orozco-Arias S, González J, Ruiz-Herrera A, Valenzuela N. De novo genome assemblies of two cryptodiran turtles with ZZ/ZW and XX/XY sex chromosomes provide insights into patterns of genome reshuffling and uncover novel 3D genome folding in amniotes. Genome Res 2024; 34:1553-1569. [PMID: 39414368 PMCID: PMC11529993 DOI: 10.1101/gr.279443.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq: Apalone spinifera (ZZ/ZW, 2n = 66) and Staurotypus triporcatus (XX/XY, 2n = 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling in Apalone (Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions in Staurotypus (Kinosternidae) and Trachemys scripta (Emydidae). Furthermore, we identified a chromosome folding pattern that enables "centromere-telomere interactions" previously undetected in turtles. The combined turtle pattern of "centromere-telomere interactions" (discovered here) plus "centromere clustering" (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome.
Collapse
Affiliation(s)
- Basanta Bista
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Zhi-Qiang Wu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
- Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Eugenia E Montiel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ling Sze Lee
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Daleen B Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Srihari Radhakrishnan
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Beatriz Navarro-Dominguez
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - John B Iverson
- Department of Biology, Earlham College, Richmond, Indiana 47374, USA
| | | | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, 080003 Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA;
| |
Collapse
|
21
|
Xia XM, Du HL, Hu XD, Wu JJ, Yang FS, Li CL, Huang SX, Wang Q, Liang C, Wang XQ. Genomic insights into adaptive evolution of the species-rich cosmopolitan plant genus Rhododendron. Cell Rep 2024; 43:114745. [PMID: 39298317 DOI: 10.1016/j.celrep.2024.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/17/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
The species-rich cosmopolitan genus Rhododendron offers a good system for exploring the genomic mechanisms underlying adaptation to diverse habitats. Here, we report high-quality chromosomal-level genome assemblies of nine species, representing all five subgenera, different altitudinal distributions, and all flower color types of this genus. Further comprehensive genomic analyses indicate diverse adaptive strategies employed by Rhododendron, particularly adaptation to alpine and subalpine habitats by expansion/contraction of gene families involved in pathogen defense and oxidative phosphorylation, genomic convergent evolution, and gene copy-number variation. The convergent adaptation to high altitudes is further shown by population genomic analysis of R. nivale from the Himalaya-Hengduan Mountains. Moreover, we identify the genes involved in the biosynthesis of anthocyanins and carotenoids, which play a crucial role in shaping flower color diversity and environmental adaptation. Our study is significant for comprehending plant adaptive evolution and the uneven distribution of species diversity across different geographical regions.
Collapse
Affiliation(s)
- Xiao-Mei Xia
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Hui-Long Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Xiao-Di Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jing-Jie Wu
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Fu-Sheng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Cong-Li Li
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Si-Xin Huang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Qiang Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Chengzhi Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Fan Z, Chen Y, Yan D, Li Q. Effects of Differentially Methylated CpG Sites in Enhancer and Promoter Regions on the Chromatin Structures of Target LncRNAs in Breast Cancer. Int J Mol Sci 2024; 25:11048. [PMID: 39456830 PMCID: PMC11507307 DOI: 10.3390/ijms252011048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Aberrant DNA methylation plays a crucial role in breast cancer progression by regulating gene expression. However, the regulatory pattern of DNA methylation in long noncoding RNAs (lncRNAs) for breast cancer remains unclear. In this study, we integrated gene expression, DNA methylation, and clinical data from breast cancer patients included in The Cancer Genome Atlas (TCGA) database. We examined DNA methylation distribution across various lncRNA categories, revealing distinct methylation characteristics. Through genome-wide correlation analysis, we identified the CpG sites located in lncRNAs and the distally associated CpG sites of lncRNAs. Functional genome enrichment analysis, conducted through the integration of ENCODE ChIP-seq data, revealed that differentially methylated CpG sites (DMCs) in lncRNAs were mostly located in promoter regions, while distally associated DMCs primarily acted on enhancer regions. By integrating Hi-C data, we found that DMCs in enhancer and promoter regions were closely associated with the changes in three-dimensional chromatin structures by affecting the formation of enhancer-promoter loops. Furthermore, through Cox regression analysis and three machine learning models, we identified 11 key methylation-driven lncRNAs (DIO3OS, ELOVL2-AS1, MIAT, LINC00536, C9orf163, AC105398.1, LINC02178, MILIP, HID1-AS1, KCNH1-IT1, and TMEM220-AS1) that were associated with the survival of breast cancer patients and constructed a prognostic risk scoring model, which demonstrated strong prognostic performance. These findings enhance our understanding of DNA methylation's role in lncRNA regulation in breast cancer and provide potential biomarkers for diagnosis.
Collapse
Affiliation(s)
- Zhiyu Fan
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.F.); (D.Y.); (Q.L.)
| | - Yingli Chen
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.F.); (D.Y.); (Q.L.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Dongsheng Yan
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.F.); (D.Y.); (Q.L.)
| | - Qianzhong Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.F.); (D.Y.); (Q.L.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
23
|
Monteagudo-Sánchez A, Richard Albert J, Scarpa M, Noordermeer D, Greenberg MC. The impact of the embryonic DNA methylation program on CTCF-mediated genome regulation. Nucleic Acids Res 2024; 52:10934-10950. [PMID: 39180406 PMCID: PMC11472158 DOI: 10.1093/nar/gkae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024] Open
Abstract
During mammalian embryogenesis, both the 5-cytosine DNA methylation (5meC) landscape and three dimensional (3D) chromatin architecture are profoundly remodeled during a process known as 'epigenetic reprogramming.' An understudied aspect of epigenetic reprogramming is how the 5meC flux, per se, affects the 3D genome. This is pertinent given the 5meC-sensitivity of DNA binding for a key regulator of chromosome folding: CTCF. We profiled the CTCF binding landscape using a mouse embryonic stem cell (ESC) differentiation protocol that models embryonic 5meC dynamics. Mouse ESCs lacking DNA methylation machinery are able to exit naive pluripotency, thus allowing for dissection of subtle effects of CTCF on gene expression. We performed CTCF HiChIP in both wild-type and mutant conditions to assess gained CTCF-CTCF contacts in the absence of 5meC. We performed H3K27ac HiChIP to determine the impact that ectopic CTCF binding has on cis-regulatory contacts. Using 5meC epigenome editing, we demonstrated that the methyl-mark is able to impair CTCF binding at select loci. Finally, a detailed dissection of the imprinted Zdbf2 locus showed how 5meC-antagonism of CTCF allows for proper gene regulation during differentiation. This work provides a comprehensive overview of how 5meC impacts the 3D genome in a relevant model for early embryonic events.
