1
|
Huang SM, Cho KH, Chang K, Huang PH, Kuo LW. Altered thalamocortical tract trajectory growth with undisrupted thalamic parcellation pattern in human lissencephaly brain at mid-gestational stage. Neurobiol Dis 2024; 199:106577. [PMID: 38914171 DOI: 10.1016/j.nbd.2024.106577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
Proper topographically organized neural connections between the thalamus and the cerebral cortex are mandatory for thalamus function. Thalamocortical (TC) fiber growth begins during the embryonic period and completes by the third trimester of gestation, so that human neonates at birth have a thalamus with a near-facsimile of adult functional parcellation. Whether congenital neocortical anomaly (e.g., lissencephaly) affects TC connection in humans is unknown. Here, via diffusion MRI fiber-tractography analysis of long-term formalin-fixed postmortem fetal brain diagnosed as lissencephaly in comparison with an age-matched normal one, we found similar topological patterns of thalamic subregions and of internal capsule parcellated by TC fibers. However, lissencephaly fetal brain showed white matter structural changes, including fewer/less organized TC fibers and optic radiations, and much less cortical plate invasion by TC fibers - particularly around the shallow central sulcus. Diffusion MRI fiber tractography of normal fetal brains at 15, 23, and 26 gestational weeks (GW) revealed dynamic volumetric change of each parcellated thalamic subregion, suggesting coupled developmental progress of the thalamus with the corresponding cortex. Moreover, from GW23 and GW26 normal fetal brains, TC endings in the cortical plate could be delineated to reflect cumulative progressive TC invasion of cortical plate. By contrast, lissencephaly brain showed a dramatic decrease in TC invasion of the cortical plate. Our study thus shows the feasibility of diffusion MRI fiber tractography in postmortem long-term formalin-fixed fetal brains to disclose the developmental progress of TC tracts coordinating with thalamic and neocortical growth both in normal and lissencephaly fetal brains at mid-gestational stage.
Collapse
Affiliation(s)
- Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Kuan-Hung Cho
- Department of Electronic Engineering, National United University, Miaoli 360, Taiwan
| | - Koping Chang
- Department of Pathology, National Taiwan University Hospital, Taipei 100, Taiwan; Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Pei-Hsin Huang
- Department of Pathology, National Taiwan University Hospital, Taipei 100, Taiwan; Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan; Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei 100, Taiwan.
| |
Collapse
|
2
|
Lacalli T. Mental causation: an evolutionary perspective. Front Psychol 2024; 15:1394669. [PMID: 38741757 PMCID: PMC11089241 DOI: 10.3389/fpsyg.2024.1394669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The relationship between consciousness and individual agency is examined from a bottom-up evolutionary perspective, an approach somewhat different from other ways of dealing with the issue, but one relevant to the question of animal consciousness. Two ways are identified that would decouple the two, allowing consciousness of a limited kind to exist without agency: (1) reflex pathways that incorporate conscious sensations as an intrinsic component (InCs), and (2) reflexes that are consciously conditioned and dependent on synaptic plasticity but not memory (CCRs). Whether InCs and CCRs exist as more than hypothetical constructs is not clear, and InCs are in any case limited to theories where consciousness depends directly on EM field-based effects. Consciousness with agency, as we experience it, then belongs in a third category that allows for deliberate choice of alternative actions (DCs), where the key difference between this and CCR-level pathways is that DCs require access to explicit memory systems whereas CCRs do not. CCRs are nevertheless useful from a heuristic standpoint as a conceptual model for how conscious inputs could act to refine routine behaviors while allowing evolution to optimize phenomenal experience (i.e., qualia) in the absence of individual agency, a somewhat counterintuitive result. However, so long as CCRs are not a required precondition for the evolution of memory-dependent DC-level processes, the later could have evolved first. If so, the adaptive benefit of consciousness when it first evolved may be linked as much to the role it plays in encoding memories as to any other function. The possibility that CCRs are more than a theoretical construct, and have played a role in the evolution of consciousness, argues against theories of consciousness focussed exclusively on higher-order functions as the appropriate way to deal with consciousness as it first evolved, as it develops in the early postnatal period of life, or with the conscious experiences of animals other than ourselves. An evolutionary perspective also resolves the problem of free will, that it is best treated as a property of a species rather than the individuals belonging to that species whereas, in contrast, agency is an attribute of individuals.
Collapse
Affiliation(s)
- Thurston Lacalli
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
3
|
Yarychkivska O, Sharmin R, Elkhalil A, Ghose P. Apoptosis and beyond: A new era for programmed cell death in Caenorhabditis elegans. Semin Cell Dev Biol 2024; 154:14-22. [PMID: 36792437 DOI: 10.1016/j.semcdb.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Programmed cell death (PCD) is crucial for normal development and homeostasis. Our first insights into the genetic regulation of apoptotic cell death came from in vivo studies in the powerful genetic model system of C. elegans. More recently, novel developmental cell death programs occurring both embryonically and post-embryonically, and sex-specifically, have been elucidated. Recent studies in the apoptotic setting have also shed new light on the intricacies of phagocytosis in particular. This review provides a brief historical perspective of the origins of PCD studies in C. elegans, followed by a more detailed description of non-canonical apoptotic and non-apoptotic death programs. We conclude by posing open questions and commenting on our outlook on the future of PCD studies in C. elegans, highlighting the importance of advanced imaging tools and the continued leveraging of C. elegans genetics both with classical and modern cutting-edge approaches.
Collapse
Affiliation(s)
| | | | | | - Piya Ghose
- The University of Texas at Arlington, USA.
| |
Collapse
|
4
|
Liu J, Xie S, Hu Y, Ding Y, Zhang X, Liu W, Zhang L, Ma C, Kang Y, Jin S, Xia Y, Hu Z, Liu Z, Cheng W, Yang Z. Age-dependent alterations in the coordinated development of subcortical regions in adolescents with social anxiety disorder. Eur Child Adolesc Psychiatry 2024; 33:51-64. [PMID: 36542201 DOI: 10.1007/s00787-022-02118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Subcortical brain regions play essential roles in the pathology of social anxiety disorder (SAD). While adolescence is the peak period of SAD, the relationships between altered development of the subcortical regions during this period and SAD are still unclear. This study investigated the age-dependent alterations in structural co-variance among subcortical regions and between subcortical and cortical regions, aiming to reflect aberrant coordination during development in the adolescent with SAD. High-resolution T1-weighted images were obtained from 76 adolescents with SAD and 67 healthy controls (HC), ranging from 11 to 17.9 years. Symptom severity was evaluated with the Social Anxiety Scale for Children (SASC) and the Depression Self Rating Scale for Children (DSRS-C). Structural co-variance and sliding age-window analyses were used to detect age-dependent group differences in inter-regional coordination patterns among subcortical regions and between subcortical and cortical regions. The volume of the striatum significantly correlated with SAD symptom severity. The SAD group exhibited significantly enhanced structural co-variance among key regions of the striatum (putamen and caudate). While the co-variance decreased with age in healthy adolescents, the co-variance in SAD adolescents stayed high, leading to more apparent group differences in middle adolescence. Moreover, the striatum's mean structural co-variance with cortical regions decreased with age in HC but increased with age in SAD. Adolescents with SAD suffer aberrant developmental coordination among the key regions of the striatum and between the striatum and cortical regions. The degree of incoordination is age-dependent, which may represent a neurodevelopmental trait of SAD.
Collapse
Affiliation(s)
- Jingjing Liu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Shuqi Xie
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Yue Ding
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Xiaochen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Changminghao Ma
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Yinzhi Kang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Shuyu Jin
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Yufeng Xia
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Zhishan Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Zhen Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China.
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Shanghai, 200013, China.
- Institute of Psychological and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China.
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Zuo Z, Zhang Z, Zhang S, Fan B, Li G. The Molecular Mechanisms Involved in Axonal Degeneration and Retrograde Retinal Ganglion Cell Death. DNA Cell Biol 2023; 42:653-667. [PMID: 37819746 DOI: 10.1089/dna.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Axonal degeneration is a pathologic change common to multiple retinopathies and optic neuropathies. Various pathologic factors, such as mechanical injury, inflammation, and ischemia, can damage retinal ganglion cell (RGC) somas and axons, eventually triggering axonal degeneration and RGC death. The molecular mechanisms of somal and axonal degeneration are distinct but also overlap, and axonal degeneration can result in retrograde somal degeneration. While the mitogen-activated protein kinase pathway acts as a central node in RGC axon degeneration, several newly discovered molecules, such as sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 and nicotinamide mononucleotide adenylyltransferase 2, also play a critical role in this pathological process following different types of injury. Therefore, we summarize the types of injury that cause RGC axon degeneration and retrograde RGC death and important underlying molecular mechanisms, providing a reference for the identification of targets for protecting axons and RGCs.
Collapse
Affiliation(s)
- Zhaoyang Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Siming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Mallaroni P, Mason NL, Kloft L, Reckweg JT, van Oorsouw K, Ramaekers JG. Cortical structural differences following repeated ayahuasca use hold molecular signatures. Front Neurosci 2023; 17:1217079. [PMID: 37869513 PMCID: PMC10585114 DOI: 10.3389/fnins.2023.1217079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Serotonergic psychedelics such as ayahuasca are reported to promote both structural and functional neural plasticity via partial 5-HT2A agonism. However, little is known about how these molecular mechanisms may extend to repeated psychedelic administration in humans, let alone neuroanatomy. While early evidence suggests localised changes to cortical thickness in long-term ayahuasca users, it is unknown how such findings may be reflected by large-scale anatomical brain networks comprising cytoarchitecturally complex regions. Methods Here, we examined the relationship between cortical gene expression markers of psychedelic action and brain morphometric change following repeated ayahuasca usage, using high-field 7 Tesla neuroimaging data derived from 24 members of an ayahuasca-using church (Santo Daime) and case-matched controls. Results Using a morphometric similarity network (MSN) analysis, repeated ayahuasca use was associated with a spatially distributed cortical patterning of both structural differentiation in sensorimotor areas and de-differentiation in transmodal areas. Cortical MSN remodelling was found to be spatially correlated with dysregulation of 5-HT2A gene expression as well as a broader set of genes encoding target receptors pertinent to ayahuasca's effects. Furthermore, these associations were similarly interrelated with altered gene expression of specific transcriptional factors and immediate early genes previously identified in preclinical assays as relevant to psychedelic-induced neuroplasticity. Conclusion Taken together, these findings provide preliminary evidence that the molecular mechanisms of psychedelic action may scale up to a macroscale level of brain organisation in vivo. Closer attention to the role of cortical transcriptomics in structural-functional coupling may help account for the behavioural differences observed in experienced psychedelic users.
