1
|
Kaur J, Mishra PC, Hora R. Molecular Players at the Sorting Stations of Malaria Parasite 'Plasmodium falciparum'. Curr Protein Pept Sci 2024; 25:427-437. [PMID: 38409726 DOI: 10.2174/0113892037282522240130090156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
The apicomplexan pathogenic parasite 'Plasmodium falciparum' (Pf) is responsible for most of the malaria related mortality. It resides in and refurbishes the infected red blood cells (iRBCs) for its own survival and to suffice its metabolic needs. Remodeling of host erythrocytes involves alteration of physical and biochemical properties of the membrane and genesis of new parasite induced structures within the iRBCs. The generated structures include knobs and solute ion channels on the erythrocyte surface and specialized organelles i.e. Maurer's clefts (MCs) in the iRBC cytosol. The above processes are mediated by exporting a large repertoire of proteins to the host cell, most of which are transported via MCs, the sorting stations in parasitized erythrocytes. Information about MC biogenesis and the molecules involved in maintaining MC architecture remains incompletely elucidated. Here, we have compiled a list of experimentally known MC resident proteins, several of which have roles in maintaining its architecture and function. Our short review covers available data on the domain organization, orthologues, topology and specific roles of these proteins. We highlight the current knowledge gaps in our understanding of MCs as crucial organelles involved in parasite biology and disease pathogenesis.
Collapse
Affiliation(s)
- Jasweer Kaur
- Department of Biochemistry, Govt. College for Girls, Ludhiana, Punjab, India (Affiliated to Panjab University, Chandigarh), India
| | | | - Rachna Hora
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University Amritsar, Punjab, India
| |
Collapse
|
2
|
Bekić V, Kilian N. Novel secretory organelles of parasite origin - at the center of host-parasite interaction. Bioessays 2023; 45:e2200241. [PMID: 37518819 DOI: 10.1002/bies.202200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Reorganization of cell organelle-deprived host red blood cells by the apicomplexan malaria parasite Plasmodium falciparum enables their cytoadherence to endothelial cells that line the microvasculature. This increases the time red blood cells infected with mature developmental stages remain within selected organs such as the brain to avoid the spleen passage, which can lead to severe complications and cumulate in patient death. The Maurer's clefts are a novel secretory organelle of parasite origin established by the parasite in the cytoplasm of the host red blood cell in order to facilitate the establishment of cytoadherence by conducting the trafficking of immunovariant adhesins to the host cell surface. Another important function of the organelle is the sorting of other proteins the parasite traffics into its host cell. Although the organelle is of high importance for the pathology of malaria, additional putative functions, structure, and genesis remain shrouded in mystery more than a century after its discovery. In this review, we highlight our current knowledge about the Maurer's clefts and other novel secretory organelles established within the host cell cytoplasm by human-pathogenic malaria parasites and other parasites that reside within human red blood cells.
Collapse
Affiliation(s)
- Viktor Bekić
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nicole Kilian
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
3
|
A member of the tryptophan-rich protein family is required for efficient sequestration of Plasmodium berghei schizonts. PLoS Pathog 2022; 18:e1010846. [PMID: 36126089 PMCID: PMC9524624 DOI: 10.1371/journal.ppat.1010846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Protein export and host membrane remodeling are crucial for multiple Plasmodium species to establish a niche in infected hosts. To better understand the contribution of these processes to successful parasite infection in vivo, we sought to find and characterize protein components of the intraerythrocytic Plasmodium berghei-induced membrane structures (IBIS) that form in the cytoplasm of infected erythrocytes. We identified proteins that immunoprecipitate with IBIS1, a signature member of the IBIS in P. berghei-infected erythrocytes. In parallel, we also report our data describing proteins that co-precipitate with the PTEX (Plasmodium translocon of exported proteins) component EXP2. To validate our findings, we examined the location of three candidate IBIS1-interactors that are conserved across multiple Plasmodium species, and we found they localized to IBIS in infected red blood cells and two further colocalized with IBIS1 in the liver-stage parasitophorous vacuole membrane. Successful gene deletion revealed that these two tryptophan-rich domain-containing proteins, termed here IPIS2 and IPIS3 (for intraerythrocytic Plasmodium-induced membrane structures), are required for efficient blood-stage growth. Erythrocytes infected with IPIS2-deficient schizonts in particular fail to bind CD36 as efficiently as wild-type P. berghei-infected cells and therefore fail to effectively sequester out of the circulating blood. Our findings support the idea that intra-erythrocytic membrane compartments are required across species for alterations of the host erythrocyte that facilitate interactions of infected cells with host tissues.
Collapse
|
4
|
Deletion of the Plasmodium falciparum exported protein PTP7 leads to Maurer’s clefts vesiculation, host cell remodeling defects, and loss of surface presentation of EMP1. PLoS Pathog 2022; 18:e1009882. [PMID: 35930605 PMCID: PMC9385048 DOI: 10.1371/journal.ppat.1009882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/17/2022] [Accepted: 06/19/2022] [Indexed: 11/19/2022] Open
Abstract
Presentation of the variant antigen, Plasmodium falciparum erythrocyte membrane protein 1 (EMP1), at knob-like protrusions on the surface of infected red blood cells, underpins the parasite’s pathogenicity. Here we describe a protein PF3D7_0301700 (PTP7), that functions at the nexus between the intermediate trafficking organelle, the Maurer’s cleft, and the infected red blood cell surface. Genetic disruption of PTP7 leads to accumulation of vesicles at the Maurer’s clefts, grossly aberrant knob morphology, and failure to deliver EMP1 to the red blood cell surface. We show that an expanded low complexity sequence in the C-terminal region of PTP7, identified only in the Laverania clade of Plasmodium, is critical for efficient virulence protein trafficking. We describe a malaria parasite protein, PTP7, involved in virulence factor trafficking that is associated with Maurer’s clefts and other trafficking compartments. Upon disruption of the PTP7 locus, the Maurer’s clefts become decorated with vesicles; the knobby protrusions on the host red blood cell surface are fewer and distorted; and trafficking of the virulence protein, EMP1, to the host red blood cell surface is ablated. We provide evidence that a region of PTP7 with low sequence complexity plays an important role in virulence protein trafficking from the Maurer’s clefts.
Collapse
|
5
|
Firdaus MER, Muh F, Park JH, Lee SK, Na SH, Park WS, Ha KS, Han JH, Han ET. In-depth biological analysis of alteration in Plasmodium knowlesi-infected red blood cells using a noninvasive optical imaging technique. Parasit Vectors 2022; 15:68. [PMID: 35236400 PMCID: PMC8889714 DOI: 10.1186/s13071-022-05182-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background Imaging techniques are commonly used to understand disease mechanisms and their biological features in the microenvironment of the cell. Many studies have added to our understanding of the biology of the malaria parasite Plasmodium knowlesi from functional in vitro and imaging analysis using serial block-face scanning electron microscopy (SEM). However, sample fixation and metal coating during SEM analysis can alter the parasite membrane. Methods In this study, we used noninvasive diffraction optical tomography (DOT), also known as holotomography, to explore the morphological, biochemical, and mechanical alterations of each stage of P. knowlesi-infected red blood cells (RBCs). Each stage of the parasite was synchronized using Nycodenz and magnetic-activated cell sorting (MACS) for P. knowlesi and P. falciparum, respectively. Holotomography was applied to measure individual three-dimensional refractive index tomograms without metal coating, fixation, or additional dye agent. Results Distinct profiles were found on the surface area and hemoglobin content of the two parasites. The surface area of P. knowlesi-infected RBCs showed significant expansion, while P. falciparum-infected RBCs did not show any changes compared to uninfected RBCs. In terms of hemoglobin consumption, P. falciparum tended to consume hemoglobin more than P. knowlesi. The observed profile of P. knowlesi-infected RBCs generally showed similar results to other studies, proving that this technique is unbiased. Conclusions The observed profile of the surface area and hemoglobin content of malaria infected-RBCs can potentially be used as a diagnostic parameter to distinguish P. knowlesi and P. falciparum infection. In addition, we showed that holotomography could be used to study each Plasmodium species in greater depth, supporting strategies for the development of diagnostic and treatment strategies for malaria. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05182-1.
