1
|
Zhang J, Burguener GF, Paraiso F, Dubcovsky J. Natural alleles of LEAFY and WAPO1 interact to regulate spikelet number per spike in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:257. [PMID: 39446157 PMCID: PMC11502542 DOI: 10.1007/s00122-024-04759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE Specific combinations of LFY and WAPO1 natural alleles maximize spikelet number per spike in wheat. Spikelet number per spike (SNS) is an important yield component in wheat that determines the maximum number of grains that can be formed in a wheat spike. In wheat, loss-of-function mutations in LEAFY (LFY) or its interacting protein WHEAT ORTHOLOG OF APO1 (WAPO1) significantly reduce SNS by reducing the rate of formation of spikelet meristems. In previous studies, we identified a natural amino acid change in WAPO1 (C47F) that significantly increases SNS in hexaploid wheat. In this study, we searched for natural variants in LFY that were associated with differences in SNS and detected significant effects in the LFY-B region in a nested association mapping population. We generated a large mapping population and confirmed that the LFY-B polymorphism R80S is linked with the differences in SNS, suggesting that LFY-B is the likely causal gene. A haplotype analysis revealed two amino acid changes P34L and R80S, which were both enriched during wheat domestication and breeding suggesting positive selection. We also explored the interactions between the LFY and WAPO1 natural variants for SNS using biparental populations and identified significant interaction, in which the positive effect of the 80S and 34L alleles from LFY-B was only detected in the WAPO-A1 47F background but not in the 47C background. Based on these results, we propose that the allele combination WAPO-A1-47F/LFY-B 34L 80S can be used in wheat breeding programs to maximize SNS and increase grain yield potential in wheat.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Germán F Burguener
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Francine Paraiso
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
2
|
Dong Z, Hu G, Chen Q, Shemyakina EA, Chau G, Whipple CJ, Fletcher JC, Chuck G. A regulatory network controlling developmental boundaries and meristem fates contributed to maize domestication. Nat Genet 2024:10.1038/s41588-024-01943-z. [PMID: 39415035 DOI: 10.1038/s41588-024-01943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/09/2024] [Indexed: 10/18/2024]
Abstract
During domestication, early farmers selected different vegetative and reproductive traits, but identifying the causative loci has been hampered by their epistasis and functional redundancy. Using chromatin immunoprecipitation sequencing combined with genome-wide association analysis, we uncovered a developmental regulator that controls both types of trait while acting upstream of multiple domestication loci. tasselsheath4 (tsh4) is a new maize domestication gene that establishes developmental boundaries and specifies meristem fates despite not being expressed within them. TSH4 accomplishes this by using a double-negative feedback loop that targets and represses the very same microRNAs that negatively regulate it. TSH4 functions redundantly with a pair of homologs to positively regulate a suite of domestication loci while specifying the meristem that doubled seed yield in modern maize. TSH4 has a critical role in yield gain and helped generate ideal crop plant architecture, thus explaining why it was a major domestication target.
Collapse
Affiliation(s)
- Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA.
| | - Gaoyuan Hu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Qiuyue Chen
- North Carolina State University, Raleigh, NC, USA
| | - Elena A Shemyakina
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA
| | - Geeyun Chau
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA
| | | | - Jennifer C Fletcher
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA
| | - George Chuck
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA.
| |
Collapse
|
3
|
Li Y, Yao T, Fu C, Wang N, Xu Z, Yang N, Zhang X, Wen T, Lin Z. TRANSPARENT TESTA 16 collaborates with the MYB-bHLH-WD40 transcriptional complex to produce brown fiber cotton. PLANT PHYSIOLOGY 2024:kiae530. [PMID: 39422520 DOI: 10.1093/plphys/kiae530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Naturally colored cotton (NCC; Gossypium spp.) does not require additional chemical dyeing and is an environmentally friendly textile material with great research potential and applications. Our previous study using linkage and association mapping identified TRANSPARENT TESTA 2 (Gh_TT2) as acting on the proanthocyanin synthesis pathway. However, limited information is available about the genetic regulatory network of NCC. Here, we verified the effectiveness of Gh_TT2 and the roles of Gh_TT2 and red foliated mutant gene (Re) in pigment formation and deposition of brown fiber cotton (BFC). Variations in Gh_TT2 derived from interspecific hybridization between Gossypium barbadense acc. Pima 90-53 and Gossypium hirsutum acc. Handan208 resulted in gene expression differences, thereby causing phenotypic variation. Additionally, the MYB-bHLH-WD complex was found to be negatively modulated by TRANSPARENT TESTA 16/ARABIDOPSIS BSISTER (TT16/ABS). RNA-seq suggested that differential expression of homologous genes of key enzymes in the proanthocyanin synthesis pathway strongly contributes to the color rendering of natural dark brown and light brown cotton. Our study proposes a regulatory model in BFC, which will provide theoretical guidance for the genetic improvement of NCC.
Collapse
Affiliation(s)
- Yuanxue Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Tian Yao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chao Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhiyong Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ningyu Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Tianwang Wen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
4
|
Li J, Zhao H, Zhang M, Bi C, Yang X, Shi X, Xie C, Li B, Ma G, Ru Z, Hu T, You M. Identification and fine mapping of a QTL-rich region for yield- and quality-related traits on chromosome 4BS in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:239. [PMID: 39342035 DOI: 10.1007/s00122-024-04722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
Yield and quality are important for plant breeding. To better understand the genetic basis underlying yield- and quality-related traits in wheat (Triticum aestivum L.), we conducted the quantitative trait locus (QTL) analysis using recombinant inbred lines (RILs) and a high-density genetic linkage map with a 90 K array. In this study, a total of 117 QTLs were detected for spike number per area (SNPA), thousand grain weight (TGW), grain number per spike (GNS), plant height (PH), spike length (SL), total spikelet number (TSN), spikelet density (SD), grain protein content (GPC), and grain starch content (GSC). Among these QTLs, 30 environmentally stable QTLs for yield- and quality-related traits were detected. Notably, five QTL-rich regions (Qrr) for yield- and/or quality-related traits were identified, including the QTL-rich region on chromosome 4BS (QQrr.cau-4B) for eight traits (SNPA, GNS, PH, SL, TSN, SD, GPC, and GSC). The stable QTL-rich region QQrr.cau-4B was delimited into a physical interval of approximately 2.47 Mb. Based on the annotation information of the Chinese spring wheat genome v1.0 and parental re-sequencing results, the interval included twelve genes with sequence variations. Taken together, these results contribute to further understanding of the genetic basis of SNPA, GNS, PH, SL, TSN, SD, GPC, and GSC, and fine mapping of QQrr.cau-4B will be beneficial for gene cloning and marker-assisted selection in the genetic improvement of wheat varieties.
Collapse
Affiliation(s)
- Jinghui Li
- Wheat Center, Henan Institute of Science and Technology, Henan Provincial Key Laboratory of Hybrid Wheat, Xinxiang, 453003, China
| | - Huanhuan Zhao
- State Key Laboratory for Agrobiotechnology Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education Key Laboratory of Crop Genetic Improvement, Agricultural University, Beijing Municipality, 100193, China
| | - Minghu Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Chan Bi
- State Key Laboratory for Agrobiotechnology Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education Key Laboratory of Crop Genetic Improvement, Agricultural University, Beijing Municipality, 100193, China
| | - Xiaoyuan Yang
- Wheat Center, Henan Institute of Science and Technology, Henan Provincial Key Laboratory of Hybrid Wheat, Xinxiang, 453003, China
| | - Xintian Shi
- State Key Laboratory for Agrobiotechnology Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education Key Laboratory of Crop Genetic Improvement, Agricultural University, Beijing Municipality, 100193, China
| | - Chaojie Xie
- State Key Laboratory for Agrobiotechnology Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education Key Laboratory of Crop Genetic Improvement, Agricultural University, Beijing Municipality, 100193, China
| | - Baoyun Li
- State Key Laboratory for Agrobiotechnology Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education Key Laboratory of Crop Genetic Improvement, Agricultural University, Beijing Municipality, 100193, China
| | - Guangbin Ma
- China Research Institute of Radiowave Propagation, Xinxiang, 453003, China
| | - Zhengang Ru
- Wheat Center, Henan Institute of Science and Technology, Henan Provincial Key Laboratory of Hybrid Wheat, Xinxiang, 453003, China
| | - Tiezhu Hu
- Wheat Center, Henan Institute of Science and Technology, Henan Provincial Key Laboratory of Hybrid Wheat, Xinxiang, 453003, China.
| | - Mingshan You
- State Key Laboratory for Agrobiotechnology Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education Key Laboratory of Crop Genetic Improvement, Agricultural University, Beijing Municipality, 100193, China.
| |
Collapse
|
5
|
Zhou J, He Y, Li W, Chen B, Su L, Lan Y, Yan L, Wang Y, Lohani MN, Liu Y, Tang H, Xu Q, Jiang Q, Chen G, Qi P, Jiang Y, Liu C, Ren Y, Zheng Y, Wei Y, Ma J. Identification and characterization of QSFS.sau-MC-5A for sterile florets genetically independent of fertile ones per spike in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:232. [PMID: 39320516 DOI: 10.1007/s00122-024-04745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
KEY MESSAGE A major and stable QTL for sterile florets per spike and sterile florets per spikelet was identified, it was mapped within a 2.22-Mb interval on chromosome 5AL, and the locus was validated using two segregating populations with different genetic backgrounds. Both the number of fertile florets per spike (FFS) and the number of sterile florets per spike (SFS) significantly influence the final yield of wheat (Triticum aestivum L.), and a trade-off theoretically exists between them. To enhance crop yield, wheat breeders have historically concentrated on easily measurable traits such as FFS, spikelets per spike, and spike length. Other traits of agronomic importance, including SFS and sterile florets per spikelet (SFPs), have been largely overlooked. In the study, reported here, genetic bases of SFS and SFPs were investigated based on the assessment of a population of recombinant inbred lines (RILs) population. The RIL population was developed by crossing a spontaneous mutant with higher SFS (msf) with the cultivar Chuannong 16. A total of 10 quantitative trait loci (QTL) were identified, with QSFS.sau-MC-5A for SFS and QSFPs.sau-MC-5A for SFPs being the major and stable ones, and they were co-located on the long arm of chromosome 5A. The locus was located within a 2.22-Mb interval, and it was further validated in two additional populations based on a tightly linked Kompetitive Allele-Specific PCR (KASP) marker, K_sau_5A_691403852. Expression differences and promoter sequence variations were observed between the parents for both TraesCS5A03G1247300 and TraesCS5A03G1250300. The locus of QSFS.sau-MC-5A/QSFPs.sau-MC-5A showed a significantly positive correlation with spike length, florets in the middle spikelet, and total florets per spike, but it showed no correlation with either kernel number per spike (KNS) or kernel weight per spike. Appropriate nitrogen fertilizer application led to reduced SFS and increased KNS, supporting results from previous reports on the positive effect of nitrogen fertilizer on wheat spike and floret development. Based on these results, we propose a promising approach for breeding wheat cultivars with multiple fertile florets per spike, which could increase the number of kernels per spike and potentially improve yield. Collectively, these findings will facilitate further fine mapping of QSFS.sau-MC-5A/QSFPs.sau-MC-5A and be instrumental in strategies to increase KNS, thereby enhancing wheat yield.