Collapse
Affiliation(s)
- Pablo Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Natasha L. Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Lilian Kloft
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Johannes T. Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Kim van Oorsouw
- Department of Forensic Psychology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Johannes G. Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
López-León CF, Soriano J, Planet R. Rheological Characterization of Three-Dimensional Neuronal Cultures Embedded in PEGylated Fibrin Hydrogels. Gels 2023; 9:642. [PMID: 37623097 PMCID: PMC10454106 DOI: 10.3390/gels9080642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Three-dimensional (3D) neuronal cultures are valuable models for studying brain complexity in vitro, and the choice of the bulk material in which the neurons grow is a crucial factor in establishing successful cultures. Indeed, neuronal development and network functionality are influenced by the mechanical properties of the selected material; in turn, these properties may change due to neuron-matrix interactions that alter the microstructure of the material. To advance our understanding of the interplay between neurons and their environment, here we utilized a PEGylated fibrin hydrogel as a scaffold for mouse primary neuronal cultures and carried out a rheological characterization of the scaffold over a three-week period, both with and without cells. We observed that the hydrogels exhibited an elastic response that could be described in terms of the Young's modulus E. The hydrogels without neurons procured a stable E≃420 Pa, while the neuron-laden hydrogels showed a higher E≃590 Pa during the early stages of development that decreased to E≃340 Pa at maturer stages. Our results suggest that neurons and their processes dynamically modify the hydrogel structure during development, potentially compromising both the stability of the material and the functional traits of the developing neuronal network.
Collapse
Affiliation(s)
- Clara F. López-León
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Ramon Planet
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| |
Collapse
|
8
|
Walker LJ, Guevara C, Kawakami K, Granato M. Target-selective vertebrate motor axon regeneration depends on interaction with glial cells at a peripheral nerve plexus. PLoS Biol 2023; 21:e3002223. [PMID: 37590333 PMCID: PMC10464982 DOI: 10.1371/journal.pbio.3002223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/29/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
A critical step for functional recovery from peripheral nerve injury is for regenerating axons to connect with their pre-injury targets. Reestablishing pre-injury target specificity is particularly challenging for limb-innervating axons as they encounter a plexus, a network where peripheral nerves converge, axons from different nerves intermingle, and then re-sort into target-specific bundles. Here, we examine this process at a plexus located at the base of the zebrafish pectoral fin, equivalent to tetrapod forelimbs. Using live cell imaging and sparse axon labeling, we find that regenerating motor axons from 3 nerves coalesce into the plexus. There, they intermingle and sort into distinct branches, and then navigate to their original muscle domains with high fidelity that restores functionality. We demonstrate that this regeneration process includes selective retraction of mistargeted axons, suggesting active correction mechanisms. Moreover, we find that Schwann cells are enriched and associate with axons at the plexus, and that Schwann cell ablation during regeneration causes profound axonal mistargeting. Our data provide the first real-time account of regenerating vertebrate motor axons navigating a nerve plexus and reveal a previously unappreciated role for Schwann cells to promote axon sorting at a plexus during regeneration.
Collapse
Affiliation(s)
- Lauren J. Walker
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Camilo Guevara
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Badke D’Andrea C, Marek S, Van AN, Miller RL, Earl EA, Stewart SB, Dosenbach NUF, Schlaggar BL, Laumann TO, Fair DA, Gordon EM, Greene DJ. Thalamo-cortical and cerebello-cortical functional connectivity in development. Cereb Cortex 2023; 33:9250-9262. [PMID: 37293735 PMCID: PMC10492576 DOI: 10.1093/cercor/bhad198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
The thalamus is a critical relay center for neural pathways involving sensory, motor, and cognitive functions, including cortico-striato-thalamo-cortical and cortico-ponto-cerebello-thalamo-cortical loops. Despite the importance of these circuits, their development has been understudied. One way to investigate these pathways in human development in vivo is with functional connectivity MRI, yet few studies have examined thalamo-cortical and cerebello-cortical functional connectivity in development. Here, we used resting-state functional connectivity to measure functional connectivity in the thalamus and cerebellum with previously defined cortical functional networks in 2 separate data sets of children (7-12 years old) and adults (19-40 years old). In both data sets, we found stronger functional connectivity between the ventral thalamus and the somatomotor face cortical functional network in children compared with adults, extending previous cortico-striatal functional connectivity findings. In addition, there was more cortical network integration (i.e. strongest functional connectivity with multiple networks) in the thalamus in children than in adults. We found no developmental differences in cerebello-cortical functional connectivity. Together, these results suggest different maturation patterns in cortico-striato-thalamo-cortical and cortico-ponto-cerebellar-thalamo-cortical pathways.
Collapse
Affiliation(s)
- Carolina Badke D’Andrea
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Scott Marek
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Ryland L Miller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Eric A Earl
- Data Science and Sharing Team, National Institute of Mental Health, NIH, DHHS, Bethesda, MD 20899, United States
| | - Stephanie B Stewart
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Damien A Fair
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55455, United States
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
10
|
Hong SB. Brain regional homogeneity and its association with age and intelligence in typically developing youth. Asian J Psychiatr 2023; 82:103497. [PMID: 36764248 DOI: 10.1016/j.ajp.2023.103497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Accelerated synaptic pruning and weakening of short-range functional connectivity are characteristic of adolescent brain development. Based on these structural microscopic and system-level functional changes, it was hypothesized that regional homogeneity (ReHo) may decrease with age in the developing brain, and a differential association between ReHo and cognitive performance was expected to depend on age. ReHo maps of typically developing participants were provided by the Attention-Deficit/Hyperactivity Disorder (ADHD)-200 Preprocessed repository. Intelligence quotient was evaluated using the Wechsler Intelligence Scale for Chinese Children-Revised and Wechsler Abbreviated Scale of Intelligence at Peking University and New York University, respectively. Correlations between ReHo and age were examined, along with the interaction effects of ReHo and age on intelligence quotient (IQ), in 121 typically developing youth aged 8-14 years. Of the 400 ROIs tested, ReHo in 105 brain regions was significantly correlated with age (p < 0.05, false discovery rate-corrected), among which 102 showed that ReHo decreased with age. In addition, ReHo in 18 brain regions was negatively correlated with age at Bonferroni-corrected thresholds (p < 0.05), and most associations were observed in the prefrontal cortex. The interaction analyses suggested that higher ReHo was associated with higher IQ in children, whereas this association was attenuated or reversed in adolescents (p < 0.05, uncorrected). ReHo decreased with age in the developing brain and was differentially associated with intelligence in children and adolescents.
Collapse
Affiliation(s)
- Soon-Beom Hong
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Willows JW, Robinson M, Alshahal Z, Morrison SK, Mishra G, Cyr H, Blaszkiewicz M, Gunsch G, DiPietro S, Paradie E, Tero B, Harrington A, Ryzhova L, Liaw L, Reifsnyder PC, Harrison DE, Townsend KL. Age-related changes to adipose tissue and peripheral neuropathy in genetically diverse HET3 mice differ by sex and are not mitigated by rapamycin longevity treatment. Aging Cell 2023; 22:e13784. [PMID: 36798047 PMCID: PMC10086534 DOI: 10.1111/acel.13784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 02/18/2023] Open
Abstract
Neural communication between the brain and adipose tissues regulates energy expenditure and metabolism through modulation of adipose tissue functions. We have recently demonstrated that under pathophysiological conditions (obesity, diabetes, and aging), total subcutaneous white adipose tissue (scWAT) innervation is decreased ('adipose neuropathy'). With advanced age in the C57BL/6J mouse, small fiber peripheral nerve endings in adipose tissue die back, resulting in reduced contact with adipose-resident blood vessels and other cells. This vascular neuropathy and parenchymal neuropathy together likely pose a physiological challenge for tissue function. In the current work, we used the genetically diverse HET3 mouse model to investigate the incidence of peripheral neuropathy and adipose tissue dysregulation across several ages in both male and female mice. We also investigated the anti-aging treatment rapamycin, an mTOR inhibitor, as a means to prevent or reduce adipose neuropathy. We found that HET3 mice displayed a reduced neuropathy phenotype compared to inbred C56BL/6 J mice, indicating genetic contributions to this aging phenotype. Compared to female HET3 mice, male HET3 mice had worse neuropathic phenotypes by 62 weeks of age. Female HET3 mice appeared to have increased protection from neuropathy until advanced age (126 weeks), after reproductive senescence. We found that rapamycin overall had little impact on neuropathy measures, and actually worsened adipose tissue inflammation and fibrosis. Despite its success as a longevity treatment in mice, higher doses and longer delivery paradigms for rapamycin may lead to a disconnect between life span and beneficial health outcomes.