Collapse
Affiliation(s)
- Moh Egy Rahman Firdaus
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | | | - Sung-Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Won-Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
6
|
Chaianantakul N, Sungkapong T, Changpad J, Thongma K, Sim-Ut S, Kaewthamasorn M. Genetic polymorphism of the extracellular region in surface associated interspersed 1.1 gene of Plasmodium falciparum field isolates from Thailand. Malar J 2021; 20:343. [PMID: 34399778 PMCID: PMC8365296 DOI: 10.1186/s12936-021-03876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background A novel variable surface antigens (VSAs), Surface-associated interspersed proteins (SUFRINs), is a protein that is modified on the surface of infected red blood cell (iRBC). Modified proteins on the iRBC surface cause severe malaria, which can lead to death throughout the life cycle of a malaria parasite. Previous study suggested that SURFIN1.1 is an immunogenic membrane-associated protein which was encoded by using the surf1.1 gene expressed during the trophozoite and schizont stages. This study aimed to identify the regions of SURFIN1.1 and investigate the genetic diversity of the extracellular region of the surf1.1 gene. Methods A total of 32 blood samples from falciparum malaria cases that were diagnosed in Si Sa Ket Province, Thailand were collected. Plasmodium genomic DNA was extracted, and the extracellular region of surf1.1 gene was amplified using the polymerase chain reaction (PCR). A sequence analysis was then performed to obtain the number of haplotypes (H), the haplotype diversity (Hd), and the segregating sites (S), while the average number of nucleotide differences between two sequences (Pi); in addition, neutrality testing, Tajima’s D test, Fu and Li’s D* and F* statistics was also performed. Results From a total of 32 patient-isolated samples, 31 DNA sequences were obtained and analysed for surf1.1 gene extracellular region polymorphism. Researchers observed six distinct haplotypes in the current research area. Haplotype frequencies were 61.3%, 16.2%, and 12.9% for H1, H2, and H3, respectively. The remaining haplotype (H4-H6) frequency was 3.2% for each haplotype. Hd was 0.598 ± 0.089 with the Pi of 0.00381, and S was 15. The most common amino acid polymorphic site was E251Q; other sites included N48D, I49V, E228D, E235S, L265F, K267T, E276Q, and S288F. Fu and Li’s D* test value was − 1.24255, Fu and Li’s F* test value was − 1.10175, indicating a tendency toward negative balancing selection acting on the surf1.1 N-terminal region. The most polymorphic region was variable 2 (Var2) while cysteine-rich domain (CRD) was conserved in both the amino acid and nucleotide extracellular region of surf1.1 gene. Conclusions The Thai surf1.1 N-terminal region was well-conserved with only a few polymorphic sites remaining. In this study, the data regarding current bearing on the polymorphism of extracellular region of surf1.1 gene were reported, which might impact the biological roles of P. falciparum. In addition, may possibly serve as a suitable candidate for future development of SURFIN-based vaccines regarding malaria control. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03876-y. The regions of SURFIN1.1 were identified: SURFIN1.1 is comprised of extracellular, transmembrane (TM), and intracellular regions. Nucleotide and amino acid sequences of the extracellular region of P. falciparum SURFIN1.1 from a total of 31 field isolates were obtained and analyzed for genetic polymorphism: six different haplotypes were identified. The extracellular region of the SURFIN1.1 among field isolates was conserved, especially in the cysteine-rich domain (CRD) sub-region. High polymorphism was shown in the variable region 2 (Var2), followed by N-terminal (N-ter) and variable region 1 (Var1), respectively. The findings presented herein may enable the discovery and development of a novel SURFIN-based vaccine for prevention and control of malaria.
Collapse
Affiliation(s)
- Natpasit Chaianantakul
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Tippawan Sungkapong
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jirapinya Changpad
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Keawalin Thongma
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sasiwimon Sim-Ut
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
7
|
Rashidi S, Tuteja R, Mansouri R, Ali-Hassanzadeh M, Shafiei R, Ghani E, Karimazar M, Nguewa P, Manzano-Román R. The main post-translational modifications and related regulatory pathways in the malaria parasite Plasmodium falciparum: An update. J Proteomics 2021; 245:104279. [PMID: 34089893 DOI: 10.1016/j.jprot.2021.104279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
There are important challenges when investigating individual post-translational modifications (PTMs) or protein interaction network and delineating if PTMs or their changes and cross-talks are involved during infection, disease initiation or as a result of disease progression. Proteomics and in silico approaches now offer the possibility to complement each other to further understand the regulatory involvement of these modifications in parasites and infection biology. Accordingly, the current review highlights key expressed or altered proteins and PTMs are invisible switches that turn on and off the function of most of the proteins. PTMs include phosphorylation, glycosylation, ubiquitylation, palmitoylation, myristoylation, prenylation, acetylation, methylation, and epigenetic PTMs in P. falciparum which have been recently identified. But also other low-abundant or overlooked PTMs that might be important for the parasite's survival, infectivity, antigenicity, immunomodulation and pathogenesis. We here emphasize the PTMs as regulatory pathways playing major roles in the biology, pathogenicity, metabolic pathways, survival, host-parasite interactions and the life cycle of P. falciparum. Further validations and functional characterizations of such proteins might confirm the discovery of therapeutic targets and might most likely provide valuable data for the treatment of P. falciparum, the main cause of severe malaria in human.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammadreza Karimazar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), c/Irunlarrea 1, 31008 Pamplona, Spain.
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
8
|
Yadavalli R, Peterson JW, Drazba JA, Sam-Yellowe TY. Trafficking and Association of Plasmodium falciparum MC-2TM with the Maurer's Clefts. Pathogens 2021; 10:pathogens10040431. [PMID: 33916455 PMCID: PMC8066109 DOI: 10.3390/pathogens10040431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/05/2022] Open
Abstract
In this study, we investigated stage specific expression, trafficking, solubility and topology of endogenous PfMC-2TM in P. falciparum (3D7) infected erythrocytes. Following Brefeldin A (BFA) treatment of parasites, PfMC-2TM traffic was evaluated using immunofluorescence with antibodies reactive with PfMC-2TM. PfMC-2TM is sensitive to BFA treatment and permeabilization of infected erythrocytes with streptolysin O (SLO) and saponin, showed that the N and C-termini of PfMC-2TM are exposed to the erythrocyte cytoplasm with the central portion of the protein protected in the MC membranes. PfMC-2TM was expressed as early as 4 h post invasion (hpi), was tightly colocalized with REX-1 and trafficked to the erythrocyte membrane without a change in solubility. PfMC-2TM associated with the MC and infected erythrocyte membrane and was resistant to extraction with alkaline sodium carbonate, suggestive of protein-lipid interactions with membranes of the MC and erythrocyte. PfMC-2TM is an additional marker of the nascent MCs.
Collapse
Affiliation(s)
- Raghavendra Yadavalli
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA;
| | - John W. Peterson
- Imaging Core Facility, The Cleveland Clinic, Cleveland, OH 44195, USA; (J.W.P.); (J.A.D.)
| | - Judith A. Drazba
- Imaging Core Facility, The Cleveland Clinic, Cleveland, OH 44195, USA; (J.W.P.); (J.A.D.)
| | - Tobili Y. Sam-Yellowe
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA;
- Correspondence: ; Tel.: +1-216-687-2068
| |
Collapse
|
9
|
Lakho FH, Le HQ, Van Kerkhove F, Igodt W, Depuydt V, Desloover J, Rousseau DPL, Van Hulle SWH. Water treatment and re-use at temporary events using a mobile constructed wetland and drinking water production system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139630. [PMID: 32505022 DOI: 10.1016/j.scitotenv.2020.139630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Temporary events such as music festivals are often organized in places that are not connected to a sewage network. As such, the waste (water) generated and discharged can place a heavy burden on the environment. A mobile vertical flow constructed wetland (MCW) with an area of 15 m2 was constructed, optimized and operated for three years treating grey water (GW) as well as grey and black water (GW + BW) at different festival locations to tackle this problem. During the initial development phase, the appropriate influent type (GW and/or GW + BW) was determined and challenge tests with pre-settled diluted domestic waste water (mimicking GW) were carried out to determine the maximal allowable loading rate. The MCW was able to treat both types of water. However, for further experiments GW was selected as the discharge limits could not be met when treating GW + BW. The challenge tests demonstrated that the MCW could be operated at a maximal allowable hydraulic loading rate of 1.1 m3·m-2·d-1, corresponding to mass loading rates of 68 gTSS·m-2·d-1, 160 gCOD·m-2·d-1 and 137 gBOD·m-2·d-1. During treatment of GW, the MCW achieved effluent concentrations for respectively chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS) and total phosphorus (TP) of 43 mg·L-1, 16 mg·L-1, 2.7 mg·L-1 and 1.7 mgP·L-1. This corresponds to a removal of 90% (COD), 95% (BOD), 97% (TSS) and 76% (TP) respectively. Total nitrogen removal was 25% (from 45 mgN·L-1 to 34 mgN·L-1) as particularly denitrification was not complete. As a further development, the MCW was coupled to a drinking water treatment system using ultrafiltration and reverse osmosis (UF-RO) membranes to produce potable water on site. The drinking water system produced potable water that met the legislative criteria. As such, a sustainable and mobile water treatment system aiming at producing potable water at temporary events was demonstrated.
