1
|
Hamoud AF, Al-Saadi NH. The Assessment of Selenium, Aluminum, and Zinc in Children with Autism Spectrum Disorder. Biol Trace Elem Res 2024:10.1007/s12011-024-04283-5. [PMID: 39008215 DOI: 10.1007/s12011-024-04283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
ASD is a complex condition defined by many causes, one of them being excessive concentrations of necessary and harmful chemicals in children. The serum, hair, and nails of children with ASD have lower levels of critical trace elements, according to studies. It is quite obvious that bio elements are involved in physiology and pathophysiology. Thus, this study examined trace element contents in serum samples from children with autism spectrum disorder (ASD), specifically zinc (Zn), aluminum (Al), and selenium (Se). The study also looked for links between trace element levels and autistic severity. The study included 47 children with autism spectrum disorder, and the Gilliam's Scale was used for severity. The study also included 53 healthy kids with age and gender-matched with those of ASD. For serum trace element analysis, graphite furnace atomic absorption spectrophotometry was used. The study found significant decreases in selenium and zinc concentration (OR, 5.25; CI, 1.96 ~ 14.08; p < 0.001) and increases in aluminum level (OR, 39.34; CI, 8.20 ~ 89.45; p < 0.001) in children with ASD compared to the control group. The area under the curve (AUC) values of 0.85 for Se, 0.98 for Al, and 0.7 for Zn showed high sensitivity and specificity for all parameters. Results indicate a strong positive connection between ASD and their levels of selenium (Se) and zinc (Zn) (β, 0.48; CI, 0.280 ~ 0.679; p < 0.001 and β, 0.31; CI, 0.10 ~ 0.52; p = 0.005). There is a negative correlation between ASD and aluminum (Al) (β 0.83; CI, 0.71 ~ 0.95; p < 0.001). This element may be a biomarker for autism in youngsters. High odds ratio (OR) values indicate trace element risk in autistic children.
Collapse
Affiliation(s)
- Ali Fadheel Hamoud
- Ministry of Education, Karbala Education Directorate, Karbala, Iraq.
- Chemistry Department, College of Science, Kerbala University, Karbala, Iraq.
| | | |
Collapse
|
2
|
Huang S, Gao Y, Chen Y, Wang Y, Lu Y, Gao W, Hu X, Fang Q. Association between dietary zinc intake and epilepsy: findings from NHANES 2013-2018 and a Mendelian randomization study. Front Nutr 2024; 11:1389338. [PMID: 39050137 PMCID: PMC11267886 DOI: 10.3389/fnut.2024.1389338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Background The association between dietary zinc intake and epilepsy remains unclear. This study aimed to investigate the relationship between zinc intake from the diet and epilepsy, employing Mendelian randomization (MR) to explore potential causal links between zinc and epilepsy. Methods The cross-sectional study utilized data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2013 and 2018. Among the 4,434 participants included, 1.5% (67/4,434) reported having epilepsy. Restricted cubic spline models and logistic regression models were employed to examine the relationships between dietary zinc intakes and epilepsy. Subsequently, a 2-sample Mendelian randomization (MR) analysis was conducted using the inverse variance weighted (IVW) approach as the primary analysis. Results In the restricted cubic spline (RCS) analysis, the relationship between dietary zinc consumption and epilepsy displayed an L-shaped curve (nonlinear, p = 0.049). After multivariate adjustments, the adjusted odds ratios for epilepsy in T2 (5.0-11.0 mg/day) and T3 (≥11.0 mg/day) were 0.49 (95% confidence interval [CI]: 0.26-0.92, p = 0.026) and 0.60 (95% CI: 0.31-1.17, p = 0.132), respectively, compared to the lowest dietary zinc consumption tertile (T1, ≤5.0 mg/day). The IVW method indicated that genetically predicted zinc intake per standard-deviation increase was inversely associated with three types of epilepsy, including all types of epilepsy (OR = 1.06, 95% CI: 1.02-1.11, p = 0.008), generalized epilepsy (OR = 1.13, 95% CI: 1.01-1.25, p = 0.030), and focal epilepsy (documented hippocampal sclerosis) (OR = 1.01, 95% CI: 1.00-1.02, p = 0.025). Conclusion Our findings suggest that a daily zinc intake ranging from 5.0 to 11.0 mg is associated with the lowest risk of epilepsy. Furthermore, Mendelian randomization (MR) studies provide additional support for the existence of a causal relationship between zinc and epilepsy.
Collapse
Affiliation(s)
- Shicun Huang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya Gao
- Department of Neurology, Suzhou Guangci Cancer Hospital, Suzhou, China
| | - Yingqi Chen
- Department of Neurology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Yiqing Wang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yeting Lu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Gao
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowei Hu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Bjørklund G, Oliinyk P, Khavrona O, Lozynska I, Lysiuk R, Darmohray R, Antonyak H, Dub N, Zayachuk V, Antoniv O, Rybak O, Peana M. The Effects of Fisetin and Curcumin on Oxidative Damage Caused by Transition Metals in Neurodegenerative Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04321-2. [PMID: 38970766 DOI: 10.1007/s12035-024-04321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases pose a significant health challenge for the elderly. The escalating presence of toxic metals and chemicals in the environment is a potential contributor to central nervous system dysfunction and the onset of neurodegenerative conditions. Transition metals play a crucial role in various pathophysiological mechanisms associated with prevalent neurodegenerative diseases such as Alzheimer's and Parkinson's. Given the ubiquitous exposure to metals from diverse sources in everyday life, the workplace, and the environment, most of the population faces regular contact with different forms of these metals. Disturbances in the levels and homeostasis of certain transition metals are closely linked to the manifestation of neurodegenerative disorders. Oxidative damage further exacerbates the progression of neurological consequences. Presently, there exists no curative therapy for individuals afflicted by neurodegenerative diseases, with treatment approaches primarily focusing on alleviating pathological symptoms. Within the realm of biologically active compounds derived from plants, flavonoids and curcuminoids stand out for their extensively documented antioxidant, antiplatelet, and neuroprotective properties. The utilization of these compounds holds the potential to formulate highly effective therapeutic strategies for managing neurodegenerative diseases. This review provides a comprehensive overview of the impact of abnormal metal levels, particularly copper, iron, and zinc, on the initiation and progression of neurodegenerative diseases. Additionally, it aims to elucidate the potential of fisetin and curcumin to inhibit or decelerate the neurodegenerative process.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo I Rana, Norway.
| | - Petro Oliinyk
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Khavrona
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Iryna Lozynska
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Darmohray
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, 79000, Ukraine
| | - Vasyl Zayachuk
- Department of Botany, Ukrainian National Forestry University, Wood Science and Non-Wood Forest Products, Lviv, 79057, Ukraine
| | - Olha Antoniv
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacology, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Rybak
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
4
|
Chebieb I, Medjati ND, Harek Y, Guermouche B, Dali-Sahi M, Kachekouche Y, Benosman C. Imbalance of Plasma Copper and Zinc Levels and the Association Between the Cu/Zn Ratio and Lipid Peroxidation in Algerian Bipolar Patients. Biol Trace Elem Res 2024; 202:2450-2456. [PMID: 37725315 DOI: 10.1007/s12011-023-03858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Trace elements, through their interaction with biomolecules, can play an important role in the pathophysiology of bipolar disorder and protect against oxidative stress effects. The purpose of this study is to examine plasma concentration levels of zinc (Zn) and copper (Cu) of Algerian patients, diagnosed with bipolar disorder, and to compare these levels with those of healthy controls. The Cu/Zn ratio was calculated to explore a possible correlation between these elements and lipid peroxidation in the study groups. A total of 33 patients diagnosed with bipolar disorder and 38 healthy subjects participated in this study. Plasma copper and zinc concentrations were measured using a polarographic analyzer. The marker of plasma lipid peroxidation (Malondialdehyde: MDA) was determined by UV spectrophotometry. Plasma Cu concentrations were higher in patients compared to controls (p < 0.05), while the Zn level was significantly lower. Consequently, the Cu/Zn ratio was significantly different between patients and controls. Regarding MDA, no significant difference was noticed between the two study groups. However, in patients, a negative correlation was found between MDA and Cu/Zn ratio (r= -0.38, p= 0.027). These results suggested that an elevated Cu/Zn ratio is associated with attenuated lipid peroxidation in our bipolar patients.
Collapse
Affiliation(s)
- Ikram Chebieb
- Analytical Chemistry and Electrochemistry Laboratory, Department of Biology, University of Abou Bekr Belkaïd, 13,000, Tlemcen, Algeria.
