1
|
Xue CY, Liu YH, Yu Y, Liu Y, Zhou YL, Zhang XX. Ultrasensitive mass spectrometric quantitation of apurinic/apyrimidinic sites in genomic DNA of mammalian cell lines exposed to genotoxic reagents. Anal Chim Acta 2024; 1329:343238. [PMID: 39396301 DOI: 10.1016/j.aca.2024.343238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
The apurinic/apyrimidinic (AP) site is an important intermediate in the DNA base excision repair (BER) pathway, having the potential of being a biomarker for DNA damage. AP sites could lead to the stalling of polymerases, the misincorporation of bases and DNA strand breaks, which might affect physiological function of cells. However, the abundance of AP sites in genomic DNA is very low (less than 2 AP sites/106 nts), which requires a sensitive and accurate method to meet its detection requirements. Here, we described an ultrasensitive quantification method based on a hydrazine-s-triazine reagent (i-Pr2N) labeling for AP sites combining with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The limit of detection reached an ultralow level (40 amol), realizing the most sensitive MS-based quantification for the AP site. To guarantee the accuracy of the quantitative results, the labeling reaction was carried out directly on DNA strands instead of labeling after DNA enzymatic digestion to reduce artifacts that might be produced during the enzymatic process of DNA strands. And selective detection was realized by MS to avoid introducing the false-positive signals from other aldehyde species, which could also react with i-Pr2N. Genomic DNA samples from different mammalian cell lines were successfully analyzed using this method. There were 0.4-0.8 AP sites per 106 nucleotides, and the values would increase 16.1 and 2.75 times when cells were treated with genotoxic substances methyl methanesulfonate and 5-fluorouracil, respectively. This method has good potential in the analysis of a small number of cell samples and clinical samples, is expected to be useful for evaluating the damage level of DNA bases, the genotoxicity of compounds and the drug resistance of cancer cells, and provides a new tool for cell function research and clinical precise treatment.
Collapse
Affiliation(s)
- Chen-Yu Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, 100191, China
| | - Ya-Hong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yue Yu
- Qilu Pharmaceutical Co., Ltd, Jinan, 250104, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Szachnowski U, Sallou O, Boudet M, Bretaudeau A, Wery M, Morillon A, Primig M. The 5-Fluorouracil RNA Expression Viewer (5-FU R) Facilitates Interpreting the Effects of Drug Treatment and RRP6 Deletion on the Transcriptional Landscape in Yeast. Yeast 2024; 41:629-640. [PMID: 39345013 DOI: 10.1002/yea.3982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Saccharomyces cerevisiae is an excellent model to study the effect of external cues on cell division and stress response. 5-Fluorocuracil (5-FU) has been used to treat solid tumors since several decades. The drug was initially designed to interfere with DNA replication but was later found to exert its antiproliferative effect also via RNA-dependent processes. Since 5-FU inhibits the activity of the 3'-5'-exoribonuclease Rrp6 in yeast and mammals, earlier work has compared the effect of 5-FU treatment and RRP6 deletion at the transcriptome level in diploid synchronized yeast cells. To facilitate interpreting the expression data we have developed an improved 5-Fluorouracil RNA (5-FUR) expression viewer. Users can access information via genome coordinates and systematic or standard names for mRNAs and Xrn1-dependent-, stable-, cryptic-, and meiotic unannotated transcripts (XUTs, SUTs, CUTs, and MUTs). Normalized log2-transformed or linear data can be displayed as filled diagrams, line graphs or color-coded heatmaps. The expression data are useful for researchers interested in processes such as cell cycle regulation, mitotic repression of meiotic genes, the effect of 5-FU treatment and Rrp6 deficiency on the transcriptome and expression profiles of sense/antisense loci that encode overlapping transcripts. The viewer is accessible at http://5fur.genouest.org.
Collapse
Affiliation(s)
| | | | - Mateo Boudet
- GenOuest, IRISA, Campus de Beaulieu, Rennes, France
| | | | - Maxime Wery
- Institut Curie, Sorbonne Université, Paris, France
| | | | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| |
Collapse
|
3
|
Greenwood SN, Kulkarni RS, Mikhail M, Weiser BP. Replication Protein A Enhances Kinetics of Uracil DNA Glycosylase on ssDNA and Across DNA Junctions: Explored with a DNA Repair Complex Produced with SpyCatcher/SpyTag Ligation. Chembiochem 2023; 24:e202200765. [PMID: 36883884 PMCID: PMC10267839 DOI: 10.1002/cbic.202200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/09/2023]
Abstract
DNA repair proteins participate in extensive protein-protein interactions that promote the formation of DNA repair complexes. To understand how complex formation affects protein function during base excision repair, we used SpyCatcher/SpyTag ligation to produce a covalent complex between human uracil DNA glycosylase (UNG2) and replication protein A (RPA). Our covalent "RPA-Spy-UNG2" complex could identify and excise uracil bases in duplex areas next to ssDNA-dsDNA junctions slightly faster than the wild-type proteins, but this was highly dependent on DNA structure, as the turnover of the RPA-Spy-UNG2 complex slowed at DNA junctions where RPA tightly engaged long ssDNA sections. Conversely, the enzymes preferred uracil sites in ssDNA where RPA strongly enhanced uracil excision by UNG2 regardless of ssDNA length. Finally, RPA was found to promote UNG2 excision of two uracil sites positioned across a ssDNA-dsDNA junction, and dissociation of UNG2 from RPA enhanced this process. Our approach of ligating together RPA and UNG2 to reveal how complex formation affects enzyme function could be applied to examine other assemblies of DNA repair proteins.
Collapse
Affiliation(s)
- Sharon N Greenwood
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Rashmi S Kulkarni
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Michel Mikhail
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
- Department of Internal Medicine, Newark Beth Israel Medical Center, Newark, NJ 07112, USA
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
4
|
Kulkarni RS, Greenwood SN, Weiser BP. Assay design for analysis of human uracil DNA glycosylase. Methods Enzymol 2022; 679:343-362. [PMID: 36682870 DOI: 10.1016/bs.mie.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human uracil DNA glycosylase (UNG2) is an enzyme whose primary function is to remove uracil bases from genomic DNA. UNG2 activity is critical when uracil bases are elevated in DNA during class switch recombination and somatic hypermutation, and additionally, UNG2 affects the efficacy of thymidylate synthase inhibitors that increase genomic uracil levels. Here, we summarize the enzymatic properties of UNG2 and its mitochondrial analog UNG1. To facilitate studies on the activity of these highly conserved proteins, we discuss three fluorescence-based enzyme assays that have informed much of our understanding on UNG2 function. The assays use synthetic DNA oligonucleotide substrates with uracil bases incorporated in the DNA, and the substrates can be single-stranded, double-stranded, or form other structures such as DNA hairpins or junctions. The fluorescence signal reporting uracil base excision by UNG2 is detected in different ways: (1) Excision of uracil from end-labeled oligonucleotides is measured by visualizing UNG2 reaction products with denaturing PAGE; (2) Uracil excision from dsDNA substrates is detected in solution by base pairing uracil with 2-aminopurine, whose intrinsic fluorescence is enhanced upon uracil excision; or (3) UNG2 excision of uracil from a hairpin molecular beacon substrate changes the structure of the substrate and turns on fluorescence by relieving a fluorescence quench. In addition to their utility in characterizing UNG2 properties, these assays are being adapted to discover inhibitors of the enzyme and to determine how protein-protein interactions affect UNG2 function.
Collapse
Affiliation(s)
- Rashmi S Kulkarni
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Sharon N Greenwood
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.
| |
Collapse
|
5
|
Reproductive and developmental toxicities of 5-fluorouracil in model organisms and humans. Expert Rev Mol Med 2022; 24:e9. [PMID: 35098910 PMCID: PMC9884763 DOI: 10.1017/erm.2022.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chemotherapy, as an important clinical treatment, has greatly enhanced survival in cancer patients, but the side effects and long-term sequelae bother both patients and clinicians. 5-Fluorouracil (5-FU) has been widely used as a chemotherapeutic agent in the clinical treatment of various cancers, but several studies showed its adverse effects on reproduction. Reproductive toxicity of 5-FU often associates with developmental block, malformation and ovarian damage in the females. In males, 5-FU administration alters the morphology of sexual organs, the levels of reproductive endocrine hormones and the progression of spermatogenesis, ultimately reducing sperm numbers. Mechanistically, 5-FU exerts its effect through incorporating the active metabolites into nucleic acids directly, or inhibiting thymidylate synthase to disrupt the function of DNA and RNA, leading to profound effects on cellular metabolism and viability. However, some studies suggested that the toxicity of 5-FU on reproduction is reversible and certain drugs used in combination with 5-FU during chemotherapy could protect reproductive systems from 5-FU damage both in females and males. Herein, we summarise the recent findings and discuss underlying mechanisms of the 5-FU-induced reproductive toxicity, providing a reference for future research and clinical treatments.
Collapse
|
6
|
Calcáneo-Hernández G, Rojas-Espinosa E, Landeros-Jaime F, Cervantes-Chávez JA, Esquivel-Naranjo EU. An efficient transformation system for Trichoderma atroviride using the pyr4 gene as a selectable marker. Braz J Microbiol 2020; 51:1631-1643. [PMID: 32627116 DOI: 10.1007/s42770-020-00329-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/25/2020] [Indexed: 10/23/2022] Open
Abstract
The development of an efficient transformation system is essential to enrich the genetic understanding of Trichoderma atroviride. To acquire an additional homologous selectable marker, uracil auxotrophic mutants were generated. First, the pyr4 gene encoding OMP decarboxylase was replaced by the hph marker gene, encoding a hygromycin phosphotransferase. Then, uracil auxotrophs were employed to determine that 5 mM uracil restores their growth and conidia production, and 1 mg ml-1 is the lethal dose of 5-fluoroorotic acid in T. atroviride. Subsequently, uracil auxotrophic strains, free of a drug-selectable marker, were selected by 5-fluoroorotic acid resistance. Two different deletions in pyr4 were mapped in four auxotrophs, encoding a protein with frameshifts at the 310 and 335 amino acids in their COOH-terminal. Six auxotrophs did not have changes in the pyr4 ORF even though a specific cassette to delete the pyr4 was used, suggesting that 5-FOA could have mutagenic activity. The Ura-1 strain was selected as a genetic background to knock out the MAPKK Pbs2, MAPK Tmk3, and the blue light receptors Blr1/Blr2, using a short version of pyr4 as a homologous marker. The ∆tmk3 and ∆pbs2 mutants selected with pyr4 or hph marker were phenotypically identical, highly sensitive to different stressors, and affected in photoconidiation. The ∆blr1 and ∆blr2 mutants were not responsive to light, and complementation of uracil biosynthesis did not interfere in the expression of blu1, grg2, phr1, and env1 genes upregulated by blue light. Overall, uracil metabolism can be used as a tool for genetic manipulation in T. atroviride.