Collapse
Affiliation(s)
- Fida Hussain Lakho
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium.
| | - Hong Quan Le
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Fréderic Van Kerkhove
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Wouter Igodt
- Tuinen Wouter Igodt, Kastanjeboomstraat 13, B-8550 Zwevegem, Belgium
| | - Veerle Depuydt
- Flanders Knowledge Center Water (Vlakwa), Graaf Karel de Goedelaan 34, B-8500 Kortrijk, Belgium
| | | | - Diederik P L Rousseau
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Stijn W H Van Hulle
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium
| |
Collapse
|
10
|
Florentin A, Cobb DW, Kudyba HM, Muralidharan V. Directing traffic: Chaperone-mediated protein transport in malaria parasites. Cell Microbiol 2020; 22:e13215. [PMID: 32388921 PMCID: PMC7282954 DOI: 10.1111/cmi.13215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
The ability of eukaryotic parasites from the phylum Apicomplexa to cause devastating diseases is predicated upon their ability to maintain faithful and precise protein trafficking mechanisms. Their parasitic life cycle depends on the trafficking of effector proteins to the infected host cell, transport of proteins to several critical organelles required for survival, as well as transport of parasite and host proteins to the digestive organelles to generate the building blocks for parasite growth. Several recent studies have shed light on the molecular mechanisms parasites utilise to transform the infected host cells, transport proteins to essential metabolic organelles and for biogenesis of organelles required for continuation of their life cycle. Here, we review key pathways of protein transport originating and branching from the endoplasmic reticulum, focusing on the essential roles of chaperones in these processes. Further, we highlight key gaps in our knowledge that prevents us from building a holistic view of protein trafficking in these deadly human pathogens.
Collapse
Affiliation(s)
- Anat Florentin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - David W Cobb
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Heather M Kudyba
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Nessel T, Beck JM, Rayatpisheh S, Jami-Alahmadi Y, Wohlschlegel JA, Goldberg DE, Beck JR. EXP1 is required for organisation of EXP2 in the intraerythrocytic malaria parasite vacuole. Cell Microbiol 2020; 22:e13168. [PMID: 31990132 DOI: 10.1111/cmi.13168] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Intraerythrocytic malaria parasites reside within a parasitophorous vacuole membrane (PVM) that closely overlays the parasite plasma membrane. Although the PVM is the site of several transport activities essential to parasite survival, the basis for organisation of this membrane system is unknown. Here, we performed proximity labeling at the PVM with BioID2, which highlighted a group of single-pass integral membrane proteins that constitute a major component of the PVM proteome but whose function remains unclear. We investigated EXP1, the longest known member of this group, by adapting a CRISPR/Cpf1 genome editing system to install the TetR-DOZI-aptamers system for conditional translational control. Importantly, although EXP1 was required for intraerythrocytic development, a previously reported in vitro glutathione S-transferase activity could not account for this essential EXP1 function in vivo. EXP1 knockdown was accompanied by profound changes in vacuole ultrastructure, including apparent increased separation of the PVM from the parasite plasma membrane and formation of abnormal membrane structures. Furthermore, although activity of the Plasmodium translocon of exported proteins was not impacted by depletion of EXP1, the distribution of the translocon pore-forming protein EXP2 but not the HSP101 unfoldase was substantially altered. Collectively, our results reveal a novel PVM defect that indicates a critical role for EXP1 in maintaining proper organisation of EXP2 within the PVM.
Collapse
Affiliation(s)
- Timothy Nessel
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - John M Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - Shima Rayatpisheh
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University, St. Louis, Missouri
| | - Josh R Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa.,Departments of Medicine and Molecular Microbiology, Washington University, St. Louis, Missouri
| |
Collapse
|
12
|
The parasitophorous vacuole of the blood-stage malaria parasite. Nat Rev Microbiol 2020; 18:379-391. [PMID: 31980807 DOI: 10.1038/s41579-019-0321-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. During blood-stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. A central nexus for host-parasite interactions, this unique parasite shelter functions in nutrient acquisition, subcompartmentalization and the export of virulence factors, making its functional molecules attractive targets for the development of novel intervention strategies to combat the devastating impact of malaria. In this Review, we explore the origin, development, molecular composition and functions of the parasitophorous vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide perspectives for future research directions in parasitophorous vacuole biology.
Collapse
|
13
|
Host Cytoskeleton Remodeling throughout the Blood Stages of Plasmodium falciparum. Microbiol Mol Biol Rev 2019; 83:83/4/e00013-19. [PMID: 31484690 DOI: 10.1128/mmbr.00013-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The asexual intraerythrocytic development of Plasmodium falciparum, causing the most severe form of human malaria, is marked by extensive host cell remodeling. Throughout the processes of invasion, intracellular development, and egress, the erythrocyte membrane skeleton is remodeled by the parasite as required for each specific developmental stage. The remodeling is facilitated by a plethora of exported parasite proteins, and the erythrocyte membrane skeleton is the interface of most of the observed interactions between the parasite and host cell proteins. Host cell remodeling has been extensively described and there is a vast body of information on protein export or the description of parasite-induced structures such as Maurer's clefts or knobs on the host cell surface. Here we specifically review the molecular level of each host cell-remodeling step at each stage of the intraerythrocytic development of P. falciparum We describe key events, such as invasion, knob formation, and egress, and identify the interactions between exported parasite proteins and the host cell cytoskeleton. We discuss each remodeling step with respect to time and specific requirement of the developing parasite to explain host cell remodeling in a stage-specific manner. Thus, we highlight the interaction with the host membrane skeleton as a key event in parasite survival.
Collapse
|
14
|
Takano R, Kozuka-Hata H, Kondoh D, Bochimoto H, Oyama M, Kato K. A High-Resolution Map of SBP1 Interactomes in Plasmodium falciparum-infected Erythrocytes. iScience 2019; 19:703-714. [PMID: 31476617 PMCID: PMC6728614 DOI: 10.1016/j.isci.2019.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/09/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022] Open
Abstract
The pathogenesis of malaria parasites depends on host erythrocyte modifications that are facilitated by parasite proteins exported to the host cytoplasm. These exported proteins form a trafficking complex in the host cytoplasm that transports virulence determinants to the erythrocyte surface; this complex is thus essential for malaria virulence. Here, we report a comprehensive interaction network map of this complex. We developed authentic, unbiased, highly sensitive proteomic approaches to determine the proteins that interact with a core component of the complex, SBP1 (skeleton-binding protein 1). SBP1 interactomes revealed numerous exported proteins and potential interactors associated with SBP1 intracellular trafficking. We identified several host-parasite protein interactions and linked the exported protein MAL8P1.4 to Plasmodium falciparum virulence in infected erythrocytes. Our study highlights the complicated interplay between parasite and host proteins in the host cytoplasm and provides an interaction dataset connecting dozens of exported proteins required for P. falciparum virulence. We used shotgun proteomics to identify SBP1-interacting factors System validation showed complex interplay between parasite and host proteins Our system can be used to explore protozoan parasite virulence in erythrocytes
Collapse
Affiliation(s)
- Ryo Takano
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Daisuke Kondoh
- Laboratory of Veterinary Anatomy, Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hiroki Bochimoto
- Health Care Administration Center, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Naruko-onsen, Osaki, Miyagi 989-6711, Japan.
| |
Collapse
|
15
|
Ngotho P, Soares AB, Hentzschel F, Achcar F, Bertuccini L, Marti M. Revisiting gametocyte biology in malaria parasites. FEMS Microbiol Rev 2019; 43:401-414. [PMID: 31220244 PMCID: PMC6606849 DOI: 10.1093/femsre/fuz010] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Gametocytes are the only form of the malaria parasite that is transmissible to the mosquito vector. They are present at low levels in blood circulation and significant knowledge gaps exist in their biology. Recent reductions in the global malaria burden have brought the possibility of elimination and eradication, with renewed focus on malaria transmission biology as a basis for interventions. This review discusses recent insights into gametocyte biology in the major human malaria parasite, Plasmodium falciparum and related species.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Alexandra Blancke Soares
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Franziska Hentzschel
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Lucia Bertuccini
- Core Facilities, Microscopy Area, Instituto Superiore di Sanita, Via Regina Elena 299, 00161 Rome, Italy
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston 02115, MA, USA
| |
Collapse
|
16
|
The Plasmodium knowlesi MAHRP2 ortholog localizes to structures connecting Sinton Mulligan's clefts in the infected erythrocyte. Parasitol Int 2018; 67:481-492. [PMID: 29673877 DOI: 10.1016/j.parint.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 11/23/2022]
Abstract
During development within the host erythrocyte malaria parasites generate nascent membranous structures which serve as a pathway for parasite protein transport to modify the host cell. The molecular basis of such membranous structures is not well understood, particularly for malaria parasites other than Plasmodium falciparum. To characterize the structural basis of protein trafficking in the Plasmodium knowlesi-infected erythrocyte, we identified a P. knowlesi ortholog of MAHRP2, a marker of the tether structure that connects membranous structures in the P. falciparum-infected erythrocyte. We show that PkMAHRP2 localizes on amorphous structures that connect Sinton Mulligan's clefts (SMC) to each other and to the erythrocyte membrane. Three dimensional reconstruction of the P. knowlesi-infected erythrocyte revealed that the SMC is a plate-like structure with swollen ends, reminiscent of the morphology of the Golgi apparatus. The PkMAHRP2-localized amorphous structures are possibly functionally equivalent to P. falciparum tether structure. These findings suggest a conservation in the ultrastructure of protein trafficking between P. falciparum and P. knowlesi.