Collapse
Affiliation(s)
| | | | - Margherita Scarpa
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91998 Gif-sur-Yvette, France
| | | |
Collapse
|
24
|
Chang Y, Liu J, Guo M, Ouyang W, Yan J, Xiong L, Li X. Drought-responsive dynamics of H3K9ac-marked 3D chromatin interactions are integrated by OsbZIP23-associated super-enhancer-like promoter regions in rice. Genome Biol 2024; 25:262. [PMID: 39390531 PMCID: PMC11465533 DOI: 10.1186/s13059-024-03408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND In response to drought stress (DS), plants undergo complex processes that entail significant transcriptome reprogramming. However, the intricate relationship between the dynamic alterations in the three-dimensional (3D) genome and the modulation of gene co-expression in drought responses remains a relatively unexplored area. RESULTS In this study, we reconstruct high-resolution 3D genome maps based on genomic regions marked by H3K9ac, an active histone modification that dynamically responds to soil water variations in rice. We discover a genome-wide disconnection of 3D genome contact upon DS with over 10,000 chromatin loops lost, which are partially recovered in the subsequent re-watering. Loops integrating promoter-promoter interactions (PPI) contribute to gene expression in addition to basal H3K9ac modifications. Moreover, H3K9ac-marked promoter regions with high affinities in mediating PPIs, termed as super-promoter regions (SPRs), integrate spatially clustered PPIs in a super-enhancer-like manner. Interestingly, the knockout mutation of OsbZIP23, a well-defined DS-responsive transcription factor, leads to the disassociation of over 80% DS-specific PPIs and decreased expression of the corresponding genes under DS. As a case study, we show how OsbZIP23 integrates the PPI cluster formation and the co-expression of four dehydrin genes, RAB16A-D, through targeting the RAB16C SPR in a stress signaling-dependent manner. CONCLUSIONS Our high-resolution 3D genome maps unveil the principles and details of dynamic genome folding in response to water supply variations and illustrate OsbZIP23 as an indispensable integrator of the yet unique 3D genome organization that is essential for gene co-expression under DS in rice.
Collapse
Affiliation(s)
- Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiahan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiapei Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
25
|
Zeng S, Mo C, Xu B, Wang Z, Zhang F, Biao A, Li S, Kong Q, Wang J. T2T genome assemblies of Fallopia multiflora (Heshouwu) and F. multiflora var. angulata. Sci Data 2024; 11:1103. [PMID: 39384802 PMCID: PMC11464673 DOI: 10.1038/s41597-024-03943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
The traditional Chinese medicinal plant Fallopia multiflora (hereafter AYY) is well known for its anti-hyperlipidaemia, immunomodulating, and hepatoprotective effects, attributed to its abundance of anthraquinones and stilbene glycosides, which are distinct to its variety F. multiflora var. angulata (hereafter CYY) in proportion and composition. In this study, telomere-to-telomere (T2T) genomes were assembled for AYY and CYY using PacBio HiFi reads and Hi-C data. The genome sizes, percentages of repetitive sequences, and numbers of protein-coding genes of AYY and CYY assemblies were 1,458.37 Mb/70.48%/84,768 and 1,174.38 Mb/67.36%/69,100, respectively. Comprehensive assessments confirmed high continuity (contig N50: 112.58 Mb and 94.83 Mb; number of gaps: 9 and 5), completeness (BUSCOs: 97.30% and 97.60%; LAI: 16.93 and 16.77), and correctness (QV: 51.42 and 52.60) of AYY and CYY assemblies. These T2T genomes of F. multiflora provide valuable resources for studying the biosynthesis of specialized metabolites and facilitating precise genetic improvement.
Collapse
Affiliation(s)
- Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, P.R. China
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, 341000, P.R. China
| | - Changjuan Mo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingqiang Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, P.R. China
- State Key Laboratory of Dao-di Herbs, Beijng, 100700, P. R. China
| | - Zhiqiang Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, P.R. China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, P.R. China
| | - A Biao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, P.R. China
| | - Sixuan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, P.R. China.
| |
Collapse
|
26
|
Erjavec E, Angée C, Hadjadj D, Passet B, David P, Kostic C, Dodé E, Zanlonghi X, Cagnard N, Nedelec B, Crippa SV, Bole-Feysot C, Zarhrate M, Creuzet S, Castille J, Vilotte JL, Calvas P, Plaisancié J, Chassaing N, Kaplan J, Rozet JM, Fares Taie L. Congenital microcoria deletion in mouse links Sox21 dysregulation to disease and suggests a role for TGFB2 in glaucoma and myopia. Am J Hum Genet 2024; 111:2265-2282. [PMID: 39293448 PMCID: PMC11480854 DOI: 10.1016/j.ajhg.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024] Open
Abstract
Congenital microcoria (MCOR) is a rare hereditary developmental defect of the iris dilator muscle frequently associated with high axial myopia and high intraocular pressure (IOP) glaucoma. The condition is caused by submicroscopic rearrangements of chromosome 13q32.1. However, the mechanisms underlying the failure of iris development and the origin of associated features remain elusive. Here, we present a 3D architecture model of the 13q32.1 region, demonstrating that MCOR-related deletions consistently disrupt the boundary between two topologically associating domains (TADs). Deleting the critical MCOR-causing region in mice reveals ectopic Sox21 expression precisely aligning with Dct, each located in one of the two neighbor TADs. This observation is consistent with the TADs' boundary alteration and adoption of Dct regulatory elements by the Sox21 promoter. Additionally, we identify Tgfb2 as a target gene of SOX21 and show TGFΒ2 accumulation in the aqueous humor of an MCOR-affected subject. Accumulation of TGFB2 is recognized for its role in glaucoma and potential impact on axial myopia. Our results highlight the importance of SOX21-TGFB2 signaling in iris development and control of eye growth and IOP. Insights from MCOR studies may provide therapeutic avenues for this condition but also for glaucoma and high myopia conditions, affecting millions of people.
Collapse
Affiliation(s)
- Elisa Erjavec
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Clémentine Angée
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Djihad Hadjadj
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Bruno Passet
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Pierre David
- Transgenesis Platform, Laboratoire d'Expérimentation Animale et Transgenèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, Paris, France
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Emmanuel Dodé
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Xavier Zanlonghi
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Nicolas Cagnard
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Brigitte Nedelec
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Sylvain V Crippa
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Christine Bole-Feysot
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, INSERM US24/CNRS UAR3633, Paris, France
| | - Mohammed Zarhrate
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, INSERM US24/CNRS UAR3633, Paris, France
| | - Sophie Creuzet
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Johan Castille
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Patrick Calvas
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Julie Plaisancié
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France.
| | - L Fares Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France.
| |
Collapse
|
27
|
de Lima LG, Guarracino A, Koren S, Potapova T, McKinney S, Rhie A, Solar SJ, Seidel C, Fagen B, Walenz BP, Bouffard GG, Brooks SY, Peterson M, Hall K, Crawford J, Young AC, Pickett BD, Garrison E, Phillippy AM, Gerton JL. The formation and propagation of human Robertsonian chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614821. [PMID: 39386535 PMCID: PMC11463614 DOI: 10.1101/2024.09.24.614821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Robertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious. Recent advances in genomics allowed us to assemble three human Robertsonian chromosomes completely. We identify a common breakpoint and epigenetic changes in centromeres that provide insight into the formation and propagation of common Robertsonian translocations. Further investigation of the assembled genomes of chimpanzee and bonobo highlights the structural features of the human genome that uniquely enable the specific crossover event that creates these chromosomes. Resolving the structure and epigenetic features of human Robertsonian chromosomes at a molecular level paves the way to understanding how chromosomal structural variation occurs more generally, and how chromosomes evolve.
