1
|
Yamano-Adachi N, Ogata N, Tanaka S, Onitsuka M, Omasa T. Characterization of Chinese hamster ovary cells with disparate chromosome numbers: Reduction of the amount of mRNA relative to total protein. J Biosci Bioeng 2019; 129:121-128. [PMID: 31303495 DOI: 10.1016/j.jbiosc.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Chromosomes in Chinese hamster ovary (CHO) cells are labile. We have shown that high-chromosome-number CHO cells have greater potential to become robust producers of recombinant proteins. One explanation being the increase in transgene integration sites. However, high-chromosome-number cell clones produce more IgG3 following culture of single-cell clones, even under conditions that yield the same number of integrations as cells with normal chromosome numbers. Here, we characterized high-chromosome-number cells by transcriptome analysis. RNA standards were used to normalize transcriptomes of cells that had different chromosome numbers. Our results demonstrate that the mRNA ratio of β-actin and many other genes in high-chromosome-number cells to that in normal-chromosome-number cells per cell (normalized to RNA standards) was smaller than the equivalent genomic size and cell volume ratios. Many genes encoding membrane proteins are more highly expressed in high-chromosome-number cells, probably due to differences in cell size caused by the increase in chromosomes. In addition, genes related to histone modification and lipid metabolism are differentially expressed. The reduced transcript level required per protein produced in total and the different intracellular signal transductions might be key factors for antibody production.
Collapse
Affiliation(s)
- Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Norichika Ogata
- Nihon BioData Corporation, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| | - Sho Tanaka
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-8506, Japan.
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Onitsuka M, Kinoshita Y, Nishizawa A, Tsutsui T, Omasa T. Enhanced IgG1 production by overexpression of nuclear factor kappa B inhibitor zeta (NFKBIZ) in Chinese hamster ovary cells. Cytotechnology 2017; 70:675-685. [PMID: 29188404 DOI: 10.1007/s10616-017-0170-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/11/2017] [Indexed: 02/02/2023] Open
Abstract
Several engineering strategies have been employed to improve the production of therapeutic recombinant proteins in Chinese hamster ovary (CHO) cell lines. We have focused on unfolded protein response-based engineering and reported that ATF4 overexpression increases protein production. In this study, transcriptome analysis of ATF4-overexpressed CHO cells was performed using high-coverage expression profiling, to search for another key factor contributing to recombinant protein production. We observed the upregulated expression of transcription factor, nuclear factor (NF)-kappa-B inhibitor zeta (NFKBIZ or Iκbζ), in ATF4-overexpressed cells. A total of 1917 bp of CHO NFKBIZ cDNA was cloned, and two stable cell lines overexpressing NFKBIZ were constructed. We investigated the effects of NFKBIZ on IgG1 production in CHO cells. Although the two stable cell lines, NFKBIZ-A and -B, had the opposite phenotypes in cell growth, the specific IgG1 production rate of both cell lines was enhanced by 1.2-1.4-fold. In the NFKBIZ-A cell line, the synergistic effect between enhanced viable cell density and improved specific IgG1 production rate brought about a large increase in the final IgG1 titer. Luciferase-based NF-κB signaling assay results suggest that altered p50/p50 signaling seems to be due to the opposite phenotypes in cell growth. No difference was observed in the translational levels and intracellular assembly states of IgG1 between mock and two NFKBIZ cell lines, indicating that the secretion machinery of correctly folded IgG1 was enhanced in NFKBIZ-overexpressing cell lines.
Collapse
Affiliation(s)
- Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minamijosanjima-cho 2-1, Tokushima, 770-8513, Japan.
| | - Yukie Kinoshita
- Institute of Technology and Science, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Akitoshi Nishizawa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomomi Tsutsui
- Institute of Technology and Science, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Takeshi Omasa
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minamijosanjima-cho 2-1, Tokushima, 770-8513, Japan.,Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Ying M, Kidou SI. Discovery of novel cold-induced CISP genes encoding small RNA-binding proteins related to cold adaptation in barley. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:129-138. [PMID: 28554470 DOI: 10.1016/j.plantsci.2017.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
To adapt to cold conditions, barley plants rely on specific mechanisms, which have not been fully understood. In this study, we characterized a novel barley cold-induced gene identified using a PCR-based high coverage gene expression profiling method. The identified gene encodes a small protein that we named CISP1 (Cold-induced Small Protein 1). Homology searches of sequence databases revealed that CISP1 homologs (CISP2 and CISP3) exist in barley genome. Further database analyses showed that the CISP1 homologs were widely distributed in cold-tolerant plants such as wheat and rye. Quantitative reverse transcription PCR analyses indicated that the expression of barley CISP genes was markedly increased in roots exposed to cold conditions. In situ hybridization analyses showed that the CISP1 transcripts were localized in the root tip and lateral root primordium. We also demonstrated that the CISP1 protein bound to RNA. Taken together, these findings indicate that CISP1 and its homologs encoding small RNA-binding proteins may serve as RNA chaperones playing a vital role in the cold adaptation of barley root. This is the first report describing the likely close relationship between root-specific genes and the cold adaptation process, as well as the potential function of the identified genes.
Collapse
Affiliation(s)
- Mengchao Ying
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 467-8501, Japan
| | - Shin-Ichiro Kidou
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 467-8501, Japan; Research Center for Biological Diversity, Nagoya City University, Mizuho, Nagoya 467-8501, Japan.
| |
Collapse
|
4
|
Differential transcript profiling alters regulatory gene expression during the development of Gossypium arboreum, G.stocksii and somatic hybrids. Sci Rep 2017; 7:3120. [PMID: 28600526 PMCID: PMC5466607 DOI: 10.1038/s41598-017-03431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/02/2017] [Indexed: 11/20/2022] Open
Abstract
Polyploidy or genome doubling (i.e., the presence of two or more diploid parental genome sets within an organism) are very important in higher plants. Of particular interest are the mechanisms in the new microenvironment of the common nucleus, where doubled regulatory networks interact to generate a viable genetic system capable of regulating growth, development and responses to the environment. To determine the effects of whole genome merging and doubling on the global gene expression architecture of a new polyploid, derived from protoplast fusion of the A1A1 genome of Gossypium arboreum and the E1E1 genome of Gossypium stocksii, we monitored gene expression through cDNA-AFLP in the somatic hybrids (G. arboreum + G. stocksii). The genomic expression patterns of the somatic hybrids revealed that changes in expression levels mainly involved regulatory genes (31.8% of the gene expression profiles), and the AA and EE genomes contributed equally to genome-wide expression in the newly formed AAEE genome from additivity and dominance effects. These results provide a novel perspective on polyploid gene regulation and hint at the underlying genetic basis of allopolyploid adaption in the new microenvironmental nucleus.