Collapse
|
17
|
Zhang M, Faou P, Maier AG, Rug M. Plasmodium falciparum exported protein PFE60 influences Maurer’s clefts architecture and virulence complex composition. Int J Parasitol 2018; 48:83-95. [DOI: 10.1016/j.ijpara.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/20/2017] [Accepted: 09/06/2017] [Indexed: 11/30/2022]
|
18
|
Sherling ES, van Ooij C. Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes. FEMS Microbiol Rev 2017; 40:701-21. [PMID: 27587718 PMCID: PMC5007283 DOI: 10.1093/femsre/fuw016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria is caused by infection of erythrocytes by parasites of the genus Plasmodium. To survive inside erythrocytes, these parasites induce sweeping changes within the host cell, one of the most dramatic of which is the formation of multiple membranous compartments, collectively referred to as the exomembrane system. As an uninfected mammalian erythrocyte is devoid of internal membranes, the parasite must be the force and the source behind the formation of these compartments. Even though the first evidence of the presence these of internal compartments was obtained over a century ago, their functions remain mostly unclear, and in some cases completely unknown, and the mechanisms underlying their formation are still mysterious. In this review, we provide an overview of the different parts of the exomembrane system, describing the parasitophorous vacuole, the tubovesicular network, Maurer's clefts, the caveola-vesicle complex, J dots and other mobile compartments, and the small vesicles that have been observed in Plasmodium-infected cells. Finally, we combine the data into a simplified view of the exomembrane system and its relation to the alterations of the host erythrocyte. Plasmodium parasites remodel the host erythrocyte in various ways, including the formation of several membranous compartments, together referred to as the exomembrane system, within the erythrocyte cytosol that together are key to the sweeping changes in the host cell.
Collapse
Affiliation(s)
- Emma S Sherling
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Christiaan van Ooij
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
19
|
Lucky AB, Sakaguchi M, Katakai Y, Kawai S, Yahata K, Templeton TJ, Kaneko O. Plasmodium knowlesi Skeleton-Binding Protein 1 Localizes to the 'Sinton and Mulligan' Stipplings in the Cytoplasm of Monkey and Human Erythrocytes. PLoS One 2016; 11:e0164272. [PMID: 27732628 PMCID: PMC5061513 DOI: 10.1371/journal.pone.0164272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022] Open
Abstract
The malaria parasite, Plasmodium, exports protein products to the infected erythrocyte to introduce modifications necessary for the establishment of nutrient acquisition and surface display of host interaction ligands. Erythrocyte remodeling impacts parasite virulence and disease pathology and is well documented for the human malaria parasite Plasmodium falciparum, but has been less described for other Plasmodium species. For P. falciparum, the exported protein skeleton-binding protein 1 (PfSBP1) is involved in the trafficking of erythrocyte surface ligands and localized to membranous structures within the infected erythrocyte, termed Maurer's clefts. In this study, we analyzed SBP1 orthologs across the Plasmodium genus by BLAST analysis and conserved gene synteny, which were also recently described by de Niz et al. (2016). To evaluate the localization of an SBP1 ortholog, we utilized the zoonotic malaria parasite, Plasmodium knowlesi. Immunofluorescence assay of transgenic P. knowlesi parasites expressing epitope-tagged recombinant PkSBP1 revealed a punctate staining pattern reminiscent of Maurer's clefts, following infection of either monkey or human erythrocytes. The recombinant PkSBP1-positive puncta co-localized with Giemsa-stained structures, known as ‘Sinton and Mulligan’ stipplings. Immunoelectron microscopy also showed that recombinant PkSBP1 localizes within or on the membranous structures akin to the Maurer's clefts. The recombinant PkSBP1 expressed in P. falciparum-infected erythrocytes co-localized with PfSBP1 at the Maurer's clefts, indicating an analogous trafficking pattern. A member of the P. knowlesi 2TM protein family was also expressed and localized to membranous structures in infected monkey erythrocytes. These results suggest that the trafficking machinery and induced erythrocyte cellular structures of P. knowlesi are similar following infection of both monkey and human erythrocytes, and are conserved with P. falciparum.
Collapse
Affiliation(s)
- Amuza Byaruhanga Lucky
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Leading program, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Yuko Katakai
- The Corporation for Production and Research of Laboratory Primates, Tsukuba 305-0843, Japan
| | - Satoru Kawai
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Thomas J. Templeton
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York 10021, United States of America
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Leading program, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- * E-mail:
| |
Collapse
|
20
|
de Koning-Ward TF, Dixon MW, Tilley L, Gilson PR. Plasmodium species: master renovators of their host cells. Nat Rev Microbiol 2016; 14:494-507. [DOI: 10.1038/nrmicro.2016.79] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Mata-Cantero L, Azkargorta M, Aillet F, Xolalpa W, LaFuente MJ, Elortza F, Carvalho AS, Martin-Plaza J, Matthiesen R, Rodriguez MS. New insights into host-parasite ubiquitin proteome dynamics in P. falciparum infected red blood cells using a TUBEs-MS approach. J Proteomics 2016; 139:45-59. [PMID: 26972027 DOI: 10.1016/j.jprot.2016.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/11/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Malaria, caused by Plasmodium falciparum (P. falciparum), ranks as one of the most baleful infectious diseases worldwide. New antimalarial treatments are needed to face existing or emerging drug resistant strains. Protein degradation appears to play a significant role during the asexual intraerythrocytic developmental cycle (IDC) of P. falciparum. Inhibition of the ubiquitin proteasome system (UPS), a major intracellular proteolytic pathway, effectively reduces infection and parasite replication. P. falciparum and erythrocyte UPS coexist during IDC but the nature of their relationship is largely unknown. We used an approach based on Tandem Ubiquitin-Binding Entities (TUBEs) and 1D gel electrophoresis followed by mass spectrometry to identify major components of the TUBEs-associated ubiquitin proteome of both host and parasite during ring, trophozoite and schizont stages. Ring-exported protein (REX1), a P. falciparum protein located in Maurer's clefts and important for parasite nutrient import, was found to reach a maximum level of ubiquitylation in trophozoites stage. The Homo sapiens (H. sapiens) TUBEs associated ubiquitin proteome decreased during the infection, whereas the equivalent P. falciparum TUBEs-associated ubiquitin proteome counterpart increased. Major cellular processes such as DNA repair, replication, stress response, vesicular transport and catabolic events appear to be regulated by ubiquitylation along the IDC P. falciparum infection. BIOLOGICAL SIGNIFICANCE In this work we analyze for the first time the interconnection between Plasmodium and human red blood cells ubiquitin-regulated proteins in the context of infection. We identified a number of human and Plasmodium proteins whose ubiquitylation pattern changes during the asexual infective stage. We demonstrate that ubiquitylation of REX1, a P. falciparum protein located in Maurer's clefts and important for parasite nutrient import, peaks in trophozoites stage. The ubiquitin-proteome from P. falciparum infected red blood cells (iRBCs) revealed a significant host-parasite crosstalk, underlining the importance of ubiquitin-regulated proteolytic activities during the intraerythrocytic developmental cycle (IDC) of P. falciparum. Major cellular processes defined from gene ontology such as DNA repair, replication, stress response, vesicular transport and catabolic events appear to be regulated by ubiquitylation along the IDC P. falciparum infection. Given the importance of ubiquitylation in the development of infectious diseases, this work provides a number of potential drug-target candidates that should be further explored.
