1
|
Buckley SJ, Brauer CJ, Unmack PJ, Hammer MP, Adams M, Beatty SJ, Morgan DL, Beheregaray LB. Long-term climatic stability drives accumulation and maintenance of divergent freshwater fish lineages in a temperate biodiversity hotspot. Heredity (Edinb) 2024; 133:149-159. [PMID: 38918613 PMCID: PMC11349885 DOI: 10.1038/s41437-024-00700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Anthropogenic climate change is forecast to drive regional climate disruption and instability across the globe. These impacts are likely to be exacerbated within biodiversity hotspots, both due to the greater potential for species loss but also to the possibility that endemic lineages might not have experienced significant climatic variation in the past, limiting their evolutionary potential to respond to rapid climate change. We assessed the role of climatic stability on the accumulation and persistence of lineages in an obligate freshwater fish group endemic to the southwest Western Australia (SWWA) biodiversity hotspot. Using 19,426 genomic (ddRAD-seq) markers and species distribution modelling, we explored the phylogeographic history of western (Nannoperca vittata) and little (Nannoperca pygmaea) pygmy perches, assessing population divergence and phylogenetic relationships, delimiting species and estimating changes in species distributions from the Pliocene to 2100. We identified two deep phylogroups comprising three divergent clusters, which showed no historical connectivity since the Pliocene. We conservatively suggest these represent three isolated species with additional intraspecific structure within one widespread species. All lineages showed long-term patterns of isolation and persistence owing to climatic stability but with significant range contractions likely under future climate change. Our results highlighted the role of climatic stability in allowing the persistence of isolated lineages in the SWWA. This biodiversity hotspot is under compounding threat from ongoing climate change and habitat modification, which may further threaten previously undetected cryptic diversity across the region.
Collapse
Affiliation(s)
- Sean James Buckley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, 6000, Australia
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Chris J Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, University of Canberra, Canberra, ACT 2601, Australia
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, NT, 0801, Australia
| | - Mark Adams
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Stephen J Beatty
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - David L Morgan
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia.
| |
Collapse
|
2
|
Smales L, Wood J, Chisholm L. A review and comparison of the nematode assemblages of the Australian golden bandicoot, Isoodon auratus, the quenda, I. fusciventer and southern brown bandicoot, I. obesulus (Peramelidae), from material held in the south Australian museum. Int J Parasitol Parasites Wildl 2024; 24:100938. [PMID: 38699516 PMCID: PMC11063584 DOI: 10.1016/j.ijppaw.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024]
Abstract
A total of 333 vials of nematodes collected from three species of Isoodon (representing three individuals of I. auratus, 63 of I. fusciventer and 92 of I. obesulus) held in the Australian Helminthological Collection of the South Australian Museum were examined. Nematodes were identified and the nematode assemblages of the three hosts were compared with each other and with the assemblage of Isoodon macrourus. Two fully identified species were recovered from I. auratus, eight from I. fusciventer and 14 from I. obesulus. None of the species occurred in all three hosts; Labiobulura inglisi (Subuluridae), Peramelistrongylus skedastos (Dromaeostrongylidae) and Asymmetracantha tasmaniensis (Mackerrastrongylidae) all occurred in I. fusciventer and I. obesulus. Only Pe. skedastos was also found in I. macrourus. Sorensen's index of similarity, 27.2 %, showed that I. fusciventer and I. obesulus did not have similar nematode communities and neither were their communities similar to that of I. macrourus, 17.1 % and 39.0 % respectively. Labiobulura inglisi and Linstowinema inglisi were the dominant nematodes in the assemblage of I. fusciventer and La. inglisi was dominant in I. obesulus. The two hosts had nematode assemblages with unique species profiles; one species of Linstowinema in I. fusciventer, three in I. obesulus; a species of Physaloptera in I. obesulus, none in I. fusciventer; four species of strongylid; Asymmetracantha tasmaniensis the most prevalent in I. fusciventer, Peramelistrongylus skedastos the most prevalent in I.obesulus. The size of the geographic range is a probable determinant of the species richness of the nematode assemblages.
Collapse
Affiliation(s)
- L.R. Smales
- Parasitology Section, South Australian Museum, North Terrace, Adelaide, 5000, South Australia, Australia
| | - J.A.L. Wood
- Parasitology Section, South Australian Museum, North Terrace, Adelaide, 5000, South Australia, Australia
| | - L.A. Chisholm
- Parasitology Section, South Australian Museum, North Terrace, Adelaide, 5000, South Australia, Australia
- Faculty of Sciences, Engineering and Technology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
3
|
Kaminski M, Brown JI, Seibert SR, Hernández F, Duya MV, Fontanilla IKC, Roshier D, Miles A, Joseph L, Peters JL, Lavretsky P. Determining evolutionary origin and phylogenetic relationships of mallard-like ducks of Oceania, greater Indonesia, and the Philippines with ddRAD-seq data. Mol Phylogenet Evol 2024; 197:108085. [PMID: 38688441 DOI: 10.1016/j.ympev.2024.108085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
AIM We aim to determine the evolutionary origins and population genetics of mallard-like ducks of Oceania, greater Indonesia, and the Philippines. LOCATION Oceania, greater Indonesia, and the Philippines. TAXON Mallard (Anas platyrhynchos), Pacific black duck (A. superciliosa spp.), and Philippine duck (A. luzonica) METHODS: Thousands of nuclear ddRAD-seq loci and the mitochondrial DNA control region were assayed across individuals representative of each species' range. We assessed population structure and phylogenetic relationships, as well as estimated demographic histories to reconstruct the biogeographical history of each species. RESULTS Philippine and Pacific black ducks represent unique genetic lineages that diverged from the mallard 1-2 million years ago. We find no support for the Philippine duck representing a hybrid species as once posited; however, their low levels of genetic diversity requires further attention. We find a lack of substructure among Philippine ducks. However, we found pronounced differentiation between subspecies of Pacific black ducks, especially between A. s. superciliosa from New Zealand and A. s. rogersi from Australia, Papua New Guinea, and Timor-Leste, Indonesia. Anas superciliosa pelewensis gave mixed results; individuals from the Solomon Islands were differentiated from the other subspecies, but those from the island of Aunu'u, American Samoa, were genetically more similar to A. s. rogersi than A. s. pelewensis samples from the Solomon Islands. Finally, we find limited evidence of interspecific gene flow at evolutionary scales, and mallard introgression among contemporary samples. MAIN CONCLUSIONS Mallard-like ducks radiated across Oceania, greater Indonesia, and the Philippines within the last 2 million years. Only the Pacific black duck showed unique sub-structuring that largely followed known sub-species ranges, except for A. s. pelewensis. We posit that the high interrelatedness among Solomon Island samples suggests that their genetic distinctiveness may simply be the result of high levels of genetic drift. In contrast, we conclude that mainland Australian Pacific black ducks were the most likely source for the recent colonization of American Samoa. As a result, our findings suggest that either the A. s. pelewensis subspecies designations and/or its geographical range may require re-evaluation. Continued re-evaluation of evolutionary and taxonomic relationships is necessary when attempting to reconstruct and understand biogeographical histories, with important implications towards any attempts to implement conservation strategies.
Collapse
Affiliation(s)
- Marissa Kaminski
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA; Upper Midwest Environmental Sciences Center, United States Geological Survey, La Crosse, WI, USA.
| | - Joshua I Brown
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA; Department of Life, Earth, and Environmental Sciences, West Texas A&M University, Canyon, Texas, USA
| | - Sara R Seibert
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Flor Hernández
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Melizar V Duya
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Ian Kendrich C Fontanilla
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - David Roshier
- School of Animal and Veterinary Science, University of Adelaide, Roseworthy SA, Australia
| | - Adam Miles
- Department of Marine and Wildlife Resources, Pago Pago, 96799, American Samoa
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Jeffrey L Peters
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
4
|
Parkin T, Donnellan SC, Parkin B, Shea GM, Rowley JJL. Phylogeography, hybrid zones and contemporary species boundaries in the south-eastern Australian smooth frogs (Anura: Myobatrachidae: Geocrinia). Mol Phylogenet Evol 2023; 189:107934. [PMID: 37769826 DOI: 10.1016/j.ympev.2023.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Paleo-climatic fluctuations have driven episodic changes in species distributions, providing opportunities for populations to diverge in isolation and hybridise following secondary contact. Studies of phylogeographic diversity and patterns of gene flow across hybrid zones can provide insight into contemporary species boundaries and help to inform taxonomic and conservation inferences. Here we explore geographic diversity within the acoustically divergent yet morphologically conserved south-eastern Australian smooth frog complex and assess gene flow across a narrow hybrid zone using mitochondrial nucleotide sequences and nuclear genome-wide single nucleotide polymorphisms. Our analyses reveal the presence of an evolutionarily distinct taxon restricted to the Otway Plains and Ranges, Victoria, which forms a narrow (9-30 km wide), spatiotemporally stable (>50 years) hybrid zone with Geocrinia laevis, which we describe herein as a new species.