Collapse
Affiliation(s)
- Jieguang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanjiang He
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang Academy of Agricultural Science, Mianyang, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Longxing Su
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuxin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lei Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Md Nahibuzzaman Lohani
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanlin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunji Liu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Yong Ren
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang Academy of Agricultural Science, Mianyang, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang Academy of Agricultural Science, Mianyang, China.
| |
Collapse
|
6
|
Yang B, Qiao L, Zheng X, Zheng J, Wu B, Li X, Zhao J. Quantitative Trait Loci Mapping of Heading Date in Wheat under Phosphorus Stress Conditions. Genes (Basel) 2024; 15:1150. [PMID: 39336741 PMCID: PMC11431698 DOI: 10.3390/genes15091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Wheat (Triticum aestivum L.) is a crucial cereal crop, contributing around 20% of global caloric intake. However, challenges such as diminishing arable land, water shortages, and climate change threaten wheat production, making yield enhancement crucial for global food security. The heading date (HD) is a critical factor influencing wheat's growth cycle, harvest timing, climate adaptability, and yield. Understanding the genetic determinants of HD is essential for developing high-yield and stable wheat varieties. This study used a doubled haploid (DH) population from a cross between Jinmai 47 and Jinmai 84. QTL analysis of HD was performed under three phosphorus (P) treatments (low, medium, and normal) across six environments, using Wheat15K high-density SNP technology. The study identified 39 QTLs for HD, distributed across ten chromosomes, accounting for 2.39% to 29.52% of the phenotypic variance. Notably, five stable and major QTLs (Qhd.saw-3A.7, Qhd.saw-3A.8, Qhd.saw-3A.9, Qhd.saw-4A.4, and Qhd.saw-4D.3) were consistently detected across varying P conditions. The additive effects of these major QTLs showed that favorable alleles significantly delayed HD. There was a clear trend of increasing HD delay as the number of favorable alleles increased. Among them, Qhd.saw-3A.8, Qhd.saw-3A.9, and Qhd.saw-4D.3 were identified as novel QTLs with no prior reports of HD QTLs/genes in their respective intervals. Candidate gene analysis highlighted seven highly expressed genes related to Ca2+ transport, hormone signaling, glycosylation, and zinc finger proteins, likely involved in HD regulation. This research elucidates the genetic basis of wheat HD under P stress, providing critical insights for breeding high-yield, stable wheat varieties suited to low-P environments.
Collapse
Affiliation(s)
- Bin Yang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Bangbang Wu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Xiaohua Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| |
Collapse
|
7
|
A Y K, E M, R B, E M, M D, L C, F D. Independent genetic factors control floret number and spikelet number in Triticum turgidum ssp. FRONTIERS IN PLANT SCIENCE 2024; 15:1390401. [PMID: 39253571 PMCID: PMC11381284 DOI: 10.3389/fpls.2024.1390401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Wheat grain yield is a complex trait resulting from a trade-off among many distinct components. During wheat evolution, domestication events and then modern breeding have strongly increased the yield potential of wheat plants, by enhancing spike fertility. To address the genetic bases of spike fertility in terms of spikelet number per spike and floret number per spikelet, a population of 110 recombinant inbred lines (RILS) obtained crossing a Triticum turgidum ssp. durum cultivar (Latino) and a T. dicoccum accession (MG5323) was exploited. Being a modern durum and a semi-domesticated genotype, respectively, the two parents differ for spike architecture and fertility, and thus the corresponding RIL population is the ideal genetic material to dissect genetic bases of yield components. The RIL population was phenotyped in four environments. Using a high-density SNP genetic map and taking advantage of several genome sequencing available for Triticeae, a total of 94 QTLs were identified for the eight traits considered; these QTLs were further reduced to 17 groups, based on their genetic and physical co-location. QTLs controlling floret number per spikelet and spikelet number per spike mapped in non-overlapping chromosomal regions, suggesting that independent genetic factors determine these fertility-related traits. The physical intervals of QTL groups were considered for possible co-location with known genes functionally involved in spike fertility traits and with yield-related QTLs previously mapped in tetraploid wheat. The most interesting result concerns a QTL group on chromosome 5B, associated with spikelet number per spike, since it could host genes still uncharacterized for their association to spike fertility. Finally, we identified two different regions where the trade-off between fertility related traits and kernel weight is overcome. Further analyses of these regions could pave the way for a future identification of new genetic loci contributing to fertility traits essential for yield improvement in durum wheat.
Collapse
Affiliation(s)
- Kiros A Y
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mica E
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Vercelli, Italy
| | - Battaglia R
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Mazzucotelli E
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Dell'Acqua M
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Cattivelli L
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Desiderio F
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| |
Collapse
|
8
|
Liu L, Zhan J, Yan J. Engineering the future cereal crops with big biological data: toward intelligence-driven breeding by design. J Genet Genomics 2024; 51:781-789. [PMID: 38531485 DOI: 10.1016/j.jgg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
How to feed 10 billion human populations is one of the challenges that need to be addressed in the following decades, especially under an unpredicted climate change. Crop breeding, initiating from the phenotype-based selection by local farmers and developing into current biotechnology-based breeding, has played a critical role in securing the global food supply. However, regarding the changing environment and ever-increasing human population, can we breed outstanding crop varieties fast enough to achieve high productivity, good quality, and widespread adaptability? This review outlines the recent achievements in understanding cereal crop breeding, including the current knowledge about crop agronomic traits, newly developed techniques, crop big biological data research, and the possibility of integrating them for intelligence-driven breeding by design, which ushers in a new era of crop breeding practice and shapes the novel architecture of future crops. This review focuses on the major cereal crops, including rice, maize, and wheat, to explain how intelligence-driven breeding by design is becoming a reality.
Collapse
Affiliation(s)
- Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jimin Zhan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
9
|
Colleoni PE, van Es SW, Winkelmolen T, Immink RGH, van Esse GW. Flowering time genes branching out. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4195-4209. [PMID: 38470076 PMCID: PMC11263490 DOI: 10.1093/jxb/erae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Plants are sessile by nature, and as such they have evolved to sense changes in seasonality and their surrounding environment, and adapt to these changes. One prime example of this is the regulation of flowering time in angiosperms, which is precisely timed by the coordinated action of two proteins: FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). Both of these regulators are members of the PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN (PEBP) family of proteins. These regulatory proteins do not interact with DNA themselves, but instead interact with transcriptional regulators, such as FLOWERING LOCUS D (FD). FT and TFL1 were initially identified as key regulators of flowering time, acting through binding with FD; however, PEBP family members are also involved in shaping plant architecture and development. In addition, PEBPs can interact with TCP transcriptional regulators, such as TEOSINTE BRANCHED 1 (TB1), a well-known regulator of plant architecture, and key domestication-related genes in many crops. Here, we review the role of PEBPs in flowering time, plant architecture, and development. As these are also key yield-related traits, we highlight examples from the model plant Arabidopsis as well as important food and feed crops such as, rice, barley, wheat, tomato, and potato.
Collapse
Affiliation(s)
- Pierangela E Colleoni
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Sam W van Es
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Ton Winkelmolen
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - G Wilma van Esse
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
10
|
Huang Y, Schnurbusch T. The Birth and Death of Floral Organs in Cereal Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:427-458. [PMID: 38424062 DOI: 10.1146/annurev-arplant-060223-041716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Florets of cereal crops are the basic reproductive organs that produce grains for food or feed. The birth of a floret progresses through meristem initiation and floral organ identity specification and maintenance. During these processes, both endogenous and external cues can trigger a premature floral organ death, leading to reproductive failure. Recent advances in different cereal crops have identified both conserved and distinct regulators governing the birth of a floret. However, the molecular underpinnings of floral death are just beginning to be understood. In this review, we first provide a general overview of the current findings in the field of floral development in major cereals and outline different forms of floral deaths, particularly in the Triticeae crops. We then highlight the importance of vascular patterning and photosynthesis in floral development and reproductive success and argue for an expanded knowledge of floral birth-death balance in the context of agroecology.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Liao S, Xu Z, Fan X, Zhou Q, Liu X, Jiang C, Ma F, Wang Y, Wang T, Feng B. Identification and validation of two major QTL for grain number per spike on chromosomes 2B and 2D in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:147. [PMID: 38834870 DOI: 10.1007/s00122-024-04652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE Major QTL for grain number per spike were identified on chromosomes 2B and 2D. Haplotypes and candidate genes of QGns.cib-2B.1 were analyzed. Grain number per spike (GNS) is one of the main components of wheat yield. Genetic dissection of their regulatory factors is essential to improve the yield potential. In present study, a recombinant inbred line population comprising 180 lines developed from the cross between a high GNS line W7268 and a cultivar Chuanyu12 was employed to identify quantitative trait loci (QTL) associated with GNS across six environments. Two major QTL, QGns.cib-2B.1 and QGns.cib-2D.1, were detected in at least four environments with the phenotypic variations of 12.99-27.07% and 8.50-13.79%, respectively. And significant interactions were observed between the two major QTL. In addition, QGns.cib-2B.1 is a QTL cluster for GNS, grain number per spikelet and fertile tiller number, and they were validated in different genetic backgrounds using Kompetitive Allele Specific PCR (KASP) markers. QGns.cib-2B.1 showed pleotropic effects on other yield-related traits including plant height, spike length, and spikelet number per spike, but did not significantly affect thousand grain weight which suggested that it might be potentially applicable in breeding program. Comparison analysis suggested that QGns.cib-2B.1 might be a novel QTL. Furthermore, haplotype analysis of QGns.cib-2B.1 indicated that it is a hot spot of artificial selection during wheat improvement. Based on the expression patterns, gene annotation, orthologs analysis and sequence variations, the candidate genes of QGns.cib-2B.1 were predicted. Collectively, the major QTL and KASP markers reported here provided a wealth of information for the genetic basis of GNS and grain yield improvement.
Collapse
Affiliation(s)
- Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanlin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
12
|
Gauley A, Pasquariello M, Yoshikawa GV, Alabdullah AK, Hayta S, Smedley MA, Dixon LE, Boden SA. Photoperiod-1 regulates the wheat inflorescence transcriptome to influence spikelet architecture and flowering time. Curr Biol 2024; 34:2330-2343.e4. [PMID: 38781956 PMCID: PMC11149547 DOI: 10.1016/j.cub.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/08/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Photoperiod insensitivity has been selected by breeders to help adapt crops to diverse environments and farming practices. In wheat, insensitive alleles of Photoperiod-1 (Ppd-1) relieve the requirement of long daylengths to flower by promoting expression of floral promoting genes early in the season; however, these alleles also limit yield by reducing the number and fertility of grain-producing florets through processes that are poorly understood. Here, we performed transcriptome analysis of the developing inflorescence using near-isogenic lines that contain either photoperiod-insensitive or null alleles of Ppd-1, during stages when spikelet number is determined and floret development initiates. We report that Ppd-1 influences the stage-specific expression of genes with roles in auxin signaling, meristem identity, and protein turnover, and analysis of differentially expressed transcripts identified bZIP and ALOG transcription factors, namely PDB1 and ALOG1, which regulate flowering time and spikelet architecture. These findings enhance our understanding of genes that regulate inflorescence development and introduce new targets for improving yield potential.