Collapse
Affiliation(s)
- Jake W Willows
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | | | - Zahra Alshahal
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Samantha K Morrison
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Gargi Mishra
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | | | - Magdalena Blaszkiewicz
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Gilian Gunsch
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Sabrina DiPietro
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Emma Paradie
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Benjamin Tero
- Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Anne Harrington
- Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Larisa Ryzhova
- Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Lucy Liaw
- Maine Medical Center Research Institute, Scarborough, Maine, USA
| | | | | | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA.,University of Maine, Orono, Maine, USA
| |
Collapse
|
12
|
Lv Z, Li Y, Wang Y, Cong F, Li X, Cui W, Han C, Wei Y, Hong X, Liu Y, Ma L, Jiao Y, Zhang C, Li H, Jin M, Wang L, Ni S, Liu J. Safety and efficacy outcomes after intranasal administration of neural stem cells in cerebral palsy: a randomized phase 1/2 controlled trial. Stem Cell Res Ther 2023; 14:23. [PMID: 36759901 PMCID: PMC9910250 DOI: 10.1186/s13287-022-03234-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/05/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Neural stem cells (NSCs) are believed to have the most therapeutic potential for neurological disorders because they can differentiate into various neurons and glial cells. This research evaluated the safety and efficacy of intranasal administration of NSCs in children with cerebral palsy (CP). The functional brain network (FBN) analysis based on electroencephalogram (EEG) and voxel-based morphometry (VBM) analysis based on T1-weighted images were performed to evaluate functional and structural changes in the brain. METHODS A total of 25 CP patients aged 3-12 years were randomly assigned to the treatment group (n = 15), which received an intranasal infusion of NSCs loaded with nasal patches and rehabilitation therapy, or the control group (n = 10) received rehabilitation therapy only. The primary endpoints were the safety (assessed by the incidence of adverse events (AEs), laboratory and imaging examinations) and the changes in the Gross Motor Function Measure-88 (GMFM-88), the Activities of Daily Living (ADL) scale, the Sleep Disturbance Scale for Children (SDSC), and some adapted scales. The secondary endpoints were the FBN and VBM analysis. RESULTS There were only four AEs happened during the 24-month follow-up period. There was no significant difference in the laboratory examinations before and after treatment, and the magnetic resonance imaging showed no abnormal nasal and intracranial masses. Compared to the control group, patients in the treatment group showed apparent improvements in GMFM-88 and ADL 24 months after treatment. Compared with the baseline, the scale scores of the Fine Motor Function, Sociability, Life Adaptability, Expressive Ability, GMFM-88, and ADL increased significantly in the treatment group 24 months after treatment, while the SDSC score decreased considerably. Compared with baseline, the FBN analysis showed a substantial decrease in brain network energy, and the VBM analysis showed a significant increase in gray matter volume in the treatment group after NSCs treatment. CONCLUSIONS Our results showed that intranasal administration of NSCs was well-tolerated and potentially beneficial in children with CP. TRIAL REGISTRATION The study was registered in ClinicalTrials.gov (NCT03005249, registered 29 December 2016, https://www. CLINICALTRIALS gov/ct2/show/NCT03005249 ) and the Medical Research Registration Information System (CMR-20161129-1003).
Collapse
Affiliation(s)
- Zhongyue Lv
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Ying Li
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Yachen Wang
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Fengyu Cong
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China ,grid.9681.60000 0001 1013 7965Faculty of Information Technology, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Xiaoyan Li
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Wanming Cui
- grid.452435.10000 0004 1798 9070Department of Ent, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Chao Han
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Yushan Wei
- grid.452435.10000 0004 1798 9070Scientific Research Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Xiaojun Hong
- grid.452435.10000 0004 1798 9070Neurophysiological Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Yong Liu
- grid.452435.10000 0004 1798 9070Department of Rehabilitation, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Luyi Ma
- grid.452435.10000 0004 1798 9070Department of Pediatrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Yang Jiao
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China ,grid.452435.10000 0004 1798 9070Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Chi Zhang
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Huanjie Li
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning China
| | - Mingyan Jin
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Liang Wang
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Shiwei Ni
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, Liaoning, China. .,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning, China.
| |
Collapse
|
13
|
Svandova E, Lesot H, Sharpe P, Matalova E. Making the head: Caspases in life and death. Front Cell Dev Biol 2023; 10:1075751. [PMID: 36712975 PMCID: PMC9880857 DOI: 10.3389/fcell.2022.1075751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
The term apoptosis, as a way of programmed cell death, was coined a half century ago and since its discovery the process has been extensively investigated. The anatomy and physiology of the head are complex and thus apoptosis has mostly been followed in separate structures, tissues or cell types. This review aims to provide a comprehensive overview of recent knowledge concerning apoptosis-related molecules involved in the development of structures of head with a particular focus on caspases, cysteine proteases having a key position in apoptotic pathways. Since many classical apoptosis-related molecules, including caspases, are emerging in several non-apoptotic processes, these were also considered. The largest organ of the head region is the brain and its development has been extensively investigated, including the roles of apoptosis and related molecules. Neurogenesis research also includes sensory organs such as the eye and ear, efferent nervous system and associated muscles and glands. Caspases have been also associated with normal function of the skin and hair follicles. Regarding mineralised tissues within craniofacial morphogenesis, apoptosis in bones has been of interest along with palate fusion and tooth development. Finally, the role of apoptosis and caspases in angiogenesis, necessary for any tissue/organ development and maintenance/homeostasis, are discussed. Additionally, this review points to abnormalities of development resulting from improper expression/activation of apoptosis-related molecules.
Collapse
Affiliation(s)
- Eva Svandova
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Eva Matalova
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
14
|
Walker LJ, Guevara C, Kawakami K, Granato M. A glia cell dependent mechanism at a peripheral nerve plexus critical for target-selective axon regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522786. [PMID: 36712008 PMCID: PMC9881934 DOI: 10.1101/2023.01.05.522786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A critical step for functional recovery from peripheral nerve injury is for regenerating axons to connect with their pre-injury targets. Reestablishing pre-injury target specificity is particularly challenging for limb-innervating axons as they encounter a plexus, a network where peripheral nerves converge, axons from different nerves intermingle, and then re-sort into target-specific bundles. Here, we examine this process at a plexus located at the base of the zebrafish pectoral fin, equivalent to tetrapod forelimbs. Using live cell imaging and sparse axon labeling, we find that regenerating motor axons from three nerves coalesce into the plexus. There, they intermingle and sort into distinct branches, and then navigate to their original muscle domains with high fidelity that restores functionality. We demonstrate that this regeneration process includes selective retraction of mistargeted axons, suggesting active correction mechanisms. Moreover, we find that Schwann cells are enriched and associate with axons at the plexus, and that Schwann cell ablation during regeneration causes profound axonal mistargeting. Our data provide the first real time account of regenerating vertebrate motor axons navigating a nerve plexus and reveal a previously unappreciated role for Schwann cells to promote axon sorting at a plexus during regeneration.
Collapse
Affiliation(s)
- Lauren J Walker
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Camilo Guevara
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Bosten JM, Coen-Cagli R, Franklin A, Solomon SG, Webster MA. Calibrating Vision: Concepts and Questions. Vision Res 2022; 201:108131. [PMID: 37139435 PMCID: PMC10151026 DOI: 10.1016/j.visres.2022.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The idea that visual coding and perception are shaped by experience and adjust to changes in the environment or the observer is universally recognized as a cornerstone of visual processing, yet the functions and processes mediating these calibrations remain in many ways poorly understood. In this article we review a number of facets and issues surrounding the general notion of calibration, with a focus on plasticity within the encoding and representational stages of visual processing. These include how many types of calibrations there are - and how we decide; how plasticity for encoding is intertwined with other principles of sensory coding; how it is instantiated at the level of the dynamic networks mediating vision; how it varies with development or between individuals; and the factors that may limit the form or degree of the adjustments. Our goal is to give a small glimpse of an enormous and fundamental dimension of vision, and to point to some of the unresolved questions in our understanding of how and why ongoing calibrations are a pervasive and essential element of vision.
Collapse
Affiliation(s)
| | - Ruben Coen-Cagli
- Department of Systems Computational Biology, and Dominick P. Purpura Department of Neuroscience, and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx NY
| | | | - Samuel G Solomon
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, UK
| | | |
Collapse
|
16
|
Antagonistic Activities of Fmn2 and ADF Regulate Axonal F-Actin Patch Dynamics and the Initiation of Collateral Branching. J Neurosci 2022; 42:7355-7369. [PMID: 36481742 PMCID: PMC9525169 DOI: 10.1523/jneurosci.3107-20.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022] Open
Abstract
Interstitial collateral branching of axons is a critical component in the development of functional neural circuits. Axon collateral branches are established through a series of cellular processes initiated by the development of a specialized, focal F-actin network in axons. The formation, maintenance and remodeling of this F-actin patch is critical for the initiation of axonal protrusions that are subsequently consolidated to form a collateral branch. However, the mechanisms regulating F-actin patch dynamics are poorly understood. Fmn2 is a formin family member implicated in multiple neurodevelopmental disorders. We find that Fmn2 regulates the initiation of axon collateral protrusions in chick spinal neurons and in zebrafish motor neurons. Fmn2 localizes to the protrusion-initiating axonal F-actin patches and regulates the lifetime and size of these F-actin networks. The F-actin nucleation activity of Fmn2 is necessary for F-actin patch stability but not for initiating patch formation. We show that Fmn2 insulates the F-actin patches from disassembly by the actin-depolymerizing factor, ADF, and promotes long-lived, larger patches that are competent to initiate axonal protrusions. The regulation of axonal branching can contribute to the neurodevelopmental pathologies associated with Fmn2 and the dynamic antagonism between Fmn2 and ADF may represent a general mechanism of formin-dependent protection of Arp2/3-initiated F-actin networks from disassembly.SIGNIFICANCE STATEMENT Axonal branching is a key process in the development of functional circuits and neural plasticity. Axon collateral branching is initiated by the elaboration of F-actin filaments from discrete axonal F-actin networks. We show that the neurodevelopmental disorder-associated formin, Fmn2, is a critical regulator of axon collateral branching. Fmn2 localizes to the collateral branch-inducing F-actin patches in axons and regulates the stability of these actin networks. The F-actin nucleation activity of Fmn2 protects the patches from ADF-mediated disassembly. Opposing activities of Fmn2 and ADF exert a dynamic regulatory control on axon collateral branch initiation and may underly the neurodevelopmental defects associated with Fmn2.
