1
|
Hodgins KA, Battlay P, Bock DG. The genomic secrets of invasive plants. THE NEW PHYTOLOGIST 2025. [PMID: 39748162 DOI: 10.1111/nph.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
Genomics has revolutionised the study of invasive species, allowing evolutionary biologists to dissect mechanisms of invasion in unprecedented detail. Botanical research has played an important role in these advances, driving much of what we currently know about key determinants of invasion success (e.g. hybridisation, whole-genome duplication). Despite this, a comprehensive review of plant invasion genomics has been lacking. Here, we aim to address this gap, highlighting recent discoveries that have helped progress the field. For example, by leveraging genomics in natural and experimental populations, botanical research has confirmed the importance of large-effect standing variation during adaptation in invasive species. Further, genomic investigations of plants are increasingly revealing that large structural variants, as well as genetic changes induced by whole-genome duplication such as genomic redundancy or the breakdown of dosage-sensitive reproductive barriers, can play an important role during adaptive evolution of invaders. However, numerous questions remain, including when chromosomal inversions might help or hinder invasions, whether adaptive gene reuse is common during invasions, and whether epigenetically induced mutations can underpin the adaptive evolution of plasticity in invasive populations. We conclude by highlighting these and other outstanding questions that genomic studies of invasive plants are poised to help answer.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Paul Battlay
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Dan G Bock
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Qld, 4111, Australia
| |
Collapse
|
2
|
Li G, Zheng T, Wang G, Gu Q, Chang X, Qian Y, Xu X, Wang Y, Li B, Geng Y. Transgenerational Plasticity Enhances the Tolerance of Duckweed ( Lemna minor) to Stress from Exudates of Microcystis aeruginosa. Int J Mol Sci 2024; 25:13027. [PMID: 39684737 DOI: 10.3390/ijms252313027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Transgenerational plasticity (TGP) refers to the influence of ancestral environmental signals on offspring's traits across generations. While evidence of TGP in plants is growing, its role in plant adaptation over successive generations remains unclear, particularly in floating plants facing fluctuating environments. Duckweed (Lemna minor), a common ecological remediation material, often coexists with the harmful bloom-forming cyanobacterium Microcystis aeruginosa, which releases a highly toxic exudate mixture (MaE) during its growth. In this study, we investigate the TGP of duckweed and its adaptive role under stress from MaE during the bloom-forming process. We found that exposure to MaE induces significant phenotypic plasticity in duckweed, manifested by alterations in morphological, physiological, and transcriptomic profiles. Specifically, MaE exposure significantly affected duckweed, promoting growth at low concentrations but inhibiting it at high concentrations, affecting traits like biomass, frond number, total frond area, and photosynthetic efficiency. Additionally, the activities of antioxidant enzymes, together with the levels of proline, soluble sugars, and proteins, are elevated with increasing MaE concentrations. These plastic changes are largely retained through asexual reproductive cycles, persisting for several generations even under MaE-free conditions. We identified 619 genes that maintain a 'transcriptional memory', some of which correlate with the TGP-linked alterations in morphological and physiological traits in response to MaE stress. Notably, progeny from MaE-exposed lineages demonstrate enhanced fitness when re-exposed to MaE. These results enhance our comprehension of the adaptive significance of TGP in plants and suggest feasible approaches for utilizing duckweed's TGP in the bioremediation of detrimental algal blooms.
Collapse
Affiliation(s)
- Gengyun Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Tiantian Zheng
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Gang Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Qian Gu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Yu Qian
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Xiao Xu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yi Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Bo Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yupeng Geng
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| |
Collapse
|
3
|
Musseau CL, Bernard-Verdier M, Heger T, Skopeteas LH, Strasiewsky D, Mietchen D, Jeschke JM. A conceptual classification scheme of invasion science. Bioscience 2024; 74:840-850. [PMID: 39713560 PMCID: PMC11660931 DOI: 10.1093/biosci/biae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 08/21/2024] [Indexed: 12/24/2024] Open
Abstract
In the era of big data and global biodiversity decline, there is a pressing need to transform data and information into findable and actionable knowledge. We propose a conceptual classification scheme for invasion science that goes beyond hypothesis networks and allows to organize publications and data sets, guide research directions, and identify knowledge gaps. Combining expert knowledge with literature analysis, we identified five major research themes in this field: introduction pathways, invasion success and invasibility, impacts of invasion, managing biological invasions, and meta-invasion science. We divided these themes into 10 broader research questions and linked them to 39 major hypotheses forming the theoretical foundation of invasion science. As artificial intelligence advances, such classification schemes will become important references for organizing scientific information. Our approach can be extended to other research fields, fostering cross-disciplinary connections to leverage the scientific knowledge needed to address Anthropocene challenges.
