1
|
Zhao T, Zhang X, Liu X, Wang Q, Hu X, Luo Z. Advancements in Diagnostics and Therapeutics for Cancer of Unknown Primary in the Era of Precision Medicine. MedComm (Beijing) 2025; 6:e70161. [PMID: 40242159 PMCID: PMC12000684 DOI: 10.1002/mco2.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer of unknown primary (CUP), a set of histologically confirmed metastases that cannot be identified or traced back to its primary despite comprehensive investigations, accounts for 2-5% of all malignancies. CUP is the fourth leading cause of cancer-related deaths worldwide, with a median overall survival (OS) of 3-16 months. CUP has long been challenging to diagnose principally due to the occult properties of primary site. In the current era of molecular diagnostics, advancements in methodologies based on cytology, histology, gene expression profiling (GEP), and genomic and epigenomic analysis have greatly improved the diagnostic accuracy of CUP, surpassing 90%. Our center conducted the world's first phase III trial and demonstrated improved progression-free survival and favorable OS by GEP-guided site-specific treatment of CUP, setting the foundation of site-specific treatment in first-line management for CUP. In this review, we detailed the epidemiology, etiology, pathogenesis, as well as the histologic, genetic, and clinical characteristics of CUP. We also provided an overview of the advancements in the diagnostics and therapeutics of CUP over the past 50 years. Moving forward, we propose optimizing diagnostic modalities and exploring further-line treatment regimens as two focus areas for future studies on CUP.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xiaowei Zhang
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xin Liu
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qifeng Wang
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xichun Hu
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhiguo Luo
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Choi WJ, Nabavizadeh N. The potential of multi- and single-cancer blood-based early detection tests in liver cancer screening. J Gastrointest Oncol 2025; 16:711-718. [PMID: 40386614 PMCID: PMC12078824 DOI: 10.21037/jgo-24-686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/23/2025] [Indexed: 05/20/2025] Open
Abstract
Liver cancer is one of the most common causes of cancer deaths worldwide. Although fatal when diagnosed at an advanced stage, liver cancer has a favorable prognosis when identified at an earlier stage. Guidelines for liver cancer screening do exist, currently recommending the use of ultrasound with or without hematologic markers for early detection of liver cancer. However, studies have revealed shortcomings in the current state of liver cancer screenings such as underutilization stemming from lack of primary care education and logistical barriers for patients, suboptimal sensitivity of current screening methods, and lack of screening for lower risk individuals. A multitude of liquid biopsy tests that use circulating genomic analytes for early detection of cancers are currently under development and have the potential clinical implications in the early detection of liver cancer. In this overview, we highlight limitations of current liver cancer screenings and the ongoing development of multicancer early detection tests as well as cancer specific blood tests for liver cancer. As these multi-analyte blood tests hold promise in filling the gaps of current shortcomings of liver cancer screenings, it is imperative for primary care physicians, oncologists, and hepatologists involved in the screening process to be aware of ongoing studies and the further research necessary to ascertain several parameters such as the cost-benefit ratio, mortality reduction, and sensitivities of the blood tests.
Collapse
Affiliation(s)
- Won Jin Choi
- California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Nima Nabavizadeh
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Bukowski A, Hoyo C, Graff M, Vielot NA, Kosorok MR, Brewster WR, Maguire RL, Murphy SK, Nedjai B, Ladoukakis E, North KE, Smith JS. Epigenome-wide differential methylation and differential variability as predictors of high-grade cervical intraepithelial neoplasia (CIN2+). Am J Epidemiol 2025; 194:1012-1022. [PMID: 39117569 PMCID: PMC11978610 DOI: 10.1093/aje/kwae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
CpG site methylation patterns have potential to improve differentiation of high-grade screening-detected cervical abnormalities. We assessed CpG differential methylation (DM) and differential variability (DV) in high-grade (CIN2+) vs low-grade (≤ CIN1) lesions. In ≤ CIN1 (n = 117) and CIN2+ (n = 31) samples, cervical sample DNA underwent testing with Illumina HumanMethylation arrays. We assessed DM and DV of CpG methylation M-values among 9 cervical cancer-associated genes. We fit CpG-specific linear models and estimated empirical Bayes standard errors and false discovery rates (FDRs). An exploratory epigenome-wide association study (EWAS) aimed to detect novel DM and DV CpGs (FDR < 0.05) and Gene Ontology (GO) term enrichment. Compared to ≤ CIN1, CIN2+ exhibited greater methylation at CCNA1 cluster 1 (M-value difference 0.24; 95% CI, 0.04-0.43) and RARB cluster 2 (0.16; 95% CI, 0.05-0.28), and lower methylation at CDH1 cluster 1 (-0.15; 95% CI, -0.26 to -0.04). CIN2+ exhibited lower variability at CDH1 cluster 2 (variation difference -0.24; 95% CI, -0.41 to -0.05) and FHIT cluster 1 (-0.30; 95% CI, -0.50 to -0.09). EWAS detected 3534 DM and 270 DV CpGs. Forty-four GO terms were enriched with DM CpGs related to transcriptional, structural, developmental, and neuronal processes. Methylation patterns may help triage screening-detected cervical abnormalities and inform US screening algorithms. This article is part of a Special Collection on Gynecological Cancer.
Collapse
Affiliation(s)
- Alexandra Bukowski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States
| | - Misa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Nadja A Vielot
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Michael R Kosorok
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Wendy R Brewster
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Rachel L Maguire
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27701, United States
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27701, United States
| | - Belinda Nedjai
- Wolfson Institute of Preventive Medicine, Queen Mary University London, London, United Kingdom
| | - Efthymios Ladoukakis
- Wolfson Institute of Preventive Medicine, Queen Mary University London, London, United Kingdom
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jennifer S Smith
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
4
|
Pinto R, Vedeld HM, Lind GE, Jeanmougin M. Unraveling epigenetic heterogeneity across gastrointestinal adenocarcinomas through a standardized analytical framework. Mol Oncol 2025; 19:1117-1131. [PMID: 39696831 PMCID: PMC11977639 DOI: 10.1002/1878-0261.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
In this study, we propose an alternative approach for stratifying genome-scale DNA methylation profiles of gastrointestinal (GI) adenocarcinomas based on a robust analytical framework. A set of 978 GI adenocarcinomas and 120 adjacent normal tissues from public repositories was quality controlled and analyzed. Hierarchical consensus clustering of the tumors, based on differential epigenetic variability between malignant and normal samples, identified six distinct subtypes defined either by a pan-GI or a lower GI-specific phenotype. In addition to methylation levels, aberrant methylation frequencies and the degree of DNA methylation instability contributed to the characterization of each subtype. We found significant differences in the outcome of patients, with the poorest overall survival seen for those belonging to a pan-GI subtype with infrequent aberrant methylation. In conclusion, our standardized approach contributes to a refined characterization of the epigenetic heterogeneity in GI adenocarcinomas, offering insights into subtype-specific methylation with the potential to support prognostication.
Collapse
Affiliation(s)
- Rita Pinto
- Department of Molecular Oncology, Institute for Cancer ResearchOslo University Hospital – Norwegian Radium HospitalOsloNorway
| | - Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer ResearchOslo University Hospital – Norwegian Radium HospitalOsloNorway
| | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer ResearchOslo University Hospital – Norwegian Radium HospitalOsloNorway
- Department of Biosciences, The Faculty of Mathematics and Natural SciencesUniversity of OsloNorway
| | - Marine Jeanmougin
- Department of Molecular Oncology, Institute for Cancer ResearchOslo University Hospital – Norwegian Radium HospitalOsloNorway
| |
Collapse
|
5
|
Garb BF, Mohebbi E, Lawas M, Xia S, Maag G, Ahn PH, D’Silva NJ, Rozek LS, Sartor MA. Risk Stratification in HPV-Associated Oropharyngeal Cancer: Limitations of Current Approaches and the Search for Better Solutions. Cancers (Basel) 2025; 17:357. [PMID: 39941727 PMCID: PMC11816258 DOI: 10.3390/cancers17030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
The rising incidence of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) necessitates advancements in risk stratification to optimize treatment outcomes and improve the quality of life for patients. Despite its favorable prognosis compared to HPV-negative OPSCC, current clinical staging and biomarkers, such as p16 status, are limited in their ability to distinguish between high- and low-risk patients within HPV-associated OPSCC. This limitation results in the overtreatment of low-risk patients, exposing them to unnecessary toxicity, and the undertreatment of high-risk patients who require more aggressive interventions. This review critically evaluates current stratification methods, including clinical assessments, de-escalation trials, and candidate molecular biomarkers for risk stratification. Emerging approaches such as immune markers, viral genomic integration patterns, and other molecular markers offer promising avenues for enhanced prognostic accuracy. By integrating advanced risk stratification methods, tailored treatment approaches may one day be developed to balance oncologic efficacy with reduced treatment-related morbidity. This review underscores the need for continued research into predictive biomarkers and adaptive treatment strategies to better address the diverse risk profiles of HPV-associated OPSCC patients.
Collapse
Affiliation(s)
- Bailey Fabiny Garb
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; (B.F.G.)
| | - Elham Mohebbi
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA (L.S.R.)
| | - Maria Lawas
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; (B.F.G.)
| | - Shaomiao Xia
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; (B.F.G.)
| | - Garett Maag
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; (B.F.G.)
| | - Peter H. Ahn
- Department of Radiation Oncology, MedStar Georgetown University Hospital, Washington, DC 20007, USA
| | - Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48019, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura S. Rozek
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA (L.S.R.)
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; (B.F.G.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Biostatistics Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Hechtman JF, Baskovich B, Fussell A, Geiersbach KB, Iorgulescu JB, Sirohi D, Snow A, Sidiropoulos N. Charting the Genomic Frontier: 25 Years of Evolution and Future Prospects in Molecular Diagnostics for Solid Tumors. J Mol Diagn 2025; 27:6-11. [PMID: 39722285 DOI: 10.1016/j.jmoldx.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Jaclyn F Hechtman
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; Caris Life Sciences, Irving, Texas.
| | - Brett Baskovich
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; Mount Sinai Health System, New York, New York
| | - Amber Fussell
- The Association for Molecular Pathology, Rockville, Maryland
| | - Katherine B Geiersbach
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; Mayo Clinic, Rochester, Minnesota
| | - J Bryan Iorgulescu
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; Molecular Diagnostics Laboratory, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Deepika Sirohi
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; University of California San Francisco, San Fransico, California
| | - Anthony Snow
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Nikoletta Sidiropoulos
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; University of Vermont Medical Group, Burlington, Vermont
| |
Collapse
|
7
|
Erdem ZB, Ameline B, Bovée JVMG, van Boven H, Baumhoer D, Chrisinger JSA, Fritchie KJ. The utility of DNA methylation profiling in the diagnosis of un-, de- and trans-differentiated melanoma: a series of 11 cases. Histopathology 2025; 86:247-259. [PMID: 39223066 PMCID: PMC11649515 DOI: 10.1111/his.15309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
AIMS Melanomas are recognised for their remarkable morphological plasticity. Some tumours may lose conventional features and/or acquire non-melanocytic characteristics, referred to as undifferentiated, dedifferentiated and transdifferentiated melanoma. Despite this phenotypical variability, melanomas typically maintain their cancer driver aberrations, affecting genes such as BRAF, NRAS and NF1. Currently, little is known about whether the DNA methylation profile follows the loss or change of differentiation or is retained despite extensive morphological transformation. METHODS AND RESULTS In this study we analysed 11 melanoma cases, comprising six males and five females, with a median age of 67 years, including five undifferentiated, four trans-differentiated and two de-differentiated melanomas. Undifferentiated and trans-differentiated tumours either arose in a patient with known melanoma and/or presented in the groin/axilla with molecular alterations consistent with melanoma. Cases with heterologous differentiation resembled chondrosarcoma, osteosarcoma, angiosarcoma and rhabdomyosarcoma both morphologically and immunohistochemically, while undifferentiated tumours resembled undifferentiated pleomorphic sarcoma. Methylome profiling was performed, and unsupervised clustering analysis revealed nine cases (five undifferentiated, three trans-differentiated and one de-differentiated) to cluster closely together with conventional melanomas from a reference set. Two cases clustered separately with a distinct group of conventional melanomas exhibiting H3K27me3 loss. CONCLUSIONS Despite loss of differentiation and phenotypical plasticity, methylation patterns seem to be retained in undifferentiated, de-differentiated and trans-differentiated melanomas and represent useful diagnostic tools to enhance diagnostic precision in these diagnostically challenging cases.