Collapse
|
5
|
Hiki K, Nakajima F, Tobino T. Application of cDNA-AFLP to biomarker exploration in a non-model species Grandidierella japonica. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:206-213. [PMID: 28260686 DOI: 10.1016/j.ecoenv.2017.02.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Biomarkers of exposure can be used to identify specific contaminants that are adversely affecting aquatic organisms. However, it remains prohibitively costly to investigate multiple novel biomarkers of exposure in a non-model species, despite the development of next-generation sequencing technology. In this study, we focused on the use of cDNA-amplified fragment length polymorphism (AFLP) as a cost-effective biomarker discovery tool to test whether it could identify biomarkers of exposure in the non-model amphipod species Grandidierella japonica. Loci were identified that were differentially expressed in amphipods exposed to reference chemicals (Cu, Zn, and nicotine) and to an environmental sample (road dust) at sublethal concentrations. Eight loci were shown to respond consistently to nicotine at different concentrations, but not to Cu or Zn. Some of the loci also responded to an environmental road dust sample containing nicotine. These findings suggest that loci identified using cDNA-AFLP could be used as biomarkers of nicotine exposure in environmental samples with complex matrices. Further studies with other organisms and toxicants are needed, but we have demonstrated that the use of cDNA-AFLP to identify biomarkers for ecotoxicological studies of non-model species is at least feasible.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Fumiyuki Nakajima
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Tobino
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Aiba T, Saito T, Hayashi A, Sato S, Yunokawa H, Maruyama T, Fujibuchi W, Kurita H, Tohyama C, Ohsako S. Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles. BMC Mol Biol 2017; 18:7. [PMID: 28279161 PMCID: PMC5345256 DOI: 10.1186/s12867-017-0083-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/02/2017] [Indexed: 02/22/2023] Open
Abstract
Background It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Results Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5′ end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. Conclusion MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research. Electronic supplementary material The online version of this article (doi:10.1186/s12867-017-0083-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toshiki Aiba
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiyuki Saito
- Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Akiko Hayashi
- Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Shinji Sato
- Maze, Inc., 1-2-17 Sennincho, Hachioji-shi, Tokyo, 193-0835, Japan
| | | | - Toru Maruyama
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Life Science & Medical Bioscience, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hisaka Kurita
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Sahebi M, Hanafi MM, Azizi P, Hakim A, Ashkani S, Abiri R. Suppression Subtractive Hybridization Versus Next-Generation Sequencing in Plant Genetic Engineering: Challenges and Perspectives. Mol Biotechnol 2016; 57:880-903. [PMID: 26271955 DOI: 10.1007/s12033-015-9884-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Plantation Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia,
| | | | | | | | | | | |
Collapse
|
8
|
Moustafa K, Cross JM. Genetic Approaches to Study Plant Responses to Environmental Stresses: An Overview. BIOLOGY 2016; 5:biology5020020. [PMID: 27196939 PMCID: PMC4929534 DOI: 10.3390/biology5020020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/31/2022]
Abstract
The assessment of gene expression levels is an important step toward elucidating gene functions temporally and spatially. Decades ago, typical studies were focusing on a few genes individually, whereas now researchers are able to examine whole genomes at once. The upgrade of throughput levels aided the introduction of systems biology approaches whereby cell functional networks can be scrutinized in their entireties to unravel potential functional interacting components. The birth of systems biology goes hand-in-hand with huge technological advancements and enables a fairly rapid detection of all transcripts in studied biological samples. Even so, earlier technologies that were restricted to probing single genes or a subset of genes still have their place in research laboratories. The objective here is to highlight key approaches used in gene expression analysis in plant responses to environmental stresses, or, more generally, any other condition of interest. Northern blots, RNase protection assays, and qPCR are described for their targeted detection of one or a few transcripts at a once. Differential display and serial analysis of gene expression represent non-targeted methods to evaluate expression changes of a significant number of gene transcripts. Finally, microarrays and RNA-seq (next-generation sequencing) contribute to the ultimate goal of identifying and quantifying all transcripts in a cell under conditions or stages of study. Recent examples of applications as well as principles, advantages, and drawbacks of each method are contrasted. We also suggest replacing the term “Next-Generation Sequencing (NGS)” with another less confusing synonym such as “RNA-seq”, “high throughput sequencing”, or “massively parallel sequencing” to avoid confusion with any future sequencing technologies.
Collapse
Affiliation(s)
- Khaled Moustafa
- Conservatoire National des Arts et Métiers, Paris 75003, France.
| | - Joanna M Cross
- Faculty of Agriculture, Inonu University, Malatya 44000, Turkey.
| |
Collapse
|
9
|
LI ZY, SUN K, ZHANG XY, LIU SQ, JIANG L, REN NQ. Advance in Microfluidic Devices for Fractionation of DNA Fragments. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60922-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Komatsu S, Sakata K, Nanjo Y. ‘Omics’ techniques and their use to identify how soybean responds to flooding. J Anal Sci Technol 2015. [DOI: 10.1186/s40543-015-0052-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Large-scale tag/PCR-based gene expression profiling. World J Microbiol Biotechnol 2015; 30:2125-39. [PMID: 24659336 DOI: 10.1007/s11274-014-1641-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/16/2014] [Indexed: 10/25/2022]
Abstract
An intriguing enigma in molecular biology is how genes within a single genome are differentially expressed in different cell types of a multicellular organism, or in response to different developmental or environmental queues in a single cell type. Quantification of transcript levels on a genome-wide scale, often termed transcript profiling, provides a powerful approach to identifying protein-coding and non-coding RNAs functionally relevant to a given biological process. Indeed, transcriptome analysis has been a key area of biological inquiry for decades and successfully produced discoveries in a multitude of processes and disease states, and in an increasingly large number of organisms. The evolution of technologies with increasing levels of informational content, ranging from hybridization-based technologies such as Northern blot analysis and microarrays to tag/polymerase chain reaction (PCR)- and sequence-based technologies including differential display and SAGE, along with the next-generation sequencing, has provided hope for revealing the molecular details of biological systems as they respond to change. This review is an overview of selected high throughput tag/PCR-based methods for genome-wide expression profiling amenable to high-throughput automated operation in any standard laboratory.
Collapse
|
12
|
Kumar D, Kirti PB. Transcriptomic and proteomic analyses of resistant host responses in Arachis diogoi challenged with late leaf spot pathogen, Phaeoisariopsis personata. PLoS One 2015; 10:e0117559. [PMID: 25646800 PMCID: PMC4315434 DOI: 10.1371/journal.pone.0117559] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 12/27/2014] [Indexed: 11/19/2022] Open
Abstract
Late leaf spot is a serious disease of peanut caused by the imperfect fungus, Phaeoisariopsis personata. Wild diploid species, Arachis diogoi. is reported to be highly resistant to this disease and asymptomatic. The objective of this study is to investigate the molecular responses of the wild peanut challenged with the late leaf spot pathogen using cDNA-AFLP and 2D proteomic study. A total of 233 reliable, differentially expressed genes were identified in Arachis diogoi. About one third of the TDFs exhibit no significant similarity with the known sequences in the data bases. Expressed sequence tag data showed that the characterized genes are involved in conferring resistance in the wild peanut to the pathogen challenge. Several genes for proteins involved in cell wall strengthening, hypersensitive cell death and resistance related proteins have been identified. Genes identified for other proteins appear to function in metabolism, signal transduction and defence. Nineteen TDFs based on the homology analysis of genes associated with defence, signal transduction and metabolism were further validated by quantitative real time PCR (qRT-PCR) analyses in resistant wild species in comparison with a susceptible peanut genotype in time course experiments. The proteins corresponding to six TDFs were differentially expressed at protein level also. Differentially expressed TDFs and proteins in wild peanut indicate its defence mechanism upon pathogen challenge and provide initial breakthrough of genes possibly involved in recognition events and early signalling responses to combat the pathogen through subsequent development of resistivity. This is the first attempt to elucidate the molecular basis of the response of the resistant genotype to the late leaf spot pathogen, and its defence mechanism.
