1
|
Chanchiri I, Christensen EB, Abildgaard N, Barington T, Lund T, Krejcik J. Role of NK Cells in Progression and Treatment of Multiple Myeloma. FRONT BIOSCI-LANDMRK 2025; 30:26205. [PMID: 40302319 DOI: 10.31083/fbl26205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 05/02/2025]
Abstract
Multiple myeloma (MM) is a haematological malignancy originating from terminally differentiated B cells, resulting in significant morbidity and mortality. Currently, MM is regarded as an incurable disease, often exhibiting a relapse-remitting pattern that necessitates multiple lines of therapy. It is now well-established that ineffective immunosurveillance plays a critical role in the progression of MM. Consequently, strategies that redirect immune effector cells against MM have emerged as effective treatment modalities, particularly in cases where standard care therapies fail. T cell-based immunotherapy has gained considerable attention in ongoing clinical trials; however, natural killer (NK) cells, known for their ability to execute cytotoxicity against infected and malignant cells with precision, may offer complementary therapeutic advantages over T cells and possess untapped therapeutic potential. This review seeks to introduce readers to the significance of NK cell-mediated immunosurveillance in the context of MM, explore the potential benefits of redirecting NK cells against MM, and illustrate how current treatment strategies are often reliant on the functionality of NK cells. Most importantly, new promising mechanisms of harnessing NK cell-based immunity against MM are reviewed and put into a clinical perspective to highlight their implications for patient treatment and outcomes.
Collapse
Affiliation(s)
- Iman Chanchiri
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
| | - Emil Birch Christensen
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Niels Abildgaard
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Torben Barington
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Lund
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Centre for Innovative Medical Technology (CIMT), Odense University Hospital, 5000 Odense, Denmark
| | - Jakub Krejcik
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
2
|
Ma S, Yu J, Caligiuri MA. Natural killer cell-based immunotherapy for cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf036. [PMID: 40246292 DOI: 10.1093/jimmun/vkaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Natural killer (NK) cells are emerging as a promising tool for cancer immunotherapy due to their innate ability to selectively recognize and eliminate cancer cells. Over the past 3 decades, strategies to harness NK cells have included cytokines, small molecules, antibodies, and the adoptive transfer of autologous or allogeneic NK cells, both unmodified and genetically engineered. Despite favorable safety profiles in clinical trials, challenges such as limited in vivo persistence, exhaustion, and the suppressive tumor microenvironment continue to hinder their efficacy and durability. This review categorizes NK cell-based therapies into 3 major approaches: (i) cellular therapies, including unmodified and chimeric antigen receptor-engineered NK cells; (ii) cytokine-based strategies such as interleukin-2 and interleukin-15 derivatives; and (iii) antibody-based therapies, including immune checkpoint inhibitors and NK cell engagers. We highlight these advancements, discuss current limitations, and propose strategies to optimize NK cell-based therapies for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA, United States
- Institute for Precision Cancer Therapeutics and Immuno-Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, United States
- Clemons Family Center for Transformative Cancer Research, University of California, Irvine, Irvine, CA, United States
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
3
|
Qiu Z, Li Z, Zhang C, Zhao Q, Liu Z, Cheng Q, Zhang J, Lin A, Luo P. NK Cell Senescence in Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Aging Dis 2025:AD.2025.0053. [PMID: 40249925 DOI: 10.14336/ad.2025.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2025] [Accepted: 03/13/2025] [Indexed: 04/20/2025] Open
Abstract
P Natural killer (NK) cells function as crucial effectors in the innate immune response against tumors. Nevertheless, NK cell senescence, characterized by phenotypic and functional changes, substantially compromises their antitumor immune response. This review provides a comprehensive summary of the molecular mechanisms governing NK cell senescence and its implications for cancer immunotherapy. We propose a refined definition of NK cell senescence based on distinct biomarkers, including elevated CD57 expression, reduced cytotoxicity, and altered cytokine secretion. Moreover, we investigate the complex interactions between the tumor microenvironment (TME) and NK cell senescence, highlighting the influence of chronic inflammation, immunosuppressive cytokines, and persistent tumor antigenic stimulation. Additionally, this review underscores the potential utility of senescent NK cells as biomarkers for assessing antitumor efficacy and examines the adverse effects of NK cell senescence on cancer immunotherapy. Lastly, we summarize current approaches to mitigate NK cell senescence, such as gene editing techniques and cytokine modulation, which may enhance the efficacy of NK cell-based immunotherapies. By establishing a comprehensive framework for understanding NK cell senescence within the TME, this review aims to guide future research and the development of innovative therapeutic strategies targeting senescent NK cells to improve cancer immunotherapy outcomes.
Collapse
Affiliation(s)
- Zilin Qiu
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Zhengrui Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang 050011, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Quan Cheng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Anqi Lin
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Peng Luo
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| |
Collapse
|
4
|
de Azevedo JTC, de Godoy JAP, de Souza C, Sielski MS, Coa LL, Barbosa A, Kerbauy LN, Kondo AT, Okamoto OK, Hamerschlak N, Kutner JM, Paiva RDMA. Current landscape of clinical use of ex vivo expanded natural killer cells for cancer therapy. EINSTEIN-SAO PAULO 2024; 22:eRW0612. [PMID: 39661859 PMCID: PMC11634336 DOI: 10.31744/einstein_journal/2024rw0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/05/2023] [Indexed: 12/13/2024] Open
Abstract
Natural Killer cells are immune leukocytes required for responses against tumor cells and virus-infected cells. In the last decade, natural killer cells have emerged as promising tools in cancer therapy, and clinical studies on patients treated with natural killer cells have revealed increased rates of disease-free survival. In this article, we review results from the major clinical trials that have used natural killer cells for cancer treatment, including their global distribution. We also discuss the major mechanisms of natural killer cell activation and expansion and focus on the advantages and disadvantages of each mechanism for clinical applications. Although natural killer cells can be isolated from several sources, primary natural killer cells are most commonly used in clinical trials. However, the frequency of natural killer cells available in peripheral and cord blood is low, necessitating development of methods for expansion of natural killer cells for clinical use. The development of a platform for the expansion of large-scale good manufacturing practice-compliant natural killer cells has limitations as several methods for natural killer cell activation and expansion yield conflicting results. Only techniques using feeder cells can produce large numbers of cells, allowing the "off-the-shelf" use of natural killer cells. However, advances in cell culture have supported the development of feeder-free platforms for natural killer cell expansion, which is fundamental for improving the safety of this type of cell therapy.
Collapse
Affiliation(s)
| | | | - Cláudia de Souza
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Micheli Severo Sielski
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Larissa Leggieri Coa
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Augusto Barbosa
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Lucila Nassif Kerbauy
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Andrea Tiemi Kondo
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Oswaldo Keith Okamoto
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Nelson Hamerschlak
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - José Mauro Kutner
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Raquel de Melo Alves Paiva
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Georgiadis C, Nickolay L, Syed F, Zhan H, Gkazi SA, Etuk A, Abramowski-Mock U, Preece R, Cuber P, Adams S, Ottaviano G, Qasim W. Umbilical cord blood T cells can be isolated and enriched by CD62L selection for use in 'off the shelf' chimeric antigen receptor T-cell therapies to widen transplant options. Haematologica 2024; 109:3941-3951. [PMID: 38988258 PMCID: PMC11609806 DOI: 10.3324/haematol.2024.285101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Umbilical cord blood (UCB) T cells exhibit distinct naïve ontogenetic profiles and may be an attractive source of starting cells for the production of chimeric antigen receptor (CAR) T cells. Pre-selection of UCB-T cells on the basis of CD62L expression was investigated as part of a machine-based manufacturing process, incorporating lentiviral transduction, CRISPR- Cas9 editing, T-cell expansion, and depletion of residual TCRαβ T cells. This provided stringent mitigation against the risk of graft-versus-host disease (GvHD), and was combined with simultaneous knockout of CD52 to enable persistence of edited T cells in combination with preparative lymphodepletion using alemtuzumab. Under compliant manufacturing conditions, two cell banks were generated with high levels of CAR19 expression and minimal carriage of TCRαβ T cells. Sufficient cells were cryopreserved in dose-banded aliquots at the end of each campaign to treat dozens of potential recipients. Molecular characterization captured vector integration sites and CRISPR editing signatures, and functional studies, including in vivo potency studies in humanized mice, confirmed anti-leukemic activity comparable to peripheral blood-derived universal CAR19 T cells. Machine manufactured UCB-derived T-cell banks offer an alternative to autologous cell therapies and could help widen access to CAR T cells.
Collapse
Affiliation(s)
| | - Lauren Nickolay
- UCL Great Ormond Street Institute of Child Health, WC1N 1DZ, London
| | - Farhatullah Syed
- UCL Great Ormond Street Institute of Child Health, WC1N 1DZ, London
| | - Hong Zhan
- UCL Great Ormond Street Institute of Child Health, WC1N 1DZ, London
| | | | - Annie Etuk
- UCL Great Ormond Street Institute of Child Health, WC1N 1DZ, London
| | | | - Roland Preece
- UCL Great Ormond Street Institute of Child Health, WC1N 1DZ, London
| | - Piotr Cuber
- UCL Great Ormond Street Institute of Child Health, WC1N 1DZ, London
| | - Stuart Adams
- Great Ormond Street Hospital for Children NHS Trust, WC1N 3JH, London
| | | | - Waseem Qasim
- UCL Great Ormond Street Institute of Child Health, WC1N 1DZ, London, UK; Great Ormond Street Hospital for Children NHS Trust, WC1N 3JH, London.
| |
Collapse
|
6
|
Bisht K, Merino A, Igarashi R, Gauthier L, Chiron M, Desjonqueres A, Smith E, Briercheck E, Romee R, Alici E, Vivier E, O'Dwyer M, van de Velde H. Natural killer cell biology and therapy in multiple myeloma: challenges and opportunities. Exp Hematol Oncol 2024; 13:114. [PMID: 39538354 PMCID: PMC11562869 DOI: 10.1186/s40164-024-00578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Despite therapeutic advancements, multiple myeloma (MM) remains incurable. NK cells have emerged as a promising option for the treatment of MM. NK cells are heterogenous and typically classified based on the relative expression of their surface markers (e.g., CD56 and CD16a). These cells elicit an antitumor response in the presence of low mutational burden and without neoantigen presentation via germline-encoded activating and inhibitory receptors that identify the markers of transformation present on the MM cells. Higher NK cell activity is associated with improved survival and prognosis, whereas lower activity is associated with advanced clinical stage and disease progression in MM. Moreover, not all NK cell phenotypes contribute equally toward the anti-MM effect; higher proportions of certain NK cell phenotypes result in better outcomes. In MM, the proportion, phenotype, and function of NK cells are drastically varied between different disease stages; this is further influenced by the bone marrow microenvironment, proportion of activating and inhibitory receptors on NK cells, expression of homing receptors, and bone marrow hypoxia. Antimyeloma therapies, such as autologous stem cell transplant, immunomodulation, proteasome inhibition, and checkpoint inhibition, further modulate the NK cell landscape in the patients. Thus, NK cells can naturally work in tandem with anti-MM therapies and be strategically modulated for improved anti-MM effect. This review article describes immunotypic and phenotypic differences in NK cells along with the functional changes in homeostatic and malignant states and provides expert insights on strategies to harness the potential of NK cells for improving outcomes in MM.