Collapse
Affiliation(s)
- Zeynep Betul Erdem
- Department of PathologyLeiden University Medical CenterLeidenthe Netherlands
| | - Baptiste Ameline
- Bone Tumor Reference Center at the Institute of PathologyUniversity Hospital Basel and University of BaselBaselSwitzerland
| | - Judith V M G Bovée
- Department of PathologyLeiden University Medical CenterLeidenthe Netherlands
| | - Hester van Boven
- Department of PathologyNetherlands Cancer Institute‐Antoni van Leeuwenhoek HospitalAmsterdamthe Netherlands
| | - Daniel Baumhoer
- Bone Tumor Reference Center at the Institute of PathologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Basel Research Centre for Child HealthBaselSwitzerland
| | - John S A Chrisinger
- Department of Pathology and Immunology, Division of Anatomic and Molecular PathologyWashington University School of MedicineSt LouisMOUSA
| | | |
Collapse
|
8
|
Yuen CA, Bao S, Kong XT, Terry M, Himstead A, Zheng M, Pekmezci M. A High-Grade Glioma, Not Elsewhere Classified in an Older Adult with Discordant Genetic and Epigenetic Analyses. Biomedicines 2024; 12:2042. [PMID: 39335555 PMCID: PMC11428674 DOI: 10.3390/biomedicines12092042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The World Health Organization's (WHO) classification of central nervous system (CNS) tumors is continually being refined to improve the existing diagnostic criteria for high-grade gliomas (HGGs), including glioblastoma. In 2021, advances in molecular analyses and DNA methylation profiling were incorporated to expand upon the diagnostic criteria for HGG, including the introduction of high-grade astrocytoma with piloid features (HGAP), a new tumor entity for which a match to the HGAP class in DNA methylation profiling is an essential criterion. We present an equivocal case of a 72-year-old male with an HGG exhibiting features of both HGAP and glioblastoma, but which did not conform to any existing 2021 WHO classification of CNS tumor entities. This "no match" in DNA methylation profiling resulted in a final diagnosis of HGG not elsewhere classified (NEC), for which standard treatment options do not exist.
Collapse
Affiliation(s)
- Carlen A. Yuen
- Neuro-Oncology Division, Department of Neurology, University of California, Irvine, CA 92868, USA
| | - Silin Bao
- Neurosciences Division, Department of Internal Medicine, Community Regional Medical Center, Fresno, CA 93721, USA
| | - Xiao-Tang Kong
- Neuro-Oncology Division, Department of Neurology, University of California, Irvine, CA 92868, USA
| | - Merryl Terry
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Alexander Himstead
- Department of Neurosurgery, University of California, Irvine, CA 92868, USA
| | - Michelle Zheng
- UC Irvine Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Sivakumaran T, Tothill RW, Mileshkin LR. The evolution of molecular management of carcinoma of unknown primary. Curr Opin Oncol 2024; 36:456-464. [PMID: 39007224 DOI: 10.1097/cco.0000000000001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW There is significant need to improve diagnostic and therapeutic options for patients with cancer of unknown primary (CUP). In this review, we discuss the evolving landscape of molecular profiling in CUP. RECENT FINDINGS Molecular profiling is becoming accepted into the diagnostic work-up of CUP patients with tumour mutation profiling now described in international CUP guidelines. Although tissue-of-origin (ToO) molecular tests utilising gene-expression and DNA methylation have existed some time, their clinical benefit remains unclear. Novel technologies utilising whole genome sequencing and machine learning algorithms are showing promise in determining ToO, however further research is required prior to clinical application. A recent international clinical trial found patients treated with molecularly-guided therapy based on comprehensive-panel DNA sequencing had improved progression-free survival compared to chemotherapy alone, confirming utility of performing genomic profiling early in the patient journey. Small phase 2 trials have demonstrated that some CUP patients are responsive to immunotherapy, but the best way to select patients for treatment is not clear. SUMMARY Management of CUP requires a multifaceted approach incorporating clinical, histopathological, radiological and molecular sequencing results to assist with identifying the likely ToO and clinically actionable genomic alternations. Rapidly identifying a subset of CUP patients who are likely to benefit from site specific therapy, targeted therapy and/or immunotherapy will improve patient outcomes.
Collapse
Affiliation(s)
| | - Richard W Tothill
- Sir Peter MacCallum Department of Oncology
- University of Melbourne Centre for Cancer Research
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Linda R Mileshkin
- Peter MacCallum Cancer Centre
- Sir Peter MacCallum Department of Oncology
| |
Collapse
|
10
|
Niceta M, Ciolfi A, Ferilli M, Pedace L, Cappelletti C, Nardini C, Hildonen M, Chiriatti L, Miele E, Dentici ML, Gnazzo M, Cesario C, Pisaneschi E, Baban A, Novelli A, Maitz S, Selicorni A, Squeo GM, Merla G, Dallapiccola B, Tumer Z, Digilio MC, Priolo M, Tartaglia M. DNA methylation profiling in Kabuki syndrome: reclassification of germline KMT2D VUS and sensitivity in validating postzygotic mosaicism. Eur J Hum Genet 2024; 32:819-826. [PMID: 38528056 PMCID: PMC11220151 DOI: 10.1038/s41431-024-01597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Autosomal dominant Kabuki syndrome (KS) is a rare multiple congenital anomalies/neurodevelopmental disorder caused by heterozygous inactivating variants or structural rearrangements of the lysine-specific methyltransferase 2D (KMT2D) gene. While it is often recognizable due to a distinctive gestalt, the disorder is clinically variable, and a phenotypic scoring system has been introduced to help clinicians to reach a clinical diagnosis. The phenotype, however, can be less pronounced in some patients, including those carrying postzygotic mutations. The full spectrum of pathogenic variation in KMT2D has not fully been characterized, which may hamper the clinical classification of a portion of these variants. DNA methylation (DNAm) profiling has successfully been used as a tool to classify variants in genes associated with several neurodevelopmental disorders, including KS. In this work, we applied a KS-specific DNAm signature in a cohort of 13 individuals with KMT2D VUS and clinical features suggestive or overlapping with KS. We succeeded in correctly classifying all the tested individuals, confirming diagnosis for three subjects and rejecting the pathogenic role of 10 VUS in the context of KS. In the latter group, exome sequencing allowed to identify the genetic cause underlying the disorder in three subjects. By testing five individuals with postzygotic pathogenic KMT2D variants, we also provide evidence that DNAm profiling has power to recognize pathogenic variants at different levels of mosaicism, identifying 15% as the minimum threshold for which DNAm profiling can be applied as an informative diagnostic tool in KS mosaics.
Collapse
Affiliation(s)
- Marcello Niceta
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Marco Ferilli
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Computer, Control and Management Engineering, Sapienza University, 00185, Rome, Italy
| | - Lucia Pedace
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Claudia Nardini
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Mathis Hildonen
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshopsitalet, 2600, Glostrup, Denmark
| | - Luigi Chiriatti
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Maria Gnazzo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Claudia Cesario
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Anwar Baban
- Pediatric Cardiology and Cardiac Arrhythmias Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Silvia Maitz
- Genetica Clinica Pediatrica, Fondazione MBBM, ASST Monza Ospedale San Gerardo, 20900, Monza, Italy
| | | | - Gabriella Maria Squeo
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Foggia, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Foggia, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Zeynep Tumer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshopsitalet, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | - Manuela Priolo
- Medical and Laboratory Genetics, Antonio Cardarelli Hospital, 80131, Naples, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
11
|
Tan WY, Nagabhyrava S, Ang-Olson O, Das P, Ladel L, Sailo B, He L, Sharma A, Ahuja N. Translation of Epigenetics in Cell-Free DNA Liquid Biopsy Technology and Precision Oncology. Curr Issues Mol Biol 2024; 46:6533-6565. [PMID: 39057032 PMCID: PMC11276574 DOI: 10.3390/cimb46070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Technological advancements in cell-free DNA (cfDNA) liquid biopsy have triggered exponential growth in numerous clinical applications. While cfDNA-based liquid biopsy has made significant strides in personalizing cancer treatment, the exploration and translation of epigenetics in liquid biopsy to clinical practice is still nascent. This comprehensive review seeks to provide a broad yet in-depth narrative of the present status of epigenetics in cfDNA liquid biopsy and its associated challenges. It highlights the potential of epigenetics in cfDNA liquid biopsy technologies with the hopes of enhancing its clinical translation. The momentum of cfDNA liquid biopsy technologies in recent years has propelled epigenetics to the forefront of molecular biology. We have only begun to reveal the true potential of epigenetics in both our understanding of disease and leveraging epigenetics in the diagnostic and therapeutic domains. Recent clinical applications of epigenetics-based cfDNA liquid biopsy revolve around DNA methylation in screening and early cancer detection, leading to the development of multi-cancer early detection tests and the capability to pinpoint tissues of origin. The clinical application of epigenetics in cfDNA liquid biopsy in minimal residual disease, monitoring, and surveillance are at their initial stages. A notable advancement in fragmentation patterns analysis has created a new avenue for epigenetic biomarkers. However, the widespread application of cfDNA liquid biopsy has many challenges, including biomarker sensitivity, specificity, logistics including infrastructure and personnel, data processing, handling, results interpretation, accessibility, and cost effectiveness. Exploring and translating epigenetics in cfDNA liquid biopsy technology can transform our understanding and perception of cancer prevention and management. cfDNA liquid biopsy has great potential in precision oncology to revolutionize conventional ways of early cancer detection, monitoring residual disease, treatment response, surveillance, and drug development. Adapting the implementation of liquid biopsy workflow to the local policy worldwide and developing point-of-care testing holds great potential to overcome global cancer disparity and improve cancer outcomes.
Collapse
Affiliation(s)
- Wan Ying Tan
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
- Hematology & Oncology, Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030, USA
| | | | - Olivia Ang-Olson
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Paromita Das
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Luisa Ladel
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
| | - Bethsebie Sailo
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Linda He
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Anup Sharma
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Nita Ahuja
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520-8000, USA
- Biological and Biomedical Sciences Program (BBS), Yale University, New Haven, CT 06520-8084, USA
| |
Collapse
|
12
|
Verschuur AVD, Hackeng WM, Westerbeke F, Benhamida JK, Basturk O, Selenica P, Raicu GM, Molenaar IQ, van Santvoort HC, Daamen LA, Klimstra DS, Yachida S, Luchini C, Singhi AD, Geisenberger C, Brosens LAA. DNA Methylation Profiling Enables Accurate Classification of Nonductal Primary Pancreatic Neoplasms. Clin Gastroenterol Hepatol 2024; 22:1245-1254.e10. [PMID: 38382726 DOI: 10.1016/j.cgh.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND & AIMS Cytologic and histopathologic diagnosis of non-ductal pancreatic neoplasms can be challenging in daily clinical practice, whereas it is crucial for therapy and prognosis. The cancer methylome is successfully used as a diagnostic tool in other cancer entities. Here, we investigate if methylation profiling can improve the diagnostic work-up of pancreatic neoplasms. METHODS DNA methylation data were obtained for 301 primary tumors spanning 6 primary pancreatic neoplasms and 20 normal pancreas controls. Neural Network, Random Forest, and extreme gradient boosting machine learning models were trained to distinguish between tumor types. Methylation data of 29 nonpancreatic neoplasms (n = 3708) were used to develop an algorithm capable of detecting neoplasms of non-pancreatic origin. RESULTS After benchmarking 3 state-of-the-art machine learning models, the random forest model emerged as the best classifier with 96.9% accuracy. All classifications received a probability score reflecting the confidence of the prediction. Increasing the score threshold improved the random forest classifier performance up to 100% with 87% of samples with scores surpassing the cutoff. Using a logistic regression model, detection of nonpancreatic neoplasms achieved an area under the curve of >0.99. Analysis of biopsy specimens showed concordant classification with their paired resection sample. CONCLUSIONS Pancreatic neoplasms can be classified with high accuracy based on DNA methylation signatures. Additionally, non-pancreatic neoplasms are identified with near perfect precision. In summary, methylation profiling can serve as a valuable adjunct in the diagnosis of pancreatic neoplasms with minimal risk for misdiagnosis, even in the pre-operative setting.
Collapse
Affiliation(s)
- Anna Vera D Verschuur
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Florine Westerbeke
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jamal K Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - G Mihaela Raicu
- Department of Pathology, St Antonius Hospital and Pathology DNA, Nieuwegein, The Netherlands
| | - I Quintus Molenaar
- Department of Pathology, St Antonius Hospital and Pathology DNA, Nieuwegein, The Netherlands; Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht Cancer Center and St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht Cancer Center and St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Lois A Daamen
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht Cancer Center and St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Abe E, Suzuki M, Ichimura K, Arakawa A, Satomi K, Ogino I, Hara T, Iwamuro H, Ohara Y, Kondo A. Implications of DNA Methylation Classification in Diagnosing Ependymoma. World Neurosurg 2024; 185:e1019-e1029. [PMID: 38479644 DOI: 10.1016/j.wneu.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Ependymoma is a central nervous system (CNS) tumor that arises from the ependymal cells of the brain's ventricles and spinal cord. The histopathology of ependymomas is indistinguishable regardless of the site of origin, and the prognosis varies. Recent studies have revealed that the development site and prognosis reflect the genetic background. In this study, we used genome-wide DNA methylation array analysis to investigate the epigenetic background of ependymomas from different locations treated at our hospital. METHODS Four cases of posterior fossa ependymomas and 11 cases of spinal ependymomas were analyzed. RESULTS DNA methylation profiling using the DKFZ methylation classifier showed that the methylation diagnoses of the 2 cases differed from the histopathological diagnoses, and 2 cases could not be classified. Tumor that spread from the brain to the spinal cord was molecularly distinguishable from other primary spinal tumors. CONCLUSIONS Although adding DNA methylation classification to conventional diagnostic methods may be helpful, the diagnosis in some cases remains undetermined. This may affect decision-making regarding treatment strategies and follow-up. Further investigations are required to improve the diagnostic accuracy of these tumors.