Collapse
Affiliation(s)
- Adam Gauley
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Marianna Pasquariello
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Guilherme V Yoshikawa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Hartley Grove, Glen Osmond, SA 5064, Australia
| | - Abdul Kader Alabdullah
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Sadiye Hayta
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Mark A Smedley
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Laura E Dixon
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Scott A Boden
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Hartley Grove, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
13
|
Jiang G, Koppolu R, Rutten T, Hensel G, Lundqvist U, Tandron Moya YA, Huang Y, Rajaraman J, Poursarebani N, von Wirén N, Kumlehn J, Mascher M, Schnurbusch T. Non-cell-autonomous signaling associated with barley ALOG1 specifies spikelet meristem determinacy. Curr Biol 2024; 34:2344-2358.e5. [PMID: 38781954 DOI: 10.1016/j.cub.2024.04.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Inflorescence architecture and crop productivity are often tightly coupled in our major cereal crops. However, the underlying genetic mechanisms controlling cereal inflorescence development remain poorly understood. Here, we identified recessive alleles of barley (Hordeum vulgare L.) HvALOG1 (Arabidopsis thaliana LSH1 and Oryza G1) that produce non-canonical extra spikelets and fused glumes abaxially to the central spikelet from the upper-mid portion until the tip of the inflorescence. Notably, we found that HvALOG1 exhibits a boundary-specific expression pattern that specifically excludes reproductive meristems, implying the involvement of previously proposed localized signaling centers for branch regulation. Importantly, during early spikelet formation, non-cell-autonomous signals associated with HvALOG1 expression may specify spikelet meristem determinacy, while boundary formation of floret organs appears to be coordinated in a cell-autonomous manner. Moreover, barley ALOG family members synergistically modulate inflorescence morphology, with HvALOG1 predominantly governing meristem maintenance and floral organ development. We further propose that spatiotemporal redundancies of expressed HvALOG members specifically in the basal inflorescence may be accountable for proper patterning of spikelet formation in mutant plants. Our research offers new perspectives on regulatory signaling roles of ALOG transcription factors during the development of reproductive meristems in cereal inflorescences.
Collapse
Affiliation(s)
- Guojing Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | | | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Naser Poursarebani
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany; Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany.
| |
Collapse
|
14
|
Yoshikawa GV, Boden SA. Finding the right balance: The enduring role of florigens during cereal inflorescence development and their influence on fertility. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102539. [PMID: 38599051 DOI: 10.1016/j.pbi.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Flowering is a vital process in a plant's lifecycle and variation for flowering-time has helped cereals adapt to diverse environments. Much cereal research has focused on understanding how flowering signals, or florigens, regulate the floral transition and timing of ear emergence. However, flowering genes also perform an enduring role during inflorescence development, with genotypes that elicit a weaker flowering signal producing more elaborately branched inflorescences with extra floret-bearing spikelets. While this outcome indicates that variable expression of flowering genes could boost yield potential, further analysis has shown that dampened florigen levels can compromise fertility, negating the benefit of extra grain-producing sites. Here, we discuss ways that florigens contribute to early and late inflorescence development, including their influence on branch/spikelet architecture and fertility. We propose that a deeper understanding of the role for florigens during inflorescence development could be used to balance the effects of florigens throughout flowering to improve productivity.
Collapse
Affiliation(s)
- Guilherme V Yoshikawa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Scott A Boden
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
15
|
Sun X, Wang E, Yu L, Liu S, Liu T, Qin J, Jiang P, He S, Cai X, Jing S, Song B. TCP transcription factor StAST1 represses potato tuberization by regulating tuberigen complex activity. PLANT PHYSIOLOGY 2024; 195:1347-1364. [PMID: 38488068 DOI: 10.1093/plphys/kiae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/01/2024] [Indexed: 06/02/2024]
Abstract
Potato (Solanum tuberosum L.) is cultivated worldwide for its underground tubers, which provide an important part of human nutrition and serve as a model system for belowground storage organ formation. Similar to flowering, stolon-expressed FLOWERING LOCUS T-like (FT-like) protein SELF-PRUNING 6A (StSP6A) plays an instrumental role in tuberization by binding to the bZIP transcription factors StABI5-like 1 (StABL1) and StFD-like 1 (StFDL1), causing transcriptional reprogramming at the stolon subapical apices. However, the molecular mechanism regulating the widely conserved FT-bZIP interactions remains largely unexplored. Here, we identified a TCP transcription factor StAST1 (StABL1 and StSP6A-associated TCP protein 1) binding to both StSP6A and StABL1. StAST1 is specifically expressed in the vascular tissue of leaves and developing stolons. Silencing of StAST1 leads to accelerated tuberization and a shortened life cycle. Molecular dissection reveals that the interaction of StAST1 with StSP6A and StABL1 attenuates the formation of the alternative tuberigen activation complex (aTAC). We also observed StAST1 directly activates the expression of potato GA 20-oxidase gene (StGA20ox1) to regulate GA responses. These results demonstrate StAST1 functions as a tuberization repressor by regulating plant hormone levels; our findings also suggest a mechanism by which the widely conserved FT-FD genetic module is fine-tuned.
Collapse
Affiliation(s)
- Xiaomeng Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Enshuang Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tiantian Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jun Qin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Peng Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuangshuang He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xingkui Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shenglin Jing
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
16
|
Ai G, He C, Bi S, Zhou Z, Liu A, Hu X, Liu Y, Jin L, Zhou J, Zhang H, Du D, Chen H, Gong X, Saeed S, Su H, Lan C, Chen W, Li Q, Mao H, Li L, Liu H, Chen D, Kaufmann K, Alazab KF, Yan W. Dissecting the molecular basis of spike traits by integrating gene regulatory networks and genetic variation in wheat. PLANT COMMUNICATIONS 2024; 5:100879. [PMID: 38486454 PMCID: PMC11121755 DOI: 10.1016/j.xplc.2024.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 04/30/2024]
Abstract
Spike architecture influences both grain weight and grain number per spike, which are the two major components of grain yield in bread wheat (Triticum aestivum L.). However, the complex wheat genome and the influence of various environmental factors pose challenges in mapping the causal genes that affect spike traits. Here, we systematically identified genes involved in spike trait formation by integrating information on genomic variation and gene regulatory networks controlling young spike development in wheat. We identified 170 loci that are responsible for variations in spike length, spikelet number per spike, and grain number per spike through genome-wide association study and meta-QTL analyses. We constructed gene regulatory networks for young inflorescences at the double ridge stage and the floret primordium stage, in which the spikelet meristem and the floret meristem are predominant, respectively, by integrating transcriptome, histone modification, chromatin accessibility, eQTL, and protein-protein interactome data. From these networks, we identified 169 hub genes located in 76 of the 170 QTL regions whose polymorphisms are significantly associated with variation in spike traits. The functions of TaZF-B1, VRT-B2, and TaSPL15-A/D in establishment of wheat spike architecture were verified. This study provides valuable molecular resources for understanding spike traits and demonstrates that combining genetic analysis and developmental regulatory networks is a robust approach for dissection of complex traits.
Collapse
Affiliation(s)
- Guo Ai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siteng Bi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziru Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ankui Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liujie Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - JiaCheng Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Heping Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dengxiang Du
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sulaiman Saeed
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome, Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität Zu Berlin, 10115 Berlin, Germany
| | - Khaled F Alazab
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Mascher M, Marone MP, Schreiber M, Stein N. Are cereal grasses a single genetic system? NATURE PLANTS 2024; 10:719-731. [PMID: 38605239 PMCID: PMC7616769 DOI: 10.1038/s41477-024-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
In 1993, a passionate and provocative call to arms urged cereal researchers to consider the taxon they study as a single genetic system and collaborate with each other. Since then, that group of scientists has seen their discipline blossom. In an attempt to understand what unity of genetic systems means and how the notion was borne out by later research, we survey the progress and prospects of cereal genomics: sequence assemblies, population-scale sequencing, resistance gene cloning and domestication genetics. Gene order may not be as extraordinarily well conserved in the grasses as once thought. Still, several recurring themes have emerged. The same ancestral molecular pathways defining plant architecture have been co-opted in the evolution of different cereal crops. Such genetic convergence as much as cross-fertilization of ideas between cereal geneticists has led to a rich harvest of genes that, it is hoped, will lead to improved varieties.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Marina Püpke Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mona Schreiber
- University of Marburg, Department of Biology, Marburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
18
|
Su X, Zheng J, Diao X, Yang Z, Yu D, Huang F. MtTCP18 Regulates Plant Structure in Medicago truncatula. PLANTS (BASEL, SWITZERLAND) 2024; 13:1012. [PMID: 38611541 PMCID: PMC11013128 DOI: 10.3390/plants13071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Plant structure has a large influence on crop yield formation, with branching and plant height being the important factors that make it up. We identified a gene, MtTCP18, encoding a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor highly conserved with Arabidopsis gene BRC1 (BRANCHED1) in Medicago truncatula. Sequence analysis revealed that MtTCP18 included a conserved basic helix-loop-helix (BHLH) motif and R domain. Expression analysis showed that MtTCP18 was expressed in all organs examined, with relatively higher expression in pods and axillary buds. Subcellular localization analysis showed that MtTCP18 was localized in the nucleus and exhibited transcriptional activation activity. These results supported its role as a transcription factor. Meanwhile, we identified a homozygous mutant line (NF14875) with a mutation caused by Tnt1 insertion into MtTCP18. Mutant analysis showed that the mutation of MtTCP18 altered plant structure, with increased plant height and branch number. Moreover, we found that the expression of auxin early response genes was modulated in the mutant. Therefore, MtTCP18 may be a promising candidate gene for breeders to optimize plant structure for crop improvement.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Huang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (J.Z.); (X.D.); (Z.Y.); (D.Y.)
| |
Collapse
|
19
|
Lin X, Xu Y, Wang D, Yang Y, Zhang X, Bie X, Gui L, Chen Z, Ding Y, Mao L, Zhang X, Lu F, Zhang X, Uauy C, Fu X, Xiao J. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. MOLECULAR PLANT 2024; 17:438-459. [PMID: 38310351 DOI: 10.1016/j.molp.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
The spike architecture of wheat plays a crucial role in determining grain number, making it a key trait for optimization in wheat breeding programs. In this study, we used a multi-omic approach to analyze the transcriptome and epigenome profiles of the young spike at eight developmental stages, revealing coordinated changes in chromatin accessibility and H3K27me3 abundance during the flowering transition. We constructed a core transcriptional regulatory network (TRN) that drives wheat spike formation and experimentally validated a multi-layer regulatory module involving TaSPL15, TaAGLG1, and TaFUL2. By integrating the TRN with genome-wide association studies, we identified 227 transcription factors, including 42 with known functions and 185 with unknown functions. Further investigation of 61 novel transcription factors using multiple homozygous mutant lines revealed 36 transcription factors that regulate spike architecture or flowering time, such as TaMYC2-A1, TaMYB30-A1, and TaWRKY37-A1. Of particular interest, TaMYB30-A1, downstream of and repressed by WFZP, was found to regulate fertile spikelet number. Notably, the excellent haplotype of TaMYB30-A1, which contains a C allele at the WFZP binding site, was enriched during wheat breeding improvement in China, leading to improved agronomic traits. Finally, we constructed a free and open access Wheat Spike Multi-Omic Database (http://39.98.48.156:8800/#/). Our study identifies novel and high-confidence regulators and offers an effective strategy for dissecting the genetic basis of wheat spike development, with practical value for wheat breeding.