Collapse
Affiliation(s)
- Gabriela Calcáneo-Hernández
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, 76140, Queretaro, Mexico
| | - Erick Rojas-Espinosa
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, 76140, Queretaro, Mexico
| | - Fidel Landeros-Jaime
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, 76140, Queretaro, Mexico
| | - José Antonio Cervantes-Chávez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, 76140, Queretaro, Mexico
| | - Edgardo Ulises Esquivel-Naranjo
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, 76140, Queretaro, Mexico.
| |
Collapse
|
7
|
Ke W, Saba JA, Yao CH, Hilzendeger MA, Drangowska-Way A, Joshi C, Mony VK, Benjamin SB, Zhang S, Locasale J, Patti GJ, Lewis N, O'Rourke EJ. Dietary serine-microbiota interaction enhances chemotherapeutic toxicity without altering drug conversion. Nat Commun 2020; 11:2587. [PMID: 32444616 PMCID: PMC7244588 DOI: 10.1038/s41467-020-16220-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota metabolizes drugs and alters their efficacy and toxicity. Diet alters drugs, the metabolism of the microbiota, and the host. However, whether diet-triggered metabolic changes in the microbiota can alter drug responses in the host has been largely unexplored. Here we show that dietary thymidine and serine enhance 5-fluoro 2'deoxyuridine (FUdR) toxicity in C. elegans through different microbial mechanisms. Thymidine promotes microbial conversion of the prodrug FUdR into toxic 5-fluorouridine-5'-monophosphate (FUMP), leading to enhanced host death associated with mitochondrial RNA and DNA depletion, and lethal activation of autophagy. By contrast, serine does not alter FUdR metabolism. Instead, serine alters E. coli's 1C-metabolism, reduces the provision of nucleotides to the host, and exacerbates DNA toxicity and host death without mitochondrial RNA or DNA depletion; moreover, autophagy promotes survival in this condition. This work implies that diet-microbe interactions can alter the host response to drugs without altering the drug or the host.
Collapse
Affiliation(s)
- Wenfan Ke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - James A Saba
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Cong-Hui Yao
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Michael A Hilzendeger
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Anna Drangowska-Way
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Chintan Joshi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Vinod K Mony
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Shawna B Benjamin
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sisi Zhang
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Jason Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Nathan Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | - Eyleen J O'Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA.
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Schmidt TT, Sharma S, Reyes GX, Kolodziejczak A, Wagner T, Luke B, Hofer A, Chabes A, Hombauer H. Inactivation of folylpolyglutamate synthetase Met7 results in genome instability driven by an increased dUTP/dTTP ratio. Nucleic Acids Res 2020; 48:264-277. [PMID: 31647103 PMCID: PMC7145683 DOI: 10.1093/nar/gkz1006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
The accumulation of mutations is frequently associated with alterations in gene function leading to the onset of diseases, including cancer. Aiming to find novel genes that contribute to the stability of the genome, we screened the Saccharomyces cerevisiae deletion collection for increased mutator phenotypes. Among the identified genes, we discovered MET7, which encodes folylpolyglutamate synthetase (FPGS), an enzyme that facilitates several folate-dependent reactions including the synthesis of purines, thymidylate (dTMP) and DNA methylation. Here, we found that Met7-deficient strains show elevated mutation rates, but also increased levels of endogenous DNA damage resulting in gross chromosomal rearrangements (GCRs). Quantification of deoxyribonucleotide (dNTP) pools in cell extracts from met7Δ mutant revealed reductions in dTTP and dGTP that cause a constitutively active DNA damage checkpoint. In addition, we found that the absence of Met7 leads to dUTP accumulation, at levels that allowed its detection in yeast extracts for the first time. Consequently, a high dUTP/dTTP ratio promotes uracil incorporation into DNA, followed by futile repair cycles that compromise both mitochondrial and nuclear DNA integrity. In summary, this work highlights the importance of folate polyglutamylation in the maintenance of nucleotide homeostasis and genome stability.
Collapse
Affiliation(s)
- Tobias T Schmidt
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden
| | - Gloria X Reyes
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Anna Kolodziejczak
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Tina Wagner
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | - Brian Luke
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg Universität, 55128 Mainz, Germany.,Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Hans Hombauer
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| |
Collapse
|
9
|
Moshafi MH, Ghasemshirazi S, Abiri A. The art of suicidal molecular seduction for targeting drug resistance. Med Hypotheses 2020; 140:109676. [PMID: 32203818 DOI: 10.1016/j.mehy.2020.109676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022]
Abstract
The development of drug resistance is one of the most significant challenges of the current century in the pharmaceutical industry. Superinfections, cancer chemoresistance, and resistance observed in many non-infectious diseases are nullifying the efforts and monetary supplies, put in the advent of new drug molecules. Millions of people die because of this drug resistance developed gradually through extensive use of the drugs. Inherently, some drugs are less prone to become ineffective by drug resistance than others. Covalent inhibitors bind to their targets via a biologically permanent bound with their cognate receptor and therefore display more potent inhibiting characteristics. Suicide inhibitors or mechanism-based inhibitors are one of the covalent inhibitors, which require a pre-activation step by their targeting enzyme. This step accrues their selectivity and specificity with respect to other covalent inhibitors. After that pre-activation step, they produce an analogue of the transition state of the catalytic enzyme, which is practically incapable of dissociating from the enzyme. Suicide inhibitors, due to their high intrinsic affinity toward the related enzyme, are resistant to many mechanisms involved in the development of drug resistance and can be regarded as one of the enemies of this scientific hurdle. These inhibitors compete even with monoclonal antibodies in terms of their cost-effectiveness and efficacy.
Collapse
Affiliation(s)
- Mohammad Hassan Moshafi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Ghasemshirazi
- Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Li G, Henry SA, Liu H, Kang TS, Nao SC, Zhao Y, Wu C, Jin J, Zhang JT, Leung CH, Wai Hong Chan P, Ma DL. A robust photoluminescence screening assay identifies uracil-DNA glycosylase inhibitors against prostate cancer. Chem Sci 2020; 11:1750-1760. [PMID: 34123270 PMCID: PMC8148385 DOI: 10.1039/c9sc05623h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many cancers have developed resistance to 5-FU, due to removal by the enzyme uracil-DNA glycosylase (UDG), a type of base excision repair enzyme (BER) that can excise uracil and 5-fluorouracil (5-FU) from DNA. However, the development of UDG inhibitor screening methods, especially for the rapid and efficient screening of natural product/natural product-like compounds, is still limited so far. We developed herein a robust time-resolved photoluminescence method for screening UDG inhibitors, which could significantly improve sensitivity over the screening method based on the conventional steady-state spectroscopy, reducing the substantial fluorescence background interference. As a proof-of-concept, two potential UDG inhibitors were identified from a database of natural products and approved drugs. Co-treatment of these two compounds with 5-FU showed synergistic cytotoxicity, providing the basis for treating drug-resistant cancers. Overall, this method provides an avenue for the rapid screening of small molecule regulators of other BER enzyme activities that can avoid false negatives arising from the background fluorescence. The discovery of UDG inhibitors against prostate cancer by using a robust photoluminescence screening assay that can avoid false negatives arising from the background fluorescence.![]()
Collapse
Affiliation(s)
- Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | | | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong Hong Kong
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | - Yichao Zhao
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong Hong Kong
| | - Jianwen Jin
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Jia-Tong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau
| | - Philip Wai Hong Chan
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK.,School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong Hong Kong
| |
Collapse
|
11
|
Abstract
Despite unequivocal evidence that folate deficiency increases risk for human pathologies, and that folic acid intake among women of childbearing age markedly decreases risk for birth defects, definitive evidence for a causal biochemical pathway linking folate to disease and birth defect etiology remains elusive. The de novo and salvage pathways for thymidylate synthesis translocate to the nucleus of mammalian cells during S- and G2/M-phases of the cell cycle and associate with the DNA replication and repair machinery, which limits uracil misincorporation into DNA and genome instability. There is increasing evidence that impairments in nuclear de novo thymidylate synthesis occur in many pathologies resulting from impairments in one-carbon metabolism. Understanding the roles and regulation of nuclear de novo thymidylate synthesis and its relationship to genome stability will increase our understanding of the fundamental mechanisms underlying folate- and vitamin B12-associated pathologies.
Collapse
Affiliation(s)
- Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA;
| | - Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA;
| | - James Chon
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | - Patrick J Stover
- College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843-2142, USA;
| |
Collapse
|
12
|
Xie B, Becker E, Stuparevic I, Wery M, Szachnowski U, Morillon A, Primig M. The anti-cancer drug 5-fluorouracil affects cell cycle regulators and potential regulatory long non-coding RNAs in yeast. RNA Biol 2019; 16:727-741. [PMID: 30760080 PMCID: PMC6546400 DOI: 10.1080/15476286.2019.1581596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022] Open
Abstract
5-fluorouracil (5-FU) was isolated as an inhibitor of thymidylate synthase, which is important for DNA synthesis. The drug was later found to also affect the conserved 3'-5' exoribonuclease EXOSC10/Rrp6, a catalytic subunit of the RNA exosome that degrades and processes protein-coding and non-coding transcripts. Work on 5-FU's cytotoxicity has been focused on mRNAs and non-coding transcripts such as rRNAs, tRNAs and snoRNAs. However, the effect of 5-FU on long non-coding RNAs (lncRNAs), which include regulatory transcripts important for cell growth and differentiation, is poorly understood. RNA profiling of synchronized 5-FU treated yeast cells and protein assays reveal that the drug specifically inhibits a set of cell cycle regulated genes involved in mitotic division, by decreasing levels of the paralogous Swi5 and Ace2 transcriptional activators. We also observe widespread accumulation of different lncRNA types in treated cells, which are typically present at high levels in a strain lacking EXOSC10/Rrp6. 5-FU responsive lncRNAs include potential regulatory antisense transcripts that form double-stranded RNAs (dsRNAs) with overlapping sense mRNAs. Some of these transcripts encode proteins important for cell growth and division, such as the transcription factor Ace2, and the RNA exosome subunit EXOSC6/Mtr3. In addition to revealing a transcriptional effect of 5-FU action via DNA binding regulators involved in cell cycle progression, our results have implications for the function of putative regulatory lncRNAs in 5-FU mediated cytotoxicity. The data raise the intriguing possibility that the drug deregulates lncRNAs/dsRNAs involved in controlling eukaryotic cell division, thereby highlighting a new class of promising therapeutical targets.