| | - Nouria Dennouni Medjati
- Analytical Chemistry and Electrochemistry Laboratory, Department of Biology, University of Abou Bekr Belkaïd, 13,000, Tlemcen, Algeria
| | - Yahia Harek
- Analytical Chemistry and Electrochemistry Laboratory, Department of Chemistry, University of Abou Bekr Belkaïd, 13,000, Tlemcen, Algeria
| | - Baya Guermouche
- Physiology, Physiopathology and Biochemistry of Nutrition Laboratory, Department of Biology, University of Abou Bekr Belkaïd, 13,000, Tlemcen, Algeria
| | - Majda Dali-Sahi
- Analytical Chemistry and Electrochemistry Laboratory, Department of Biology, University of Abou Bekr Belkaïd, 13,000, Tlemcen, Algeria
| | - Youssouf Kachekouche
- Analytical Chemistry and Electrochemistry Laboratory, Department of Biology, University of Hassiba Benbouali, 02,000, Chlef, Algeria
| | - Cherifa Benosman
- Division of Adults, Hospital Center of Rouvray, 76,600, Rouen, France
| |
Collapse
|
5
|
Zong R, Zhang X, Dong X, Liu G, Zhang J, Gao Y, Zhang Z, Ma Y, Gao H, Gamper N. Genetic deletion of zinc transporter ZnT 3 induces progressive cognitive deficits in mice by impairing dendritic spine plasticity and glucose metabolism. Front Mol Neurosci 2024; 17:1375925. [PMID: 38807922 PMCID: PMC11130425 DOI: 10.3389/fnmol.2024.1375925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Zinc transporter 3 (ZnT3) is abundantly expressed in the brain, residing in synaptic vesicles, where it plays important roles in controlling the luminal zinc levels. In this study, we found that ZnT3 knockout in mice decreased zinc levels in the hippocampus and cortex, and was associated with progressive cognitive impairments, assessed at 2, 6, and 9-month of age. The results of Golgi-Cox staining demonstrated that ZnT3 deficiency was associated with an increase in dendritic complexity and a decrease in the density of mature dendritic spines, indicating potential synaptic plasticity deficit. Since ZnT3 deficiency was previously linked to glucose metabolism abnormalities, we tested the expression levels of genes related to insulin signaling pathway in the hippocampus and cortex. We found that the Expression of glucose transporters, GLUT3, GLUT4, and the insulin receptor in the whole tissue and synaptosome fraction of the hippocampus of the ZnT3 knockout mice were significantly reduced, as compared to wild-type controls. Expression of AKT (A serine/threonine protein kinase) and insulin-induced AKT phosphorylation was also reduced in the hippocampus of ZnT3 knockout mice. We hypothesize that the ZnT3 deficiency and reduced brain zinc levels may cause cognitive impairment by negatively affecting glycose metabolism via decreased expression of key components of insulin signaling, as well as via changes in synaptic plasticity. These finding may provide new therapeutic target for treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rui Zong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoding Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohui Dong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guan Liu
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jieyao Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiting Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhongyang Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiming Ma
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haixia Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Azargoonjahromi A. A systematic review of the association between zinc and anxiety. Nutr Rev 2024; 82:612-621. [PMID: 37364014 DOI: 10.1093/nutrit/nuad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
CONTEXT The incidence of anxiety, which stems from both intrinsic and extrinsic factors, has been increasing worldwide. Various methods by which it can be treated or prevented have been reported thus far. One of the most popular and effective treatments is supplementation therapy. Zinc, which is an essential nutrient found in various plants, animal foods, and supplements, has been shown to be a potential nutrient in anxiety reduction by acting on γ-aminobutyric acid (GABA), glutamatergic, serotonergic, neurogenesis, and immune systems. It can also influence important receptors, such as GPR39. Thus, zinc has received considerable attention with respect to its potential role as a therapeutic or detrimental factor for anxiety; yet, the available evidence needs to be analyzed systematically to reach a convergent conclusion. OBJECTIVE The objective was to systematically review any potential connection between adult human anxiety and zinc intake. DATA SOURCES AND EXTRACTION Nine original human studies, of which 2 assessed the relationship between zinc consumption and anxiety (based on a questionnaire) and 7 assessed the relationship between serum zinc levels and anxiety, were included based on specific selection criteria. Studies that had been written in English and published in peer-reviewed publications with no restrictions on the date of publication were searched in the Google Scholar and PubMed databases. This project was also reported according to the PRISMA guidelines. DATA ANALYSIS As per the studies analyzed in this review, there was a noticeable relationship between serum zinc levels and anxiety, which means that patients with anxiety have lower levels of zinc in their serum, as compared with healthy individuals. Furthermore, zinc consumption was inversely associated with anxiety. CONCLUSION The results provide plausible evidence for the positive role of zinc in the treatment of patients afflicted with anxiety, albeit with some limitations.
Collapse
|
7
|
Samanta SS, Giri S, Mandal S, Mandal U, Beg H, Misra A. A fluorescence based dual sensor for Zn 2+ and PO 43- and the application of soft computing methods to predict machine learning outcomes. Phys Chem Chem Phys 2024; 26:10037-10053. [PMID: 38482924 DOI: 10.1039/d3cp05662g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A phenolphthalein-based Schiff base, 3,3-bis-{4-hydroxy-3-[(pyridine-2-ylmethylimino)-methyl]-phenyl}-3H-isobenzofuran-1-one (PAP), has been synthesized and used for selective fluorescence 'turn on' and 'turn off' sensing of Zn2+ and PO43- respectively. The limit of detection using the 3σ method for Zn2+ is found to be 19.3 nM and that for PO43- is 8.3 μM. The sensing mechanism of PAP for Zn2+ ions has been explained by 1H NMR, 13C NMR, TRPL, ESI-MS, FT-IR, and DFT based calculations. Taking advantage of this fluorescence 'on-off' behavior of PAP in the sequential presence of Zn2+ and PO43- a two input fuzzy logic (FL) operation has been constructed. The chemosensor PAP can thus act as a metal ion and anion responsive molecular switch, and its corresponding emission intensity is used to mimic numerous FL functions. To replace various expensive, time-consuming experimental procedures, we implemented machine learning soft computing tools, such as fuzzy-logic, artificial neural networks (ANNs), and adaptive neuro-fuzzy inference systems (ANFIS), to correlate as well as predict the fluorescence intensity in the presence of any equivalent ratio of Zn2+ and PO43-. The statistical performance measures (MSE and RMSE, for example) show that the projected values of the cation and anion sensing data by the ANFIS network are the best and closer to the experimental values.
Collapse
Affiliation(s)
| | - Subhadip Giri
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| | - Sourav Mandal
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| | - Usha Mandal
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| | - Hasibul Beg
- Department of Chemistry, Raja N. L. Khan Women's College, Midnapore, 721102, India
| | - Ajay Misra
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
8
|
Scholefield M, Patassini S, Xu J, Cooper GJS. Widespread selenium deficiency in the brain of cases with Huntington's disease presents a new potential therapeutic target. EBioMedicine 2023; 97:104824. [PMID: 37806287 PMCID: PMC10667115 DOI: 10.1016/j.ebiom.2023.104824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Huntington or Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterised by both progressive motor and cognitive dysfunction; its pathogenic mechanisms remain poorly understood and no treatment can currently slow, stop, or reverse its progression. There is some evidence of metallomic dysfunction in limited regions of the HD brain; we hypothesised that these alterations are more widespread than the current literature suggests and may contribute to pathogenesis in HD. METHODS We measured the concentrations of eight essential metals (sodium, potassium, magnesium, calcium, iron, zinc, copper, and manganese) and the metalloid selenium across 11 brain regions in nine genetically confirmed, clinically manifest cases of HD and nine controls using inductively-coupled plasma mass spectrometry. Case-control differences were assessed by non-parametric Mann-Whitney U test (p < 0.05), risk ratios, E-values, and effect sizes. FINDINGS We observed striking decreases in selenium levels in 11 out of 11 investigated brain regions in HD, with risk ratios and effect sizes ranging 2.3-9.0 and 0.7-1.9, respectively. Increased sodium/potassium ratios were observed in every region (risk ratio = 2.5-8.0; effect size = 1.2-5.8) except the substantia nigra (risk ratio = 0.25; effect size = 0.1). Multiple regions showed increased calcium and/or zinc levels, and localised decreases in iron, copper, and manganese were present in the globus pallidus, cerebellum, and substantia nigra, respectively. INTERPRETATION The observed metallomic alterations in the HD brain may contribute to several pathogenic mechanisms, including mitochondrial dysfunction, oxidative stress, and blood-brain barrier dysfunction. Selenium supplementation may represent a potential, much-needed therapeutic pathway for the treatment of HD that would not require localised delivery in the brain due to the widespread presence of selenium deficiency in regions that show both high and low levels of neurodegeneration. FUNDING In Acknowledgments, includes the Lee Trust, the Endocore Research Trust, Cure Huntington's Disease Initiative, the Oakley Mental Health Research Foundation, the Medical Research Council (MRC), the New Zealand Neurological Foundation, and others.
Collapse
Affiliation(s)
- Melissa Scholefield
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M19 9NT, United Kingdom.
| | - Stefano Patassini
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland, 1142, New Zealand
| | - Jingshu Xu
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland, 1142, New Zealand
| | - Garth J S Cooper
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M19 9NT, United Kingdom; School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland, 1142, New Zealand
| |
Collapse
|
9
|
Górska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, Czarnek K. Distribution of Iron, Copper, Zinc and Cadmium in Glia, Their Influence on Glial Cells and Relationship with Neurodegenerative Diseases. Brain Sci 2023; 13:911. [PMID: 37371389 DOI: 10.3390/brainsci13060911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Recent data on the distribution and influence of copper, zinc and cadmium in glial cells are summarized. This review also examines the relationship between those metals and their role in neurodegenerative diseases like Alzheimer disease, multiple sclerosis, Parkinson disease and Amyotrophic lateral sclerosis, which have become a great challenge for today's physicians. The studies suggest that among glial cells, iron has the highest concentration in oligodendrocytes, copper in astrocytes and zinc in the glia of hippocampus and cortex. Previous studies have shown neurotoxic effects of copper, iron and manganese, while zinc can have a bidirectional effect, i.e., neurotoxic but also neuroprotective effects depending on the dose and disease state. Recent data point to the association of metals with neurodegeneration through their role in the modulation of protein aggregation. Metals can accumulate in the brain with aging and may be associated with age-related diseases.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Human Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland
| | | | - Renata Markiewicz
- Department of Psychiatric Nursing, Medical University of Lublin, 18 Szkolna St., 20-124 Lublin, Poland
| | - Zuzanna Chilimoniuk
- Student Scientific Group at the Department of Family Medicine, 6a (SPSK1) Langiewicza St., 20-032 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Katarzyna Czarnek
- Institute of Health Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
| |
Collapse
|
10
|
Huang D, Zhong S, Yan H, Lai S, Lam M, Jia Y. Association between serum zinc levels and suicidal ideation in US adults: A population-based cross-sectional study. J Affect Disord 2023; 329:359-368. [PMID: 36801424 DOI: 10.1016/j.jad.2023.02.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Evidence suggests that the homeostatic disruption of zinc, copper, and selenium might contribute to the pathophysiology of mental disorders. However, the specific relationship between the serum levels of these trace elements with suicidal ideation remains poorly understood. This study aimed to investigated the association among suicidal ideation on serum levels of zinc, copper, and selenium. METHODS The cross-sectional study was conducted using data from a nationally representative sample of the National Health and Nutrition Examination Survey (NHANES) 2011-2016. Suicidal ideation was assessed using Item #9 of the Patient Health Questionnaire-9 Items. Multivariate regression models and restricted cubic splines were performed and E-value was calculated. RESULTS A total of 4561 participants aged 20 years and older were analyzed, of whom 4.08 % had suicidal ideation. The serum zinc levels were lower in the suicidal ideation group than in the non-suicidal ideation group (P = 0.021). In Crude Model, the serum zinc levels were associated with a higher suicidal ideation risk in the second quartile compared with the highest quartile [odds ratio (OR) = 2.63; 95 % confidence interval (CI): 1.53-4.53]. The association persisted (OR = 2.35; 95 % CI: 1.20-4.58) after full adjustment, with E-value 2.44. A nonlinear relationship was observed between serum zinc levels and suicidal ideation (P = 0.028). No relationship was observed between suicidal ideation and serum copper or selenium levels (all P > 0.05). CONCLUSIONS Decreased serum zinc levels may increase susceptibility to suicidal ideation. Future studies are needed to validate the findings of this study.