Collapse
Affiliation(s)
- Thomas Parkin
- Australian Museum Research Institute, Sydney NSW 2010, Australia.
| | | | - Benjamin Parkin
- Australian Museum Research Institute, Sydney NSW 2010, Australia
| | - Glenn M Shea
- Australian Museum Research Institute, Sydney NSW 2010, Australia; Sydney School of Veterinary Science B01, University of Sydney, NSW 2006, Australia
| | - Jodi J L Rowley
- Australian Museum Research Institute, Sydney NSW 2010, Australia; University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
5
|
French CM, Bertola LD, Carnaval AC, Economo EP, Kass JM, Lohman DJ, Marske KA, Meier R, Overcast I, Rominger AJ, Staniczenko PPA, Hickerson MJ. Global determinants of insect mitochondrial genetic diversity. Nat Commun 2023; 14:5276. [PMID: 37644003 PMCID: PMC10465557 DOI: 10.1038/s41467-023-40936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Understanding global patterns of genetic diversity is essential for describing, monitoring, and preserving life on Earth. To date, efforts to map macrogenetic patterns have been restricted to vertebrates, which comprise only a small fraction of Earth's biodiversity. Here, we construct a global map of predicted insect mitochondrial genetic diversity from cytochrome c oxidase subunit 1 sequences, derived from open data. We calculate the mitochondrial genetic diversity mean and genetic diversity evenness of insect assemblages across the globe, identify their environmental correlates, and make predictions of mitochondrial genetic diversity levels in unsampled areas based on environmental data. Using a large single-locus genetic dataset of over 2 million globally distributed and georeferenced mtDNA sequences, we find that mitochondrial genetic diversity evenness follows a quadratic latitudinal gradient peaking in the subtropics. Both mitochondrial genetic diversity mean and evenness positively correlate with seasonally hot temperatures, as well as climate stability since the last glacial maximum. Our models explain 27.9% and 24.0% of the observed variation in mitochondrial genetic diversity mean and evenness in insects, respectively, making an important step towards understanding global biodiversity patterns in the most diverse animal taxon.
Collapse
Affiliation(s)
- Connor M French
- Biology Department, City College of New York, New York, NY, USA.
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA.
| | - Laura D Bertola
- Biology Department, City College of New York, New York, NY, USA
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, N 2200, Denmark
| | - Ana C Carnaval
- Biology Department, City College of New York, New York, NY, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Jamie M Kass
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
- Macroecology Laboratory, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - David J Lohman
- Biology Department, City College of New York, New York, NY, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
- Entomology Section, National Museum of Natural History, Manila, Philippines
| | | | - Rudolf Meier
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany
| | - Isaac Overcast
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
- Institut de Biologie de l'Ecole Normale Superieure, Paris, France
- Department of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Andrew J Rominger
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, ME, USA
| | | | - Michael J Hickerson
- Biology Department, City College of New York, New York, NY, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
6
|
Marsh JR, Milner SJ, Shaw M, Stempel AJ, Harvey MS, Rix MG. A Case for Below-Ground Dispersal? Insights into the Biology, Ecology and Conservation of Blind Cave Spiders in the Genus Troglodiplura (Mygalomorphae: Anamidae). INSECTS 2023; 14:449. [PMID: 37233077 PMCID: PMC10231051 DOI: 10.3390/insects14050449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Previously described from only fragments of exoskeleton and juvenile specimens, the cave spider genus Troglodiplura (Araneae: Anamidae), endemic to the Nullarbor Plain, is the only troglomorphic member of the infraorder Mygalomorphae recorded from Australia. We investigated the distribution of Troglodiplura in South Australia, collecting and observing the first (intact) mature specimens, widening the number of caves it has been recorded in, and documenting threats to conservation. Phylogenetic analyses support the placement of Troglodiplura as an independent lineage within the subfamily Anaminae (the 'Troglodiplura group') and provide unequivocal evidence that populations from apparently isolated cave systems are conspecifics of T. beirutpakbarai Harvey & Rix, 2020, with extremely low or negligible inter-population mitochondrial divergences. This is intriguing evidence for recent or contemporary subterranean dispersal of these large, troglomorphic spiders. Observations of adults and juvenile spiders taken in the natural cave environment, and supported by observations in captivity, revealed the use of crevices within caves as shelters, but no evidence of silk use for burrow construction, contrasting with the typical burrowing behaviours seen in other Anamidae. We identify a range of threats posed to the species and to the fragile cave ecosystem, and provide recommendations for further research to better define the distribution of vulnerable taxa within caves and identify actions needed to protect them.
Collapse
Affiliation(s)
- Jessica R. Marsh
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Biological Sciences, South Australian Museum, GPO Box 234, Adelaide, SA 5001, Australia
- Invertebrates Australia, Osborne Park, WA 6017, Australia
| | - Steven J. Milner
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA 5005, Australia
| | - Matthew Shaw
- Biological Sciences, South Australian Museum, GPO Box 234, Adelaide, SA 5001, Australia
| | | | - Mark S. Harvey
- Collections & Research, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia; (M.S.H.); (M.G.R.)
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Michael G. Rix
- Collections & Research, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia; (M.S.H.); (M.G.R.)
- Biodiversity and Geosciences Program, Queensland Museum Collections & Research Centre, Hendra, QLD 4011, Australia
| |
Collapse
|
7
|
Carmelet‐Rescan D, Morgan‐Richards M, Pattabiraman N, Trewick SA. Time-calibrated phylogeny and ecological niche models indicate Pliocene aridification drove intraspecific diversification of brushtail possums in Australia. Ecol Evol 2022; 12:e9633. [PMID: 36540081 PMCID: PMC9755819 DOI: 10.1002/ece3.9633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Major aridification events in Australia during the Pliocene may have had significant impact on the distribution and structure of widespread species. To explore the potential impact of Pliocene and Pleistocene climate oscillations, we estimated the timing of population fragmentation and past connectivity of the currently isolated but morphologically similar subspecies of the widespread brushtail possum (Trichosurus vulpecula). We use ecological niche modeling (ENM) with the current fragmented distribution of brushtail possums to estimate the environmental envelope of this marsupial. We projected the ENM on models of past climatic conditions in Australia to infer the potential distribution of brushtail possums over 6 million years. D-loop haplotypes were used to describe population structure. From shotgun sequencing, we assembled whole mitochondrial DNA genomes and estimated the timing of intraspecific divergence. Our projections of ENMs suggest current possum populations were unlikely to have been in contact during the Pleistocene. Although lowered sea level during glacial periods enabled connection with habitat in Tasmania, climate fluctuation during this time would not have facilitated gene flow over much of Australia. The most recent common ancestor of sampled intraspecific diversity dates to the early Pliocene when continental aridification caused significant changes to Australian ecology and Trichosurus vulpecula distribution was likely fragmented. Phylogenetic analysis revealed that the subspecies T. v. hypoleucus (koomal; southwest), T. v. arnhemensis (langkurr; north), and T. v. vulpecula (bilda; southeast) correspond to distinct mitochondrial lineages. Despite little phenotypic differentiation, Trichosurus vulpecula populations probably experienced little gene flow with one another since the Pliocene, supporting the recognition of several subspecies and explaining their adaptations to the regional plant assemblages on which they feed.
Collapse
Affiliation(s)
- David Carmelet‐Rescan
- Wildlife and Ecology, School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Mary Morgan‐Richards
- Wildlife and Ecology, School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Nimeshika Pattabiraman
- Wildlife and Ecology, School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Steven A. Trewick
- Wildlife and Ecology, School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
8
|
van der Heyde M, Bunce M, Dixon KW, Fernandes K, Majer J, Wardell-Johnson G, White NE, Nevill P. Evaluating restoration trajectories using DNA metabarcoding of ground-dwelling and airborne invertebrates and associated plant communities. Mol Ecol 2022; 31:2172-2188. [PMID: 35092102 PMCID: PMC9304231 DOI: 10.1111/mec.16375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 12/05/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
Abstract
Invertebrates are important for restoration processes as they are key drivers of many landscape‐scale ecosystem functions; including pollination, nutrient cycling and soil formation. However, invertebrates are often overlooked in restoration monitoring because they are highly diverse, poorly described, and time‐consuming to survey, and require increasingly scarce taxonomic expertise to enable identification. DNA metabarcoding is a relatively new tool for rapid survey that is able to address some of these concerns, and provide information about the taxa with which invertebrates are interacting via food webs and habitat. Here, we evaluate how invertebrate communities may be used to determine ecosystem trajectories during restoration. We collected ground‐dwelling and airborne invertebrates across chronosequences of mine‐site restoration in three ecologically disparate locations in Western Australia and identified invertebrate and plant communities using DNA metabarcoding. Ground‐dwelling invertebrates showed the clearest restoration signals, with communities becoming more similar to reference communities over time. These patterns were weaker in airborne invertebrates, which have higher dispersal abilities and therefore less local fidelity to environmental conditions. Although we detected directional changes in community composition indicative of invertebrate recovery, patterns observed were inconsistent between study locations. The inclusion of plant assays allowed identification of plant species, as well as potential food sources and habitat. We demonstrate that DNA metabarcoding of invertebrate communities can be used to evaluate restoration trajectories. Testing and incorporating new monitoring techniques such as DNA metabarcoding is critical to improving restoration outcomes.