Collapse
Affiliation(s)
- Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoyu Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Bie
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lixuan Gui
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan 610000, China
| | - Zhongxu Chen
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan 610000, China
| | - Yiliang Ding
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Long Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Lu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Xiansheng Zhang
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiangdong Fu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China.
| |
Collapse
|
20
|
Hong Y, Zhang M, Yuan Z, Zhu J, Lv C, Guo B, Wang F, Xu R. Genome-wide association studies reveal stable loci for wheat grain size under different sowing dates. PeerJ 2024; 12:e16984. [PMID: 38426132 PMCID: PMC10903348 DOI: 10.7717/peerj.16984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Background Wheat (Tritium aestivum L.) production is critical for global food security. In recent years, due to climate change and the prolonged growing period of rice varieties, the delayed sowing of wheat has resulted in a loss of grain yield in the area of the middle and lower reaches of the Yangtze River. It is of great significance to screen for natural germplasm resources of wheat that are resistant to late sowing and to explore genetic loci that stably control grain size and yield. Methods A collection of 327 wheat accessions from diverse sources were subjected to genome-wide association studies using genotyping-by-sequencing. Field trials were conducted under normal, delayed, and seriously delayed sowing conditions for grain length, width, and thousand-grain weight at two sites. Additionally, the additive main effects and multiplicative interaction (AMMI) model was applied to evaluate the stability of thousand-grain weight of 327 accessions across multiple sowing dates. Results Four wheat germplasm resources have been screened, demonstrating higher stability of thousand-grain weight. A total of 43, 35, and 39 significant MTAs were determined across all chromosomes except for 4D under the three sowing dates, respectively. A total of 10.31% of MTAs that stably affect wheat grain size could be repeatedly identified in at least two sowing dates, with PVE ranging from 0.03% to 38.06%. Among these, six were for GL, three for GW, and one for TGW. There were three novel and stable loci (4A_598189950, 4B_307707920, 2D_622241054) located in conserved regions of the genome, which provide excellent genetic resources for pyramid breeding strategies of superior loci. Our findings offer a theoretical basis for cultivar improvement and marker-assisted selection in wheat breeding practices.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| | - Zechen Yuan
- Jiangsu Internet Agricultural Development Center, Nanjing, China
| | - Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laborat, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Sakuma S, Yamashita Y, Suzuki T, Nasuda S. A Catalog of GNI-A1 Genes That Regulate Floret Fertility in a Diverse Bread Wheat Collection. PLANTS (BASEL, SWITZERLAND) 2024; 13:330. [PMID: 38337864 PMCID: PMC10857310 DOI: 10.3390/plants13030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Modifying inflorescence architecture improves grain number and grain weight in bread wheat (Triticum aestivum). Allelic variation in Grain Number Increase 1 (GNI-A1) genes, encoding a homeodomain leucine zipper class I transcription factor, influences grain number and yield. However, allelic information about GNI-A1 in diverse germplasms remains limited. Here, we investigated GNI-A1 alleles in a panel of 252 diverse bread wheat accessions (NBRP core collection and HRO breeder's panel) by target resequencing. Cultivars carrying the reduced-function allele (105Y) were predominant in the NBRP panel, whereas the 105N functional allele was the major type in the HRO panel. Cultivars with the 105Y allele were distributed in Asian landraces but not in European genotypes. Association analysis demonstrated that floret fertility, together with grain size, were improved in cultivars in the NBRP core collection carrying the 105Y allele. These results imply that different alleles of GNI-A1 have been locally selected, with the 105Y allele selected in East Asia and the 105N allele selected in Europe.
Collapse
Affiliation(s)
- Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yoko Yamashita
- Central Agricultural Experiment Station, Hokkaido Research Organization, Naganuma, Hokkaido 069-1395, Japan; (Y.Y.); (T.S.)
| | - Takako Suzuki
- Central Agricultural Experiment Station, Hokkaido Research Organization, Naganuma, Hokkaido 069-1395, Japan; (Y.Y.); (T.S.)
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| |
Collapse
|
22
|
Jiang C, Xu Z, Fan X, Zhou Q, Ji G, Liao S, Wang Y, Ma F, Zhao Y, Wang T, Feng B. Genetic dissection of major QTL for grain number per spike on chromosomes 5A and 6A in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2024; 14:1305547. [PMID: 38259947 PMCID: PMC10800429 DOI: 10.3389/fpls.2023.1305547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
Grain number per spike (GNS) is a crucial component of grain yield and plays a significant role in improving wheat yield. To identify quantitative trait loci (QTL) associated with GNS, a recombinant inbred line (RIL) population derived from the cross of Zhongkemai 13F10 and Chuanmai 42 was employed to conduct QTL mapping across eight environments. Based on the bulked segregant exome sequencing (BSE-Seq), genomic regions associated with GNS were detected on chromosomes 5A and 6A. According to the constructed genetic maps, two major QTL QGns.cib-5A (LOD = 4.35-8.16, PVE = 8.46-14.43%) and QGns.cib-6A (LOD = 3.82-30.80, PVE = 5.44-12.38%) were detected in five and four environments, respectively. QGns.cib-6A is a QTL cluster for other seven yield-related traits. QGns.cib-5A and QGns.cib-6A were further validated using linked Kompetitive Allele Specific PCR (KASP) markers in different genetic backgrounds. QGns.cib-5A exhibited pleiotropic effects on productive tiller number (PTN), spike length (SL), fertile spikelet number per spike (FSN), and ratio of grain length to grain width (GL/GW) but did not significantly affect thousand grain weight (TGW). Haplotype analysis revealed that QGns.cib-5A and QGns.cib-6A were the targets of artificial selection during wheat improvement. Candidate genes for QGns.cib-5A and QGns.cib-6A were predicted by analyzing gene annotation, spatiotemporal expression patterns, and orthologous and sequence differences. These findings will be valuable for fine mapping and map-based cloning of genes underlying QGns.cib-5A and QGns.cib-6A.
Collapse
Affiliation(s)
- Cheng Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- The Innovative of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
23
|
Zhang Y, Shen C, Shi J, Shi J, Zhang D. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:17-35. [PMID: 37935244 DOI: 10.1093/jxb/erad386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
One of the challenges for global food security is to reliably and sustainably improve the grain yield of cereal crops. One solution is to modify the architecture of the grain-bearing inflorescence to optimize for grain number and size. Cereal inflorescences are complex structures, with determinacy, branching patterns, and spikelet/floret growth patterns that vary by species. Recent decades have witnessed rapid advancements in our understanding of the genetic regulation of inflorescence architecture in rice, maize, wheat, and barley. Here, we summarize current knowledge on key genetic factors underlying the different inflorescence morphologies of these crops and model plants (Arabidopsis and tomato), focusing particularly on the regulation of inflorescence meristem determinacy and spikelet meristem identity and determinacy. We also discuss strategies to identify and utilize these superior alleles to optimize inflorescence architecture and, ultimately, improve crop grain yield.
Collapse
Affiliation(s)
- Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| |
Collapse
|
24
|
Abbai R, Golan G, Longin CFH, Schnurbusch T. Grain yield trade-offs in spike-branching wheat can be mitigated by elite alleles affecting sink capacity and post-anthesis source activity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:88-102. [PMID: 37739800 PMCID: PMC10735541 DOI: 10.1093/jxb/erad373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Introducing variations in inflorescence architecture, such as the 'Miracle-Wheat' (Triticum turgidum convar. compositum (L.f.) Filat.) with a branching spike, has relevance for enhancing wheat grain yield. However, in the spike-branching genotypes, the increase in spikelet number is generally not translated into grain yield advantage because of reduced grains per spikelet and grain weight. Here, we investigated if such trade-offs might be a function of source-sink strength by using 385 recombinant inbred lines developed by intercrossing the spike-branching landrace TRI 984 and CIRNO C2008, an elite durum (T. durum L.) cultivar; they were genotyped using the 25K array. Various plant and spike architectural traits, including flag leaf, peduncle, and spike senescence rate, were phenotyped under field conditions for 2 consecutive years. On chromosome 5AL, we found a new modifier QTL for spike branching, branched headt3 (bht-A3), which was epistatic to the previously known bht-A1 locus. Besides, bht-A3 was associated with more grains per spikelet and a delay in flag leaf senescence rate. Importantly, favourable alleles, viz. bht-A3 and grain protein content (gpc-B1) that delayed senescence, are required to improve grain number and grain weight in the spike-branching genotypes. In summary, achieving a balanced source-sink relationship might minimize grain yield trade-offs in Miracle-Wheat.
Collapse
Affiliation(s)
- Ragavendran Abbai
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466 Seeland, Germany
| | - Guy Golan
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466 Seeland, Germany
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany
| | - Thorsten Schnurbusch
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466 Seeland, Germany
- Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
| |
Collapse
|
25
|
Wakeman A, Bennett T. Auxins and grass shoot architecture: how the most important hormone makes the most important plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6975-6988. [PMID: 37474124 PMCID: PMC10690731 DOI: 10.1093/jxb/erad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Cereals are a group of grasses cultivated by humans for their grain. It is from these cereal grains that the majority of all calories consumed by humans are derived. The production of these grains is the result of the development of a series of hierarchical reproductive structures that form the distinct shoot architecture of the grasses. Being spatiotemporally complex, the coordination of grass shoot development is tightly controlled by a network of genes and signals, including the key phytohormone auxin. Hormonal manipulation has therefore been identified as a promising potential approach to increasing cereal crop yields and therefore ultimately global food security. Recent work translating the substantial body of auxin research from model plants into cereal crop species is revealing the contribution of auxin biosynthesis, transport, and signalling to the development of grass shoot architecture. This review discusses this still-maturing knowledge base and examines the possibility that changes in auxin biology could have been a causative agent in the evolution of differences in shoot architecture between key grass species, or could underpin the future selective breeding of cereal crops.
Collapse
Affiliation(s)
- Alex Wakeman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
26
|
Si Y, Tian S, Niu J, Yu Z, Ma S, Lu Q, Wu H, Ling HQ, Zheng S. Dissection and validation of a promising QTL controlling spikelet number on 5B in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:240. [PMID: 37930446 DOI: 10.1007/s00122-023-04488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
KEY MESSAGE Five environmentally stable QTLs for spikelet number per spike and days to heading were identified using a high-genetic map containing 95,444 SNPs, among which QSns.ucas-5B was validated using residual heterozygous line at multiple environments. Spikelet number per spike (SNS) and days to heading (DTH) play pivotal roles in the improvement of wheat yield. In this study, a high-density genetic map for a recombinant inbred lines (RILs) population derived from Zhengnong 17 (ZN17) and Yangbaimai (YBM) was constructed using 95,444 single-nucleotide polymorphism (SNP) markers from the Wheat660K SNP array. Our study identified a total of five environmentally stable QTLs for SNS and DTH, one of which was named QSns.ucas-5B, with a physical interval of approximately 545.4-552.1 Mb on the 5BL chromosome arm. Importantly, the elite haplotype within QSns.ucas-5B showed a consistent and positive effect on SNS, grain number and weight per spike, without extending the days to heading. These findings provide a foundation for future efforts to map and clone the gene(s) responsible for QSns.ucas-5B and further indicate the potential application of the developed and validated InDel marker of QSns.ucas-5B for molecular breeding purposes, aimed at improving wheat grain yield.