Collapse
Affiliation(s)
- Kamlesh Bisht
- Research and Development, Sanofi, Cambridge, MA, 02141, USA.
| | - Aimee Merino
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis-Saint Paul, MN, USA
| | - Rob Igarashi
- Research and Development, Sanofi, Cambridge, MA, 02141, USA
| | - Laurent Gauthier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | | | | | - Eric Smith
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Boston, MA, USA
| | - Edward Briercheck
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Boston, MA, USA
| | - Rizwan Romee
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Boston, MA, USA
| | - Evren Alici
- Department of Medicine, Karolinska Institutet (KI), Huddinge, Sweden
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, CNRS, INSERM, Marseille, France
- Marseille-Immunopôle, APHM, Hôpital de la Timone, Marseille, France
| | - Michael O'Dwyer
- Department of Haematology, University of Galway, Galway, Ireland
| | | |
Collapse
|
7
|
Jahan F, Penna L, Luostarinen A, Veltman L, Hongisto H, Lähteenmäki K, Müller S, Ylä-Herttuala S, Korhonen M, Vettenranta K, Laitinen A, Salmenniemi U, Kerkelä E. Automated and closed clinical-grade manufacturing protocol produces potent NK cells against neuroblastoma cells and AML blasts. Sci Rep 2024; 14:26678. [PMID: 39496674 PMCID: PMC11535237 DOI: 10.1038/s41598-024-76791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Natural killer (NK) cells are a promising allogeneic immunotherapy option due to their natural ability to kill tumor cells, and due to their apparent safety. This study describes the development of a GMP-compliant manufacturing protocol for the local production of functionally potent NK cells tailored for high-risk acute myeloid leukemia (AML) and neuroblastoma (NBL) patients. Moreover, the quality control strategy and considerations for product batch specifications in early clinical development are described. The protocol is based on the CliniMACS Prodigy platform and Natural Killer Cell Transduction (NKCT) (Miltenyi Biotec). NK cells are isolated from leukapheresis through CD3 depletion and CD56 enrichment, followed by a 12-hour activation with IL-2 and IL-15 cytokines. Three CliniMACS Prodigy processes demonstrated the feasibility and consistency of the modified NKCT process. A three-step process without expansion, however, compromised the NK cell yield. T cells were depleted effectively, indicating excellent safety of the product. Characterization of the NK cells before and after cytokine activation revealed a notable increase in the expression of activation markers, particularly CD69, consistent with enhanced functionality. Intriguingly, the NK cells exhibited increased killing efficacy against patient-derived CD33 + AML blasts and NBL cells in vitro, suggesting a potential therapeutic benefit in AML and NBL.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Neuroblastoma/pathology
- Neuroblastoma/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Interleukin-15/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Interleukin-2/metabolism
- Leukapheresis/methods
- Cytokines/metabolism
Collapse
Affiliation(s)
- Farhana Jahan
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Leena Penna
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | - Annu Luostarinen
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | - Laurens Veltman
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Heidi Hongisto
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | | | - Sabine Müller
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, Germany
| | - Seppo Ylä-Herttuala
- Translational Cancer Medicine Research Program, University of Eastern Finland, Kuopio, Finland
| | - Matti Korhonen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Kim Vettenranta
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
- University of Helsinki and the Children's Hospital, Helsinki, Finland
| | - Anita Laitinen
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | - Urpu Salmenniemi
- Stem Cell Transplantation Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Erja Kerkelä
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland.
| |
Collapse
|
8
|
Mayani H. Umbilical Cord Blood Hematopoietic Cells: From Biology to Hematopoietic Transplants and Cellular Therapies. Arch Med Res 2024; 55:103042. [PMID: 39003965 DOI: 10.1016/j.arcmed.2024.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Umbilical cord blood (UCB) is a rich source of hematopoietic stem and progenitor cells that are biologically superior to their adult counterparts. UCB cells can be stored for several years without compromising their numbers or function. Today, public and private UCB banks have been established in several countries around the world. After 35 years since the first UCB transplant (UCBT), more than 50,000 UCBTs have been performed worldwide. In pediatric patients, UCBT is comparable to or superior to bone marrow transplantation. In adult patients, UCB can be an alternative source of hematopoietic cells when an HLA-matched unrelated adult donor is not available and when a transplant is urgently needed. Delayed engraftment (due to reduced absolute numbers of hematopoietic cells) and higher costs have led many medical institutions not to consider UCB as a first-line cell source for hematopoietic transplants. As a result, the use of UCB as a source of hematopoietic stem and progenitor cells for transplantation has declined over the past decade. Several approaches are being investigated to make UCBTs more efficient, including improving the homing capabilities of primitive UCB cells and increasing the number of hematopoietic cells to be infused. Several of these approaches have already been applied in the clinic with promising results. UCB also contains immune effector cells, including monocytes and various lymphocyte subsets, which, together with stem and progenitor cells, are excellent candidates for the development of cellular therapies for hematological and non-hematological diseases.
Collapse
Affiliation(s)
- Hector Mayani
- Oncology Research Unit, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico.
| |
Collapse
|
9
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
10
|
Kaito Y, Imai Y. Evolution of natural killer cell-targeted therapy for acute myeloid leukemia. Int J Hematol 2024; 120:34-43. [PMID: 38693419 DOI: 10.1007/s12185-024-03778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
In hematologic oncology, acute myeloid leukemia (AML) presents a significant challenge due to its complex genetic landscape and resistance to conventional therapies. Despite advances in treatment, including intensive chemotherapy and hematopoietic stem cell transplantation (HSCT), the prognosis for many patients with AML remains poor. Recently, immunotherapy has emerged as a promising approach to improve outcomes by augmenting existing treatments. Natural killer (NK) cells, a subset of innate lymphoid cells, have garnered attention for their potent cytotoxic capabilities against AML cells. In this review, we discuss the role of NK cells in AML immunosurveillance, their dysregulation in patients with AML, and various therapeutic strategies leveraging NK cells in AML treatment. We explore the challenges and prospects associated with NK cell therapy, including approaches to enhance NK cell function, overcome immune evasion mechanisms, and optimize treatment efficacy. Finally, we emphasize the importance of further research to validate and refine patient-first NK cell-based immunotherapies for AML.
Collapse
Affiliation(s)
- Yuta Kaito
- Department of Hematology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan.
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
11
|
Qi Y, Li Y, Wang H, Wang A, Liu X, Liang Z, Gao Y, Wei L. Natural killer cell-related anti-tumour adoptive cell immunotherapy. J Cell Mol Med 2024; 28:e18362. [PMID: 38837666 PMCID: PMC11151221 DOI: 10.1111/jcmm.18362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
Chimeric antigen receptor- (CAR-)modified T cells have been successfully used to treat blood cancer. With the improved research on anti-tumour adoptive cell therapy, researchers have focused on immune cells other than T lymphocytes. Natural killer (NK) cells have received widespread attention as barriers to natural immunity. Compared to T lymphocyte-related adoptive cell therapy, the use of NK cells to treat tumours does not cause graft-versus-host disease, significantly improving immunity. Moreover, NK cells have more sources than T cells, and the related modified cells are less expensive. NK cells function through several pathways in anti-tumour mechanisms. Currently, many anti-tumour clinical trials have used NK cell-related adoptive cell therapies. In this review, we have summarized the recent progress in NK cell-related adoptive cellular immunotherapy for tumour treatment and propose the current challenges faced by CAR-NK cell therapy.
Collapse
Affiliation(s)
- Yuwen Qi
- Department of Gynecological OncologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Ying Li
- Physical Examination CenterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Wang
- Department of Gynecological OncologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Anjin Wang
- Department of Gynecological OncologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Xuelian Liu
- Department of Gynecological OncologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Ziyan Liang
- Department of Gynecological OncologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Yang Gao
- Department of Gynecological OncologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Liqing Wei
- Wuhan Wuchang HospitalWuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
12
|
Isvoranu G, Chiritoiu-Butnaru M. Therapeutic potential of interleukin-21 in cancer. Front Immunol 2024; 15:1369743. [PMID: 38638431 PMCID: PMC11024325 DOI: 10.3389/fimmu.2024.1369743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Interleukin-21 (IL-21) is an immunostimulatory cytokine which belongs to the common gamma-chain family of cytokines. It plays an import role in the development, differentiation, proliferation, and activation of immune cells, in particular T and natural killer (NK) cells. Since its discovery in 2000, IL-21 has been shown to regulate both adaptive and immune responses associates with key role in antiviral and antitumor responses. Recent advances indicate IL-21 as a promising target for cancer treatment and encouraging results were obtained in preclinical studies which investigated the potency of IL-21 alone or in combination with other therapies, including monoclonal antibodies, checkpoint inhibitory molecules, oncolytic virotherapy, and adoptive cell transfer. Furthermore, IL-21 showed antitumor effects in the treatment of patients with advanced cancer, with minimal side effects in several clinical trials. In the present review, we will outline the recent progress in IL-21 research, highlighting the potential of IL-21 based therapy as single agent or in combination with other drugs to enhance cancer treatment efficiency.