Collapse
Affiliation(s)
- M van der Heyde
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia.,Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - M Bunce
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia.,Institute of Environmental Science and Research (ESR), Kenepuru, Porirua, 5022, New Zealand
| | - K W Dixon
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - K Fernandes
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - J Majer
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - G Wardell-Johnson
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - N E White
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia
| | - P Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia, 6845, Australia.,Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPP Box U1987, Perth, Western Australia, 6845, Australia
| |
Collapse
|
9
|
Onley IR, Moseby KE, Austin JJ, Sherratt E. Morphological variation in skull shape and size across extinct and extant populations of the greater stick-nest rat (Leporillus conditor): implications for translocation. AUSTRALIAN MAMMALOGY 2022. [DOI: 10.1071/am21047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Rix MG, Wilson JD, Huey JA, Hillyer MJ, Gruber K, Harvey MS. Diversification of the mygalomorph spider genus Aname (Araneae: Anamidae) across the Australian arid zone: Tracing the evolution and biogeography of a continent-wide radiation. Mol Phylogenet Evol 2021; 160:107127. [PMID: 33667632 DOI: 10.1016/j.ympev.2021.107127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
The assembly of the Australian arid zone biota has long fascinated biogeographers. Covering over two-thirds of the continent, Australia's vast arid zone biome is home to a distinctive fauna and flora, including numerous lineages which have diversified since the Eocene. Tracing the origins and speciation history of these arid zone taxa has been an ongoing endeavour since the advent of molecular phylogenetics, and an increasing number of studies on invertebrate animals are beginning to complement a rich history of research on vertebrate and plant taxa. In this study, we apply continent-wide genetic sampling and one of the largest phylogenetic data matrices yet assembled for a genus of Australian spiders, to reconstruct the phylogeny and biogeographic history of the open-holed trapdoor spider genus Aname L. Koch, 1873. This highly diverse lineage of Australian mygalomorph spiders has a distribution covering the majority of Australia west of the Great Dividing Range, but apparently excluding the high rainfall zones of eastern Australia and Tasmania. Original and legacy sequences were obtained for three mtDNA and four nuDNA markers from 174 taxa in seven genera, including 150 Aname specimen terminals belonging to 102 species-level operational taxonomic units, sampled from 32 bioregions across Australia. Reconstruction of the phylogeny and biogeographic history of Aname revealed three radiations (Tropical, Temperate-Eastern and Continental), which could be further broken into eight major inclusive clades. Ancestral area reconstruction revealed the Pilbara, Monsoon Tropics and Mid-West to be important ancestral areas for the genus Aname and its closest relatives, with the origin of Aname itself inferred in the Pilbara bioregion. From these origins in the arid north-west of Australia, our study found evidence for a series of subsequent biome transitions in separate lineages, with at least eight tertiary incursions back into the arid zone from more mesic tropical, temperate or eastern biomes, and only two major clades which experienced widespread (primary) in situ diversification within the arid zone. Based on our phylogenetic results, and results from independent legacy divergence dating studies, we further reveal the importance of climate-driven biotic change in the Miocene and Pliocene in shaping the distribution and composition of the Australian arid zone biota, and the value of continent-wide studies in revealing potentially complex patterns of arid zone diversification in dispersal-limited invertebrate taxa.
Collapse
Affiliation(s)
- Michael G Rix
- Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, QLD 4101, Australia; Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia.
| | - Jeremy D Wilson
- Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, QLD 4101, Australia; Division of Arachnology, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Av. Ángel Gallardo 470 (C1405DJR), Buenos Aires, Argentina
| | - Joel A Huey
- Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia; School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Mia J Hillyer
- Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia
| | - Karl Gruber
- Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia; School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Mark S Harvey
- Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia; School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
11
|
Girard MB, Elias DO, Azevedo G, Bi K, Kasumovic MM, Waldock JM, Rosenblum EB, Hedin M. Phylogenomics of peacock spiders and their kin (Salticidae: Maratus), with implications for the evolution of male courtship displays. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Understanding diversity has been a pursuit in evolutionary biology since its inception. A challenge arises when sexual selection has played a role in diversification. Questions of what constitutes a ‘species’, homoplasy vs. synapomorphy, and whether sexually selected traits show phylogenetic signal have hampered work on many systems. Peacock spiders are famous for sexually selected male courtship dances and peacock-like abdominal ornamentation. This lineage of jumping spiders currently includes over 90 species classified into two genera, Maratus and Saratus. Most Maratus species have been placed into groups based on secondary sexual characters, but evolutionary relationships remain unresolved. Here we assess relationships in peacock spiders using phylogenomic data (ultraconserved elements and RAD-sequencing). Analyses reveal that Maratus and the related genus Saitis are paraphyletic. Many, but not all, morphological groups within a ‘core Maratus’ clade are recovered as genetic clades but we find evidence for undocumented speciation. Based on original observations of male courtship, our comparative analyses suggest that courtship behaviour and peacock-like abdominal ornamentation have evolved sequentially, with some traits inherited from ancestors and others evolving repeatedly and independently from ‘simple’ forms. Our results have important implications for the taxonomy of these spiders, and provide a much-needed evolutionary framework for comparative studies of the evolution of sexual signal characters.
Collapse
Affiliation(s)
- Madeline B Girard
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Damian O Elias
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Guilherme Azevedo
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael M Kasumovic
- Ecology & Evolution Research Centre, School of Biological, Earth & Environmental Sciences, UNSW, Sydney, NSW, Australia
| | - Julianne M Waldock
- Collections and Research, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
12
|
Derkarabetian S, Baker CM, Hedin M, Prieto CE, Giribet G. Phylogenomic re-evaluation of Triaenonychoidea (Opiliones : Laniatores), and systematics of Triaenonychidae, including new families, genera and species. INVERTEBR SYST 2021. [DOI: 10.1071/is20047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Opiliones superfamily Triaenonychoidea currently includes two families, the monogeneric New Zealand–endemic Synthetonychiidae Forster, 1954 and Triaenonychidae Sørensen, 1886, a diverse family distributed mostly throughout the temperate Gondwanan terranes, with ~110 genera and ~500 species and subspecies currently described. Traditionally, Triaenonychidae has been divided into subfamilies diagnosed by very few morphological characters largely derived from the troublesome ‘Roewerian system’ of morphology, and classifications based on this system led to many complications. Recent research within Triaenonychoidea using morphology and traditional multilocus data has shown multiple deeply divergent lineages, non-monophyly of Triaenonychidae, and non-monophyly of subfamilies, necessitating a revision based on phylogenomic data. We used sequence capture of ultraconserved elements across 164 samples to create a 50% taxon occupancy matrix with 704 loci. Using phylogenomic and morphological examinations, we explored family-level relationships within Triaenonychoidea, including describing two new families: (1) Lomanellidae Mendes & Derkarabetian, fam. nov., consisting of Lomanella Pocock, 1903, and a newly described genus Abaddon Derkarabetian & Baker, gen. nov. with one species, A. despoliator Derkarabetian, sp. nov.; and (2) the elevation to family of Buemarinoidae Karaman, 2019, consisting of Buemarinoa Roewer, 1956, Fumontana Shear, 1977, Flavonuncia Lawrence, 1959, and a newly described genus Turonychus Derkarabetian, Prieto & Giribet, gen. nov., with one species, T. fadriquei Derkarabetian, Prieto & Giribet, sp. nov. With our dataset we also explored phylogenomic relationships within Triaenonychidae with an extensive taxon set including samples representing ~80% of the genus-level diversity. Based on our results we (1) discuss systematics of this family including the historical use of subfamilies, (2) reassess morphology in the context of our phylogeny, (3) hypothesise placement for all unsampled genera, (4) highlight lineages most in need of taxonomic revision, and (5) provide an updated species-level checklist. Aside from describing new taxa, our study provides the phylogenomic context necessary for future evolutionary and systematic research across this diverse lineage.
ZooBank Registration: urn:lsid:zoobank.org:pub:81683834-98AB-43AA-B25A-C28C6A404F41
Collapse
|
13
|
Manero A, Kragt M, Standish R, Miller B, Jasper D, Boggs G, Young R. A framework for developing completion criteria for mine closure and rehabilitation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111078. [PMID: 32738742 DOI: 10.1016/j.jenvman.2020.111078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The mining industry is a major contributor to Australia's economy. However, such returns may come at high environmental and social costs, including loss of biodiversity or heritage values. Thus, companies worldwide are required to rehabilitate mine sites to a state that is safe, non-polluting and capable of supporting an agreed post-mining land use. While national and international guidelines on mine rehabilitation and closure exist, there is a lack of guidance on how to define achievable and measurable criteria that reflect rehabilitation success. This often leads to discrepancies between proponents and regulators, which hinder progression towards mine closure and relinquishment. The purpose of this study was to develop a systematic framework for the definition of completion criteria for mine closure and rehabilitation. The study was informed by a global review of the literature and collaborative research with mining stakeholders from Western Australia. The proposed framework consists of six fundamental steps: 1) selection of post mining land use; 2) definition of aspects and closure objectives; 3) selection of reference(s); 4) selection of attributes; 5) definition of completion criteria; and 6) evaluation of performance. This framework is the first to provide a step-by-step guide for defining site-specific completion criteria and applying a risk-based monitoring approach throughout the life of mine. The framework is applicable across jurisdictions and industries, in Australia and internationally, that require similar rehabilitation of disturbed lands.
Collapse
Affiliation(s)
- Ana Manero
- UWA School of Agriculture and Environment, University of Western Australia, Australia
| | - Marit Kragt
- Centre for Environmental Economics and Policy, UWA School of Agriculture and Environment, University of Western Australia, Australia.
| | - Rachel Standish
- Environmental and Conservation Sciences, Murdoch University, Western Australia, Australia
| | - Ben Miller
- Kings Park Science, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Australia
| | | | - Guy Boggs
- The Western Australian Biodiversity Science Institute, Australia
| | - Renee Young
- The Western Australian Biodiversity Science Institute, Australia; ARC Centre for Mine Site Restoration, Curtin University, Australia
| |
Collapse
|
14
|
The Frog Fauna of Southwestern Australia: Diverse, Bizarre, Old, and Polyandrous. J HERPETOL 2020. [DOI: 10.1670/19-024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Robins TP, Binks RM, Byrne M, Hopper SD. Contrasting patterns of population divergence on young and old landscapes in Banksia seminuda (Proteaceae), with evidence for recognition of subspecies. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
OCBIL theory provides a basis for understanding of the evolution and ecology of biota on old, climatically buffered, infertile landscapes (OCBILs) worldwide. Here, we test a genetic hypothesis presented in OCBIL theory that predicts highly differentiated intraspecific population systems on OCBILs vs. more limited differentiation on young, often disturbed, fertile landscapes (YODFELs). We examined patterns of genomic and morphological divergence in Banksia seminuda across OCBILs and YODFELs in south-western Australia. We also used these data to determine whether these OCBIL and YODFEL populations represent distinct subspecific lineages, a point of previous contention among taxonomists. As hypothesized, genomic analyses based on 3466 SNP loci revealed strong structuring within B. seminuda, with high differentiation across narrow geographic scales among OCBIL populations vs. lower differentiation across much larger geographic scales among YODFEL populations. In addition, genomic and morphological divergence was found between OCBIL and YODFEL populations, providing comprehensive quantitative evidence for two subspecies. These findings have taxonomic implications for the species and provide support for OCBIL theory and its insights into the evolution, ecology and conservation of biota on ancient landscapes.