Collapse
Affiliation(s)
- Dilip Kumar
- Department of Plant Sciences, School of Life Science, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
13
|
Wenefrida I, Utomo HS, Linscombe SD. Mutational breeding and genetic engineering in the development of high grain protein content. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11702-11710. [PMID: 23869957 DOI: 10.1021/jf4016812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cereals are the most important crops in the world for both human consumption and animal feed. Improving their nutritional values, such as high protein content, will have significant implications, from establishing healthy lifestyles to helping remediate malnutrition problems worldwide. Besides providing a source of carbohydrate, grain is also a natural source of dietary fiber, vitamins, minerals, specific oils, and other disease-fighting phytocompounds. Even though cereal grains contain relatively little protein compared to legume seeds, they provide protein for the nutrition of humans and livestock that is about 3 times that of legumes. Most cereal seeds lack a few essential amino acids; therefore, they have imbalanced amino acid profiles. Lysine (Lys), threonine (Thr), methionine (Met), and tryptophan (Trp) are among the most critical and are a limiting factor in many grain crops for human nutrition. Tremendous research has been put into the efforts to improve these essential amino acids. Development of high protein content can be outlined in four different approaches through manipulating seed protein bodies, modulating certain biosynthetic pathways to overproduce essential and limiting amino acids, increasing nitrogen relocation to the grain through the introduction of transgenes, and exploiting new genetic variance. Various technologies have been employed to improve protein content including conventional and mutational breeding, genetic engineering, marker-assisted selection, and genomic analysis. Each approach involves a combination of these technologies. Advancements in nutrigenomics and nutrigenetics continue to improve public knowledge at a rapid pace on the importance of specific aspects of food nutrition for optimum fitness and health. An understanding of the molecular basis for human health and genetic predisposition to certain diseases through human genomes enables individuals to personalize their nutritional requirements. It is critically important, therefore, to improve grain protein quality. Highly nutritious grain can be tailored to functional foods to meet the needs for both specific individuals and human populations as a whole.
Collapse
Affiliation(s)
- Ida Wenefrida
- Rice Research Station, Lousiana State University Agricultural Center , Crowley, Louisiana 70526, United States
| | | | | |
Collapse
|
14
|
Lin YT, Jan FJ, Lin CW, Chung CH, Chen JC, Yeh SD, Ku HM. Differential gene expression in response to Papaya ringspot virus infection in Cucumis metuliferus using cDNA-amplified fragment length polymorphism analysis. PLoS One 2013; 8:e68749. [PMID: 23874746 PMCID: PMC3706314 DOI: 10.1371/journal.pone.0068749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 06/03/2013] [Indexed: 11/19/2022] Open
Abstract
A better understanding of virus resistance mechanisms can offer more effective strategies to control virus diseases. Papaya ringspot virus (PRSV), Potyviridae, causes severe economical losses in papaya and cucurbit production worldwide. However, no resistance gene against PRSV has been identified to date. This study aimed to identify candidate PRSV resistance genes using cDNA-AFLP analysis and offered an open architecture and transcriptomic method to study those transcripts differentially expressed after virus inoculation. The whole genome expression profile of Cucumis metuliferus inoculated with PRSV was generated using cDNA-amplified fragment length polymorphism (cDNA-AFLP) method. Transcript derived fragments (TDFs) identified from the resistant line PI 292190 may represent genes involved in the mechanism of PRSV resistance. C. metuliferus susceptible Acc. 2459 and resistant PI 292190 lines were inoculated with PRSV and subsequently total RNA was isolated for cDNA-AFLP analysis. More than 400 TDFs were expressed specifically in resistant line PI 292190. A total of 116 TDFs were cloned and their expression patterns and putative functions in the PRSV-resistance mechanism were further characterized. Subsequently, 28 out of 116 candidates which showed two-fold higher expression levels in resistant PI 292190 than those in susceptible Acc. 2459 after virus inoculation were selected from the reverse northern blot and bioinformatic analysis. Furthermore, the time point expression profiles of these candidates by northern blot analysis suggested that they might play roles in resistance against PRSV and could potentially provide valuable information for controlling PRSV disease in the future.
Collapse
Affiliation(s)
- Yu-Tsung Lin
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Fuh-Jyh Jan
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Wei Lin
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Hung Chung
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Jo-Chu Chen
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Shy-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Mei Ku
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Investigation of transcriptional responses of juvenile mouse bone marrow to power frequency magnetic fields. Mutat Res 2013; 745-746:40-5. [PMID: 23523963 DOI: 10.1016/j.mrfmmm.2013.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/11/2013] [Accepted: 03/05/2013] [Indexed: 01/07/2023]
Abstract
To seek alterations in gene transcription in bone marrow cells following in vivo exposure of juvenile mice to power frequency magnetic fields, young (21-24-day old) C57BL/6 mice were exposed to a 100μT 50Hz magnetic field for 2h. Transcription was analysed by three methods, High Coverage Expression Profiling (HiCEP), Illumina microarrays and quantitative real-time polymerase chain reaction (QRT-PCR). A pilot HiCEP experiment with 6 exposed (E) and 6 non-exposed (NE) mice identified four candidate responsive transcripts (two unknown transcripts (AK152075 and F10-NED), phosphatidylinositol binding clathrin assembly protein (Picalm) and exportin 7 (Xpo7)). A larger experiment compared 19 E and 15 NE mice using two independent QRT-PCR assays and repeated microarray assays. No significant field-dependent changes were seen, although Picalm showed a trend to significance in one QRT-PCR assay (E/NE=0.91; P=0.06). However, the study was underpowered to detect an effect of this magnitude (52% power at P=0.05). These data indicate the current experimental constraints in detecting small changes in transcription that may occur in response to magnetic fields. These constraints result from technical limitations in the accuracy of assays and biological variation, which together were sufficient to account statistically for the number of differentially expressed transcripts identified in the pilot experiment.
Collapse
|
16
|
Identification of differential expression genes in leaves of rice (Oryza sativa L.) in response to heat stress by cDNA-AFLP analysis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:576189. [PMID: 23509744 PMCID: PMC3590577 DOI: 10.1155/2013/576189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/14/2012] [Accepted: 01/07/2013] [Indexed: 11/17/2022]
Abstract
High temperature impedes the growth and productivity of various crop species. To date, rice (Oryza sativa L.) has not been exploited to understand the molecular basis of its abnormally high level of temperature tolerance. To identify transcripts induced by heat stress, twenty-day-old rice seedlings of different rice cultivars suffering from heat stress were treated at different times, and differential gene expression analyses in leaves were performed by cDNA-AFLP and further verified by real-time RT-PCR. In aggregate, more than three thousand different fragments were indentified, and 49 fragments were selected for the sequence and differential expressed genes were classified functionally into different groups. 6 of 49 fragments were measured by real-time RT-PCR. In addition, the variations of three different polyamine contents in response to heat stress through high-performance liquid chromatography (HPLC) analysis were also performed. The results and their direct and indirect relationships to heat stress tolerance mechanism were discussed.
Collapse
|
17
|
Chicken hemogen homolog is involved in the chicken-specific sex-determining mechanism. Proc Natl Acad Sci U S A 2013; 110:3417-22. [PMID: 23401550 DOI: 10.1073/pnas.1218714110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Using a comprehensive transcriptome analysis, a Z chromosome-linked chicken homolog of hemogen (cHEMGN) was identified and shown to be specifically involved in testis differentiation in early chicken embryos. Hemogen [Hemgn in mice, EDAG (erythroid differentiation-associated gene protein) in humans] was recently characterized as a hematopoietic tissue-specific gene encoding a transcription factor that regulates the proliferation and differentiation of hematopoietic cells in mammals. In chicken, cHEMGN was expressed not only in hematopoietic tissues but also in the early embryonic gonad of male chickens. The male-specific expression was identified in the nucleus of (pre)Sertoli cells after the sex determination period and before the expression of SOX9 (SRY-box 9). The expression of cHEMGN was induced in ZW embryonic gonads that were masculinized by aromatase inhibitor treatment. ZW embryos overexpressing cHEMGN, generated by infection with retrovirus carrying cHEMGN, showed masculinized gonads. These findings suggest that cHEMGN is a transcription factor specifically involved in chicken sex determination.