Collapse
Affiliation(s)
- Gheorghita Isvoranu
- Department of Animal Husbandry,” Victor Babeș” National Institute of Pathology, Bucharest, Romania
| | - Marioara Chiritoiu-Butnaru
- Department of Molecular and Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
13
|
Vo MC, Jung SH, Nguyen VT, Tran VDH, Ruzimurodov N, Kim SK, Nguyen XH, Kim M, Song GY, Ahn SY, Ahn JS, Yang DH, Kim HJ, Lee JJ. Exploring cellular immunotherapy platforms in multiple myeloma. Heliyon 2024; 10:e27892. [PMID: 38524535 PMCID: PMC10957441 DOI: 10.1016/j.heliyon.2024.e27892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Despite major advances in therapeutic platforms, most patients with multiple myeloma (MM) eventually relapse and succumb to the disease. Among the novel therapeutic options developed over the past decade, genetically engineered T cells have a great deal of potential. Cellular immunotherapies, including chimeric antigen receptor (CAR) T cells, are rapidly becoming an effective therapeutic modality for MM. Marrow-infiltrating lymphocytes (MILs) derived from the bone marrow of patients with MM are a novel source of T cells for adoptive T-cell therapy, which robustly and specifically target myeloma cells. In this review, we examine the recent innovations in cellular immunotherapies, including the use of dendritic cells, and cellular tools based on MILs, natural killer (NK) cells, and CAR T cells, which hold promise for improving the efficacy and/or reducing the toxicity of treatment in patients with MM.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Institute of Research and Development, Duy Tan University, Danang, Viet Nam
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Tan Nguyen
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Dinh-Huan Tran
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Nodirjon Ruzimurodov
- Institute of Immunology and Human Genomics of the Academy of Sciences of the Republic of Uzbekistan, Uzbekistan
| | - Sang Ki Kim
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-eup, Yesan-gun, Chungnam, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Xuan-Hung Nguyen
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Mihee Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Ga-Young Song
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Seo-Yeon Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
14
|
Maia A, Tarannum M, Lérias JR, Piccinelli S, Borrego LM, Maeurer M, Romee R, Castillo-Martin M. Building a Better Defense: Expanding and Improving Natural Killer Cells for Adoptive Cell Therapy. Cells 2024; 13:451. [PMID: 38474415 PMCID: PMC10930942 DOI: 10.3390/cells13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.
Collapse
Affiliation(s)
- Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
- NOVA Medical School, NOVA University of Lisbon, 1099-085 Lisbon, Portugal
| | - Mubin Tarannum
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Joana R. Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
| | - Sara Piccinelli
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Luis Miguel Borrego
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas (FCM), NOVA University of Lisbon, 1099-085 Lisbon, Portugal;
- Immunoallergy Department, Hospital da Luz, 1600-209 Lisbon, Portugal
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
- I Medical Clinic, University of Mainz, 55131 Mainz, Germany
| | - Rizwan Romee
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- Pathology Service, Champalimaud Clinical Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
15
|
Pateraki P, Latsoudis H, Papadopoulou A, Gontika I, Fragiadaki I, Mavroudi I, Bizymi N, Batsali A, Klontzas ME, Xagorari A, Michalopoulos E, Sotiropoulos D, Yannaki E, Stavropoulos-Giokas C, Papadaki HA. Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece. J Clin Med 2024; 13:1152. [PMID: 38398465 PMCID: PMC10889829 DOI: 10.3390/jcm13041152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The umbilical cord blood (UCB) donated in public UCB banks is a source of hematopoietic stem cells (HSC) alternative to bone marrow for allogeneic HSC transplantation (HSCT). However, the high rejection rate of the donated units due to the strict acceptance criteria and the wide application of the haploidentical HSCT have resulted in significant limitation of the use of UCB and difficulties in the economic sustainability of the public UCB banks. There is an ongoing effort within the UCB community to optimize the use of UCB in the field of HSCT and a parallel interest in exploring the use of UCB for applications beyond HSCT i.e., in the fields of cell therapy, regenerative medicine and specialized transfusion medicine. In this report, we describe the mode of operation of the three public UCB banks in Greece as an example of an orchestrated effort to develop a viable UCB banking system by (a) prioritizing the enrichment of the national inventory by high-quality UCB units from populations with rare human leukocyte antigens (HLA), and (b) deploying novel sustainable applications of UCB beyond HSCT, through national and international collaborations. The Greek paradigm of the public UCB network may become an example for countries, particularly with high HLA heterogeneity, with public UCB banks facing sustainability difficulties and adds value to the international efforts aiming to sustainably expand the public UCB banking system.
Collapse
Affiliation(s)
- Patra Pateraki
- Law Directorate of the Health Region of Crete, Ministry of Health, Heraklion, 71500 Heraklion, Greece;
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
| | - Helen Latsoudis
- Institute of Computer Sciences, Foundation for Research and Technology–Hellas (FORTH), 70013 Heraklion, Greece;
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Department of Hematology-HCT Unit, George Papanikolaou Hospital, 57010 Thessaloniki, Greece;
| | - Ioanna Gontika
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Fragiadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Mavroudi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Nikoleta Bizymi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Aristea Batsali
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Michail E. Klontzas
- Department of Radiology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
- Department of Medical Imaging, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Angeliki Xagorari
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Damianos Sotiropoulos
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Evangelia Yannaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Helen A. Papadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
16
|
Alekseeva NA, Streltsova MA, Vavilova JD, Ustiuzhanina MO, Palamarchuk AI, Boyko AA, Timofeev ND, Popodko AI, Kovalenko EI. Obtaining Gene-Modified HLA-E-Expressing Feeder Cells for Stimulation of Natural Killer Cells. Pharmaceutics 2024; 16:133. [PMID: 38276503 PMCID: PMC10818548 DOI: 10.3390/pharmaceutics16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Human cytomegalovirus (HCMV)-specific adaptive NK cells are capable of recognizing viral peptides presented by HLA-E on infected cells via the NKG2C receptor. Using retroviral transduction, we have generated a K562-cell-based line expressing HLA-E in the presence of the HLA-E-stabilizing peptide, which has previously shown the capacity to enhance adaptive NK cell response. The obtained K562-21E cell line was employed to investigate proliferative responses of the CD57- NK cell subset of HCMV-seropositive and seronegative donors. Stimulation of CD57- NK cells with K562-21E/peptide resulted in an increased cell expansion during the 12-day culturing period, regardless of the serological HCMV status of the donor. The enhanced proliferation in response to the peptide was associated with a greater proportion of CD56brightHLA-DR+ NK cells. In later stages of cultivation, the greatest proliferative response to K562-21E/peptide was shown for a highly HCMV-seropositive donor. These expanded NK cells were characterized by the accumulation of CD57-KIR2DL2/3+NKG2C+NKG2A- cells, which are hypothesized to represent adaptive NK cell progenitors. The K562-21E feeder cells can be applied both for the accumulation of NK cells as therapeutic effectors, and for the study of NK cell maturation into the adaptive state after the HLA-E peptide presentation.
Collapse
Affiliation(s)
- Nadezhda A. Alekseeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Maria A. Streltsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Julia D. Vavilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Maria O. Ustiuzhanina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Anastasia I. Palamarchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Anna A. Boyko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Nikita D. Timofeev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| | - Alexey I. Popodko
- Department of Radiation Oncology, European Medical Center, Schepkina 35, 129110 Moscow, Russia;
| | - Elena I. Kovalenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (J.D.V.); (M.O.U.); (A.I.P.); (A.A.B.); (N.D.T.)
| |
Collapse
|
17
|
Pan W, Tao T, Qiu Y, Zhu X, Zhou X. Natural killer cells at the forefront of cancer immunotherapy with immune potency, genetic engineering, and nanotechnology. Crit Rev Oncol Hematol 2024; 193:104231. [PMID: 38070841 DOI: 10.1016/j.critrevonc.2023.104231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Natural killer (NK) cells are vital components of the human immune system, acting as innate lymphocytes and playing a crucial role in immune surveillance. Their unique ability to independently eliminate target cells without antigen contact or antibodies has sparked interest in immunological research. This review examines recent NK cell developments and applications, encompassing immune functions, interactions with target cells, genetic engineering techniques, pharmaceutical interventions, and implications in cancers. Insights into NK cell regulation emerge, with a focus on promising genetic engineering like CAR-engineered NK cells, enhancing specificity against tumors. Immune checkpoint inhibitors also enhance NK cells' potential in cancer therapy. Nanotechnology's emergence as a tool for targeted drug delivery to improve NK cell therapies is explored. In conclusion, NK cells are pivotal in immunity, holding exciting potential in cancer immunotherapy. Ongoing research promises novel therapeutic strategies, advancing immunotherapy and medical interventions.
Collapse
Affiliation(s)
- Weiyi Pan
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; School of Public Health, Southern Medical University, Guangzhou, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Yishu Qiu
- Department of Biology, College of Arts and Science, New York University, New York, USA
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
18
|
Nagamura-Inoue T, Nagamura F. Umbilical cord blood and cord tissue banking as somatic stem cell resources to support medical cell modalities. Inflamm Regen 2023; 43:59. [PMID: 38053217 PMCID: PMC10696687 DOI: 10.1186/s41232-023-00311-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Human umbilical cord blood (CB) and umbilical cord tissue (UC) are attractive sources of somatic stem cells for gene and cell therapies. CB and UC can be obtained noninvasively from donors. CB, a known source of hematopoietic stem cells for transplantation, has attracted attention as a new source of immune cells, including universal chimeric antigen receptor-T cell therapy (CAR-T) and, more recently, universal CAR-natural killer cells. UC-derived mesenchymal stromal cells (UC-MSCs) have a higher proliferation potency than those derived from adult tissues and can be used anon-HLA restrictively. UC-MSCs meet the MSC criteria outlined by the International Society of Gene and Cellular Therapy. UC-MSCs are negative for HLA-DR, CD80, and CD86 and have an immunosuppressive ability that mitigates the proliferation of activated lymphocytes through secreting indoleamine 2,3-dioxygenase 1 and prostaglandin E2, and the expression of PD-L2 and PD-L1. We established the off-the-shelf cord blood/cord bank IMSUT CORD to support novel cell therapy modalities, including the CB-derived immune cells, MSCs, MSCs-derived extracellular vesicles, biological carriers loaded with chemotherapy drugs, prodrug, oncolytic viruses, nanoparticles, human artificial chromosome, combinational products with a scaffold, bio3D printing, and so on.
Collapse
Affiliation(s)
- Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Fumitaka Nagamura
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Advanced Medicine Promotion, The Advanced Clinical Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Fetzko SL, Timothy LD, Parihar R. NK Cell Therapeutics for Hematologic Malignancies: from Potential to Fruition. Curr Hematol Malig Rep 2023; 18:264-272. [PMID: 37751103 DOI: 10.1007/s11899-023-00711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE OF REVIEW The current review focuses on the preclinical development and clinical advances of natural killer (NK) cell therapeutics for hematologic malignancies and offers perspective on the unmet challenges that will direct future discovery in the field. RECENT FINDINGS Approaches to improve or re-direct NK cell anti-tumor functions against hematologic malignancies have included transgenic expression of chimeric antigen receptors (CARs), administration of NK cell engagers including BiKEs and TriKEs that enhance antibody-dependent cellular cytotoxicity (ADCC) by co-engaging NK cell CD16 and antigens on tumors, incorporation of a non-cleavable CD16 that results in enhanced ADCC, use of induced memory-like NK cells alone or in combination with CARs, and blockade of NK immune checkpoints to enhance NK cytotoxicity. Recently reported and ongoing clinical trials support the feasibility and safety of these approaches. NK cell-based therapeutic strategies hold great promise as cost-effective, off-the-shelf cell therapies for patients with relapsed and refractory hematologic diseases.