Collapse
Affiliation(s)
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven J Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brandon Fagen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brian P Walenz
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gerard G Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shelise Y Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Juyun Crawford
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice C Young
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M Phillippy
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
28
|
Adhisantoso YG, Körner T, Müntefering F, Ostermann J, Voges J. HiCMC: High-Efficiency Contact Matrix Compressor. BMC Bioinformatics 2024; 25:296. [PMID: 39256681 PMCID: PMC11389233 DOI: 10.1186/s12859-024-05907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Chromosome organization plays an important role in biological processes such as replication, regulation, and transcription. One way to study the relationship between chromosome structure and its biological functions is through Hi-C studies, a genome-wide method for capturing chromosome conformation. Such studies generate vast amounts of data. The problem is exacerbated by the fact that chromosome organization is dynamic, requiring snapshots at different points in time, further increasing the amount of data to be stored. We present a novel approach called the High-Efficiency Contact Matrix Compressor (HiCMC) for efficient compression of Hi-C data. RESULTS By modeling the underlying structures found in the contact matrix, such as compartments and domains, HiCMC outperforms the state-of-the-art method CMC by approximately 8% and the other state-of-the-art methods cooler, LZMA, and bzip2 by over 50% across multiple cell lines and contact matrix resolutions. In addition, HiCMC integrates domain-specific information into the compressed bitstreams that it generates, and this information can be used to speed up downstream analyses. CONCLUSION HiCMC is a novel compression approach that utilizes intrinsic properties of contact matrix, such as compartments and domains. It allows for a better compression in comparison to the state-of-the-art methods. HiCMC is available at https://github.com/sXperfect/hicmc .
Collapse
Affiliation(s)
- Yeremia Gunawan Adhisantoso
- Institut für Informationsverarbeitung and L3S Research Center, Leibniz University Hannover, Hannover, Germany.
| | - Tim Körner
- Institut für Informationsverarbeitung and L3S Research Center, Leibniz University Hannover, Hannover, Germany
| | - Fabian Müntefering
- Institut für Informationsverarbeitung and L3S Research Center, Leibniz University Hannover, Hannover, Germany
| | - Jörn Ostermann
- Institut für Informationsverarbeitung and L3S Research Center, Leibniz University Hannover, Hannover, Germany
| | - Jan Voges
- CIMA University of Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| |
Collapse
|
29
|
Zhang B, Xue Y, Liu X, Ding H, Yang Y, Wang C, Xu Z, Zhou J, Sun C, Tang J, Li D. A near-complete chromosome-level genome assembly of looseleaf lettuce (Lactuca sativa var. crispa). Sci Data 2024; 11:961. [PMID: 39231996 PMCID: PMC11375085 DOI: 10.1038/s41597-024-03830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
Lettuce (Lactuca sativa L., Asteraceae) is one of the most important vegetable crops, known for its various horticultural types and significant morphological variation. The first reference genome of lettuce, a crisphead type (L. sativa var. capitata cv. Salinas), was previously released. Here, we reported a near-complete chromosome-level reference genome for looseleaf lettuce (L. sativa var. crispa). PacBio high-fidelity sequencing, Oxford Nanopore, and Hi-C technologies were employed to produce genome assembly. The final assembly is 2.59 Gb in length with a contig N50 of 205.47 Mb, anchored onto nine chromosomes, containing 14 recognizable telomeres and only 11 gaps. Repetitive sequences account for 77.11% of the genome, and 41,375 protein-coding genes were predicted, with 99.10% of these assigned functional annotations. This chromosome-level genome enriched genomic resources for various horticultural types of lettuce and will facilitate the characterization of morphological variation and genetic improvement in lettuce.
Collapse
Affiliation(s)
- Bin Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, P. R. China
| | - Yingfei Xue
- College of Life Sciences, Capital Normal University, Beijing, 100048, P. R. China
| | - Xue Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, P. R. China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Haifeng Ding
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, P. R. China
- Jingyan Yinong (Beijing) Seed Sci-Tech Co., Ltd., Beijing, 100097, P. R. China
| | - Yesheng Yang
- Jingyan Yinong (Beijing) Seed Sci-Tech Co., Ltd., Beijing, 100097, P. R. China
| | - Chenchen Wang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zhaoyang Xu
- College of Life Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jun Zhou
- College of Life Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing, 100048, P. R. China
| | - Jinfu Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China.
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, P. R. China.
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, P. R. China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, P. R. China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, 100097, P. R. China.
| |
Collapse
|
30
|
Cui J, Zhu C, Shen L, Yi C, Wu R, Sun X, Han F, Li Y, Liu Y. The gap-free genome of Forsythia suspensa illuminates the intricate landscape of centromeres. HORTICULTURE RESEARCH 2024; 11:uhae185. [PMID: 39247880 PMCID: PMC11374533 DOI: 10.1093/hr/uhae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Forsythia suspensa, commonly known as weeping forsythia, holds significance in traditional medicine and horticulture. Despite its ecological and cultural importance, the existing reference genome presents challenges with duplications and gaps, hindering in-depth genomic analyses. Here, we present a Telomere-to-Telomere (T2T) assembly of the F. suspensa genome, integrating Oxford Nanopore Technologies (ONT) ultra-long, Hi-C datasets, and high-fidelity (HiFi) sequencing data. The T2T reference genome (Fsus-CHAU) consists of 14 chromosomes, totaling 688.79 Mb, and encompasses 33 932 predicted protein-coding genes. Additionally, we characterize functional centromeres in the F. suspensa genome by developing a specific CENH3 antibody. We demonstrate that centromeric regions in F. suspensa exhibit a diverse array of satellites, showcasing distinctive types with unconventional lengths across various chromosomes. This discovery offers implications for the adaptability of CENH3 and the potential influence on centromere dynamics. Furthermore, after assessing the insertion time of full-length LTRs within centromeric regions, we found that they are older compared to those across the entire genome, contrasting with observations in other species where centromeric retrotransposons are typically young. We hypothesize that asexual reproduction may impact retrotransposon dynamics, influencing centromere evolution. In conclusion, our T2T assembly of the F. suspensa genome, accompanied by detailed genomic annotations and centromere analysis, significantly enhances F. suspensa potential as a subject of study in fields ranging from ecology and horticulture to traditional medicine.