Collapse
|
18
|
Hideno A, Inoue H, Fujii T, Yano S, Tsukahara K, Murakami K, Yunokawa H, Sawayama S. High-coverage gene expression profiling analysis of the cellulase-producing fungus Acremonium cellulolyticus cultured using different carbon sources. Appl Microbiol Biotechnol 2013; 97:5483-92. [DOI: 10.1007/s00253-013-4689-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 12/26/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
|
19
|
Song Y, Wang Z, Bo W, Ren Y, Zhang Z, Zhang D. Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis. BMC Genomics 2012; 13:286. [PMID: 22747754 PMCID: PMC3443059 DOI: 10.1186/1471-2164-13-286] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/15/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drought is one of the main environmental factors limiting tree growth and productivity of plantation forests worldwide. Populus hopeiensis Hu et Chow is one of the most important commercial plantation tree species in China. However, the genes controlling drought tolerance in this species have not been identified or characterized. Here, we conducted differential expression analyses and identified a number of genes that were up- or downregulated in P. hopeiensis during water stress. To the best of our knowledge, this is the first comprehensive study of differentially expressed genes in water-stressed P. hopeiensis. RESULTS Using the cDNA-AFLP detection technique, we used 256 primer combinations to identify differentially expressed genes in P. hopeiensis during water stress. In total, 415 transcript derived-fragments (TDFs) were obtained from 10× deep sequencing of 473 selected TDFs. Of the 415 TDFs, 412 were annotated by BLAST searches against various databases. The majority of these genes encoded products involved in ion transport and compartmentalization, cell division, metabolism, and protein synthesis. The TDFs were clustered into 12 groups on the basis of their expression patterns. Of the 415 reliable TDFs, the sequences of 35 were homologous to genes that play roles in short or long-term resistance to drought stress. Some genes were further selected for validation of cDNA-AFLP expression patterns using real-time PCR analyses. The results confirmed the expression patterns that were detected using the cDNA-AFLP technique. CONCLUSION The cDNA-AFLP technique is an effective and powerful tool for identifying candidate genes that are differentially expressed under water stress. We demonstrated that 415 TDFs were differentially expressed in water-stressed poplar. The products of these genes are involved in various biological processes in the drought response of poplar. The results of this study will aid in the identification of candidate genes of future experiments aimed at understanding this response of poplar.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Zeliang Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Wenhao Bo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Yuanyuan Ren
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Zhiyi Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
20
|
Mayasari NI, Mukougawa K, Shigeoka T, Kawakami K, Kawaichi M, Ishida Y. Mixture of differentially tagged Tol2 transposons accelerates conditional disruption of a broad spectrum of genes in mouse embryonic stem cells. Nucleic Acids Res 2012; 40:e97. [PMID: 22447447 PMCID: PMC3401447 DOI: 10.1093/nar/gks262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among the insertional mutagenesis techniques used in the current international knockout mouse project (KOMP) on the inactivation of all mouse genes in embryonic stem (ES) cells, random gene trapping has been playing a major role. Gene-targeting experiments have also been performed to individually and conditionally knockout the remaining ‘difficult-to-trap’ genes. Here, we show that transcriptionally silent genes in ES cells are severely underrepresented among the randomly trapped genes in KOMP. Our conditional poly(A)-trapping vector with a common retroviral backbone also has a strong bias to be integrated into constitutively transcribed genome loci. Most importantly, conditional gene disruption could not be successfully accomplished by using the retrovirus vector because of the frequent development of intra-vector deletions/rearrangements. We found that one of the cut and paste-type DNA transposons, Tol2, can serve as an ideal platform for gene-trap vectors that ensures identification and conditional disruption of a broad spectrum of genes in ES cells. We also solved a long-standing problem associated with multiple vector integration into the genome of a single cell by incorporating a mixture of differentially tagged Tol2 transposons. We believe our strategy indicates a straightforward approach to mass-production of conditionally disrupted alleles for genes in the target cells.
Collapse
Affiliation(s)
- N Ika Mayasari
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Araki R, Hoki Y, Uda M, Nakamura M, Jincho Y, Tamura C, Sunayama M, Ando S, Sugiura M, Yoshida MA, Kasama Y, Abe M. Crucial role of c-Myc in the generation of induced pluripotent stem cells. Stem Cells 2012; 29:1362-70. [PMID: 21732496 DOI: 10.1002/stem.685] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
c-Myc transduction has been considered previously to be nonessential for induced pluripotent stem cell (iPSC) generation. In this study, we investigated the effects of c-Myc transduction on the generation of iPSCs from an inbred mouse strain using a genome integration-free vector to exclude the effects of the genetic background and the genomic integration of exogenous genes. Our findings reveal a clear difference between iPSCs generated using the four defined factors including c-Myc (4F-iPSCs) and those produced without c-Myc (3F-iPSCs). Molecular and cellular analyses did not reveal any differences between 3F-iPSCs and 4F-iPSCs, as reported previously. However, a chimeric mice formation test indicated clear differences, whereby few highly chimeric mice and no germline transmission was observed using 3F-iPSCs. Similar differences were also observed in the mouse line that has been widely used in iPSC studies. Furthermore, the defect in 3F-iPSCs was considerably improved by trichostatin A, a histone deacetyl transferase inhibitor, indicating that c-Myc plays a crucial role in iPSC generation through the control of histone acetylation. Indeed, low levels of histone acetylation were observed in 3F-iPSCs. Our results shed new light on iPSC generation mechanisms and strongly recommend c-Myc transduction for preparing high-quality iPSCs.
Collapse
Affiliation(s)
- Ryoko Araki
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Robust ordered mRNA differential display: an improved method for global gene expression profiling. Biotechniques 2012; 51:271-2, 274-5. [PMID: 21988694 DOI: 10.2144/000113752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 09/09/2011] [Indexed: 11/23/2022] Open
Abstract
Global gene expression profiling (GGEP) plays a pivotal role in biological research. We developed an improved GGEP method called "robust ordered mRNA differential display (RoDD)" by combining mRNA differential display (DD) and complementary DNA amplified fragment length polymorphisms (cDNA-AFLP) using elaborately designed primers and a poly (dT:A) replacement technique. Redundancy was minimized by bead-based isolation and coverage was improved by using restriction enzymes that recognized 4-bp sites. This method offers the common virtues of gel-based methods along with the reliability of cDNA-AFLP. The most significant advantage of RoDD over current gel-based methods is greatly improved coverage and minimized redundancy.
Collapse
|
23
|
Brenner WG, Ramireddy E, Heyl A, Schmülling T. Gene regulation by cytokinin in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2012; 3:8. [PMID: 22639635 PMCID: PMC3355611 DOI: 10.3389/fpls.2012.00008] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/06/2012] [Indexed: 05/18/2023]
Abstract
The plant hormone cytokinin realizes at least part of its signaling output through the regulation of gene expression. A great part of the early transcriptional regulation is mediated by type-B response regulators, which are transcription factors of the MYB family. Other transcription factors, such as the cytokinin response factors of the AP2/ERF family, have also been shown to be involved in this process. Additional transcription factors mediate distinct parts of the cytokinin response through tissue- and cell-specific downstream transcriptional cascades. In Arabidopsis, only a single cytokinin response element, to which type-B response regulators bind, has been clearly proven so far, which has 5'-GAT(T/C)-3' as a core sequence. This motif has served to construct a synthetic cytokinin-sensitive two-component system response element, which is useful for monitoring the cellular cytokinin status. Insight into the extent of transcriptional regulation has been gained by genome-wide gene expression analyses following cytokinin treatment and from plants having an altered cytokinin content or signaling. This review presents a meta analysis of such microarray data resulting in a core list of cytokinin response genes. Genes encoding type-A response regulators displayed the most stable response to cytokinin, but a number of cytokinin metabolism genes (CKX4, CKX5, CYP735A2, UGT76C2) also belong to them, indicating homeostatic mechanisms operating at the transcriptional level. The cytokinin core response genes are also the target of other hormones as well as biotic and abiotic stresses, documenting crosstalk of the cytokinin system with other hormonal and environmental signaling pathways. The multiple links of cytokinin to diverse functions, ranging from control of meristem activity, hormonal crosstalk, nutrient acquisition, and various stress responses, are also corroborated by a compilation of genes that have been repeatedly found by independent gene expression profiling studies. Such functions are, at least in part, supported by genetic studies.