Collapse
Affiliation(s)
- Lydia Mata-Cantero
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline Tres Cantos, Madrid, Spain; Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain; Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain
| | - Mikel Azkargorta
- Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain
| | - Fabienne Aillet
- Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain
| | - Wendy Xolalpa
- Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain
| | - Maria J LaFuente
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline Tres Cantos, Madrid, Spain
| | - Felix Elortza
- Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, Health Promotion and Chronic Diseases Department, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Julio Martin-Plaza
- Centro de Investigación Básica, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Rune Matthiesen
- Computational and Experimental Biology Group, Health Promotion and Chronic Diseases Department, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal.
| | - Manuel S Rodriguez
- Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain; Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain; Institut des Technologies Avancées en sciences du Vivant (ITAV), Université de Toulouse, CNRS, UPS, France; University of Toulouse III-Paul Sabatier, 31077 Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
22
|
Malaria Parasite Proteins and Their Role in Alteration of the Structure and Function of Red Blood Cells. ADVANCES IN PARASITOLOGY 2015; 91:1-86. [PMID: 27015947 DOI: 10.1016/bs.apar.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malaria, caused by Plasmodium spp., continues to be a major threat to human health and a significant cause of socioeconomic hardship in many countries. Almost half of the world's population live in malaria-endemic regions and many of them suffer one or more, often life-threatening episodes of malaria every year, the symptoms of which are attributable to replication of the parasite within red blood cells (RBCs). In the case of Plasmodium falciparum, the species responsible for most malaria-related deaths, parasite replication within RBCs is accompanied by striking alterations to the morphological, biochemical and biophysical properties of the host cell that are essential for the parasites' survival. To achieve this, the parasite establishes a unique and extensive protein export network in the infected RBC, dedicating at least 6% of its genome to the process. Understanding the full gamut of proteins involved in this process and the mechanisms by which P. falciparum alters the structure and function of RBCs is important both for a more complete understanding of the pathogenesis of malaria and for development of new therapeutic strategies to prevent or treat this devastating disease. This review focuses on what is currently known about exported parasite proteins, their interactions with the RBC and their likely pathophysiological consequences.
Collapse
|
23
|
McHugh E, Batinovic S, Hanssen E, McMillan PJ, Kenny S, Griffin MD, Crawford S, Trenholme KR, Gardiner DL, Dixon MWA, Tilley L. A repeat sequence domain of the ring-exported protein-1 of Plasmodium falciparum controls export machinery architecture and virulence protein trafficking. Mol Microbiol 2015; 98:1101-14. [PMID: 26304012 PMCID: PMC4987487 DOI: 10.1111/mmi.13201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2015] [Indexed: 11/30/2022]
Abstract
The malaria parasite Plasmodium falciparum dramatically remodels its host red blood cell to enhance its own survival, using a secretory membrane system that it establishes outside its own cell. Cisternal organelles, called Maurer's clefts, act as a staging point for the forward trafficking of virulence proteins to the red blood cell (RBC) membrane. The Ring-EXported Protein-1 (REX1) is a Maurer's cleft resident protein. We show that inducible knockdown of REX1 causes stacking of Maurer's cleft cisternae without disrupting the organization of the knob-associated histidine-rich protein at the RBC membrane. Genetic dissection of the REX1 sequence shows that loss of a repeat sequence domain results in the formation of giant Maurer's cleft stacks. The stacked Maurer's clefts are decorated with tether-like structures and retain the ability to dock onto the RBC membrane skeleton. The REX1 mutant parasites show deficient export of the major virulence protein, PfEMP1, to the red blood cell surface and markedly reduced binding to the endothelial cell receptor, CD36. REX1 is predicted to form a largely α-helical structure, with a repetitive charge pattern in the repeat sequence domain, providing potential insights into the role of REX1 in Maurer's cleft sculpting.
Collapse
Affiliation(s)
- Emma McHugh
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Steven Batinovic
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eric Hanssen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Advanced Microscopy Facility, University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul J. McMillan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Biological Optical Microscopy Platform, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shannon Kenny
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael D.W. Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon Crawford
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Katharine R. Trenholme
- Infectious Diseases Division, Queensland Institute of Medical Research, 300 Herston Rd, Herston, QLD 4006, Australia
| | - Donald L. Gardiner
- Infectious Diseases Division, Queensland Institute of Medical Research, 300 Herston Rd, Herston, QLD 4006, Australia
| | - Matthew W. A. Dixon
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
24
|
Tibúrcio M, Dixon MWA, Looker O, Younis SY, Tilley L, Alano P. Specific expression and export of the Plasmodium falciparum Gametocyte EXported Protein-5 marks the gametocyte ring stage. Malar J 2015; 14:334. [PMID: 26315106 PMCID: PMC4552133 DOI: 10.1186/s12936-015-0853-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum sexual development plays a fundamental role in the transmission and spread of malaria. The ability to generate gametocytes can be lost during culture in vitro, often associated with the loss of a subtelomeric region of chromosome 9. Gametocytogenesis starts with erythrocyte invasion by a sexually committed merozoite, but the first available specific marker of sexual differentiation appears only from 24 h post invasion. METHODS Specific antibodies and gene fusions were produced to study the timing of expression and the sub-cellular localization of the P. falciparum Gametocyte EXported Protein-5 (PfGEXP5), encoded in the subtelomeric region of chromosome 9. Expression patterns were examined in wild-type parasites and in parasite lines mutated in the Apetala2-G (AP2-G) transcription factor, governing a cascade of early sexual stage specific genes. RESULTS PfGEXP5 is highly expressed in early sexual stages and it is actively exported to the infected erythrocyte cytoplasm from as early as 14 h post-invasion in haemozoin-free, ring stage-like parasites. The pattern of PfGEXP5 expression and export is similar in wild-type parasites and in independent AP2-G defective parasite lines unable to produce gametocytes. CONCLUSIONS PfGEXP5 represents the earliest post-invasion sexual stage marker described to date. This provides a tool that can be used to identify sexually committed ring stage parasites in natural infections. This early gametocyte marker would enable the identification and mapping of malaria transmission reservoirs in human populations and the study of gametocyte sequestration dynamics in infected individuals. The fact that regulation of PfGEXP5 does not depend on the AP2-G master regulator of parasite sexual development suggests that, after sexual commitment, differentiation progresses through multiple checkpoints in the early phase of gametocytogenesis.
Collapse
Affiliation(s)
- Marta Tibúrcio
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| | - Matthew W A Dixon
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Oliver Looker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Sumera Younis Younis
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,Department of Parasitology, Biomedical Primate Research Centre, PO Box 306, 2280 GH, Rijswijk, The Netherlands.
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
25
|
Kats LM, Proellocks NI, Buckingham DW, Blanc L, Hale J, Guo X, Pei X, Herrmann S, Hanssen EG, Coppel RL, Mohandas N, An X, Cooke BM. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:1619-1628. [PMID: 25883090 PMCID: PMC4638388 DOI: 10.1016/j.bbamem.2015.03.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/05/2015] [Accepted: 03/25/2015] [Indexed: 12/19/2022]
Abstract
During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process.
Collapse
Affiliation(s)
- Lev M. Kats
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | - John Hale
- New York Blood Center, New York, NY 10021, USA
| | - Xinhua Guo
- New York Blood Center, New York, NY 10021, USA
| | - Xinhong Pei
- New York Blood Center, New York, NY 10021, USA
| | - Susann Herrmann
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Eric G. Hanssen
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Ross L. Coppel
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | - Xiuli An
- New York Blood Center, New York, NY 10021, USA
| | - Brian M. Cooke
- Department of Microbiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
26
|
Imaging of the subsurface structures of “unroofed” Plasmodium falciparum-infected erythrocytes. Exp Parasitol 2015; 153:174-9. [DOI: 10.1016/j.exppara.2015.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/05/2015] [Accepted: 03/20/2015] [Indexed: 01/24/2023]
|
27
|
Spillman NJ, Beck JR, Goldberg DE. Protein export into malaria parasite-infected erythrocytes: mechanisms and functional consequences. Annu Rev Biochem 2015; 84:813-41. [PMID: 25621510 DOI: 10.1146/annurev-biochem-060614-034157] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phylum Apicomplexa comprises a large group of obligate intracellular parasites of high medical and veterinary importance. These organisms succeed intracellularly by effecting remarkable changes in a broad range of diverse host cells. The transformation of the host erythrocyte is particularly striking in the case of the malaria parasite Plasmodium falciparum. P. falciparum exports hundreds of proteins that mediate a complex cellular renovation marked by changes in the permeability, rigidity, and cytoadherence properties of the host erythrocyte. The past decade has seen enormous progress in understanding the identity and function of these exported effectors, as well as the mechanisms by which they are trafficked into the host cell. Here we review these advances, place them in the context of host manipulation by related apicomplexans, and propose key directions for future research.