Collapse
Affiliation(s)
- Yaoqi Si
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuiquan Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqing Niu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongqing Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Shengwei Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiao Lu
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Luo X, Yang Y, Lin X, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics 2023; 50:835-845. [PMID: 36907353 DOI: 10.1016/j.jgg.2023.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
Wheat is the most widely grown crop globally, providing 20% of the daily consumed calories and protein content around the world. With the growing global population and frequent occurrence of extreme weather caused by climate change, ensuring adequate wheat production is essential for food security. The architecture of the inflorescence plays a crucial role in determining the grain number and size, which is a key trait for improving yield. Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices. Here, we summarize the genetic regulation network governing wheat spike formation, the strategies used for identifying and studying the key factors affecting spike architecture, and the progress made in breeding applications. Additionally, we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
28
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
29
|
Kong X, Wang F, Wang Z, Gao X, Geng S, Deng Z, Zhang S, Fu M, Cui D, Liu S, Che Y, Liao R, Yin L, Zhou P, Wang K, Ye X, Liu D, Fu X, Mao L, Li A. Grain yield improvement by genome editing of TaARF12 that decoupled peduncle and rachis development trajectories via differential regulation of gibberellin signalling in wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1990-2001. [PMID: 37589238 PMCID: PMC10502751 DOI: 10.1111/pbi.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/22/2023] [Accepted: 06/09/2023] [Indexed: 08/18/2023]
Abstract
Plant breeding is constrained by trade-offs among different agronomic traits by the pleiotropic nature of many genes. Genes that contribute to two or more favourable traits with no penalty on yield are rarely reported, especially in wheat. Here, we describe the editing of a wheat auxin response factor TaARF12 by using CRISPR/Cas9 that rendered shorter plant height with larger spikes. Changes in plant architecture enhanced grain number per spike up to 14.7% with significantly higher thousand-grain weight and up to 11.1% of yield increase under field trials. Weighted Gene Co-Expression Network Analysis (WGCNA) of spatial-temporal transcriptome profiles revealed two hub genes: RhtL1, a DELLA domain-free Rht-1 paralog, which was up-regulated in peduncle, and TaNGR5, an organ size regulator that was up-regulated in rachis, in taarf12 plants. The up-regulation of RhtL1 in peduncle suggested the repression of GA signalling, whereas up-regulation of TaNGR5 in spike may promote GA response, a working model supported by differential expression patterns of GA biogenesis genes in the two tissues. Thus, TaARF12 complemented plant height reduction with larger spikes that gave higher grain yield. Manipulation of TaARF12 may represent a new strategy in trait pyramiding for yield improvement in wheat.
Collapse
Affiliation(s)
- Xingchen Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Fang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Zhenyu Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xiuhua Gao
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Zhongyin Deng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Shuang Zhang
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Mingxue Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Dada Cui
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Shaoshuai Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Yuqing Che
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Ruyi Liao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Lingjie Yin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Peng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Ke Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xingguo Ye
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Dengcai Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
30
|
Jiang Y, Jiang D, Xia M, Gong M, Li H, Xing H, Zhu X, Li HL. Genome-Wide Identification and Expression Analysis of the TCP Gene Family Related to Developmental and Abiotic Stress in Ginger. PLANTS (BASEL, SWITZERLAND) 2023; 12:3389. [PMID: 37836129 PMCID: PMC10574737 DOI: 10.3390/plants12193389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Ginger (Zingiber officinale Roscoe), a widely consumed edible and medicinal plant, possesses significant nutritional and economic value. Abiotic stresses such as drought and low temperatures can impact the growth and development of ginger. The plant-specific transcription factor Teosinte branched1/cycloidea/proliferating cell factor (TCP) has progressively been identified in various plants for its role in regulating plant growth and development as well as conferring resistance to abiotic stresses. However, limited information on the TCP family is available in ginger. In this study, we identified 20 TCP members in the ginger genome, which were randomly distributed across 9 chromosomes. Based on phylogenetic analysis, these ginger TCP were classified into two subfamilies: Class I (PCF) and Class II (CIN, CYC/TB). The classification of the identified ginger TCPs was supported by a multi-species phylogenetic tree and motif structure analysis, suggesting that the amplification of the ginger TCP gene family occurred prior to the differentiation of angiosperms. The promoter region of ginger TCP genes was found to contain numerous cis-acting elements associated with plant growth, development, and abiotic stress response. Among these elements, the stress response element, anaerobic induction, and MYB binding site play a dominant role in drought responsiveness. Additionally, expression pattern analysis revealed variations in the expression of ginger TCP gene among different tissues and in response to diverse abiotic stresses (drought, low temperature, heat, and salt). Our research offers a thorough examination of TCP members within the ginger plant. This analysis greatly contributes to the understanding of how TCP genes regulate tissue development and response to stress, opening up new avenues for further exploration in this field.
Collapse
Affiliation(s)
- Yajun Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Dongzhu Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Maoqin Xia
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Min Gong
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Hui Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Haitao Xing
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| | - Xuedong Zhu
- Yudongnan Academy of Agricultural Sciences, Chongqing 408000, China
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (Y.J.); (D.J.); (M.X.); (M.G.); (H.L.)
| |
Collapse
|
31
|
Qin R, Ma T, Cai Y, Shi X, Cheng J, Dong J, Wang C, Li S, Pan G, Guan Y, Zhang L, Yang S, Xu H, Zhao C, Sun H, Li X, Wu Y, Li J, Cui F. Characterization and fine mapping analysis of a major stable QTL qKnps-4A for kernel number per spike in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:211. [PMID: 37737910 DOI: 10.1007/s00122-023-04456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
KEY MESSAGE A major stable QTL for kernel number per spike was narrowed down to a 2.19-Mb region containing two potential candidate genes, and its effects on yield-related traits were characterized. Kernel number per spike (KNPS) in wheat is a key yield component. Dissection and characterization of major stable quantitative trait loci (QTLs) for KNPS would be of considerable value for the genetic improvement of yield potential using molecular breeding technology. We had previously reported a major stable QTL controlling KNPS, qKnps-4A. In the current study, primary fine-mapping analysis, based on the primary mapping population, located qKnps-4A to an interval of approximately 6.8-Mb from 649.0 to 655.8 Mb on chromosome 4A refering to 'Kenong 9204' genome. Further fine-mapping analysis based on a secondary mapping population narrowed qKnps-4A to an approximately 2.19-Mb interval from 653.72 to 655.91 Mb. Transcriptome sequencing, gene function annotation analysis and homologous gene related reports showed that TraesKN4A01HG38570 and TraesKN4A01HG38590 were most likely to be candidate genes of qKnps-4A. Phenotypic analysis based on paired near-isogenic lines in the target region showed that qKnps-4A increased KNPS mainly by increasing the number of central florets per spike. We also evaluated the effects of qKnps-4A on other yield-related traits. Moreover, we dissected the QTL cluster of qKnps-4A and qTkw-4A and proved that the phenotypic effects were probably due to close linkage of two or more genes rather than pleiotropic effects of a single gene. This study provides molecular marker resource for wheat molecular breeding designed to improve yield potential, and lay the foundation for gene functional analysis of qKnps-4A.
Collapse
Affiliation(s)
- Ran Qin
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Tianhang Ma
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yibiao Cai
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Xinyao Shi
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiajia Cheng
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jizi Dong
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Chenyang Wang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Shihui Li
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Guoqing Pan
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yuxiang Guan
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Lei Zhang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Shuang Yang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Huiyuan Xu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Chunhua Zhao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Han Sun
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Ximei Li
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
- Shandong Key Laboratory of Dryland Farming Technology, Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongzhen Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China.
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
32
|
Zhang J, Xiong H, Burguener GF, Vasquez-Gross H, Liu Q, Debernardi JM, Akhunova A, Garland-Campbell K, Kianian SF, Brown-Guedira G, Pozniak C, Faris JD, Akhunov E, Dubcovsky J. Sequencing 4.3 million mutations in wheat promoters to understand and modify gene expression. Proc Natl Acad Sci U S A 2023; 120:e2306494120. [PMID: 37703281 PMCID: PMC10515147 DOI: 10.1073/pnas.2306494120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
Wheat is an important contributor to global food security, and further improvements are required to feed a growing human population. Functional genetics and genomics tools can help us to understand the function of different genes and to engineer beneficial changes. In this study, we used a promoter capture assay to sequence 2-kb regions upstream of all high-confidence annotated genes from 1,513 mutagenized plants from the tetraploid wheat variety Kronos. We identified 4.3 million induced mutations with an accuracy of 99.8%, resulting in a mutation density of 41.9 mutations per kb. We also remapped Kronos exome capture reads to Chinese Spring RefSeq v1.1, identified 4.7 million mutations, and predicted their effects on annotated genes. Using these predictions, we identified 59% more nonsynonymous substitutions and 49% more truncation mutations than in the original study. To show the biological value of the promoter dataset, we selected two mutations within the promoter of the VRN-A1 vernalization gene. Both mutations, located within transcription factor binding sites, significantly altered VRN-A1 expression, and one reduced the number of spikelets per spike. These publicly available sequenced mutant datasets provide rapid and inexpensive access to induced variation in the promoters and coding regions of most wheat genes. These mutations can be used to understand and modulate gene expression and phenotypes for both basic and commercial applications, where limited governmental regulations can facilitate deployment. These mutant collections, together with gene editing, provide valuable tools to accelerate functional genetic studies in this economically important crop.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Plant Sciences, University of California, Davis, CA95616
| | - Hongchun Xiong
- Department of Plant Sciences, University of California, Davis, CA95616
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Germán F. Burguener
- Department of Plant Sciences, University of California, Davis, CA95616
- HHMI, Chevy Chase, MD20815
| | - Hans Vasquez-Gross
- Department of Plant Sciences, University of California, Davis, CA95616
- Nevada Bioinformatics Center, University of Nevada, Reno, NV89557
| | - Qiujie Liu
- Department of Plant Sciences, University of California, Davis, CA95616
- HHMI, Chevy Chase, MD20815
| | - Juan M. Debernardi
- Department of Plant Sciences, University of California, Davis, CA95616
- HHMI, Chevy Chase, MD20815
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS66506
| | - Kimberly Garland-Campbell
- United States Department of Agriculture - Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA99164
| | - Shahryar F. Kianian
- United States Department of Agriculture - Agricultural Research Service, Cereal Disease Laboratory, Saint Paul, MN55108-6086
| | - Gina Brown-Guedira
- United States Department of Agriculture - Agricultural Research Service, Plant Science Research Unit, Raleigh, NC27695
| | - Curtis Pozniak
- Crop Development Centre, University of Saskatchewan, SaskatoonS7N 5A8, Canada
| | - Justin D. Faris
- United States Department of Agriculture - Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND58102
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS66506
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA95616
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
33
|
Huang Y, Schnurbusch T. Femaleness for improving grain yield potential and hybrid production in barley. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4896-4898. [PMID: 37702015 PMCID: PMC10498018 DOI: 10.1093/jxb/erad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
This article comments on:
Selva C, Yang X, Shirley NJ, Whitford R, Baumann U, Tucker MR. 2023. HvSL1 and HvMADS16 promote stamen identity to restrict multiple ovary formation in barley. Journal of Experimental Botany 74, 5039–5057.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
- Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, D-06120 Halle, Germany
| |
Collapse
|
34
|
Backhaus AE, Griffiths C, Vergara-Cruces A, Simmonds J, Lee R, Morris RJ, Uauy C. Delayed development of basal spikelets in wheat explains their increased floret abortion and rudimentary nature. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5088-5103. [PMID: 37338600 PMCID: PMC10498016 DOI: 10.1093/jxb/erad233] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Large differences exist in the number of grains per spikelet across an individual wheat (Triticum aestivum L.) spike. The central spikelets produce the highest number of grains, while apical and basal spikelets are less productive, and the most basal spikelets are commonly only developed in rudimentary form. Basal spikelets are delayed in initiation, yet they continue to develop and produce florets. The precise timing or the cause of their abortion remains largely unknown. Here, we investigated the underlying causes of basal spikelet abortion using shading applications in the field. We found that basal spikelet abortion is likely to be the consequence of complete floret abortion, as both occur concurrently and have the same response to shading treatments. We detected no differences in assimilate availability across the spike. Instead, we show that the reduced developmental age of basal florets pre-anthesis is strongly associated with their increased abortion. Using the developmental age pre-abortion, we were able to predict final grain set per spikelet across the spike, alongside the characteristic gradient in the number of grains from basal to central spikelets. Future efforts to improve spikelet homogeneity across the spike could thus focus on improving basal spikelet establishment and increasing floret development rates pre-abortion.