Collapse
Affiliation(s)
- Stephanie L Fetzko
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Leander D Timothy
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Robin Parihar
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Vitale C, Griggio V, Perutelli F, Coscia M. CAR-modified Cellular Therapies in Chronic Lymphocytic Leukemia: Is the Uphill Road Getting Less Steep? Hemasphere 2023; 7:e988. [PMID: 38044959 PMCID: PMC10691795 DOI: 10.1097/hs9.0000000000000988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
The clinical development of chimeric antigen receptor (CAR) T-cell therapy has been more challenging for chronic lymphocytic leukemia (CLL) compared to other settings. One of the main reasons is the CLL-associated state of immune dysfunction that specifically involves patient-derived T cells. Here, we provide an overview of the clinical results obtained with CAR T-cell therapy in CLL, describing the identified immunologic reasons for the inferior efficacy. Novel CAR T-cell formulations, such as lisocabtagene maraleucel, administered alone or in combination with the Bruton tyrosine kinase inhibitor ibrutinib, are currently under investigation. These approaches are based on the rationale that improving the quality of the T-cell source and of the CAR T-cell product may deliver a more functional therapeutic weapon. Further strategies to boost the efficacy of CAR T cells should rely not only on the production of CAR T cells with an improved cellular composition but also on additional changes. Such alterations could include (1) the coadministration of immunomodulatory agents capable of counteracting CLL-related immunological alterations, (2) the design of improved CAR constructs (such as third- and fourth-generation CARs), (3) the incorporation into the manufacturing process of immunomodulatory compounds overcoming the T-cell defects, and (4) the use of allogeneic CAR T cells or alternative CAR-modified cellular vectors. These strategies may allow to develop more effective CAR-modified cellular therapies capable of counteracting the more aggressive and still incurable forms of CLL.
Collapse
Affiliation(s)
- Candida Vitale
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Valentina Griggio
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Francesca Perutelli
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Marta Coscia
- University Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| |
Collapse
|
21
|
Nakazawa T, Maeoka R, Morimoto T, Matsuda R, Nakamura M, Nishimura F, Yamada S, Nakagawa I, Park YS, Ito T, Nakase H, Tsujimura T. An efficient feeder-free and chemically-defined expansion strategy for highly purified natural killer cells derived from human cord blood. Regen Ther 2023; 24:32-42. [PMID: 37303464 PMCID: PMC10247952 DOI: 10.1016/j.reth.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/24/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Natural killer cells (NKCs) are immune cells that can attack cancer cells through the direct recognition of ligands without prior sensitization. Cord blood-derived NKCs (CBNKCs) represent a promising tool for allogenic NKC-based cancer immunotherapy. Efficient NKC expansion and decreased T cell inclusion are crucial for the success of allogeneic NKC-based immunotherapy without inducing graft-versus-host reactions. We previously established an efficient ex vivo expansion system consisting of highly purified-NKCs derived from human peripheral blood. Herein, we evaluated the performance of the NKC expansion system using CB and characterized the expanded populations. Methods Frozen CB mononuclear cells (CBMCs), with T cells removed, were cultured with recombinant human interleukin (rhIL)-18 and rhIL-2 under conditions where anti-NKp46 and anti-CD16 antibodies were immobilized. Following 7, 14, and 21 days of expansion, the purity, fold-expansion rates of NKCs, and the expression levels of NK activating and inhibitory receptors were assessed. The ability of these NKCs to inhibit the growth of T98G, a glioblastoma (GBM) cell line sensitive to NK activity, was also examined. Results All expanded T cell-depleted CBMCs were included in over 80%, 98%, and 99% of CD3-CD56+ NKCs at 7, 14, and 21 days of expansion, respectively. The NK activating receptors LFA-1, NKG2D, DNAM-1, NKp30, NKp44, NKp46, FcγRIII and NK inhibitory receptors TIM-3, TIGIT, TACTILE, NKG2A were expressed on the expanded-CBNKCs. Two out of three of the expanded-CBNKCs weakly expressed PD-1, yet gradually expressed PD-1 according to expansion period. One of the three expanded CBNKCs almost lacked PD-1 expression during the expansion period. LAG-3 expression was variable among donors, and no consistent changes were identified during the expansion period. All of the expanded CBNKCs elicited distinct cytotoxicity-mediated growth inhibition on T98G cells. The level of cytotoxicity was gradually decreased based on the prolonged expansion period. Conclusions Our established feeder-free expansion system yielded large scale highly purified and cytotoxic NKCs derived from human CB. The system provides a stable supply of clinical grade off-the-shelf NKCs and may be feasible for allogeneic NKC-based immunotherapy for cancers, including GBM.
Collapse
Affiliation(s)
- Tsutomu Nakazawa
- Grandsoul Research Institute for Immunology, Inc., Uda, Nara, 633-2221, Japan
- Clinic Grandsoul Nara, Matsui 8-1, Uda, Nara, 633-2221, Japan
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Mitsutoshi Nakamura
- Clinic Grandsoul Nara, Matsui 8-1, Uda, Nara, 633-2221, Japan
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda, Nara, 633-2221, Japan
- Clinic Grandsoul Nara, Matsui 8-1, Uda, Nara, 633-2221, Japan
| |
Collapse
|
22
|
Fantini M, Arlen PM, Tsang KY. Potentiation of natural killer cells to overcome cancer resistance to NK cell-based therapy and to enhance antibody-based immunotherapy. Front Immunol 2023; 14:1275904. [PMID: 38077389 PMCID: PMC10704476 DOI: 10.3389/fimmu.2023.1275904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells are cellular components of the innate immune system that can recognize and suppress the proliferation of cancer cells. NK cells can eliminate cancer cells through direct lysis, by secreting perforin and granzymes, or through antibody-dependent cell-mediated cytotoxicity (ADCC). ADCC involves the binding of the Fc gamma receptor IIIa (CD16), present on NK cells, to the constant region of an antibody already bound to cancer cells. Cancer cells use several mechanisms to evade antitumor activity of NK cells, including the accumulation of inhibitory cytokines, recruitment and expansion of immune suppressor cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), modulation of ligands for NK cells receptors. Several strategies have been developed to enhance the antitumor activity of NK cells with the goal of overcoming cancer cells resistance to NK cells. The three main strategies to engineer and boost NK cells cytotoxicity include boosting NK cells with modulatory cytokines, adoptive NK cell therapy, and the employment of engineered NK cells to enhance antibody-based immunotherapy. Although the first two strategies improved the efficacy of NK cell-based therapy, there are still some limitations, including immune-related adverse events, induction of immune-suppressive cells and further cancer resistance to NK cell killing. One strategy to overcome these issues is the combination of monoclonal antibodies (mAbs) that mediate ADCC and engineered NK cells with potentiated anti-cancer activity. The advantage of using mAbs with ADCC activity is that they can activate NK cells, but also favor the accumulation of immune effector cells to the tumor microenvironment (TME). Several clinical trials reported that combining engineered NK cells with mAbs with ADCC activity can result in a superior clinical response compared to mAbs alone. Next generation of clinical trials, employing engineered NK cells with mAbs with higher affinity for CD16 expressed on NK cells, will provide more effective and higher-quality treatments to cancer patients.
Collapse
|
23
|
Ahmadvand M, Barough MS, Barkhordar M, Faridfar A, Ghaderi A, Jalaeikhoo H, Rajaienejad M, Majidzadeh K, Ghavamzadeh A, Sarrami-Forooshani R. Phase I non-randomized clinical trial of allogeneic natural killer cells infusion in acute myeloid leukemia patients. BMC Cancer 2023; 23:1090. [PMID: 37950209 PMCID: PMC10636850 DOI: 10.1186/s12885-023-11610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION A new type of immune cell transplantation called allogeneic NK cell infusion is proposed as a potential universal off-the-shelf cell product for adoptive immune cell therapy in hematologic malignancies. DESIGN A multicentral phase I non-randomized clinical trial was conducted to assess the safety, feasibility, and potential efficacy of adoptively infused NK cells in patients with refractory/relapsed AML. We evaluated the feasibility of the trial by considering cell production, patient selection, and treatment protocol. METHOD Allogeneic NK cells were produced from random healthy unrelated donors; 10 patients were selected according to the inclusion criteria and were included in two groups in case of NK cell dose escalation. Two cell infusions were given, spaced 7 days apart, following a lymphodepletion conditioning regimen of fludarabin-endoxan administered 7 days before the first infusion. The intervention safety was scored using Common Terminology Criteria for Adverse Events (CTCAE) based on variations in vital signs due to cell infusion. NK cell chimerism, tumor burden, and duration of relapse were considered to be components of efficacy. The pilot feasibility evaluation was checked using the CONSORT platform. RESULTS The NK cell infusion procedure was well tolerated, and no grade 2-5 toxicities related (possible or probable) to PB-NK cell infusion were observed. Four patients developed grade 1 transient chills, headaches, vomiting, and bone pain following each PB-NK cell infusion that were not required hospitalization. One of these patients (p01) died because of severe acute respiratory syndrome. Of 9 evaluable patients, 6 (66.6%) showed stable disease (SD) and 3 (33.3%) presented progressive disease (PD). Of 6 SD patients, 2 (p08 and p09) remained alive in SD and 3 patients (p04, p05 and p07) converted to PD at 9 months after infusion of NK cells, and 1 (p03) was not evaluable due to follow-up loss. No patient achieved complete remission. CONCLUSION The study demonstrated the feasibility and safety of adoptive transfer of random healthy unrelated donor PB-NK cells in refractory/relapsed AML patients and supports continued study in phase II clinical trials in relapsed/refractory AML patients.
Collapse
Affiliation(s)
- Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdieh Shokrollahi Barough
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
| | - Maryam Barkhordar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
| | - Afshin Ghaderi
- Department of Internal Medicine, Hematology and Medical Oncology Ward, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hasan Jalaeikhoo
- Research Center for Cancer Epidemiology and Screening, Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaienejad
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
| | - Keivan Majidzadeh
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran.