Collapse
Affiliation(s)
- Dong Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hong Yan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Meifong Lam
- Psychiatric service of the Centro Hospitalar Conde de São Januário, Macao 999078, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
11
|
Singh S, Kaur J, Ram H, Singh J, Kaur S. Agronomic bio-fortification of wheat ( Triticum aestivum L.) to alleviate zinc deficiency in human being. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2023; 22:505-526. [PMID: 37234132 PMCID: PMC10134721 DOI: 10.1007/s11157-023-09653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/08/2023] [Indexed: 05/27/2023]
Abstract
Worldwide, 40% population consumes wheat (Triticum aestivum L.) as a staple food that is low in zinc (Zn) content. Zn deficiency is a major micronutrient disorder in crop plants and humans worldwide, adversely impacting agricultural productivity, human health and socio-economic concern. Globally, the entire cycle of increasing the Zn concentration in wheat grains and its ultimate effect on grain yield, quality, human health & nutrition and socio-economic status of livelihood is less compared. So the present studies were planned to compare the worldwide studies for the alleviation of Zn malnutrition. Zn intake is affected by numerous factors from soil to crop, crop to food and food to humans. The post-harvest fortification, diversification in dietary habits, mineral supplementation and biofortification are various possible approaches to enhance the Zn concentration in food. The wheat grains Zn is influenced by the Zn application technique and time concerning crop developmental stages. The use of soil microorganisms mobilize unavailable Zn, and improve Zn assimilation, plant growth, yield and Zn content in wheat. Climate change can have an inverse impact on the efficiency of agronomic biofortification methods due to a reduction in grain-filling stages. Agronomic biofortification can improve Zn content, crop yield as well as quality and ultimately, have a positive impact on human nutrition, health and socioeconomic status of livelihood. Though bio-fortification research has progressed, some crucial areas are still needed to be addressed or improved to achieve the fundamental purpose of agronomic biofortification.
Collapse
Affiliation(s)
| | - Jagmohan Kaur
- Punjab Agricultural University, Ludhiana, 141004 India
| | - Hari Ram
- Punjab Agricultural University, Ludhiana, 141004 India
| | | | - Sirat Kaur
- Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
12
|
Shyam T, Ghosh M, Ghosh S, Das D. An Unsymmetrical bis‐Imine Derivative for Solvent Dependent Rapid Optical Discrimination of Al
3+
, Zn
2+
and OCl
−
: Combined Experimental and Theoretical Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Tandrim Shyam
- Department of Chemistry The University of Burdwan Burdwan West Bengal India
| | - Milan Ghosh
- Department of Chemistry The University of Burdwan Burdwan West Bengal India
| | - Subhasis Ghosh
- Department of Chemistry The University of Burdwan Burdwan West Bengal India
| | - Debasis Das
- Department of Chemistry The University of Burdwan Burdwan West Bengal India
| |
Collapse
|
13
|
Abstract
Anorexia nervosa is a disorder associated with serious adverse health outcomes, for which there is currently considerable treatment ineffectiveness. Characterised by restrictive eating behaviours, distorted body image perceptions and excessive physical activity, there is growing recognition anorexia nervosa is associated with underlying dysfunction in excitatory and inhibitory neurometabolite metabolism and signalling. This narrative review critically explores the role of N-methyl-D-aspartate receptor-mediated excitatory and inhibitory neurometabolite dysfunction in anorexia nervosa and its associated biomarkers. The existing magnetic resonance spectroscopy literature in anorexia nervosa is reviewed and we outline the brain region-specific neurometabolite changes that have been reported and their connection to anorexia nervosa psychopathology. Considering the proposed role of dysfunctional neurotransmission in anorexia nervosa, the potential utility of zinc supplementation and sub-anaesthetic doses of ketamine in normalising this is discussed with reference to previous research in anorexia nervosa and other neuropsychiatric conditions. The rationale for future research to investigate the combined use of low-dose ketamine and zinc supplementation to potentially extend the therapeutic benefits in anorexia nervosa is subsequently explored and promising biological markers for assessing and potentially predicting treatment response are outlined.
Collapse
|
14
|
Trehalose-Carnosine Prevents the Effects of Spinal Cord Injury Through Regulating Acute Inflammation and Zinc(II) Ion Homeostasis. Cell Mol Neurobiol 2022; 43:1637-1659. [PMID: 36121569 PMCID: PMC10079760 DOI: 10.1007/s10571-022-01273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
Abstract
Spinal cord injury (SCI) leads to long-term and permanent motor dysfunctions, and nervous system abnormalities. Injury to the spinal cord triggers a signaling cascade that results in activation of the inflammatory cascade, apoptosis, and Zn(II) ion homeostasis. Trehalose (Tre), a nonreducing disaccharide, and L-carnosine (Car), (β-alanyl-L-histidine), one of the endogenous histidine dipeptides have been recognized to suppress early inflammatory effects, oxidative stress and to possess neuroprotective effects. We report on the effects of the conjugation of Tre with Car (Tre-car) in reducing inflammation in in vitro and in vivo models. The in vitro study was performed using rat pheochromocytoma cells (PC12 cell line). After 24 h, Tre-car, Car, Tre, and Tre + Car mixture treatments, cells were collected and used to investigate Zn2+ homeostasis. The in vivo model of SCI was induced by extradural compression of the spinal cord at the T6-T8 levels. After treatments with Tre, Car and Tre-Car conjugate 1 and 6 h after SCI, spinal cord tissue was collected for analysis. In vitro results demonstrated the ionophore effect and chelating features of L-carnosine and its conjugate. In vivo, the Tre-car conjugate treatment counteracted the activation of the early inflammatory cascade, oxidative stress and apoptosis after SCI. The Tre-car conjugate stimulated neurotrophic factors release, and influenced Zn2+ homeostasis. We demonstrated that Tre-car, Tre and Car treatments improved tissue recovery after SCI. Tre-car decreased proinflammatory, oxidative stress mediators release, upregulated neurotrophic factors and restored Zn2+ homeostasis, suggesting that Tre-car may represent a promising therapeutic agent for counteracting the consequences of SCI.
Collapse
|
15
|
Castro ÁDS, Albuquerque LDS, Melo MLPD, D'Almeida JAC, Braga RAM, Assis RCD, Marreiro DDN, Matos WO, Maia CSC. Relationship between zinc-related nutritional status and the progression of multiple sclerosis. Mult Scler Relat Disord 2022; 66:104063. [PMID: 35872505 DOI: 10.1016/j.msard.2022.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. OBJECTIVE To investigate plasma and erythrocyte zinc status and its relationship to MS. METHODS Cross-sectional study, including 98 participants, distributed in groups: case (MS, n = 49), diagnosed with MS and control (n = 49), matched by age and sex with the case group. Zinc was analyzed by flame atomic absorption spectrophotometry, and superoxide dismutase (SOD) activity by spectrophotometry. RESULTS Mean plasma zinc was 94.6 (22.1) μg/dL for MS patients and 81.5 (31.3) μg/dL for control group, with statistical difference (p = 0.023). The mean erythrocyte zinc was 83.6 (41.6) µg/gHb for case group and 72.6 (31.5) µg/gHb for control. Erythrocyte SOD activity was above reference values, significantly different for MS patients (p = 0.003). There was a significant direct correlation between erythrocyte zinc and SOD (r = 0.835; p < 0.001). SOD showed inverse correlation with MS outbreaks (r = -0.317; p = 0.027). CONCLUSION Patients with MS have normal plasma and elevated erythrocyte zinc. Erythrocyte zinc showed positive correlation with SOD, which correlated inversely to outbreaks.
Collapse
Affiliation(s)
- Ádila da Silva Castro
- State University of Ceara, Av. Doutor Silas Munguba, 1700, Itaperi Campus. Zip code 60741-000, Fortaleza- Ceara, Brazil; University of Fortaleza. Av. Washington Soares, Zip code 1321, Edson Queiroz, Fortaleza, State of Ceara 60811-905, Brazil
| | - Larissa da Silva Albuquerque
- State University of Ceara, Av. Doutor Silas Munguba, 1700, Itaperi Campus. Zip code 60741-000, Fortaleza- Ceara, Brazil; University of Fortaleza. Av. Washington Soares, Zip code 1321, Edson Queiroz, Fortaleza, State of Ceara 60811-905, Brazil
| | - Maria Luísa Pereira de Melo
- State University of Ceara, Av. Doutor Silas Munguba, 1700, Itaperi Campus. Zip code 60741-000, Fortaleza- Ceara, Brazil; Multiple Sclerosis Treatment Center - Fortaleza General Hospital. Zip code 900, Ávila Goulart Street, Papicu, Fortaleza, State of Ceara 60150-160, Brazil
| | - José Artur Costa D'Almeida
- Multiple Sclerosis Treatment Center - Fortaleza General Hospital. Zip code 900, Ávila Goulart Street, Papicu, Fortaleza, State of Ceara 60150-160, Brazil
| | | | - Renata Carmo de Assis
- State University of Ceara, Av. Doutor Silas Munguba, 1700, Itaperi Campus. Zip code 60741-000, Fortaleza- Ceara, Brazil
| | | | - Wladiana Oliveira Matos
- Federal University of Ceara. Av Mister Hull, s/n, Pici Campus, Fortaleza, State of Ceara 60455-760, Brazil
| | - Carla Soraya Costa Maia
- State University of Ceara, Av. Doutor Silas Munguba, 1700, Itaperi Campus. Zip code 60741-000, Fortaleza- Ceara, Brazil.
| |
Collapse
|
16
|
Birla M, Choudhary C, Singh G, Gupta S, Bhawana, Vavilala P. The Advent of Nutrigenomics: A Narrative Review with an Emphasis on Psychological Disorders. Prev Nutr Food Sci 2022; 27:150-164. [PMID: 35919568 PMCID: PMC9309077 DOI: 10.3746/pnf.2022.27.2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 11/06/2022] Open
Abstract
A new research field is emerging that combines nutrition and genetics at the molecular level, namely nutrigenomics. Several aspects of nutrigenomics are examined in this review, with a particular focus on psychological disorders. The origin of this field in the 20th century and its modern developments have been investigated. Various studies have reported the impact of genetic factors and diet on various chronic disorders, elucidating how the deficiency of several macronutrients results in significant ailments, including diabetes, cancer, cardiovascular disorders, and others. Furthermore, the application of nutrigenomics to diet and its impact on the global disease rate and quality of life have been discussed. The relationship between diet and gene expression can facilitate the classification of diet-gene interactions and the diagnosis of polymorphisms and anomalies. Numerous databases and research tools for the study of nutrigenomics are essential to the medical application of this field. The nutrition-gene interrelationships can be utilized to study brain development, impairment, and diseases, which could be a significant medical breakthrough. It has also been observed that psychological conditions are exacerbated by the interaction between gut microbes and the prevalence of malnutrition. This article focuses on the impact of nutrition on genes involved in various psychological disorders and the potential application of nutrigenomics as a revolutionary treatment method.