Collapse
|
17
|
Role of Caspases and Gasdermin A during HSV-1 Infection in Mice. Viruses 2022; 14:v14092034. [PMID: 36146839 PMCID: PMC9504851 DOI: 10.3390/v14092034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection can manifest locally as mucocutaneous lesions or keratitis and can also spread to the central nervous system to cause encephalitis. HSV-1 establishes a lifelong latent infection and neither cure nor vaccine is currently available. The innate immune response is the first line of defense against infection. Caspases and gasdermins are important components of innate immunity. Caspases are a family of cysteine proteases, most of which mediate regulated cell death. Gasdermins are a family of pore-forming proteins that trigger lytic cell death. To determine whether caspases or gasdermins contribute to innate immune defenses against HSV-1, we screened mice deficient in specific cell death genes. Our results indicate a modest role for caspase-6 in defense against HSV-1. Further, Asc–/–Casp1/11–/– mice also had a modest increased susceptibility to HSV-1 infection. Caspase-7, -8, and -14 did not have a notable role in controlling HSV-1 infection. We generated Gsdma1-Gsdma2-Gsdma3 triple knockout mice, which also had normal susceptibility to HSV-1. We confirmed that the previously published importance of RIPK3 during systemic HSV-1 infection also holds true during skin infection. Overall, our data highlight that as a successful pathogen, HSV-1 has multiple ways to evade host innate immune responses.
Collapse
|
18
|
Development of an Oriented Co-Culture System Using 3D Scaffolds Fabricated via Non-Linear Lithography. MATERIALS 2022; 15:ma15124349. [PMID: 35744408 PMCID: PMC9231110 DOI: 10.3390/ma15124349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023]
Abstract
Damage in the Peripheral Nervous System (PNS) is related to numerous neurodegenerative diseases and has consequently drawn the attention of Tissue Engineering (TE), which is considered a promising alternative to already established methods such as surgery and autografts. TE focuses on the design, optimization, and use of scaffolds in vitro and in vivo. In this work, the authors used a novel scaffold geometry fabricated via Multiphoton Lithography (MPL), a commonly used fabrication method, for the mono- and co-cultures of glial Schwann (SW10) and neuronal Neuro-2a (N2a) cells. Both cell types have already been used for the study of various neurodegenerative diseases. However, their focus has been on only one of the cell types at a time, with studies regarding their co-culture only recently documented. Here, the suitability of the fabricated scaffolds has been explored and the effects of topography on SW10 and N2a behavior have been investigated. Our findings demonstrate that scaffold co-culture systems favor the presence of neurites compared to mono-cultures at 21 days (31.4 ± 5.5% and 15.4 ± 5.4%, respectively), while there is also a significant decrease in long neurites in the mono-culture over time (45.3 ± 15.9% at 7 days versus 15.4 ± 5.4% at 21 days). It has been shown that the scaffolds can successfully manipulate cell growth, elongation, and morphology, and these results can form a basis for the development of an experimental model for the study of PNS-related diseases and understanding of key cell functions such as myelination.
Collapse
|
19
|
Lewis JD, Acosta H, Tuulari JJ, Fonov VS, Collins DL, Scheinin NM, Lehtola SJ, Rosberg A, Lidauer K, Ukharova E, Saunavaara J, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H. Allometry in the corpus callosum in neonates: Sexual dimorphism. Hum Brain Mapp 2022; 43:4609-4619. [PMID: 35722945 PMCID: PMC9491283 DOI: 10.1002/hbm.25977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022] Open
Abstract
The corpus callosum (CC) is the largest fiber tract in the human brain, allowing interhemispheric communication by connecting homologous areas of the two cerebral hemispheres. In adults, CC size shows a robust allometric relationship with brain size, with larger brains having larger callosa, but smaller brains having larger callosa relative to brain size. Such an allometric relationship has been shown in both males and females, with no significant difference between the sexes. But there is some evidence that there are alterations in these allometric relationships during development. However, it is currently not known whether there is sexual dimorphism in these allometric relationships from birth, or if it only develops later. We study this in neonate data. Our results indicate that there are already sex differences in these allometric relationships in neonates: male neonates show the adult‐like allometric relationship between CC size and brain size; however female neonates show a significantly more positive allometry between CC size and brain size than either male neonates or female adults. The underlying cause of this sexual dimorphism is unclear; but the existence of this sexual dimorphism in neonates suggests that sex‐differences in lateralization have prenatal origins.
Collapse
Affiliation(s)
- John D Lewis
- Montreal Neurological Institute and Hospital, McGill University, Quebec, Canada
| | - Henriette Acosta
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany.,FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Turku Collegium for Science and Medicine and Technology, University of Turku, Turku, Finland.,Department of Future Technologies, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Vladimir S Fonov
- Montreal Neurological Institute and Hospital, McGill University, Quebec, Canada
| | - D Louis Collins
- Montreal Neurological Institute and Hospital, McGill University, Quebec, Canada
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Aylin Rosberg
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Kristian Lidauer
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Elena Ukharova
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Jani Saunavaara
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Pediatric Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
20
|
A survey on dendritic neuron model: Mechanisms, algorithms and practical applications. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.08.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Lacalli TC. Patterning, From Conifers to Consciousness: Turing's Theory and Order From Fluctuations. Front Cell Dev Biol 2022; 10:871950. [PMID: 35592249 PMCID: PMC9111979 DOI: 10.3389/fcell.2022.871950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
This is a brief account of Turing's ideas on biological pattern and the events that led to their wider acceptance by biologists as a valid way to investigate developmental pattern, and of the value of theory more generally in biology. Periodic patterns have played a key role in this process, especially 2D arrays of oriented stripes, which proved a disappointment in theoretical terms in the case of Drosophila segmentation, but a boost to theory as applied to skin patterns in fish and model chemical reactions. The concept of "order from fluctuations" is a key component of Turing's theory, wherein pattern arises by selective amplification of spatial components concealed in the random disorder of molecular and/or cellular processes. For biological examples, a crucial point from an analytical standpoint is knowing the nature of the fluctuations, where the amplifier resides, and the timescale over which selective amplification occurs. The answer clarifies the difference between "inelegant" examples such as Drosophila segmentation, which is perhaps better understood as a programmatic assembly process, and "elegant" ones expressible in equations like Turing's: that the fluctuations and selection process occur predominantly in evolutionary time for the former, but in real time for the latter, and likewise for error suppression, which for Drosophila is historical, in being lodged firmly in past evolutionary events. The prospects for a further extension of Turing's ideas to the complexities of brain development and consciousness is discussed, where a case can be made that it could well be in neuroscience that his ideas find their most important application.
Collapse
|
22
|
SONG XUAN, GAO HAIYUN, HERRUP KARL, HART RONALDP. Optimized splitting of mixed-species RNA sequencing data. J Bioinform Comput Biol 2022; 20:2250001. [PMID: 34991436 PMCID: PMC9081140 DOI: 10.1142/s0219720022500019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene expression studies using xenograft transplants or co-culture systems, usually with mixed human and mouse cells, have proven to be valuable to uncover cellular dynamics during development or in disease models. However, the mRNA sequence similarities among species presents a challenge for accurate transcript quantification. To identify optimal strategies for analyzing mixed-species RNA sequencing data, we evaluate both alignment-dependent and alignment-independent methods. Alignment of reads to a pooled reference index is effective, particularly if optimal alignments are used to classify sequencing reads by species, which are re-aligned with individual genomes, generating [Formula: see text] accuracy across a range of species ratios. Alignment-independent methods, such as convolutional neural networks, which extract the conserved patterns of sequences from two species, classify RNA sequencing reads with over 85% accuracy. Importantly, both methods perform well with different ratios of human and mouse reads. While non-alignment strategies successfully partitioned reads by species, a more traditional approach of mixed-genome alignment followed by optimized separation of reads proved to be the more successful with lower error rates.
Collapse
Affiliation(s)
- XUAN SONG
- Department of Neurology, Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - HAI YUN GAO
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - KARL HERRUP
- Department of Neurology, Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - RONALD P. HART
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
23
|
van der Plas E, Solomon MA, Hopkins L, Koscik T, Schultz J, Brophy PD, Nopoulos PC, Harshman LA. Global and Regional White Matter Fractional Anisotropy in Children with Chronic Kidney Disease. J Pediatr 2022; 242:166-173.e3. [PMID: 34758354 PMCID: PMC8882141 DOI: 10.1016/j.jpeds.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To investigate the associations between neurocognition and white matter integrity in children with chronic kidney disease (CKD). STUDY DESIGN This cross-sectional study included 17 boys (age 6-16 years) with a diagnosis of mild to moderate (stages 1-3, nondialysis/nontransplant) CKD because of congenital anomalies of the kidney and urinary tract and 20 typically developing community controls. Participants underwent 3T neuroimaging and diffusion-weighted magnetic resonance imaging to assess white matter fractional anisotropy. Multivariable linear regression models were used to evaluate the impact of each group (controls vs CKD) on white matter fractional anisotropy, adjusting for age. Associations between white matter fractional anisotropy and neurocognitive abilities within the CKD group were also evaluated using regression models that were adjusted for age. The false discovery rate was used to account for multiple comparisons; wherein false discovery values <0.10 were considered significant. RESULTS Global white matter fractional anisotropy was reduced in patients with CKD relative to controls (standardized estimate = -0.38, 95% CI -0.69:-0.07), driven by reductions within the body of the corpus callosum (standardized estimate = -0.44, 95% CI -0.75:-0.13), cerebral peduncle (SE = -0.37, 95% CI -0.67:-0.07), cingulum (hippocampus) (standardized estimate = -0.45, 95% CI -0.75:-0.14), and posterior limb of the internal capsule (standardized estimate = -0.46, 95% CI -0.76:-0.15). Medical variables and neurocognitive abilities were not significantly associated with white matter fractional anisotropy. CONCLUSIONS White matter development is vulnerable in children with CKD because of congenital causes, even prior to the need for dialysis or transplantation.