- Cancer and cell therapy research center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ramin Sarrami-Forooshani
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran.
| |
Collapse
|
24
|
Wu Y, Wang Y, Ji J, Kuang P, Chen X, Liu Z, Li J, Dong T, Li X, Chen Q, Liu T. A pilot study of cord blood-derived natural killer cells as maintenance therapy after autologous hematopoietic stem cell transplantation. Ann Hematol 2023; 102:3229-3237. [PMID: 37775597 DOI: 10.1007/s00277-023-05471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Natural killer (NK) cell based immunotherapy is an emerging strategy in hematologic malignancies because allogeneic NK cells can provide potent antitumor immunity without inducing graft-versus-host disease. Thus, we expanded cord blood-derived NK (CB-NK) cells ex vivo from random (MHC mismatched and KIR mismatched) donors, and investigate the feasibility and efficacy of repeated infusions CB-NK cells as maintenance therapy after autologous hematopoietic stem cell transplantation (ASCT). Thirty-one patients with acute myeloid leukemia and high-risk lymphoma received ASCT and the adoptive CB-NK cell multiple infusions for maintenance therapy. Patients received a median dose of 5.98 × 107/kg (range, 1.87-17.69 × 107/kg) CB-NK cells and 23 patients completed four infusions, 8 patients received three infusions. Only mild infusion reactions occurred in 15.5% of 116 infusions. Compared to a contemporaneous cohort of 90 patients who did not receive NK cell therapy, the adoptive transfer of CB-NK cells as maintenance treatment showed a tendency of difference in decreasing the relapse rate between CB-NK group and control group (9.7% vs 24.4%). The patients who receiving NK cell infusions had a better PFS and OS than controls (4 year PFS, 84.4 ± 8.3% vs 73.5 ± 5.4%; and 4 year OS, 100% vs 78.1 ± 5.4%) . These findings demonstrate safety and validity of maintenance therapy using CB-NK cells multiple infusions after ASCT, and it is worthy of further clinical trial verification.
Collapse
Affiliation(s)
- Yuling Wu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yue Wang
- Sichuan Cord Blood Bank and Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, Sichuan, China
| | - Jie Ji
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pu Kuang
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinchuan Chen
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhigang Liu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jian Li
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tian Dong
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelian Li
- Sichuan Cord Blood Bank and Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, Sichuan, China
| | - Qiang Chen
- Sichuan Cord Blood Bank and Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, Sichuan, China
| | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
25
|
Wen W, Chen X, Shen XY, Li HY, Zhang F, Fang FQ, Zhang XB. Enhancing cord blood stem cell-derived NK cell growth and differentiation through hyperosmosis. Stem Cell Res Ther 2023; 14:295. [PMID: 37840146 PMCID: PMC10578005 DOI: 10.1186/s13287-023-03461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Natural killer (NK) cells hold great promise in treating diverse hematopoietic and solid tumors. Despite their availability from peripheral blood and cord blood, stem cell-derived NK cells offer an 'off-the-shelf' solution. Hematopoietic stem and progenitor cells (HSPCs) derived from cord blood pose no risk to the newborn or mother and are virtually ideal sources for NK cell differentiation. METHODS We developed a modified protocol to differentiate HSPCs to NK cells under serum-free conditions using defined factors. The HSPC-derived NK (HSC-NK) cells could be expanded in a K562 feeder cell-dependent manner. Furthermore, using lentivirus transduction, chimeric antigen receptor (CAR)-modified HSPCs could be differentiated into NK cells, leading to the establishment of CAR-NK cells. RESULTS The efficiency of NK cell differentiation from HSPCs was increased through the simple modulation of osmotic pressure by the addition of sodium chloride or glucose. Furthermore, the hyperosmosis-primed HSC-NK cells exhibited enhanced proliferation capacity and maintained normal functional characteristics, including transcriptome and antitumor efficacy. The optimized protocol yielded approximately 1.8 million NK cells from a single CD34-positive cell within a 28-day cycle, which signifies more than a ten-fold increase in efficiency relative to the conventional methods. This optimized protocol was also suitable for generating CAR-NK cells with high yields compared to standard conditions. CONCLUSIONS The results of this study establish high osmotic pressure as a simple yet powerful adjustment that significantly enhances the efficiency and functionality of HSC-NK cells, including CAR-NK cells. This optimized protocol could lead to cost-effective, high-yield NK cell therapies, potentially revolutionizing cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiang Chen
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin-Yi Shen
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Hua-Yu Li
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Feng-Qi Fang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
26
|
Shman TV, Vashkevich KP, Migas AA, Matveyenka MA, Lasiukov YA, Mukhametshyna NS, Horbach KI, Aleinikova OV. Phenotypic and functional characterisation of locally produced natural killer cells ex vivo expanded with the K562-41BBL-mbIL21 cell line. Clin Exp Med 2023; 23:2551-2560. [PMID: 36527513 DOI: 10.1007/s10238-022-00974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
We characterised the expansion, phenotype and functional activity of natural killer (NK) cells obtained for a clinical trial. Nineteen expansion procedures were performed to obtain NK cell products for 16 patients. NK cells were expanded ex vivo from haploidentical donor peripheral blood mononuclear cells in the presence of the locally generated feeder cell line K-562 with ectopic expression of 4-1BBL and mbIL-21. The median duration of expansion was 18 days (interquartile range 15-19). The median number of live cells yielded was 2.26 × 109 (range 1.6-3.4 × 109) with an NK content of 96.6% (range 95.1-97.9%). The median NK cell fold expansion was 171 (range 124-275). NK cell fold expansion depended on the number of seeded NK cells, the initial level of C-myc expression and the initial number of mature and immature NK cells. The majority of expanded NK cells had the phenotype of immature activated cells (NKG2A + , double bright CD56 + + CD16 + + , CD57-) expressing NKp30, NKp44, NKp46, NKG2D, CD69, HLA-DR and CD96. Despite the expression of exhaustion markers, expanded NK cells exhibited high cytolytic activity against leukaemia cell lines, high degranulation activity and cytokine production. There was a noted decrease in the functional activity of NK cells in tests against the patient's blasts.In conclusion, NK cells obtained by ex vivo expansion with locally generated K562-41BBL-mbIL21 cells had a relatively undifferentiated phenotype and enhanced cytolytic activity against cancer cell lines. Expansion of NK cells with feeder cells yielded a sufficient quantity of the NK cell product to reach high cell doses or increase the frequency of cell infusions for adoptive immunotherapy. Registered at clinicaltrials.gov as NCT04327037.
Collapse
Affiliation(s)
- Tatsiana V Shman
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus.
| | - Katsiaryna P Vashkevich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Alexandr A Migas
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Mikhail A Matveyenka
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Yauheni A Lasiukov
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Nastassia S Mukhametshyna
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Katsiaryna I Horbach
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Olga V Aleinikova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| |
Collapse
|
27
|
Çubukçu HC, Mesutoğlu PY, Seval GC, Beksaç M. Ex vivo expansion of natural killer cells for hematological cancer immunotherapy: a systematic review and meta-analysis. Clin Exp Med 2023; 23:2503-2533. [PMID: 36333526 DOI: 10.1007/s10238-022-00923-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
The present systematic review aimed to investigate natural killer (NK) cell ex vivo expansion protocols within the scope of clinical trials targeting hematological cancer and to conduct a meta-analysis to assess the effect of NK cell infusion on survival. Research articles of clinical studies in which cell products produced by ex vivo expansion, consisting of a certain amount of NK cells and infused to patients with hematological cancer, were included in the systematic review. We conducted a proportion analysis with random effects for product purity and viability values. Studies having control groups were included in the survival meta-analysis. Among 11.028 identified records, 21 were included in the systematic review. We observed statistically significant heterogeneity for viability (I2 = 97.83%, p < 0.001) and purity values (I2 = 99.95%, p < 0.001), which was attributed to the diversity among isolation and expansion protocols. In addition, the survival meta-analysis findings suggested that NK cell therapy favors disease-free survival (DFS) of patients with myeloid malignancies but limited to only two clinical studies (odds ratio = 3.40 (confidence interval:1.27-9.10), p = 0.01). While included protocols yielded cell products with acceptable viability, the utility of immunomagnetic methods; feeder cells such as K562 expressing membrane-bound IL15 and 4-1BBL or expressing membrane-bound IL21 and 4-1BBL might be preferable to achieve better purity. In conclusion, NK cell therapy has a potential to improve DFS of patients with myeloid malignancies.
Collapse
Affiliation(s)
- Hikmet Can Çubukçu
- Interdisciplinary Stem Cells and Regenerative Medicine, Ankara University Stem Cell Institute, Ankara, Turkey
- Autism, Special Mental Needs and Rare Diseases Department, General Directorate of Health Services, Turkish Ministry of Health, Ankara, Turkey
| | | | | | - Meral Beksaç
- Department of Hematology, Ankara University, Ankara, Turkey.
| |
Collapse
|
28
|
Fang J, Wei H, Wang H, Wang J, Liu H, Chen Y, Chen L, Lu L, Zhang Q, Pan R, Cui E, Luo X. Human placenta-derived mesenchymal stem cell administration protects against acute lung injury in a mouse model. J Cell Biochem 2023; 124:1249-1258. [PMID: 37450693 DOI: 10.1002/jcb.30445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
This study aims to investigate the effect of placenta-derived mesenchymal stem cells (PMSCs) administration on tissue repair following acute lung injury (ALI). PMSCs were transplanted intravenously to a mouse model of lipopolysaccharide-induced ALI. The therapeutic effects were determined by evaluating several indicators, including pathology; the wet/dry ratio of the lungs; blood gas analysis; the total protein content, cell numbers, and the activity of myeloperoxidase (MPO) in bronchial alveolar lavage fluid (BALF); and the levels of anti-inflammatory and proinflammatory cytokines in serum and BALF. To investigate the underlying mechanism, PMSC-derived exosomes were used for ALI treatment. Administration of PMSCs improved the degree of lung injury, reduced inflammation, increased the expression levels of anti-inflammatory cytokines, and protected lung function. As expected, the effects of PMSC-derived exosomes in the ALI model were similar to those of PMSCs, both in terms of improved lung function and reduced inflammation. These findings suggest that PMSCs have ameliorating effects on ALI that are potentially mediated via their secreted exosomes.
Collapse
Affiliation(s)
- Junbiao Fang
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Hanwei Wei
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Hongfa Wang
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Junkai Wang
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Huizi Liu
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Yue Chen
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Long Chen
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Ling Lu
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Qiang Zhang
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Enhai Cui
- Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Xiaopan Luo
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| |
Collapse
|
29
|
Seo H, Verma A, Kinzel M, Huang Q, Mahoney DJ, Jacquelot N. Targeting Potential of Innate Lymphoid Cells in Melanoma and Other Cancers. Pharmaceutics 2023; 15:2001. [PMID: 37514187 PMCID: PMC10384206 DOI: 10.3390/pharmaceutics15072001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Reinvigorating the killing function of tumor-infiltrating immune cells through the targeting of regulatory molecules expressed on lymphocytes has markedly improved the prognosis of cancer patients, particularly in melanoma. While initially thought to solely strengthen adaptive T lymphocyte anti-tumor activity, recent investigations suggest that other immune cell subsets, particularly tissue-resident innate lymphoid cells (ILCs), may benefit from immunotherapy treatment. Here, we describe the recent findings showing immune checkpoint expression on tissue-resident and tumor-infiltrating ILCs and how their effector function is modulated by checkpoint blockade-based therapies in cancer. We discuss the therapeutic potential of ILCs beyond the classical PD-1 and CTLA-4 regulatory molecules, exploring other possibilities to manipulate ILC effector function to further impede tumor growth and quench disease progression.