Collapse
Affiliation(s)
- Wolfram G. Brenner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Eswar Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| |
Collapse
|
24
|
Li Z, Sun K, Sunayama M, Araki R, Ueno K, Abe M, Misawa H. A simultaneous space sampling method for DNA fraction collection using a comb structure in microfluidic devices. Electrophoresis 2011; 32:3392-8. [DOI: 10.1002/elps.201100362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/25/2011] [Accepted: 08/03/2011] [Indexed: 11/12/2022]
|
25
|
Tasaki J, Shibata N, Nishimura O, Itomi K, Tabata Y, Son F, Suzuki N, Araki R, Abe M, Agata K, Umesono Y. ERK signaling controls blastema cell differentiation during planarian regeneration. Development 2011; 138:2417-27. [PMID: 21610023 DOI: 10.1242/dev.060764] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The robust regenerative ability of planarians depends on a population of somatic stem cells called neoblasts, which are the only mitotic cells in adults and are responsible for blastema formation after amputation. The molecular mechanism underlying neoblast differentiation associated with blastema formation remains unknown. Here, using the planarian Dugesia japonica we found that DjmkpA, a planarian mitogen-activated protein kinase (MAPK) phosphatase-related gene, was specifically expressed in blastema cells in response to increased extracellular signal-related kinase (ERK) activity. Pharmacological and genetic [RNA interference (RNAi)] approaches provided evidence that ERK activity was required for blastema cells to exit the proliferative state and undergo differentiation. By contrast, DjmkpA RNAi induced an increased level of ERK activity and rescued the differentiation defect of blastema cells caused by pharmacological reduction of ERK activity. These observations suggest that ERK signaling plays an instructive role in the cell fate decisions of blastema cells regarding whether to differentiate or not, by inducing DjmkpA as a negative regulator of ERK signaling during planarian regeneration.
Collapse
Affiliation(s)
- Junichi Tasaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
McKeown PC, Laouielle-Duprat S, Prins P, Wolff P, Schmid MW, Donoghue MTA, Fort A, Duszynska D, Comte A, Lao NT, Wennblom TJ, Smant G, Köhler C, Grossniklaus U, Spillane C. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds. BMC PLANT BIOLOGY 2011; 11:113. [PMID: 21838868 PMCID: PMC3174879 DOI: 10.1186/1471-2229-11-113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 08/12/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. RESULTS cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was confirmed via allele-specific transcript analysis across a range of different accessions. Differentially methylated regions were identified adjacent to ATCDC48 and PDE120, which may represent candidate imprinting control regions. Finally, we demonstrate that expression levels of these three genes in vegetative tissues are MET1-dependent, while their uniparental maternal expression in the seed is not dependent on MET1. CONCLUSIONS Using a cDNA-AFLP transcriptome profiling approach, we have identified three genes, ATCDC48, PDE120 and MS5-like which represent novel maternally expressed imprinted genes in the Arabidopsis thaliana seed. The extent of overlap between our cDNA-AFLP screen for maternally expressed imprinted genes, and other screens for imprinted and endosperm-expressed genes is discussed.
Collapse
Affiliation(s)
- Peter C McKeown
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | - Sylvia Laouielle-Duprat
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | - Pjotr Prins
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Philip Wolff
- Department of Biology and Zürich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, CH-8092 Zürich, Switzerland
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Marc W Schmid
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Mark TA Donoghue
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | - Antoine Fort
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | - Dorota Duszynska
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | - Aurélie Comte
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | - Nga Thi Lao
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| | | | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Claudia Köhler
- Department of Biology and Zürich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Centre, CH-8092 Zürich, Switzerland
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Charles Spillane
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway (NUIG), C306 Aras de Brun, University Road, Galway, Ireland
| |
Collapse
|
27
|
Fuma S, Ban-nai T, Doi M, Fujimori A, Ishii N, Ishikawa Y, Kawaguchi I, Kubota Y, Maruyama K, Miyamoto K, Nakamori T, Takeda H, Watanabe Y, Yanagisawa K, Yasuda T, Yoshida S. Environmental protection: researches in National Institute of Radiological Sciences. RADIATION PROTECTION DOSIMETRY 2011; 146:295-298. [PMID: 21502302 DOI: 10.1093/rpd/ncr174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Some studies for radiological protection of the environment have been made at the National Institute of Radiological Sciences (NIRS). Transfer of radionuclides and related elements has been investigated for dose estimation of non-human biota. A parameter database and radionuclide transfer models have been also developed for the Japanese environments. Dose (rate)-effect relationships for survival, growth and reproduction have been investigated in conifers, Arabidopsis, fungi, earthworms, springtails, algae, duckweeds, daphnia and medaka. Also genome-wide gene expression analysis has been carried out by high coverage expression profiling (HiCEP). Effects on aquatic microbial communities have been studied in experimental ecosystem models, i.e., microcosms. Some effects were detected at a dose rate of 1 Gy day(-1) and were likely to arise from interspecies interactions. The results obtained at NIRS have been used in development of frameworks for environmental protection by some international bodies, and will contribute to environmental protection in Japan and other Asian countries.
Collapse
Affiliation(s)
- Shoichi Fuma
- National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li Z, Sun K, Sunayama M, Matsuo Y, Mizeikis V, Araki R, Ueno K, Abe M, Misawa H. On-chip fraction collection for multiple selected ssDNA fragments using isolated extraction channels. J Chromatogr A 2011; 1218:997-1003. [DOI: 10.1016/j.chroma.2010.12.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/16/2010] [Accepted: 12/19/2010] [Indexed: 11/30/2022]
|
29
|
Yuyama I, Watanabe T, Takei Y. Profiling differential gene expression of symbiotic and aposymbiotic corals using a high coverage gene expression profiling (HiCEP) analysis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:32-40. [PMID: 20333427 DOI: 10.1007/s10126-010-9265-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/17/2009] [Indexed: 05/29/2023]
Abstract
Coral generally harbors zooxanthellae (genus Symbiodinium) in the body for mutualistic symbiosis, which favors the host through effects on growth, stress response, and nutrient utilization. However, little is known about the molecular mechanisms by which the partners establish and regulate the endosymbiosis. In this study, we conducted a comprehensive transcriptome analysis in the coral Acropora tenuis using a high coverage gene expression profiling (HiCEP) method, to assess the genes that are involved in the coral-zooxanthellae symbiosis. For this purpose, we compared between aposymbiotic juveniles and those inoculated with a cultured monoclonal Symbiodinium species in two different clades (PL-TS-1 or CCMP2467). Among the 765 genes that exhibited different expression profiles between the two groups, 462 were upregulated and 303 downregulated by the symbiosis with somewhat variable responses to the two different symbionts. Among the responsive genes, we could annotate 33 genes by bioinformatic analyses and confirmed that their expression is actually altered in the same direction in the symbiotic individuals using real-time polymerase chain reaction. Functional analyses of the annotated genes indicate that they are involved in carbohydrate and lipid metabolism, intracellular signal transduction, and membrane transport of ions in the host corals as expected from the endosymbiosis of zooxanthellae.
Collapse
Affiliation(s)
- Ikuko Yuyama
- Department of Marine Bioscience, Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo, 164-8639, Japan.
| | | | | |
Collapse
|
30
|
Nakamori T, Fujimori A, Kinoshita K, Ban-nai T, Kubota Y, Yoshida S. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1689-95. [PMID: 20022415 DOI: 10.1016/j.envpol.2009.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/19/2009] [Accepted: 11/29/2009] [Indexed: 05/05/2023]
Abstract
The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated "metallothionein-like motif containing protein" (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by gamma-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil.