Collapse
Affiliation(s)
- Jian Cui
- School of Architecture & Built Environment, The University of Adelaide, Adelaide, 5005, Australia
| | - Congle Zhu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lisha Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Congyang Yi
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Wu
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Xiaoyang Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fangpu Han
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Yang Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
31
|
Lainscsek X, Taher L. ENT3C: an entropy-based similarity measure for Hi-C and micro-C derived contact matrices. NAR Genom Bioinform 2024; 6:lqae076. [PMID: 38962256 PMCID: PMC11217677 DOI: 10.1093/nargab/lqae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Hi-C and micro-C sequencing have shed light on the profound importance of 3D genome organization in cellular function by probing 3D contact frequencies across the linear genome. The resulting contact matrices are extremely sparse and susceptible to technical- and sequence-based biases, making their comparison challenging. The development of reliable, robust and efficient methods for quantifying similarity between contact matrices is crucial for investigating variations in the 3D genome organization in different cell types or under different conditions, as well as evaluating experimental reproducibility. We present a novel method, ENT3C, which measures the change in pattern complexity in the vicinity of contact matrix diagonals to quantify their similarity. ENT3C provides a robust, user-friendly Hi-C or micro-C contact matrix similarity metric and a characteristic entropy signal that can be used to gain detailed biological insights into 3D genome organization.
Collapse
Affiliation(s)
- Xenia Lainscsek
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| |
Collapse
|
32
|
Rossini R, Oshaghi M, Nekrasov M, Bellanger A, Domaschenz R, Dijkwel Y, Abdelhalim M, Collas P, Tremethick D, Paulsen J. Loss of multi-level 3D genome organization during breast cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.26.568711. [PMID: 38076897 PMCID: PMC10705249 DOI: 10.1101/2023.11.26.568711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Breast cancer entails intricate alterations in genome organization and expression. However, how three-dimensional (3D) chromatin structure changes in the progression from a normal to a breast cancer malignant state remains unknown. To address this, we conducted an analysis combining Hi-C data with lamina-associated domains (LADs), epigenomic marks, and gene expression in an in vitro model of breast cancer progression. Our results reveal that while the fundamental properties of topologically associating domains (TADs) are overall maintained, significant changes occur in the organization of compartments and subcompartments. These changes are closely correlated with alterations in the expression of oncogenic genes. We also observe a restructuring of TAD-TAD interactions, coinciding with a loss of spatial compartmentalization and radial positioning of the 3D genome. Notably, we identify a previously unrecognized interchromosomal insertion event, wherein a locus on chromosome 8 housing the MYC oncogene is inserted into a highly active subcompartment on chromosome 10. This insertion is accompanied by the formation of de novo enhancer contacts and activation of MYC, illustrating how structural genomic variants can alter the 3D genome to drive oncogenic states. In summary, our findings provide evidence for the loss of genome organization at multiple scales during breast cancer progression revealing novel relationships between genome 3D structure and oncogenic processes.
Collapse
Affiliation(s)
- Roberto Rossini
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Mohammadsaleh Oshaghi
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Maxim Nekrasov
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Aurélie Bellanger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Renae Domaschenz
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yasmin Dijkwel
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David Tremethick
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jonas Paulsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
33
|
Zhou B, Hu P, Liu G, Chang Z, Dong Z, Li Z, Yin Y, Tian Z, Han G, Wang W, Li X. Evolutionary patterns and functional effects of 3D chromatin structures in butterflies with extensive genome rearrangements. Nat Commun 2024; 15:6303. [PMID: 39060230 PMCID: PMC11282110 DOI: 10.1038/s41467-024-50529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Chromosome rearrangements may distort 3D chromatin architectures and thus change gene regulation, yet how 3D chromatin structures evolve in insects is largely unknown. Here, we obtain chromosome-level genomes for four butterfly species, Graphium cloanthus, Graphium sarpedon, Graphium eurypylus with 2n = 30, 40, and 60, respectively, and Papilio bianor with 2n = 60. Together with large-scale Hi-C data, we find that inter-chromosome rearrangements very rarely disrupted the pre-existing 3D chromatin structure of ancestral chromosomes. However, some intra-chromosome rearrangements changed 3D chromatin structures compared to the ancestral configuration. We find that new TADs and subTADs have emerged across the rearrangement sites where their adjacent compartments exhibit uniform types. Two intra-chromosome rearrangements altered Rel and lft regulation, potentially contributing to wing patterning differentiation and host plant choice. Notably, butterflies exhibited chromatin loops between Hox gene cluster ANT-C and BX-C, unlike Drosophila. Our CRISPR-Cas9 experiments in butterflies confirm that knocking out the CTCF binding site of the loops in BX-C affected the phenotypes regulated by Antp in ANT-C, resulting in legless larva. Our results reveal evolutionary patterns of insect 3D chromatin structures and provide evidence that 3D chromatin structure changes can play important roles in the evolution of traits.
Collapse
Affiliation(s)
- Botong Zhou
- School of Ecology and Environment, New Cornerstone Science Laboratory, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ping Hu
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, 650223, China
| | - Guichun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhou Chang
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhiwei Dong
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zihe Li
- School of Ecology and Environment, New Cornerstone Science Laboratory, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuan Yin
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Zunzhe Tian
- School of Ecology and Environment, New Cornerstone Science Laboratory, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ge Han
- School of Ecology and Environment, New Cornerstone Science Laboratory, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wen Wang
- School of Ecology and Environment, New Cornerstone Science Laboratory, Northwestern Polytechnical University, Xi'an, 710072, China.
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xueyan Li
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, 650223, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
34
|
Liu H, Ma W. DiffGR: Detecting Differentially Interacting Genomic Regions from Hi-C Contact Maps. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae028. [PMID: 39222712 DOI: 10.1093/gpbjnl/qzae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/19/2023] [Accepted: 10/01/2023] [Indexed: 09/04/2024]
Abstract
Recent advances in high-throughput chromosome conformation capture (Hi-C) techniques have allowed us to map genome-wide chromatin interactions and uncover higher-order chromatin structures, thereby shedding light on the principles of genome architecture and functions. However, statistical methods for detecting changes in large-scale chromatin organization such as topologically associating domains (TADs) are still lacking. Here, we proposed a new statistical method, DiffGR, for detecting differentially interacting genomic regions at the TAD level between Hi-C contact maps. We utilized the stratum-adjusted correlation coefficient to measure similarity of local TAD regions. We then developed a nonparametric approach to identify statistically significant changes of genomic interacting regions. Through simulation studies, we demonstrated that DiffGR can robustly and effectively discover differential genomic regions under various conditions. Furthermore, we successfully revealed cell type-specific changes in genomic interacting regions in both human and mouse Hi-C datasets, and illustrated that DiffGR yielded consistent and advantageous results compared with state-of-the-art differential TAD detection methods. The DiffGR R package is published under the GNU General Public License (GPL) ≥ 2 license and is publicly available at https://github.com/wmalab/DiffGR.