Collapse
Affiliation(s)
- Hobin Seo
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Amisha Verma
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Megan Kinzel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Qiutong Huang
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Douglas J Mahoney
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Nicolas Jacquelot
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
30
|
Merino A, Maakaron J, Bachanova V. Advances in NK cell therapy for hematologic malignancies: NK source, persistence and tumor targeting. Blood Rev 2023; 60:101073. [PMID: 36959057 PMCID: PMC10979648 DOI: 10.1016/j.blre.2023.101073] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Natural Killer (NK) cells yield promise in therapy of hematologic malignancies. The clinical experience with adoptively transferred allogeneic NK cells over past two decades has revealed safety and minimal risk of CRS or ICANS. Unlike T cells which have to be genetically altered to avoid graft vs host disease (GVHD), HLA mismatched NK cells can be infused without GVHD risk. This makes them ideal for the development of off-the-shelf products. In this review we focus on NK biology relevant to the cancer therapy, the trajectory of NK therapeutics for leukemia, lymphoma, and myeloma; and advantages of the NK cell platform. We will also discuss novel methods to enhance NK cell targeting, persistence, and function in the tumor microenvironment. The future of NK cell therapy depends on novel strategies to realize these qualities.
Collapse
Affiliation(s)
- Aimee Merino
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America
| | - Joseph Maakaron
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America
| | - Veronika Bachanova
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America.
| |
Collapse
|
31
|
Mu Y, Tong J, Wang Y, Yang Y, Wu X. Case Report: Cord blood-derived natural killer cells as new potential immunotherapy drug for solid tumor: a case study for endometrial cancer. Front Immunol 2023; 14:1213161. [PMID: 37457710 PMCID: PMC10348479 DOI: 10.3389/fimmu.2023.1213161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Adoptive transfer of natural killer (NK) cells represents a viable treatment method for patients with advanced malignancies. Our team previously developed a simple, safe, and cost-effective method for obtaining high yields of pure and functional NK cells from cord blood (CB) without the need for cell sorting, feeder cells, or multiple cytokines. We present the case of a 52-year-old female patient diagnosed with poorly differentiated stage IVB (T3N2M1) endometrial cancer, who exhibited leukemoid reaction and pretreatment thrombocytosis as paraneoplastic syndromes. The patient received two courses of CB-derived NK (CB-NK) cell immunotherapy between March and September 2022, due to her extremely low NK cell activity. Two available CB units matched at 8/10 HLA with KIR-mismatch were chosen, and we were able to produce NK cells with high yield (>1.0×1010 NK cells), purity (>90%), and function (>80%) from CB without cell sorting, feeder cells, or multiple cytokines. These cells were then adoptively transferred to the patient. No adverse effects or graft-versus-host disease were observed after infusion of CB-NK cells. Our clinical experience supports the efficacy of CB-NK cell treatment in increasing NK cell activity, depleting tumor activity, improving quality of life, and reducing the size of abdominal and pelvic masses with the disappearance of multiple lymph node metastases through the regulation of systemic antitumor immunity. Remarkably, the white blood cell and platelet counts decreased to normal levels after CB-NK cell immunotherapy. This clinical work suggests that CB-NK cell immunotherapy holds promise as a therapeutic approach for endometrial cancer.
Collapse
Affiliation(s)
- Yongxu Mu
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jiabei Tong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yujun Wang
- Department of Technology, Beijing Stem Cell(ProterCell) Biotechnology Co., Ltd., Beijing, China
| | - Yuxiao Yang
- Department of Technology, Inner Mongolia Stem Cell(ProterCell) Biotechnology Co., Ltd., Hohhot, China
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, China
| | - Xiaoyun Wu
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Department of Technology, Beijing Stem Cell(ProterCell) Biotechnology Co., Ltd., Beijing, China
- Department of Technology, Inner Mongolia Stem Cell(ProterCell) Biotechnology Co., Ltd., Hohhot, China
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, China
| |
Collapse
|
32
|
Lui A, Lee J, Thall PF, Daher M, Rezvani K, Basar R. A Bayesian feature allocation model for identifying cell subpopulations using CyTOF data. J R Stat Soc Ser C Appl Stat 2023; 72:718-738. [PMID: 37325776 PMCID: PMC10264057 DOI: 10.1093/jrsssc/qlad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 06/17/2023]
Abstract
A Bayesian feature allocation model (FAM) is presented for identifying cell subpopulations based on multiple samples of cell surface or intracellular marker expression level data obtained by cytometry by time of flight (CyTOF). Cell subpopulations are characterized by differences in marker expression patterns, and cells are clustered into subpopulations based on their observed expression levels. A model-based method is used to construct cell clusters within each sample by modeling subpopulations as latent features, using a finite Indian buffet process. Non-ignorable missing data due to technical artifacts in mass cytometry instruments are accounted for by defining a static missingship mechanism. In contrast with conventional cell clustering methods, which cluster observed marker expression levels separately for each sample, the FAM-based method can be applied simultaneously to multiple samples, and also identify important cell subpopulations likely to be otherwise missed. The proposed FAM-based method is applied to jointly analyse three CyTOF datasets to study natural killer (NK) cells. Because the subpopulations identified by the FAM may define novel NK cell subsets, this statistical analysis may provide useful information about the biology of NK cells and their potential role in cancer immunotherapy which may lead, in turn, to development of improved NK cell therapies.
Collapse
Affiliation(s)
- Arthur Lui
- Department of Statistics, Baskin School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Juhee Lee
- Department of Statistics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Peter F Thall
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Katy Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Wang J, Metheny L. Umbilical cord blood derived cellular therapy: advances in clinical development. Front Oncol 2023; 13:1167266. [PMID: 37274288 PMCID: PMC10232824 DOI: 10.3389/fonc.2023.1167266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
While cord blood (CB) is primarily utilized in allogeneic hematopoietic cell transplantation (HCT), the development of novel cell therapy products from CB is a growing and developing field. Compared to adult blood, CB is characterized by a higher percentage of hematopoietic stem cells (HSCs) and progenitor cells, less mature immune cells that retain a high capacity of proliferation, and stronger immune tolerance that requires less stringent HLA-matching when used in the allogenic setting. Given that CB is an FDA regulated product and along with its unique cellular composition, CB lends itself as a readily available and safe starting material for the development of off-the-shelf cell therapies. Moreover, non-hematologic cells such as mesenchymal stem cell (MSCs) residing in CB or CB tissue also have potential in regenerative medicine and inflammatory and autoimmune conditions. In this review, we will focus on recent clinical development on CB-derived cellular therapies in the field of oncology, including T-cell therapies such as chimeric antigen receptor (CAR) T-cells, regulatory T-cells, and virus-specific T-cells; NK-cell therapies, such as NK cell engagers and CAR NK-cells; CB-HCT and various modifications; as well as applications of MSCs in HCT.
Collapse
|
34
|
Moscvin M, Evans B, Bianchi G. Dissecting molecular mechanisms of immune microenvironment dysfunction in multiple myeloma and precursor conditions. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:17. [PMID: 38213954 PMCID: PMC10783205 DOI: 10.20517/2394-4722.2022.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Multiple myeloma (MM) is a disease of clonally differentiated plasma cells. MM is almost always preceded by precursor conditions, monoclonal gammopathy of unknown significance (MGUS), and smoldering MM (SMM) through largely unknown molecular events. Genetic alterations of the malignant plasma cells play a critical role in patient clinical outcomes. Del(17p), t(4;14), and additional chromosomal alterations such as del(1p32), gain(1q) and MYC translocations are involved in active MM evolution. Interestingly, these genetic alterations appear strikingly similar in transformed plasma cell (PC) clones from MGUS, SMM, and MM stages. Recent studies show that effectors of the innate and adaptive immune response show marked dysfunction and skewing towards a tolerant environment that favors disease progression. The MM myeloid compartment is characterized by myeloid-derived suppressor cells (MDSCs), dendritic cells as well as M2-like phenotype macrophages that promote immune evasion. Major deregulations are found in the lymphoid compartment as well, with skewing towards immune tolerant Th17 and Treg and inhibition of CD8+ cytotoxic and CD4+ activated effector T cells. In summary, this review will provide an overview of the complex cross-talk between MM plasma cells and immune cells in the microenvironment and the molecular mechanisms promoting progression from precursor states to full-blown myeloma.
Collapse
Affiliation(s)
- Maria Moscvin
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Evans
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
| | - Giada Bianchi
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
35
|
Mazinani M, Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark Res 2023; 11:49. [PMID: 37147740 PMCID: PMC10163725 DOI: 10.1186/s40364-023-00482-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, in which a patient's own T lymphocytes are engineered to recognize and kill cancer cells, has achieved striking success in some hematological malignancies in preclinical and clinical trials, resulting in six FDA-approved CAR-T products currently available in the market. Despite impressive clinical outcomes, concerns about treatment failure associated with low efficacy or high cytotoxicity of CAR-T cells remain. While the main focus has been on improving CAR-T cells, exploring alternative cellular sources for CAR generation has garnered growing interest. In the current review, we comprehensively evaluated other cell sources rather than conventional T cells for CAR generation.