Collapse
Affiliation(s)
- Meghna Birla
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| | - Chanchal Choudhary
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| | - Garima Singh
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| | - Salvi Gupta
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| | - Bhawana
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| | - Pratyusha Vavilala
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi 110096, India
| |
Collapse
|
17
|
Coni P, Pichiri G, Lachowicz JI, Ravarino A, Ledda F, Fanni D, Gerosa C, Piras M, Coghe F, Gibo Y, Cau F, Castagnola M, Van Eyken P, Saba L, Piludu M, Faa G. Zinc as a Drug for Wilson's Disease, Non-Alcoholic Liver Disease and COVID-19-Related Liver Injury. Molecules 2021; 26:6614. [PMID: 34771023 PMCID: PMC8587580 DOI: 10.3390/molecules26216614] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc is the second most abundant trace element in the human body, and it plays a fundamental role in human physiology, being an integral component of hundreds of enzymes and transcription factors. The discovery that zinc atoms may compete with copper for their absorption in the gastrointestinal tract let to introduce zinc in the therapy of Wilson's disease, a congenital disorder of copper metabolism characterized by a systemic copper storage. Nowadays, zinc salts are considered one of the best therapeutic approach in patients affected by Wilson's disease. On the basis of the similarities, at histological level, between Wilson's disease and non-alcoholic liver disease, zinc has been successfully introduced in the therapy of non-alcoholic liver disease, with positive effects both on insulin resistance and oxidative stress. Recently, zinc deficiency has been indicated as a possible factor responsible for the susceptibility of elderly patients to undergo infection by SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic. Here, we present the data correlating zinc deficiency with the insurgence and progression of Covid-19 with low zinc levels associated with severe disease states. Finally, the relevance of zinc supplementation in aged people at risk for SARS-CoV-2 is underlined, with the aim that the zinc-based drug, classically used in the treatment of copper overload, might be recorded as one of the tools reducing the mortality of COVID-19, particularly in elderly people.
Collapse
Affiliation(s)
- Pierpaolo Coni
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Giuseppina Pichiri
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Alberto Ravarino
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Francesca Ledda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Daniela Fanni
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Clara Gerosa
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Ferdinando Coghe
- Dipartimento Servizi di Diagnosi e Cura, Azienda Ospedaliero-Universitaria di Cagliari (A.O.U.), University of Cagliari, 09024 Cagliari, Italy;
| | - Yukio Gibo
- Hepatology Clinic, 1-34-20 Muraimachiminami, Matsumoto, Nagano 399-0036, Japan;
| | - Flaviana Cau
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Massimo Castagnola
- Laboratorio di Proteomica e Metabonomica-Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00013 Rome, Italy;
| | - Peter Van Eyken
- Department of Pathology, Genk Regional Ziekenhuis, 3600 Genk, Belgium;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari—Polo di Monserrato s.s. 554, 09045 Monserrato, Italy;
| | - Marco Piludu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
18
|
Anorexia Nervosa-What Has Changed in the State of Knowledge about Nutritional Rehabilitation for Patients over the Past 10 Years? A Review of Literature. Nutrients 2021; 13:nu13113819. [PMID: 34836075 PMCID: PMC8619053 DOI: 10.3390/nu13113819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Anorexia nervosa (AN) is a psycho-metabolic disorder with a high risk of somatic complications such as refeeding syndrome (RFS) and carries the highest mortality rate of all psychiatric illnesses. To date, the consensus on the care for patients with AN has been based on recommendations for a combination of alimentation and psychotherapy. It is important to establish an initial caloric intake that will provide weight gain and minimize the risk of complications in the treatment of undernourished patients. Research over the past few years suggests that current treatment recommendations may be too stringent and should be updated. The aim of this paper is to systematize the current reports on nutritional rehabilitation in AN, to present the results of studies on the safe supplementation of patients and its potential impact on improving prognosis and the healing process. This review of literature, from 2011-2021, describes the changing trend in the nutritional protocols used and the research on their efficacy, safety, and long-term effects. In addition, it presents previous reports on the potential benefits of introducing vitamin, pro-and prebiotic and fatty acid supplementation.
Collapse
|
19
|
Shao X, Wang X, Xu F, Dai T, Zhou JG, Liu J, Song K, Tian L, Liu B, Liu Y. In vivo biocompatibility and degradability of a Zn-Mg-Fe alloy osteosynthesis system. Bioact Mater 2021; 7:154-166. [PMID: 34466724 PMCID: PMC8379423 DOI: 10.1016/j.bioactmat.2021.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Zinc is generally considered to be one of the most promising materials to be used in biodegradable implants, and many zinc alloys have been optimized to improve implant biocompatibility, degradation, and mechanical properties. However, long-term degradation leads to the prolonged presence of degradation products, which risks foreign body reactions. Herein, we investigated the in vivo biocompatibility and degradation of a biodegradable Zn–Mg–Fe alloy osteosynthesis system in the frontal bone, mandible, and femur in beagles for 1 year. Results of the routine blood, biochemical, trace element, and histological analyses of multiple organs, peripheral blood CD4/CD8a levels, and serum interleukin 2 and 4 levels showed good biocompatibility of the Zn–Mg–Fe alloy. Zinc content analysis revealed zinc accumulation in adjacent bone tissue, but not in the liver, kidney, and spleen, which was related to the degradation of the Zn–Mg–Fe alloy. The alloy demonstrated a uniform slowing degradation rate in vivo. No degradation differences in the frontal bone, mandible, and femur were observed. The degradation products included zinc oxide [ZnO], zinc hydroxide [Zn(OH)2], hydrozincite [Zn5(OH)6(CO3)2], and hopeite [Zn3(PO4)2·4H2O]. The good biocompatibility and degradation properties of the Zn–Mg–Fe alloy render it a very attractive osteosynthesis system for clinical applications. Zn–Mg–Fe alloy possesses good biocompatibility. Zn–Mg–Fe alloy demonstrates a uniform slowing-down degradation rate in vivo. No degradation differences are observed in different sites, which supports the design of degradable osteosynthesis systems. The degradation products are zinc oxide, zinc hydroxide, hydrozincite, and hopeite. Zn–Mg–Fe alloy is a promising candidate for an osteosynthesis system.
Collapse
Affiliation(s)
- Xiaoxi Shao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Xiang Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
- The First Naval Hospital of Southern Theater Command, PLA, Zhanjiang, 524009, PR China
| | - Fangfang Xu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Jack G. Zhou
- Hunan Huayao Bio Medical Technology Co., Ltd, Hunan, 410600, PR China
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Jiang Liu
- Hunan Huayao Bio Medical Technology Co., Ltd, Hunan, 410600, PR China
| | - Kun Song
- Hunan Huayao Bio Medical Technology Co., Ltd, Hunan, 410600, PR China
| | - Lei Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
- Corresponding author.
| | - Bin Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
- Corresponding author.
| | - Yanpu Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
- Corresponding author.
| |
Collapse
|
20
|
Abstract
This review collects for the first time enantioselective one-pot processes promoted
by green chiral zinc catalysts. It illustrates how much these cheap, non-toxic and environmentally
benign catalysts allow unprecedented asymmetric domino and tandem reactions of many
types to be achieved, allowing direct access to a wide variety of very complex chiral molecules.
Collapse
Affiliation(s)
- Hélène Pellissier
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
21
|
Blampied M, Bell C, Gilbert C, Rucklidge JJ. Broad spectrum micronutrient formulas for the treatment of symptoms of depression, stress, and/or anxiety: a systematic review. Expert Rev Neurother 2021; 20:351-371. [PMID: 32178540 DOI: 10.1080/14737175.2020.1740595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Vitamin and mineral nutritional supplements are becoming increasingly popular as alternative treatments for anxiety and depression, as issues such as side effects from medication, failure to respond to psychotherapy and workforce limitations pose barriers for successful treatment.Areas covered: This review covered double-blind, randomized controlled trials (DBRCTs) testing formulas including at least four vitamins and/or minerals used for the treatment of symptoms of anxiety, stress, or depression in adults not currently taking medication for psychiatric difficulties.Expert opinion: The majority of the 23 trials reviewed were conducted on people without psychological difficulties, limiting the generalizability of the results in people with diagnosed mood and anxiety difficulties. Sixteen studies demonstrated positive effects for symptoms of anxiety, depression, or stress. Micronutrient supplementation in healthy nonclinical adults has limited benefits for mood and anxiety symptoms, although may convey some subtle general improvements. The evidence for adults with physical or mental ill health is more positive although limited by small samples and variability in nutrients studied. Broad-spectrum nutrient products may be more effective than a selected few. While an effect of micronutrients cannot be dismissed, the variability of the studies makes it extremely challenging to identify specific treatment benefits.
Collapse
Affiliation(s)
- Meredith Blampied
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Caroline Bell
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Claire Gilbert
- Canterbury District Health Board, Christchurch, New Zealand
| | - Julia J Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
22
|
Hashemzaei M, Fanoudi S, Najari M, Fotouhi M, Belaran M, Alipour NS, Dadrezaei Z, Miri F, Tabrizian K. Effects of Quercetin and Resveratrol on Zinc Chloride- and Sodium Metavanadate-Induced Passive Avoidance Memory Retention Deficits in Male Mice. Prev Nutr Food Sci 2021; 26:67-74. [PMID: 33859961 PMCID: PMC8027046 DOI: 10.3746/pnf.2021.26.1.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022] Open
Abstract
Quercetin and resveratrol are found in a variety of fruits and vegetables and have several biological and pharmacological properties. In this study, the effects of quercetin [50 mg/kg, intraperitoneal (i.p.)] and resveratrol (50 mg/kg, i.p.) on zinc chloride (ZnCl2; 75 mg/kg/d, 2 weeks oral gavage) and sodium metavanadate (SMV; 22.5 mg/kg/d, 2 weeks oral gavage) induced passive avoidance memory retention were investigated in step-through passive avoidance tasks. ZnCl2 was dissolved in saline and SMV was dissolved in drinking water. Mice received ZnCl2 or SMV orally for two weeks and were administered quercetin or resveratrol by i.p. injection on day 14, days 12 and 14, or days 10, 12, and 14. At the end of treatment, animals were trained for one day in a step-through passive avoidance task, then alterations in avoidance memory retention were evaluated after 24, 48, 96, and 168 h. Oral consumption of ZnCl2 and SMV decreased latency time compared with control groups. Both quercetin and resveratrol (50 mg/kg, i.p.) prevented ZnCl2- and SMV-induced avoidance memory retention impairments and did not significantly alter muscle strength, as demonstrated in rotarod tasks. No significant differences were observed between mice who received single, double, or triple doses of quercetin or resveratrol. The results suggest that quercetin and resveratrol may have preventive effects on ZnCl2- and SMV-induced memory impairment in male mice.