Collapse
Affiliation(s)
- Taizo Nakamori
- Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Yin J, Wang G, Xiao J, Ma F, Zhang H, Sun Y, Diao Y, Huang J, Guo Q, Liu D. Identification of genes involved in stem rust resistance from wheat mutant D51 with the cDNA-AFLP technique. Mol Biol Rep 2010; 37:1111-7. [PMID: 19821052 DOI: 10.1007/s11033-009-9870-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 09/29/2009] [Indexed: 01/20/2023]
Abstract
Wheat (Triticum aestivum L.) stem rust caused by Puccinia graminis f. sp. tritici is one of the main diseases of wheat worldwide. Wheat mutant line D51, which was derived from the highly susceptible cultivar L6239, shows resistance to the prevailing races 21C3CPH, 21C3CKH, and 21C3CTR of P. graminis f. sp. tritici in China. In this study, we used the cDNA-AFLP technology to identify the genes that are likely involved in the stem rust resistance. EcoRI/MseI selective primers were used to generate approximately 1920 DNA fragments. Seventy five differentially transcribed fragments (3.91%) were identified by comparing the samples of 21C3CPH infected D51 with infected L6239 or uninfected D51. Eleven amplified cDNA fragments were sequenced. Eight showed significant similarity to known genes, including TaLr1 (leaf rust resistance gene), wlm24 (wheat powdery mildew resistance gene), stress response genes and ESTs of environment stress of tall fescue. These identified genes are involved in plant defense response and stem rust resistance and need further research to determine their usefulness in breeding new resistance cultivars.
Collapse
Affiliation(s)
- Jing Yin
- College of Life Science, Northeast Forestry University, 150040 Harbin, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
An improved and cost-effective cDNA-AFLP method to investigate transcription-derived products when high throughput sequencing is not available. J Biotechnol 2010; 145:43-6. [PMID: 19857529 DOI: 10.1016/j.jbiotec.2009.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 11/23/2022]
Abstract
Although the cost of high throughput sequencing is decreasing, the cost is still often too high for individual projects targeted at, e.g., genome-wide transcription profiling in non-model organisms. Then, a low-cost alternative is cDNA-AFLP, which we have now considerably modified in order to develop a faster and simpler method to identify and analyze genes involved in specific, possibly adaptive characteristics. Particularly, we wanted to exclude repetitive PCR amplifications, extensive cloning and the presence of overlapping transcripts, which all lower the efficiency of the method.
Collapse
|
33
|
Hamada N, Imaoka T, Masunaga SI, Ogata T, Okayasu R, Takahashi A, Kato TA, Kobayashi Y, Ohnishi T, Ono K, Shimada Y, Teshima T. Recent advances in the biology of heavy-ion cancer therapy. JOURNAL OF RADIATION RESEARCH 2010; 51:365-383. [PMID: 20679739 DOI: 10.1269/jrr.09137] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Superb biological effectiveness and dose conformity represent a rationale for heavy-ion therapy, which has thus far achieved good cancer controllability while sparing critical normal organs. Immediately after irradiation, heavy ions produce dense ionization along their trajectories, cause irreparable clustered DNA damage, and alter cellular ultrastructure. These ions, as a consequence, inactivate cells more effectively with less cell-cycle and oxygen dependence than conventional photons. The modes of heavy ion-induced cell death/inactivation include apoptosis, necrosis, autophagy, premature senescence, accelerated differentiation, delayed reproductive death of progeny cells, and bystander cell death. This paper briefly reviews the current knowledge of the biological aspects of heavy-ion therapy, with emphasis on the authors' recent findings. The topics include (i) repair mechanisms of heavy ion-induced DNA damage, (ii) superior effects of heavy ions on radioresistant tumor cells (intratumor quiescent cell population, TP53-mutated and BCL2-overexpressing tumors), (iii) novel capacity of heavy ions in suppressing cancer metastasis and neoangiogenesis, and (iv) potential of heavy ions to induce secondary (especially breast) cancer.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Komae, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tourette syndrome and klippel-feil anomaly in a child with chromosome 22q11 duplication. Case Rep Med 2009; 2009:361518. [PMID: 20069037 PMCID: PMC2797364 DOI: 10.1155/2009/361518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/26/2009] [Indexed: 12/26/2022] Open
Abstract
This is the first case description of the association of Klippel-Feil Syndrome (KFS), Tourette Syndrome (TS), Motor Stereotypies, and Obsessive Compulsive Behavior, with chromosome 22q11.2 Duplication Syndrome (22q11DupS). Neuropsychiatric symptoms in persons with 22q11.2 deletion, including obsessive compulsiveness, anxiety, hyperactivity, and one prior case report of TS, have been attributed to low copy number effects on Catechol-O-Methyltransferase (COMT). However, the present unique case of 22q11DupS and TS suggests a more complex relationship, either for low- or high-COMT activity, or for other genes at this locus.
Collapse
|
35
|
Sun K, Suzuki N, Li Z, Araki R, Ueno K, Juodkazis S, Abe M, Noji S, Misawa H. High-fidelity fractionation of ssDNA fragments differing in size by one-base on a spiral-channel electrophoretic chip. Electrophoresis 2009; 30:4277-84. [DOI: 10.1002/elps.200900455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Komatsu S, Yamamoto R, Nanjo Y, Mikami Y, Yunokawa H, Sakata K. A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. J Proteome Res 2009; 8:4766-78. [PMID: 19658438 DOI: 10.1021/pr900460x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The inducible genes and proteins were analyzed using transcriptome and proteome techniques to explore the mechanisms underlying soybean response to flooding stress. Soybean seedlings were germinated for 2 days and subjected to flooding for 12 h, and the total RNAs and proteins were extracted from the root and hypocotyl. High-coverage gene expression profiling analysis as transcriptome technique was performed. Ninety-seven out of the 29,388 peaks observed demonstrated a greater than 25-fold change following 12 h of flood-induced stress. Furthermore, 34 proteins out of 799 proteins were changed by 12 h stress. Genes associated with alcohol fermentation, ethylene biosynthesis, pathogen defense, and cell wall loosening were significantly up-regulated. Hemoglobin, acid phosphatase, and Kunitz trypsin protease inhibitor were altered at both transcriptional and translational levels. Reactive oxygen species scavengers and chaperons were changed only at the translational level. It is suggested that the early response of soybean under flooding might be important stress adaptation to ensure survival against not only hypoxia but also the direct damage of cell by water.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Tsukuba 305-8518, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Fuma S, Nakamori T, Ishii N, Kubota Y, Yoshida S, Fujimori A. Genome-wide gene expression profiling in gamma-irradiated green alga, Pseudokirchneriella subcapitata, by HiCEP. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 83:301-306. [PMID: 19462152 DOI: 10.1007/s00128-009-9780-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 05/07/2009] [Indexed: 05/27/2023]
Abstract
Transcriptome was analyzed in gamma-irradiated green alga Pseudokirchneriella subcapitata by high coverage gene expression profiling (HiCEP). Approximately 7,800 expressed genes were detected. Expression levels of 623-707 genes were affected at 100-300 Gy. Nucleotide sequences of 41 up-regulated genes were determined. The quantitative reverse transcription polymerase chain reaction validated the up-regulation. Two genes had homology to genes related to ionizing radiation. These results indicate usefulness of HiCEP for screening of stress-responsive genes in species that are ecotoxicologically important but for which genomic sequence information is lacking.