Collapse
Affiliation(s)
- Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
36
|
Li YR, Dunn ZS, Yu Y, Li M, Wang P, Yang L. Advancing cell-based cancer immunotherapy through stem cell engineering. Cell Stem Cell 2023; 30:592-610. [PMID: 36948187 PMCID: PMC10164150 DOI: 10.1016/j.stem.2023.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/04/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
Advances in cell-based therapy, particularly CAR-T cell therapy, have transformed the treatment of hematological malignancies. Although an important step forward for the field, autologous CAR-T therapies are hindered by high costs, manufacturing challenges, and limited efficacy against solid tumors. With ongoing progress in gene editing and culture techniques, engineered stem cells and their application in cell therapy are poised to address some of these challenges. Here, we review stem cell-based immunotherapy approaches, stem cell sources, gene engineering and manufacturing strategies, therapeutic platforms, and clinical trials, as well as challenges and future directions for the field.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zachary Spencer Dunn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanqi Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miao Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Faeq MH, Al-Haideri M, Mohammad TAM, Gharebakhshi F, Marofi F, Tahmasebi S, Modaresahmadi S. CAR-modified immune cells as a rapidly evolving approach in the context of cancer immunotherapies. Med Oncol 2023; 40:155. [PMID: 37083979 PMCID: PMC10119530 DOI: 10.1007/s12032-023-02019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Nowadays, one of the main challenges clinicians face is malignancies. Through the progression of technology in recent years, tumor nature and tumor microenvironment (TME) can be better understood. Because of immune system involvement in tumorigenesis and immune cell dysfunction in the tumor microenvironment, clinicians encounter significant challenges in patient treatment and normal function recovery. The tumor microenvironment can stop the development of tumor antigen-specific helper and cytotoxic T cells in the tumor invasion process. Tumors stimulate the production of proinflammatory and immunosuppressive factors and cells that inhibit immune responses. Despite the more successful outcomes, the current cancer therapeutic approaches, including surgery, chemotherapy, and radiotherapy, have not been effective enough for tumor eradication. Hence, developing new treatment strategies such as monoclonal antibodies, adaptive cell therapies, cancer vaccines, checkpoint inhibitors, and cytokines helps improve cancer treatment. Among adoptive cell therapies, the interaction between the immune system and malignancies and using molecular biology led to the development of chimeric antigen receptor (CAR) T cell therapy. CAR-modified immune cells are one of the modern cancer therapeutic methods with encouraging outcomes in most hematological and solid cancers. The current study aimed to discuss the structure, formation, subtypes, and application of CAR immune cells in hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Mohammed Hikmat Faeq
- Student of General Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maysoon Al-Haideri
- Department of Physiotherapy, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Talar Ahmad Merza Mohammad
- Department of Pharmacology, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Farshad Gharebakhshi
- Department of Radiology, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shadan Modaresahmadi
- Department of Immunology and Biotechnology, Texas Tech University Health Siences Center, Abilene, TX, USA
| |
Collapse
|
38
|
Sanchez-Petitto G, Rezvani K, Daher M, Rafei H, Kebriaei P, Shpall EJ, Olson A. Umbilical Cord Blood Transplantation: Connecting Its Origin to Its Future. Stem Cells Transl Med 2023; 12:55-71. [PMID: 36779789 PMCID: PMC9985112 DOI: 10.1093/stcltm/szac086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/16/2022] [Indexed: 02/14/2023] Open
Abstract
Transplantation of umbilical cord blood (UCB) is an attractive alternative source of hematopoietic stem cells (HSCs). The unique properties of cord blood and its distinct immune tolerance and engraftment kinetics compared to bone marrow (BM) and peripheral blood progenitor cells, permit a wider disparity in human leukocyte antigen levels between a cord blood donor and recipient after an unrelated umbilical cord blood transplant (UCBT). In addition, it is readily available and has a lowered risk of graft-versus-host disease (GvHD), with similar long-term clinical outcomes, compared to BM transplants. However, the relatively low number of cells administered by UCB units, as well as the associated delayed engraftment and immune reconstitution, pose limitations to the wide application of UCBT. Research into several aspects of UCBT has been evaluated, including the ex vivo expansion of cord blood HSCs and the process of fucosylation to enhance engraftment. Additionally, UCB has also been used in the treatment of several neurodegenerative and cardiovascular disorders with varying degrees of success. In this article, we will discuss the biology, clinical indications, and benefits of UCBT in pediatric and adult populations. We will also discuss future directions for the use of cord blood.
Collapse
Affiliation(s)
- Gabriela Sanchez-Petitto
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - May Daher
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hind Rafei
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Amanda Olson
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
39
|
Wang ZH, Li W, Dong H, Han F. Current state of NK cell-mediated immunotherapy in chronic lymphocytic leukemia. Front Oncol 2023; 12:1077436. [PMID: 37078002 PMCID: PMC10107371 DOI: 10.3389/fonc.2022.1077436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) has become one of the most common hematological diseases in western countries, with an annual incidence of 42/100,000. Conventional chemotherapy and targeted therapeutic drugs showed limitations in prognosis or in efficiency in high-risk patients. Immunotherapy represented is one of the most effective therapeutic approaches with the potential of better effect and prognosis. Natural killer (NK) cells are good options for immunotherapy as they can effectively mediate anti-tumor activity of immune system by expressing activating and inhibiting receptors and recognizing specific ligands on various tumor cells. NK cells are critical in the immunotherapy of CLL by enhancing self-mediated antibody-dependent cytotoxicity (ADCC), allogeneic NK cell therapy and chimeric antigen receptor-natural killer (CAR-NK) cell therapy. In this article, we reviewed the features, working mechanisms, and receptors of NK cells, and the available evidence of the advantages and disadvantages of NK cell-based immunotherapies, and put forward future study directions in this field.
Collapse
Affiliation(s)
- Zong-Han Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Hao Dong
- Department of Gastrointestinal Nutrition and Surgical Surgery, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Hao Dong, ; Fujun Han,
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Hao Dong, ; Fujun Han,
| |
Collapse
|
40
|
Raza A, Rossi GR, Janjua TI, Souza-Fonseca-Guimaraes F, Popat A. Nanobiomaterials to modulate natural killer cell responses for effective cancer immunotherapy. Trends Biotechnol 2023; 41:77-92. [PMID: 35840426 DOI: 10.1016/j.tibtech.2022.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells have emerged as a major target for cancer immunotherapies, particularly as cellular therapy modalities because they have relatively less toxicity than T lymphocytes. However, NK cell-based therapy suffers from many challenges, including problems with its activation, resistance to genetic engineering, and large-scale expansion needed for therapeutic purposes. Recently, nanobiomaterials have emerged as a promising solution to control the challenges associated with NK cells. This focused review summarises the recent advances in the field and highlights current and future perspectives of using nanobiomaterials to maximise anticancer responses of NK cells for safe and effective immunotherapy. Finally, we provide our opinion on the role of smart materials in activating NK cells as a potential cellular therapy of the future.
Collapse
Affiliation(s)
- Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Gustavo Rodrigues Rossi
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
41
|
Roshandel E, Ghaffari-Nazari H, Mohammadian M, Salimi M, Abroun S, Mirfakhraie R, Hajifathali A. NK cell therapy in relapsed refractory multiple myeloma. Clin Immunol 2023; 246:109168. [PMID: 36415020 DOI: 10.1016/j.clim.2022.109168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 09/03/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
Recent advances in adoptive cell therapy have considerably changed the paradigm of cancer immunotherapy. Although current immunotherapies could cure many patients with multiple myeloma (MM), relapsed/refractory MM (RR/MM) is still challenging in some cases. Natural killer (NK) cells are innate immune cells that exert effective cytotoxic activity against malignant cells like myeloma cells. In addition to their antitumor properties, NK cells do not induce graft versus host disease following transplantation. Therefore, they provide a promising approach to treating RR/MM patients. Currently, attempts have been made to produce large-scale and good manufacturing practices (GMP) of NK cells. Ex vivo expanded/activated NK cells derived from the own patient or allogenic donors are potential options for NK cell therapy in MM. Besides, novel cell-based products such as NK cell lines and chimeric antigen receptor (CAR)-NK cells may provide an off-the-shelf source for NK cell therapy. Here, we summarized NK cell activity in the MM microenvironment and focused on different NK cell therapy methods for MM patients.
Collapse
Affiliation(s)
- Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghaffari-Nazari
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Leveraging Natural Killer Cell Innate Immunity against Hematologic Malignancies: From Stem Cell Transplant to Adoptive Transfer and Beyond. Int J Mol Sci 2022; 24:ijms24010204. [PMID: 36613644 PMCID: PMC9820370 DOI: 10.3390/ijms24010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous recent advancements in T-cell based immunotherapies have revolutionized the treatment of hematologic malignancies. In the race towards the first approved allogeneic cellular therapy product, there is growing interest in utilizing natural killer (NK) cells as a platform for off-the-shelf cellular therapies due to their scalable manufacturing potential, potent anti-tumor efficacy, and superior safety profile. Allogeneic NK cell therapies are now being actively explored in the setting of hematopoietic stem cell transplantation and adoptive transfer. Increasingly sophisticated gene editing techniques have permitted the engineering of chimeric antigen receptors, ectopic cytokine expression, and tumor recognition signals to improve the overall cytotoxicity of NK cell therapies. Furthermore, the enhancement of antibody-dependent cellular cytotoxicity has been achieved through the use of NK cell engagers and combination regimens with monoclonal antibodies that act synergistically with CD16-expressing NK cells. Finally, a greater understanding of NK cell biology and the mechanisms of resistance have allowed the preclinical development of NK checkpoint blockade and methods to modulate the tumor microenvironment, which have been evaluated in early phase trials. This review will discuss the recent clinical advancements in NK cell therapies in hematologic malignancies as well as promising avenues of future research.
Collapse
|
43
|
Cutting-Edge CAR Engineering: Beyond T Cells. Biomedicines 2022; 10:biomedicines10123035. [PMID: 36551788 PMCID: PMC9776293 DOI: 10.3390/biomedicines10123035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T adoptive cell therapy is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in haematological malignancies. However, it still lacks efficacy in solid tumours, possibly because engineered T cells become inactive within the immunosuppressive tumour microenvironment (TME). In the TME, cells of the myeloid lineage (M) are among the immunosuppressive cell types with the highest tumour infiltration rate. These cells interact with other immune cells, mediating immunosuppression and promoting angiogenesis. Recently, the development of CAR-M cell therapies has been put forward as a new candidate immunotherapy with good efficacy potential. This alternative CAR strategy may increase the efficacy, survival, persistence, and safety of CAR treatments in solid tumours. This remains a critical frontier in cancer research and opens up a new possibility for next-generation personalised medicine to overcome TME resistance. However, the exact mechanisms of action of CAR-M and their effect on the TME remain poorly understood. Here, we summarise the basic, translational, and clinical results of CAR-innate immune cells and CAR-M cell immunotherapies, from their engineering and mechanistic studies to preclinical and clinical development.