Collapse
Affiliation(s)
- Huiling Liu
- Department of Statistics, University of California Riverside, Riverside, CA 92521, USA
| | - Wenxiu Ma
- Department of Statistics, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
35
|
Bayanjargal A, Taslim C, Showpnil IA, Selich-Anderson J, Crow JC, Lessnick SL, Theisen ER. DBD-α4 helix of EWSR1::FLI1 is required for GGAA microsatellite binding that underlies genome regulation in Ewing sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578127. [PMID: 38352344 PMCID: PMC10862889 DOI: 10.1101/2024.01.31.578127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ewing sarcoma is the second most common bone cancer in children and young adults. In 85% of patients, a translocation between chromosomes 11 and 22 results in a potent fusion oncoprotein, EWSR1::FLI1. EWSR1::FLI1 is the only genetic alteration in an otherwise unaltered genome of Ewing sarcoma tumors. The EWSR1 portion of the protein is an intrinsically disordered domain involved in transcriptional regulation by EWSR1::FLI1. The FLI portion of the fusion contains a DNA binding domain shown to bind core GGAA motifs and GGAA repeats. A small alpha-helix in the DNA binding domain of FLI1, DBD-𝛼4 helix, is critical for the transcription function of EWSR1::FLI1. In this study, we aimed to understand the mechanism by which the DBD-𝛼4 helix promotes transcription, and therefore oncogenic transformation. We utilized a multi-omics approach to assess chromatin organization, active chromatinmarks, genome binding, and gene expression in cells expressing EWSR1::FLI1 constructs with and without the DBD-𝛼4 helix. Our studies revealed DBD-𝛼4 helix is crucial for cooperative binding of EWSR1::FLI1 at GGAA microsatellites. This binding underlies many aspects of genome regulation by EWSR1::FLI1 such as formation of TADs, chromatin loops, enhancers and productive transcription hubs.
Collapse
|
36
|
Darbellay F, Ramisch A, Lopez-Delisle L, Kosicki M, Rauseo A, Jouini Z, Visel A, Andrey G. Pre-hypertrophic chondrogenic enhancer landscape of limb and axial skeleton development. Nat Commun 2024; 15:4820. [PMID: 38844479 PMCID: PMC11156918 DOI: 10.1038/s41467-024-49203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Chondrocyte differentiation controls skeleton development and stature. Here we provide a comprehensive map of chondrocyte-specific enhancers and show that they provide a mechanistic framework through which non-coding genetic variants can influence skeletal development and human stature. Working with fetal chondrocytes isolated from mice bearing a Col2a1 fluorescent regulatory sensor, we identify 780 genes and 2'704 putative enhancers specifically active in chondrocytes using a combination of RNA-seq, ATAC-seq and H3K27ac ChIP-seq. Most of these enhancers (74%) show pan-chondrogenic activity, with smaller populations being restricted to limb (18%) or trunk (8%) chondrocytes only. Notably, genetic variations overlapping these enhancers better explain height differences than those overlapping non-chondrogenic enhancers. Finally, targeted deletions of identified enhancers at the Fgfr3, Col2a1, Hhip and, Nkx3-2 loci confirm their role in regulating cognate genes. This enhancer map provides a framework for understanding how genes and non-coding variations influence bone development and diseases.
Collapse
Affiliation(s)
- Fabrice Darbellay
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA, 94720, USA
| | - Anna Ramisch
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA, 94720, USA
| | - Antonella Rauseo
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
| | - Zahra Jouini
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA, 94720, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, CA, 95343, USA
| | - Guillaume Andrey
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
37
|
Wang J, Lv J, Shi M, Ge Q, Wang Q, He Y, Li J, Li J. Chromosome-level genome assembly of ridgetail white shrimp Exopalaemon carinicauda. Sci Data 2024; 11:576. [PMID: 38834644 DOI: 10.1038/s41597-024-03423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Exopalaemon carinicauda, a eurythermal and euryhaline shrimp, contributes one third of the total biomass production of polyculture ponds in eastern China and is considered as a potential ideal experimental animal for research on crustaceans. We conducted a high-quality chromosome-level genome assembly of E. carinicauda combining PacBio HiFi and Hi-C sequencing data. The total assembly size was 5.86 Gb, with a contig N50 of 235.52 kb and a scaffold N50 of 138.24 Mb. Approximately 95.29% of the assembled sequences were anchored onto 45 pseudochromosomes. BUSCO analysis revealed that 92.89% of 1,013 single-copy genes were highly conserved orthologs. A total of 44, 288 protein-coding genes were predicted, of which 70.53% were functionally annotated. Given its high heterozygosity (2.62%) and large proportion of repeat sequences (71.49%), it is one of the most complex genome assemblies. This chromosome-scale genome will be a valuable resource for future molecular breeding and functional genomics research on E. carinicauda.
Collapse
Affiliation(s)
- Jiajia Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jianjian Lv
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Miao Shi
- Berry Genomics Co., Ltd., Beijing, China
| | - Qianqian Ge
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Qiong Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yuying He
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jian Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
38
|
Zhao Y, Yang M, Gong F, Pan Y, Hu M, Peng Q, Lu L, Lyu X, Sun K. Accelerating 3D genomics data analysis with Microcket. Commun Biol 2024; 7:675. [PMID: 38824179 PMCID: PMC11144199 DOI: 10.1038/s42003-024-06382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
The three-dimensional (3D) organization of genome is fundamental to cell biology. To explore 3D genome, emerging high-throughput approaches have produced billions of sequencing reads, which is challenging and time-consuming to analyze. Here we present Microcket, a package for mapping and extracting interacting pairs from 3D genomics data, including Hi-C, Micro-C, and derivant protocols. Microcket utilizes a unique read-stitch strategy that takes advantage of the long read cycles in modern DNA sequencers; benchmark evaluations reveal that Microcket runs much faster than the current tools along with improved mapping efficiency, and thus shows high potential in accelerating and enhancing the biological investigations into 3D genome. Microcket is freely available at https://github.com/hellosunking/Microcket .