Collapse
Affiliation(s)
- Bingning Xie
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
| | - Emmanuelle Becker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
- Univ Rennes, Inria, CNRS, IRISA F-35000, Rennes, France
| | - Igor Stuparevic
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL UniversityCNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - Ugo Szachnowski
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL UniversityCNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL UniversityCNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
| |
Collapse
|
13
|
Huang CY, Chen YC, Wu-Hsieh BA, Fang JM, Chang ZF. The Ca-loop in thymidylate kinase is critical for growth and contributes to pyrimidine drug sensitivity of Candida albicans. J Biol Chem 2019; 294:10686-10697. [PMID: 31152062 DOI: 10.1074/jbc.ra118.006798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
The yeast Candida albicans is the most prevalent opportunistic fungal pathogen in humans. Drug resistance among C. albicans isolates poses a common challenge, and overcoming this resistance represents an unmet need in managing this common pathogen. Here, we investigated CDC8, encoding thymidylate kinase (TMPK), as a potential drug target for the management of C. albicans infections. We found that the region spanning amino acids 106-123, namely the Ca-loop of C. albicans TMPK (CaTMPK), contributes to the hyperactivity of this enzyme compared with the human enzyme (hTMPK) and to the utilization of deoxyuridine monophosphate (dUMP)/deoxy-5-fluorouridine monophosphate (5-FdUMP) as a substrate. Notably, expression of CaTMPK, but not of hTMPK, produced dUTP/5-FdUTP-mediated DNA toxicity in budding yeast (Saccharomyces cerevisiae). CRISPR-mediated deletion of this Ca-loop in C. albicans revealed that the Ca-loop is critical for fungal growth and susceptibility to 5-fluorouridine (5-FUrd). Of note, pathogenic and drug-resistant C. albicans clones were similarly sensitive to 5-FUrd, and we also found that CaTMPK is essential for the growth of C. albicans In conclusion, these findings not only identified a target site for the development of CaTMPK-selective drugs, but also revealed that 5-FUrd may have potential utility as drug for managing C. albicans infections.
Collapse
Affiliation(s)
- Chang-Yu Huang
- From the Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Linong Street, Taipei 11221.,the Institute of Molecular Medicine, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei 10051
| | - Yee-Chun Chen
- the National Taiwan University Hospital and College of Medicine.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002
| | - Betty A Wu-Hsieh
- the Graduate Institute of Immunology, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei 10051, and
| | - Jim-Min Fang
- the Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Zee-Fen Chang
- From the Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Linong Street, Taipei 11221, .,the Institute of Molecular Medicine, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei 10051.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002
| |
Collapse
|
14
|
Guo Y, Zhai J, Zhang J, Ni C, Zhou H. Improved Radiotherapy Sensitivity of Nasopharyngeal Carcinoma Cells by miR-29-3p Targeting COL1A1 3'-UTR. Med Sci Monit 2019; 25:3161-3169. [PMID: 31034464 PMCID: PMC6503752 DOI: 10.12659/msm.915624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Radio-resistance is an obstacle to the treatment of human nasopharyngeal carcinoma (NPC). However, how microRNAs (miRNA) are involved in this process remains unclear. In the present study we explored the role and possible molecular mechanism of miR-29a-3p, formerly known as tumor suppressors, in radio-sensitivity of NPC cells. Material/Methods A radio-resistant sub-cell line, CNE-2R, was established to detect the expression of miR-29a/b/c-3p using qRT-PCR. CCK-8 assay, colony formation assay, and single-cell gel electrophoresis (SCGE) assay were carried out to analyze the radio-sensitivity of NPC cells. qRT-PCR, luciferase reporter, and Western blot experiments were performed to validate the targeting of COL1A1 by miR-29a. Short interference RNAs (siRNAs) were used to investigate whether COL1A1 mediates the radio-sensitizer role of miR-29a. Expression of miR-29a and COL1A1 in radio-resistant NPC tissues was finally determined. Results miR-29a was decreased in the radio-resistant CNE-2R cells. Following a time-course irradiation (IR) exposure, miR-29a exhibited a time-dependent decrease. Cellular experiments confirmed that miR-29a induced radio-sensitivity of CNE-2R cells via suppressing cell viability and enhancing cell apoptosis after IR. We confirmed that COL1A1 is a direct target of miR-29a and can exert radio-resistance effects in NPC cells. We also found that knockdown of COL1A1 inhibits NPC cell viability and sensitivity to IR. Finally, we observed a downregulation of miR-29a in radio-resistant NPC tissues and its decrease was associated with upregulation of COL1A1. Conclusions miR-29a is a critical determinant of NPC radio-response for NPC patients, and its induction provides a promising therapeutic choice to elevate NPC radio-sensitivity.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jianhua Zhai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jing Zhang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Changbao Ni
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Huifang Zhou
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
15
|
Sanchez de Groot N, Torrent Burgas M, Ravarani CN, Trusina A, Ventura S, Babu MM. The fitness cost and benefit of phase-separated protein deposits. Mol Syst Biol 2019; 15:e8075. [PMID: 30962358 PMCID: PMC6452874 DOI: 10.15252/msb.20178075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Phase separation of soluble proteins into insoluble deposits is associated with numerous diseases. However, protein deposits can also function as membrane-less compartments for many cellular processes. What are the fitness costs and benefits of forming such deposits in different conditions? Using a model protein that phase-separates into deposits, we distinguish and quantify the fitness contribution due to the loss or gain of protein function and deposit formation in yeast. The environmental condition and the cellular demand for the protein function emerge as key determinants of fitness. Protein deposit formation can influence cell-to-cell variation in free protein abundance between individuals of a cell population (i.e., gene expression noise). This results in variable manifestation of protein function and a continuous range of phenotypes in a cell population, favoring survival of some individuals in certain environments. Thus, protein deposit formation by phase separation might be a mechanism to sense protein concentration in cells and to generate phenotypic variability. The selectable phenotypic variability, previously described for prions, could be a general property of proteins that can form phase-separated assemblies and may influence cell fitness.
Collapse
Affiliation(s)
- Natalia Sanchez de Groot
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK .,Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Torrent Burgas
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Madan Babu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
16
|
Rao TVP, Kuzminov A. Sources of thymidine and analogs fueling futile damage-repair cycles and ss-gap accumulation during thymine starvation in Escherichia coli. DNA Repair (Amst) 2019; 75:1-17. [PMID: 30684682 PMCID: PMC6382538 DOI: 10.1016/j.dnarep.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
Thymine deprivation in thyA mutant E. coli causes thymineless death (TLD) and is the mode of action of popular antibacterial and anticancer drugs, yet the mechanisms of TLD are still unclear. TLD comprises three defined phases: resistance, rapid exponential death (RED) and survival, with the nature of the resistance phase and of the transition to the RED phase holding key to TLD pathology. We propose that a limited source of endogenous thymine maintains replication forks through the resistance phase. When this source ends, forks undergo futile break-repair cycle during the RED phase, eventually rendering the chromosome non-functional. Two obvious sources of the endogenous thymine are degradation of broken chromosomal DNA and recruitment of thymine from stable RNA. However, mutants that cannot degrade broken chromosomal DNA or lack ribo-thymine, instead of shortening the resistance phase, deepen the RED phase, meaning that only a small fraction of T-starved cells tap into these sources. Interestingly, the substantial chromosomal DNA accumulation during the resistance phase is negated during the RED phase, suggesting futile cycle of incorporation and excision of wrong nucleotides. We tested incorporation of dU or rU, finding some evidence for both, but DNA-dU incorporation accelerates TLD only when intracellular [dUTP] is increased by the dut mutation. In the dut ung mutant, with increased DNA-dU incorporation and no DNA-dU excision, replication is in fact rescued even without dT, but TLD still occurs, suggesting different mechanisms. Finally, we found that continuous DNA synthesis during thymine starvation makes chromosomal DNA increasingly single-stranded, and even the dut ung defect does not completely block this ss-gap accumulation. We propose that instability of single-strand gaps underlies the pathology of thymine starvation.
Collapse
Affiliation(s)
- T V Pritha Rao
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
17
|
The etiology of uracil residues in the Saccharomyces cerevisiae genomic DNA. Curr Genet 2018; 65:393-399. [PMID: 30328489 PMCID: PMC6420880 DOI: 10.1007/s00294-018-0895-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 11/29/2022]
Abstract
Non-canonical residue in DNA is a major and conserved source of genome instability. The appearance of uracil residues in DNA accompanies a significant mutagenic consequence and is regulated at multiple levels, from the concentration of available dUTP in the nucleotide pool to the excision repair for removal from DNA. Recently, an interesting phenomenon of transcription-associated elevation in uracil-derived mutations was described in Saccharomyces cerevisiae genome. While trying to understand the variability in mutagenesis, we uncovered that the frequency of uracil incorporation into DNA can vary depending on the transcription rate and that the non-replicative, repair-associated DNA synthesis underlies the higher uracil density of the actively transcribed genomic loci. This novel mechanism brings together the chemical vulnerability of DNA under transcription and the uracil-associated mutagenesis, and has the potential to apply to other non-canonical residues of mutagenic importance.
Collapse
|
18
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
19
|
Gerhard D, Sousa FJDSSD, Andraus RAC, Pardo PE, Nai GA, Neto HB, Messora MR, Maia LP. Probiotic therapy reduces inflammation and improves intestinal morphology in rats with induced oral mucositis. Braz Oral Res 2017; 31:e71. [PMID: 28678976 DOI: 10.1590/1807-3107bor-2017.vol31.0071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023] Open
Abstract
The aim of the present study was to evaluate the effect of systemic administration of probiotics (PROB) on the progression of experimentally induced oral and intestinal mucositis in rats immunosuppressed by chemotherapy (5-fluorouracil: 5-FU). Twenty-four rats were divided into the following groups (n=6): GC (control), GPROB, G5FU and G5-FU/PROB. Groups GPROB and G5-FU/PROB received 1 g of probiotic incorporated into each 100 g of feed (Bacillus subtilis, Bifidobacterium bifidum, Enterococcus faecium and Lactobacilllus acidophilus), beginning 30 days before oral mucositis induction. Groups G5FU and G5-FU/PROB received 60 mg/kg of 5-FU on days 0 and 2. The left oral mucosa of each animal was irritated by mechanical trauma (days 1 and 2). On days 3 and 7, three animals from each group were sacrificed, and their oral mucosa and small intestine were biopsied and processed for histopathological analysis. Groups G5-FU and G5-FU/PROB showed ulcerated oral lesions at day 3, with progression in group G5-FU and regression in group G5-FU/PROB at day 7. Histologically, less severe signs of inflammation in the oral mucosa were observed in group G5-FU/PROB than in group G5-FU. Regarding the intestine, villus-related defects of lesser magnitude were observed in group G5-FU/PROB, compared with group G5-FU. Group GPROB showed greater villus height than group GC. It can be concluded that probiotic supplementation reduced oral and intestinal inflammation in immunosuppressed rats with experimentally induced mucositis, and may protect the intestine from changes induced by chemotherapy, thus contributing to overall health.