Collapse
Affiliation(s)
- Ellen van der Plas
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | - Lauren Hopkins
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Timothy Koscik
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jordan Schultz
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA,University of Iowa College of Pharmacy, Iowa City, IA
| | | | - Peggy C. Nopoulos
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA
| | | |
Collapse
|
24
|
Merging pruning and neuroevolution: towards robust and efficient controllers for modular soft robots. KNOWL ENG REV 2022. [DOI: 10.1017/s0269888921000151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Artificial neural networks (ANNs) can be employed as controllers for robotic agents. Their structure is often complex, with many neurons and connections, especially when the robots have many sensors and actuators distributed across their bodies and/or when high expressive power is desirable. Pruning (removing neurons or connections) reduces the complexity of the ANN, thus increasing its energy efficiency, and has been reported to improve the generalization capability, in some cases. In addition, it is well-known that pruning in biological neural networks plays a fundamental role in the development of brains and their ability to learn. In this study, we consider the evolutionary optimization of neural controllers for the case study of Voxel-based soft robots, a kind of modular, bio-inspired soft robots, applying pruning during fitness evaluation. For a locomotion task, and for centralized as well as distributed controllers, we experimentally characterize the effect of different forms of pruning on after-pruning effectiveness, life-long effectiveness, adaptability to new terrains, and behavior. We find that incorporating some forms of pruning in neuroevolution leads to almost equally effective controllers as those evolved without pruning, with the benefit of higher robustness to pruning. We also observe occasional improvements in generalization ability.
Collapse
|
25
|
Yan Y, Tian M, Li M, Zhou G, Chen Q, Xu M, Hu Y, Luo W, Guo X, Zhang C, Xie H, Wu QF, Xiong W, Liu S, Guan JS. ASH1L haploinsufficiency results in autistic-like phenotypes in mice and links Eph receptor gene to autism spectrum disorder. Neuron 2022; 110:1156-1172.e9. [DOI: 10.1016/j.neuron.2021.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
|
26
|
Michels L, Buechler R, Kucian K. Increased structural covariance in brain regions for number processing and memory in children with developmental dyscalculia. J Neurosci Res 2021; 100:522-536. [PMID: 34933406 PMCID: PMC9306474 DOI: 10.1002/jnr.24998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023]
Abstract
Developmental dyscalculia (DD) is a developmental learning disability associated with deficits in processing numerical and mathematical information. Several studies demonstrated functional network alterations in DD. Yet, there are no studies, which examined the structural network integrity in DD. We compared whole‐brain maps of volume based structural covariance between 19 (4 males) children with DD and 18 (4 males) typically developing children. We found elevated structural covariance in the DD group between the anterior intraparietal sulcus to the middle temporal and frontal gyrus (p < 0.05, corrected). A hippocampus subfield analysis showed higher structural covariance in the DD group for area CA3 to the parahippocampal and calcarine sulcus, angular gyrus and anterior part of the intraparietal sulcus as well as to the lingual gyrus. Lower structural covariance in this group was seen for the subiculum to orbitofrontal gyrus, anterior insula and middle frontal gyrus. In contrast, the primary motor cortex (control region) revealed no difference in structural covariance between groups. Our results extend functional magnetic resonance studies by revealing abnormal gray matter integrity in children with DD. These findings thus indicate that the pathophysiology of DD is mediated by both structural and functional abnormalities in a network involved in number processing and memory function.
Collapse
Affiliation(s)
- Lars Michels
- Department of Neuroradiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Roman Buechler
- Department of Neuroradiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karin Kucian
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Centre for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Creighton BA, Afriyie S, Ajit D, Casingal CR, Voos KM, Reger J, Burch AM, Dyne E, Bay J, Huang JK, Anton ES, Fu MM, Lorenzo DN. Giant ankyrin-B mediates transduction of axon guidance and collateral branch pruning factor sema 3A. eLife 2021; 10:69815. [PMID: 34812142 PMCID: PMC8610419 DOI: 10.7554/elife.69815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023] Open
Abstract
Variants in the high confident autism spectrum disorder (ASD) gene ANK2 target both ubiquitously expressed 220 kDa ankyrin-B and neurospecific 440 kDa ankyrin-B (AnkB440) isoforms. Previous work showed that knock-in mice expressing an ASD-linked Ank2 variant yielding a truncated AnkB440 product exhibit ectopic brain connectivity and behavioral abnormalities. Expression of this variant or loss of AnkB440 caused axonal hyperbranching in vitro, which implicated AnkB440 microtubule bundling activity in suppressing collateral branch formation. Leveraging multiple mouse models, cellular assays, and live microscopy, we show that AnkB440 also modulates axon collateral branching stochastically by reducing the number of F-actin-rich branch initiation points. Additionally, we show that AnkB440 enables growth cone (GC) collapse in response to chemorepellent factor semaphorin 3 A (Sema 3 A) by stabilizing its receptor complex L1 cell adhesion molecule/neuropilin-1. ASD-linked ANK2 variants failed to rescue Sema 3A-induced GC collapse. We propose that impaired response to repellent cues due to AnkB440 deficits leads to axonal targeting and branch pruning defects and may contribute to the pathogenicity of ANK2 variants.
Collapse
Affiliation(s)
- Blake A Creighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Simone Afriyie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Deepa Ajit
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Cristine R Casingal
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kayleigh M Voos
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Joan Reger
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States.,Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, United States
| | - April M Burch
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Eric Dyne
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - Julia Bay
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, United States
| | - E S Anton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Meng-Meng Fu
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - Damaris N Lorenzo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Carolina Institute for Developmental Disabilities, Chapel Hill, United States
| |
Collapse
|
28
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
29
|
Ji J, Tang Y, Ma L, Li J, Lin Q, Tang Z, Todo Y. Accuracy Versus Simplification in an Approximate Logic Neural Model. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:5194-5207. [PMID: 33156795 DOI: 10.1109/tnnls.2020.3027298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An approximate logic neural model (ALNM) is a novel single-neuron model with plastic dendritic morphology. During the training process, the model can eliminate unnecessary synapses and useless branches of dendrites. It will produce a specific dendritic structure for a particular task. The simplified structure of ALNM can be substituted by a logic circuit classifier (LCC) without losing any essential information. The LCC merely consists of the comparator and logic NOT, AND, and OR gates. Thus, it can be easily implemented in hardware. However, the architecture of ALNM affects the learning capacity, generalization capability, computing time and approximation of LCC. Thus, a Pareto-based multiobjective differential evolution (MODE) algorithm is proposed to simultaneously optimize ALNM's topology and weights. MODE can generate a concise and accurate LCC for every specific task from ALNM. To verify the effectiveness of MODE, extensive experiments are performed on eight benchmark classification problems. The statistical results demonstrate that MODE is superior to conventional learning methods, such as the backpropagation algorithm and single-objective evolutionary algorithms. In addition, compared against several commonly used classifiers, both ALNM and LCC are capable of obtaining promising and competitive classification performances on the benchmark problems. Besides, the experimental results also verify that the LCC obtains the faster classification speed than the other classifiers.
Collapse
|
30
|
Yong HJ, Hwang JI, Seong JY. Alterations in Dendritic Spine Maturation and Neurite Development Mediated by FAM19A1. Cells 2021; 10:1868. [PMID: 34440636 PMCID: PMC8392516 DOI: 10.3390/cells10081868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Neurogenesis and functional brain activity require complex associations of inherently programmed secretory elements that are regulated precisely and temporally. Family with sequence similarity 19 A1 (FAM19A1) is a secreted protein primarily expressed in subsets of terminally differentiated neuronal precursor cells and fully mature neurons in specific brain substructures. Several recent studies have demonstrated the importance of FAM19A1 in brain physiology; however, additional information is needed to support its role in neuronal maturation and function. In this study, dendritic spine morphology in Fam19a1-ablated mice and neurite development during in vitro neurogenesis were examined to understand the putative role of FAM19A1 in neural integrity. Adult Fam19a1-deficient mice showed low dendritic spine density and maturity with reduced dendrite complexity compared to wild-type (WT) littermates. To further explore the effect of FAM19A1 on neuronal maturation, the neurite outgrowth pattern in primary neurons was analyzed in vitro with and without FAM19A1. In response to FAM19A1, WT primary neurons showed reduced neurite complexity, whereas Fam19a1-decifient primary neurons exhibited increased neurite arborization, which was reversed by supplementation with recombinant FAM19A1. Together, these findings suggest that FAM19A1 participates in dendritic spine development and neurite arborization.