Collapse
|
44
|
Lamers-Kok N, Panella D, Georgoudaki AM, Liu H, Özkazanc D, Kučerová L, Duru AD, Spanholtz J, Raimo M. Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J Hematol Oncol 2022; 15:164. [DOI: 10.1186/s13045-022-01382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractNatural killer (NK) cells are unique immune effectors able to kill cancer cells by direct recognition of surface ligands, without prior sensitization. Allogeneic NK transfer is a highly valuable treatment option for cancer and has recently emerged with hundreds of clinical trials paving the way to finally achieve market authorization. Advantages of NK cell therapies include the use of allogenic cell sources, off-the-shelf availability, and no risk of graft-versus-host disease (GvHD). Allogeneic NK cell therapies have reached the clinical stage as ex vivo expanded and differentiated non-engineered cells, as chimeric antigen receptor (CAR)-engineered or CD16-engineered products, or as combination therapies with antibodies, priming agents, and other drugs. This review summarizes the recent clinical status of allogeneic NK cell-based therapies for the treatment of hematological and solid tumors, discussing the main characteristics of the different cell sources used for NK product development, their use in cell manufacturing processes, the engineering methods and strategies adopted for genetically modified products, and the chosen approaches for combination therapies. A comparative analysis between NK-based non-engineered, engineered, and combination therapies is presented, examining the choices made by product developers regarding the NK cell source and the targeted tumor indications, for both solid and hematological cancers. Clinical trial outcomes are discussed and, when available, assessed in comparison with preclinical data. Regulatory challenges for product approval are reviewed, highlighting the lack of specificity of requirements and standardization between products. Additionally, the competitive landscape and business field is presented. This review offers a comprehensive overview of the effort driven by biotech and pharmaceutical companies and by academic centers to bring NK cell therapies to pivotal clinical trial stages and to market authorization.
Collapse
|
45
|
Boussi LS, Avigan ZM, Rosenblatt J. Immunotherapy for the treatment of multiple myeloma. Front Immunol 2022; 13:1027385. [PMID: 36389674 PMCID: PMC9649817 DOI: 10.3389/fimmu.2022.1027385] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
Abstract
Despite advances in treatment for multiple myeloma, the majority of patients ultimately develop relapsed disease marked by immune evasion and resistance to standard therapy. Immunotherapy has emerged as a powerful tool for tumor-directed cytotoxicity with the unique potential to induce immune memory to reduce the risk of relapse. Understanding the specific mechanisms of immune dysregulation and dysfunction in advanced myeloma is critical to the development of further therapies that produce a durable response. Adoptive cellular therapy, most strikingly CAR T cell therapy, has demonstrated dramatic responses in the setting of refractory disease. Understanding the factors that contribute to immune evasion and the mechanisms of response and resistance to therapy will be critical to developing the next generation of adoptive cellular therapies, informing novel combination therapy, and determining the optimal time to incorporate immune therapy in the treatment of myeloma.
Collapse
Affiliation(s)
- Leora S. Boussi
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Zachary M. Avigan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jacalyn Rosenblatt
- Division of Hematology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
46
|
Brianna, Ling APK, Wong YP. Applying stem cell therapy in intractable diseases: a narrative review of decades of progress and challenges. Stem Cell Investig 2022; 9:4. [PMID: 36238449 PMCID: PMC9552054 DOI: 10.21037/sci-2022-021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023]
Abstract
Background and Objective Stem cell therapy (SCT) is one of the vastly researched branches of regenerative medicine as a therapeutic tool to treat incurable diseases. With the use of human stem cells such as embryonic stem cells (ESCs), adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs), stem cell therapy aims to regenerate or repair damaged tissues and congenital defects. As stem cells are able to undergo infinite self-renewal, differentiate into various types of cells and secrete protective paracrine factors, many researchers have investigated the potential of SCT in regenerative medicine. Therefore, this review aims to provide a comprehensive review on the recent application of SCT in various intractable diseases, namely, haematological diseases, neurological diseases, diabetes mellitus, retinal degenerative disorders and COVID-19 infections along with the challenges faced in the clinical translation of SCT. Methods An extensive search was conducted on Google scholar, PubMed and Clinicaltrials.gov using related keywords. Latest articles on stem cell therapy application in selected diseases along with their challenges in clinical applications were selected. Key content and findings In vitro and in vivo studies involving SCT are shown to be safe and efficacious in treating various diseases covered in this review. There are also a number of small-scale clinical trials that validated the positive therapeutic outcomes of SCT. Nevertheless, the effectiveness of SCT are highly variable as some SCT works best in patients with early-stage diseases while in other diseases, SCT is more likely to work in patients in late stages of illnesses. Among the challenges identified in SCT translation are uncertainty in the underlying stem cell mechanism, ethical issues, genetic instability and immune rejection. Conclusions SCT will be a revolutionary treatment in the future that will provide hope to patients with intractable diseases. Therefore, studies ought to be done to ascertain the long-term effects of SCT while addressing the challenges faced in validating SCT for clinical use. Moreover, as there are many studies investigating the safety and efficacy of SCT, future studies should look into elucidating the regenerative and reparative capabilities of stem cells which largely remains unknown.
Collapse
Affiliation(s)
- Brianna
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Ying Pei Wong
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Cord Blood-Derived Natural Killer Cell Exploitation in Immunotherapy Protocols: More Than a Promise? Cancers (Basel) 2022; 14:cancers14184439. [PMID: 36139598 PMCID: PMC9496735 DOI: 10.3390/cancers14184439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary NK cell anti-tumor activity against hematological malignancies is well-established and many studies support their role in the control of solid tumor growth and metastasis generation. However, tumor microenvironment may affect NK cell function. Ongoing studies are aimed to design novel immunotherapeutic protocols to combine NK cell-based immunotherapy with other therapeutic strategies to improve the anti-tumor NK cell response. In this context, UCB is one of the main sources of both mature NK cells and of CD34+ HSPC that can generate NK cells, both in-vivo and in-vitro. UCB-derived NK cells represent a valuable tool to perform in-vitro and preclinical analyses and are already used in several clinical settings, particularly against hematological malignancies. The present review describes the characteristics of different types of UCB-derived NK cells and the in-vitro models to expand them, both for research and clinical purposes in the context of cancer immunotherapy. Abstract In the last 20 years, Natural Killer (NK) cell-based immunotherapy has become a promising approach to target various types of cancer. Indeed, NK cells play a pivotal role in the first-line defense against tumors through major histocompatibility complex-independent immunosurveillance. Their role in the control of leukemia relapse has been clearly established and, moreover, the presence of NK cells in the tumor microenvironment (TME) generally correlates with good prognosis. However, it has also been observed that, often, NK cells poorly infiltrate the tumor tissue, and, in TME, their functions may be compromised by immunosuppressive factors that contribute to the failure of anti-cancer immune response. Currently, studies are focused on the design of effective strategies to expand NK cells and enhance their cytotoxic activity, exploiting different cell sources, such as peripheral blood (PB), umbilical cord blood (UCB) and NK cell lines. Among them, UCB represents an important source of mature NK cells and CD34+ Hematopoietic Stem and Progenitor Cells (HSPCs), as precursors of NK cells. In this review, we summarize the UCB-derived NK cell activity in the tumor context, review the different in-vitro models to expand NK cells from UCB, and discuss the importance of their exploitation in anti-tumor immunotherapy protocols.
Collapse
|
48
|
Assessment of T Cell Receptor Complex Expression Kinetics in Natural Killer Cells. Curr Issues Mol Biol 2022; 44:3859-3871. [PMID: 36135177 PMCID: PMC9497757 DOI: 10.3390/cimb44090265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Among the polypeptides that comprise the T cell receptor (TCR), only CD3ζ is found in Natural Killer (NK) cells, where it transmits signals from activating receptors such as CD16 and NKp46. NK cells are potent immune cells that recognize target cells through germline-encoded activating and inhibitory receptors. Genetic engineering of NK cells enables tumor-specific antigen recognition and, thus, has a significant promise in adoptive cell therapy. Ectopic expression of engineered TCR components in T cells leads to mispairing with the endogenous components, making a knockout of the endogenous TCR necessary. To circumvent the mispairing of TCRs or the need for knockout technologies, TCR complex expression has been studied in NK cells. In the current study, we explored the cellular processing of the TCR complex in NK cells. We observed that in the absence of CD3 subunits, the TCR was not expressed on the surface of NK cells and vice versa. Moreover, a progressive increase in surface expression of TCR between day three and day seven was observed after transduction. Interestingly, the TCR complex expression in NK92 cells was enhanced with a proteasome inhibitor (bortezomib) but not a lysosomal inhibitor (chloroquine). Additionally, we observed that the TCR complex was functional in NK92 cells as measured by estimating CD107a as a degranulation marker, IFNγ cytokine production, and killing assays. NK92 cells strongly degranulated when CD3ε was engaged in the presence of TCR, but not when only CD3 was overexpressed. Therefore, our findings encourage further investigation to unravel the mechanisms that prevent the surface expression of the TCR complex.
Collapse
|
49
|
Valeri A, García-Ortiz A, Castellano E, Córdoba L, Maroto-Martín E, Encinas J, Leivas A, Río P, Martínez-López J. Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Front Immunol 2022; 13:953849. [PMID: 35990652 PMCID: PMC9381932 DOI: 10.3389/fimmu.2022.953849] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the impressive results of autologous CAR-T cell therapy in refractory B lymphoproliferative diseases, CAR-NK immunotherapy emerges as a safer, faster, and cost-effective approach with no signs of severe toxicities as described for CAR-T cells. Permanently scrutinized for its efficacy, recent promising data in CAR-NK clinical trials point out the achievement of deep, high-quality responses, thus confirming its potential clinical use. Although CAR-NK cell therapy is not significantly affected by the loss or downregulation of its CAR tumor target, as in the case of CAR-T cell, a plethora of common additional tumor intrinsic or extrinsic mechanisms that could also disable NK cell function have been described. Therefore, considering lessons learned from CAR-T cell therapy, the emergence of CAR-NK cell therapy resistance can also be envisioned. In this review we highlight the processes that could be involved in its development, focusing on cytokine addiction and potential fratricide during manufacturing, poor tumor trafficking, exhaustion within the tumor microenvironment (TME), and NK cell short in vivo persistence on account of the limited expansion, replicative senescence, and rejection by patient’s immune system after lymphodepletion recovery. Finally, we outline new actively explored alternatives to overcome these resistance mechanisms, with a special emphasis on CRISPR/Cas9 mediated genetic engineering approaches, a promising platform to optimize CAR-NK cell function to eradicate refractory cancers.
Collapse
Affiliation(s)
- Antonio Valeri
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Almudena García-Ortiz
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eva Castellano
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Córdoba
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Maroto-Martín
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jessica Encinas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandra Leivas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Joaquín Martínez-López
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Joaquín Martínez-López,
| |
Collapse
|
50
|
Concurrent transposon engineering and CRISPR/Cas9 genome editing of primary CLL-1 chimeric antigen receptor–natural killer cells. Cytotherapy 2022; 24:1087-1094. [DOI: 10.1016/j.jcyt.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
|