Collapse
Affiliation(s)
| | - Cara Griffiths
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Rebecca Lee
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Richard J Morris
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| |
Collapse
|
35
|
Liu Y, Chen J, Yin C, Wang Z, Wu H, Shen K, Zhang Z, Kang L, Xu S, Bi A, Zhao X, Xu D, He Z, Zhang X, Hao C, Wu J, Gong Y, Yu X, Sun Z, Ye B, Liu D, Zhang L, Shen L, Hao Y, Ma Y, Lu F, Guo Z. A high-resolution genotype-phenotype map identifies the TaSPL17 controlling grain number and size in wheat. Genome Biol 2023; 24:196. [PMID: 37641093 PMCID: PMC10463835 DOI: 10.1186/s13059-023-03044-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Large-scale genotype-phenotype association studies of crop germplasm are important for identifying alleles associated with favorable traits. The limited number of single-nucleotide polymorphisms (SNPs) in most wheat genome-wide association studies (GWASs) restricts their power to detect marker-trait associations. Additionally, only a few genes regulating grain number per spikelet have been reported due to sensitivity of this trait to variable environments. RESULTS We perform a large-scale GWAS using approximately 40 million filtered SNPs for 27 spike morphology traits. We detect 132,086 significant marker-trait associations and the associated SNP markers are located within 590 associated peaks. We detect additional and stronger peaks by dividing spike morphology into sub-traits relative to GWAS results of spike morphology traits. We propose that the genetic dissection of spike morphology is a powerful strategy to detect signals for grain yield traits in wheat. The GWAS results reveal that TaSPL17 positively controls grain size and number by regulating spikelet and floret meristem development, which in turn leads to enhanced grain yield per plant. The haplotypes at TaSPL17 indicate geographical differentiation, domestication effects, and breeding selection. CONCLUSION Our study provides valuable resources for genetic improvement of spike morphology and a fast-forward genetic solution for candidate gene detection and cloning in wheat.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiliang Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Lipeng Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Song Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Aoyue Bi
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Xuebo Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Daxing Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Chenyang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Gong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danni Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Youzhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Fei Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 10011, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Zhang Y, Miao H, Xiao Y, Wang C, Zhang J, Shi X, Xie S, Wang C, Li T, Deng P, Chen C, Zhang H, Ji W. An intron-located single nucleotide variation of TaGS5-3D is related to wheat grain size through accumulating intron retention transcripts. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:193. [PMID: 37606787 DOI: 10.1007/s00122-023-04439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE Thirty-three stable QTL for 13 yield-related traits across ten environments were identified in the PD34/MY47 RIL population, and a candidate gene TaGS5-3D in Qmt.nwafu.3D was preliminarily identified to affect grain-related traits through accumulation of specific transcripts. Dissecting the genetic basis of yield-related traits is pivotal for improvement of wheat yield potential. In this study, a recombinant inbred line (RIL) population genotyped by SNP markers was used to detect quantitative trait loci (QTL) related to yield-related traits in ten environments. A total of 102 QTL were detected, including 33 environmentally stable QTL and 69 putative QTL. Among them, Qmt.nwafu.3D was identified as a pleiotropic QTL in the physical interval of 149.77-154.11 Mb containing a potential candidate gene TaGS5-3D. An SNP (T > C) was detected in its ninth intron, and TaGS5-3D-C was validated as a superior allele associated with larger grains using a CAPS marker. Interestingly, we found that TaGS5-3D-C was closely related to significantly up-regulated expression of intron-retained transcript (TaGS5-3D-PD34.1), while TaGS5-3D-T was related to dominant expression of normal splicing transcript (TaGS5-3D-MY47.1). Our results indicated that alternative splicing associated with the SNP T/C could be involved in the regulation of grain-related traits, laying a foundation for the functional analysis of TaGS5-3D and its greater potential application in high-yield wheat breeding.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Hanxiao Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yi Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Junjie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xiaoxi Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Songfeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| |
Collapse
|
37
|
Zhou J, Li W, Yang Y, Xie X, Liu J, Liu Y, Tang H, Deng M, Xu Q, Jiang Q, Chen G, Qi P, Jiang Y, Chen G, He Y, Ren Y, Tang L, Gou L, Zheng Y, Wei Y, Ma J. A promising QTL QSns.sau-MC-3D.1 likely superior to WAPO1 for the number of spikelets per spike of wheat shows no adverse effects on yield-related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:181. [PMID: 37550493 DOI: 10.1007/s00122-023-04429-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
KEY MESSAGE A likely new locus QSns.sau-MC-3D.1 associated with SNS showing no negative effect on yield-related traits compared to WAPO1 was identified and validated in various genetic populations under multiple environments. The number of spikelets per spike (SNS) is one of the crucial factors determining wheat yield. Thus, improving our understanding of the genes that regulate SNS could help develop wheat varieties with higher yield. In this study, a recombinant inbred line (RIL) population (MC) containing 198 lines derived from a cross between msf and Chuannong 16 (CN16) was used to construct a genetic linkage map using the GenoBaits Wheat 16 K Panel. The genetic map contained 5,991 polymorphic SNP markers spanning 2,813.25 cM. A total of twelve QTL for SNS were detected, and two of them, i.e., QSns.sau-MC-3D.1 and QSns.sau-MC-7A, were stably expressed. QSns.sau-MC-3D.1 had high LOD values ranging from 4.99 to 11.06 and explained 9.71-16.75% of the phenotypic variation. Comparison of QSns.sau-MC-3D.1 with previously reported SNS QTL suggested that it is likely a novel one, and two kompetitive allele-specific PCR (KASP) markers were further developed. The positive effect of QSns.sau-MC-3D.1 was also validated in three biparental populations and a diverse panel containing 388 Chinese wheat accessions. Genetic analysis indicated that WHEAT ORTHOLOG OFAPO1 (WAPO1) was a candidate gene for QSns.sau-MC-7A. Pyramiding of QSns.sau-MC-3D.1 and WAP01 had a great additive effect increasing SNS by 7.10%. Correlation analysis suggested that QSns.sau-MC-3D.1 was likely independent of effective tiller number, plant height, spike length, anthesis date, and thousand kernel weight. However, the H2 haplotype of WAPO1 may affect effective tiller number and plant height. These results indicated that utilization of QSns.sau-MC-3D.1 should be given priority for wheat breeding. Geographical distribution analysis showed that the positive allele of QSns.nsau-MC-3D.1 was dominant in most wheat-producing regions of China, and it has been positively selected among modern cultivars released in China since the 1940s. Gene prediction, qRT-PCR analysis, and sequence alignment suggested that TraesCS3D03G0216800 may be the candidate gene of QSns.nsau-MC-3D.1. Taken together, these results enrich our understanding of the genetic basis of wheat SNS and will be useful for fine mapping and cloning of the gene underlying QSns.sau-MC-3D.1.
Collapse
Affiliation(s)
- Jieguang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaoyao Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xinlin Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiajun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanling Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yuanjiang He
- Mianyang Academy of Agricultural Science, Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang, China
| | - Yong Ren
- Mianyang Academy of Agricultural Science, Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang, China
| | - Liwei Tang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Lulu Gou
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
38
|
Ishizaki T, Ueda Y, Takai T, Maruyama K, Tsujimoto Y. In-frame mutation in rice TEOSINTE BRANCHED1 (OsTB1) improves productivity under phosphorus deficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111627. [PMID: 36737003 DOI: 10.1016/j.plantsci.2023.111627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Tillering is an important trait in rice productivity. We introduced mutations into the coding region of rice TEOSINTE BRANCHED1 (OsTB1), which is a negative regulator of tillering, using CRISPR/Cas9. The frameshift mutants exhibited substantially enhanced tillering and produced 3.5 times more panicles than the non-mutated plants at maturity. This enhanced tillering resulted in increased spikelet number; however, grain yields did not increase due to substantially reduced filled grain rate and 1,000-grain weight. In contrast, in-frame mutations in OsTB1 had the effect of slightly increasing tiller numbers, and the in-frame mutants had 40% more panicles than non-mutated plants. The grain yield of in-frame mutants also did not increase on nutrient-rich soil; however, under phosphorus-deficient conditions, where tillering is constrained, the in-frame mutants gave a significantly higher grain yield than non-mutated plants due to higher spikelet number and maintained filled grain rate. Rice grassy tiller1 (OsGT1)/OsHox12, which is directly regulated by OsTB1 to suppress tillering, was moderately down-regulated in in-frame mutants, suggesting that OsTB1 with the in-frame mutation shows partial function of intact OsTB1 in regulating OsGT1/OsHox12. We propose that mildly enhanced tillering by in-frame mutation of OsTB1 can improve grain yield under low phosphorus conditions.
Collapse
Affiliation(s)
- Takuma Ishizaki
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), Ishigaki, Okinawa 907-0002, Japan.
| | - Yoshiaki Ueda
- Crop, Livestock and Environment Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| | - Toshiyuki Takai
- Crop, Livestock and Environment Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| | - Kyonoshin Maruyama
- Biological Resources and Post-harvest Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| | - Yasuhiro Tsujimoto
- Crop, Livestock and Environment Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| |
Collapse
|
39
|
Viola IL, Gonzalez DH. TCP Transcription Factors in Plant Reproductive Development: Juggling Multiple Roles. Biomolecules 2023; 13:biom13050750. [PMID: 37238620 DOI: 10.3390/biom13050750] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors (TFs) are plant-specific transcriptional regulators exerting multiple functions in plant growth and development. Ever since one of the founding members of the family was described, encoded by the CYCLOIDEA (CYC) gene from Antirrhinum majus and involved in the regulation of floral symmetry, the role of these TFs in reproductive development was established. Subsequent studies indicated that members of the CYC clade of TCP TFs were important for the evolutionary diversification of flower form in a multitude of species. In addition, more detailed studies of the function of TCPs from other clades revealed roles in different processes related to plant reproductive development, such as the regulation of flowering time, the growth of the inflorescence stem, and the correct growth and development of flower organs. In this review, we summarize the different roles of members of the TCP family during plant reproductive development as well as the molecular networks involved in their action.