Collapse
|
28
|
Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. Blood 2014; 124:3459-68. [PMID: 25139348 DOI: 10.1182/blood-2014-06-583054] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Following invasion of human red blood cells (RBCs) by the malaria parasite, Plasmodium falciparum, a remarkable process of remodeling occurs in the host cell mediated by trafficking of several hundred effector proteins to the RBC compartment. The exported virulence protein, P falciparum erythrocyte membrane protein 1 (PfEMP1), is responsible for cytoadherence of infected cells to host endothelial receptors. Maurer clefts are organelles essential for protein trafficking, sorting, and assembly of protein complexes. Here we demonstrate that disruption of PfEMP1 trafficking protein 1 (PfPTP1) function leads to severe alterations in the architecture of Maurer's clefts. Furthermore, 2 major surface antigen families, PfEMP1 and STEVOR, are no longer displayed on the host cell surface leading to ablation of cytoadherence to host receptors. PfPTP1 functions in a large complex of proteins and is required for linking of Maurer's clefts to the host actin cytoskeleton.
Collapse
|
29
|
Dietz O, Rusch S, Brand F, Mundwiler-Pachlatko E, Gaida A, Voss T, Beck HP. Characterization of the small exported Plasmodium falciparum membrane protein SEMP1. PLoS One 2014; 9:e103272. [PMID: 25062022 PMCID: PMC4111544 DOI: 10.1371/journal.pone.0103272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/26/2014] [Indexed: 12/03/2022] Open
Abstract
Survival and virulence of the human malaria parasite Plasmodium falciparum during the blood stage of infection critically depend on extensive host cell refurbishments mediated through export of numerous parasite proteins into the host cell. The parasite-derived membranous structures called Maurer's clefts (MC) play an important role in protein trafficking from the parasite to the red blood cell membrane. However, their specific function has yet to be determined. We identified and characterized a new MC membrane protein, termed small exported membrane protein 1 (SEMP1). Upon invasion it is exported into the RBC cytosol where it inserts into the MCs before it is partly translocated to the RBC membrane. Using conventional and conditional loss-of-function approaches we showed that SEMP1 is not essential for parasite survival, gametocytogenesis, or PfEMP1 export under culture conditions. Co-IP experiments identified several potential interaction partners, including REX1 and other membrane-associated proteins that were confirmed to co-localize with SEMP1 at MCs. Transcriptome analysis further showed that expression of a number of exported parasite proteins was up-regulated in SEMP1-depleted parasites. By using Co-IP and transcriptome analysis for functional characterization of an exported parasite protein we provide a new starting point for further detailed dissection and characterisation of MC-associated protein complexes.
Collapse
Affiliation(s)
- Olivier Dietz
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastian Rusch
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Françoise Brand
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Esther Mundwiler-Pachlatko
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Annette Gaida
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Till Voss
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
30
|
Elsworth B, Crabb BS, Gilson PR. Protein export in malaria parasites: an update. Cell Microbiol 2014; 16:355-63. [PMID: 24418476 DOI: 10.1111/cmi.12261] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 11/30/2022]
Abstract
Symptomatic malaria is caused by the infection of human red blood cells (RBCs) with Plasmodium parasites. The RBC is a peculiar environment for parasites to thrive in as they lack many of the normal cellular processes and resources present in other cells. Because of this, Plasmodium spp. have adapted to extensively remodel the host cell through the export of hundreds of proteins that have a range of functions, the best known of which are virulence-associated. Many exported parasite proteins are themselves involved in generating a novel trafficking system in the RBC that further promotes export. In this review we provide an overview of the parasite synthesized export machinery as well as recent developments in how different classes of exported proteins are recognized by this machinery.
Collapse
Affiliation(s)
- Brendan Elsworth
- Burnet Institute, 85 Commercial Road, Melbourne, Vic., 3004, Australia; Monash University, Clayton, Vic., Australia
| | | | | |
Collapse
|
31
|
Abstract
Plasmodium falciparum, the causative agent of malaria, completely remodels the infected human erythrocyte to acquire nutrients and to evade the immune system. For this process, the parasite exports more than 10% of all its proteins into the host cell cytosol, including the major virulence factor PfEMP1 (P. falciparum erythrocyte surface protein 1). This unusual protein trafficking system involves long-known parasite-derived membranous structures in the host cell cytosol, called Maurer's clefts. However, the genesis, role, and function of Maurer's clefts remain elusive. Similarly unclear is how proteins are sorted and how they are transported to and from these structures. Recent years have seen a large increase of knowledge but, as yet, no functional model has been established. In this perspective we review the most important findings and conclude with potential possibilities to shed light into the enigma of Maurer's clefts. Understanding the mechanism and function of these structures, as well as their involvement in protein export in P. falciparum, might lead to innovative control strategies and might give us a handle with which to help to eliminate this deadly parasite.
Collapse
|
32
|
Boddey JA, Cowman AF. PlasmodiumNesting: Remaking the Erythrocyte from the Inside Out. Annu Rev Microbiol 2013; 67:243-69. [DOI: 10.1146/annurev-micro-092412-155730] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Justin A. Boddey
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; ,
| | - Alan F. Cowman
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; ,
| |
Collapse
|
33
|
Heiber A, Kruse F, Pick C, Grüring C, Flemming S, Oberli A, Schoeler H, Retzlaff S, Mesén-Ramírez P, Hiss JA, Kadekoppala M, Hecht L, Holder AA, Gilberger TW, Spielmann T. Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export. PLoS Pathog 2013; 9:e1003546. [PMID: 23950716 PMCID: PMC3738491 DOI: 10.1371/journal.ppat.1003546] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/25/2013] [Indexed: 11/28/2022] Open
Abstract
Malaria blood stage parasites export a large number of proteins into their host erythrocyte to change it from a container of predominantly hemoglobin optimized for the transport of oxygen into a niche for parasite propagation. To understand this process, it is crucial to know which parasite proteins are exported into the host cell. This has been aided by the PEXEL/HT sequence, a five-residue motif found in many exported proteins, leading to the prediction of the exportome. However, several PEXEL/HT negative exported proteins (PNEPs) indicate that this exportome is incomplete and it remains unknown if and how many further PNEPs exist. Here we report the identification of new PNEPs in the most virulent malaria parasite Plasmodium falciparum. This includes proteins with a domain structure deviating from previously known PNEPs and indicates that PNEPs are not a rare exception. Unexpectedly, this included members of the MSP-7 related protein (MSRP) family, suggesting unanticipated functions of MSRPs. Analyzing regions mediating export of selected new PNEPs, we show that the first 20 amino acids of PNEPs without a classical N-terminal signal peptide are sufficient to promote export of a reporter, confirming the concept that this is a shared property of all PNEPs of this type. Moreover, we took advantage of newly found soluble PNEPs to show that this type of exported protein requires unfolding to move from the parasitophorous vacuole (PV) into the host cell. This indicates that soluble PNEPs, like PEXEL/HT proteins, are exported by translocation across the PV membrane (PVM), highlighting protein translocation in the parasite periphery as a general means in protein export of malaria parasites.
Collapse
Affiliation(s)
- Arlett Heiber
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Hamburg, Germany
| | - Florian Kruse
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Hamburg, Germany
| | - Christian Pick
- Institute of Zoology and Zoological Museum, University of Hamburg, Hamburg, Germany
| | - Christof Grüring
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Hamburg, Germany
| | - Sven Flemming
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Hamburg, Germany
| | - Alexander Oberli
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Hamburg, Germany
| | - Hanno Schoeler
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Hamburg, Germany
| | - Silke Retzlaff
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Hamburg, Germany
| | - Paolo Mesén-Ramírez
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Hamburg, Germany
| | - Jan A. Hiss
- Swiss Federal Institute of Technology (ETH) Zürich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Madhusudan Kadekoppala
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London United Kingdom
| | - Leonie Hecht
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Hamburg, Germany
| | - Anthony A. Holder
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London United Kingdom
| | - Tim-Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Hamburg, Germany
- M.G. DeGroote Institute for Infectious Disease Research and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Hamburg, Germany
| |
Collapse
|
34
|
Remodeling of human red cells infected with Plasmodium falciparum and the impact of PHIST proteins. Blood Cells Mol Dis 2013; 51:195-202. [PMID: 23880461 DOI: 10.1016/j.bcmd.2013.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 01/27/2023]
Abstract
In an infected erythrocyte (iRBC), renovation and decoration are crucial for malarial parasite survival, pathogenesis and reproduction. Host cell remodeling is mediated by an array of diverse parasite-encoded export proteins that traffic within iRBC. These remodeling proteins extensively modify the membrane and cytoskeleton of iRBC and help in formation of parasite-induced novel organelles such as 'Maurer's Cleft (MC), tubulovesicular network (TVN) and parasitophorous vacuole membrane (PVM) inside the iRBC. The genome sequence of Plasmodium falciparum shows expansion of export proteins, which suggests a complex requirement of these export proteins for specific pathogenesis and erythrocyte remodeling. Plasmodium helical intersperse sub-telomeric (PHIST) is a family of seventy-two small export proteins and many of its recently discovered functional characteristics suggest an intriguing putative role in modification of an iRBC. This review highlights the recent advances in parasite genomics, proteomics, and cell biology studies unraveling the host cell modification; providing a speculation on the impact of PHIST proteins in modification of the iRBC.