Collapse
Affiliation(s)
- Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Chemical and Biological Engineering, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Fanglei Gong
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuqi Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghui Hu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Leina Lu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaowen Lyu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Reproductive Health Research, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
39
|
Ma F, Cao Y, Du H, Braikia FZ, Zong L, Ollikainen N, Bayer M, Qiu X, Park B, Roy R, Nandi S, Sarantopoulou D, Ziman A, Bianchi AH, Beerman I, Zhao K, Grosschedl R, Sen R. Three-dimensional chromatin reorganization regulates B cell development during ageing. Nat Cell Biol 2024; 26:991-1002. [PMID: 38866970 PMCID: PMC11178499 DOI: 10.1038/s41556-024-01424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/16/2024] [Indexed: 06/14/2024]
Abstract
The contribution of three-dimensional genome organization to physiological ageing is not well known. Here we show that large-scale chromatin reorganization distinguishes young and old bone marrow progenitor (pro-) B cells. These changes result in increased interactions at the compartment level and reduced interactions within topologically associated domains (TADs). The gene encoding Ebf1, a key B cell regulator, switches from compartment A to B with age. Genetically reducing Ebf1 recapitulates some features of old pro-B cells. TADs that are most reduced with age contain genes important for B cell development, including the immunoglobulin heavy chain (Igh) locus. Weaker intra-TAD interactions at Igh correlate with altered variable (V), diversity (D) and joining (J) gene recombination. Our observations implicate three-dimensional chromatin reorganization as a major driver of pro-B cell phenotypes that impair B lymphopoiesis with age.
Collapse
Affiliation(s)
- Fei Ma
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Hansen Du
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Fatima Zohra Braikia
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Le Zong
- Epigenetics and Stem Cell Init, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Noah Ollikainen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Marc Bayer
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Xiang Qiu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Init, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Satabdi Nandi
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Dimitra Sarantopoulou
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | | | - Aisha Haley Bianchi
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Init, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
40
|
Mo C, Wang H, Wei M, Zeng Q, Zhang X, Fei Z, Zhang Y, Kong Q. Complete genome assembly provides a high-quality skeleton for pan-NLRome construction in melon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2249-2268. [PMID: 38430487 DOI: 10.1111/tpj.16705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Melon (Cucumis melo L.), being under intensive domestication and selective breeding, displays an abundant phenotypic diversity. Wild germplasm with tolerance to stress represents an untapped genetic resource for discovery of disease-resistance genes. To comprehensively characterize resistance genes in melon, we generate a telomere-to-telomere (T2T) and gap-free genome of wild melon accession PI511890 (C. melo var. chito) with a total length of 375.0 Mb and a contig N50 of 31.24 Mb. The complete genome allows us to dissect genome architecture and identify resistance gene analogs. We construct a pan-NLRome using seven melon genomes, which include 208 variable and 18 core nucleotide-binding leucine-rich repeat receptors (NLRs). Multiple disease-related transcriptome analyses indicate that most up-regulated NLRs induced by pathogens are shell or cloud NLRs. The T2T gap-free assembly and the pan-NLRome not only serve as essential resources for genomic studies and molecular breeding of melon but also provide insights into the genome architecture and NLR diversity.
Collapse
Affiliation(s)
- Changjuan Mo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyan Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minghua Wei
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingguo Zeng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | | | - Yongbing Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
41
|
Yang Y, Liu JF, Jiang XF. A chromosome-level genome assembly of Chinese quince ( Pseudocydonia sinensis). FRONTIERS IN PLANT SCIENCE 2024; 15:1368861. [PMID: 38887462 PMCID: PMC11180997 DOI: 10.3389/fpls.2024.1368861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Introduction Pseudocydonia sinensis, also known as Chinese quince, is a perennial shrub or small tree highly valued for its edibility and medicinal properties. Method This study presents the first chromosome-level genome assembly of P. sinensis, achieved using HiFi sequencing and Hi-C scaffolding technology. Results The assembly resulted in a high-quality genome of 576.39 Mb in size. The genome was anchored to 17 pseudo-chromosomes, with a contig N50 of 27.6 Mb and a scaffold N50 of 33.8 Mb. Comprehensive assessment using BUSCO, CEGMA and BWA tools indicates the high completeness and accuracy of the genome assembly. Our analysis identified 116 species-specific genes, 1196 expanded genes and 1109 contracted genes. Additionally, the distribution of 4DTv values suggests that the most recent duplication event occurred before the divergence of P. sinensis from both Chaenomeles pinnatifida and Pyrus pyrifolia. Discussion The assembly of this high-quality genome provides a valuable platform for the genetic breeding and cultivation of P. sinensis, as well as for the comparison of the genetic complexity of P. sinensis with other important crops in the Rosaceae family.
Collapse
Affiliation(s)
- Ying Yang
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
| | - Jin Feng Liu
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
| | - Xian Feng Jiang
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Co-Innovation Center for Cangshan Mountain and Erhai Lake Integrated Protection and Green Development of Yunnan Province, Dali University, Dali, Yunnan, China
| |
Collapse
|
42
|
Xu J, Xu X, Huang D, Luo Y, Lin L, Bai X, Zheng Y, Yang Q, Cheng Y, Huang A, Shi J, Bo X, Gu J, Chen H. A comprehensive benchmarking with interpretation and operational guidance for the hierarchy of topologically associating domains. Nat Commun 2024; 15:4376. [PMID: 38782890 PMCID: PMC11116433 DOI: 10.1038/s41467-024-48593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Topologically associating domains (TADs), megabase-scale features of chromatin spatial architecture, are organized in a domain-within-domain TAD hierarchy. Within TADs, the inner and smaller subTADs not only manifest cell-to-cell variability, but also precisely regulate transcription and differentiation. Although over 20 TAD callers are able to detect TAD, their usability in biomedicine is confined by a disagreement of outputs and a limit in understanding TAD hierarchy. We compare 13 computational tools across various conditions and develop a metric to evaluate the similarity of TAD hierarchy. Although outputs of TAD hierarchy at each level vary among callers, data resolutions, sequencing depths, and matrices normalization, they are more consistent when they have a higher similarity of larger TADs. We present comprehensive benchmarking of TAD hierarchy callers and operational guidance to researchers of life science researchers. Moreover, by simulating the mixing of different types of cells, we confirm that TAD hierarchy is generated not simply from stacking Hi-C heatmaps of heterogeneous cells. Finally, we propose an air conditioner model to decipher the role of TAD hierarchy in transcription.
Collapse
Affiliation(s)
- Jingxuan Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiang Xu
- Academy of Military Medical Science, Beijing, 100850, China
| | - Dandan Huang
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
- Center for Precision Diagnosis and Treatment of Colorectal Cancer and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
| | - Yawen Luo
- Academy of Military Medical Science, Beijing, 100850, China
| | - Lin Lin
- Academy of Military Medical Science, Beijing, 100850, China
- School of Computer Science and Information Technology& KLAS, Northeast Normal University, Changchun, China
| | - Xuemei Bai
- Academy of Military Medical Science, Beijing, 100850, China
| | - Yang Zheng
- Academy of Military Medical Science, Beijing, 100850, China
| | - Qian Yang
- Academy of Military Medical Science, Beijing, 100850, China
| | - Yu Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - An Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jingyi Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaochen Bo
- Academy of Military Medical Science, Beijing, 100850, China.
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Department of Oncology, Peking University Shougang Hospital, Beijing, China.