Collapse
Affiliation(s)
- Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Mohadeseh Najari
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Mansoureh Fotouhi
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Maryam Belaran
- Department of Physiology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Najmeh Sadat Alipour
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Zahra Dadrezaei
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Fatemeh Miri
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Kaveh Tabrizian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 98616-15881, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| |
Collapse
|
23
|
Galan-Vasquez E, Perez-Rueda E. A landscape for drug-target interactions based on network analysis. PLoS One 2021; 16:e0247018. [PMID: 33730052 PMCID: PMC7968663 DOI: 10.1371/journal.pone.0247018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/30/2021] [Indexed: 12/30/2022] Open
Abstract
In this work, we performed an analysis of the networks of interactions between drugs and their targets to assess how connected the compounds are. For our purpose, the interactions were downloaded from the DrugBank database, and we considered all drugs approved by the FDA. Based on topological analysis of this interaction network, we obtained information on degree, clustering coefficient, connected components, and centrality of these interactions. We identified that this drug-target interaction network cannot be divided into two disjoint and independent sets, i.e., it is not bipartite. In addition, the connectivity or associations between every pair of nodes identified that the drug-target network is constituted of 165 connected components, where one giant component contains 4376 interactions that represent 89.99% of all the elements. In this regard, the histamine H1 receptor, which belongs to the family of rhodopsin-like G-protein-coupled receptors and is activated by the biogenic amine histamine, was found to be the most important node in the centrality of input-degrees. In the case of centrality of output-degrees, fostamatinib was found to be the most important node, as this drug interacts with 300 different targets, including arachidonate 5-lipoxygenase or ALOX5, expressed on cells primarily involved in regulation of immune responses. The top 10 hubs interacted with 33% of the target genes. Fostamatinib stands out because it is used for the treatment of chronic immune thrombocytopenia in adults. Finally, 187 highly connected sets of nodes, structured in communities, were also identified. Indeed, the largest communities have more than 400 elements and are related to metabolic diseases, psychiatric disorders and cancer. Our results demonstrate the possibilities to explore these compounds and their targets to improve drug repositioning and contend against emergent diseases.
Collapse
Affiliation(s)
- Edgardo Galan-Vasquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigación en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, México
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| |
Collapse
|
24
|
Ben-Shushan S, Miller Y. Molecular Mechanisms and Aspects on the Role of Neuropeptide Y as a Zn 2+ and Cu 2+ Chelator. Inorg Chem 2021; 60:484-493. [PMID: 33320649 DOI: 10.1021/acs.inorgchem.0c03350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The concept of metal chelation is based on simple coordination chemistry. The development of an ideal metal chelator that completely and selectively removes toxic metals from a specific metal binding site in proteins is required to prevent and or inhibit a variety of diseases, among them neurodegenerative diseases. This work examines neuropeptide Y (NPY) as a Zn2+ and Cu2+ chelator agent. NPY is a natural peptide that is produced in the human body; therefore, it is not a toxic agent and the complex that it forms is not toxic as well. Our simulations reveal that NPY has an efficient Zn2+ chelation activity but is less effective in chelating Cu2+. Moreover, while NPY demonstrates several conformations, the metal chelation occurs more efficiently in its native structure. Beyond the exploration of the activity of NPY as a Zn2+ and Cu2+ chelator agent, this work provides an insight into the molecular mechanisms of the chelation of these metals at the molecular level. The outcomes from this work may guide future experimental studies to examine NPY in metal chelation therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Shira Ben-Shushan
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| |
Collapse
|
25
|
Jorratt P, Hoschl C, Ovsepian SV. Endogenous antagonists of N-methyl-d-aspartate receptor in schizophrenia. Alzheimers Dement 2020; 17:888-905. [PMID: 33336545 DOI: 10.1002/alz.12244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a chronic neuropsychiatric brain disorder that has devastating personal impact and rising healthcare costs. Dysregulation of glutamatergic neurotransmission has been implicated in the pathobiology of the disease, attributed largely to the hypofunction of the N-methyl-d-aspartate (NMDA) receptor. Currently, there is a major gap in mechanistic analysis as to how endogenous modulators of the NMDA receptors contribute to the onset and progression of the disease. We present a systematic review of the neurobiology and the role of endogenous NMDA receptor antagonists in animal models of schizophrenia, and in patients. We discuss their neurochemical origin, release from neurons and glia with action mechanisms, and functional effects, which might contribute toward the impairment of neuronal processes underlying this complex pathological state. We consider clinical evidence suggesting dysregulations of endogenous NMDA receptor in schizophrenia, and highlight the pressing need in future studies and emerging directions, to restore the NMDA receptor functions for therapeutic benefits.
Collapse
Affiliation(s)
- Pascal Jorratt
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Prague 10, Czech Republic
| |
Collapse
|
26
|
Physicochemical, nutritional and functional properties of Cucurbita moschata. Food Sci Biotechnol 2020; 30:171-183. [PMID: 33732508 DOI: 10.1007/s10068-020-00835-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 01/28/2023] Open
Abstract
Cucurbita moschata is widely planted in most parts of the world, and is rich in carotenoids, vitamins, dietary fiber, minerals, and phenolic compounds. It also has important medicinal value. Some related research has proven that Cucurbita moschata has the potential ability to induce anti-obesity, anti-diabetic, antibacterial, and anticancer effects. At the same time, it has attracted more attention in the medical field. These nutrients and bioactive compounds in Cucurbita moschata have important effects on human health. In order to make better use of this crop, it still needs further study. Therefore, the purpose of this article is to summarize the physicochemical properties and nutritional components of Cucurbita moschata, and to provide a reference for further research on the benefits of on human health.
Collapse
|
27
|
Baraibar AM, Hernández-Guijo JM. Micromolar concentrations of Zn 2+ depress cellular excitability through a blockade of calcium current in rat adrenal slices. Toxicology 2020; 444:152543. [PMID: 32858065 DOI: 10.1016/j.tox.2020.152543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/25/2020] [Indexed: 11/30/2022]
Abstract
The present work, using chromaffin cells in rat adrenal slices (RCCs), aims to describe what type of ionic current alterations induced by zinc underlies their effects reported on synaptic transmission. Thus, Zn2+ blocked calcium channels of RCCs in a time- and concentration-dependent manner with an IC50 of 391 μM. This blockade was partially reversed upon washout and was greater at more depolarizing holding potentials (i.e. 32 ± 5% at -110 mV, and 43 ± 6% at -50 mV, after 5 min perfusion). In ω-toxins-sensitive calcium channels (N-, P- and Q-types), Zn2+caused a lower blockade of ICa, 33.3%, than in ω-toxins-resistant ones (L-type, 55.3%; and R-type, 90%). This compound inhibited calcium current at all test potentials and shows a shift of the I-V curve to more depolarized values of about 10 mV. The sodium current was not blocked by acute application of high Zn2+concentrations. Voltage-dependent potassium current was marginally affected by high Zn2+ concentrations showing no concentration-dependence. Nevertheless, calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC50 of 453 μM. This blockade was related to the prevention of Ca2+ influx through voltage-dependent calcium channels coupled to BK channels. Under current-clamp conditions, RCCs exhibit a resting potential of -50.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na+ and Ca2+-channels, and terminated by the activation of voltage and Ca2+-activated K+-channels (BK). We found that the blockade of these ionic currents by Zn2+ led to a drastic alteration of cellular excitability with a depolarization of the membrane potential, the slowdown and broadening of the APs and the severe reduction of the after hyperpolarization (AHP) which led to a decrease in the APs firing frequency. Taken together, these results point to a neurotoxic action evoked by zinc that is associated with changes to cellular excitability by blocking the ionic currents responsible for both the neurotransmitter release and the action potentials firing.
Collapse
Affiliation(s)
- Andrés M Baraibar
- Department of Neuroscience, University of Minnesota, 4-260 Wallin Medical Biosciences Building, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Teófilo Hernando, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, 28029, Madrid, Spain.
| |
Collapse
|
28
|
Imipramine Influences Body Distribution of Supplemental Zinc Which May Enhance Antidepressant Action. Nutrients 2020; 12:nu12092529. [PMID: 32825449 PMCID: PMC7551732 DOI: 10.3390/nu12092529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/26/2023] Open
Abstract
Zinc (Zn) was found to enhance the antidepressant efficacy of imipramine (IMI) in human depression and animal tests/models of depression. However, the underlying mechanism for this effect remains unknown. We measured the effect of intragastric (p.o.) combined administration of IMI (60 mg/kg) and Zn (40 mg Zn/kg) in the forced swim test (FST) in mice. The effect of Zn + IMI on serum, brain, and intestinal Zn concentrations; Zn transporter (ZnT, ZIP) protein levels in the intestine and ZnT in the brain; including BDNF (brain-derived neurotrophic factor) and CREB (cAMP response element-binding protein) protein levels in the brain were evaluated. Finally, the effect of IMI on Zn permeability was measured in vitro in colon epithelial Caco-2 cells. The co-administration of IMI and Zn induced antidepressant-like activity in the FST in mice compared to controls and Zn or IMI given alone. This effect correlated with increased BDNF and the ratio of pCREB/CREB protein levels in the prefrontal cortex (PFC) compared to the control group. Zn + IMI co-treatment increased Zn concentrations in the serum and brain compared to the control group. However, in serum, co-administration of IMI and Zn decreased Zn concentration compared to Zn alone treatment. Also, there was a reduction in the Zn-induced enhancement of ZnT1 protein level in the small intestine. Zn + IMI also induced an increase in the ZnT4 protein level in the PFC compared to the control group and normalized the Zn-induced decrease in the ZnT1 protein level in the hippocampus (Hp). The in vitro studies revealed enhanced Zn permeability (observed as the increased transfer of Zn through the intestinal cell membrane) after IMI treatment. Our data indicate that IMI enhances Zn transfer through the intestinal tract and influences the redistribution of Zn between the blood and brain. These mechanisms might explain the enhanced antidepressant efficacy of combined IMI/Zn treatment observed in the FST in mice.
Collapse
|
29
|
Activity-dependent neuroprotective protein (ADNP)-end-binding protein (EB) interactions regulate microtubule dynamics toward protection against tauopathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 177:65-90. [PMID: 33453943 DOI: 10.1016/bs.pmbts.2020.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 1102-amino-acid activity-dependent neuroprotective protein (ADNP) was originally discovered by expression cloning through the immunological identification of its 8-amino-acid sequence NAPVSIPQ (NAP), constituting the smallest active neuroprotective fragment of the protein. ADNP expression is essential for brain formation and cognitive function and is dysregulated in a variety of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and schizophrenia). ADNP has been found to be mutated in autism, with an estimated prevalence of 0.17% (together, these autism cases now constitute ADNP syndrome cases) and our recent results showed somatic mutations in ADNP in Alzheimer's disease brains correlating with tauopathy. Furthermore, Adnp haploinsufficiency in mice causes an age-dependent reduction in cognitive functions coupled with tauopathy-like features such as an increased formation of tangle-like structures, defective axonal transport, and Tau hyperphosphorylation. ADNP and its derived peptides, NAP and SKIP, directly interact with end-binding proteins (EBs), which decorate plus-tips of the growing axonal cytoskeleton-microtubules (MTs). Functionally, NAP and SKIP are neuroprotective and stimulate axonal transport. Clinical trials have suggested the potential efficacy of NAP (davunetide, CP201) for improving cognitive performance/functional activities of daily living in amnestic mild cognitive impairment (aMCI) and schizophrenia patients, respectively. However, NAP was not found to be an effective treatment (though well-tolerated) for progressive supranuclear palsy (PSP) patients. Here we review the molecular mechanism of NAP activity on MTs and how NAP modulates the MT-Tau-EBs crosstalk. We offer a molecular explanation for the different protective potency of NAP in selected tauopathies (aMCI vs. PSP) expressing different ratios/pathologies of the alternatively spliced Tau mRNA and its resulting protein (aMCI expressing similar quantities of the dynamic Tau 3-MT binding isoform (Tau3R) and the Tau 4-MT binding isoform (Tau4R) and PSP enriched in Tau4R pathology). We reveal the direct effect of truncated ADNPs (resulting from de novo autism and newly discovered Alzheimer's disease-related somatic mutations) on MT dynamics. We show that the peptide SKIP affects MT dynamics and MT-Tau association. Since MT impairment is linked with neurodegenerative and neurodevelopmental conditions, the current study implicates a paucity/dysregulation of MT-interacting endogenous proteins, like ADNP, as a contributing mechanism and provides hope for NAP and SKIP as MT-modulating drug candidates.