Collapse
Affiliation(s)
- Eiji Abe
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Mario Suzuki
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichi Ichimura
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Arakawa
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Hara
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirokazu Iwamuro
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukoh Ohara
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Zolotykh MA, Mingazova LA, Filina YV, Blatt NL, Nesterova AI, Sabirov AG, Rizvanov AA, Miftakhova RR. Cancer of unknown primary and the «seed and soil» hypothesis. Crit Rev Oncol Hematol 2024; 196:104297. [PMID: 38350543 DOI: 10.1016/j.critrevonc.2024.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024] Open
Abstract
The worldwide incidence rate of cancer of unknown primary (CUP) reaches 5% (Kang et al, 2021; Lee, Sanoff, 2020; Yang et al, 2022). CUP has an alarmingly high mortality rate, with 84% of patients succumbing within the first year following diagnosis (Registration and Service, 2018). Under normal circumstances, tumor cell metastasis follows the «seed and soil» hypothesis, displaying a tissue-specific pattern of cancer cell homing behavior based on the microenvironment composition of secondary organs. In this study, we questioned whether seed and soil concept applies to CUP, and whether the pattern of tumor and metastasis manifestations for cancer of known primary (CKP) can be used to inform diagnostic strategies for CUP. We compared data from metastatic and primary CUP foci to the metastasis patterns observed in CKP. Furthermore, we evaluated several techniques for identifying the tissue-of-origin (TOO) in CUP profiling, including DNA, RNA, and epigenetic TOO techniques.
Collapse
Affiliation(s)
- Mariya A Zolotykh
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Leysan A Mingazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Yuliya V Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Nataliya L Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Alfiya I Nesterova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation; Republican Clinical Oncology Dispensary named after prof. M.Z.Sigal, Kazan, Russian Federation.
| | - Alexey G Sabirov
- Republican Clinical Oncology Dispensary named after prof. M.Z.Sigal, Kazan, Russian Federation
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Regina R Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
15
|
Kommoss FKF. Lessons from genomic profiling: towards a molecular-based classification of ovarian Sertoli-Leydig cell tumour. Histopathology 2024; 84:712-714. [PMID: 38114269 DOI: 10.1111/his.15110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Currently available molecular data support a dichotomous classification of Sertoli-Leydig cell tumours (SLCTs) based on DICER1 mutational status. This correspondence suggests a possible roadmap towards a molecular-based classification of SLCT.
Collapse
Affiliation(s)
- Felix K F Kommoss
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
16
|
Kommoss FK, Chong AS, Apellaniz-Ruiz M, Turashvili G, Park K, Hanley K, Valera ET, von Deimling A, Vujanic G, McCluggage WG, Foulkes WD. Teratoma-associated and so-called pure Wilms tumour of the ovary represent two separate tumour types with distinct molecular features. Histopathology 2024; 84:683-696. [PMID: 38084641 PMCID: PMC11826964 DOI: 10.1111/his.15116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 02/07/2024]
Abstract
AIMS Ovarian Wilms tumour (WT)/nephroblastoma is an extremely rare neoplasm that has been reported to occur in pure form or as a component of a teratomatous neoplasm. We hypothesized that teratoma-associated and pure ovarian WT may represent different tumour types with diverging molecular backgrounds. To test this hypothesis, we comprehensively characterized a series of five tumours originally diagnosed as ovarian WT. METHODS AND RESULTS The five cases comprised three teratoma-associated (two mature and one immature) and two pure WTs. Two of the teratoma-associated WTs consisted of small nodular arrangements of "glandular"/epithelial structures, while the third consisted of both an epithelial and a diffuse spindle cell/blastemal component. The pure WTs consisted of "glandular" structures, which were positive for sex cord markers (including inhibin and SF1) together with a rhabdomyosarcomatous component. The two pure WTs harboured DICER1 pathogenic variants (PVs), while the three associated with teratomas were DICER1 wildtype. Panel-based DNA sequencing of four of the cases did not identify PVs in the other genes investigated. Analysis of the HA19/IGF2 imprinting region showed retention of imprinting in the pure WTs but loss of heterozygosity with hypomethylation of the ICR1 region in two of three teratoma-associated WTs. Furthermore, copy number variation and clustering-based whole-genome DNA methylation analyses identified divergent molecular profiles for pure and teratoma-associated WTs. CONCLUSION Based on the morphological features, immunophenotype, and molecular findings (DICER1 PVs, copy number, and DNA methylation profiles), we suggest that the two cases diagnosed as pure primary ovarian WT represent moderately to poorly differentiated Sertoli Leydig cell tumours (SLCTs), while the tumours arising in teratomas represent true WTs. It is possible that at least some prior cases reported as pure primary ovarian WT represent SLCTs.
Collapse
Affiliation(s)
- Felix K.F. Kommoss
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Anne-Sophie Chong
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Apellaniz-Ruiz
- Genomics Medicine Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Navarra, Spain
| | - Gulisa Turashvili
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, USA
| | - Kay Park
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Krisztina Hanley
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, USA
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gordan Vujanic
- Department of Pathology, Sidra Medicine, Doha 0000, Qatar
| | | | - William D. Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
17
|
Rivera-Peña B, Folawiyo O, Turaga N, Rodríguez-Benítez RJ, Felici ME, Aponte-Ortiz JA, Pirini F, Rodríguez-Torres S, Vázquez R, López R, Sidransky D, Guerrero-Preston R, Báez A. Promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions are associated with tumor differentiation, nodal involvement and survival. Oncol Lett 2024; 27:89. [PMID: 38268779 PMCID: PMC10804364 DOI: 10.3892/ol.2024.14223] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/23/2023] [Indexed: 01/26/2024] Open
Abstract
Differentially methylated regions (DMRs) can be used as head and neck squamous cell carcinoma (HNSCC) diagnostic, prognostic and therapeutic targets in precision medicine workflows. DNA from 21 HNSCC and 10 healthy oral tissue samples was hybridized to a genome-wide tiling array to identify DMRs in a discovery cohort. Downstream analyses identified differences in promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions associated with tumor differentiation, nodal involvement and survival. Genome-wide DMR analysis showed 2,565 DMRs common to the three subsites. A total of 738 DMRs were unique to laryngeal cancer (n=7), 889 DMRs were unique to oral cavity cancer (n=10) and 363 DMRs were unique to pharyngeal cancer (n=6). Based on the genome-wide analysis and a Gene Ontology analysis, 10 candidate genes were selected to test for prognostic value and association with clinicopathological features. TIMP3 was associated with tumor differentiation in oral cavity cancer (P=0.039), DAPK1 was associated with nodal involvement in pharyngeal cancer (P=0.017) and PAX1 was associated with tumor differentiation in laryngeal cancer (P=0.040). A total of five candidate genes were selected, DAPK1, CDH1, PAX1, CALCA and TIMP3, for a prevalence study in a larger validation cohort: Oral cavity cancer samples (n=42), pharyngeal cancer tissues (n=25) and laryngeal cancer samples (n=52). PAX1 hypermethylation differed across HNSCC anatomic subsites (P=0.029), and was predominantly detected in laryngeal cancer. Kaplan-Meier survival analysis (P=0.043) and Cox regression analysis of overall survival (P=0.001) showed that DAPK1 methylation is associated with better prognosis in HNSCC. The findings of the present study showed that the HNSCC subsites oral cavity, pharynx and larynx display substantial differences in aberrant DNA methylation patterns, which may serve as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bianca Rivera-Peña
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
- Department of Pharmacology, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| | - Oluwasina Folawiyo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nitesh Turaga
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rosa J. Rodríguez-Benítez
- Department of General Social Sciences, Faculty of Social Sciences, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Marcos E. Felici
- Oral Health Division, Puerto Rico Department of Health, San Juan 00927, Puerto Rico
| | - Jaime A. Aponte-Ortiz
- Department of General Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| | - Francesca Pirini
- Biosciences Laboratory, IRCCS Instituto Romagnolo per lo Studio dei Tumori ‘Dino Amadori’, Meldola I-47014, Italy
| | | | - Roger Vázquez
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Ricardo López
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Research and Development, LifeGene-Biomarks, San Juan 00909, Puerto Rico
| | - Adriana Báez
- Department of Pharmacology, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| |
Collapse
|
18
|
SONG Y, QI Z, CAI Z. [Application of multiomics mass spectrometry in the research of chemical exposome]. Se Pu 2024; 42:120-130. [PMID: 38374592 PMCID: PMC10877483 DOI: 10.3724/sp.j.1123.2023.10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 02/21/2024] Open
Abstract
Environmental factors, such as environmental pollutants, behaviors, and lifestyles, are the leading causes of chronic noncommunicable diseases. Estimates indicate that approximately 50% of all deaths worldwide can be attributed to environmental factors. The exposome is defined as the totality of human environmental (i.e., all nongenetic) exposures from conception, including general external exposure (e.g., climate, education, and urban environment), specific external exposure (e.g., pollution, physical activity, and diet), and internal exposure (e.g., metabolic factors, oxidative stress, inflammation, and protein modification). As a new paradigm, this concept aims to comprehensively understand the link between human health and environmental factors. Therefore, a comprehensive measurement of the exposome, including accurate and reliable measurements of exposure to the external environment and a wide range of biological responses to the internal environment, is of great significance. The measurement of the general external exposome depends on advances in environmental sensors, personal-sensing technologies, and geographical information systems. The determination of exogenous chemicals to which individuals are exposed and endogenous chemicals that are produced or modified by external stressors relies on improvements in methodology and the development of instrumental approaches, including colorimetric, chromatographic, spectral, and mass-spectrometric methods. This article reviews the research strategies for chemical exposomes and summarizes existing exposome-measurement methods, focusing on mass spectrometry (MS)-based methods. The top-down and bottom-up approaches are commonly used in exposome studies. The bottom-up approach focuses on the identification of chemicals in the external environment (e.g., soil, water, diet, and air), whereas the top-down approach focuses on the evaluation of endogenous chemicals and biological processes in biological samples (e.g., blood, urine, and serum). Low- and high-resolution MS (LRMS and HRMS, respectively) have become the most popular methods for the direct measurement of exogenous and endogenous chemicals owing to their superior sensitivity, specificity, and dynamic range. LRMS has been widely applied in the targeted analysis of expected chemicals, whereas HRMS is a promising technique for the suspect and unknown screening of unexpected chemicals. The development of MS-based multiomics, including proteomics, metabolomics, epigenomics, and spatial omics, provides new opportunities to understand the effects of environmental exposure on human health. Metabolomics involves the sum of all low-molecular-weight metabolites in a living system. Nontargeted metabolomics can measure both endogenous and exogenous chemicals, which would directly link exposure to biological effects, internal dose, and disease pathobiology, whereas proteomics could play an important role in predicting potential adverse health outcomes and uncovering molecular mechanisms. MS imaging (MSI) is an emerging technique that provides unlabeled in-depth measurements of endogenous and exogenous molecules directly from tissue and cell sections without changing their spatial information. MSI-based spatial omics, which has been widely applied in biomarker discovery for clinical diagnosis, as well as drug and pollutant monitoring, is expected to become an effective method for exposome measurement. Integrating these response measurements from metabolomics, proteomics, spatial omics, and epigenomics will enable the generation of new hypotheses to discover the etiology of diseases caused by chemical exposure. Finally, we highlight the major challenges in achieving chemical exposome measurements.