Collapse
|
35
|
The exported protein PbCP1 localises to cleft-like structures in the rodent malaria parasite Plasmodium berghei. PLoS One 2013; 8:e61482. [PMID: 23658610 PMCID: PMC3637216 DOI: 10.1371/journal.pone.0061482] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/11/2013] [Indexed: 02/02/2023] Open
Abstract
Protein export into the host red blood cell is one of the key processes in the pathobiology of the malaria parasite Plasmodiumtrl falciparum, which extensively remodels the red blood cell to ensure its virulence and survival. In this study, we aimed to shed further light on the protein export mechanisms in the rodent malaria parasite P. berghei and provide further proof of the conserved nature of host cell remodeling in Plasmodium spp. Based on the presence of an export motif (R/KxLxE/Q/D) termed PEXEL (Plasmodium export element), we have generated transgenic P. berghei parasite lines expressing GFP chimera of putatively exported proteins and analysed one of the newly identified exported proteins in detail. This essential protein, termed PbCP1 (P. berghei Cleft-like Protein 1), harbours an atypical PEXEL motif (RxLxY) and is further characterised by two predicted transmembrane domains (2TMD) in the C-terminal end of the protein. We have functionally validated the unusual PEXEL motif in PbCP1 and analysed the role of the 2TMD region, which is required to recruit PbCP1 to discrete membranous structures in the red blood cell cytosol that have a convoluted, vesico-tubular morphology by electron microscopy. Importantly, this study reveals that rodent malaria species also induce modifications to their host red blood cell.
Collapse
|
36
|
The N-terminal segment of Plasmodium falciparum SURFIN4.1 is required for its trafficking to the red blood cell cytosol through the endoplasmic reticulum. Parasitol Int 2013; 62:215-29. [DOI: 10.1016/j.parint.2012.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 11/24/2022]
|
37
|
Mbengue A, Audiger N, Vialla E, Dubremetz JF, Braun-Breton C. NovelPlasmodium falciparum Maurer's clefts protein families implicated in the release of infectious merozoites. Mol Microbiol 2013; 88:425-42. [DOI: 10.1111/mmi.12193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/30/2022]
|
38
|
McMillan PJ, Millet C, Batinovic S, Maiorca M, Hanssen E, Kenny S, Muhle RA, Melcher M, Fidock DA, Smith JD, Dixon MWA, Tilley L. Spatial and temporal mapping of the PfEMP1 export pathway in Plasmodium falciparum. Cell Microbiol 2013; 15:1401-18. [PMID: 23421990 DOI: 10.1111/cmi.12125] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 01/24/2023]
Abstract
The human malaria parasite, Plasmodium falciparum, modifies the red blood cells (RBCs) that it infects by exporting proteins to the host cell. One key virulence protein, P. falciparum Erythrocyte Membrane Protein-1 (PfEMP1), is trafficked to the surface of the infected RBC, where it mediates adhesion to the vascular endothelium. We have investigated the organization and development of the exomembrane system that is used for PfEMP1 trafficking. Maurer's cleft cisternae are formed early after invasion and proteins are delivered to these (initially mobile) structures in a temporally staggered and spatially segregated manner. Membrane-Associated Histidine-Rich Protein-2 (MAHRP2)-containing tether-like structures are generated as early as 4 h post invasion and become attached to Maurer's clefts. The tether/Maurer's cleft complex docks onto the RBC membrane at ~20 h post invasion via a process that is not affected by cytochalasin D treatment. We have examined the trafficking of a GFP chimera of PfEMP1 expressed in transfected parasites. PfEMP1B-GFP accumulates near the parasite surface, within membranous structures exhibiting a defined ultrastructure, before being transferred to pre-formed mobile Maurer's clefts. Endogenous PfEMP1 and PfEMP1B-GFP are associated with Electron-Dense Vesicles that may be responsible for trafficking PfEMP1 from the Maurer's clefts to the RBC membrane.
Collapse
Affiliation(s)
- Paul J McMillan
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 2013; 12:187-99. [PMID: 22901539 DOI: 10.1016/j.chom.2012.06.007] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/09/2012] [Accepted: 06/11/2012] [Indexed: 01/22/2023]
Abstract
Erythrocytes carrying a variant hemoglobin allele (HbS), which causes sickle cell disease and resists infection by the malaria parasite Plasmodium falciparum. The molecular basis of this resistance, which has long been recognized as multifactorial, remains incompletely understood. Here we show that the dysregulated microRNA (miRNA) composition, of either heterozygous HbAS or homozygous HbSS erythrocytes, contributes to resistance against P. falciparum. During the intraerythrocytic life cycle of P. falciparum, a subset of erythrocyte miRNAs translocate into the parasite. Two miRNAs, miR-451 and let-7i, were highly enriched in HbAS and HbSS erythrocytes, and these miRNAs, along with miR-223, negatively regulated parasite growth. Surprisingly, we found that miR-451 and let-7i integrated into essential parasite messenger RNAs and, via impaired ribosomal loading, resulted in translational inhibition. Hence, sickle cell erythrocytes exhibit cell-intrinsic resistance to malaria in part through an atypical miRNA activity, which may represent a unique host defense strategy against complex eukaryotic pathogens.
Collapse
|
40
|
Deponte M, Hoppe HC, Lee MC, Maier AG, Richard D, Rug M, Spielmann T, Przyborski JM. Wherever I may roam: Protein and membrane trafficking in P. falciparum-infected red blood cells. Mol Biochem Parasitol 2012; 186:95-116. [DOI: 10.1016/j.molbiopara.2012.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022]
|
41
|
Nilsson S, Angeletti D, Wahlgren M, Chen Q, Moll K. Plasmodium falciparum antigen 332 is a resident peripheral membrane protein of Maurer's clefts. PLoS One 2012. [PMID: 23185236 PMCID: PMC3502387 DOI: 10.1371/journal.pone.0046980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During the intraerythrocytic development of Plasmodium falciparum, the malaria parasite remodels the host cell cytosol by inducing membranous structures termed Maurer's clefts and inserting parasite proteins into the red blood cell cytoskeleton and plasma membrane. Pf332 is the largest known asexual malaria antigen that is exported into the red blood cell cytosol where it associates with Maurer's clefts. In the current work, we have utilized a set of different biochemical assays to analyze the solubility of the endogenous Pf332 molecule during its trafficking from the endoplasmic reticulum within the parasite to the host cell cytosol. Solubilization studies demonstrate that Pf332 is synthesized and trafficked within the parasite as a peripheral membrane protein, which after export into the host cell cytosol associates with the cytoplasmic side of Maurer's clefts in a peripheral manner. By immunofluorescence microscopy and flow cytometry, we show that Pf332 persists in close association with Maurer's clefts throughout trophozoite maturation and schizogony, and does not become exposed at the host cell surface. Our data also indicate that Pf332 interacts with the host cell cytoskeleton, but only in very mature parasite stages. Thus, the present study describes Pf332 as a resident peripheral membrane protein of Maurer's clefts and suggests that the antigen participates in host cytoskeleton modifications at completion of the intraerythrocytic developmental cycle.
Collapse
Affiliation(s)
- Sandra Nilsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (SN); (KM)
| | - Davide Angeletti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Qijun Chen
- Laboratory of Parasitology, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (SN); (KM)
| |
Collapse
|
42
|
Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1. PLoS One 2012; 7:e46112. [PMID: 23056243 PMCID: PMC3466242 DOI: 10.1371/journal.pone.0046112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/28/2012] [Indexed: 12/11/2022] Open
Abstract
In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1). In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.