Collapse
Affiliation(s)
- Shoichi Fuma
- Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Sakata K, Ohyanagi H, Nobori H, Nakamura T, Hashiguchi A, Nanjo Y, Mikami Y, Yunokawa H, Komatsu S. Soybean proteome database: a data resource for plant differential omics. J Proteome Res 2009; 8:3539-48. [PMID: 19489578 DOI: 10.1021/pr900229k] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Soybean Proteome Database aims to be a data repository for functional analyses of soybean responses to flooding injury, recognized as a major constraint for establishment and production of this plant. The current release contains 21 reference maps of soybean (Glycine max cv. Enrei) proteins electrophoresed on two-dimensional polyacrylamide gels of which the samples were collected from several organs, tissues and organelles. These reference maps include 7311 detected proteins and 532 identified proteins, or proteins for which a sequence or peptide peak has been determined. The database is searchable by protein properties such as accession number, description and isoelectric point and molecular weight range. The Soybean Proteome Database also integrates multiple "omes". An omics table reveals relationships among 106 mRNAs, 51 proteins and 89 metabolites that vary over time under flooding stress. The tabulated metabolites are anchored to a metabolome network. A unified temporal-profile tag attached to the mRNAs, proteins and metabolites facilitates retrieval of the data based on the temporal expression profiles. A graphical user interface based on dynamic HTML facilitates viewing the metabolome network as well as the profiles of multiple omes in a uniform manner. The entire database is available at http://proteome.dc.affrc.go.jp/Soybean/.
Collapse
Affiliation(s)
- Katsumi Sakata
- Mitsubishi Space Software Company, Ltd., Tsukuba 305-0032, Japan, National Institute of Crop Science, Tsukuba 305-8518, Japan, and MessengerScape Co., Ltd., Tokyo 151-0072, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jayaraman A, Puranik S, Rai NK, Vidapu S, Sahu PP, Lata C, Prasad M. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol 2008. [PMID: 18592419 DOI: 10.1007/s12033-008-90814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.
Collapse
Affiliation(s)
- Ananthi Jayaraman
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
40
|
Weiberg A, Pöhler D, Morgenstern B, Karlovsky P. Improved coverage of cDNA-AFLP by sequential digestion of immobilized cDNA. BMC Genomics 2008; 9:480. [PMID: 18851732 PMCID: PMC2577664 DOI: 10.1186/1471-2164-9-480] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 10/13/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND cDNA-AFLP is a transcriptomics technique which does not require prior sequence information and can therefore be used as a gene discovery tool. The method is based on selective amplification of cDNA fragments generated by restriction endonucleases, electrophoretic separation of the products and comparison of the band patterns between treated samples and controls. Unequal distribution of restriction sites used to generate cDNA fragments negatively affects the performance of cDNA-AFLP. Some transcripts are represented by more than one fragment while other escape detection, causing redundancy and reducing the coverage of the analysis, respectively. RESULTS With the goal of improving the coverage of cDNA-AFLP without increasing its redundancy, we designed a modified cDNA-AFLP protocol. Immobilized cDNA is sequentially digested with several restriction endonucleases and the released DNA fragments are collected in mutually exclusive pools. To investigate the performance of the protocol, software tool MECS (Multiple Enzyme cDNA-AFLP Simulation) was written in Perl. cDNA-AFLP protocols described in the literature and the new sequential digestion protocol were simulated on sets of cDNA sequences from mouse, human and Arabidopsis thaliana. The redundancy and coverage, the total number of PCR reactions, and the average fragment length were calculated for each protocol and cDNA set. CONCLUSION Simulation revealed that sequential digestion of immobilized cDNA followed by the partitioning of released fragments into mutually exclusive pools outperformed other cDNA-AFLP protocols in terms of coverage, redundancy, fragment length, and the total number of PCRs. Primers generating 30 to 70 amplicons per PCR provided the highest fraction of electrophoretically distinguishable fragments suitable for normalization. For A. thaliana, human and mice transcriptome, the use of two marking enzymes and three sequentially applied releasing enzymes for each of the marking enzymes is recommended.
Collapse
Affiliation(s)
- Arne Weiberg
- Molecular Phytopathology and Mycotoxin Research Division, University of Goettingen, Goettingen, Germany.
| | | | | | | |
Collapse
|
41
|
Sun K, Suzuki N, Li Z, Araki R, Ueno K, Juodkazis S, Abe M, Noji S, Misawa H. Electrophoretic chip for fractionation of selective DNA fragment. Electrophoresis 2008; 29:3959-63. [DOI: 10.1002/elps.200700904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Nakamori T, Fujimori A, Kinoshita K, Ban-Nai T, Kubota Y, Yoshida S. Application of HiCEP to screening of radiation stress-responsive genes in the soil microarthropod Folsomia candida (Collembola). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6997-7002. [PMID: 18853822 DOI: 10.1021/es801128q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The field of ecotoxicogenomics has received increasing attention for its potential to provide insight into pressing ecological issues. However, its applications are limited due to a lack of genetic sequence information for organisms used in ecotoxicological studies. We used high-coverage expression profiling (HiCEP), a method that requires no prior sequence knowledge, to examine stress-responsive genes and their dose dependence in the springtail Folsomia candida using gamma radiation as the stressor. Radiation-responsive genes and their dose dependency were detected at effective doses for reproduction, and 16 up-regulated transcript-derived fragments (TDFs) were sequenced. Quantitative PCR analysis also found that most of the TDFs were up-regulated. The sequences of the TDFs showed resemblance to known genes, such as glutathione S-transferase and poly(ADP-ribose) polymerase, but most showed no similarity to any genes in the gene databases. These results suggest that HiCEP is effective for discovering differently expressed genes and their dose dependence, even in organisms for which few sequence data are available. The limited length of the TDFs, however, may impede functional annotation of the genes. In conclusion, HiCEP is useful for ecotoxicogenomic studies in which various organisms with few available genomic resources are involved.
Collapse
Affiliation(s)
- Taizo Nakamori
- Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Gibberellin-regulated gene in the basal region of rice leaf sheath encodes basic helix-loop-helix transcription factor. Amino Acids 2008; 37:231-8. [PMID: 18597039 DOI: 10.1007/s00726-008-0138-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
Genes regulated by gibberellin (GA) during leaf sheath elongation in rice seedlings were identified using the transcriptome approach. mRNA from the basal regions of leaf sheaths treated with GA3 was analyzed by high-coverage gene expression profiling. 33,004 peaks were detected, and 30 transcripts showed significant changes in the presence of GA3. Among these, basic helix-loop-helix transcription factor (AK073385) was significantly upregulated. Quantitative PCR analysis confirmed that expression of AK073385 was controlled by GA3 in a time- and dose-dependent manner. Basic helix-loop-helix transcription factor (AK073385) is therefore involved in the regulation of gene expression by GA3.
Collapse
|
44
|
cDNA-AFLP Analysis Reveals Differential Gene Expression in Response to Salt Stress in Foxtail Millet (Setaria italica L.). Mol Biotechnol 2008; 40:241-51. [DOI: 10.1007/s12033-008-9081-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
|
45
|
Radiation induction of delayed recombination in Schizosaccharomyces pombe. DNA Repair (Amst) 2008; 7:1250-61. [PMID: 18547878 DOI: 10.1016/j.dnarep.2008.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 02/15/2008] [Accepted: 04/05/2008] [Indexed: 11/24/2022]
Abstract
Ionizing radiation is known to induce delayed chromosome and gene mutations in the descendants of the irradiated tissue culture cells. Molecular mechanisms of such delayed mutations are yet to be elucidated, since high genomic complexity of mammalian cells makes it difficult to analyze. We now tested radiation induction of delayed recombination in the fission yeast Schizosaccharomyces pombe by monitoring the frequency of homologous recombination after X-irradiation. A reporter with 200 bp tandem repeats went through spontaneous recombination at a frequency of 1.0 x 10(-4), and the frequency increased dose-dependently to around 10 x 10(-4) at 500 Gy of X-irradiation. Although the repair of initial DNA damage was thought to be completed before the restart of cell division cycle, the elevation of the recombination frequency persisted for 8-10 cell generations after irradiation (delayed recombination). The delayed recombination suggests that descendants of the irradiated cells keep a memory of the initial DNA damage which upregulates recombination machinery for 8-10 generations even in the absence of DNA double-strand breaks (DSBs). Since radical scavengers were ineffective in inhibiting the delayed recombination, a memory by continuous production of DNA damaging agents such as reactive oxygen species (ROS) was excluded. Recombination was induced in trans in a reporter on chromosome III by a DNA DSB at a site on chromosome I, suggesting the untargeted nature of delayed recombination. Interestingly, Rad22 foci persisted in the X-irradiated population in parallel with the elevation of the recombination frequency. These results suggest that the epigenetic damage memory induced by DNA DSB upregulates untargeted and delayed recombination in S. pombe.