Collapse
|
19
|
Liu X, Gillis N, Jiang C, McCofie A, Shaw TI, Tan AC, Zhao B, Wan L, Duckett DR, Teng M. An Epigenomic fingerprint of human cancers by landscape interrogation of super enhancers at the constituent level. PLoS Comput Biol 2024; 20:e1011873. [PMID: 38335222 PMCID: PMC10883583 DOI: 10.1371/journal.pcbi.1011873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Super enhancers (SE), large genomic elements that activate transcription and drive cell identity, have been found with cancer-specific gene regulation in human cancers. Recent studies reported the importance of understanding the cooperation and function of SE internal components, i.e., the constituent enhancers (CE). However, there are no pan-cancer studies to identify cancer-specific SE signatures at the constituent level. Here, by revisiting pan-cancer SE activities with H3K27Ac ChIP-seq datasets, we report fingerprint SE signatures for 28 cancer types in the NCI-60 cell panel. We implement a mixture model to discriminate active CEs from inactive CEs by taking into consideration ChIP-seq variabilities between cancer samples and across CEs. We demonstrate that the model-based estimation of CE states provides improved functional interpretation of SE-associated regulation. We identify cancer-specific CEs by balancing their active prevalence with their capability of encoding cancer type identities. We further demonstrate that cancer-specific CEs have the strongest per-base enhancer activities in independent enhancer sequencing assays, suggesting their importance in understanding critical SE signatures. We summarize fingerprint SEs based on the cancer-specific statuses of their component CEs and build an easy-to-use R package to facilitate the query, exploration, and visualization of fingerprint SEs across cancers.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Nancy Gillis
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Chang Jiang
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Anthony McCofie
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Aik-Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah, United States of America
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lixin Wan
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Derek R Duckett
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| |
Collapse
|
20
|
Satomi K, Ichimura K, Shibahara J. Decoding the DNA methylome of central nervous system tumors: An emerging modality for integrated diagnosis. Pathol Int 2024; 74:51-67. [PMID: 38224248 DOI: 10.1111/pin.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
The definitive diagnosis and classification of individual cancers are crucial for patient care and cancer research. To achieve a robust diagnosis of central nervous system (CNS) tumors, a genotype-phenotype integrated diagnostic approach was introduced in recent versions of the World Health Organization classification, followed by the incorporation of a genome-wide DNA methylome-based classification. Microarray-based platforms are widely used to obtain DNA methylome data, and the German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]) has a webtool for a DNA methylation-based classifier (DKFZ classifier). Integration of DNA methylome will further enhance the precision of CNS tumor classification, especially in diagnostically challenging cases. However, in the clinical application of DNA methylome-based classification, challenges related to data interpretation persist, in addition to technical caveats, regulations, and limited accessibility. Dimensionality reduction (DMR) can complement integrated diagnosis by visualizing a profile and comparing it with other known samples. Therefore, DNA methylome-based classification is a highly useful research tool for auxiliary analysis in challenging diagnostic and rare disease cases, and for establishing novel tumor concepts. Decoding the DNA methylome, especially by DMR in addition to DKFZ classifier, emphasizes the capability of grasping the fundamental biological principles that provide new perspectives on CNS tumors.
Collapse
Affiliation(s)
- Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Orlacchio A, Muzyka S, Gonda TA. Epigenetic therapeutic strategies in pancreatic cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 383:1-40. [PMID: 38359967 DOI: 10.1016/bs.ircmb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies, characterized by its aggressiveness and metastatic potential, with a 5-year survival rate of only 8-11%. Despite significant improvements in PDAC treatment and management, therapeutic alternatives are still limited. One of the main reasons is its high degree of intra- and inter-individual tumor heterogeneity which is established and maintained through a complex network of transcription factors and epigenetic regulators. Epigenetic drugs, have shown promising preclinical results in PDAC and are currently being evaluated in clinical trials both for their ability to sensitize cancer cells to cytotoxic drugs and to counteract the immunosuppressive characteristic of PDAC tumor microenvironment. In this review, we discuss the current status of epigenetic treatment strategies to overcome molecular and cellular PDAC heterogeneity in order to improve response to therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Stephen Muzyka
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Tamas A Gonda
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States.
| |
Collapse
|
22
|
Ma W, Wu H, Chen Y, Xu H, Jiang J, Du B, Wan M, Ma X, Chen X, Lin L, Su X, Bao X, Shen Y, Xu N, Ruan J, Jiang H, Ding Y. New techniques to identify the tissue of origin for cancer of unknown primary in the era of precision medicine: progress and challenges. Brief Bioinform 2024; 25:bbae028. [PMID: 38343328 PMCID: PMC10859692 DOI: 10.1093/bib/bbae028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/10/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Despite a standardized diagnostic examination, cancer of unknown primary (CUP) is a rare metastatic malignancy with an unidentified tissue of origin (TOO). Patients diagnosed with CUP are typically treated with empiric chemotherapy, although their prognosis is worse than those with metastatic cancer of a known origin. TOO identification of CUP has been employed in precision medicine, and subsequent site-specific therapy is clinically helpful. For example, molecular profiling, including genomic profiling, gene expression profiling, epigenetics and proteins, has facilitated TOO identification. Moreover, machine learning has improved identification accuracy, and non-invasive methods, such as liquid biopsy and image omics, are gaining momentum. However, the heterogeneity in prediction accuracy, sample requirements and technical fundamentals among the various techniques is noteworthy. Accordingly, we systematically reviewed the development and limitations of novel TOO identification methods, compared their pros and cons and assessed their potential clinical usefulness. Our study may help patients shift from empirical to customized care and improve their prognoses.
Collapse
Affiliation(s)
- Wenyuan Ma
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Wu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongxia Xu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Junjie Jiang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bang Du
- Real Doctor AI Research Centre, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingyu Wan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolu Ma
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Lin
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifei Shen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Zhao Z, Song Z, Wang Z, Zhang F, Ding Z, Fan T. Advances in Molecular Pathology, Diagnosis and Treatment of Spinal Cord Astrocytomas. Technol Cancer Res Treat 2024; 23:15330338241262483. [PMID: 39043042 PMCID: PMC11271101 DOI: 10.1177/15330338241262483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Spinal cord astrocytoma (SCA) is a rare subtype of astrocytoma, posing challenges in diagnosis and treatment. Low-grade SCA can achieve long-term survival solely through surgery, while high-grade has a disappointing prognosis even with comprehensive treatment. Diagnostic criteria and standard treatment of intracranial astrocytoma have shown obvious limitations in SCA. Research on the molecular mechanism in SCA is lagging far behind that on intracranial astrocytoma. In recent years, huge breakthroughs have been made in molecular pathology of astrocytoma, and novel techniques have emerged, including DNA methylation analysis and radiomics. These advances are now making it possible to provide a precise diagnosis and develop corresponding treatment strategies in SCA. Our aim is to review the current status of diagnosis and treatment of SCA, and summarize the latest research advancement, including tumor subtype, molecular characteristics, diagnostic technology, and potential therapy strategies, thus deepening our understanding of this uncommon tumor type and providing guidance for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Zijun Zhao
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zihan Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zairan Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fan Zhang
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ze Ding
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tao Fan
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Kommoss FK, Lee CH, Tessier-Cloutier B, Gilks CB, Stewart CJ, von Deimling A, Köbel M. Mesonephric-like adenocarcinoma harbours characteristic copy number variations and a distinct DNA methylation signature closely related to mesonephric adenocarcinoma of the cervix. J Pathol 2024; 262:4-9. [PMID: 37850576 DOI: 10.1002/path.6217] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Mesonephric-like adenocarcinoma (MLA) of the female genital tract is an uncommon histotype that can arise in both the endometrium and the ovary. The exact cell of origin and histogenesis currently remain unknown. Here, we investigated whole genome DNA methylation patterns and copy number variations (CNVs) in a series of MLAs in the context of a large cohort of various gynaecological carcinoma types. CNV analysis of 19 MLAs uncovered gains of chromosomes 1q (18/19, 95%), 10 (15/19, 79%), 12 (14/19, 74%), and 2 (10/19, 53%), as well as loss of chromosome 1p (7/19, 37%). Gains of chromosomes 1q, 10, and 12 were also identified in the majority of mesonephric adenocarcinomas of the uterine cervix (MAs) as well as subsets of endometrioid carcinomas (ECs) and low-grade serous carcinomas of the ovary (LGSCs) but only in a minority of serous carcinomas of the uterine corpus (USCs), clear cell carcinomas (CCCs), and tubo-ovarian high-grade serous carcinomas (HGSCs). While losses of chromosome 1p together with gains of chromosome 1q were also identified in both MA and LGSC, gains of chromosome 2 were almost exclusively identified in MLA and MA. Unsupervised hierarchical clustering and t-SNE analysis of DNA methylation data (Illumina EPIC array) identified a co-clustering for MLAs and MAs, which was distinct from clusters of ECs, USCs, CCCs, LGSCs, and HGSCs. Group-wise comparisons confirmed a close epigenetic relationship between MLA and MA. These findings, in conjunction with the established histological and immunophenotypical overlap, suggest bona fide mesonephric differentiation, and support a more precise terminology of mesonephric-type adenocarcinoma instead of MLA in these tumours. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Felix Kf Kommoss
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | | | - C Blake Gilks
- Department of Laboratory Medicine and Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Colin Jr Stewart
- Department of Anatomical Pathology, King Edward Memorial Hospital, Subiaco, WA, Australia
- School for Women's and Infants' Health, University of Western Australia, Perth, WA, Australia
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital and CCU Neuropathology DKFZ, Heidelberg, Germany
| | - Martin Köbel
- Department of Laboratory Medicine and Pathology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Cerretti G, Pessina F, Franceschi E, Barresi V, Salvalaggio A, Padovan M, Manara R, Di Nunno V, Bono BC, Librizzi G, Caccese M, Scorsetti M, Maccari M, Minniti G, Navarria P, Lombardi G. Spinal ependymoma in adults: from molecular advances to new treatment perspectives. Front Oncol 2023; 13:1301179. [PMID: 38074692 PMCID: PMC10704349 DOI: 10.3389/fonc.2023.1301179] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/24/2023] [Indexed: 12/21/2024] Open
Abstract
Ependymomas are rare glial tumors with clinical and biological heterogeneity, categorized into supratentorial ependymoma, posterior fossa ependymoma, and spinal cord ependymoma, according to anatomical localization. Spinal ependymoma comprises four different types: spinal ependymoma, spinal ependymoma MYCN-amplified, myxopapillary ependymoma, and subependymoma. The clinical onset largely depends on the spinal location of the tumor. Both non-specific and specific sensory and/or motor symptoms can be present. Owing to diverse features and the low incidence of spinal ependymomas, most of the current clinical management is derived from small retrospective studies, particularly in adults. Treatment involves primarily surgical resection, aiming at maximal safe resection. The use of radiotherapy remains controversial and the optimal dose has not been established; it is usually considered after subtotal resection for WHO grade 2 ependymoma and for WHO grade 3 ependymoma regardless of the extent of resection. There are limited systemic treatments available, with limited durable results and modest improvement in progression-free survival. Thus, chemotherapy is usually reserved for recurrent cases where resection and/or radiation is not feasible. Recently, a combination of temozolomide and lapatinib has shown modest results with a median progression-free survival (PFS) of 7.8 months in recurrent spinal ependymomas. Other studies have explored the use of temozolomide, platinum compounds, etoposide, and bevacizumab, but standard treatment options have not yet been defined. New treatment options with targeted treatments and immunotherapy are being investigated. Neurological and supportive care are crucial, even in the early stages. Post-surgical rehabilitation can improve the consequences of surgery and maintain a good quality of life, especially in young patients with long life expectancy. Here, we focus on the diagnosis and treatment recommendations for adults with spinal ependymoma, and discuss recent molecular advances and new treatment perspectives.
Collapse
Affiliation(s)
- Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Federico Pessina
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Renzo Manara
- Department of Neuroscience, Azienda Ospedale-Università di Padova, Padua, Italy
- Department of Medicine - DIMED, University of Padova, Padua, Italy
| | - Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Beatrice Claudia Bono
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Librizzi
- Department of Neuroscience, Azienda Ospedale-Università di Padova, Padua, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Scorsetti
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marta Maccari
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Pierina Navarria
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
26
|
Pagliara D, Ciolfi A, Pedace L, Haghshenas S, Ferilli M, Levy MA, Miele E, Nardini C, Cappelletti C, Relator R, Pitisci A, De Vito R, Pizzi S, Kerkhof J, McConkey H, Nazio F, Kant SG, Di Donato M, Agolini E, Matraxia M, Pasini B, Pelle A, Galluccio T, Novelli A, Barakat TS, Andreani M, Rossi F, Mecucci C, Savoia A, Sadikovic B, Locatelli F, Tartaglia M. Identification of a robust DNA methylation signature for Fanconi anemia. Am J Hum Genet 2023; 110:1938-1949. [PMID: 37865086 PMCID: PMC10645556 DOI: 10.1016/j.ajhg.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/23/2023] Open
Abstract
Fanconi anemia (FA) is a clinically variable and genetically heterogeneous cancer-predisposing disorder representing the most common bone marrow failure syndrome. It is caused by inactivating predominantly biallelic mutations involving >20 genes encoding proteins with roles in the FA/BRCA DNA repair pathway. Molecular diagnosis of FA is challenging due to the wide spectrum of the contributing gene mutations and structural rearrangements. The assessment of chromosomal fragility after exposure to DNA cross-linking agents is generally required to definitively confirm diagnosis. We assessed peripheral blood genome-wide DNA methylation (DNAm) profiles in 25 subjects with molecularly confirmed clinical diagnosis of FA (FANCA complementation group) using Illumina's Infinium EPIC array. We identified 82 differentially methylated CpG sites that allow to distinguish subjects with FA from healthy individuals and subjects with other genetic disorders, defining an FA-specific DNAm signature. The episignature was validated using a second cohort of subjects with FA involving different complementation groups, documenting broader genetic sensitivity and demonstrating its specificity using the EpiSign Knowledge Database. The episignature properly classified DNA samples obtained from bone marrow aspirates, demonstrating robustness. Using the selected probes, we trained a machine-learning model able to classify EPIC DNAm profiles in molecularly unsolved cases. Finally, we show that the generated episignature includes CpG sites that do not undergo functional selective pressure, allowing diagnosis of FA in individuals with reverted phenotype due to gene conversion. These findings provide a tool to accelerate diagnostic testing in FA and broaden the clinical utility of DNAm profiling in the diagnostic setting.