Collapse
Affiliation(s)
- Timothy P Robins
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, The University of Western Australia, Albany, WA, Australia
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley, WA, Australia
| | - Rachel M Binks
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Bentley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Stephen D Hopper
- Centre of Excellence in Natural Resource Management, School of Agriculture and Environment, The University of Western Australia, Albany, WA, Australia
| |
Collapse
|
16
|
van der Heyde M, Bunce M, Wardell-Johnson G, Fernandes K, White NE, Nevill P. Testing multiple substrates for terrestrial biodiversity monitoring using environmental DNA metabarcoding. Mol Ecol Resour 2020; 20. [PMID: 32065512 DOI: 10.1111/1755-0998.13148] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/30/2019] [Accepted: 02/10/2020] [Indexed: 11/26/2022]
Abstract
Biological surveys based on visual identification of the biota are challenging, expensive and time consuming, yet crucial for effective biomonitoring. DNA metabarcoding is a rapidly developing technology that can also facilitate biological surveys. This method involves the use of next generation sequencing technology to determine the community composition of a sample. However, it is uncertain as to what biological substrate should be the primary focus of metabarcoding surveys. This study aims to test multiple sample substrates (soil, scat, plant material and bulk arthropods) to determine what organisms can be detected from each and where they overlap. Samples (n = 200) were collected in the Pilbara (hot desert climate) and Swan Coastal Plain (hot Mediterranean climate) regions of Western Australia. Soil samples yielded little plant or animal DNA, especially in the Pilbara, probably due to conditions not conducive to long-term preservation. In contrast, scat samples contained the highest overall diversity with 131 plant, vertebrate and invertebrate families detected. Invertebrate and plant sequences were detected in the plant (86 families), pitfall (127 families) and vane trap (126 families) samples. In total, 278 families were recovered from the survey, 217 in the Swan Coastal Plain and 156 in the Pilbara. Aside from soil, 22%-43% of the families detected were unique to the particular substrate, and community composition varied significantly between substrates. These results demonstrate the importance of selecting appropriate metabarcoding substrates when undertaking terrestrial surveys. If the aim is to broadly capture all biota then multiple substrates will be required.
Collapse
Affiliation(s)
- Mieke van der Heyde
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia.,Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, Perth, WA, Australia
| | - Michael Bunce
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, Perth, WA, Australia
| | - Grant Wardell-Johnson
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Kristen Fernandes
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, Perth, WA, Australia
| | - Nicole E White
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, Perth, WA, Australia
| | - Paul Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia.,Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
17
|
Baker CM, Sheridan K, Derkarabetian S, Pérez-González A, Vélez S, Giribet G. Molecular phylogeny and biogeography of the temperate Gondwanan family Triaenonychidae (Opiliones : Laniatores) reveals pre-Gondwanan regionalisation, common vicariance, and rare dispersal. INVERTEBR SYST 2020. [DOI: 10.1071/is19069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Triaenonychidae Sørensen in L. Koch, 1886 is a large family of Opiliones with ~480 described species broadly distributed across temperate forests in the Southern Hemisphere. However, it remains poorly understood taxonomically, as no comprehensive phylogenetic work has ever been undertaken. In this study we capitalise on samples largely collected by us during the last two decades and use Sanger DNA-sequencing techniques to produce a large phylogenetic tree with 300 triaenonychid terminals representing nearly 50% of triaenonychid genera and including representatives from all the major geographic areas from which they are known. Phylogenetic analyses using maximum likelihood and Bayesian inference methods recover the family as diphyletic, placing Lomanella Pocock, 1903 as the sister group to the New Zealand endemic family Synthetonychiidae Forster, 1954. With the exception of the Laurasian representatives of the family, all landmasses contain non-monophyletic assemblages of taxa. To determine whether this non-monophyly was the result of Gondwanan vicariance, ancient cladogenesis due to habitat regionalisation, or more recent over-water dispersal, we inferred divergence times. We found that most divergence times between landmasses predate Gondwanan breakup, though there has been at least one instance of transoceanic dispersal – to New Caledonia. In all, we identify multiple places in the phylogeny where taxonomic revision is needed, and transfer Lomanella outside of Triaenonychidae in order to maintain monophyly of the family.
Collapse
|
18
|
Liebherr JK. Phylogenetic placement of the Australian Pharetis, gen. nov., and Spherita, gen. nov., in a revised classification of the circum-Antarctic Moriomorphini (Coleoptera : Carabidae). INVERTEBR SYST 2020. [DOI: 10.1071/is19012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The carabid beetle tribe Moriomorphini attains a disjunct austral geographical distribution, with member taxa occupying Australia, New Zealand, New Caledonia, the Sundas, southern South America and Polynesia. The group arose in Australia, the area exhibiting the greatest generic diversity for the tribe. In this contribution, two new genera are added to the Australian fauna. Pharetis thayerae, gen. nov., sp. nov., is described from Grenvillia, New South Wales, and Spherita newtoni, gen. nov., sp. nov., is described from Avon Valley National Park, Western Australia. Their phylogenetic placement within the tribe is accomplished by parsimony analysis based on 208 morphological characters across 124 taxa, 114 in-group species and 10 outgroup taxa representing Trechini, Psydrini and Patrobini. Nearly all polytypic moriomorphine genera are represented in the analysis by at least two exemplars, allowing initial tests of generic monophyly. A revised classification is proposed for Moriomorphini, with subtribal clades related as (Amblytelina + (Moriomorphina + Tropopterina)). The Western Australian genus Spherita is placed as adelphotaxon to Sitaphe Moore, a genus restricted to tropical montane Queensland. From the phylogenetic analysis, other non-contemporaneous east–west Australian disjunctions can be inferred, as well as multiple trans-Tasman area relationships between eastern Australia and New Zealand, all proposed to be of Miocene age. Pharetis exhibits a disjunct, trans-Antarctic relationship with Tropopterus Solier, its sister-group, distributed in southern South America. Alternative vicariance-based and dispersal-based hypotheses are discussed for the origin of Tropopterus. A review of the taxonomic development of the tribe illustrates the signal importance of monotypic genera in elucidating biological diversity.
Collapse
|
19
|
Harvey MS, Rix MG, Hillyer MJ, Huey JA. The systematics and phylogenetic position of the troglobitic Australian spider genus Troglodiplura (Araneae : Mygalomorphae), with a new classification for Anamidae. INVERTEBR SYST 2020. [DOI: 10.1071/is20034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Compared with araneomorph spiders, relatively few mygalomorph spiders have evolved an obligate existence in subterranean habitats. The trapdoor spider genus Troglodiplura Main, 1969 and its sole named species T. lowryi Main, 1969 is endemic to caves on the Nullarbor Plain of southern Australia, and is one of the world’s most troglomorphic mygalomorph spiders. However, its systematic position has proved to be difficult to ascertain, largely due to a lack of preserved adults, with all museum specimens represented only by cuticular fragments, degraded specimens or preserved juveniles. The systematic placement of Troglodiplura has changed since it was first described as a member of the Dipluridae, with later attribution to Nemesiidae and then back to Dipluridae. The most recent hypothesis specifically allied Troglodiplura with the Neotropical subfamily Diplurinae, and therefore was assumed to have no close living relatives in Australia. We obtained mitochondrial sequence data from one specimen of Troglodiplura to test these two competing hypotheses, and found that Troglodiplura is a member of the family Anamidae (which was recently separated from the Nemesiidae). We also reassess the morphology of the cuticular fragments of specimens from several different caves, and hypothesise that along with T. lowryi there are four new troglobitic species, here named T. beirutpakbarai Harvey & Rix, T. challeni Harvey & Rix, T. harrisi Harvey & Rix, and T. samankunani Harvey & Rix, each of which is restricted to a single cave system and therefore severely threatened by changing environmental conditions within the caves. The first descriptions and illustrations of the female spermathecae of Troglodiplura are provided. The family Anamidae is further divided into two subfamilies, with the Anaminae Simon containing Aname L. Koch, 1873, Hesperonatalius Castalanelli, Huey, Hillyer & Harvey, 2017, Kwonkan Main, 1983, Swolnpes Main & Framenau, 2009 and Troglodiplura, and the Teylinae Main including Chenistonia Hogg, 1901, Namea Raven, 1984, Proshermacha Simon, 1909, Teyl Main, 1975 and Teyloides Main, 1985.