Collapse
Affiliation(s)
- Hyo-Jeong Yong
- The GPCR Laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea;
| | - Jong-Ik Hwang
- The GPCR Laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea;
| | - Jae-Young Seong
- The GPCR Laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea;
- Division of Research, Neuracle Science Co., Ltd., Seoul 02841, Korea
| |
Collapse
|
31
|
Sun J, Chen L, Hu S, Song J, Wu J, Gu Y. Morphological basis of radial nerve dysfunction in newborns differs from that of no radial nerve dysfunction in adults in C5-C6-C7 injuries to the brachial plexus: a cadaveric study. Br J Neurosurg 2021; 35:643-649. [PMID: 34259110 DOI: 10.1080/02688697.2021.1947980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Injuries to the upper and middle trunks of brachial plexus result in dysfunction of radial nerves in newborns but do not in adults. We hypothesized that the radial nerve had a lower proportion of myelinated nerve fibers (MNFs) from the lower trunk in newborns than in adults, and in newborns those MNFs were less developed than MNFs in the radial nerve from the middle and upper trunks. METHODS We dissected bilateral brachial plexus of six newborn and six adult cadavers. The radial nerve and its fascicles were separated proximally to posterior divisions of the upper, middle and lower trunks, and fascicles of the radial nerve were harvested from three trunks to calculate respective percentage of MNFs accounting for the total number of MNFs in the radial nerve. We determined diameters of axons and g-ratios of MNFs in the radial nerve from three trunks. RESULTS Compared with adults, the percentage of MNFs in the radial nerve from the lower trunk was lower (p < 0.05), from the middle trunk higher (p < 0.05) and from the upper trunk similar (p > 0.05) in newborns, though MNF counts from three trunks were higher in newborns, respectively (p < 0.01, all). In newborns, MNFs in the radial nerve from the lower trunk had smaller axonal diameters and higher g-ratios than those from the middle and upper trunks (p < 0.017, all), while in adults there were no such differences. CONCLUSIONS Lower proportion of MNFs in the radial nerve from the lower trunk in newborns than in adults, and in newborns immaturity of MNFs from the lower trunk relative to MNFs from the middle and upper trunks may be the major morphological basis of difference in clinical appearances of radial nerve palsy caused by injuries to C5-C6-C7 between newborns and adults.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Liang Chen
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Shaonan Hu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jie Song
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jixin Wu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yudong Gu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| |
Collapse
|
32
|
Drosophila Corazonin Neurons as a Hub for Regulating Growth, Stress Responses, Ethanol-Related Behaviors, Copulation Persistence and Sexually Dimorphic Reward Pathways. J Dev Biol 2021; 9:jdb9030026. [PMID: 34287347 PMCID: PMC8293205 DOI: 10.3390/jdb9030026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
The neuronal mechanisms by which complex behaviors are coordinated and timed often involve neuropeptidergic regulation of stress and reward pathways. Recent studies of the neuropeptide Corazonin (Crz), a homolog of the mammalian Gonadotrophin Releasing Hormone (GnRH), have suggested its crucial role in the regulation of growth, internal states and behavioral decision making. We focus this review on Crz neurons with the goal to (1) highlight the diverse roles of Crz neuron function, including mechanisms that may be independent of the Crz peptide, (2) emphasize current gaps in knowledge about Crz neuron functions, and (3) propose exciting ideas of novel research directions involving the use of Crz neurons. We describe the different developmental fates of distinct subsets of Crz neurons, including recent findings elucidating the molecular regulation of apoptosis. Crz regulates systemic growth, food intake, stress responses and homeostasis by interacting with the short Neuropeptide F (sNPF) and the steroid hormone ecdysone. Additionally, activation of Crz neurons is shown to be pleasurable by interacting with the Neuropeptide F (NPF) and regulates reward processes such as ejaculation and ethanol-related behaviors in a sexually dimorphic manner. Crz neurons are proposed to be a motivational switch regulating copulation duration using a CaMKII-dependent mechanism described as the first neuronal interval timer lasting longer than a few seconds. Lastly, we propose ideas to use Crz neuron-induced ejaculation to study the effects of fictive mating and sex addiction in flies, as well as to elucidate dimorphic molecular mechanisms underlying reward behaviors and feeding disorders.
Collapse
|
33
|
Traumatic brain injury in adolescence: A review of the neurobiological and behavioural underpinnings and outcomes. DEVELOPMENTAL REVIEW 2021. [DOI: 10.1016/j.dr.2020.100943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Heiney K, Huse Ramstad O, Fiskum V, Christiansen N, Sandvig A, Nichele S, Sandvig I. Criticality, Connectivity, and Neural Disorder: A Multifaceted Approach to Neural Computation. Front Comput Neurosci 2021; 15:611183. [PMID: 33643017 PMCID: PMC7902700 DOI: 10.3389/fncom.2021.611183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/18/2021] [Indexed: 01/03/2023] Open
Abstract
It has been hypothesized that the brain optimizes its capacity for computation by self-organizing to a critical point. The dynamical state of criticality is achieved by striking a balance such that activity can effectively spread through the network without overwhelming it and is commonly identified in neuronal networks by observing the behavior of cascades of network activity termed "neuronal avalanches." The dynamic activity that occurs in neuronal networks is closely intertwined with how the elements of the network are connected and how they influence each other's functional activity. In this review, we highlight how studying criticality with a broad perspective that integrates concepts from physics, experimental and theoretical neuroscience, and computer science can provide a greater understanding of the mechanisms that drive networks to criticality and how their disruption may manifest in different disorders. First, integrating graph theory into experimental studies on criticality, as is becoming more common in theoretical and modeling studies, would provide insight into the kinds of network structures that support criticality in networks of biological neurons. Furthermore, plasticity mechanisms play a crucial role in shaping these neural structures, both in terms of homeostatic maintenance and learning. Both network structures and plasticity have been studied fairly extensively in theoretical models, but much work remains to bridge the gap between theoretical and experimental findings. Finally, information theoretical approaches can tie in more concrete evidence of a network's computational capabilities. Approaching neural dynamics with all these facets in mind has the potential to provide a greater understanding of what goes wrong in neural disorders. Criticality analysis therefore holds potential to identify disruptions to healthy dynamics, granted that robust methods and approaches are considered.
Collapse
Affiliation(s)
- Kristine Heiney
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vegard Fiskum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicholas Christiansen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, Sweden
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Holistic Systems, Simula Metropolitan, Oslo, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
35
|
Adewole DO, Struzyna LA, Burrell JC, Harris JP, Nemes AD, Petrov D, Kraft RH, Chen HI, Serruya MD, Wolf JA, Cullen DK. Development of optically controlled "living electrodes" with long-projecting axon tracts for a synaptic brain-machine interface. SCIENCE ADVANCES 2021; 7:eaay5347. [PMID: 33523957 PMCID: PMC10670819 DOI: 10.1126/sciadv.aay5347] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
For implantable neural interfaces, functional/clinical outcomes are challenged by limitations in specificity and stability of inorganic microelectrodes. A biological intermediary between microelectrical devices and the brain may improve specificity and longevity through (i) natural synaptic integration with deep neural circuitry, (ii) accessibility on the brain surface, and (iii) optogenetic manipulation for targeted, light-based readout/control. Accordingly, we have developed implantable "living electrodes," living cortical neurons, and axonal tracts protected within soft hydrogel cylinders, for optobiological monitoring/modulation of brain activity. Here, we demonstrate fabrication, rapid axonal outgrowth, reproducible cytoarchitecture, and simultaneous optical stimulation and recording of these tissue engineered constructs in vitro. We also present their transplantation, survival, integration, and optical recording in rat cortex as an in vivo proof of concept for this neural interface paradigm. The creation and characterization of these functional, optically controllable living electrodes are critical steps in developing a new class of optobiological tools for neural interfacing.
Collapse
Affiliation(s)
- Dayo O Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A Struzyna
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin C Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James P Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Ashley D Nemes
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Reuben H Kraft
- Computational Biomechanics Group, The Pennsylvania State University, University Park, PA 16802, USA
| | - H Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Mijail D Serruya
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Neurodelphus LLC, 3401 Grays Ferry Ave., Unit 6176, Philadelphia, PA 19146, USA
- Nuromo LLC, 405 Meadow Lane, Merion Station, PA 19066, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
The BDNF Val66Met polymorphism (rs6265) enhances dopamine neuron graft efficacy and side-effect liability in rs6265 knock-in rats. Neurobiol Dis 2020; 148:105175. [PMID: 33188920 PMCID: PMC7855552 DOI: 10.1016/j.nbd.2020.105175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 01/10/2023] Open
Abstract
Prevalent in approximately 20% of the worldwide human population, the
rs6265 (also called ‘Val66Met’) single nucleotide polymorphism
(SNP) in the gene for brain-derived neurotrophic factor (BDNF)
is a common genetic variant that can alter therapeutic responses in individuals
with Parkinson’s disease (PD). Possession of the variant Met allele
results in decreased activity-dependent release of BDNF. Given the resurgent
worldwide interest in neural transplantation for PD and the biological relevance
of BDNF, the current studies examined the effects of the rs6265 SNP on
therapeutic efficacy and side-effect development following primary dopamine (DA)
neuron transplantation. Considering the significant reduction in BDNF release
associated with rs6265, we hypothesized that rs6265-mediated dysfunctional BDNF
signaling contributes to the limited clinical benefit observed in a
subpopulation of PD patients despite robust survival of grafted DA neurons, and
further, that this mutation contributes to the development of aberrant
graft-induced dyskinesias (GID). To this end, we generated a CRISPR knock-in rat
model of the rs6265 BDNF SNP to examine for the first time the
influence of a common genetic polymorphism on graft survival, functional
efficacy, and side-effect liability, comparing these parameters between
wild-type (Val/Val) rats and those homozygous for the variant Met allele
(Met/Met). Counter to our hypothesis, the current research indicates that
Met/Met rats show enhanced graft-associated therapeutic efficacy and a
paradoxical enhancement of graft-derived neurite outgrowth compared to wild-type
rats. However, consistent with our hypothesis, we demonstrate that the rs6265
genotype in the host rat is strongly linked to development of GID, and that this
behavioral phenotype is significantly correlated with neurochemical signatures
of atypical glutamatergic neurotransmission by grafted DA neurons.
Collapse
|
37
|
Manipulation of Axonal Outgrowth via Exogenous Low Forces. Int J Mol Sci 2020; 21:ijms21218009. [PMID: 33126477 PMCID: PMC7663625 DOI: 10.3390/ijms21218009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Neurons are mechanosensitive cells. The role of mechanical force in the process of neurite initiation, elongation and sprouting; nerve fasciculation; and neuron maturation continues to attract considerable interest among scientists. Force is an endogenous signal that stimulates all these processes in vivo. The axon is able to sense force, generate force and, ultimately, transduce the force in a signal for growth. This opens up fascinating scenarios. How are forces generated and sensed in vivo? Which molecular mechanisms are responsible for this mechanotransduction signal? Can we exploit exogenously applied forces to mimic and control this process? How can these extremely low forces be generated in vivo in a non-invasive manner? Can these methodologies for force generation be used in regenerative therapies? This review addresses these questions, providing a general overview of current knowledge on the applications of exogenous forces to manipulate axonal outgrowth, with a special focus on forces whose magnitude is similar to those generated in vivo. We also review the principal methodologies for applying these forces, providing new inspiration and insights into the potential of this approach for future regenerative therapies.