Collapse
Affiliation(s)
- Daria Pagliara
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Lucia Pedace
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Marco Ferilli
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Evelina Miele
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Nardini
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Angela Pitisci
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Rita De Vito
- Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Francesca Nazio
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Sarina G Kant
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015 Rotterdam, the Netherlands
| | - Maddalena Di Donato
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy
| | - Marta Matraxia
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy
| | - Barbara Pasini
- AOU Città della salute e della scienza di Torino, Molinette's Hospital, 10126 Torino, Italy
| | - Alessandra Pelle
- AOU Città della salute e della scienza di Torino, Molinette's Hospital, 10126 Torino, Italy
| | - Tiziana Galluccio
- Laboratory of Transplant Immunogenetics, Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015 Rotterdam, the Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, 3015 Rotterdam, the Netherlands
| | - Marco Andreani
- Laboratory of Transplant Immunogenetics, Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Francesca Rossi
- Department of Woman, Child and of General and Specialist Surgery, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy
| | - Cristina Mecucci
- Institute of Hematology and Center for Hemato-Oncology Research, University and Hospital of Perugia, 06123 Perugia, Italy
| | - Anna Savoia
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy; Department of Pediatrics, Catholic University of the Sacred Hearth, 00168 Rome, Italy.
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
27
|
Wu Z, Li C, Zhu R, Cao Y, Chen TC, Cheng L. Reduced non-CpG methylation is a potential epigenetic target after spinal cord injury. Neural Regen Res 2023; 18:2489-2496. [PMID: 37282481 PMCID: PMC10360082 DOI: 10.4103/1673-5374.371399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
DNA methylation is a critical epigenetic regulator in the occurrence and development of diseases and is closely related to various functional responses in relation to spinal cord injury. To investigate the role of DNA methylation in spinal cord injury, we constructed a library with reduced-representation bisulfite sequencing data obtained at various time points (day 0-42) after spinal cord injury in mice. Global DNA methylation levels, specifically non-CpG (CHG and CHH) methylation levels, decreased modestly following spinal cord injury. Stages post-spinal cord injury were classified as early (day 0-3), intermediate (day 7-14), and late (day 28-42) based on similarity and hierarchical clustering of global DNA methylation patterns. The non-CpG methylation level, which included CHG and CHH methylation levels, was markedly reduced despite accounting for a minor proportion of total methylation abundance. At multiple genomic sites, including the 5' untranslated regions, promoter, exon, intron, and 3' untranslated regions, the non-CpG methylation level was markedly decreased following spinal cord injury, whereas the CpG methylation level remained unchanged at these locations. Approximately one-half of the differentially methylated regions were located in intergenic areas; the other differentially methylated regions in both CpG and non-CpG regions were clustered in intron regions, where the DNA methylation level was highest. The function of genes associated with differentially methylated regions in promoter regions was also investigated. From Gene Ontology analysis results, DNA methylation was implicated in a number of essential functional responses to spinal cord injury, including neuronal synaptic connection creation and axon regeneration. Notably, neither CpG methylation nor non-CpG methylation was implicated in the functional response of glial or inflammatory cells. In summary, our work elucidated the dynamic pattern of DNA methylation in the spinal cord following injury and identified reduced non-CpG methylation as an epigenetic target after spinal cord injury in mice.
Collapse
Affiliation(s)
- Zhourui Wu
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education; Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
| | - Chen Li
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education; Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
| | - Ran Zhu
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
| | - Yiqiu Cao
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
| | - Thomas C Chen
- Department of Neurosurgery, Keck School of Medical, University of Southern California, Los Angeles, CA, USA
| | - Liming Cheng
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education; Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Harvey J, Pishva E, Chouliaras L, Lunnon K. Elucidating distinct molecular signatures of Lewy body dementias. Neurobiol Dis 2023; 188:106337. [PMID: 37918758 DOI: 10.1016/j.nbd.2023.106337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023] Open
Abstract
Dementia with Lewy bodies and Parkinson's disease dementia are common neurodegenerative diseases that share similar neuropathological profiles and spectra of clinical symptoms but are primarily differentiated by the order in which symptoms manifest. The question of whether a distinct molecular pathological profile could distinguish these disorders is yet to be answered. However, in recent years, studies have begun to investigate genomic, epigenomic, transcriptomic and proteomic differences that may differentiate these disorders, providing novel insights in to disease etiology. In this review, we present an overview of the clinical and pathological hallmarks of Lewy body dementias before summarizing relevant research into genetic, epigenetic, transcriptional and protein signatures in these diseases, with a particular interest in those resolving "omic" level changes. We conclude by suggesting future research directions to address current gaps and questions present within the field.
Collapse
Affiliation(s)
- Joshua Harvey
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Ehsan Pishva
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Leonidas Chouliaras
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, Epping, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
29
|
Allegra A, Caserta S, Mirabile G, Gangemi S. Aging and Age-Related Epigenetic Drift in the Pathogenesis of Leukemia and Lymphomas: New Therapeutic Targets. Cells 2023; 12:2392. [PMID: 37830606 PMCID: PMC10572300 DOI: 10.3390/cells12192392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
One of the traits of cancer cells is abnormal DNA methylation patterns. The idea that age-related epigenetic changes may partially explain the increased risk of cancer in the elderly is based on the observation that aging is also accompanied by comparable changes in epigenetic patterns. Lineage bias and decreased stem cell function are signs of hematopoietic stem cell compartment aging. Additionally, aging in the hematopoietic system and the stem cell niche have a role in hematopoietic stem cell phenotypes linked with age, such as leukemia and lymphoma. Understanding these changes will open up promising pathways for therapies against age-related disorders because epigenetic mechanisms are reversible. Additionally, the development of high-throughput epigenome mapping technologies will make it possible to identify the "epigenomic identity card" of every hematological disease as well as every patient, opening up the possibility of finding novel molecular biomarkers that can be used for diagnosis, prediction, and prognosis.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
30
|
Zhang S, He S, Zhu X, Wang Y, Xie Q, Song X, Xu C, Wang W, Xing L, Xia C, Wang Q, Li W, Zhang X, Yu J, Ma S, Shi J, Gu H. DNA methylation profiling to determine the primary sites of metastatic cancers using formalin-fixed paraffin-embedded tissues. Nat Commun 2023; 14:5686. [PMID: 37709764 PMCID: PMC10502058 DOI: 10.1038/s41467-023-41015-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Identifying the primary site of metastatic cancer is critical to guiding the subsequent treatment. Approximately 3-9% of metastatic patients are diagnosed with cancer of unknown primary sites (CUP) even after a comprehensive diagnostic workup. However, a widely accepted molecular test is still not available. Here, we report a method that applies formalin-fixed, paraffin-embedded tissues to construct reduced representation bisulfite sequencing libraries (FFPE-RRBS). We then generate and systematically evaluate 28 molecular classifiers, built on four DNA methylation scoring methods and seven machine learning approaches, using the RRBS library dataset of 498 fresh-frozen tumor tissues from primary cancer patients. Among these classifiers, the beta value-based linear support vector (BELIVE) performs the best, achieving overall accuracies of 81-93% for identifying the primary sites in 215 metastatic patients using top-k predictions (k = 1, 2, 3). Coincidentally, BELIVE also successfully predicts the tissue of origin in 81-93% of CUP patients (n = 68).
Collapse
Affiliation(s)
- Shirong Zhang
- Translational Medicine Research Center, Hangzhou First People's Hospital, 310006, Hangzhou, Zhejiang Province, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, 310006, Hangzhou, Zhejiang Province, China
| | - Shutao He
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, 100089, Beijing, China
| | - Xin Zhu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, 310022, Hangzhou, Zhejiang Province, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech Co. Ltd, 310018, Hangzhou, Zhejiang Province, China
| | - Qionghuan Xie
- Zhejiang ShengTing Biotech Co. Ltd, 310018, Hangzhou, Zhejiang Province, China
| | - Xianrang Song
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117, Jinan, Shandong Province, China
| | - Chunwei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, Jiangshu Province, China
| | - Wenxian Wang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, 310022, Hangzhou, Zhejiang Province, China
| | - Ligang Xing
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117, Jinan, Shandong Province, China
| | - Chengqing Xia
- Zhejiang ShengTing Biotech Co. Ltd, 310018, Hangzhou, Zhejiang Province, China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, 210029, Nanjing, Jiangshu Province, China
| | - Wenfeng Li
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang Province, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang Province, China
| | - Jinming Yu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117, Jinan, Shandong Province, China
| | - Shenglin Ma
- Translational Medicine Research Center, Hangzhou First People's Hospital, 310006, Hangzhou, Zhejiang Province, China.
- Department of Oncology, Hangzhou Cancer Hospital, 310006, Hangzhou, Zhejiang Province, China.
| | - Jiantao Shi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, Anhui Province, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, 230031, Hefei, Anhui Province, China.
| |
Collapse
|
31
|
Li Y, Mo N, Yang D, Lin Q, Huang W, Wang R. Predictive value of DNA methylation in the efficacy of chemotherapy for gastric cancer. Front Oncol 2023; 13:1238310. [PMID: 37771430 PMCID: PMC10523571 DOI: 10.3389/fonc.2023.1238310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/14/2023] [Indexed: 09/30/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common causes of cancer-related death. Drug resistance in chemotherapy often occurs in patients with GC, leading to tumor recurrence and poor survival. DNA methylation is closely related to the development of cancer. Methods To investigate the role of DNA methylation in chemotherapy resistance in GC patients, we conducted a comprehensive analysis using DNA methylation data and survival information obtained from The Cancer Genome Atlas. Univariate Cox analysis was performed to screen for differential DNA methylation of chemotherapy response in patients who did and did not receive chemotherapy. Multivariate Cox analysis was then performed to identify the independent prognostic genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to explore the biological function of the signature genes. Results Patients receiving adjuvant chemotherapy for GC survived longer. 308 differentially methylated genes were demonstrated to be associated with prognosis. Six genes were optimally chosed for establisehing the risk model, including C6orf222, CCNL1, CREBZF, GCKR, TFCP2, and VIPR2. It was constructed based on the DNA methylation levels of these six genes: risk score = 0.47123374*C6orf222 + 9.53554803*CCNL1 + 10.40234138* CREBZF + 0.07611856* GCKR + 18.87661557*TFCP2 - 0.46396254* VIPR2. According to the risk score, patients receiving chemotherapy were divided into high- and low-risk groups, and the prognosis of the two groups was compared. The high-risk group had a shorter survival; however, this association was not present in patients without chemotherapy. The accuracy and predictive efficacy of the risk score in predicting the 1-, 3-, and 5-year survival of patients was evaluated with the receiver operating characteristic curve. In patients receiving chemotherapy, the area under the curve of the risk score for 1-, 3-, and 5-year survival was 0.841, 0.72, and 0.734, respectively. In patients who did not receive chemotherapy, the area under the curve was 0.406, 0.585, and 0.585, respectively. A nomogram model was constructed based on the risk score and clinical indicators. The model showed good consistency in the predicted probabilities and actual probabilities. Gene Ontology functional enrichment of these candidate methylated genes showed the following molecular functions: RNA binding, protein binding, mRNA binding, and nucleic acid binding; that they were mediated mainly through the following cell components: nuclear speck, nucleoplasm, nucleus, catalytic step 2 spliceosome, and the transcription factor AP-1 complex; and that they were involved in the following biological processes: mRNA processing, mRNA splicing, and RNA polymerase II promoter transcription. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment results revealed that the signaling pathways mainly enriched were transcriptional misregulation in cancer, spliceosome, and the IL-17 signaling pathway. Conclusion Our work identifies a six DNA methylated expression signature as a promising biomarker of chemo-resistance in GC, which provides new insights into the development of new strategies to overcome chemo-resistance in GC.