Collapse
|
30
|
Kupnicka P, Kojder K, Metryka E, Kapczuk P, Jeżewski D, Gutowska I, Goschorska M, Chlubek D, Baranowska-Bosiacka I. Morphine-element interactions - The influence of selected chemical elements on neural pathways associated with addiction. J Trace Elem Med Biol 2020; 60:126495. [PMID: 32179426 DOI: 10.1016/j.jtemb.2020.126495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Addiction is a pressing social problem worldwide and opioid dependence can be considered the strongest and most difficult addiction to treat. Mesolimbic and mesocortical dopaminergic pathways play an important role in modulation of cognitive processes and decision making and, therefore, changes in dopamine metabolism are considered the central basis for the development of dependence. Disturbances caused by excesses or deficiency of certain elements have a significant impact on the functioning of the central nervous system (CNS) both in physiological conditions and in pathology and can affect the cerebral reward system and therefore, may modulate processes associated with the development of addiction. In this paper we review the mechanisms of interactions between morphine and zinc, manganese, chromium, cadmium, lead, fluoride, their impact on neural pathways associated with addiction, and on antinociception and morphine tolerance and dependence.
Collapse
Affiliation(s)
- Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252, Szczecin, Poland.
| | - Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitive Science, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460, Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| |
Collapse
|
31
|
Zinc Concentration Dynamics Indicate Neurological Impairment Odds after Traumatic Spinal Cord Injury. Antioxidants (Basel) 2020; 9:antiox9050421. [PMID: 32414139 PMCID: PMC7278606 DOI: 10.3390/antiox9050421] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/24/2022] Open
Abstract
Traumatic Spinal Cord Injury (TSCI) is debilitating and often results in a loss of motor and sensory function caused by an interwoven set of pathological processes. Oxidative stress and inflammatory processes are amongst the critical factors in the secondary injury phase after TSCI. The essential trace element Zinc (Zn) plays a crucial role during this phase as part of the antioxidant defense system. The study aims to determine dynamic patterns in serum Zn concentration in patients with TSCI and test for a correlation with neurological impairment. A total of 42 patients with TSCI were enrolled in this clinical observational study. Serum samples were collected at five different points in time after injury (at admission, and after 4 h, 9 h, 12 h, 24 h, and 3 days). The analysis of the serum Zn concentrations was conducted by total reflection X-ray fluorescence (TXRF). The patients were divided into two groups—a study group S (n = 33) with neurological impairment, including patients with remission (G1, n = 18) and no remission (G0, n = 15) according to a positive AIS (American Spinal Injury Association (ASIA) Impairment Scale) conversion within 3 months after the trauma; and a control group C (n = 9), consisting of subjects with vertebral fractures without neurological impairment. The patient data and serum concentrations were examined and compared by non-parametric test methods to the neurological outcome. The median Zn concentrations in group S dropped within the first 9 h after injury (964 µg/L at admission versus 570 µg/L at 9 h, p < 0.001). This decline was stronger than in control subjects (median of 751 µg/L versus 729 µg/L, p = 0.023). A binary logistic regression analysis including the difference in serum Zn concentration from admission to 9 h after injury yielded an area under the curve (AUC) of 82.2% (CI: 64.0–100.0%) with respect to persistent neurological impairment. Early Zn concentration dynamics differed in relation to the outcome and may constitute a helpful diagnostic indicator for patients with spinal cord trauma. The fast changes in serum Zn concentrations allow an assessment of neurological impairment risk on the first day after trauma. This finding supports strategies for improving patient care by avoiding strong deficits via adjuvant nutritive measures, e.g., in unresponsive patients after trauma.
Collapse
|
32
|
Chasapis CT, Ntoupa PSA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol 2020; 94:1443-1460. [PMID: 32394086 DOI: 10.1007/s00204-020-02702-9] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/21/2022]
Abstract
Zinc (Zn) is one of the most important essential nutrients of great public health significance. It is involved in numerous biological functions and it is considered as a multipurpose trace element, due to its capacity to bind to more than 300 enzymes and more than 2000 transcriptional factors. Its role in biochemical pathways and cellular functions, such as the response to oxidative stress, homeostasis, immune responses, DNA replication, DNA damage repair, cell cycle progression, apoptosis and aging is significant. Zn is required for the synthesis of protein and collagen, thus contributing to wound healing and a healthy skin. Metallothioneins are metal-binding proteins and they are potent scavengers of heavy metals, including Zn, and protect the organism against stress. Zn deficiency is observed almost in 17% of the global population and affects many organ systems, leading to dysfunction of both humoral and cell-mediated immunity, thus increasing the susceptibility to infection. This review gives a thorough insight into the most recent evidence on the association between Zn biochemistry and human pathologies, epigenetic processes, gut microbial composition, drug targets and nanomedicine.
Collapse
Affiliation(s)
- Christos T Chasapis
- NMR Center, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Patras, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Panagoula-Stamatina A Ntoupa
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece.
| |
Collapse
|
33
|
The association between antioxidant intake, dietary pattern and depressive symptoms in older Australian men: the Concord Health and Ageing in Men Project. Eur J Nutr 2020; 60:443-454. [PMID: 32385686 DOI: 10.1007/s00394-020-02255-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The objectives of the study were to evaluate the associations between antioxidant intake, dietary patterns and depressive symptoms among older men. METHOD 794 men participated in a detailed diet history interview at the Concord Health and Ageing in Men Project 3rd wave (considered baseline nutrition) and 781 men participated at the 4th wave (considered 3-year follow-up). Depressive symptoms were measured using the Geriatric Depression Scale (GDS ≥ 5). Dietary adequacy of antioxidant intake was assessed by comparing participants' median intake of vitamin A, E, C and zinc to the Nutrient Reference Values for Australia. Attainment of NRVs of antioxidant was categorised into a dichotomised variable 'poor' (meeting ≤ 2) or 'good' (meeting ≥ 3). Individual antioxidant nutrient was categorised into quartiles. The Australian and Mediterranean diet scores were assessed as predictor variables. RESULTS The prevalence of GDS ≥ 5 was 12.8% at baseline nutrition and 13.2% of men developed GDS ≥ 5 at a 3-year follow-up. There was a significant cross-sectional association between poor antioxidant intake and GDS ≥ 5 in adjusted analyses [OR: 1.95 (95% CI 1.03, 3.70)]. Poor antioxidant intake at baseline nutrition remained prospectively associated with incident GDS ≥ 5 [OR: 2.46 (95% CI 1.24, 4.88)] in adjusted analyses. This association was also found for the lowest quartile of zinc [OR 2.72 (95% CI 1.37, 5.42)] and vitamin E intake [OR 2.18 (95% CI 1.05, 4.51)]. None of the other antioxidants and dietary patterns had a significant association with incident depressive symptoms. CONCLUSION Inadequacy of antioxidant intake, particularly zinc and vitamin E, is associated with increased risk of clinically significant depressive symptoms in older men.
Collapse
|
34
|
Park HS, Yoo MH, Koh JY. Role of zinc dyshomeostasis in inflammasome formation in cultured cortical cells following lipopolysaccharide or oxygen-glucose deprivation/reperfusion exposure. Neurobiol Dis 2020; 137:104771. [DOI: 10.1016/j.nbd.2020.104771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/27/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
|
35
|
Chowdhury T, Bera K, Samanta D, Dolui S, Maity S, Maiti NC, Ghosh PK, Das D. Unveiling the binding interaction of zinc (II) complexes of homologous Schiff‐base ligands on the surface of BSA protein: A combined experimental and theoretical approach. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tania Chowdhury
- Department of ChemistryUniversity of Calcutta 92, A. P. C. Road Kolkata 700009 India
| | - Kaushik Bera
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road Kolkata 700032 India
| | - Debabrata Samanta
- Department of ChemistryIndian Institute of Kanpur Uttar Pradesh 208016 India
| | - Sandip Dolui
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road Kolkata 700032 India
| | - Suvendu Maity
- Department of ChemistryR. K. Mission Residential College Narendrapur, Kolkata 700103 W.B. India
| | - Nakul C. Maiti
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road Kolkata 700032 India
| | - Prasanta Kumar Ghosh
- Department of ChemistryR. K. Mission Residential College Narendrapur, Kolkata 700103 W.B. India
| | - Debasis Das
- Department of ChemistryUniversity of Calcutta 92, A. P. C. Road Kolkata 700009 India
| |
Collapse
|
36
|
Oxiracetam and Zinc Ameliorates Autism-Like Symptoms in Propionic Acid Model of Rats. Neurotox Res 2020; 37:815-826. [PMID: 32026359 DOI: 10.1007/s12640-020-00169-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by restrictive behaviour, deficit in social skills and interaction. The multifactorial etiology, complex pathophysiology and different combination of symptoms (unusual speech patterns, frequent repetition of phrases) make it difficult to treat. Thus, present study aimed to find the protective effects of oxiracetam alone and in combination with zinc on brain behavioral, biochemical, pro-inflammatory cytokines and neurotransmitters level. Rats were administered with propionic acid (250 mg/kg p.o.) for 3 days and immediately on next day treatment were given with oxiracetam (25, 50 mg/kg i.p), zinc (4 mg/kg) as well as oxiracetam (25 mg/kg i.p) in combination with zinc (4 mg/kg p.o). Behavioral parameters were performed from 22th to 28th day. On 29th day, all the animals were sacrificed by cervical dislocation and the brain was preserved for biochemical (LPO, GSH, nitrite, mitochondrial complex I, IV and cAMP), neuroinflammatory (TNF-α, IL-1β, IL-6) and neurotransmitters (5-HT, GABA, glutamate and acetylcholine) analysis. The propionic acid administration showed memory impairment, restrictive behavior, increased proinflammatory cytokines level, biochemical and neurotransmitters alteration. However, treatment with oxiracetam alone and in combination with zinc significantly attenuated behavioral, biochemical, inflammatory cytokines and restored neurotransmitters level. The finding of present study demonstrated that oxiracetam alone and in combination with zinc afforded superior anti-autistic effect through antioxidant, anti-inflammatory and anti-excitotoxic mechanisms and could serve as attractive strategy in managing autism.