ZooBank Registration: http://zoobank.org/References/2BE2B429-0998-4AFE-9381-B30BDC391E9C
Collapse
|
20
|
Sindi A, Chawn MVB, Hernandez ME, Green K, Islam MK, Locher C, Hammer K. Anti-biofilm effects and characterisation of the hydrogen peroxide activity of a range of Western Australian honeys compared to Manuka and multifloral honeys. Sci Rep 2019; 9:17666. [PMID: 31776432 PMCID: PMC6881396 DOI: 10.1038/s41598-019-54217-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
The antibacterial activity of honeys derived from the endemic flora of the southwest corner of Western Australia, including the trees Jarrah (Eucalyptus marginata) and Marri (Corymbia calophylla), remains largely unexplored. Investigation of these honeys showed minimum inhibitory concentrations (MICs) of 6.7-28.0% (w/v) against Gram positive and negative bacteria. Honey solutions showed enhanced antibacterial activity after hydrogen peroxide was allowed to accumulate prior to testing, with a mean MIC after accumulation of 14.3% compared to 17.4% before accumulation. Antibacterial activity was reduced after treatment with catalase enzyme, with a mean MIC of 29.4% with catalase compared to 15.2% without catalase. Tests investigating the role of the Gram negative outer membrane in honey susceptibility revealed increases in activity after destabilisation of the outer membrane. Honeys reduced both the formation of biofilm and the production of bacterial pigments, which are both regulated by quorum sensing. However, these reductions were closely correlated with global growth inhibition. Honey applied to existing biofilms resulted in decreased metabolic activity and minor decreases in viability. These results enhance our understanding of the mechanisms of antibacterial action of Jarrah and Marri honeys, and provide further support for the use of honey in the treatment of infected wounds.
Collapse
Affiliation(s)
- Azhar Sindi
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Moses Van Bawi Chawn
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Magda Escorcia Hernandez
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Kathryn Green
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia.,The Cooperative Research Centre for Honey Bee Products Limited, Western Australia, Australia
| | - Md Khairul Islam
- The Cooperative Research Centre for Honey Bee Products Limited, Western Australia, Australia.,School of Allied Health, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Cornelia Locher
- The Cooperative Research Centre for Honey Bee Products Limited, Western Australia, Australia.,School of Allied Health, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Katherine Hammer
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia. .,The Cooperative Research Centre for Honey Bee Products Limited, Western Australia, Australia.
| |
Collapse
|
21
|
Bezemer N, Krauss SL, Roberts DG, Hopper SD. Conservation of old individual trees and small populations is integral to maintain species' genetic diversity of a historically fragmented woody perennial. Mol Ecol 2019; 28:3339-3357. [DOI: 10.1111/mec.15164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Nicole Bezemer
- School of Agriculture and Environment Centre of Excellence in Natural Resource Management The University of Western Australia Albany WA Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
| | - Siegfried L. Krauss
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
- Biological Sciences The University of Western Australia Crawley WA Australia
| | - David G. Roberts
- School of Agriculture and Environment Centre of Excellence in Natural Resource Management The University of Western Australia Albany WA Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science West Perth WA Australia
| | - Stephen D. Hopper
- School of Agriculture and Environment Centre of Excellence in Natural Resource Management The University of Western Australia Albany WA Australia
| |
Collapse
|
22
|
Too hot to handle: Cenozoic aridification drives multiple independent incursions of Schizomida (Hubbardiidae) into hypogean environments. Mol Phylogenet Evol 2019; 139:106532. [PMID: 31185297 DOI: 10.1016/j.ympev.2019.106532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 11/20/2022]
Abstract
The formation of the Australian arid zone, Australia's largest and youngest major biome, has been recognized as a major driver of rapid evolutionary radiations in terrestrial plants and animals. Here, we investigate the phylogenetic diversity and evolutionary history of subterranean short-tailed whip scorpions (Schizomida: Hubbardiidae), which are a significant faunal component of Western Australian hypogean ecosystems. We sequenced two mitochondrial (12S, COI) and three nuclear DNA markers (18S, 28S, ITS2) from ∼600 specimens, largely from the genera Draculoides and Paradraculoides, including 20 previously named species and an additional 56 newly identified operational taxonomic units (OTUs). Phylogenetic analyses revealed a large and rapid species radiation congruent with Cenozoic aridification of the continent, in addition to the identification of a new genus in Western Australia and the first epigean schizomid from the Pilbara. Here, we also synonymise Paradraculoides with Draculoides (new synonymy), due to paraphyly and a lack of reliable characters to define the two genera. Our results are consistent with multiple colonisations of the subterranean realm from epigean ancestors as their forest habitat fragmented and retracted, with ongoing fragmentation and diversification of lineages underground. These findings illustrate the remarkable diversity and high incidence of short-range endemism of Western Australia's subterranean fauna, which has important implications for identifying and managing short-range endemic subterranean fauna. They also highlight the advantages of including molecular data in subterranean fauna surveys as all specimens can be utilized, regardless of sex and life stage. Additionally, we have provided the first multi-gene phylogenetic framework for Australian schizomids, which will enable researchers and environmental consultants to identify new taxa or align them to existing lineages.
Collapse
|
23
|
Harms D, Roberts JD, Harvey MS. Climate variability impacts on diversification processes in a biodiversity hotspot: a phylogeography of ancient pseudoscorpions in south-western Australia. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The south-western division of Australia is the only biodiversity hotspot in Australia and is well-known for extreme levels of local endemism. Climate change has been identified as a key threat for flora and fauna, but very few data are presently available to evaluate its impact on invertebrate fauna. Here, we derive a molecular phylogeography for pseudoscorpions of the genus Pseudotyrannochthonius that in the south-west are restricted to regions with the highest rainfall. A dated molecular phylogeny derived from six gene fragments is used for biogeographic reconstruction analyses, spatial mapping, environmental niche-modelling, and to infer putative species. Phylogenetic analyses uncover nine clades with mostly allopatric distributions and often small linear ranges between 0.5 and 130 km. Molecular dating suggests that the origins of contemporary diversity fall into a period of warm/humid Palaeogene climates, but splits in the phylogeny coincide with major environmental shifts, such as significant global cooling during the Middle Miocene. By testing several models of historical biogeography available for the south-west, we determine that Pseudotyrannochthonius is an ancient relict lineage that principally follows a model of allopatric speciation in mesic zone refugia, although there are derivations from this model in that some species are older and distribution patterns more complex than expected. Ecological niche models indicate that drier and warmer future climates will lead to range contraction towards refugia of highest rainfall, probably mimicking past variations that have generated high diversity in these areas. Their conservation management will be crucial for preserving the unique biodiversity heritage of the south-west.
Collapse
Affiliation(s)
- Danilo Harms
- Zoological Museum, Center of Natural History, University of Hamburg, Hamburg, Germany
| | - J Dale Roberts
- Centre for Evolutionary Biology and School of Biological Sciences, UWA, Crawley, WA, Australia
| | - Mark S Harvey
- Department of Terrestrial Zoology, Western Australian Museum, Welshpool DC, Western Australia, Australia
- School of Animal Biology, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
24
|
Richardson BJ. Evolutionary biogeography of Australian jumping spider genera (Araneae : Salticidae). AUST J ZOOL 2019. [DOI: 10.1071/zo20023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phylogenetic relationships and estimated dates of origin, plus distributional, ecological and morphological data for salticid genera were used to examine a series of hypotheses related to the evolution of the Australian salticid fauna. Though independent, the time patterns of evolution of genera in Australia and South America were similar, while that for Northern Hemisphere taxa differed. In each case the production of new genera occurred during the warmer parts of the mid Tertiary but not during cooler and drier times. Asian elements entered Australia as early as 31 million years ago, long before the collision of the Australasian and Asian continental plates. Endemic and derivatives of Asian genera were similarly distributed across Australian biomes. However, arriving taxa were more successful when conditions matched their mesic origins (tropical), but less so when different (temperate). While endemic genera often extended their ranges into drier environments by increasing the number of species, recent arrivals did so by extending the range of individual species. Maximum Parsimony analyses of a range of presumed adaptive, morphological and ecological characters showed these did not reflect genus-level processes; however, the analysis did show all endemic genera had mesic origins.
Collapse
|
25
|
Huey JA, Hillyer MJ, Harvey MS. Phylogenetic relationships and biogeographic history of the Australian trapdoor spider genus Conothele (Araneae: Mygalomorphae: Halonoproctidae): diversification into arid habitats in an otherwise tropical radiation. INVERTEBR SYST 2019. [DOI: 10.1071/is18078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In Australia, climate change and continental drift have given rise to a complex biota comprising mesic specialists, arid-adapted lineages, and taxa that have arrived on the continent from Asia. We explore the phylogenetic diversity and biogeographic history of the Australian trapdoor spider genus Conothele Thorell, 1878 that is widespread in Australia’s monsoonal tropics and arid zone. We sequenced three mtDNA and five nuDNA markers from 224 specimens. We reconstructed the phylogenetic relationships among specimens and estimated the number of operational taxonomic units (OTUs) using species delimitation methods. The timing of divergences was estimated and ancestral area reconstructions were conducted. We recovered 61 OTUs, grouped into four major clades; a single clade represented by an arboreal ecomorph, and three fossorial clades. The Australian Conothele had a crown age of ~19 million years, and ancestral area reconstructions showed a complex history with multiple transitions among the monsoonal tropics, central arid zone, south-west and Pilbara bioregion. Conothele arrived on the continent during periods of biotic exchange with Asia. Since then, Conothele has colonised much of the Australian arid and monsoonal zones, during a period of climatic instability. The Pilbara bioregion harbours high lineage diversity, emphasising the role of climate refugia.