- Center for Precision Diagnosis and Treatment of Colorectal Cancer and Inflammatory Diseases, Peking University Health Science Center, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Peking University International Cancer Institute, Beijing, China.
| | - Hebing Chen
- Academy of Military Medical Science, Beijing, 100850, China.
| |
Collapse
|
43
|
Shao W, Wang J, Zhang Y, Zhang C, Chen J, Chen Y, Fei Z, Ma Z, Sun X, Jiao C. The jet-like chromatin structure defines active secondary metabolism in fungi. Nucleic Acids Res 2024; 52:4906-4921. [PMID: 38407438 PMCID: PMC11109943 DOI: 10.1093/nar/gkae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
Eukaryotic genomes are spatially organized within the nucleus in a nonrandom manner. However, fungal genome arrangement and its function in development and adaptation remain largely unexplored. Here, we show that the high-order chromosome structure of Fusarium graminearum is sculpted by both H3K27me3 modification and ancient genome rearrangements. Active secondary metabolic gene clusters form a structure resembling chromatin jets. We demonstrate that these jet-like domains, which can propagate symmetrically for 54 kb, are prevalent in the genome and correlate with active gene transcription and histone acetylation. Deletion of GCN5, which encodes a core and functionally conserved histone acetyltransferase, blocks the formation of the domains. Insertion of an exogenous gene within the jet-like domain significantly augments its transcription. These findings uncover an interesting link between alterations in chromatin structure and the activation of fungal secondary metabolism, which could be a general mechanism for fungi to rapidly respond to environmental cues, and highlight the utility of leveraging three-dimensional genome organization in improving gene transcription in eukaryotes.
Collapse
Affiliation(s)
- Wenyong Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jingrui Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yueqi Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chaofan Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Jie Chen
- National Joint Engineering Laboratory of Biopesticide Preparation, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Chen Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
44
|
Vorobyeva NE, Krasnov AN, Erokhin M, Chetverina D, Mazina M. Su(Hw) interacts with Combgap to establish long-range chromatin contacts. Epigenetics Chromatin 2024; 17:17. [PMID: 38773468 PMCID: PMC11106861 DOI: 10.1186/s13072-024-00541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Insulator-binding proteins (IBPs) play a critical role in genome architecture by forming and maintaining contact domains. While the involvement of several IBPs in organising chromatin architecture in Drosophila has been described, the specific contribution of the Suppressor of Hairy wings (Su(Hw)) insulator-binding protein to genome topology remains unclear. RESULTS In this study, we provide evidence for the existence of long-range interactions between chromatin bound Su(Hw) and Combgap, which was first characterised as Polycomb response elements binding protein. Loss of Su(Hw) binding to chromatin results in the disappearance of Su(Hw)-Combgap long-range interactions and in a decrease in spatial self-interactions among a subset of Su(Hw)-bound genome sites. Our findings suggest that Su(Hw)-Combgap long-range interactions are associated with active chromatin rather than Polycomb-directed repression. Furthermore, we observe that the majority of transcription start sites that are down-regulated upon loss of Su(Hw) binding to chromatin are located within 2 kb of Combgap peaks and exhibit Su(Hw)-dependent changes in Combgap and transcriptional regulators' binding. CONCLUSIONS This study demonstrates that Su(Hw) insulator binding protein can form long-range interactions with Combgap, Polycomb response elements binding protein, and that these interactions are associated with active chromatin factors rather than with Polycomb dependent repression.
Collapse
Affiliation(s)
- Nadezhda E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Marina Mazina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
45
|
Liu C, Nagashima H, Fernando N, Bass V, Gopalakrishnan J, Signorella S, Montgomery W, Lim AI, Harrison O, Reich L, Yao C, Sun HW, Brooks SR, Jiang K, Nagarajan V, Zhao Y, Jung S, Phillips R, Mikami Y, Lareau CA, Kanno Y, Jankovic D, Aryee MJ, Pękowska A, Belkaid Y, O'Shea J, Shih HY. A CTCF-binding site in the Mdm1-Il22-Ifng locus shapes cytokine expression profiles and plays a critical role in early Th1 cell fate specification. Immunity 2024; 57:1005-1018.e7. [PMID: 38697116 PMCID: PMC11108081 DOI: 10.1016/j.immuni.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.
Collapse
Affiliation(s)
- Chunhong Liu
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hiroyuki Nagashima
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nilisha Fernando
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victor Bass
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaanam Gopalakrishnan
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sadie Signorella
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Will Montgomery
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oliver Harrison
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren Reich
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen Yao
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vijayaraj Nagarajan
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongbing Zhao
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seolkyoung Jung
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachael Phillips
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yohei Mikami
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caleb A Lareau
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dragana Jankovic
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin J Aryee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aleksandra Pękowska
- Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Han-Yu Shih
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Yingning L, Shuhua W, Wenting D, Miao M, Ying W, Rong Z, Liping B. Chromosome-level genome assembly of Odontothrips loti Haliday (Thysanoptera: Thripidae). Sci Data 2024; 11:451. [PMID: 38704405 PMCID: PMC11069530 DOI: 10.1038/s41597-024-03289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
As the predominant pest of alfalfa, Odontothrips loti Haliday causes great damages over the major alfalfa-growing regions of China. The characteristics of strong mobility and fecundity make them develop rapidly in the field and hard to be controlled. There is a shortage of bioinformation and limited genomic resources available of O. loti for us to develop novel pest management strategies. In this study, we constructed a chromosome-level reference genome assembly of O. loti with a genome size of 346.59 Mb and scaffold N50 length of 18.52 Mb, anchored onto 16 chromosomes and contained 20128 genes, of which 93.59% were functionally annotated. The results of 99.20% complete insecta_odb10 genes in BUSCO analysis, 91.11% short reads mapped to the ref-genome, and the consistent tendency among the thrips in the distribution of gene length reflects the quality of genome. Our study provided the first report of genome for the genus Odontothrips, which offers a genomic resource for further investigations on evolution and molecular biology of O. loti, contributing to pest management.