Collapse
|
38
|
Saini J, Faroni A, Reid AJ, Mamchaoui K, Mouly V, Butler-Browne G, Lightfoot AP, McPhee JS, Degens H, Al-Shanti N. A Novel Bioengineered Functional Motor Unit Platform to Study Neuromuscular Interaction. J Clin Med 2020; 9:jcm9103238. [PMID: 33050427 PMCID: PMC7599749 DOI: 10.3390/jcm9103238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Background: In many neurodegenerative and muscular disorders, and loss of innervation in sarcopenia, improper reinnervation of muscle and dysfunction of the motor unit (MU) are key pathogenic features. In vivo studies of MUs are constrained due to difficulties isolating and extracting functional MUs, so there is a need for a simplified and reproducible system of engineered in vitro MUs. Objective: to develop and characterise a functional MU model in vitro, permitting the analysis of MU development and function. Methods: an immortalised human myoblast cell line was co-cultured with rat embryo spinal cord explants in a serum-free/growth fact media. MUs developed and the morphology of their components (neuromuscular junction (NMJ), myotubes and motor neurons) were characterised using immunocytochemistry, phase contrast and confocal microscopy. The function of the MU was evaluated through live observations and videography of spontaneous myotube contractions after challenge with cholinergic antagonists and glutamatergic agonists. Results: blocking acetylcholine receptors with α-bungarotoxin resulted in complete, cessation of myotube contractions, which was reversible with tubocurarine. Furthermore, myotube activity was significantly higher with the application of L-glutamic acid. All these observations indicate the formed MU are functional. Conclusion: a functional nerve-muscle co-culture model was established that has potential for drug screening and pathophysiological studies of neuromuscular interactions.
Collapse
Affiliation(s)
- Jasdeep Saini
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
| | - Alessandro Faroni
- Manchester Academic Health Science Centre, Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester M1 7DN, UK; (A.F.); (A.J.R.)
- Manchester Academic Health Science Centre, Department of Plastic Surgery & Burns, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
| | - Adam J. Reid
- Manchester Academic Health Science Centre, Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester M1 7DN, UK; (A.F.); (A.J.R.)
- Manchester Academic Health Science Centre, Department of Plastic Surgery & Burns, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université-INSERM, 75013 Paris, France; (K.M.); (V.M.); (G.B.-B.)
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université-INSERM, 75013 Paris, France; (K.M.); (V.M.); (G.B.-B.)
| | - Gillian Butler-Browne
- Center for Research in Myology, Sorbonne Université-INSERM, 75013 Paris, France; (K.M.); (V.M.); (G.B.-B.)
| | - Adam P. Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
| | - Jamie S. McPhee
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK;
| | - Hans Degens
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
- Correspondence:
| |
Collapse
|
39
|
Van Hooren B, De Ste Croix M. Sensitive Periods to Train General Motor Abilities in Children and Adolescents: Do They Exist? A Critical Appraisal. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000545] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Gerum RC, Erpenbeck A, Krauss P, Schilling A. Sparsity through evolutionary pruning prevents neuronal networks from overfitting. Neural Netw 2020; 128:305-312. [PMID: 32454374 DOI: 10.1016/j.neunet.2020.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
Abstract
Modern Machine learning techniques take advantage of the exponentially rising calculation power in new generation processor units. Thus, the number of parameters which are trained to solve complex tasks was highly increased over the last decades. However, still the networks fail - in contrast to our brain - to develop general intelligence in the sense of being able to solve several complex tasks with only one network architecture. This could be the case because the brain is not a randomly initialized neural network, which has to be trained from scratch by simply investing a lot of calculation power, but has from birth some fixed hierarchical structure. To make progress in decoding the structural basis of biological neural networks we here chose a bottom-up approach, where we evolutionarily trained small neural networks in performing a maze task. This simple maze task requires dynamic decision making with delayed rewards. We were able to show that during the evolutionary optimization random severance of connections leads to better generalization performance of the networks compared to fully connected networks. We conclude that sparsity is a central property of neural networks and should be considered for modern Machine learning approaches.
Collapse
Affiliation(s)
- Richard C Gerum
- Biophysics Group, Department of Physics, Friedrich Alexander University Erlangen-Nürnberg (FAU), Germany
| | - André Erpenbeck
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, School of Chemistry, Tel Aviv University (TAU), Israel
| | - Patrick Krauss
- Neuroscience Lab, Experimental Otolaryngology, University Hospital Erlangen, Germany; Cognitive Computational Neuroscience Group at the Chair of English Philology and Linguistics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany; Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen (UMCG), The Netherlands
| | - Achim Schilling
- Neuroscience Lab, Experimental Otolaryngology, University Hospital Erlangen, Germany; Cognitive Computational Neuroscience Group at the Chair of English Philology and Linguistics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany.
| |
Collapse
|
41
|
Language Cerebro-cerebellar Reorganization in Children After Surgery of Right Cerebellar Astrocytoma: a fMRI Study. THE CEREBELLUM 2020; 18:791-806. [PMID: 31111430 DOI: 10.1007/s12311-019-01039-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Language processing depends on an integrated circuit involving the left supratentorial language areas and the right posterior lateral cerebellar hemisphere (lobule VI, lobule VII, Crus I, and Crus II). Reorganization of the language system after lesions of the cerebral language areas includes also cerebellar relocation. This is the first study assessing functional language reorganization after lesions concerning primarily the cerebellum, using a fMRI paradigm of phonological covert word production task in six children operated for right cerebellar astrocytoma and in 15 typically developing children. We found right cerebellar and left frontal activations in healthy controls and high variability of reorganizational patterns in patients with early right cerebellar lesion. Also lesions not located in the areas typically involved in language tasks (Crus I and Crus II) can cause reorganization between the two hemispheres or hemispheric language reinforcement of the original lateralization. We discuss the role of several variables in determining the reorganizational pattern such as the site, extension, and timing of surgery. No variables revealed as predictors, suggesting that co-occurring influence of other biological and/or pathological factors are not yet demonstrated. Lesions in the postero-lateral cerebellum seem related to less efficient language performances, as an indicator of the system's functioning.
Collapse
|
42
|
Abstract
The field of microfluidics allows for the precise spatial manipulation of small amounts of fluids. Within microstructures, laminar flow of fluids can be exploited to control the diffusion of small molecules, creating desired microenvironments for cells. Cellular neuroscience has benefited greatly from devices designed to fluidically isolate cell bodies and axons. Microfluidic devices specialized for neuron compartmentalization are made of polydimethylsiloxane (PDMS) which is gas permeable, is compatible with fluorescence microscopy, and has low cost. These devices are commonly used to study signals initiated exclusively on axons, somatodendritic compartments, or even single synapses. We have also found that microfluidic devices allow for rapid, reproducible interrogation of axon degeneration. Here, we describe the methodology for assessing axonal degeneration in microfluidic devices. We describe several use cases, including enucleation (removal of cell bodies) and trophic deprivation to investigate axon degeneration in pathological and developmental scenarios, respectively.
Collapse
Affiliation(s)
- Yu Yong
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher Hughes
- Department of Physics and Astronomy, James Madison University, Harrisonburg, VA, USA
| | | |
Collapse
|
43
|
Early exercise induces long-lasting morphological changes in cortical and hippocampal neurons throughout of a sedentary period of rats. Sci Rep 2019; 9:13684. [PMID: 31548605 PMCID: PMC6757043 DOI: 10.1038/s41598-019-50218-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/03/2019] [Indexed: 01/10/2023] Open
Abstract
Life experiences at early ages, such as physical activity in childhood and adolescence, can result in long-lasting brain effects able to reduce future risk of brain disorders and to enhance lifelong brain functions. However, how early physical exercise promotes these effects remains unclear. A possible hypothesis is that physical exercise increases the expression of neurotrophic factors and stimulates neuronal growth, resulting in a neural reserve to be used at later ages. Basing our study on this hypothesis, we evaluated the absolute number and morphology of neuronal cells, as well as the expression of growth, proliferation and survival proteins (BDNF, Akt, mTOR, p70S6K, ERK and CREB) in the cerebral cortex and hippocampal formation throughout of a sedentary period of rats who were physically active during youth. To do this, male Wistar rats were submitted to an aerobic exercise protocol from the 21st to the 60th postnatal days (P21–P60), and evaluated at 0 (P60), 30 (P90) and 60 (P120) days after the last exercise session. Results showed that juvenile exercise increased, and maintained elevated, the number of cortical and hippocampal neuronal cells and dendritic arborization, when evaluated at the above post-exercise ages. Hippocampal BDNF levels and cortical mTOR expression were found to be increased at P60, but were restored to control levels at P90 and P120. Overall, these findings indicate that, despite the short-term effects on growth and survival proteins, early exercise induces long-lasting morphological changes in cortical and hippocampal neurons even during a sedentary period of rats.
Collapse
|
44
|
Xie S, Liu B, Wang J, Zhou Y, Cui Y, Song M, Chen Y, Li P, Lu L, Lv L, Wang H, Yan H, Yan J, Zhang H, Zhang D, Jiang T. Hyperconnectivity in perisylvian language pathways in schizophrenia with auditory verbal hallucinations: A multi-site diffusion MRI study. Schizophr Res 2019; 210:262-269. [PMID: 30587426 DOI: 10.1016/j.schres.2018.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/22/2018] [Accepted: 12/16/2018] [Indexed: 01/30/2023]
Abstract
Auditory verbal hallucinations (AVH) are one of the cardinal symptoms of schizophrenia, and are proposed to be associated with altered integrity of the left perisylvian language pathways. There is considerable heterogeneity in the pattern of white matter abnormalities across previous studies. We investigated the white matter integrity of the perisylvian language pathways in schizophrenia patients with AVH based on a relatively large sample dataset from four different sites. 113 schizophrenia patients with AVH, 96 patients without AVH (nAVH), and 269 healthy controls (HC) underwent diffusion-weighted imaging. Between-group comparisons were performed on the fractional anisotropy (FA) values of the anterior, posterior, and long segment fasciculi within the perisylvian language network. Analysis of covariance among the 3 groups revealed the long segment of the left perisylvian language pathways was significantly different in FA value. Post hoc analysis showed that compared with the HC group, the AVH group had significantly higher FA measurements in the left long segment. The nAVH group showed intermediate FA values for this segment compared to the AVH and HC group but did not differ significantly from either group. Furthermore, the prospective meta-analyses also revealed that FA value of the left long segment was significantly higher in the AVH group compared to the HC group. Our findings suggest the hyperconnectivity pattern of the left perisylvian language pathways in the presence of AVH in schizophrenia and support the self-monitoring of inner speech model.