Collapse
|
26
|
Mason L, Bateman PHILIPWILLIAM, Miller BP, Wardell-Johnson GW. Ashes to ashes: Intense fires extinguish populations of urban short-range endemics. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leanda Mason
- School of Molecular and Life Sciences; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| | - PHILIP WILLIAM Bateman
- School of Molecular and Life Sciences; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| | - Ben P. Miller
- School of Molecular and Life Sciences; Curtin University; GPO Box U1987 Perth WA 6845 Australia
- Department of Biodiversity, Conservation and Attractions; Kings Park Science; Kings Park WA Australia
| | - Grant Wesley Wardell-Johnson
- School of Molecular and Life Sciences; Curtin University; GPO Box U1987 Perth WA 6845 Australia
- ARC Centre for Mine Site Restoration; School of Molecular and Life Sciences; Curtin University; Perth WA Australia
| |
Collapse
|
27
|
Fernandes K, van der Heyde M, Bunce M, Dixon K, Harris RJ, Wardell-Johnson G, Nevill PG. DNA metabarcoding-a new approach to fauna monitoring in mine site restoration. Restor Ecol 2018. [DOI: 10.1111/rec.12868] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kristen Fernandes
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| | - Mieke van der Heyde
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| | - Michael Bunce
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| | - Kingsley Dixon
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| | - Richard J. Harris
- School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| | - Grant Wardell-Johnson
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| | - Paul G. Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| |
Collapse
|
28
|
Crawford HM, Fontaine JB, Calver MC. Ultrasonic deterrents reduce nuisance cat (Felis catus) activity on suburban properties. Glob Ecol Conserv 2018. [DOI: 10.1016/j.gecco.2018.e00444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
29
|
Schwentner M, Giribet G. Phylogeography, species delimitation and population structure of a Western Australian short-range endemic mite harvestman (Arachnida: Opiliones: Pettalidae: Karripurcellia). EVOLUTIONARY SYSTEMATICS 2018. [DOI: 10.3897/evolsyst.2.25274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mite harvestmen of the genusKarripurcelliaGiribet, 2003 are endemic to the tall, wet eucalypt forests of south-western Western Australia, a region known as a hotspot for biodiversity. Currently, there are two accepted species,K.peckorumGiribet, 2003 andK.sierwaldaeGiribet, 2003, both with type localities within the Warren National Park. We obtained 65COImtDNA sequences from across the entire distributional range of the genus. These sequences, falling into two to three geographically separate groups, probably correspond to two species. Morphologically, all of the studied specimens correspond toK.peckorum, suggesting cryptic speciation within that species. A few common haplotypes occur in more than one population, but most haplotypes are confined to a single population. As a result, populations are genetically differentiated and gene flow after initial colonization appears to be very limited or completely lacking. Our study provides another example of short-range endemism in an invertebrate from the south-western mesic biome.
Collapse
|
30
|
Symonds CL, Cassis G. Systematics and Analysis of the Radiation of Orthotylini Plant Bugs Associated with Callitroid Conifers in Australia: Description of Five New Genera and 32 New Species (Heteroptera: Miridae: Orthotylinae). BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2018. [DOI: 10.1206/0003-0090-422.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Celia L. Symonds
- Evolution & Ecology Research Centre School of BEES University of New South Wales Sydney Australia
| | - Gerasimos Cassis
- Evolution & Ecology Research Centre School of BEES University of New South Wales Sydney Australia
| |
Collapse
|
31
|
Kallal RJ, Hormiga G. Systematics, phylogeny and biogeography of the Australasian leaf-curling orb-weaving spiders (Araneae: Araneidae: Zygiellinae), with a comparative analysis of retreat evolution. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Robert J Kallal
- The George Washington University, Department of Biological Sciences, Washington, D.C., USA
| | - Gustavo Hormiga
- The George Washington University, Department of Biological Sciences, Washington, D.C., USA
| |
Collapse
|
32
|
Buckley SJ, Domingos FMCB, Attard CRM, Brauer CJ, Sandoval-Castillo J, Lodge R, Unmack PJ, Beheregaray LB. Phylogenomic history of enigmatic pygmy perches: implications for biogeography, taxonomy and conservation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172125. [PMID: 30110415 PMCID: PMC6030323 DOI: 10.1098/rsos.172125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Pygmy perches (Percichthyidae) are a group of poorly dispersing freshwater fishes that have a puzzling biogeographic disjunction across southern Australia. Current understanding of pygmy perch phylogenetic relationships suggests past east-west migrations across a vast expanse of now arid habitat in central southern Australia, a region lacking contemporary rivers. Pygmy perches also represent a threatened group with confusing taxonomy and potentially cryptic species diversity. Here, we present the first study of the evolutionary history of pygmy perches based on genome-wide information. Data from 13 991 ddRAD loci and a concatenated sequence of 1 075 734 bp were generated for all currently described and potentially cryptic species. Phylogenetic relationships, biogeographic history and cryptic diversification were inferred using a framework that combines phylogenomics, species delimitation and estimation of divergence times. The genome-wide phylogeny clarified the biogeographic history of pygmy perches, demonstrating multiple east-west events of divergence within the group across the Australian continent. These results also resolved discordance between nuclear and mitochondrial data from a previous study. In addition, we propose three cryptic species within a southwestern species complex. The finding of potentially new species demonstrates that pygmy perches may be even more susceptible to ecological and demographic threats than previously thought. Our results have substantial implications for improving conservation legislation of pygmy perch lineages, especially in southwestern Western Australia.
Collapse
Affiliation(s)
- Sean J. Buckley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Fabricius M. C. B. Domingos
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT 78698-000, Brazil
| | - Catherine R. M. Attard
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Chris J. Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Ryan Lodge
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Peter J. Unmack
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| |
Collapse
|
33
|
Rix MG, Huey JA, Cooper SJB, Austin AD, Harvey MS. Conservation systematics of the shield-backed trapdoor spiders of the nigrum-group (Mygalomorphae, Idiopidae, Idiosoma): integrative taxonomy reveals a diverse and threatened fauna from south-western Australia. Zookeys 2018:1-121. [PMID: 29773959 PMCID: PMC5956031 DOI: 10.3897/zookeys.756.24397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/02/2018] [Indexed: 11/12/2022] Open
Abstract
The aganippine shield-backed trapdoor spiders of the monophyletic nigrum-group of Idiosoma Ausserer s. l. are revised, and 15 new species are described from Western Australia and the Eyre Peninsula of South Australia: I.arenaceum Rix & Harvey, sp. n., I.corrugatum Rix & Harvey, sp. n., I.clypeatum Rix & Harvey, sp. n., I.dandaragan Rix & Harvey, sp. n., I.formosum Rix & Harvey, sp. n., I.gardneri Rix & Harvey, sp. n., I.gutharuka Rix & Harvey, sp. n., I.incomptum Rix & Harvey, sp. n., I.intermedium Rix & Harvey, sp. n., I.jarrah Rix & Harvey, sp. n., I.kopejtkaorum Rix & Harvey, sp. n., I.kwongan Rix & Harvey, sp. n., I.mcclementsorum Rix & Harvey, sp. n., I.mcnamarai Rix & Harvey, sp. n., and I.schoknechtorum Rix & Harvey, sp. n. Two previously described species from south-western Western Australia, I.nigrum Main, 1952 and I.sigillatum (O. P.-Cambridge, 1870), are re-illustrated and re-diagnosed, and complementary molecular data for 14 species and seven genes are analysed with Bayesian methods. Members of the nigrum-group are of long-standing conservation significance, and I.nigrum is the only spider in Australia to be afforded threatened species status under both State and Commonwealth legislation. Two other species, I.formosum Rix & Harvey, sp. n. and I.kopejtkaorum Rix & Harvey, sp. n., are also formally listed as Endangered under Western Australian State legislation. Here we significantly relimit I.nigrum to include only those populations from the central and central-western Wheatbelt bioregion, and further document the known diversity and conservation status of all known species.
Collapse
Affiliation(s)
- Michael G Rix
- Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, Queensland 4101, Australia.,Australian Centre for Evolutionary Biology and Biodiversity, and Department of Ecology and Evolutionary Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.,Department of Terrestrial Zoology, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Joel A Huey
- Department of Terrestrial Zoology, Western Australian Museum, Welshpool, Western Australia 6106, Australia.,Adjunct, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.,Adjunct, School of Natural Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| | - Steven J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, and Department of Ecology and Evolutionary Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.,Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia 5000, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, and Department of Ecology and Evolutionary Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mark S Harvey
- Department of Terrestrial Zoology, Western Australian Museum, Welshpool, Western Australia 6106, Australia.,Adjunct, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
34
|
Mason LD, Bateman PW, Wardell-Johnson GW. The pitfalls of short-range endemism: high vulnerability to ecological and landscape traps. PeerJ 2018; 6:e4715. [PMID: 29740516 PMCID: PMC5937473 DOI: 10.7717/peerj.4715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/16/2018] [Indexed: 01/31/2023] Open
Abstract
Ecological traps attract biota to low-quality habitats. Landscape traps are zones caught in a vortex of spiralling degradation. Here, we demonstrate how short-range endemic (SRE) traits may make such taxa vulnerable to ecological and landscape traps. Three SRE species of mygalomorph spider were used in this study: Idiommata blackwalli, Idiosoma sigillatum and an undescribed Aganippe sp. Mygalomorphs can be long-lived (>43 years) and select sites for permanent burrows in their early dispersal phase. Spiderlings from two species, I. blackwalli (n = 20) and Aganippe sp. (n = 50), demonstrated choice for microhabitats under experimental conditions, that correspond to where adults typically occur in situ. An invasive veldt grass microhabitat was selected almost exclusively by spiderlings of I. sigillatum. At present, habitat dominated by veldt grass in Perth, Western Australia, has lower prey diversity and abundance than undisturbed habitats and therefore may act as an ecological trap for this species. Furthermore, as a homogenising force, veldt grass can spread to form a landscape trap in naturally heterogeneous ecosystems. Selection of specialised microhabitats of SREs may explain high extinction rates in old, stable landscapes undergoing (human-induced) rapid change.