Collapse
Affiliation(s)
- Dayana Gerhard
- Universidade do Oeste Paulista - Unoeste, School of Dentistry, Presidente Prudente, SP, Brazil
| | | | | | - Paulo Eduardo Pardo
- Universidade do Oeste Paulista - Unoeste, Department of Veterinary Medicine, Presidente Prudente, SP, Brazil (retired)
| | - Gisele Alborguetti Nai
- Universidade do Oeste Paulista - Unoeste, Department of Pathology, Presidente Prudente, SP, Brazil
| | - Hermann Bremer Neto
- Universidade do Oeste Paulista - Unoeste, Department of Functional Sciences, Presidente Prudente, SP, Brazil
| | - Michel Reis Messora
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Luciana Prado Maia
- Universidade do Oeste Paulista - Unoeste, Graduate Program in Dentistry, Presidente Prudente, SP, Brazil
| |
Collapse
|
20
|
Abstract
Thymidylate (dTMP) biosynthesis plays an essential and exclusive function in DNA synthesis and proper cell division, and therefore has been an attractive therapeutic target. Folate analogs, known as antifolates, and nucleotide analogs that inhibit the enzymatic action of the de novo thymidylate biosynthesis pathway and are commonly used in cancer treatment. In this review, we examine the mechanisms by which the antifolate 5-fluorouracil, as well as other dTMP synthesis inhibitors, function in cancer treatment in light of emerging evidence that dTMP synthesis occurs in the nucleus. Nuclear localization of the de novo dTMP synthesis pathway requires modification of the pathway enzymes by the small ubiquitin-like modifier (SUMO) protein. SUMOylation is required for nuclear localization of the de novo dTMP biosynthesis pathway, and disruption in the SUMO pathway inhibits cell proliferation in several cancer models. We summarize evidence that the nuclear localization of the dTMP biosynthesis pathway is a critical factor in the efficacy of antifolate-based therapies that target dTMP synthesis.
Collapse
|
21
|
Xia LL, Tang YB, Song FF, Xu L, Ji P, Wang SJ, Zhu JM, Zhang Y, Zhao GP, Wang Y, Liu TT. DCTPP1 attenuates the sensitivity of human gastric cancer cells to 5-fluorouracil by up-regulating MDR1 expression epigenetically. Oncotarget 2016; 7:68623-68637. [PMID: 27612427 PMCID: PMC5356578 DOI: 10.18632/oncotarget.11864] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/24/2016] [Indexed: 01/08/2023] Open
Abstract
Gastric cancer (GC) is among the most malignant cancers with high incidence and poor prognoses worldwide as well as in China. dCTP pyrophosphatase 1 (DCTPP1) is overexpressed in GC with a poor prognosis. Given chemotherapeutic drugs share similar structures with pyrimidine nucleotides, the role of DCTPP1 in affecting the drug sensitivity in GC remains unclear and is worthy of investigation. In the present study, we reported that DCTPP1-knockdown GC cell line BGC-823 exhibited more sensitivity to 5-fluorouracil (5-FU), demonstrated by the retardation of cell proliferation, the increase in cell apoptosis, cell cycle arrest at S phase and more DNA damages. Multidrug resistance 1 (MDR1) expression was unexpectedly down-regulated in DCTPP1-knockdown BGC-823 cells together with more intracellular 5-FU accumulation. This was in large achieved by the elevated methylation in promoter region of MDR1 gene. The intracellular 5-methyl-dCTP level increased in DCTPP1-knockdown BGC-823 cells as well. More significantly, the strong correlation of DCTPP1 and MDR1 expression was detectable in clinical GC samples. Our results thus imply a novel mechanism of chemoresistance mediated by the overexpression of DCTPP1 in GC. It is achieved partially through decreasing the concentration of intracellular 5-methyl-dCTP, which in turn results in promoter hypomethylation and hyper-expression of drug resistant gene MDR1. Our study suggests DCTPP1 as a potential indicative biomarker for the predication of chemoresistance in GC.
Collapse
Affiliation(s)
- Li-liang Xia
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Ya-bin Tang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fei-fei Song
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shu-jun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ji-min Zhu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guo-ping Zhao
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Department of Pharmacology and Chemical Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao-tao Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Gmeiner WH, Debinski W, Milligan C, Caudell D, Pardee TS. The applications of the novel polymeric fluoropyrimidine F10 in cancer treatment: current evidence. Future Oncol 2016; 12:2009-20. [PMID: 27279153 DOI: 10.2217/fon-2016-0091] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
F10 is a novel polymeric fluoropyrimidine drug candidate with strong anticancer activity in multiple preclinical models. F10 has strong potential for impacting cancer treatment because it displays high cytotoxicity toward proliferating malignant cells with minimal systemic toxicities thus providing an improved therapeutic window relative to traditional fluoropyrimidine drugs, such as 5-fluorouracil. F10 has a unique mechanism that involves dual targeting of thymidylate synthase and Top1. In this review, the authors provide an overview of the studies that revealed the novel aspects of F10's cytotoxic mechanism and summarize results obtained in preclinical models of acute myeloid leukemia, acute lymphocytic leukemia, glioblastoma and prostate cancer that demonstrate the strong potential of F10 to improve treatment outcomes.
Collapse
Affiliation(s)
- William H Gmeiner
- Wake Forest Baptist Medical Center Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Waldemar Debinski
- Wake Forest Baptist Medical Center Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Carol Milligan
- Wake Forest Baptist Medical Center Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - David Caudell
- Wake Forest Baptist Medical Center Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Timothy S Pardee
- Wake Forest Baptist Medical Center Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Department of Hematology/Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
23
|
The Chromone Alkaloid, Rohitukine, Affords Anti-Cancer Activity via Modulating Apoptosis Pathways in A549 Cell Line and Yeast Mitogen Activated Protein Kinase (MAPK) Pathway. PLoS One 2015; 10:e0137991. [PMID: 26405812 PMCID: PMC4583253 DOI: 10.1371/journal.pone.0137991] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/24/2015] [Indexed: 01/04/2023] Open
Abstract
The field of cancer research and treatment has made significant progress, yet we are far from having completely safe, efficient and specific therapies that target cancer cells and spare the healthy tissues. Natural compounds may reduce the problems related to cancer treatment. Currently, many plant products are being used to treat cancer. In this study, Rohitukine, a natural occurring chromone alkaloid extracted from Dysoxylum binectariferum, was investigated for cytotoxic properties against budding yeast as well as against lung cancer (A549) cells. We endeavored to specifically study Rohitukine in S. cerevisiae in the context of MAPK pathways as yeast probably represents the experimental model where the organization and regulation of MAPK pathways are best understood. MAPK are evolutionarily conserved protein kinases that transfer extracellular signals to the machinery controlling essential cellular processes like growth, migration, differentiation, cell division and apoptosis. We aimed at carrying out hypothesis driven studies towards targeting the important network of cellular communication, a critical process that gets awry in cancer. Employing mutant strains of genetic model system Saccharomyces cerevisiae. S. cerevisiae encodes five MAPKs involved in control of distinct cellular responses such as growth, differentiation, migration and apoptosis. Our study involves gene knockouts of Slt2 and Hog1 which are functional homologs of human ERK5 and mammalian p38 MAPK, respectively. We performed cytotoxicity assay to evaluate the effect of Rohitukine on cell viability and also determined the effects of drug on generation of reactive oxygen species, induction of apoptosis and expression of Slt2 and Hog1 gene at mRNA level in the presence of drug. The results of this study show a differential effect in the activity of drug between the WT, Slt2 and Hog1 gene deletion strain indicating involvement of MAPK pathway. Further, we investigated Rohitukine induced cytotoxic effects in lung cancer cells and stimulated the productions of ROS after exposure for 24 hrs. Results from western blotting suggest that Rohitukine triggered apoptosis in A549 cell line through upregulation of p53, caspase9 and down regulation of Bcl-2 protein. The scope of this study is to understand the mechanism of anticancer activity of Rohitukine to increase the repertoire of anticancer drugs, so that problem created by emergence of resistance towards standard anticancer compounds can be alleviated.
Collapse
|
24
|
Khodursky A, Guzmán EC, Hanawalt PC. Thymineless Death Lives On: New Insights into a Classic Phenomenon. Annu Rev Microbiol 2015; 69:247-63. [PMID: 26253395 DOI: 10.1146/annurev-micro-092412-155749] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The primary mechanisms by which bacteria lose viability when deprived of thymine have been elusive for over half a century. Early research focused on stalled replication forks and the deleterious effects of uracil incorporation into DNA from thymidine-deficient nucleotide pools. The initiation of the replication cycle and origin-proximal DNA degradation during thymine starvation have now been quantified via whole-genome microarrays and other approaches. These advances have fostered innovative models and informative experiments in bacteria since this topic was last reviewed. Given that thymineless death is similar in mammalian cells and that certain antibacterial and chemotherapeutic drugs elicit thymine deficiency, a mechanistic understanding of this phenomenon might have valuable biomedical applications.
Collapse
Affiliation(s)
- Arkady Khodursky
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108;
| | - Elena C Guzmán
- Departamento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Philip C Hanawalt
- Department of Biology, Stanford University, Stanford, California 94305;
| |
Collapse
|
25
|
Privitera AP, Distefano R, Wefer HA, Ferro A, Pulvirenti A, Giugno R. OCDB: a database collecting genes, miRNAs and drugs for obsessive-compulsive disorder. Database (Oxford) 2015; 2015:bav069. [PMID: 26228432 PMCID: PMC4519680 DOI: 10.1093/database/bav069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/30/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a psychiatric condition characterized by intrusive and unwilling thoughts (obsessions) giving rise to anxiety. The patients feel obliged to perform a behavior (compulsions) induced by the obsessions. The World Health Organization ranks OCD as one of the 10 most disabling medical conditions. In the class of Anxiety Disorders, OCD is a pathology that shows an hereditary component. Consequently, an online resource collecting and integrating scientific discoveries and genetic evidence about OCD would be helpful to improve the current knowledge on this disorder. We have developed a manually curated database, OCD Database (OCDB), collecting the relations between candidate genes in OCD, microRNAs (miRNAs) involved in the pathophysiology of OCD and drugs used in its treatments. We have screened articles from PubMed and MEDLINE. For each gene, the bibliographic references with a brief description of the gene and the experimental conditions are shown. The database also lists the polymorphisms within genes and its chromosomal regions. OCDB data is enriched with both validated and predicted miRNA-target and drug-target information. The transcription factors regulations, which are also included, are taken from David and TransmiR. Moreover, a scoring function ranks the relevance of data in the OCDB context. The database is also integrated with the main online resources (PubMed, Entrez-gene, HGNC, dbSNP, DrugBank, miRBase, PubChem, Kegg, Disease-ontology and ChEBI). The web interface has been developed using phpMyAdmin and Bootstrap software. This allows (i) to browse data by category and (ii) to navigate in the database by searching genes, miRNAs, drugs, SNPs, regions, drug targets and articles. The data can be exported in textual format as well as the whole database in.sql or tabular format. OCDB is an essential resource to support genome-wide analysis, genetic and pharmacological studies. It also facilitates the evaluation of genetic data in OCD and the detection of alternative treatments.