Collapse
Affiliation(s)
- Ivana L Viola
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| |
Collapse
|
40
|
Zhao Y, Islam S, Alhabbar Z, Zhang J, O'Hara G, Anwar M, Ma W. Current Progress and Future Prospect of Wheat Genetics Research towards an Enhanced Nitrogen Use Efficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091753. [PMID: 37176811 PMCID: PMC10180859 DOI: 10.3390/plants12091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 05/15/2023]
Abstract
To improve the yield and quality of wheat is of great importance for food security worldwide. One of the most effective and significant approaches to achieve this goal is to enhance the nitrogen use efficiency (NUE) in wheat. In this review, a comprehensive understanding of the factors involved in the process of the wheat nitrogen uptake, assimilation and remobilization of nitrogen in wheat were introduced. An appropriate definition of NUE is vital prior to its precise evaluation for the following gene identification and breeding process. Apart from grain yield (GY) and grain protein content (GPC), the commonly recognized major indicators of NUE, grain protein deviation (GPD) could also be considered as a potential trait for NUE evaluation. As a complex quantitative trait, NUE is affected by transporter proteins, kinases, transcription factors (TFs) and micro RNAs (miRNAs), which participate in the nitrogen uptake process, as well as key enzymes, circadian regulators, cross-talks between carbon metabolism, which are associated with nitrogen assimilation and remobilization. A series of quantitative genetic loci (QTLs) and linking markers were compiled in the hope to help discover more efficient and useful genetic resources for breeding program. For future NUE improvement, an exploration for other criteria during selection process that incorporates morphological, physiological and biochemical traits is needed. Applying new technologies from phenomics will allow high-throughput NUE phenotyping and accelerate the breeding process. A combination of multi-omics techniques and the previously verified QTLs and molecular markers will facilitate the NUE QTL-mapping and novel gene identification.
Collapse
Affiliation(s)
- Yun Zhao
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Shahidul Islam
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zaid Alhabbar
- Department of Field Crops, College of Agriculture and Forestry, University of Mosul, Mosul 41002, Iraq
| | - Jingjuan Zhang
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Graham O'Hara
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Masood Anwar
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Wujun Ma
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao 266109, China
| |
Collapse
|
41
|
Jiang C, Xu Z, Fan X, Zhou Q, Ji G, Chen L, Yu Q, Liao S, Zhao Y, Feng B, Wang T. Identification and validation of quantitative trait loci for fertile spikelet number per spike and grain number per fertile spikelet in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:69. [PMID: 36952062 DOI: 10.1007/s00122-023-04297-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
A major and stable QTL for fertile spikelet number per spike and grain number per fertile spikelet identified in a 4.96-Mb interval on chromosome 2A was validated in different genetic backgrounds. Fertile spikelet number per spike (FSN) and grain number per fertile spikelet (GNFS) contribute greatly to wheat yield improvement. To detect quantitative trait loci (QTL) associated with FSN and GNFS, we used a recombinant inbred line population crossed by Zhongkemai 13F10 and Chuanmai 42 in eight environments. Two Genomic regions associated with FSN were detected on chromosomes 2A and 6A using bulked segregant exome sequencing analysis. After the genetic linkage maps were constructed, four QTL QFsn.cib-2A, QFsn.cib-6A, QGnfs.cib-2A and QGnfs.cib-6A were identified in three or more environments. Among them, two major QTL QFsn.cib-2A (LOD = 4.67-9.34, PVE = 6.66-13.05%) and QGnfs.cib-2A (LOD = 5.27-11.68, PVE = 7.95-16.71%) were detected in seven and six environments, respectively. They were co-located in the same region, namely QFsn/Gnfs.cib-2A. The developed linked Kompetitive Allele Specific PCR (KASP) markers further validated this QTL in a different genetic background. QFsn/Gnfs.cib-2A showed pleiotropic effects on grain number per spike (GNS) and spike compactness (SC), and had no effect on grain weight. Since QFsn/Gnfs.cib-2A might be a new locus, it and the developed KASP markers can be used in wheat breeding. According to haplotype analysis, QFsn/Gnfs.cib-2A was identified as a target of artificial selection during wheat improvement. Based on haplotype analysis, sequence differences, spatiotemporal expression patterns, and gene annotation, the potential candidate genes for QFsn/Gnfs.cib-2A were predicted. These results provide valuable information for fine mapping and cloning gene(s) underlying QFsn/Gnfs.cib-2A.
Collapse
Affiliation(s)
- Cheng Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangen Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhao
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
42
|
Wang D, Li Y, Wang H, Xu Y, Yang Y, Zhou Y, Chen Z, Zhou Y, Gui L, Guo Y, Zhou C, Tang W, Zheng S, Wang L, Guo X, Zhang Y, Cui F, Lin X, Jiao Y, He Y, Li J, He F, Liu X, Xiao J. Boosting wheat functional genomics via an indexed EMS mutant library of KN9204. PLANT COMMUNICATIONS 2023:100593. [PMID: 36945776 PMCID: PMC10363553 DOI: 10.1016/j.xplc.2023.100593] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation. However, the lack of gene-indexed mutants and the low transformation efficiency of wheat limit in-depth gene functional studies and genetic manipulation for breeding. In this study, we created a library for KN9204, a popular wheat variety in northern China, with a reference genome, transcriptome, and epigenome of different tissues, using ethyl methyl sulfonate (EMS) mutagenesis. This library contains a vast developmental diversity of critical tissues and transition stages. Exome capture sequencing of 2090 mutant lines using KN9204 genome-designed probes revealed that 98.79% of coding genes had mutations, and each line had an average of 1383 EMS-type SNPs. We identified new allelic variations for crucial agronomic trait-related genes such as Rht-D1, Q, TaTB1, and WFZP. We tested 100 lines with severe mutations in 80 NAC transcription factors (TFs) under drought and salinity stress and identified 13 lines with altered sensitivity. Further analysis of three lines using transcriptome and chromatin accessibility data revealed hundreds of direct NAC targets with altered transcription patterns under salt or drought stress, including SNAC1, DREB2B, CML16, and ZFP182, factors known to respond to abiotic stress. Thus, we have generated and indexed a KN9204 EMS mutant library that can facilitate functional genomics research and offer resources for genetic manipulation of wheat.
Collapse
Affiliation(s)
- Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongpeng Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China; Center for Agricultural Resources Research, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Haojie Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuxin Zhou
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxu Chen
- Department of Life Science, Tcuni, Inc, Chengdu 610000, China
| | - Yuqing Zhou
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixuan Gui
- Department of Life Science, Tcuni, Inc, Chengdu 610000, China
| | - Yi Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Lei Wang
- Center for Agricultural Resources Research, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Xiulin Guo
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Yingjun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai 264025, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China; Center for Agricultural Resources Research, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China.
| | - Fei He
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing 100101, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing 100101, China.
| |
Collapse
|
43
|
Mansilla N, Fonouni-Farde C, Ariel F, Lucero L. Differential chromatin binding preference is the result of the neo-functionalization of the TB1 clade of TCP transcription factors in grasses. THE NEW PHYTOLOGIST 2023; 237:2088-2103. [PMID: 36484138 DOI: 10.1111/nph.18664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The understanding of neo-functionalization of plant transcription factors (TFs) after gene duplication has been extensively focused on changes in protein-protein interactions, the expression pattern of TFs, or the variation of cis-elements bound by TFs. Yet, the main molecular role of a TF, that is, its specific chromatin binding for the direct regulation of target gene expression, continues to be mostly overlooked. Here, we studied the TB1 clade of the TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTORS (TCP) TF family within the grasses (Poaceae). We identified an Asp/Gly amino acid replacement within the TCP domain, originated within a paralog TIG1 clade exclusive for grasses. The heterologous expression of Zea mays TB1 and its two paralogs BAD1 and TIG1 in Arabidopsis mutant plants lacking the TB1 ortholog BRC1 revealed distinct functions in plant development. Notably, the Gly acquired in the TIG1 clade does not impair TF homodimerization and heterodimerization, while it modulates chromatin binding preferences. We found that in vivo TF recognition of target promoters depends on this Asp/Gly mutation and directly impacts downstream gene expression and subsequent plant development. These results provided new insights into how natural selection fine-tunes gene expression regulation after duplication of TFs to define plant architecture.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| |
Collapse
|
44
|
Sakuma S, Koppolu R. Form follows function in Triticeae inflorescences. BREEDING SCIENCE 2023; 73:46-56. [PMID: 37168815 PMCID: PMC10165339 DOI: 10.1270/jsbbs.22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 05/13/2023]
Abstract
Grass inflorescences produce grains, which are directly connected to our food. In grass crops, yields are mainly affected by grain number and weight; thus, understanding inflorescence shape is crucially important for cereal crop breeding. In the last two decades, several key genes controlling inflorescence shape have been elucidated, thanks to the availability of rich genetic resources and powerful genomics tools. In this review, we focus on the inflorescence architecture of Triticeae species, including the major cereal crops wheat and barley. We summarize recent advances in our understanding of the genetic basis of spike branching, and spikelet and floret development in the Triticeae. Considering our changing climate and its impacts on cereal crop yields, we also discuss the future orientation of research.
Collapse
Affiliation(s)
- Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
- Corresponding authors (e-mail: and )
| | - Ravi Koppolu
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Corresponding authors (e-mail: and )
| |
Collapse
|
45
|
Errum A, Rehman N, Uzair M, Inam S, Ali GM, Khan MR. CRISPR/Cas9 editing of wheat Ppd-1 gene homoeologs alters spike architecture and grain morphometric traits. Funct Integr Genomics 2023; 23:66. [PMID: 36840774 DOI: 10.1007/s10142-023-00989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023]
Abstract
Mutations in Photoperiod-1 (Ppd-1) gene are known to modify flowering time and yield in wheat. We cloned TaPpd-1 from wheat and found high similarity among the three homoeologs of TaPpd-1. To clarify the characteristics of TaPpd-1 homoeologs in different photoperiod conditions for inflorescence architecture and yield, we used CRISPR/Cas9 system to generate Tappd-1 mutant plants by simultaneous modification of the three homoeologs of wheat Ppd-1. Tappd-1 mutant plants showed no off-target mutations. Four T0-edited lines under short-day length and three lines under long-day length conditions with the mutation frequency of 25% and 21%, respectively. These putative transgenic plants of all the lines were self-fertilized and generated T1 and T2 progenies and were evaluated by phenotypic and expression analysis. Results demonstrated that simultaneously edited TaPpd-1- A1, B1, and D1 homoeologs gene copies in T2_SDL-8-4, T2_SDL-4-5, T2_SDL-3-9, and T2_LDL-10-9 showed similar spike inflorescence, flowering time, and significantly increase in 1000-grain weight, grain area, grain width, grain length, plant height, and spikelets per spike due to mutation in both alleles of Ppd-B1 and Ppd-D1 homoeologs but only spike length was decreased in T2_SDL-8-4, T2_SDL-4-5, and T2_LDL-13-3 mutant lines due to mutation in both alleles of Ppd-A1 homoeolog under both conditions. Our results indicate that all TaPpd1 gene homoeologs influence wheat spike development by affecting both late flowering and earlier flowering but single mutant TaPpd-A1 homoeolog affect lowest as compared to the combination with double mutants of TaPpd-B1 and TaPpd-D1, TaPpd-A1 and TaPpd-B1, and TaPpd-A1 and TaPpd-D1 homoeologs for yield enhancement. Our findings further raised the idea that the relative expression of the various genomic copies of TaPpd-1 homoeologs may have an impact on the spike inflorescence architecture and grain morphometric features in wheat cultivars.