Collapse
Affiliation(s)
- Leanda D Mason
- School of Molecular and Life Sciences, Curtin University, Bentley Campus, Perth, WA, Australia
| | - Philip W Bateman
- School of Molecular and Life Sciences, Curtin University, Bentley Campus, Perth, WA, Australia
| | - Grant W Wardell-Johnson
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley Campus, Perth, WA, Australia
| |
Collapse
|
35
|
García-Navas V, Rodríguez-Rey M. The Evolution of Climatic Niches and its Role in Shaping Diversity Patterns in Diprotodontid Marsupials. J MAMM EVOL 2018. [DOI: 10.1007/s10914-018-9435-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Harvey MS, Hillyer MJ, Main BY, Moulds TA, Raven RJ, Rix MG, Vink CJ, Huey JA. Phylogenetic relationships of the Australasian open-holed trapdoor spiders (Araneae: Mygalomorphae: Nemesiidae: Anaminae): multi-locus molecular analyses resolve the generic classification of a highly diverse fauna. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zlx111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mark S Harvey
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag, Welshpool DC, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Adjunct, School of Natural Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West, New York, NY, USA
- Department of Entomology, California Academy of Sciences, San Francisco, CA, USA
| | - Mia J Hillyer
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag, Welshpool DC, Western Australia, Australia
| | - Barbara York Main
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Timothy A Moulds
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag, Welshpool DC, Western Australia, Australia
| | - Robert J Raven
- Biodiversity and Geosciences, Queensland Museum, South Brisbane, Queensland, Australia
| | - Michael G Rix
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag, Welshpool DC, Western Australia, Australia
- Biodiversity and Geosciences, Queensland Museum, South Brisbane, Queensland, Australia
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cor J Vink
- Canterbury Museum, Rolleston Avenue, Christchurch, New Zeal
| | - Joel A Huey
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag, Welshpool DC, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Adjunct, School of Natural Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
37
|
The origins of diversity in ancient landscapes: Deep phylogeographic structuring in a pseudoscorpion (Pseudotyrannochthoniidae: Pseudotyrannochthonius) reflects Plio-Pleistocene climate fluctuations. ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Mason LD, Wardell-Johnson G, Main BY. The longest-lived spider: mygalomorphs dig deep, and persevere. ACTA ACUST UNITED AC 2018. [DOI: 10.1071/pc18015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report the longest-lived spider documented to date. A 43-year-old, female Gaius villosus Rainbow, 1914 (Mygalomorphae: Idiopidae) has recently died during a long-term population study. This study was initiated by Barbara York Main at North Bungulla Reserve near Tammin, south-western Australia, in 1974. Annual monitoring of this species of burrowing, sedentary mygalomorph spider yielded not only this record-breaking discovery but also invaluable information for high-priority conservation taxa within a global biodiversity hotspot. We suggest that the life-styles of short-range endemics provide lessons for humanity and sustainable living in old stable landscapes.
Collapse
|
39
|
Sato S, Buckman-Young RS, Harvey MS, Giribet G. Cryptic speciation in a biodiversity hotspot: multilocus molecular data reveal new velvet worm species from Western Australia (Onychophora : Peripatopsidae : Kumbadjena). INVERTEBR SYST 2018. [DOI: 10.1071/is18024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There is a yet uncovered multitude of species to be found among Western Australian Onychophora. Kumbadjena, one of the two genera that reside in this region, has been previously suggested to house an extensive species complex. Morphology alone has not been able to elucidate the diversity in this genus and has instead muddled species delineations. Topologies and species delimitation analyses resulting from the sequences of two mitochondrial ribosomal markers (12S rRNA and 16S rRNA), one nuclear ribosomal marker (18S rRNA), and one mitochondrial protein-coding gene (cytochrome c oxidase subunit I) are indicative of several undescribed species. Fixed diagnostic nucleotide changes in the highly conserved sequences of 18S rRNA warrant distinction of three new species of Kumbadjena: K. toolbrunupensis, sp. nov., K. karricola, sp. nov., and K. extrema, sp. nov. The geographic distributions of the proposed species suggest that Kumbadjena is another example of short-range endemism, a common occurrence in the flora and fauna of the region. The extensive biodiversity and endemism in the region necessitates conservation to preserve the species and processes that promote speciation harboured by Western Australia.
Collapse
|
40
|
Tethyan changes shaped aquatic diversification. Biol Rev Camb Philos Soc 2017; 93:874-896. [DOI: 10.1111/brv.12376] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 01/19/2023]
|
41
|
Rix MG, Cooper SJ, Meusemann K, Klopfstein S, Harrison SE, Harvey MS, Austin AD. Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Mol Phylogenet Evol 2017; 109:302-320. [DOI: 10.1016/j.ympev.2017.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/16/2016] [Accepted: 01/16/2017] [Indexed: 01/08/2023]
|
42
|
Vertucci S, Pepper M, Edwards DL, Roberts JD, Mitchell N, Keogh JS. Evolutionary and natural history of the turtle frog, Myobatrachus gouldii, a bizarre myobatrachid frog in the southwestern Australian biodiversity hotspot. PLoS One 2017; 12:e0173348. [PMID: 28296914 PMCID: PMC5351994 DOI: 10.1371/journal.pone.0173348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/20/2017] [Indexed: 11/19/2022] Open
Abstract
Southwest Australia (SWA) is a global biodiversity hotspot and a centre of diversity and endemism for the Australo-Papuan myobatrachid frogs. Myobatrachus gouldii (the turtle frog) has a highly derived morphology associated with its forward burrowing behaviour, largely subterranean habit, and unusual mode of reproduction. Its sister genera Metacrinia and Arenophryne have restricted distributions in Western Australia with significant phylogeographic structure, leading to the recent description of a new species in the latter. In contrast, Myobatrachus is distributed widely throughout SWA over multiple climatic zones, but little is known of its population structure, geographic variation in morphology, or reproduction. We generated molecular and morphological data to test for genetic and morphological variation, and to assess whether substrate specialisation in this species may have led to phylogeographic structuring similar to that of other plant and animal taxa in SWA. We assembled sequence data for one mitochondrial and four nuclear DNA loci (3628 base pairs) for 42 turtle frogs sampled throughout their range. Likelihood phylogenetic analyses revealed shallow phylogeographic structure in the mtDNA locus (up to 3.3% genetic distance) and little variation in three of the four nDNA loci. The mtDNA haplotype network suggests five geographically allopatric groups, with no shared haplotypes between regions. These geographic patterns are congruent with several other SWA species, with genetic groups restricted to major hydrological divisions, the Swan Coastal Plain, and the Darling Scarp. The geographically structured genetic groups showed no evidence of significant morphological differentiation (242 individuals), and there was little sexual size dimorphism, but subtle differences in reproductive traits suggest more opportunistic breeding in lower rainfall zones. Call data were compared to sister genera Metacrinia and Arenophryne and found to be highly conservative across the three genera. Like many taxa in SWA, topographic variation and Plio-Pleistocene arid fluctuations likely were historic drivers of diversification in M. gouldii.
Collapse
Affiliation(s)
- Samantha Vertucci
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australia
| | - Mitzy Pepper
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australia
| | - Danielle L. Edwards
- School of Natural Sciences, University of California, Merced, CA, United States of America
| | - J. Dale Roberts
- Centre of Excellence in Natural Resource Management, The University of Western Australia, Albany, Western Australia
| | - Nicola Mitchell
- School of Animal Biology, The University of Western Australia, Crawley, Australia
| | - J. Scott Keogh
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
43
|
Luna-Ramirez K, Miller AD, Rašić G. Genetic and morphological analyses indicate that the Australian endemic scorpion Urodacus yaschenkoi (Scorpiones: Urodacidae) is a species complex. PeerJ 2017; 5:e2759. [PMID: 28123903 PMCID: PMC5244882 DOI: 10.7717/peerj.2759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/05/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Australian scorpions have received far less attention from researchers than their overseas counterparts. Here we provide the first insight into the molecular variation and evolutionary history of the endemic Australian scorpion Urodacus yaschenkoi. Also known as the inland robust scorpion, it is widely distributed throughout arid zones of the continent and is emerging as a model organism in biomedical research due to the chemical nature of its venom. METHODS We employed Bayesian Inference (BI) methods for the phylogenetic reconstructions and divergence dating among lineages, using unique haplotype sequences from two mitochondrial loci (COXI, 16S) and one nuclear locus (28S). We also implemented two DNA taxonomy approaches (GMYC and PTP/dPTP) to evaluate the presence of cryptic species. Linear Discriminant Analysis was used to test whether the linear combination of 21 variables (ratios of morphological measurements) can predict individual's membership to a putative species. RESULTS Genetic and morphological data suggest that U. yaschenkoi is a species complex. High statistical support for the monophyly of several divergent lineages was found both at the mitochondrial loci and at a nuclear locus. The extent of mitochondrial divergence between these lineages exceeds estimates of interspecific divergence reported for other scorpion groups. The GMYC model and the PTP/bPTP approach identified major lineages and several sub-lineages as putative species. Ratios of several traits that approximate body shape had a strong predictive power (83-100%) in discriminating two major molecular lineages. A time-calibrated phylogeny dates the early divergence at the onset of continental-wide aridification in late Miocene and Pliocene, with finer-scale phylogeographic patterns emerging during the Pleistocene. This structuring dynamics is congruent with the diversification history of other fauna of the Australian arid zones. DISCUSSION Our results indicate that the taxonomic status of U. yaschenkoi requires revision, and we provide recommendations for such future efforts. A complex evolutionary history and extensive diversity highlights the importance of conserving U. yaschenkoi populations from different Australian arid zones in order to preserve patterns of endemism and evolutionary potential.