Collapse
Affiliation(s)
- Anna P Privitera
- Department of Clinical and Experimental Medicine, University of Catania, Viale A. Doria 6, Catania, Italy, Istituto di Scienze Neurologiche, CNR, Via Paolo Gaifami, 18, 95125 Catania, Italy
| | - Rosario Distefano
- Department of Computer Science, University of Verona, Strada le Grazie 15, Verona, Italy and
| | - Hugo A Wefer
- KarolinskaInstitutet, Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Stockholm, Sweden
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, University of Catania, Viale A. Doria 6, Catania, Italy
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, Viale A. Doria 6, Catania, Italy
| | - Rosalba Giugno
- Department of Clinical and Experimental Medicine, University of Catania, Viale A. Doria 6, Catania, Italy,
| |
Collapse
|
26
|
Lin WH, Rocco MJ, Bertozzi-Villa A, Kussell E. Populations adapt to fluctuating selection using derived and ancestral allelic diversity. Evolution 2015; 69:1448-1460. [PMID: 25908222 DOI: 10.1111/evo.12665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
Abstract
Populations can adapt to changing environments by using allelic diversity, yet whether diversity is recently derived or ancestral is often debated. Although evolution could productively use both types of diversity in a changing environment, their relative frequency has not been quantified. We address this question experimentally using budding yeast strains that harbor a tandem repeat containing URA3 gene, which we expose to cyclical selection and counterselection. We characterize and quantify the dynamics of frameshift events in the URA3 gene in eight populations over 12 cycles of selection and find that ancestral alleles account for 10-20% of all adaptive events. Using a general model of fluctuating selection, we determine how these results depend on mutation rates, population sizes, and fluctuation timescales. We quantify the contribution of derived alleles to the adaptation process using the de novo mutation rate along the population's ancestral lineage, a novel measure that is applicable in a wide range of settings. We find that the adaptive dynamics undergoes a sharp transition from selection on ancestral alleles to selection on derived alleles as fluctuation timescales increase. Our results demonstrate that fluctuations can select between different modes of adaptation over evolutionary timescales.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, 10003
| | - Mark J Rocco
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, 10003
| | - Amelia Bertozzi-Villa
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, 10003
| | - Edo Kussell
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, 10003.,Department of Physics, New York University, New York, New York, 10003
| |
Collapse
|
27
|
Bryan DS, Ransom M, Adane B, York K, Hesselberth JR. High resolution mapping of modified DNA nucleobases using excision repair enzymes. Genome Res 2014; 24:1534-42. [PMID: 25015380 PMCID: PMC4158761 DOI: 10.1101/gr.174052.114] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022]
Abstract
The incorporation and creation of modified nucleobases in DNA have profound effects on genome function. We describe methods for mapping positions and local content of modified DNA nucleobases in genomic DNA. We combined in vitro nucleobase excision with massively parallel DNA sequencing (Excision-seq) to determine the locations of modified nucleobases in genomic DNA. We applied the Excision-seq method to map uracil in E. coli and budding yeast and discovered significant variation in uracil content, wherein uracil is excluded from the earliest and latest replicating regions of the genome, possibly driven by changes in nucleotide pool composition. We also used Excision-seq to identify sites of pyrimidine dimer formation induced by UV light exposure, where the method could distinguish between sites of cyclobutane and 6-4 photoproduct formation. These UV mapping data enabled analysis of local sequence bias around pyrimidine dimers and suggested a preference for an adenosine downstream from 6-4 photoproducts. The Excision-seq method is broadly applicable for high precision, genome-wide mapping of modified nucleobases with cognate repair enzymes.
Collapse
Affiliation(s)
- D Suzi Bryan
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Monica Ransom
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Biniam Adane
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kerri York
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
28
|
Pouladi N, Kouhsari SM, Feizi MH, Gavgani RR, Azarfam P. Overlapping region of p53/wrap53 transcripts: mutational analysis and sequence similarity with microRNA-4732-5p. Asian Pac J Cancer Prev 2014; 14:3503-7. [PMID: 23886136 DOI: 10.7314/apjcp.2013.14.6.3503] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the majority of investigations concerned with TP53 and its protein have focused on coding regions, recently a set of studies highlighted significant roles of regulatory elements located in p53 mRNA, especially 5 ? UTR. The wrap53α transcript is one of those that acts as a natural antisense agent, forming RNA-RNA hybrids with p53 mRNA and protecting it from degradation. MATERIALS AND METHODS In this study, we focused on the mutation status of exon 1α of the WRAP53 gene (according to exon 1 of p53) in 160 breast tumor tissue samples and conducted a bioinformatics search for probable miRNA binding site in the p53/wrap53 overlapping region. Mutations were detected, using single stranded conformation polymorphism (SSCP) and sequencing. We applied the miRBase database for prediction of miRNAs which target overlapping region of p53/wrap53 transcripts. RESULTS Our results showed all samples to have wild type alleles in exon 1 of TP53 gene. We could detect a novel and unreported intronic mutation (IVS1+ +56, G>C) outside overlapping regions of p53/wrap53 genes in breast cancer tissues and also predict the presence of a binding site for miR-4732-5p in the 5' UTR of Wrap53 mRNA. CONCLUSIONS From our findings we propose designing further studies focused on overexpression of miRNA-4732-5p and introducing different mutations in the overlapping region of wrap53 and p53 genes in order to study their effects on p53 and its δN isoform (δ40p53) expression. The results may provide new pieces in the p53 targeting puzzle for cancer therapy.
Collapse
Affiliation(s)
- Nasser Pouladi
- Department of Cellular and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tabriz, Iran
| | | | | | | | | |
Collapse
|
29
|
Uracil DNA glycosylase initiates degradation of HIV-1 cDNA containing misincorporated dUTP and prevents viral integration. Proc Natl Acad Sci U S A 2013; 110:E448-57. [PMID: 23341616 DOI: 10.1073/pnas.1219702110] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral infection, but the mechanistic features of this immune pathway and the cellular fate of uracilated retroviral DNA products is not known. Here we developed a model system in which the cellular dUTP:dTTP ratio can be pharmacologically increased to favor dUTP incorporation, allowing dissection of this innate immunity pathway. When the virus-infected cells contained elevated dUTP levels, reverse transcription was found to proceed unperturbed, but integration and viral protein expression were largely blocked. Furthermore, successfully integrated proviruses lacked detectable uracil, suggesting that only nonuracilated viral DNA products were integration competent. Integration of the uracilated proviruses was restored using an isogenic cell line that had no detectable human uracil DNA glycosylase (hUNG2) activity, establishing that hUNG2 is a host restriction factor in cells that contain high dUTP. Biochemical studies in primary cells established that this immune pathway is not operative in CD4+ T cells, because these cells have high dUTPase activity (low dUTP), and only modest levels of hUNG activity. Although monocyte-derived macrophages have high dUTP levels, these cells have low hUNG activity, which may diminish the effectiveness of this restriction pathway. These findings establish the essential elements of this pathway and reconcile diverse observations in the literature.
Collapse
|
30
|
B. Patel P, Thakkar V. Cell Proliferation and DNA Damage Study by SCGE in Fission Yeast Exposed to Curcumin and 5-fluorouracil. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajcb.2013.22.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
5-Fluorouracil signaling through a calcium-calmodulin-dependent pathway is required for p53 activation and apoptosis in colon carcinoma cells. Oncogene 2012; 32:4529-38. [PMID: 23108402 DOI: 10.1038/onc.2012.467] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 01/12/2023]
Abstract
5-Fluorouracil (5-FU) is an anti-metabolite that is in clinical use for treatment of several cancers. In cells, it is converted into three distinct fluoro-based nucleotide analogs, which interfere with DNA synthesis and repair, leading to genome impairment and, eventually, apoptotic cell death. Current knowledge states that in certain cell types, 5-FU-induced stress is signaling through a p53-dependent induction of tumor necrosis factor-receptor oligomerization required for death-inducing signaling complex formation and caspase-8 activation. Here we establish a role of calcium (Ca(2+)) as a messenger for p53 activation in response to 5-FU. Using a combination of pharmacological and genetic approaches, we show that treatment of colon carcinoma cells stimulates entry of extracellular Ca(2+) through long lasting-type plasma membrane channels, which further directs posttranslational phosphorylation of at least three p53 serine residues (S15, S33 and S37) by means of calmodulin (CaM) activity. Obstructing this pathway by the Ca(2+)-chelator BAPTA (1,2-bis(o-aminophenoxy)ethane- N,N,N',N'-tetraacetic acid) or by inhibitors of CaM efficiently reduces 5-FU-induced caspase activities and subsequent cell death. Moreover, ectopic expression of p53 S15A in HCT116 p53(-/-) cells confirmed the importance of a Ca(2+)-CaM-p53 axis in 5-FU-induced extrinsic apoptosis. The fact that a widely used therapeutic drug, such as 5-FU, is operating via this pathway could provide new therapeutic intervention points, or specify new combinatorial treatment regimes.
Collapse
|
32
|
Anti-miR-155 oligonucleotide enhances chemosensitivity of U251 cell to taxol by inducing apoptosis. Cell Biol Int 2012; 36:653-9. [PMID: 22276743 DOI: 10.1042/cbi20100918] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The oncogene, microRNA-155, is significantly elevated in GBM (glioblastoma multiforme), regulating multiple genes associated with cancer cell proliferation, apoptosis and invasiveness. Thus, miR-155 can theoretically become a target for enhancement of the chemotherapy in cancer. Down-regulating miR-155 to enhance the effect of taxol has not been studied in human GBM. Human GBM U251 cells were treated with taxol and the miR-155 inhibitor alone or in combination. IC50 values were dramatically decreased in cells treated with miR-155 inhibitor combined with taxol, to a greater extent than those treated with taxol alone. Furthermore, the miR-155 inhibitor significantly enhanced apoptosis in U251 cells. The data suggest that miR-155 blockage increased the chemosensitivity to taxol in GBM cells, making combined treatment an effective therapeutic strategy for controlling the growth by inhibiting EAG1 expression.