Collapse
|
46
|
Ionizing radiation downregulates ASPM, a gene responsible for microcephaly in humans. Biochem Biophys Res Commun 2008; 369:953-7. [DOI: 10.1016/j.bbrc.2008.02.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 02/27/2008] [Indexed: 11/16/2022]
|
47
|
Zhao Y, Yu S, Xing C, Fan S, Song M. [DNA methylation in cotton hybrids and their parents]. Mol Biol (Mosk) 2008; 180:221-7. [PMID: 18610827 DOI: 10.1016/j.plantsci.2010.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 08/12/2010] [Accepted: 08/18/2010] [Indexed: 05/01/2023]
Abstract
The possible role of methylation in the performance of heterosis has been analyzed in many crops. To further study this possibility, we investigated both the differences in cytosine methylation patterns between cotton heterotic hybrid/nonheterotic hybrids and their parental lines and the change in methylation level from seedling stage to flowering stage by using the methylation-sensitive amplified polymorphism (MSAP) method. The results showed that the number of demethylation loci in highly heterotic hybrids was greater that in lowly heterotic hybrids, and the level of DNA cytosine methylation in cotton at the seedling stage is higher than that at the flowering stage. The altered methylation patterns at low-copy genomic regions can be confirmed by DNA gel blot analysis. A total of 39 fragments that showed different methylation patterns were cloned and sequenced. The methylation status of these genes was modified differentially in hybrid and parents, suggesting that these genes might play a role in the performance of heterosis.
Collapse
|
48
|
Suetomi K, Takahashi S, Kubota Y, Fujimori A. Identification of Genes Responding to Low-Dose Arsenite Using HiCEP. Toxicol Mech Methods 2008; 18:605-11. [PMID: 20020861 DOI: 10.1080/15376510802335622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ABSTRACT Chronic ingestion of arsenic in polluted food and water can cause various human disorders including skin and lung cancers. Sensitive biomarkers from human tissue/cells could help to prevent chronic intoxication with low-dose arsenite. Using High-Coverage Expression Profiling (HiCEP), an Amplified Fragment Length Polymorphism (AFLP)-based gene expression profiling technique, we analyzed the expression of approximately 11,000 genes in human lung fibroblasts (HFLIII) and compared the profiles between cells, treated and untreated with 1 muM sodium arsenite (NaAsO(2)). Hundreds of genes appeared upregulated and downregulated more than two-fold, 2 h after the treatment. Marked induction was found (>4.4-fold) in a few genes including HMOX1, INHBA, and ANKRD11. Induction of the HMOX1 was detected with a dose of arsenite at as low as 0.3 muM (0.04 ppm) and reached its maximum at 4 h after the treatment. The arsenite-induced HMOX1 expression was attenuated by the promoted glutathione (GSH) synthesis by N-acetyl-L-cysteine (NAC). However, it was not affected by pretreating the cells with general radical scavengers, consistent with the fact that ionizing radiation at either high-or low-doses has never induced HMOX1 in the same assay system. Thus, induction of HMOX1 gene is highly sensitive and also selective against arsenite in the cells. The present process could provide a useful strategy for exploring biomarkers that might help in assessing the known and unknown risks of any natural and artificial toxic reagents.
Collapse
Affiliation(s)
- K Suetomi
- Heavy-Ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | |
Collapse
|
49
|
Kadota K, Araki R, Nakai Y, Abe M. GOGOT: a method for the identification of differentially expressed fragments from cDNA-AFLP data. Algorithms Mol Biol 2007; 2:5. [PMID: 17535446 PMCID: PMC1904450 DOI: 10.1186/1748-7188-2-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/30/2007] [Indexed: 11/28/2022] Open
Abstract
Background One-dimensional (1-D) electrophoretic data obtained using the cDNA-AFLP method have attracted great interest for the identification of differentially expressed transcript-derived fragments (TDFs). However, high-throughput analysis of the cDNA-AFLP data is currently limited by the need for labor-intensive visual evaluation of multiple electropherograms. We would like to have high-throughput ways of identifying such TDFs. Results We describe a method, GOGOT, which automatically detects the differentially expressed TDFs in a set of time-course electropherograms. Analysis by GOGOT is conducted as follows: correction of fragment lengths of TDFs, alignment of identical TDFs across different electropherograms, normalization of peak heights, and identification of differentially expressed TDFs using a special statistic. The output of the analysis is a highly reduced list of differentially expressed TDFs. Visual evaluation confirmed that the peak alignment was performed perfectly for the TDFs by virtue of the correction of peak fragment lengths before alignment in step 1. The validity of the automated ranking of TDFs by the special statistic was confirmed by the visual evaluation of a third party. Conclusion GOGOT is useful for the automated detection of differentially expressed TDFs from cDNA-AFLP temporal electrophoretic data. The current algorithm may be applied to other electrophoretic data and temporal microarray data.
Collapse
Affiliation(s)
- Koji Kadota
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryoko Araki
- Transcriptome Research Center, National Institute of Radiological Sciences (NIRS), 9-1, Anagawa-4-chome, Chiba-shi 263-8555, Japan
| | - Yuji Nakai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masumi Abe
- Transcriptome Research Center, National Institute of Radiological Sciences (NIRS), 9-1, Anagawa-4-chome, Chiba-shi 263-8555, Japan
| |
Collapse
|
50
|
Taniguchi M, Sasaki N, Tsuge T, Aoyama T, Oka A. ARR1 directly activates cytokinin response genes that encode proteins with diverse regulatory functions. PLANT & CELL PHYSIOLOGY 2007; 48:263-77. [PMID: 17202182 DOI: 10.1093/pcp/pcl063] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant cells respond to cytokinins by changing their gene expression patterns. The histidyl-aspartyl (His-Asp) phosphorelay mediates the signal from cytokinin receptors to type-B response regulators including ARR1, which transactivate cytokinin primary response genes. However, the overall architecture of the signal cascade leading to cytokinin-responsive phenomena is still unclear, mainly because it is not known how the His-Asp phosphorelay is connected to downstream phenomena. To reveal events immediately downstream from the phosphorelay-mediated transcriptional activation, we searched for direct-target genes of ARR1 by exploiting ARR1DeltaDDK-GR, a chimeric transcription factor that transactivates ARR1 direct-target genes in transgenic plants by glucocorticoid induction. We identified 23 direct-target genes, most of which were found to be cytokinin primary response genes. The arr1-1 mutation clearly affected the primary response in at least 17 genes, meaning that they respond primarily to cytokinins through the function of ARR1. The 17 genes encode proteins with diverse functions, including type-A response regulators, cytokinin metabolic enzymes and putative disease resistance response proteins. These results provide novel evidence indicating that the His-Asp phosphorelay is connected to diverse regulatory levels of cytokinin-responsive phenomena through ARR1 direct-target genes.
Collapse
|