Collapse
Affiliation(s)
- Ye Li
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ning Mo
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Dong Yang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - QiuLu Lin
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - WenFeng Huang
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rensheng Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
32
|
Jiang X, Li Z, Mehmood A, Wang H, Wang Q, Chu Y, Mao X, Zhao J, Jiang M, Zhao B, Lin G, Wang E, Wei D. A Self-attention Graph Convolutional Network for Precision Multi-tumor Early Diagnostics with DNA Methylation Data. Interdiscip Sci 2023; 15:405-418. [PMID: 37247186 DOI: 10.1007/s12539-023-00563-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 05/30/2023]
Abstract
DNA methylation-based precision tumor early diagnostics is emerging as state-of-the-art technology that could capture early cancer signs 3 ~ 5 years in advance, even for clinically homogenous groups. Presently, the sensitivity of early detection for many tumors is ~ 30%, which needs significant improvement. Nevertheless, based on the genome-wide DNA methylation data, one could comprehensively characterize tumors' entire molecular genetic landscape and their subtle differences. Therefore, novel high-performance methods must be modeled by considering unbiased information using excessively available DNA methylation data. To fill this gap, we have designed a computational model involving a self-attention graph convolutional network and multi-class classification support vector machine to identify the 11 most common cancers using DNA methylation data. The self-attention graph convolutional network automatically learns key methylation sites in a data-driven way. Then, multi-tumor early diagnostics is realized by training a multi-class classification support vector machine based on the selected methylation sites. We evaluated our model's performance through several data sets of experiments, and our results demonstrate the effectiveness of the selected key methylation sites, which are highly relevant for blood diagnosis. The pipeline of the self-attention graph convolutional network based computational framework.
Collapse
Affiliation(s)
- Xue Jiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqi Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aamir Mehmood
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Heng Wang
- International School of Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueying Mao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Jiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Zhao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Medical Genetics, and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Schmidt M, Hinterleitner C, Singer S, Lauer UM, Zender L, Hinterleitner M. Diagnostic Approaches for Neuroendocrine Neoplasms of Unknown Primary (NEN-UPs) and Their Prognostic Relevance-A Retrospective, Long-Term Single-Center Experience. Cancers (Basel) 2023; 15:4316. [PMID: 37686593 PMCID: PMC10486951 DOI: 10.3390/cancers15174316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) represent a rare and heterogenous group of tumors with predominantly gastroenteropancreatic or pulmonary origin. Despite numerous diagnostic efforts, the primary tumor site remains unknown in up to 20% of the patients diagnosed with NEN. In this subgroup of NEN patients, a standard diagnostic algorithm has not yet been integrated into clinical routine. Of note, an undetermined primary tumor site in NENs is associated with an impaired clinical outcome by at least "formally" limiting treatment options exclusively approved for NENs of a certain histological origin. In this retrospective study, a patient cohort of 113 patients initially diagnosed with NEN of unknown primary (NEN-UP) was analyzed. In 13 patients (11.5%) a primary tumor site could be identified subsequently, amongst others, by performing somatostatin receptor (SSTR)-PET-based imaging, which was irrespective of the initial clinical or demographic features. Diagnostic work-up and therapeutic regimens did not differ significantly between patients with an identified or unidentified primary tumor site; only a detailed immunohistochemical assessment providing additional information on the tumor origin proved to be significantly associated with the detection of a primary tumor site. Our study revealed that a profound diagnostic work-up, particularly including SSTR-PET-based imaging, leads to additional treatment options, finally resulting in significantly improved clinical outcomes for patients with NEN-UPs.
Collapse
Affiliation(s)
- Moritz Schmidt
- Department of Medical Oncology & Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076 Tuebingen, Germany
- ENETS Center of Excellence, University Hospital Tuebingen, Otfried-Mueller-Str. 14, 72076 Tuebingen, Germany;
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), University of Tuebingen, 72076 Tuebingen, Germany
| | - Clemens Hinterleitner
- Department of Medical Oncology & Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076 Tuebingen, Germany
- ENETS Center of Excellence, University Hospital Tuebingen, Otfried-Mueller-Str. 14, 72076 Tuebingen, Germany;
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), University of Tuebingen, 72076 Tuebingen, Germany
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephan Singer
- ENETS Center of Excellence, University Hospital Tuebingen, Otfried-Mueller-Str. 14, 72076 Tuebingen, Germany;
- Department of Pathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Ulrich M. Lauer
- Department of Medical Oncology & Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076 Tuebingen, Germany
- ENETS Center of Excellence, University Hospital Tuebingen, Otfried-Mueller-Str. 14, 72076 Tuebingen, Germany;
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), University of Tuebingen, 72076 Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 72076 Tuebingen, Germany
| | - Lars Zender
- Department of Medical Oncology & Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076 Tuebingen, Germany
- ENETS Center of Excellence, University Hospital Tuebingen, Otfried-Mueller-Str. 14, 72076 Tuebingen, Germany;
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), University of Tuebingen, 72076 Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 72076 Tuebingen, Germany
| | - Martina Hinterleitner
- Department of Medical Oncology & Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076 Tuebingen, Germany
- ENETS Center of Excellence, University Hospital Tuebingen, Otfried-Mueller-Str. 14, 72076 Tuebingen, Germany;
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
34
|
Gelineau NU, van Barneveld A, Samim A, Van Zogchel L, Lak N, Tas ML, Matser Y, Mavinkurve-Groothuis AMC, van Grotel M, Zsiros J, van Eijkelenburg NKA, Knops RRG, van Ewijk R, Langenberg KPS, Krijger RD, Hiemcke-Jiwa LS, Van Paemel R, Cornelli L, De Preter K, De Wilde B, Van Der Schoot E, Tytgat G. Case series on clinical applications of liquid biopsy in pediatric solid tumors: towards improved diagnostics and disease monitoring. Front Oncol 2023; 13:1209150. [PMID: 37664065 PMCID: PMC10473251 DOI: 10.3389/fonc.2023.1209150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background and aims Solid tumors account for about 30% of all pediatric cancers. The diagnosis is typically based on histological and molecular analysis of a primary tumor biopsy. Liquid biopsies carry several advantages over conventional tissue biopsy. However, their use for genomic analysis and response monitoring of pediatric solid tumors is still in experimental stages and mostly performed retrospectively without direct impact on patient management. In this case series we discuss six clinical cases of children with a solid tumor for whom a liquid biopsy assay was performed and demonstrate the potential of liquid biopsy for future clinical decision making. Methods We performed quantitative real-time PCR (RT-qPCR), droplet digital PCR (ddPCR) or reduced representation bisulphite sequencing of cell-free DNA (cfRRBS) on liquid biopsies collected from six pediatric patients with a solid tumor treated between 2017 and 2023 at the Princess Máxima Center for Pediatric Oncology in the Netherlands. Results were used to aid in clinical decision making by contribution to establish a diagnosis, by prognostication and response to therapy monitoring. Results In three patients cfRRBS helped to establish the diagnosis of a rhabdomyosarcoma, an Ewing sarcoma and a neuroblastoma (case 1-3). In two patients, liquid biopsies were used for prognostication, by MYCN ddPCR in a patient with neuroblastoma and by RT-qPCR testing rhabdomyosarcoma-specific mRNA in bone marrow of a patient with a rhabdomyosarcoma (case 4 and 5). In case 6, mRNA testing demonstrated disease progression and assisted clinical decision making. Conclusion This case series illustrates the value of liquid biopsy. We further demonstrate and recommend the use of liquid biopsies to be used in conjunction with conventional methods for the determination of metastatic status, prognostication and monitoring of treatment response in patients with pediatric solid tumors.
Collapse
Affiliation(s)
- Nina U. Gelineau
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | | | - Atia Samim
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Lieke Van Zogchel
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Nathalie Lak
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Michelle L. Tas
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Yvette Matser
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Martine van Grotel
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Jószef Zsiros
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Rutger R. G. Knops
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | - Roelof van Ewijk
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
| | | | - Ronald De Krijger
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Laura S. Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ruben Van Paemel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University, Ghent, Belgium
- Research Institute, Ghent University, Ghent, East Flanders, Belgium
| | - Lotte Cornelli
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Research Institute, Ghent University, Ghent, East Flanders, Belgium
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University, Ghent, Belgium
- Research Institute, Ghent University, Ghent, East Flanders, Belgium
| | - Ellen Van Der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Godelieve Tytgat
- Princess Máxima Center for Pediatric Oncology Research, Utrecht, Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
35
|
Tawk B, Rein K, Schwager C, Knoll M, Wirkner U, Hörner-Rieber J, Liermann J, Kurth I, Balermpas P, Rödel C, Linge A, Löck S, Lohaus F, Tinhofer I, Krause M, Stuschke M, Grosu AL, Zips D, Combs SE, Belka C, Stenzinger A, Herold-Mende C, Baumann M, Schirmacher P, Debus J, Abdollahi A. DNA-Methylome-Based Tumor Hypoxia Classifier Identifies HPV-Negative Head and Neck Cancer Patients at Risk for Locoregional Recurrence after Primary Radiochemotherapy. Clin Cancer Res 2023; 29:3051-3064. [PMID: 37058257 PMCID: PMC10425733 DOI: 10.1158/1078-0432.ccr-22-3790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE Tumor hypoxia is a paradigmatic negative prognosticator of treatment resistance in head and neck squamous cell carcinoma (HNSCC). The lack of robust and reliable hypoxia classifiers limits the adaptation of stratified therapies. We hypothesized that the tumor DNA methylation landscape might indicate epigenetic reprogramming induced by chronic intratumoral hypoxia. EXPERIMENTAL DESIGN A DNA-methylome-based tumor hypoxia classifier (Hypoxia-M) was trained in the TCGA (The Cancer Genome Atlas)-HNSCC cohort based on matched assignments using gene expression-based signatures of hypoxia (Hypoxia-GES). Hypoxia-M was validated in a multicenter DKTK-ROG trial consisting of human papillomavirus (HPV)-negative patients with HNSCC treated with primary radiochemotherapy (RCHT). RESULTS Although hypoxia-GES failed to stratify patients in the DKTK-ROG, Hypoxia-M was independently prognostic for local recurrence (HR, 4.3; P = 0.001) and overall survival (HR, 2.34; P = 0.03) but not distant metastasis after RCHT in both cohorts. Hypoxia-M status was inversely associated with CD8 T-cell infiltration in both cohorts. Hypoxia-M was further prognostic in the TCGA-PanCancer cohort (HR, 1.83; P = 0.04), underscoring the breadth of this classifier for predicting tumor hypoxia status. CONCLUSIONS Our findings highlight an unexplored avenue for DNA methylation-based classifiers as biomarkers of tumoral hypoxia for identifying high-risk features in patients with HNSCC tumors. See related commentary by Heft Neal and Brenner, p. 2954.
Collapse
Affiliation(s)
- Bouchra Tawk
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Rein
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Schwager
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Knoll
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ute Wirkner
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Liermann
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Panagiotis Balermpas
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), partner site, Frankfurt, Germany
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Claus Rödel
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), partner site, Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Annett Linge
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Association and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
| | - Steffen Löck
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Fabian Lohaus
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Association and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
| | - Ingeborg Tinhofer
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Berlin, Germany
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Mechtild Krause
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Association and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
| | - Martin Stuschke
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Essen, Germany
- Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Anca Ligia Grosu
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Freiburg, Germany
- Department of Radiation Oncology, University of Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Berlin, Germany
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany, German Cancer Consortium (DKTK), partner site Tuebingen, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, Germany
| | - Stephanie E. Combs
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Munich, Germany
- Department of Radiation Oncology, Technische Universität München, Munich, Germany
| | - Claus Belka
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Munich, Germany
- Department of Radiation Oncology, University Hospital Ludwig-Maximilians-University of Munich, Munich, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Albrecht Stenzinger
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Ning W, Wu T, Wu C, Wang S, Tao Z, Wang G, Zhao X, Diao K, Wang J, Chen J, Chen F, Liu XS. Accurate prediction of pan-cancer types using machine learning with minimal number of DNA methylation sites. J Mol Cell Biol 2023; 15:mjad023. [PMID: 37037781 PMCID: PMC10635511 DOI: 10.1093/jmcb/mjad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
DNA methylation analysis has been applied to determine the primary site of cancer; however, robust and accurate prediction of cancer types with a minimum number of sites is still a significant scientific challenge. To build an accurate and robust cancer type prediction tool with a minimum number of DNA methylation sites, we internally benchmarked different DNA methylation site selection and ranking procedures, as well as different classification models. We used The Cancer Genome Atlas dataset (26 cancer types with 8296 samples) to train and test models and used an independent dataset (17 cancer types with 2738 samples) for model validation. A deep neural network model using a combined feature selection procedure (named MethyDeep) can predict 26 cancer types using 30 methylation sites with superior performance compared with the known methods for both primary and metastatic cancers in independent validation datasets. In conclusion, MethyDeep is an accurate and robust cancer type predictor with the minimum number of DNA methylation sites; it could help the cost-effective clarification of cancer of unknown primary patients and the liquid biopsy-based early screening of cancers.