Collapse
|
33
|
Macovei A, Tuteja N. microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2012; 12:183. [PMID: 23043463 PMCID: PMC3502329 DOI: 10.1186/1471-2229-12-183] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/05/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.), one of the most important food crop in the world, is considered to be a salt-sensitive crop. Excess levels of salt adversely affect all the major metabolic activities, including cell wall damage, cytoplasmic lysis and genomic stability. In order to cope with salt stress, plants have evolved high degrees of developmental plasticity, including adaptation via cascades of molecular networks and changes in gene expression profiles. Posttranscriptional regulation, through the activity of microRNAs, also plays an important role in the plant response to salinity conditions. MicroRNAs are small endogenous RNAs that modulate gene expression and are involved in the most essential physiological processes, including plant development and adaptation to environmental changes. RESULTS In the present study, we investigated the expression profiles of osa-MIR414, osa-MIR408 and osa-MIR164e along with their targeted genes, under salinity stress conditions in wild type and transgenic rice plants ectopically expressing the PDH45 (Pea DNA Helicase) gene. The present miRNAs were predicted to target the OsABP (ATP-Binding Protein), OsDSHCT (DOB1/SK12/helY-like DEAD-box Helicase) and OsDBH (DEAD-Box Helicase) genes, included in the DEAD-box helicase family. An in silico characterization of the proteins was performed and the miRNAs predicted targets were validated by RLM-5'RACE. The qRT-PCR analysis showed that the OsABP, OsDBH and OsDSHCT genes were up-regulated in response to 100 and 200 mM NaCl treatments. The present study also highlighted an increased accumulation of the gene transcripts in wild type plants, with the exception of the OsABP mRNA which showed the highest level (15.1-fold change compared to control) in the transgenic plants treated with 200 mM NaCl. Salinity treatments also affected the expression of osa-MIR414, osa-MIR164e and osa-MIR408, found to be significantly down-regulated, although the changes in miRNA expression were limited. CONCLUSIONS Osa-MIR414, osa-MIR164e and osa-MIR408 were experimentally validated for the first time in plants as targeting the OsABP, OsDBH and OsDSHCT genes. Our data showed that that the genes were up-regulated and the miRNAs were down-regulated in relation to salt stress. The negative correlation between the miRNAs and their targets was proven.
Collapse
Affiliation(s)
- Anca Macovei
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
34
|
Sarangi MK, Mitra A, Basu S. Prototropic Interactions of Pyrimidine Nucleic Acid Bases with Acridine: A Spectroscopic Investigation. J Phys Chem B 2012; 116:10275-82. [DOI: 10.1021/jp305352b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Manas Kumar Sarangi
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064,
India
| | - Ankita Mitra
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064,
India
| | - Samita Basu
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064,
India
| |
Collapse
|
35
|
Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer Chemother Pharmacol 2012; 70:491-502. [PMID: 22851206 DOI: 10.1007/s00280-012-1937-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
The development of new strategies for cancer therapeutics is indispensable for the improvement of standard protocols and the creation of other possibilities in cancer treatment. Yeast models have been employed to study numerous molecular aspects directly related to cancer development, as well as to determine the genetic contexts associated with anticancer drug sensitivity or resistance. The budding yeast Saccharomyces cerevisiae presents conserved cellular processes with high homology to humans, and it is a rapid, inexpensive and efficient compound screening tool. However, yeast models are still underused in cancer research and for screening of antineoplastic agents. Here, the employment of S. cerevisiae as a model system to anticancer research is discussed and exemplified. Focusing on the important determinants in genomic maintenance and cancer development, including DNA repair, cell cycle control and epigenetics, this review proposes the use of mutant yeast panels to mimic cancer phenotypes, screen and study tumor features and synthetic lethal interactions. Finally, the benefits and limitations of the yeast model are highlighted, as well as the strategies to overcome S. cerevisiae model limitations.
Collapse
|
36
|
Uracil-containing DNA in Drosophila: stability, stage-specific accumulation, and developmental involvement. PLoS Genet 2012; 8:e1002738. [PMID: 22685418 PMCID: PMC3369950 DOI: 10.1371/journal.pgen.1002738] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 04/13/2012] [Indexed: 11/26/2022] Open
Abstract
Base-excision repair and control of nucleotide pools safe-guard against permanent uracil accumulation in DNA relying on two key enzymes: uracil–DNA glycosylase and dUTPase. Lack of the major uracil–DNA glycosylase UNG gene from the fruit fly genome and dUTPase from fruit fly larvae prompted the hypotheses that i) uracil may accumulate in Drosophila genomic DNA where it may be well tolerated, and ii) this accumulation may affect development. Here we show that i) Drosophila melanogaster tolerates high levels of uracil in DNA; ii) such DNA is correctly interpreted in cell culture and embryo; and iii) under physiological spatio-temporal control, DNA from fruit fly larvae, pupae, and imago contain greatly elevated levels of uracil (200–2,000 uracil/million bases, quantified using a novel real-time PCR–based assay). Uracil is accumulated in genomic DNA of larval tissues during larval development, whereas DNA from imaginal tissues contains much less uracil. Upon pupation and metamorphosis, uracil content in DNA is significantly decreased. We propose that the observed developmental pattern of uracil–DNA is due to the lack of the key repair enzyme UNG from the Drosophila genome together with down-regulation of dUTPase in larval tissues. In agreement, we show that dUTPase silencing increases the uracil content in DNA of imaginal tissues and induces strong lethality at the early pupal stages, indicating that tolerance of highly uracil-substituted DNA is also stage-specific. Silencing of dUTPase perturbs the physiological pattern of uracil–DNA accumulation in Drosophila and leads to a strongly lethal phenotype in early pupal stages. These findings suggest a novel role of uracil-containing DNA in Drosophila development and metamorphosis and present a novel example for developmental effects of dUTPase silencing in multicellular eukaryotes. Importantly, we also show lack of the UNG gene in all available genomes of other Holometabola insects, indicating a potentially general tolerance and developmental role of uracil–DNA in this evolutionary clade. The usual paradigm confines “normal” DNA of living cells to a well-defined restricted chemical space populated with only four bases (adenine, thymine, guanine, and cytosine) and some of their methylated derivatives (e.g. 5′-methyl-cytosine). Uracil is not considered to be a “normal” DNA base, except in several bacteriophages. On the contrary, uracil is generally considered to be an error in DNA. We show that Drosophila cells interpret uracil-substituted DNA as normal DNA, due to lack of two repair enzymes. Importantly, this unusual trait is under developmental control and applies only for animals before pupation. Metamorphosis is drastically perturbed by silencing of dUTPase, responsible for keeping uracil out of DNA. Our results argue that in Drosophila, and perhaps in other Holometabola insects as well, uracil–DNA plays a dedicated physiological role.
Collapse
|
37
|
Stead BE, Brandl CJ, Sandre MK, Davey MJ. Mcm2 phosphorylation and the response to replicative stress. BMC Genet 2012; 13:36. [PMID: 22564307 PMCID: PMC3517340 DOI: 10.1186/1471-2156-13-36] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/07/2012] [Indexed: 12/30/2022] Open
Abstract
Background The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm) proteins 2 through 7 (Mcm2-7) and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK). In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS) leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. Results We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA) is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU) and to the base analogue 5-fluorouracil (5-FU) but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE) the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. Conclusions Together these observations point to a role for DDK-mediated phosphorylation of Mcm2 in the response to replicative stress, including some forms of DNA damage. We suggest that phosphorylation of Mcm2 modulates Mcm2-7 activity resulting in the stabilization of replication forks in response to replicative stress.
Collapse
Affiliation(s)
- Brent E Stead
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | | | | | | |
Collapse
|
38
|
Gébelin V, Argout X, Engchuan W, Pitollat B, Duan C, Montoro P, Leclercq J. Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. BMC PLANT BIOLOGY 2012; 12:18. [PMID: 22330773 PMCID: PMC3368772 DOI: 10.1186/1471-2229-12-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 02/13/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plants respond to external stimuli through fine regulation of gene expression partially ensured by small RNAs. Of these, microRNAs (miRNAs) play a crucial role. They negatively regulate gene expression by targeting the cleavage or translational inhibition of target messenger RNAs (mRNAs). In Hevea brasiliensis, environmental and harvesting stresses are known to affect natural rubber production. This study set out to identify abiotic stress-related miRNAs in Hevea using next-generation sequencing and bioinformatic analysis. RESULTS Deep sequencing of small RNAs was carried out on plantlets subjected to severe abiotic stress using the Solexa technique. By combining the LeARN pipeline, data from the Plant microRNA database (PMRD) and Hevea EST sequences, we identified 48 conserved miRNA families already characterized in other plant species, and 10 putatively novel miRNA families. The results showed the most abundant size for miRNAs to be 24 nucleotides, except for seven families. Several MIR genes produced both 20-22 nucleotides and 23-27 nucleotides. The two miRNA class sizes were detected for both conserved and putative novel miRNA families, suggesting their functional duality. The EST databases were scanned with conserved and novel miRNA sequences. MiRNA targets were computationally predicted and analysed. The predicted targets involved in "responses to stimuli" and to "antioxidant" and "transcription activities" are presented. CONCLUSIONS Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs when the complete genome is not yet available. Our study provided additional information for evolutionary studies and revealed potentially specific regulation of the control of redox status in Hevea.
Collapse
Affiliation(s)
| | | | - Worrawat Engchuan
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- King Mongkut's University of Technology, Thonburi, Thailand
| | | | - Cuifang Duan
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- CATAS, RRI, Danzhou, 571737 Hainan, China
| | | | | |
Collapse
|
39
|
Ong SS, Wickneswari R. Expression profile of small RNAs in Acacia mangium secondary xylem tissue with contrasting lignin content - potential regulatory sequences in monolignol biosynthetic pathway. BMC Genomics 2011; 12 Suppl 3:S13. [PMID: 22369296 PMCID: PMC3333172 DOI: 10.1186/1471-2164-12-s3-s13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Lignin, after cellulose, is the second most abundant biopolymer accounting for approximately 15-35% of the dry weight of wood. As an important component during wood formation, lignin is indispensable for plant structure and defense. However, it is an undesirable component in the pulp and paper industry. Removal of lignin from cellulose is costly and environmentally hazardous process. Tremendous efforts have been devoted to understand the role of enzymes and genes in controlling the amount and composition of lignin to be deposited in the cell wall. However, studies on the impact of downregulation and overexpression of monolignol biosynthesis genes in model species on lignin content, plant fitness and viability have been inconsistent. Recently, non-coding RNAs have been discovered to play an important role in regulating the entire monolignol biosynthesis pathway. As small RNAs have critical functions in various biological process during wood formation, small RNA profiling is an important tool for the identification of complete set of differentially expressed small RNAs between low lignin and high lignin secondary xylem. RESULTS In line with this, we have generated two small RNAs libraries from samples with contrasting lignin content using Illumina GAII sequencer. About 10 million sequence reads were obtained in secondary xylem of Am48 with high lignin content (41%) and a corresponding 14 million sequence reads were obtained in secondary xylem of Am54 with low lignin content (21%). Our results suggested that A. mangium small RNAs are composed of a set of 12 highly conserved miRNAs families found in plant miRNAs database, 82 novel miRNAs and a large proportion of non-conserved small RNAs with low expression levels. The predicted target genes of those differentially expressed conserved and non-conserved miRNAs include transcription factors associated with regulation of the lignin biosynthetic pathway genes. Some of these small RNAs play an important role in epigenetic silencing. Differential expression of the small RNAs between secondary xylem tissues with contrasting lignin content suggests that a cascade of miRNAs play an interconnected role in regulating the lignin biosynthetic pathway in Acacia species. CONCLUSIONS Our study critically demonstrated the roles of small RNAs during secondary wall formation. Comparison of the expression pattern of small RNAs between secondary xylem tissues with contrasting lignin content strongly indicated that small RNAs play a key regulatory role during lignin biosynthesis. Our analyses suggest an evolutionary mechanism for miRNA targets on the basis of the length of their 5' and 3' UTRs and their cellular roles. The results obtained can be used to better understand the roles of small RNAs during lignin biosynthesis and for the development of gene constructs for silencing of specific genes involved in monolignol biosynthesis with minimal effect on plant fitness and viability. For the first time, small RNAs were proven to play an important regulatory role during lignin biosynthesis in A. mangium.