Collapse
|
43
|
Clag9 is not essential for PfEMP1 surface expression in non-cytoadherent Plasmodium falciparum parasites with a chromosome 9 deletion. PLoS One 2011; 6:e29039. [PMID: 22205992 PMCID: PMC3242772 DOI: 10.1371/journal.pone.0029039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/18/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The expression of the clonally variant virulence factor PfEMP1 mediates the sequestration of Plasmodium falciparum infected erythrocytes in the host vasculature and contributes to chronic infection. Non-cytoadherent parasites with a chromosome 9 deletion lack clag9, a gene linked to cytoadhesion in previous studies. Here we present new clag9 data that challenge this view and show that surface the non-cytoadherence phenotype is linked to the expression of a non-functional PfEMP1. METHODOLOGY/PRINCIPAL FINDINGS Loss of adhesion in P. falciparum D10, a parasite line with a large chromosome 9 deletion, was investigated. Surface iodination analysis of non-cytoadherent D10 parasites and COS-7 surface expression of the CD36-binding PfEMP1 CIDR1α domain were performed and showed that these parasites express an unusual trypsin-resistant, non-functional PfEMP1 at the erythrocyte surface. However, the CIDR1α domain of this var gene expressed in COS-7 cells showed strong binding to CD36. Atomic Force Microscopy showed a slightly modified D10 knob morphology compared to adherent parasites. Trafficking of PfEMP1 and KAHRP remained functional in D10. We link the non-cytoadherence phenotype to a chromosome 9 breakage and healing event resulting in the loss of 25 subtelomeric genes including clag9. In contrast to previous studies, knockout of the clag9 gene from 3D7 did not interfere with parasite adhesion to CD36. CONCLUSIONS/SIGNIFICANCE Our data show the surface expression of non-functional PfEMP1 in D10 strongly indicating that genes other than clag9 deleted from chromosome 9 are involved in this virulence process possibly via post-translational modifications.
Collapse
|
44
|
Alexandre JSF, Yahata K, Kawai S, Torii M, Kaneko O. PEXEL-independent trafficking of Plasmodium falciparum SURFIN4.2 to the parasite-infected red blood cell and Maurer's clefts. Parasitol Int 2011; 60:313-20. [DOI: 10.1016/j.parint.2011.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/27/2022]
|
45
|
Dixon MWA, Kenny S, McMillan PJ, Hanssen E, Trenholme KR, Gardiner DL, Tilley L. Genetic ablation of a Maurer's cleft protein prevents assembly of the Plasmodium falciparum virulence complex. Mol Microbiol 2011; 81:982-93. [PMID: 21696460 DOI: 10.1111/j.1365-2958.2011.07740.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The malaria parasite Plasmodium falciparum assembles knob structures underneath the erythrocyte membrane that help present the major virulence protein, P. falciparum erythrocyte membrane protein-1 (PfEMP1). Membranous structures called Maurer's clefts are established in the erythrocyte cytoplasm and function as sorting compartments for proteins en route to the RBC membrane, including the knob-associated histidine-rich protein (KAHRP), and PfEMP1. We have generated mutants in which the Maurer's cleft protein, the ring exported protein-1 (REX1) is truncated or deleted. Removal of the C-terminal domain of REX1 compromises Maurer's cleft architecture and PfEMP1-mediated cytoadherance but permits some trafficking of PfEMP1 to the erythrocyte surface. Deletion of the coiled-coil region of REX1 ablates PfEMP1 surface display, trapping PfEMP1 at the Maurer's clefts. Complementation of mutants with REX1 partly restores PfEMP1-mediated binding to the endothelial cell ligand, CD36. Deletion of the coiled-coil region or complete deletion of REX1 is tightly associated with the loss of a subtelomeric region of chromosome 2, encoding KAHRP and other proteins. A KAHRP-green fluorescent protein (GFP) fusion expressed in the REX1-deletion parasites shows defective trafficking. Thus, loss of functional REX1 directly or indirectly ablates the assembly of the P. falciparum virulence complex at the surface of host erythrocytes.
Collapse
Affiliation(s)
- Matthew W A Dixon
- La Trobe Institute for Molecular Science, Department of Biochemistry and Centre of Excellence for Coherent X-ray Science, La Trobe University, Vic. 3086, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Pachlatko E, Rusch S, Müller A, Hemphill A, Tilley L, Hanssen E, Beck HP. MAHRP2, an exported protein of Plasmodium falciparum, is an essential component of Maurer's cleft tethers. Mol Microbiol 2011; 77:1136-52. [PMID: 20624222 DOI: 10.1111/j.1365-2958.2010.07278.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Upon invasion into erythrocytes, the malaria parasite Plasmodium falciparum must refurbish the host cell. The objective of this study was to elucidate the location and function of MAHRP2 in these processes. Using immunofluorescence and immunoelectron microscopy we showed that the membrane-associated histidine-rich protein-2 (MAHRP2) is exported during this process to novel cylindrical structures in the erythrocyte cytoplasm. We hypothesize that these structures tether organelles known as Maurer's clefts to the erythrocyte skeleton. Live cell imaging of parasite transfectants expressing MAHRP2-GFP revealed both mobile and fixed populations of the tether-like structures. Differential centrifugation allowed the enrichment of these novel structures. MAHRP2 possesses neither a signal peptide nor a PEXEL motif, and sequences required for export were determined using transfectants expressing truncated MAHRP2 fragments. The first 15 amino acids and the histidine-rich N-terminal region are necessary for correct trafficking of MAHRP2 together with a predicted hydrophobic region. Solubilization studies showed that MAHRP2 is membrane associated but not membrane spanning. Several attempts to delete the mahrp2 gene failed, indicating that the protein is essential for parasite survival.
Collapse
|
47
|
Moving in and renovating: exporting proteins from Plasmodium into host erythrocytes. Nat Rev Microbiol 2010; 8:617-21. [PMID: 20706280 DOI: 10.1038/nrmicro2420] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malaria parasites live within erythrocytes in the host bloodstream and induce crucial changes to these cells. By so doing, they can obtain the nutrients that they require for growth and can effect the evasion and perturbation of host defences. In order to accomplish this extensive host cell remodelling, the intracellular parasite exports hundreds of proteins to commander the erythrocyte for its own purposes. An export motif, a processing enzyme that specifies protein targeting and a translocon that mediates the export of proteins from the parasite into the host erythrocyte have been identified. However, important questions remain regarding the secretory pathway and the function of the translocon. In addition, this export pathway provides potentially useful targets for the development of inhibitors to interfere with functions that are vital for the virulence and survival programmes of the parasite.
Collapse
|
48
|
Hanssen E, McMillan PJ, Tilley L. Cellular architecture of Plasmodium falciparum-infected erythrocytes. Int J Parasitol 2010; 40:1127-35. [DOI: 10.1016/j.ijpara.2010.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 01/11/2023]
|
49
|
Coppens I, Sullivan DJ, Prigge ST. An update on the rapid advances in malaria parasite cell biology. Trends Parasitol 2010; 26:305-10. [PMID: 20382563 DOI: 10.1016/j.pt.2010.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 01/05/2023]
Abstract
Recent years have seen rapid advances in our understanding of malaria parasite cell biology. Some of this progress has been the result of developments in genetic techniques, advances in imaging technology, and new molecular tools. We focus on three aspects of parasite cell biology: (i) plastid metabolism, (ii) sporozoite biology, and (iii) protein transport to and from the host erythrocyte. In each case recent work has led to a deeper understanding of parasite biology, often at the expense of previously accepted paradigms. These studies also highlight the impediments, technical and otherwise, that will have to be overcome for continued rapid progress in these fields.
Collapse
Affiliation(s)
- Isabelle Coppens
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
50
|
Abstract
In order to survive and promote its virulence the malaria parasite must export hundreds of its proteins beyond an encasing vacuole and membrane into the host red blood cell. In the last few years, several major advances have been made that have significantly contributed to our understanding of this export process. These include: (i) the identification of sequences that direct protein export (a signal sequence and a motif termed PEXEL), which have allowed predictions of the exportomes of Plasmodium species that are the cause of malaria, (ii) the recognition that the fate of proteins destined for export is already decided within the parasite's endoplasmic reticulum and involves the PEXEL motif being recognized and cleaved by the aspartic protease plasmepsin V and (iii) the discovery of the Plasmodium translocon of exported proteins (PTEX) that is responsible for the passage of proteins across the vacuolar membrane. We review protein export in Plasmodium and these latest developments in the field that have now provided a new platform from which trafficking of malaria proteins can be dissected.
Collapse
Affiliation(s)
- Silvia Haase
- Strategic Research Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Vic., Australia
| | | |
Collapse
|