Collapse
|
37
|
Alqabbani HM, AlBadr NA. Zinc status (intake and level) of healthy elderly individuals in Riyadh and its relationship to physical health and cognitive impairment. CLINICAL NUTRITION EXPERIMENTAL 2020. [DOI: 10.1016/j.yclnex.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Twayej AJ, Al-Hakeim HK, Al-Dujaili AH, Maes M. Lowered zinc and copper levels in drug-naïve patients with major depression: Effects of antidepressants, ketoprofen and immune activation. World J Biol Psychiatry 2020; 21:127-138. [PMID: 31062629 DOI: 10.1080/15622975.2019.1612090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objectives: The aim of the present work is to examine the effects of treatment with sertraline with and without ketoprofen on serum levels of zinc and copper in association with immune-inflammatory biomarkers in drug-naïve major depressed patients.Methods: We measured serum zinc and copper, interleukin (IL)-1β, IL-4, IL-6, IL-18, interferon-γ, and transforming growth factor-β1 in 40 controls and 133 depressed patients. The clinical efficacy of the treatment was measured using the Beck Depression Inventory-II (BDI-II) at baseline and 8 weeks later.Results: We found significantly reduced serum zinc and copper in association with upregulation of all cytokines, indicating activation of the immune-inflammatory responses system (IRS) and the compensatory immune regulatory system (CIRS). Treatment with sertraline significantly increased zinc and decreased copper. During treatment, there was a significant inverse association between serum zinc and immune activation. The improvement in the BDI-II during treatment was significantly associated with increments in serum zinc coupled with attenuation of the IRS/CIRS.Conclusions: Lower zinc is a hallmark of depression, while increments in serum zinc and attenuation of the immune-inflammatory response during treatment appear to play a role in the clinical efficacy of sertraline.
Collapse
Affiliation(s)
- Ahmed Jasim Twayej
- Pathological Analysis Department, College of Health and Medical Techniques, Al-Kafeel University, Najaf, Iraq
| | | | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.,School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| |
Collapse
|
39
|
Forcella M, Lau P, Oldani M, Melchioretto P, Bogni A, Gribaldo L, Fusi P, Urani C. Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: A toxicogenomics study in a human neuronal cell model. Neurotoxicology 2020; 76:162-173. [DOI: 10.1016/j.neuro.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
|
40
|
Sauer AK, Grabrucker AM. Zinc Deficiency During Pregnancy Leads to Altered Microbiome and Elevated Inflammatory Markers in Mice. Front Neurosci 2019; 13:1295. [PMID: 31849598 PMCID: PMC6895961 DOI: 10.3389/fnins.2019.01295] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
Zinc is an essential trace metal for bacteria of the intestinal flora. Approximately 20% of dietary zinc – intake is used by intestinal bacteria. The microbiome has recently been described as an important factor for healthy brain function via so-called gut-brain interactions. Similarly, zinc deficiency has been associated with neurological problems such as depression, mental lethargy and cognitive impairments in humans and animal models. However, the underlying pathomechanisms are currently not well understood and a link between zinc deficiency and altered microbiota composition has not been studied. Especially during pregnancy, women may be prone to low zinc status. Thus, here, we investigate whether zinc deficiency alters gut-brain interaction in pregnant mice by triggering changes in the microbiome. To that end, pregnant mice were fed different diets being zinc-adequate, deficient in zinc, or adequate in zinc but high in zinc uptake antagonists for 8 weeks. Our results show that acute zinc-deficient pregnant mice and pregnant mice on a diet high in zinc uptake antagonists have an altered composition of gastro-intestinal (GI) microbiota. These changes were accompanied by alterations in markers for GI permeability. Within the brain, we found signs of neuroinflammation. Interestingly, microbiota composition, gut pathology, and inflammatory cytokine levels were partially rescued upon supplementation of mice with zinc amino-acid conjugates (ZnAA). We conclude that zinc deficiency may contribute to abnormal gut-brain signaling by altering gut physiology, microbiota composition and triggering an increase of inflammatory markers.
Collapse
Affiliation(s)
- Ann Katrin Sauer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, Ulm, Germany.,Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
41
|
Mammadova-Bach E, Braun A. Zinc Homeostasis in Platelet-Related Diseases. Int J Mol Sci 2019; 20:E5258. [PMID: 31652790 PMCID: PMC6861892 DOI: 10.3390/ijms20215258] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Zn2+ deficiency in the human population is frequent in underdeveloped countries. Worldwide, approximatively 2 billion people consume Zn2+-deficient diets, accounting for 1-4% of deaths each year, mainly in infants with a compromised immune system. Depending on the severity of Zn2+ deficiency, clinical symptoms are associated with impaired wound healing, alopecia, diarrhea, poor growth, dysfunction of the immune and nervous system with congenital abnormalities and bleeding disorders. Poor nutritional Zn2+ status in patients with metastatic squamous cell carcinoma or with advanced non-Hodgkin lymphoma, was accompanied by cutaneous bleeding and platelet dysfunction. Forcing Zn2+ uptake in the gut using different nutritional supplementation of Zn2+ could ameliorate many of these pathological symptoms in humans. Feeding adult rodents with a low Zn2+ diet caused poor platelet aggregation and increased bleeding tendency, thereby attracting great scientific interest in investigating the role of Zn2+ in hemostasis. Storage protein metallothionein maintains or releases Zn2+ in the cytoplasm, and the dynamic change of this cytoplasmic Zn2+ pool is regulated by the redox status of the cell. An increase of labile Zn2+ pool can be toxic for the cells, and therefore cytoplasmic Zn2+ levels are tightly regulated by several Zn2+ transporters located on the cell surface and also on the intracellular membrane of Zn2+ storage organelles, such as secretory vesicles, endoplasmic reticulum or Golgi apparatus. Although Zn2+ is a critical cofactor for more than 2000 transcription factors and 300 enzymes, regulating cell differentiation, proliferation, and basic metabolic functions of the cells, the molecular mechanisms of Zn2+ transport and the physiological role of Zn2+ store in megakaryocyte and platelet function remain elusive. In this review, we summarize the contribution of extracellular or intracellular Zn2+ to megakaryocyte and platelet function and discuss the consequences of dysregulated Zn2+ homeostasis in platelet-related diseases by focusing on thrombosis, ischemic stroke and storage pool diseases.
Collapse
Affiliation(s)
- Elmina Mammadova-Bach
- University Hospital and Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich, German Center for Lung Research, 80336 Munich, Germany.
| |
Collapse
|
42
|
Alizadeh F, Davoodian N, Kazemi H, Ghasemi-Kasman M, Shaerzadeh F. Prenatal zinc supplementation attenuates lipopolysaccharide-induced behavioral impairments in maternal immune activation model. Behav Brain Res 2019; 377:112247. [PMID: 31545978 DOI: 10.1016/j.bbr.2019.112247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022]
Abstract
Maternal infection during pregnancy is considered a key risk factor for developing schizophrenia in offspring. There is evidence that maternal exposure to infectious agents is associated with fetal zinc deficiency. Due to the essential role of zinc in brain function and development, in the present study, we activated maternal immune system using lipopolysaccharide (LPS) as a model of schizophrenia to examine whether zinc supplementation throughout pregnancy can reverse LPS-induced deleterious effects. To test the hypothesis, pregnant rats were treated with intraperitoneal injection of either saline or LPS (0.5 mg/kg) at gestational day 15 and 16, and zinc supplementation (30 mg/kg) was administered throughout pregnancy by gavage. At postnatal day 60, Y-maze was used to evaluate working memory of offspring. Moreover, the expression levels of catechol O-methyltransferase (COMT) and glutamate decarboxylase 67 (GAD67) were measured in the frontal cortex of the brain samples. Only male offspring prenatally exposed to LPS showed a significant impairment in working memory. In addition, prenatal LPS exposure causes a moderate decrease in GAD67 expression level in the male pups, while COMT expression was found unchanged. Interestingly, zinc supplementation restored the alterations in working memory as well as GAD67 mRNA level in the male rats. No alteration was detected for neither working memory nor COMT/GAD67 genes expression in female offspring. This study demonstrates that zinc supplementation during pregnancy can attenuate LPS-induced impairments in male pups. These results support the idea to consume zinc supplementation during pregnancy to limit neurodevelopmental deficits induced by infections in offspring.
Collapse
Affiliation(s)
- Faezeh Alizadeh
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Haniyeh Kazemi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Ghasemi-Kasman
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, 32610, USA
| |
Collapse
|
43
|
Śliwińska-Hill U, Wiglusz K. The interaction between human serum albumin and antidiabetic agent - exenatide: determination of the mechanism binding and effect on the protein conformation by fluorescence and circular dichroism techniques - Part I. J Biomol Struct Dyn 2019; 38:2267-2275. [PMID: 31232198 DOI: 10.1080/07391102.2019.1630007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The interactions between transport proteins and drugs are very important from the pharmacological point of view. In this study, using fluorescence and circular dichroism (CD) techniques, we investigated the interaction between human serum albumin (HSA) and incretin antidiabetic drug - exenatide. Moreover, the effect of common metal ions (Ca2+, Zn2+, Cr3+) on the exenatide-HSA binding - was also described. Based on the experimental data under pseudophysiological conditions, the calculated binding constant values are on the order of 104 M-1, and the constants are lower in the presence of metal ions. We observed the increase of the hydrophobicity near the tryptophan-214 residue in subdomain IIA, but almost no change in the hydrophobicity surrounding tyrosine residues. A similar effect on the tryptophan microenvironment is influenced by metal ions. The calculated thermodynamic parameters indicated that the characteristic electrostatic and hydrophobic interactions play an important role in the albumin-exenatide complexes. The CD studies showed that exenatide does not change the secondary structure of the protein but used metal ions have some impact on albumin α-helical content.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Urszula Śliwińska-Hill
- Department of Analytical Chemistry, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Katarzyna Wiglusz
- Department of Analytical Chemistry, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
44
|
Xiao R, Yuan L, He W, Yang X. Zinc ions regulate opening of tight junction favouring efflux of macromolecules via the GSK3β/snail-mediated pathway. Metallomics 2019; 10:169-179. [PMID: 29292464 DOI: 10.1039/c7mt00288b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zinc is an essential trace element presenting in particularly high concentration in the brain. In some regions, e.g. lateral amygdala, subiculum and hippocampus, rapidly-exchangeable zinc may transiently reach even up to 600 μM. To explore the possible roles of high-concentration Zn2+ in regulating the blood-brain barrier (BBB), we investigated the effects of Zn2+ on the functions and structures of the tight junction (TJ) with an in vitro model of a Madin-Darby canine kidney (MDCK) cell monolayer. The experimental results indicated that high concentrations (>200 μM) of Zn2+ can affect the TJ integrity in a polarized manner. Basolateral addition of Zn2+ led to reversible TJ opening with pore paths of r ∼ 2 nm or more depending on Zn2+ concentration. The efflux/influx ratios of different sized probes were found to be ∼4.6 for FD4 (MW 4000) and ∼1.8 for Eu-DTPA (MW 560), suggesting that the Zn2+-induced paracelluar channels favour efflux especially for macromolecules. Further mechanistic studies revealed that the elevated intracellular Zn2+ taken from the basolateral side can increase phosphorylation of glycogen synthase kinase (GSK) 3β, primarily due to the inhibition of calcineurin (CaN), thus resulting in the elevation of the snail transcriptional repressors. Subsequently, Zn2+ can cause the down-regulation of claudin-1, breakage of occludin and ZO-1 rings, and collapse of basolateral F-actin structures. These overall factors result in the formation of a trumpet-like paracellular channel, which allows asymmetric solute permeation. The ERK1/2 and JNK1/2 pathways may also be involved in the Zn2+-induced TJ opening process, while the activation of matrix metalloproteinase was not observed. Our results may suggest a potential role of zinc in regulation of BBB permeability associated with brain clearance of metabolites through the glymphatic system.