Collapse
Affiliation(s)
- Seong Siang Ong
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan, Malaysia
| | - Ratnam Wickneswari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan, Malaysia
| |
Collapse
|
40
|
Pettersen HS, Visnes T, Vågbø CB, Svaasand EK, Doseth B, Slupphaug G, Kavli B, Krokan HE. UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation. Nucleic Acids Res 2011; 39:8430-44. [PMID: 21745813 PMCID: PMC3201877 DOI: 10.1093/nar/gkr563] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytotoxicity of 5-fluorouracil (FU) and 5-fluoro-2′-deoxyuridine (FdUrd) due to DNA fragmentation during DNA repair has been proposed as an alternative to effects from thymidylate synthase (TS) inhibition or RNA incorporation. The goal of the present study was to investigate the relative contribution of the proposed mechanisms for cytotoxicity of 5-fluoropyrimidines. We demonstrate that in human cancer cells, base excision repair (BER) initiated by the uracil–DNA glycosylase UNG is the major route for FU–DNA repair in vitro and in vivo. SMUG1, TDG and MBD4 contributed modestly in vitro and not detectably in vivo. Contribution from mismatch repair was limited to FU:G contexts at best. Surprisingly, knockdown of individual uracil–DNA glycosylases or MSH2 did not affect sensitivity to FU or FdUrd. Inhibitors of common steps of BER or DNA damage signalling affected sensitivity to FdUrd and HmdUrd, but not to FU. In support of predominantly RNA-mediated cytotoxicity, FU-treated cells accumulated ~3000- to 15 000-fold more FU in RNA than in DNA. Moreover, FU-cytotoxicity was partially reversed by ribonucleosides, but not deoxyribonucleosides and FU displayed modest TS-inhibition compared to FdUrd. In conclusion, UNG-initiated BER is the major route for FU–DNA repair, but cytotoxicity of FU is predominantly RNA-mediated, while DNA-mediated effects are limited to FdUrd.
Collapse
Affiliation(s)
- Henrik Sahlin Pettersen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yamada M, Gomez JC, Chugh PE, Lowell CA, Dinauer MC, Dittmer DP, Doerschuk CM. Interferon-γ production by neutrophils during bacterial pneumonia in mice. Am J Respir Crit Care Med 2011; 183:1391-401. [PMID: 21169470 PMCID: PMC3114063 DOI: 10.1164/rccm.201004-0592oc] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 12/17/2010] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Neutrophils are usually the first circulating leukocytes to respond during bacterial pneumonia. Their expression of oxidants, proteases, and other mediators present in granules is well documented, but their ability to produce mediators through transcription and translation after migration to an inflammatory site has been appreciated only more recently. Interferon (IFN)-γ is a cytokine with many functions important in host defense and immunity. OBJECTIVES To examine the expression and function of IFN-γ in bacterial pneumonias. METHODS IFN-γ mRNA and protein were measured in digests of mouse lungs with 24-hour bacterial pneumonia. Bacterial clearance was studied with IFN-γ-deficient mice. MEASUREMENTS AND MAIN RESULTS Streptococcus pneumoniae and Staphylococcus aureus each induce expression of IFN-γ mRNA and protein by neutrophils by 24 hours. Only neutrophils that have migrated into pneumonic tissue produce IFN-γ. Deficiency of Hck/Fgr/Lyn, Rac2, or gp91(phox) prevents IFN-γ production. IFN-γ enhances bacterial clearance and is required for formation of neutrophil extracellular traps. In contrast, Pseudomonas aeruginosa and Escherichia coli induce production of IFN-γ mRNA but not protein. During pneumonia induced by E. coli but not S. pneumoniae, neutrophils produce microRNAs that target the 3' untranslated region of the IFN-γ gene. CONCLUSIONS S. pneumoniae and S. aureus, but not P. aeruginosa and E. coli, induce emigrated neutrophils to produce IFN-γ within 24 hours. Hck/Fgr/Lyn, Rac2, and NADPH oxidase are required for IFN-γ production. IFN-γ facilitates bacterial clearance at least in part through regulating formation of neutrophil extracellular traps. Differential expression by neutrophils of microRNAs that target the 3' untranslated region of the IFN-γ gene may contribute to the pathogen-specific regulation of translation.
Collapse
Affiliation(s)
- Mitsuhiro Yamada
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - John C. Gomez
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pauline E. Chugh
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Clifford A. Lowell
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary C. Dinauer
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Dirk P. Dittmer
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Claire M. Doerschuk
- Center for Airways Disease, Department of Medicine, and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina; Program in Immunology, Department of Laboratory Medicine, University of California, San Francisco, California; and Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, and Department of Microbiology and Immunology and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
42
|
Ko JC, Tsai MS, Chiu YF, Weng SH, Kuo YH, Lin YW. Up-regulation of extracellular signal-regulated kinase 1/2-dependent thymidylate synthase and thymidine phosphorylase contributes to cisplatin resistance in human non-small-cell lung cancer cells. J Pharmacol Exp Ther 2011; 338:184-94. [PMID: 21444628 DOI: 10.1124/jpet.111.179663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chemotherapy for advanced human non-small-cell lung cancer (NSCLC) includes platinum-containing compound such as cisplatin in combination with a second- or third-generation cytotoxic agent. 5-Fluorouracil (5-FU) belongs to antimetabolite chemotherapeutics, and its mechanism of cytotoxicity is involved in the inhibition of thymidylate synthase (TS). TS and thymidine phosphorylase (TP) are key enzymes of the pyrimidine salvage pathway. In this study, we have examined the molecular mechanism of TS and TP in regulating drug sensitivity to cisplatin in NSCLC cell lines. Cisplatin could increase the phosphorylation of mitogen-activated protein kinase kinase 1/2 (MKK1/2)-extracellular signal-regulated kinase 1/2 (ERK1/2) and the protein levels of TS and TP through enhancing the protein stability in A549 and H1975 cells. Blocking ERK1/2 activation by MKK1/2 inhibitor [U0126; 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene)] decreased TS and TP protein levels in both cell lines treated with cisplatin. Depletion of endogenous TS or TP expression by specific small interfering RNA transfection significantly increased cisplatin-induced cell death and growth inhibition. Combined treatment with 5-FU could decrease cisplatin-induced ERK1/2 activation and the induction of TS and TP, which subsequently resulted in synergistic cytotoxic effects. Enforced expression of constitutive active MKK1/2 vectors rescued the protein levels of phospho-ERK1/2, TS, and TP, and the cell viability that were decreased by cisplatin and 5-FU combination. In contrast, U0126 enhanced drug sensitivity to cisplatin and/or 5-FU in lung cancer cells. In conclusion, the up-regulation of ERK1/2-dependent TS and TP can protect human lung cancer cells from cisplatin-induced cytotoxicity.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, Hsinchu Hospital, Chiayi, Taiwan
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The prodrug 5-fluorouracil (5-FU), after activation into 5-F-dUMP, is an extensively used anticancer agent that inhibits thymidylate synthase and leads to increases in dUTP and 5-F-dUTP levels in cells. One mechanism for 5-FU action involves DNA polymerase mediated incorporation of dUTP and 5-F-dUTP into genomic DNA leading to U/A, 5-FU/A, or 5-FU/G base pairs. These uracil-containing lesions are recognized and excised by several human uracil excision repair glycosylases (hUNG2, hSMUG2, and hTDG) leading to toxic abasic sites in DNA that may precipitate cell death. Each of these enzymes uses an extrahelical base recognition mechanism, and previous studies with UNG have shown that extrahelical recognition is facilitated by destabilized base pairs possessing kinetically enhanced base pair opening rates. Thus, the dynamic properties of base pairs containing 5-FU and U are an important unknown in understanding the role of these enzymes in damage recognition and prodrug activation. The pH dependence of the (19)F NMR chemical shift of 5-FU imbedded in a model trinucleotide was used to obtain a pK(a) = 8.1 for its imino proton (10 °C). This is about 1.5 units lower than the imino protons of uracil or thymine and indicates that at neutral pH 5-FU exists significantly as an ionized tautomer that can mispair with guanine during DNA replication. NMR imino proton exchange measurements show that U/A and 5-FU/A base pairs open with rate constants (k(op)) that are 6- and 13-fold faster than a T/A base pair in the same sequence context. In contrast, these same base pairs have apparent opening equilibrium constants (αK(op)) that differ by less than a factor of 2, indicating that the closing rates (k(cl)) are enhanced by nearly equal amounts as k(op). These dynamic measurements are consistent with the previously proposed kinetic trapping model for extrahelical recognition by UNG. In this model, the enhanced intrinsic opening rates of destabilized base pairs allow the bound glycosylase to sample dynamic extrahelical excursions of thymidine and uracil bases as the first step in recognition.