Collapse
Affiliation(s)
- Wei Ning
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Chenxu Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Shixiang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Ziyu Tao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Guangshuai Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Xiangyu Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Kaixuan Diao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Jinyu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Jing Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Fuxiang Chen
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| |
Collapse
|
37
|
Ding B, Zhang X, Wan Z, Tian F, Ling J, Tan J, Peng X. Characterization of Mitochondrial DNA Methylation of Alzheimer's Disease in Plasma Cell-Free DNA. Diagnostics (Basel) 2023; 13:2351. [PMID: 37510095 PMCID: PMC10378411 DOI: 10.3390/diagnostics13142351] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Noninvasive diagnosis of Alzheimer's disease (AD) is important for patients. Significant differences in the methylation of mitochondrial DNA (mtDNA) were found in AD brain tissue. Cell-free DNA (cfDNA) is a noninvasive and economical diagnostic tool. We aimed to characterize mtDNA methylation alterations in the plasma cfDNA of 31 AD patients and 26 age- and sex-matched cognitively normal control subjects. We found that the mtDNA methylation patterns differed between AD patients and control subjects. The mtDNA was predominantly hypomethylated in the plasma cfDNA of AD patients. The hypomethylation sites or regions were mainly located in mt-rRNA, mt-tRNA, and D-Loop regions. The hypomethylation of the D-Loop region in plasma cfDNA of AD patients was consistent with that in previous studies. This study presents evidence that hypomethylation in the non-protein coding region of mtDNA may contribute to the pathogenesis of AD and potential application for the diagnosis of AD.
Collapse
Affiliation(s)
- Binrong Ding
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha 410000, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhengqing Wan
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Feng Tian
- The 8 Ward, The Ninth Hospital of Changsha, Changsha 410000, China
| | - Jie Ling
- Medical Functional Experiment Center, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Jieqiong Tan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Molecular Precision Medicine, Changsha 410000, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410000, China
| | - Xiaoqing Peng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Molecular Precision Medicine, Changsha 410000, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410000, China
| |
Collapse
|
38
|
Huang Z, Gao Y, Han Y, Yang J, Yang C, Li S, Zhou D, Huang Q, Yang J. Revealing the roles of TLR7, a nucleic acid sensor for COVID-19 in pan-cancer. BIOSAFETY AND HEALTH 2023:S2590-0536(23)00054-X. [PMID: 37362864 PMCID: PMC10167782 DOI: 10.1016/j.bsheal.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023] Open
Abstract
Recent studies suggested that cancer was a risk factor for coronavirus disease 2019 (COVID-19). Toll-like receptor 7 (TLR7), a severe acute respiratory syndrome 2 (SARS-CoV-2) virus's nucleic acid sensor, was discovered to be aberrantly expressed in many types of cancers. However, its expression pattern across cancers and association with COVID-19 (or its causing virus SARS-CoV-2) has not been systematically studied. In this study, we proposed a computational framework to comprehensively study the roles of TLR7 in COVID-19 and pan-cancers at genetic, gene expression, protein, epigenetic, and single-cell levels. We applied the computational framework in a few databases, including The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), Human Protein Atlas (HPA), lung gene expression data of mice infected with SARS-CoV-2, and the like. As a result, TLR7 expression was found to be higher in the lung of mice infected with SARS-CoV-2 than that in the control group. The analysis in the Opentargets database also confirmed the association between TLR7 and COVID-19. There are also a few exciting findings in cancers. First, the most common type of TLR7 was "Missense" at the genomic level. Second, TLR7 mRNA expression was significantly up-regulated in 6 cancer types and down-regulated in 6 cancer types compared to normal tissues, further validated in the HPA database at the protein level. The genes significantly co-expressed with TLR7 were mainly enriched in the toll-like receptor signaling pathway, endolysosome, and signaling pattern recognition receptor activity. In addition, the abnormal TLR7 expression was associated with mismatch repair (MMR), microsatellite instability (MSI), and tumor mutational burden (TMB) in various cancers. Mined by the ESTIMATE algorithm, the expression of TLR7 was also closely linked to various immune infiltration patterns in pan-cancer, and TLR7 was mainly enriched in macrophages, as revealed by single-cell RNA sequencing. Third, abnormal expression of TLR7 could predict the survival of Brain Lower Grade Glioma (LGG), Lung adenocarcinoma (LUAD), Skin Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), and Testicular Germ Cell Tumors (TGCT) patients, respectively. Finally, TLR7 expressions were very sensitive to a few targeted drugs, such as Alectinib and Imiquimod. In conclusion, TLR7 might be essential in the pathogenesis of COVID-19 and cancers.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yaoxin Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China
| | - Jingwen Yang
- Department of Clinical Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Can Yang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Shixiong Li
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Decong Zhou
- Geriatric Hospital of Hainan Medical Education Department, Haikou 571100, China
| | - Qiuyan Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd, Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| |
Collapse
|
39
|
Zhao F, Zhu S, Fang J, Dong H, Zhu C. Correlation of DNA methylation and lymph node metastasis in papillary thyroid carcinoma. Head Neck 2023. [PMID: 37097909 DOI: 10.1002/hed.27377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/11/2023] [Accepted: 04/09/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer with a primarily good prognosis, and its 10-year survival rate is over 90%. However, PTC is prone to early lymph node metastasis. METHODS Thyroid cancer tissues from PTC patients with lymphatic metastasis and normal tissues were collected for DNA methylation analysis. Different methylation sites, different methylation regions, gene-enriched pathways, and protein-protein interactions (PPIs) were analyzed. RESULTS There were 1004 differentially methylated sites in the PTC group versus the control group; these involved 479 hypermethylated sites in 415 related genes, 525 hypomethylated sites in 482 related genes, 64 differentially methylated regions located in the CpG island region, 34 differentially methylated genes closely related to thyroid cancer, and 17 genes with differentially methylated genes in the DNA promoter region. CONCLUSION NDRG4 hypermethylation and FOXO3, ZEB2, and CDK6 hypomethylation were associated with PTC lymph node metastasis.
Collapse
Affiliation(s)
- Feng Zhao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyi Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Fang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huilei Dong
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Shenyang, China
| | - Chenfang Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Yang W, Zhuang J, Li C, Cheng GJ. Unveiling the Methyl Transfer Mechanisms in the Epigenetic Machinery DNMT3A-3L: A Comprehensive Study Integrating Assembly Dynamics with Catalytic Reactions. Comput Struct Biotechnol J 2023; 21:2086-2099. [PMID: 36968013 PMCID: PMC10034213 DOI: 10.1016/j.csbj.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
In epigenetic mechanisms, DNA methyltransferase 3 alpha (DNMT3A) acts as an initiator for DNA methylation and prevents the downstream genes from expressing. Perturbations of DNMT3A functions may cause uncontrolled gene expression, resulting in pathogenic consequences such as cancers. It is, therefore, vitally important to understand the catalytic process of DNMT3A in its biological macromolecule assembly, viz., heterotetramer: (DNMT3A-3 L)dimer. In this study, we utilized molecular dynamics (MD) simulations, Markov State Models (MSM), and quantum mechanics/molecular mechanics simulations (QM/MM) to investigate the de novo methyl transfer process. We identified the dynamics of the key residues relevant to the insertion of the target cytosine (dC) into the catalytic domain of DNMT3A, and the detailed potential energy surface of the seven-step reaction referring to methyl transfer. Our calculated potential energy barrier (22.51 kcal/mol) approximates the former experimental data (23.12 kcal/mol). The conformational change of the 5-methyl-cytosine (5mC) intermediate was found necessary in forming a four-water chain for the elimination step, which is unique to the other DNMTs. The biological assembly facilitates the creation of such a water chain, and the elimination occurs in an asynchronized mechanism in the two catalytic pockets. We anticipate the findings can enable a better understanding of the general mechanisms of the de novo methyl transfer for fulfilling the key enzymatic functions in epigenetics. And the unique elimination of DNMT3A might ignite novel methods for designing anti-cancer and tumor inhibitors of DNMTs.
Collapse
Affiliation(s)
- Wei Yang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Biotechnology, University of Science and Technology of China, Hefei 230026, China
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jingyuan Zhuang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Key Laboratory of Steroid Drug Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Corresponding author at: Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China.
| |
Collapse
|
41
|
Guo J, Li J, Chang J, Wang L, Xi Y. Value of Methylation Status of RPRM, SDC2, and TCF4 Genes in Plasma for Gastric Adenocarcinoma Screening. Int J Gen Med 2023; 16:673-681. [PMID: 36855658 PMCID: PMC9968426 DOI: 10.2147/ijgm.s395951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Objective To explore the clinical value of the combined screening of the methylation statuses of the RPRM, SDC2, and TCF4 genes in plasma of gastric cancer patients. Methods Differential expressed genes (DEGs) were selected from the Gene Expression Omnibus database, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using DAVID, and a protein-protein interaction network was constructed. Hub genes were obtained using Cytoscape. Screening results combined with literature reports identified three genes (RPRM, SDC2, and TCF4). Further analysis was done using biopsies collected through gastroscopy at Shanxi Cancer Hospital from January 8, 2020 to February 22, 2021. The patients were divided into two groups: gastric adenocarcinoma group, and control group which are not gastric adenocarcinoma according to pathological or gastroscopic results. The methylation statuses of the three genes in peripheral blood plasma were detected by fluorescence polymerase chain reaction, and the relationships between the positive rates of the three combined genes with pathology and/or gastroscopy results were analyzed. The clinical value of the combined detection of the three genes was evaluated according to these indicators. The diagnostic specificity and sensitivity of this detective method were analyzed. Results A total of 197 DEGs were identified and 12 hub genes were obtained. The enriched functions and pathways of DEGs include regulation of cell proliferation, extracellular space, cytokine activity, and pathways in cancer. The combination of RPRM, SDC2, and TCF4 gene methylation had a specificity of 93.39% and sensitivity of 80.33%. The combined positive rate of RPRM, SDC2, and TCF4 gene methylation in patients with gastric adenocarcinoma was significantly higher compared with those without gastric adenocarcinoma (χ2=151.179, P<0.05). Conclusion Combined detection of RPRM, SDC2, and TCF4 gene methylation in peripheral blood plasma maybe helpful in screening for gastric adenocarcinoma, and maybe a complementary method to gastroscopy and serum tumor markers.
Collapse
Affiliation(s)
- Jianghong Guo
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China
| | - Jing Li
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China
| | - Jiang Chang
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China
| | - Li Wang
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China
| | - Yanfeng Xi
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, People’s Republic of China,Correspondence: Yanfeng Xi, Email
| |
Collapse
|
42
|
Hu H, Pan Q, Shen J, Yao J, Fu G, Tian F, Yan N, Han W. The diagnosis and treatment for a patient with cancer of unknown primary: A case report. Front Genet 2023; 14:1085549. [PMID: 36741314 PMCID: PMC9894331 DOI: 10.3389/fgene.2023.1085549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Cancer of unknown primary (CUP) is a class of metastatic malignant tumors whose primary location cannot be determined. The diagnosis and treatment of CUP are a considerable challenge for clinicians. Herein, we report a CUP case whose corresponding primary tumor sites were successfully identified, and the patient received proper treatment. Case report: In February 2022, a 74-year-old woman was admitted to the Medical Oncology Department at Sir Run Run Shaw Hospital for new lung and intestinal tumors after more than 9 years of breast cancer surgery. After laparoscopically assisted right hemicolectomy, pathology revealed mucinous adenocarcinoma; the pathological stage was pT2N0M0. Results from needle biopsies of lung masses suggested poorly differentiated cancer, ER (-), PR (-), and HER2 (-), which combined with the clinical history, did not rule out metastatic breast cancer. A surgical pathology sample was needed to determine the origin of the tumor tissue, but the patient's chest structure showed no indications for surgery. Analysis of the tumor's traceable gene expression profile prompted breast cancer, and analysis of next-generation amplification sequencing (NGS) did not obtain a potential drug target. We developed a treatment plan based on comprehensive immunohistochemistry, a gene expression profile, and NGS analysis. The treatment plan was formulated using paclitaxel albumin and capecitabine in combination with radiotherapy. The efficacy evaluation was the partial response (PR) after four cycles of chemotherapy and two cycles combined with radiotherapy. Conclusion: This case highlighted the importance of identifying accurate primary tumor location for patients to benefit from treatment, which will provide a reference for the treatment decisions of CUP tumors in the future.
Collapse
Affiliation(s)
- Hong Hu
- Department of Medical Oncology, Qiantang Campus of Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qin Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaying Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengjuan Tian
- Department of Radiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Na Yan
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Weidong Han, hanwd@ zju.edu.cn
| |
Collapse
|
43
|
Crider KS, Wang A, Ling H, Potischman N, Bailey RL, Lichen Y, Pfeiffer CM, Killian JK, Rose C, Sampson J, Zhu L, Berry RJ, Linet M, Yu W, Su LJ. Maternal Periconceptional Folic Acid Supplementation and DNA Methylation Patterns in Adolescent Offspring. J Nutr 2023; 152:2669-2676. [PMID: 36196007 PMCID: PMC9839994 DOI: 10.1093/jn/nxac184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Folate, including the folic acid form, is a key component of the one-carbon metabolic pathway used for DNA methylation. Changes in DNA methylation patterns during critical development periods are associated with disease outcomes and are associated with changes in nutritional status in pregnancy. The long-term impact of periconceptional folic acid supplementation on DNA methylation patterns is unknown. OBJECTIVES To determine the long-term impact of periconceptional folic acid supplementation on DNA methylation patterns, we examined the association of the recommended dosage (400 μg/d) and time period (periconceptional before pregnancy through first trimester) of folic acid supplementation with the DNA methylation patterns in the offspring at age 14-17 y compared with offspring with no supplementation. METHODS Two geographic sites in China from the 1993-1995 Community Intervention Program of folic acid supplementation were selected for the follow-up study. DNA methylation at 402,730 CpG sites was assessed using saliva samples from 89 mothers and 179 adolescents (89 male). The mean age at saliva collection was 40 y among mothers (range: 35-54 y) and 15 y among adolescents (range: 14-17 y). Epigenome-wide analyses were conducted to assess the interactions of periconceptional folic acid exposure, the 5,10-methylenetetrahydrofolate reductase (MTHFR)-C677T genotype, and epigenome-wide DNA methylation controlling for offspring sex, geographic region, and background cell composition in the saliva. RESULTS In the primary outcome, no significant differences were observed in epigenome-wide methylation patterns between adolescents exposed and those non-exposed to maternal periconceptional folic acid supplementation after adjustment for potential confounders [false discovery rate (FDR) P values < 0.05]. The MTHFR-C677T genotype did not modify this lack of association (FDR P values < 0.05). CONCLUSIONS Overall, there were no differences in DNA methylation between adolescents who were exposed during the critical developmental window and those not exposed to the recommended periconceptional/first-trimester dosage of folic acid.