Collapse
Affiliation(s)
- Sangma Xie
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaojian Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Zhou
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Peng Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Lin Lu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Jun Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Department of Psychology, Xinxiang Medical University, Xinxiang 453002, China
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China; Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
45
|
The Drosophila Chromodomain Protein Kismet Activates Steroid Hormone Receptor Transcription to Govern Axon Pruning and Memory In Vivo. iScience 2019; 16:79-93. [PMID: 31153043 PMCID: PMC6543131 DOI: 10.1016/j.isci.2019.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/08/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022] Open
Abstract
Axon pruning is critical for sculpting precise neural circuits. Although axon pruning has been described in the literature for decades, relatively little is known about the molecular and cellular mechanisms that govern axon pruning in vivo. Here, we show that the epigenetic reader Kismet (Kis) is required for developmental axon pruning in Drosophila mushroom bodies. Kis binds to cis-regulatory elements of the steroid hormone receptor ecdysone receptor (ecr) gene and is necessary for activating expression of EcR-B1. Kis promotes the active H3K36 di- and tri-methylation and H4K16 acetylation histone marks at the ecr locus. We show that transgenic EcR-B1 can rescue axon pruning and memory defects associated with loss of Kis and that the histone deacetylase inhibitor SAHA also rescues these phenotypes. EcR protein abundance is the cell-autonomous, rate-limiting step required to initiate axon pruning in Drosophila, and our data suggest this step is under the epigenetic control of Kis.
Collapse
|
46
|
Garcés M, Finkel L. Emotional Theory of Rationality. Front Integr Neurosci 2019; 13:11. [PMID: 31024267 PMCID: PMC6463757 DOI: 10.3389/fnint.2019.00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/13/2019] [Indexed: 11/16/2022] Open
Abstract
In recent decades, the existence of a close relationship between emotional phenomena and rational processes has certainly been established, yet there is still no unified definition or effective model to describe them. To advance our understanding of the mechanisms governing the behavior of living beings, we must integrate multiple theories, experiments, and models from both fields. In this article we propose a new theoretical framework that allows integrating and understanding the emotion-cognition duality, from a functional point of view. Based on evolutionary principles, our reasoning adds to the definition and understanding of emotion, justifying its origin, explaining its mission and dynamics, and linking it to higher cognitive processes, mainly with attention, cognition, decision-making, and consciousness. According to our theory, emotions are the mechanism for brain function optimization, aside from the contingency and stimuli prioritization system. As a result of this approach, we have developed a dynamic systems-level model capable of providing plausible explanations for certain psychological and behavioral phenomena and establishing a new framework for the scientific definition of some fundamental psychological terms.
Collapse
Affiliation(s)
- Mario Garcés
- Department of Emotion, Cognition and Behavior Research, DAXNATUR S.L., Majadahonda, Spain
| | - Lucila Finkel
- Department of Sociology, Methodology and Theory, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
47
|
Saini J, Faroni A, Abd Al Samid M, Reid AJ, Lightfoot AP, Mamchaoui K, Mouly V, Butler-Browne G, McPhee JS, Degens H, Al-Shanti N. Simplified in vitro engineering of neuromuscular junctions between rat embryonic motoneurons and immortalized human skeletal muscle cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2019; 12:1-9. [PMID: 30863121 PMCID: PMC6388735 DOI: 10.2147/sccaa.s187655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Neuromuscular junctions (NMJs) consist of the presynaptic cholinergic motoneuron terminals and the corresponding postsynaptic motor endplates on skeletal muscle fibers. At the NMJ the action potential of the neuron leads, via release of acetylcholine, to muscle membrane depolarization that in turn is translated into muscle contraction and physical movement. Despite the fact that substantial NMJ research has been performed, the potential of in vivo NMJ investigations is inadequate and difficult to employ. A simple and reproducible in vitro NMJ model may provide a robust means to study the impact of neurotrophic factors, growth factors, and hormones on NMJ formation, structure, and function. Methods This report characterizes a novel in vitro NMJ model utilizing immortalized human skeletal muscle stem cells seeded on 35 mm glass-bottom dishes, cocultured and innervated with spinal cord explants from rat embryos at ED 13.5. The cocultures were fixed and stained on day 14 for analysis and assessment of NMJ formation and development. Results This unique serum- and trophic factor-free system permits the growth of cholinergic motoneurons, the formation of mature NMJs, and the development of highly differentiated contractile myotubes, which exhibit appropriate configuration of transversal triads, representative of in vivo conditions. Conclusion This coculture system provides a tool to study vital features of NMJ formation, regulation, maintenance, and repair, as well as a model platform to explore neuromuscular diseases and disorders affecting NMJs.
Collapse
Affiliation(s)
- Jasdeep Saini
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Plastic Surgery & Burns, University Hospitals of South Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Marwah Abd Al Samid
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Plastic Surgery & Burns, University Hospitals of South Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam P Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université- INSERM, Paris, France
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université- INSERM, Paris, France
| | | | - Jamie S McPhee
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK, .,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.,University of Medicine and Pharmacy of Targu Mures, Targu Mures, Romania
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| |
Collapse
|
48
|
Dexmedetomidine Reduces Diabetic Neuropathy Pain in Rats through the Wnt 10a/ β-Catenin Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9043628. [PMID: 30622965 PMCID: PMC6288584 DOI: 10.1155/2018/9043628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/13/2018] [Indexed: 11/25/2022]
Abstract
Diabetic neuropathy pain (DNP), a spontaneous pain with hyperalgesia and allodynia, greatly compromises patients' quality of life. Our previous study suggested that dexmedetomidine (DEX) can relieve hyperalgesia in rats by inhibiting inflammation and apoptosis at the level of the spinal cord. In the present study, we aimed to evaluate the role of Wnt 10a/β-catenin signaling in DEX-induced alleviation of DNP in rats. Forty-eight rats were randomly allocated to four groups (n=12/group): control, DNP, DEX, and yohimbine groups. The DNP model was established by streptozotocin (STZ) injection. The effects of DEX with or without the α2 adrenergic antagonist yohimbine were assessed by behavior tests (mechanical withdrawal threshold and thermal withdrawal latency). Spinal cord tissue was evaluated by immunofluorescence staining of astrocytes as well as for Wnt 10a and β-catenin expression, western blot analysis of Wnt 10a and β-catenin expression, and enzyme-linked immunosorbent assay measurement of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β). Rats with STZ-induced DNP had a decreased pain threshold, activated astrocytes, increased expression of Wnt 10a and β-catenin, and increased levels of proinflammatory cytokines compared to the control group, and these effects were ameliorated by treatment with DEX. Yohimbine administration partly abolished the protective effects of DEX in the DNP model rats. In conclusion, DEX alleviated DNP in rats by inhibiting inflammation and astrocyte activation, which may be attributed to downregulation of the Wnt 10a/β-catenin signaling pathway.
Collapse
|
49
|
Geden MJ, Romero SE, Deshmukh M. Apoptosis versus axon pruning: Molecular intersection of two distinct pathways for axon degeneration. Neurosci Res 2018; 139:3-8. [PMID: 30452947 DOI: 10.1016/j.neures.2018.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022]
Abstract
Neurons are capable of degenerating their axons for the physiological clearance and refinement of unnecessary connections via the programmed degenerative pathways of apoptosis and axon pruning. While both pathways mediate axon degeneration they are however distinct. Whereas in apoptosis the entire neuron, both axons and cell body, degenerates, in the context of axon pruning only the targeted axon segments are selectively degenerated. Interestingly, the molecular pathways mediating axon degeneration in these two contexts have significant mechanistic overlap but also retain distinct differences. In this review, we describe the peripheral neuronal cell culture models used to study the molecular pathways of apoptosis and pruning. We outline what is known about the molecular mechanisms of apoptosis and axon pruning and focus on highlighting the similarities and differences of these two pathways.
Collapse
Affiliation(s)
- Matthew J Geden
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Selena E Romero
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
50
|
Real R, Peter M, Trabalza A, Khan S, Smith MA, Dopp J, Barnes SJ, Momoh A, Strano A, Volpi E, Knott G, Livesey FJ, De Paola V. In vivo modeling of human neuron dynamics and Down syndrome. Science 2018; 362:science.aau1810. [PMID: 30309905 DOI: 10.1126/science.aau1810] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Harnessing the potential of human stem cells for modeling the physiology and diseases of cortical circuitry requires monitoring cellular dynamics in vivo. We show that human induced pluripotent stem cell (iPSC)-derived cortical neurons transplanted into the adult mouse cortex consistently organized into large (up to ~100 mm3) vascularized neuron-glia territories with complex cytoarchitecture. Longitudinal imaging of >4000 grafted developing human neurons revealed that neuronal arbors refined via branch-specific retraction; human synaptic networks substantially restructured over 4 months, with balanced rates of synapse formation and elimination; and oscillatory population activity mirrored the patterns of fetal neural networks. Lastly, we found increased synaptic stability and reduced oscillations in transplants from two individuals with Down syndrome, demonstrating the potential of in vivo imaging in human tissue grafts for patient-specific modeling of cortical development, physiology, and pathogenesis.
Collapse
Affiliation(s)
- Raquel Real
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.,Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciencias Biomedicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.,Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK
| | - Manuel Peter
- Gurdon Institute and ARUK Stem Cell Research Centre, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QN, UK
| | - Antonio Trabalza
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.,Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK
| | - Shabana Khan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.,Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK
| | - Mark A Smith
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.,Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK
| | - Joana Dopp
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Samuel J Barnes
- UK Dementia Research Institute, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Ayiba Momoh
- Gurdon Institute and ARUK Stem Cell Research Centre, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QN, UK
| | - Alessio Strano
- Gurdon Institute and ARUK Stem Cell Research Centre, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QN, UK
| | - Emanuela Volpi
- University of Westminster, 115 New Cavendish St., London W1W 6UW, UK
| | | | - Frederick J Livesey
- Gurdon Institute and ARUK Stem Cell Research Centre, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QN, UK. .,UCL Great Ormond Street Institute of Child Health, 30 Guilford St., London WC1N 1EH, UK
| | - Vincenzo De Paola
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK. .,Medical Research Council London Institute of Medical Sciences, London W12 0NN, UK
| |
Collapse
|