Collapse
Affiliation(s)
| | - Adam D. Miller
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | | |
Collapse
|
44
|
Millar MA, Byrne M, Coates DJ, Roberts JD. Comparative analysis indicates historical persistence and contrasting contemporary structure in sympatric woody perennials of semi-arid south-west Western Australia. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Keppel G, Robinson TP, Wardell-Johnson GW, Yates CJ, Van Niel KP, Byrne M, Schut AGT. A low-altitude mountain range as an important refugium for two narrow endemics in the Southwest Australian Floristic Region biodiversity hotspot. ANNALS OF BOTANY 2017; 119:289-300. [PMID: 27634576 PMCID: PMC5321060 DOI: 10.1093/aob/mcw182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/15/2016] [Accepted: 06/24/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Low-altitude mountains constitute important centres of diversity in landscapes with little topographic variation, such as the Southwest Australian Floristic Region (SWAFR). They also provide unique climatic and edaphic conditions that may allow them to function as refugia. We investigate whether the Porongurups (altitude 655 m) in the SWAFR will provide a refugium for the endemic Ornduffia calthifolia and O. marchantii under forecast climate change. METHODS We used species distribution modelling based on WorldClim climatic data, 30-m elevation data and a 2-m-resolution LiDAR-derived digital elevation model (DEM) to predict current and future distributions of the Ornduffia species at local and regional scales based on 605 field-based abundance estimates. Future distributions were forecast using RCP2.6 and RCP4.5 projections. To determine whether local edaphic and biotic factors impact these forecasts, we tested whether soil depth and vegetation height were significant predictors of abundance using generalized additive models (GAMs). KEY RESULTS Species distribution modelling revealed the importance of elevation and topographic variables at the local scale for determining distributions of both species, which also preferred shadier locations and higher slopes. However, O. calthifolia occurred at higher (cooler) elevations with rugged, concave topography, while O. marchantii occurred in disturbed sites at lower locations with less rugged, convex topography. Under future climates both species are likely to severely contract under the milder RCP2.6 projection (approx. 2 °C of global warming), but are unlikely to persist if warming is more severe (RCP4.5). GAMs showed that soil depth and vegetation height are important predictors of O. calthifolia and O. marchantii distributions, respectively. CONCLUSIONS The Porongurups constitute an important refugium for O. calthifolia and O. marchantii, but limits to this capacity may be reached if global warming exceeds 2 °C. This capacity is moderated at local scales by biotic and edaphic factors.
Collapse
Affiliation(s)
- Gunnar Keppel
- School of Natural and Built Environments, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Todd P Robinson
- Spatial Sciences, Curtin University, Kent St., Bentley, Western Australia
| | - Grant W Wardell-Johnson
- Curtin Institute for Biodiversity and Climate and School of Science, Curtin University, Kent St., Bentley, Western Australia
| | - Colin J Yates
- Science and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, WA, Australia
| | - Kimberly P Van Niel
- School of Earth and Environment, The University of Western Australia, Crawley, WA 6009
| | - Margaret Byrne
- Science and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, WA, Australia
| | - Antonius G T Schut
- Plant Production Systems, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands
| |
Collapse
|
46
|
Rix MG, Raven RJ, Main BY, Harrison SE, Austin AD, Cooper SJB, Harvey MS. The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae : Arbanitinae): a relimitation and revision at the generic level. INVERTEBR SYST 2017. [DOI: 10.1071/is16065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Australasian spiny trapdoor spiders of the family Idiopidae (subfamily Arbanitinae) are revised at the generic level, using a multi-locus molecular phylogenetic foundation and comprehensive sampling of all known lineages. We propose a new family- and genus-group classification for the monophyletic Australasian fauna, and recognise 10 genera in four tribes. The Arbanitini Simon includes Arbanitis L. Koch, 1874 (61 species), Blakistonia Hogg, 1902 (one species) and Cantuaria Hogg, 1902 (43 species). The Aganippini Simon includes Bungulla Rix, Main, Raven & Harvey, gen. nov. (two species), Eucanippe Rix, Main, Raven & Harvey, gen. nov. (one species), Eucyrtops Pocock, 1897 (two species), Gaius Rainbow, 1914 (one species) and Idiosoma Ausserer, 1871 (14 species). The Cataxiini Rainbow and Euoplini Rainbow include just Cataxia Rainbow, 1914 (11 species) and Euoplos Rainbow, 1914 (12 species), respectively. Two distinctive new genera of Aganippini are described from Western Australia, and several previously valid genera are recognised as junior synonyms of existing genus-group names, including Misgolas Karsch, 1878 (= Arbanitis; new synonymy), Aganippe O. P.-Cambridge, 1877 (= Idiosoma; new synonymy) and Anidiops Pocock, 1897 (= Idiosoma; new synonymy). Gaius stat. rev. is further removed from synonymy of Anidiops. Other previously hypothesised generic synonyms are supported by both morphology and molecular phylogenetic data from 12 genes, including the synonymy of Neohomogona Main, 1985 and Homogona Rainbow, 1914 with Cataxia, and the synonymy of Albaniana Rainbow & Pulleine, 1918, Armadalia Rainbow & Pulleine, 1918, Bancroftiana Rainbow & Pulleine, 1918 and Tambouriniana Rainbow & Pulleine, 1918 with Euoplos. At the species level, the identifications of Eucy. latior (O. P.-Cambridge, 1877) and I. manstridgei (Pocock, 1897) are clarified, and three new species are described: Bungulla bertmaini Rix, Main, Raven & Harvey, sp. nov., Eucanippe bifida Rix, Main, Raven & Harvey, sp. nov. and Idiosoma galeosomoides Rix, Main, Raven & Harvey, sp. nov., the latter remarkable for its phragmotic abdominal morphology. The Tasmanian species Mygale annulipes C. L. Koch, 1842 is here transferred to the genus Stanwellia Rainbow & Pulleine, 1918 (family Nemesiidae), comb. nov., Arbanitis mestoni Hickman, 1928 is transferred to Cantuaria, comb. nov. and Idiosoma hirsutum Main, 1952 is synonymised with I. sigillatum (O. P.-Cambridge, 1870), new synonymy. In addition to the morphological synopses and an illustrated key to genera, molecular diagnoses are presented for all nominal taxa, along with live habitus and burrow images to assist in field identification. The Australasian idiopid fauna is highly diverse, with numerous new species known from all genera. As a result, this study provides a taxonomic and nomenclatural foundation for future species-level analyses, and a single reference point for the monographic documentation of a remarkable fauna.
http://zoobank.org/?lsid=urn:lsid:zoobank.org:pub:BACE065D-1EF9-40C6-9134-AADC9235FAD8
Collapse
|
47
|
Antibacterial activity and chemical characteristics of several Western Australian honeys compared to manuka honey and pasture honey. Arch Microbiol 2016; 199:347-355. [PMID: 27785532 DOI: 10.1007/s00203-016-1308-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 10/20/2022]
Abstract
The physicochemical parameters and antibacterial activity of 10 Western Australian (WA) and two comparator honeys were determined. Honeys showed a pH range of 4.0-4.7, colour range of 41.3-470.7 mAU, methylglyoxal levels ranging from 82.2 to 325.9 mg kg-1 and hydrogen peroxide levels after 2 h of 22.7-295.5 µM. Antibacterial activity was assessed by the disc diffusion assay, phenol equivalence assay, determination of minimum inhibitory and bactericidal concentrations and a time-kill assay. Activity was shown for all honeys by one or more method, however, activity varied according to which assay was used. Minimum inhibitory concentrations for WA honeys against 10 organisms ranged from 4.0 to >32.0% (w/v). Removal of hydrogen peroxide activity by catalase resulted in decreased activity for several honeys. Overall, the data showed that honeys in addition to those derived from Leptospermum spp. have antimicrobial activity and should not be overlooked as potential sources of clinically useful honey.
Collapse
|
48
|
Abstract
Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our modelling framework provides a simple approach for identifying the best possible management strategy for invasive species based on metapopulation structure and control capacity. This information can be used by managers trying to devise efficient landscape-oriented management strategies for invasive species and can also generate insights for conservation purposes.
Collapse
|
49
|
Wardell-Johnson G, Wardell-Johnson A, Bradby K, Robinson T, Bateman PW, Williams K, Keesing A, Braun K, Beckerling J, Burbridge M. Application of a Gondwanan perspective to restore ecological integrity in the south-western Australian global biodiversity hotspot. Restor Ecol 2016. [DOI: 10.1111/rec.12372] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Grant Wardell-Johnson
- Department of Environment and Agriculture, School of Science; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| | - Angela Wardell-Johnson
- Centre for Human Rights Education; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| | - Keith Bradby
- Gondwana Link Ltd; PO Box 5276 Albany WA 6332 Australia
| | - Todd Robinson
- Department of Spatial Sciences, School of Mines; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| | - Philip W. Bateman
- Department of Environment and Agriculture, School of Science; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| | - Kim Williams
- Department of Parks and Wildlife; PO Box 1693 Bunbury WA 6231 Australia
| | | | - Klaus Braun
- ICS Group; 111 Mira Flores Avenue Porongurup WA 6324 Australia
| | | | - Mike Burbridge
- Curtin University Sustainability Policy Institute; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| |
Collapse
|
50
|
Schuh RT, Schwartz MD. Nineteen New Genera and 82 New Species of Cremnorrhinina from Australia, Including Analyses of Host Relationships and Distributions (Insecta: Hemiptera: Miridae: Phylinae: Cremnorrhinini). BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2016. [DOI: 10.1206/amnb-925-00-1-279.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|