Collapse
Affiliation(s)
- Jared B Parker
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | | |
Collapse
|
44
|
Grogan BC, Parker JB, Guminski AF, Stivers JT. Effect of the thymidylate synthase inhibitors on dUTP and TTP pool levels and the activities of DNA repair glycosylases on uracil and 5-fluorouracil in DNA. Biochemistry 2011; 50:618-27. [PMID: 21222484 DOI: 10.1021/bi102046h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
5-Fluorouracil (5-FU), 5-fluorodeoxyuridine (5-dUrd), and raltitrixed (RTX) are anticancer agents that target thymidylate synthase (TS), thereby blocking the conversion of dUMP into dTMP. In budding yeast, 5-FU promotes a large increase in the dUMP/dTMP ratio leading to massive polymerase-catalyzed incorporation of uracil (U) into genomic DNA, and to a lesser extent 5-FU, which are both excised by yeast uracil DNA glycosylase (UNG), leading to DNA fragmentation and cell death. In contrast, the toxicity of 5-FU and RTX in human and mouse cell lines does not involve UNG, but, instead, other DNA glycosylases that can excise uracil derivatives. To elucidate the basis for these divergent findings in yeast and human cells, we have investigated how these drugs perturb cellular dUTP and TTP pool levels and the relative abilities of three human DNA glycosylases (hUNG2, hSMUG1, and hTDG) to excise various TS drug-induced lesions in DNA. We found that 5-dUrd only modestly increases the dUTP and dTTP pool levels in asynchronous MEF, HeLa, and HT-29 human cell lines when growth occurs in standard culture media. In contrast, treatment of chicken DT40 B cells with 5-dUrd or RTX resulted in large increases in the dUTP/TTP ratio. Surprisingly, even though UNG is the only DNA glycosylase in DT40 cells that can act on U·A base pairs derived from dUTP incorporation, an isogenic ung(-/-) DT40 cell line showed little change in its sensitivity to RTX as compared to control cells. In vitro kinetic analyses of the purified human enzymes show that hUNG2 is the most powerful catalyst for excision of 5-FU and U regardless of whether it is found in base pairs with A or G or present in single-stranded DNA. Fully consistent with the in vitro activity assays, nuclear extracts isolated from human and chicken cell cultures show that hUNG2 is the overwhelming activity for removal of both U and 5-FU, despite its bystander status with respect to drug toxicity in these cell lines. The diverse outcomes of TS inhibition with respect to nucleotide pool levels, the nature of the resulting DNA lesion, and the DNA repair response are discussed.
Collapse
Affiliation(s)
- Breeana C Grogan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | | | | | | |
Collapse
|
45
|
Williams D, Norman G, Khoury C, Metcalfe N, Briard J, Laporte A, Sheibani S, Portt L, Mandato CA, Greenwood MT. Evidence for a second messenger function of dUTP during Bax mediated apoptosis of yeast and mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:315-21. [PMID: 21145358 DOI: 10.1016/j.bbamcr.2010.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/02/2010] [Accepted: 11/29/2010] [Indexed: 01/26/2023]
Abstract
The identification of novel anti-apoptotic sequences has lead to new insights into the mechanisms involved in regulating different forms of programmed cell death. For example, the anti-apoptotic function of free radical scavenging proteins supports the pro-apoptotic function of Reactive Oxygen Species (ROS). Using yeast as a model of eukaryotic mitochondrial apoptosis, we show that a cDNA corresponding to the mitochondrial variant of the human DUT gene (DUT-M) encoding the deoxyuridine triphosphatase (dUTPase) enzyme can prevent apoptosis in yeast in response to internal (Bax expression) and to exogenous (H(2)O(2) and cadmium) stresses. Of interest, cell death was not prevented under culture conditions modeling chronological aging, suggesting that DUT-M only protects dividing cells. The anti-apoptotic function of DUT-M was confirmed by demonstrating that an increase in dUTPase protein levels is sufficient to confer increased resistance to H(2)O(2) in cultured C2C12 mouse skeletal myoblasts. Given that the function of dUTPase is to decrease the levels of dUTP, our results strongly support an emerging role for dUTP as a pro-apoptotic second messenger in the same vein as ROS and ceramide.
Collapse
Affiliation(s)
- Drew Williams
- Department of Anatomy and Cell Biology, McGill University. Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Growth factor signaling is required for cellular differentiation, tissue morphogenesis, and tissue homeostasis. Misregulation of intracellular signal transduction can lead to developmental defects during embryogenesis or particular diseases in the adult. One family of growth factors important for these aspects is given by the Wnt proteins. In particular, Wnts have important functions in stem cell biology, cardiac development and differentiation, angiogenesis, cardiac hypertrophy, cardiac failure, and aging. Knowledge of growth factor signaling during differentiation will allow for improvement of targeted differentiation of embryonic or adult stem cells toward functional cardiomyocytes or for understanding the basis of diseases. Our major aim here is to provide a state of the art review summarizing our present knowledge of the intracellular Wnt-mediated signaling network. In particular, we provide evidence that the subdivision into canonical and noncanonical Wnt signaling pathways solely based on the identity of Wnt ligands or Frizzled receptors is not appropriate anymore. We thereby deliver a solid base for further upcoming articles of a review series focusing on the role of Wnt proteins on different aspects of cardiovascular development and dysfunction.
Collapse
Affiliation(s)
- Tata Purushothama Rao
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | |
Collapse
|
47
|
Kumar S, Aninat C, Michaux G, Morel F. Anticancer drug 5-fluorouracil induces reproductive and developmental defects in Caenorhabditis elegans. Reprod Toxicol 2010; 29:415-20. [DOI: 10.1016/j.reprotox.2010.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/08/2010] [Accepted: 02/25/2010] [Indexed: 01/20/2023]
|
48
|
Riley KJL, Rabinowitz GS, Steitz JA. Comprehensive analysis of Rhesus lymphocryptovirus microRNA expression. J Virol 2010; 84:5148-57. [PMID: 20219930 PMCID: PMC2863793 DOI: 10.1128/jvi.00110-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 03/01/2010] [Indexed: 11/20/2022] Open
Abstract
Rhesus lymphocryptovirus (rLCV) and Epstein-Barr virus (EBV) are closely related gammaherpesviruses that infect and cause disease in rhesus monkeys and humans, respectively. Thus, rLCV is an important model system for EBV pathogenesis. Both rLCV and EBV express microRNAs (miRNAs), several conserved in sequence and genomic location. We have applied deep sequencing technology to obtain an inventory of rLCV miRNA expression in latently rLCV-infected monkey B cells. Our data confirm the presence of all previously identified mature rLCV miRNAs and have resulted in the discovery of 21 new mature miRNAs arising from previously identified precursor miRNAs (pre-miRNAs), as well as two novel pre-miRNAs (rL1-34 and rL1-35) that together generate four new mature miRNAs. Thus, the total number of rLCV-encoded pre-miRNAs is 35 and the total number of rLCV mature miRNAs is 68, the most of any virus examined. The exact 5' and 3' ends of all mature rLCV miRNAs were pinpointed, many showing marked sequence and length heterogeneity that could modulate function. We further demonstrate that rLCV mature miRNAs associate with Argonaute proteins in rLCV-infected B cells.
Collapse
Affiliation(s)
- Kasandra J.-L. Riley
- Department of Molecular Biophysics & Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Gabrielle S. Rabinowitz
- Department of Molecular Biophysics & Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Joan A. Steitz
- Department of Molecular Biophysics & Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536
| |
Collapse
|
49
|
Lin RCY, Weeks KL, Gao XM, Williams RBH, Bernardo BC, Kiriazis H, Matthews VB, Woodcock EA, Bouwman RD, Mollica JP, Speirs HJ, Dawes IW, Daly RJ, Shioi T, Izumo S, Febbraio MA, Du XJ, McMullen JR. PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA. Arterioscler Thromb Vasc Biol 2010; 30:724-32. [PMID: 20237330 DOI: 10.1161/atvbaha.109.201988] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Myocardial infarction (MI) is a serious complication of atherosclerosis associated with increasing mortality attributable to heart failure. Activation of phosphoinositide 3-kinase [PI3K(p110 alpha)] is considered a new strategy for the treatment of heart failure. However, whether PI3K(p110 alpha) provides protection in a setting of MI is unknown, and PI3K(p110 alpha) is difficult to target because it has multiple actions in numerous cell types. The goal of this study was to assess whether PI3K(p110 alpha) is beneficial in a setting of MI and, if so, to identify cardiac-selective microRNA and mRNA that mediate the protective properties of PI3K(p110 alpha). METHODS AND RESULTS Cardiomyocyte-specific transgenic mice with increased or decreased PI3K(p110 alpha) activity (caPI3K-Tg and dnPI3K-Tg, respectively) were subjected to MI for 8 weeks. The caPI3K-Tg subjected to MI had better cardiac function than nontransgenic mice, whereas dnPI3K-Tg had worse function. Using microarray analysis, we identified PI3K-regulated miRNA and mRNA that were correlated with cardiac function, including growth factor receptor-bound 14. Growth factor receptor-bound 14 is highly expressed in the heart and positively correlated with PI3K(p110 alpha) activity and cardiac function. Mice deficient in growth factor receptor-bound 14 have cardiac dysfunction. CONCLUSIONS Activation of PI3K(p110 alpha) protects the heart against MI-induced heart failure. Cardiac-selective targets that mediate the protective effects of PI3K(p110 alpha) represent new drug targets for heart failure.
Collapse
Affiliation(s)
- Ruby C Y Lin
- Ramaciotti Centre for Gene Function Analysis, University of New South Wales, Randwick, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fungal homoserine kinase (thr1Delta) mutants are attenuated in virulence and die rapidly upon threonine starvation and serum incubation. EUKARYOTIC CELL 2010; 9:729-37. [PMID: 20305003 DOI: 10.1128/ec.00045-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fungally conserved subset of amino acid biosynthetic enzymes not present in humans offer exciting potential as an unexploited class of antifungal drug targets. Since threonine biosynthesis is essential in Cryptococcus neoformans, we further explored the potential of threonine biosynthetic enzymes as antifungal drug targets by determining the survival in mice of Saccharomyces cerevisiae homoserine kinase (thr1Delta) and threonine synthase (thr4Delta) mutants. In striking contrast to aspartate kinase (hom3Delta) mutants, S. cerevisiae thr1Delta and thr4Delta mutants were severely depleted after only 4 h in vivo. Similarly, Candida albicans thr1Delta mutants, but not hom3Delta mutants, were significantly attenuated in virulence. Consistent with the in vivo phenotypes, S. cerevisiae thr1Delta and thr4Delta mutants as well as C. albicans thr1Delta mutants were extremely serum sensitive. In both species, serum sensitivity was suppressed by the addition of threonine, a feedback inhibitor of Hom3p. Because mutation of the HOM3 and HOM6 genes, required for the production of the toxic pathway intermediate homoserine, also suppressed serum sensitivity, we hypothesize that serum sensitivity is a consequence of homoserine accumulation. Serum survival is critical for dissemination, an important virulence determinant: thus, together with the essential nature of C. neoformans threonine synthesis, the cross-species serum sensitivity of thr1Delta mutants makes the fungus-specific Thr1p, and likely Thr4p, ideal antifungal drug targets.
Collapse
|