Collapse
Affiliation(s)
- Ruyue Xiao
- State Key laboratories of Natural and Mimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | | | | | | |
Collapse
|
45
|
Lippi SLP, Craven KM, Hernandez CM, Grant GM, Flinn JM. Perfusion alters free zinc levels in the rodent brain. J Neurosci Methods 2018; 315:14-16. [PMID: 30599147 DOI: 10.1016/j.jneumeth.2018.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Fixation of brain tissue is a common practice which allows preservation of tissue and aids in preventing structural and chemical abnormalities. However, fixation procedures may disrupt the levels of biometals such as zinc when compared to tissue that is fresh-frozen. Thus, we sought to determine if any differences in free-zinc levels exist between perfused and fresh-frozen tissue. Zinc is an essential biometal critical for cellular communication and memory and exists in both bound and free forms; the latter playing critical roles in synaptic communication. New method: C57BL/6 J mice were divided into two water types: those given lab water and those given water supplemented with 10 ppm zinc carbonate. Perfusion was carried out with 4% paraformaldehyde on half of the animals in each water group to assess the impact on levels of free Zn as measured through Zinpyr-1 fluorescence. RESULTS There were significant differences in Zn fluorescence values between Zn-supplemented and lab water groups as well as between perfused and fresh-frozen tissues in the dentate gyrus and CA3 regions of the hippocampus, regions critical in learning & memory. Comparison with existing methods: These results show that when determining a method for euthanasia, any future histological techniques involving assessment of metal content should first be considered. CONCLUSIONS Researchers must be cautious with the way in which tissue is collected and treated since this can lead to misleading conclusions when linking changes in behavior and relative levels of trace metals.
Collapse
Affiliation(s)
- S L P Lippi
- Now at Angelo State University, Dept. Psychology & Sociology, ASU Station #10907, 2601 W Ave N, San Angelo, TX, 76909, United States
| | - K M Craven
- Dept. Psychology, Cognitive/Behavioral Neuroscience, George Mason University, Fairfax, VA, 22030, United States
| | - C M Hernandez
- Dept. Psychology, Cognitive/Behavioral Neuroscience, George Mason University, Fairfax, VA, 22030, United States
| | - G M Grant
- Dept. Biology, George Mason University, Manassas, VA, 20110, United States
| | - J M Flinn
- Dept. Psychology, Cognitive/Behavioral Neuroscience, George Mason University, Fairfax, VA, 22030, United States.
| |
Collapse
|
46
|
Kerns K, Zigo M, Sutovsky P. Zinc: A Necessary Ion for Mammalian Sperm Fertilization Competency. Int J Mol Sci 2018; 19:E4097. [PMID: 30567310 PMCID: PMC6321397 DOI: 10.3390/ijms19124097] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
The importance of zinc for male fertility only emerged recently, being propelled in part by consumer interest in nutritional supplements containing ionic trace minerals. Here, we review the properties, biological roles and cellular mechanisms that are relevant to zinc function in the male reproductive system, survey available peer-reviewed data on nutritional zinc supplementation for fertility improvement in livestock animals and infertility therapy in men, and discuss the recently discovered signaling pathways involving zinc in sperm maturation and fertilization. Emphasis is on the zinc-interacting sperm proteome and its involvement in the regulation of sperm structure and function, from spermatogenesis and epididymal sperm maturation to sperm interactions with the female reproductive tract, capacitation, fertilization, and embryo development. Merits of dietary zinc supplementation and zinc inclusion into semen processing media are considered with livestock artificial insemination (AI) and human assisted reproductive therapy (ART) in mind. Collectively, the currently available data underline the importance of zinc ions for male fertility, which could be harnessed to improve human reproductive health and reproductive efficiency in agriculturally important livestock species. Further research will advance the field of sperm and fertilization biology, provide new research tools, and ultimately optimize semen processing procedures for human infertility therapy and livestock AI.
Collapse
Affiliation(s)
- Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA.
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA.
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300, USA.
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO 65211-5300, USA.
| |
Collapse
|
47
|
Chuang SH, Reddy DS. Zinc reduces antiseizure activity of neurosteroids by selective blockade of extrasynaptic GABA-A receptor-mediated tonic inhibition in the hippocampus. Neuropharmacology 2018; 148:244-256. [PMID: 30471294 DOI: 10.1016/j.neuropharm.2018.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 01/31/2023]
Abstract
Zinc is an abundant trace metal in the hippocampus nerve terminals. Previous studies demonstrate the ability of zinc to selectively block neurosteroid-sensitive, extrasynaptic GABA-A receptors in the hippocampus (Carver et al, 2016). Here we report that zinc prevents the seizure protective effects of the synthetic neurosteroid ganaxolone (GX) in an experimental model of epilepsy. GABA-gated and tonic currents were recorded from dissociated dentate gyrus granule cells (DGGCs), CA1 pyramidal cells (CA1PCs), and hippocampal slices from adult mice. Antiseizure effects of GX and the reversal of these effects by zinc were evaluated in fully-kindled mice expressing generalized (stage 5) seizures. In electrophysiological studies, zinc blocked the GABA-evoked and GX-potentiated GABA-gated chloride currents in DGGCs and CA1PCs in a concentration-dependent fashion similar to the competitive GABA-A receptor antagonists bicuculline and gabazine. Zinc completely blocked GX potentiation of extrasynaptic tonic currents, but not synaptic phasic currents. In hippocampus kindling studies, systemic administration of GX produced a dose-dependent suppression of behavioral and electrographic seizures in fully-kindled mice with complete seizure protection at the 10 mg/kg dose. However, the antiseizure effects of GX were significantly prevented by intrahippocampal administration of zinc (ED50, 150 μM). The zinc antagonistic response was reversible as animals responded normally to GX administration 24 h post-zinc blockade. These results demonstrate that zinc reduces the antiseizure effects of GX by selectively blocking extrasynaptic δGABA-A receptors in the hippocampus. These pharmacodynamic interactions have clinical implications in neurosteroid therapy for brain conditions associated with zinc fluctuations.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
| |
Collapse
|
48
|
Negrila CC, Predoi MV, Iconaru SL, Predoi D. Development of Zinc-Doped Hydroxyapatite by Sol-Gel Method for Medical Applications. Molecules 2018; 23:E2986. [PMID: 30445754 PMCID: PMC6278251 DOI: 10.3390/molecules23112986] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Zinc- (Zn) doped hydroxyapatite (HAp) were prepared by sol-gel method. Zinc-doped hydroxyapatite (ZnHAp) and HAp were analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Rietveld analysis revealed that the HAp and 7ZnHAp powders obtained by sol-gel method have a monophasic hydroxyapatite structure belonging to the P63/m spatial group. The results obtained from the ultrasound characterization of HAp and ZnHAp are also presented in this study. The effect of zinc concentration on properties that were deduced from ultrasonic measurements are studied in the case of a significant zinc concentration (xZn = 0.07). From the values of the ultrasonic waves velocities were determined by the pairs of elastic coefficients of the suspensions (Young modulus E, Poisson coefficient ν), which have proven to be similar to those determined by other authors.
Collapse
Affiliation(s)
- Catalin Constantin Negrila
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania.
| | - Mihai Valentin Predoi
- Department of Mechanics, University Politehnica of Bucharest, BN 002, 313 Splaiul Independentei, Sector 6, 060042 Bucharest, Romania.
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania.
| | - Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania.
| |
Collapse
|
49
|
Association of metals with the risk and clinical characteristics of Parkinson's disease. Parkinsonism Relat Disord 2018; 55:117-121. [DOI: 10.1016/j.parkreldis.2018.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 05/27/2018] [Indexed: 01/12/2023]
|
50
|
Joe P, Petrilli M, Malaspina D, Weissman J. Zinc in schizophrenia: A meta-analysis. Gen Hosp Psychiatry 2018; 53:19-24. [PMID: 29727763 DOI: 10.1016/j.genhosppsych.2018.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The role of zinc homeostasis in various psychopathologies is an emerging area of interest. Zinc is strongly implicated in depressive disorders but is inadequately studied in schizophrenia, despite growing evidence of abnormal zinc transporters associated with schizophrenia. A meta-analysis of serum zinc concentrations in persons with schizophrenia was conducted to address this gap. METHOD PubMed and Embase were searched for all articles published through February 2018 that reported serum zinc concentrations in individuals with schizophrenia and in comparison subjects. A random-effects meta-analysis was carried out to compare mean serum zinc concentrations between the groups in terms of the weighted mean difference. RESULTS The current meta-analysis combined 10 studies, including a total of 658 schizophrenia patients and 1008 controls. Serum zinc concentration was significantly lower in individuals with schizophrenia than controls (12.81 μg/dl (1.96 μmol/l), t = -2.59, 95% CI: -22.50 to -3.12, p < 0.05). The reduction in zinc levels was more pronounced among inpatients and newly diagnosed, drug-naïve patients. CONCLUSIONS The current meta-analysis supports a disturbance of zinc homeostasis in individuals with schizophrenia compared to healthy controls, although the relationship between reduced serum zinc levels and psychotic symptoms remains unknown. Altered serum zinc might be linked to defective transporters and/or inflammation that impact the brain's glutamatergic system.
Collapse
Affiliation(s)
- Peter Joe
- New York University School of Medicine, New York, NY, USA
| | | | - Dolores Malaspina
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA.
| | - Judith Weissman
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| |
Collapse
|