Collapse
Affiliation(s)
- Luo Yingning
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Shuhua
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Dai Wenting
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Miao Miao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wang Ying
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Zhang Rong
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ban Liping
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
47
|
Xiao TW, Liu X, Fu N, Liu TJ, Wang ZF, Ge XJ, Huang HR. Chromosome-level genome assemblies of Musa ornata and Musa velutina provide insights into pericarp dehiscence and anthocyanin biosynthesis in banana. HORTICULTURE RESEARCH 2024; 11:uhae079. [PMID: 38766534 PMCID: PMC11101321 DOI: 10.1093/hr/uhae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/08/2024] [Indexed: 05/22/2024]
Abstract
Musa ornata and Musa velutina are members of the Musaceae family and are indigenous to the South and Southeast Asia. They are very popular in the horticultural market, but the lack of genomic sequencing data and genetic studies has hampered efforts to improve their ornamental value. In this study, we generated the first chromosome-level genome assemblies for both species by utilizing Oxford Nanopore long reads and Hi-C reads. The genomes of M. ornata and M. velutina were assembled into 11 pseudochromosomes with genome sizes of 427.85 Mb and 478.10 Mb, respectively. Repetitive sequences comprised 46.70% and 50.91% of the total genomes for M. ornata and M. velutina, respectively. Differentially expressed gene (DEG) and Gene Ontology (GO) enrichment analyses indicated that upregulated genes in the mature pericarps of M. velutina were mainly associated with the saccharide metabolic processes, particularly at the cell wall and extracellular region. Furthermore, we identified polygalacturonase (PG) genes that exhibited higher expression level in mature pericarps of M. velutina compared to other tissues, potentially being accountable for pericarp dehiscence. This study also identified genes associated with anthocyanin biosynthesis pathway. Taken together, the chromosomal-level genome assemblies of M. ornata and M. velutina provide valuable insights into the mechanism of pericarp dehiscence and anthocyanin biosynthesis in banana, which will significantly contribute to future genetic and molecular breeding efforts.
Collapse
Affiliation(s)
- Tian-Wen Xiao
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Xin Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Fu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Zheng-Feng Wang
- South China National Botanical Garden, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xue-Jun Ge
- South China National Botanical Garden, Guangzhou 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hui-Run Huang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| |
Collapse
|
48
|
Abdennur N, Abraham S, Fudenberg G, Flyamer IM, Galitsyna AA, Goloborodko A, Imakaev M, Oksuz BA, Venev SV, Xiao Y. Cooltools: Enabling high-resolution Hi-C analysis in Python. PLoS Comput Biol 2024; 20:e1012067. [PMID: 38709825 PMCID: PMC11098495 DOI: 10.1371/journal.pcbi.1012067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/16/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Chromosome conformation capture (3C) technologies reveal the incredible complexity of genome organization. Maps of increasing size, depth, and resolution are now used to probe genome architecture across cell states, types, and organisms. Larger datasets add challenges at each step of computational analysis, from storage and memory constraints to researchers' time; however, analysis tools that meet these increased resource demands have not kept pace. Furthermore, existing tools offer limited support for customizing analysis for specific use cases or new biology. Here we introduce cooltools (https://github.com/open2c/cooltools), a suite of computational tools that enables flexible, scalable, and reproducible analysis of high-resolution contact frequency data. Cooltools leverages the widely-adopted cooler format which handles storage and access for high-resolution datasets. Cooltools provides a paired command line interface (CLI) and Python application programming interface (API), which respectively facilitate workflows on high-performance computing clusters and in interactive analysis environments. In short, cooltools enables the effective use of the latest and largest genome folding datasets.
Collapse
Affiliation(s)
- Open2C
- https://open2c.github.io/
| | - Nezar Abdennur
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sameer Abraham
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Ilya M. Flyamer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Aleksandra A. Galitsyna
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Anton Goloborodko
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Maxim Imakaev
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Betul A. Oksuz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sergey V. Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Yao Xiao
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
49
|
Liu T, Zhu H, Wang Z. Learning Micro-C from Hi-C with diffusion models. PLoS Comput Biol 2024; 20:e1012136. [PMID: 38758956 PMCID: PMC11139321 DOI: 10.1371/journal.pcbi.1012136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/30/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024] Open
Abstract
In the last few years, Micro-C has shown itself as an improved alternative to Hi-C. It replaced the restriction enzymes in Hi-C assays with micrococcal nuclease (MNase), resulting in capturing nucleosome resolution chromatin interactions. The signal-to-noise improvement of Micro-C allows it to detect more chromatin loops than high-resolution Hi-C. However, compared with massive Hi-C datasets available in the literature, there are only a limited number of Micro-C datasets. To take full advantage of these Hi-C datasets, we present HiC2MicroC, a computational method learning and then predicting Micro-C from Hi-C based on the denoising diffusion probabilistic models (DDPM). We trained our DDPM and other regression models in human foreskin fibroblast (HFFc6) cell line and evaluated these methods in six different cell types at 5-kb and 1-kb resolution. Our evaluations demonstrate that both HiC2MicroC and regression methods can markedly improve Hi-C towards Micro-C, and our DDPM-based HiC2MicroC outperforms regression in various terms. First, HiC2MicroC successfully recovers most of the Micro-C loops even those not detected in Hi-C maps. Second, a majority of the HiC2MicroC-recovered loops anchor CTCF binding sites in a convergent orientation. Third, HiC2MicroC loops share genomic and epigenetic properties with Micro-C loops, including linking promoters and enhancers, and their anchors are enriched for structural proteins (CTCF and cohesin) and histone modifications. Lastly, we find our recovered loops are also consistent with the loops identified from promoter capture Micro-C (PCMicro-C) and Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET). Overall, HiC2MicroC is an effective tool for further studying Hi-C data with Micro-C as a template. HiC2MicroC is publicly available at https://github.com/zwang-bioinformatics/HiC2MicroC/.
Collapse
Affiliation(s)
- Tong Liu
- Department of Computer Science, University of Miami, Coral Gables, Florida, United States of America
| | - Hao Zhu
- Department of Computer Science, University of Miami, Coral Gables, Florida, United States of America
| | - Zheng Wang
- Department of Computer Science, University of Miami, Coral Gables, Florida, United States of America
| |
Collapse
|
50
|
Tian H, Luan P, Liu Y, Li G. Tet-mediated DNA methylation dynamics affect chromosome organization. Nucleic Acids Res 2024; 52:3654-3666. [PMID: 38300758 DOI: 10.1093/nar/gkae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
DNA Methylation is a significant epigenetic modification that can modulate chromosome states, but its role in orchestrating chromosome organization has not been well elucidated. Here we systematically assessed the effects of DNA Methylation on chromosome organization with a multi-omics strategy to capture DNA Methylation and high-order chromosome interaction simultaneously on mouse embryonic stem cells with DNA methylation dioxygenase Tet triple knock-out (Tet-TKO). Globally, upon Tet-TKO, we observed weakened compartmentalization, corresponding to decreased methylation differences between CpG island (CGI) rich and poor domains. Tet-TKO could also induce hypermethylation for the CTCF binding peaks in TAD boundaries and chromatin loop anchors. Accordingly, CTCF peak generally weakened upon Tet-TKO, which results in weakened TAD structure and depletion of long-range chromatin loops. Genes that lost enhancer-promoter looping upon Tet-TKO showed DNA hypermethylation in their gene bodies, which may compensate for the disruption of gene expression. We also observed distinct effects of Tet1 and Tet2 on chromatin organization and increased DNA methylation correlation on spatially interacted fragments upon Tet inactivation. Our work showed the broad effects of Tet inactivation and DNA methylation dynamics on chromosome organization.
Collapse
Affiliation(s)
- Hao Tian
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Pengfei Luan
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yaping Liu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Guoqiang Li
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| |
Collapse
|