Collapse
Affiliation(s)
- Aliya Errum
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
- PARC Institute of Advanced Studies in Agriculture (PIASA), Islamabad, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | | | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan.
| |
Collapse
|
46
|
Zhan W, Cui L, Guo G, Zhang Y. Genome-wide identification and functional analysis of the TCP gene family in rye (Secale cereale L.). Gene X 2023; 854:147104. [PMID: 36509294 DOI: 10.1016/j.gene.2022.147104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/20/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) proteins are plant-specific transcription factors that play significant roles in plant growth, development, and stress response. Rye is a high-value crop with strong resistance to adverse environments. However, the functions of TCP proteins in rye are rarely reported. Based on a genome-wide analysis, the present study identified 26 TCP genes (ScTCPs) in rye. Mapping showed an uneven distribution of the ScTCP genes on the seven rye chromosomes and detected three pairs of tandem duplication genes. Phylogenetic analysis divided these genes into PCF (Proliferrating Cell Factors), CIN (CINCINNATA), and CYC (CYCLOIDEA)/TB1 (Teosinte Branched1) classes, which showed the highest homology between rye and wheat genes. Analysis of miRNA targeting sites indicated that five ScTCP genes were identified as potential targets of miRNA319. Promoter cis-acting elements analysis indicated that ScTCPs were regulated by light signals. Further analysis of the gene expression patterns and functional annotations suggested the role of a few ScTCPs in grain development and stress response. In addition, two TB1 homologous genes (ScTCP9 and ScTCP10) were identified in the ScTCP family. Synteny analysis showed that TB1 orthologous gene pairs existed before the ancestral divergence. Finally, the yeast two-hybrid assay and luciferase complementation imaging assay proved that ScTCP9, localized in the nucleus, interacts with ScFT (Flowering locus T), indicating their role in regulating flowering time. Taken together, this comprehensive study of ScTCPs provides important information for further research on gene function and crop improvement.
Collapse
Affiliation(s)
- Weimin Zhan
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Lianhua Cui
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Yanpei Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
47
|
Chen Y, Guo Y, Guan P, Wang Y, Wang X, Wang Z, Qin Z, Ma S, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Guo W, Peng H. A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement. MOLECULAR PLANT 2023; 16:393-414. [PMID: 36575796 DOI: 10.1016/j.molp.2022.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Gene regulation is central to all aspects of organism growth, and understanding it using large-scale functional datasets can provide a whole view of biological processes controlling complex phenotypic traits in crops. However, the connection between massive functional datasets and trait-associated gene discovery for crop improvement is still lacking. In this study, we constructed a wheat integrative gene regulatory network (wGRN) by combining an updated genome annotation and diverse complementary functional datasets, including gene expression, sequence motif, transcription factor (TF) binding, chromatin accessibility, and evolutionarily conserved regulation. wGRN contains 7.2 million genome-wide interactions covering 5947 TFs and 127 439 target genes, which were further verified using known regulatory relationships, condition-specific expression, gene functional information, and experiments. We used wGRN to assign genome-wide genes to 3891 specific biological pathways and accurately prioritize candidate genes associated with complex phenotypic traits in genome-wide association studies. In addition, wGRN was used to enhance the interpretation of a spike temporal transcriptome dataset to construct high-resolution networks. We further unveiled novel regulators that enhance the power of spike phenotypic trait prediction using machine learning and contribute to the spike phenotypic differences among modern wheat accessions. Finally, we developed an interactive webserver, wGRN (http://wheat.cau.edu.cn/wGRN), for the community to explore gene regulation and discover trait-associated genes. Collectively, this community resource establishes the foundation for using large-scale functional datasets to guide trait-associated gene discovery for crop improvement.
Collapse
Affiliation(s)
- Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Panfeng Guan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaobo Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Shengwei Ma
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
48
|
Slafer GA, Foulkes MJ, Reynolds MP, Murchie EH, Carmo-Silva E, Flavell R, Gwyn J, Sawkins M, Griffiths S. A 'wiring diagram' for sink strength traits impacting wheat yield potential. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:40-71. [PMID: 36334052 PMCID: PMC9786893 DOI: 10.1093/jxb/erac410] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 05/17/2023]
Abstract
Identifying traits for improving sink strength is a bottleneck to increasing wheat yield. The interacting processes determining sink strength and yield potential are reviewed and visualized in a set of 'wiring diagrams', covering critical phases of development (and summarizing known underlying genetics). Using this framework, we reviewed and assembled the main traits determining sink strength and identified research gaps and potential hypotheses to be tested for achieving gains in sink strength. In pre-anthesis, grain number could be increased through: (i) enhanced spike growth associated with optimized floret development and/or a reduction in specific stem-internode lengths and (ii) improved fruiting efficiency through an accelerated rate of floret development, improved partitioning between spikes, or optimized spike cytokinin levels. In post-anthesis, grain, sink strength could be augmented through manipulation of grain size potential via ovary size and/or endosperm cell division and expansion. Prospects for improving spike vascular architecture to support all rapidly growing florets, enabling the improved flow of assimilate, are also discussed. Finally, we considered the prospects for enhancing grain weight realization in relation to genetic variation in stay-green traits as well as stem carbohydrate remobilization. The wiring diagrams provide a potential workspace for breeders and crop scientists to achieve yield gains in wheat and other field crops.
Collapse
Affiliation(s)
- Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida–AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain
- ICREA (Catalonian Institution for Research and Advanced Studies), Barcelona, Spain
| | - M John Foulkes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, Mexico
| | - Erik H Murchie
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | | | - Richard Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Mark Sawkins
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| |
Collapse
|
49
|
Liu DK, Zhang C, Zhao X, Ke S, Li Y, Zhang D, Zheng Q, Li MH, Lan S, Liu ZJ. Genome-wide analysis of the TCP gene family and their expression pattern in Cymbidium goeringii. FRONTIERS IN PLANT SCIENCE 2022; 13:1068969. [PMID: 36570938 PMCID: PMC9772009 DOI: 10.3389/fpls.2022.1068969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
TCP gene family are specific transcription factors for plant, and considered to play an important role in development and growth. However, few related studies investigated the TCP gene trait and how it plays a role in growth and development of Orchidaceae. In this study, we obtained 14 TCP genes (CgTCPs) from the Spring Orchid Cymbidium goeringii genome. The classification results showed that 14 CgTCPs were mainly divided into two clades as follows: four PCF genes (Class I), nine CIN genes and one CYC gene (Class II). The sequence analysis showed that the TCP proteins of C. goeringii contain four conserved regions (basic Helix-Loop-Helix) in the TCP domain. The exon-intron structure varied in the clade according to a comparative investigation of the gene structure, and some genes had no introns. There are fewer CgTCP homologous gene pairs compared with Dendrobium catenatum and Phalaenopsis equestris, suggesting that the TCP genes in C. goeringii suffered more loss events. The majority of the cis-elements revealed to be enriched in the function of light responsiveness, followed by MeJA and ABA responsiveness, demonstrating their functions in regulating by light and phytohormones. The collinearity study revealed that the TCPs in D. catenatum, P. equestris and C. goeringii almost 1:1. The transcriptomic data and real-time reverse transcription-quantitative PCR (RT-qPCR) expression profiles showed that the flower-specific expression of the TCP class II genes (CgCIN2, CgCIN5 and CgCIN6) may be related to the regulation of florescence. Altogether, this study provides a comprehensive analysis uncovering the underlying function of TCP genes in Orchidaceae.
Collapse
Affiliation(s)
- Ding-Kun Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuili Zhang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuewei Zhao
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijie Ke
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Li
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Diyang Zhang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinyao Zheng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-He Li
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
50
|
Yang B, Chen N, Dang Y, Wang Y, Wen H, Zheng J, Zheng X, Zhao J, Lu J, Qiao L. Identification and validation of quantitative trait loci for chlorophyll content of flag leaf in wheat under different phosphorus treatments. FRONTIERS IN PLANT SCIENCE 2022; 13:1019012. [PMID: 36466250 PMCID: PMC9714299 DOI: 10.3389/fpls.2022.1019012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
In wheat, the leaf chlorophyll content in flag leaves is closely related to the degree of phosphorus stress. Identifying major genes/loci associated with chlorophyll content in flag leaves under different phosphorus conditions is critical for breeding wheat varieties resistant to low phosphorus (P). Under normal, medium, and low phosphorus conditions, the chlorophyll content of flag leaves was investigated by a double haploid (DH) population derived from a cross between two popular wheat varieties Jinmai 47 and Jinmai 84, at different grain filling stages. Chlorophyll content of the DH population and parents decreased gradually during the S1 to the S3 stages and rapidly at the S4 stage. At the S4 stage, the chlorophyll content of the DH population under low phosphorus conditions was significantly lower than under normal phosphate conditions. Using a wheat 15K single-nucleotide polymorphism (SNP) panel, a total of 157 QTLs were found to be associated with chlorophyll content in flag leaf and were identified under three phosphorus conditions. The phenotypic variation explained (PVE) ranged from 3.07 to 31.66%. Under three different phosphorus conditions, 36, 30, and 48 QTLs for chlorophyll content were identified, respectively. Six major QTLs Qchl.saw-2B.1, Qchl.saw-3B.1, Qchl.saw-4D.1, Qchl.saw-4D.2, Qchl.saw-5A.9 and Qchl.saw-6A.4 could be detected under multiple phosphorus conditions in which Qchl.saw-4D.1, Qchl.saw-4D.2, and Qchl.saw-6A.4 were revealed to be novel major QTLs. Moreover, the closely linked SNP markers of Qchl.saw-4D.1 and Qchl.saw-4D.2 were validated as KASP markers in a DH population sharing the common parent Jinmai 84, showed extreme significance (P <0.01) in more than three environments under different phosphorus conditions, which has the potential to be utilized in molecular marker-assisted breeding for low phosphorus tolerance in wheat.
Collapse
Affiliation(s)
- Bin Yang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Nan Chen
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
- College of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Yifei Dang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
- College of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Yuzhi Wang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Hongwei Wen
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Jun Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Xingwei Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Jiajia Zhao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Jinxiu Lu
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Ling Qiao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| |
Collapse
|