Collapse
Affiliation(s)
- Krista S Crider
- National Center on Birth Defects and Developmental Disabilities, US CDC, Atlanta, GA, USA
| | - Arick Wang
- National Center on Birth Defects and Developmental Disabilities, US CDC, Atlanta, GA, USA
| | - Hao Ling
- US CDC China Office, Beijing, China
| | | | - Regan L Bailey
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Yang Lichen
- National Center for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Christine M Pfeiffer
- Division of Laboratory Sciences, National Center for Environmental Health, US CDC, Atlanta, GA, USA
| | - J Keith Killian
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Charles Rose
- National Center on Birth Defects and Developmental Disabilities, US CDC, Atlanta, GA, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Li Zhu
- School of Public Health, Peking University Health Science Center, Beijing, China (retired)
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, US CDC, Atlanta, GA, USA
| | - Martha Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wang Yu
- Director General (former), Chinese Center for Disease Control and Prevention, Beijing, China
| | - L Joseph Su
- Cancer Prevention and Population Sciences Program, Division of Epidemiology, University of Arkansas, Little Rock, AR, USA
| |
Collapse
|
44
|
Spennato P, De Martino L, Russo C, Errico ME, Imperato A, Mazio F, Miccoli G, Quaglietta L, Abate M, Covelli E, Donofrio V, Cinalli G. Tumors of Choroid Plexus and Other Ventricular Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:175-223. [PMID: 37452939 DOI: 10.1007/978-3-031-23705-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Tumors arising inside the ventricular system are rare but represent a difficult diagnostic and therapeutic challenge. They usually are diagnosed when reaching a big volume and tend to affect young children. There is a wide broad of differential diagnoses with significant variability in anatomical aspects and tumor type. Differential diagnosis in tumor type includes choroid plexus tumors (papillomas and carcinomas), ependymomas, subependymomas, subependymal giant cell astrocytomas (SEGAs), central neurocytomas, meningiomas, and metastases. Choroid plexus tumors, ependymomas of the posterior fossa, and SEGAs are more likely to appear in childhood, whereas subependymomas, central neurocytomas, intraventricular meningiomas, and metastases are more frequent in adults. This chapter is predominantly focused on choroid plexus tumors and radiological and histological differential diagnosis. Treatment is discussed in the light of the modern acquisition in genetics and epigenetics of brain tumors.
Collapse
Affiliation(s)
- Pietro Spennato
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy.
| | - Lucia De Martino
- Department of Pediatric Oncology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Carmela Russo
- Department of Neuroradiology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Maria Elena Errico
- Department of Pathology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Alessia Imperato
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Federica Mazio
- Department of Neuroradiology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Giovanni Miccoli
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Lucia Quaglietta
- Department of Pediatric Oncology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Massimo Abate
- Department of Pediatric Oncology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Eugenio Covelli
- Department of Neuroradiology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Vittoria Donofrio
- Department of Pathology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Giuseppe Cinalli
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| |
Collapse
|
45
|
Shao X, Vishweswaraiah S, Čuperlović-Culf M, Yilmaz A, Greenwood CMT, Surendra A, McGuinness B, Passmore P, Kehoe PG, Maddens ME, Bennett SAL, Green BD, Radhakrishna U, Graham SF. Dementia with Lewy bodies post-mortem brains reveal differentially methylated CpG sites with biomarker potential. Commun Biol 2022; 5:1279. [PMID: 36418427 PMCID: PMC9684551 DOI: 10.1038/s42003-022-03965-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is a common form of dementia with known genetic and environmental interactions. However, the underlying epigenetic mechanisms which reflect these gene-environment interactions are poorly studied. Herein, we measure genome-wide DNA methylation profiles of post-mortem brain tissue (Broadmann area 7) from 15 pathologically confirmed DLB brains and compare them with 16 cognitively normal controls using Illumina MethylationEPIC arrays. We identify 17 significantly differentially methylated CpGs (DMCs) and 17 differentially methylated regions (DMRs) between the groups. The DMCs are mainly located at the CpG islands, promoter and first exon regions. Genes associated with the DMCs are linked to "Parkinson's disease" and "metabolic pathway", as well as the diseases of "severe intellectual disability" and "mood disorders". Overall, our study highlights previously unreported DMCs offering insights into DLB pathogenesis with the possibility that some of these could be used as biomarkers of DLB in the future.
Collapse
Affiliation(s)
- Xiaojian Shao
- National Research Council of Canada, Digital Technologies Research Centre, Ottawa, Canada.
| | | | - Miroslava Čuperlović-Culf
- National Research Council of Canada, Digital Technologies Research Centre, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, sand Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ali Yilmaz
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48309, USA
- Beaumont Research Institute, Royal Oak, MI, 48073, USA
| | - Celia M T Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Canada
| | - Anuradha Surendra
- National Research Council of Canada, Digital Technologies Research Centre, Ottawa, Canada
| | - Bernadette McGuinness
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Peter Passmore
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Patrick G Kehoe
- Dementia Research Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Michael E Maddens
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48309, USA
- Beaumont Research Institute, Royal Oak, MI, 48073, USA
| | - Steffany A L Bennett
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, sand Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Uppala Radhakrishna
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48309, USA
- Beaumont Research Institute, Royal Oak, MI, 48073, USA
| | - Stewart F Graham
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48309, USA.
- Beaumont Research Institute, Royal Oak, MI, 48073, USA.
| |
Collapse
|
46
|
Wenger A, Carén H. Methylation Profiling in Diffuse Gliomas: Diagnostic Value and Considerations. Cancers (Basel) 2022; 14:cancers14225679. [PMID: 36428772 PMCID: PMC9688075 DOI: 10.3390/cancers14225679] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Diffuse gliomas cause significant morbidity across all age groups, despite decades of intensive research efforts. Here, we review the differences in diffuse gliomas in adults and children, as well as the World Health Organisation (WHO) 2021 classification of these tumours. We explain how DNA methylation-based classification works and list the methylation-based tumour types and subclasses for adult and paediatric diffuse gliomas. The benefits and utility of methylation-based classification in diffuse gliomas demonstrated to date are described. This entails the identification of novel tumour types/subclasses, patient stratification and targeted treatment/clinical management, and alterations in the clinical diagnosis in favour of the methylation-based over the histopathological diagnosis. Finally, we address several considerations regarding the use of DNA methylation profiling as a diagnostic tool, e.g., the threshold of the classifier, the calibrated score, tumour cell content and intratumour heterogeneity.
Collapse
Affiliation(s)
- Anna Wenger
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
47
|
Bai Y, Qu D, Lu D, Li Y, Zhao N, Cui G, Li X, Sun X, Sun H, Zhao L, Li Q, Zhang Q, Han T, Wang S, Yang Y. Pan-cancer landscape of abnormal ctDNA methylation across human tumors. Cancer Genet 2022; 268-269:37-45. [PMID: 36152512 DOI: 10.1016/j.cancergen.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The aim of this paper is to explore the correlation between circulating tumor DNA (ctDNA) methylation and mutations and its value in clinical early cancer screening. METHODS We performed target region methylation sequencing and genome sequencing on plasma samples. Methylation models to distinguish cancer from healthy individuals have been developed using hypermethylated genes in tumors and validated in training set and prediction set. RESULTS We found that patients with cancer had higher levels of ctDNA methylation compared to healthy individuals. The level of ctDNA methylation in cell cycle, p53, Notch pathway in pan-cancer was significantly correlated with the number of mutations, and mutation frequency. Methylation burden in some tumors was significantly correlated with tumor mutational burden (TMB), microsatellite instability (MSI) and PD-L1. The ctDNA methylation differences in cancer patients were mainly concentrated in the Herpes simplex virus 1 infection pathway. The area under curve (AUC) of the training and prediction sets of the methylation model distinguishing cancer from healthy individuals were 0.93 and 0.92, respectively. CONCLUSION Our study provides a landscape of methylation levels of important pathways in pan-cancer. ctDNA methylation significantly correlates with mutation type, frequency and number, providing a reference for clinical application of ctDNA methylation in early cancer screening.
Collapse
Affiliation(s)
- Yun Bai
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Di Qu
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Dan Lu
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yiwen Li
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Ning Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Guanghua Cui
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xue Li
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xiaoke Sun
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Huaibo Sun
- Genecast Biotechnology Co., Ltd, Wuxi 214104, China
| | - Lihua Zhao
- Genecast Biotechnology Co., Ltd, Wuxi 214104, China
| | - Qingyuan Li
- Genecast Biotechnology Co., Ltd, Wuxi 214104, China
| | - Qi Zhang
- Genecast Biotechnology Co., Ltd, Wuxi 214104, China
| | | | - Song Wang
- Department of Medical Oncology, Mudanjiang Cancer Hospital, Mudanjiang 157009, China.
| | - Yu Yang
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
48
|
Abdelzaher H, Tawfik SM, Nour A, Abdelkader S, Elbalkiny ST, Abdelkader M, Abbas WA, Abdelnaser A. Climate change, human health, and the exposome: Utilizing OMIC technologies to navigate an era of uncertainty. Front Public Health 2022; 10:973000. [PMID: 36211706 PMCID: PMC9533016 DOI: 10.3389/fpubh.2022.973000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023] Open
Abstract
Climate change is an anthropogenic phenomenon that is alarming scientists and non-scientists alike. The emission of greenhouse gases is causing the temperature of the earth to rise and this increase is accompanied by a multitude of climate change-induced environmental exposures with potential health impacts. Tracking human exposure has been a major research interest of scientists worldwide. This has led to the development of exposome studies that examine internal and external individual exposures over their lifetime and correlate them to health. The monitoring of health has also benefited from significant technological advances in the field of "omics" technologies that analyze physiological changes on the nucleic acid, protein, and metabolism levels, among others. In this review, we discuss various climate change-induced environmental exposures and their potential health implications. We also highlight the potential integration of the technological advancements in the fields of exposome tracking, climate monitoring, and omics technologies shedding light on important questions that need to be answered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
49
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
50
|
Pontel LB, Bueno-Costa A, Morellato AE, Carvalho Santos J, Roué G, Esteller M. Acute lymphoblastic leukemia necessitates GSH-dependent ferroptosis defenses to overcome FSP1-epigenetic silencing. Redox Biol 2022; 55:102408. [PMID: 35944469 PMCID: PMC9364119 DOI: 10.1016/j.redox.2022.102408] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Ferroptosis is a form of cell death triggered by phospholipid hydroperoxides (PLOOH) generated from the iron-dependent oxidation of polyunsaturated fatty acids (PUFAs). To prevent ferroptosis, cells rely on the antioxidant glutathione (GSH), which serves as cofactor of the glutathione peroxidase 4 (GPX4) for the neutralization of PLOOHs. Some cancer cells can also limit ferroptosis through a GSH-independent axis, centered mainly on the ferroptosis suppressor protein 1 (FSP1). The significance of these two anti-ferroptosis pathways is still poorly understood in cancers from hematopoietic origin. Here, we report that blood-derived cancer cells are selectively sensitive to compounds that block the GSH-dependent anti-ferroptosis axis. In T- and B- acute lymphoblastic leukemia (ALL) cell lines and patient biopsies, the promoter of the gene coding for FSP1 is hypermethylated, silencing the expression of FSP1 and creating a selective dependency on GSH-centered anti-ferroptosis defenses. In-trans expression of FSP1 increases the resistance of leukemic cells to compounds targeting the GSH-dependent anti-ferroptosis pathway. FSP1 over-expression also favors ALL-tumor growth in an in vivo chick chorioallantoic membrane (CAM) model. Hence, our results reveal a metabolic vulnerability of ALL that might be of therapeutic interest.
Collapse
Affiliation(s)
- Lucas B Pontel
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Alberto Bueno-Costa
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Agustín E Morellato
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|