Collapse
Affiliation(s)
- Camille L Musseau
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, at Freie Universität Berlin (FUB)
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Maud Bernard-Verdier
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, at Freie Universität Berlin (FUB)
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Tina Heger
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, at Freie Universität Berlin (FUB)
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Technical University of Munich, TUM School of Life Sciences, Freising, Germany
| | - Leonidas H Skopeteas
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, at Freie Universität Berlin (FUB)
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - David Strasiewsky
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, at Freie Universität Berlin (FUB)
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Daniel Mietchen
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, at Freie Universität Berlin (FUB)
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Ronin Institute for Independent Scholarship, Montclair, New Jersey, United States
- Institute for Globally Distributed Open Research and Education, Jena, Germany
| | - Jonathan M Jeschke
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, at Freie Universität Berlin (FUB)
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
4
|
Zallek TA, Turcotte MM. Evolution in Response to Management Increases Invasiveness Among Experimental Populations of Duckweed ( Lemna minor). Evol Appl 2024; 17:e70060. [PMID: 39726738 PMCID: PMC11671222 DOI: 10.1111/eva.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 12/28/2024] Open
Abstract
Numerous management methods are deployed to try to mitigate the destructive impact of weedy and invasive populations. Yet, such management practices may cause these populations to inadvertently evolve in ways that have consequence on their invasiveness. To test this idea, we conducted a two-step field mesocosm experiment; we evolved genetically diverse populations of the duckweed Lemna minor to targeted removal management and then tested the impact of that evolution in replicated invasions into experimental resident communities. We found that evolution in response to management increased invasiveness compared to populations evolved without management. This evolution in response to management had little effect on the impact of the invader on the resident species. These results illustrate the potential eco-evolutionary consequences of management practices. Mitigating evolution to physical removal, in addition to pesticides, may be important to the long-term success of integrated pest management.
Collapse
Affiliation(s)
- Taylor A. Zallek
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Martin M. Turcotte
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Chen X, Wang J, Liu W, Zhang Y. The relative effects of climatic drivers and phenotypic integration on phenotypic plasticity of a globally invasive plant. FRONTIERS IN PLANT SCIENCE 2024; 15:1473456. [PMID: 39654961 PMCID: PMC11625578 DOI: 10.3389/fpls.2024.1473456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Introduction Understanding the constraints of phenotypic plasticity can provide insights into the factors that limit or influence the capacity of an organism to respond to changing environments. However, the relative effects of external and internal factors on phenotypic plasticity remain largely unexplored. Phenotypic integration, the pattern of correlations among traits, is recognized as an important internal constraint to plasticity. Phenotypic plasticity is critical in facilitating the acclimation of invasive species to the diverse environments within their introduced ranges. Consequently, these species serve as ideal models for investigating phenotypic plasticity and its underlying determinants. Methods Here, we collected seeds of a global salt marsh invader Spartina alterniflora from seven invasive populations covering the entire latitudinal range in China. These populations were cultivated in two common gardens located at the southern and northern range margins, respectively. We quantified plasticity and variation therein for plant height, shoot density, first flowering day and inflorescence biomass (on a per capita basis). These traits have direct or indirect effects on invasiveness. We examined the relationships between traits plasticity with climatic conditions at site of origin (external factor) and phenotypic integration (internal factor). Results We found that plasticity differed according to the trait being measured, and was higher for a trait affecting fitness. Phenotypic variance increased with latitude and temperature at the site of origin was the primary factor affecting phenotypic variation. These results indicated that external abiotic factors directly affected the selection on phenotypic plasticity of S. alterniflora. Discussion Our study provides a unique viewpoint on assessing the importance of identifying influential factors and mechanisms underlying phenotypic plasticity. Understanding these factors and mechanisms is a critical indicator for invasive and other cosmopolitan species' responses, establishment, persistence, and distribution under climate change.
Collapse
Affiliation(s)
| | | | | | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College
of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
6
|
Martignoni MM, Kolodny O. Microbiome transfer from native to invasive species may increase invasion risk. Proc Biol Sci 2024; 291:20241318. [PMID: 39500380 PMCID: PMC11537765 DOI: 10.1098/rspb.2024.1318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 11/09/2024] Open
Abstract
In a fast-changing world, understanding how organisms adapt to their environment is a pressing necessity. Research has focused on genetic adaptation, while our understanding of non-genetic modes is still in its infancy. The host-associated microbiome can be considered a non-genetic mode of adaptation, which can strongly influence an organism's ability to cope with its environment. However, the role of the microbiome in host ecological dynamics is largely unexplored, particularly in animal communities. Here, we discuss the following hypothesis: invasive species may rapidly adapt to local conditions by adopting beneficial microbes from similar co-occurring native species. This occurs when the invader's fitness is influenced by adaptation to local conditions that is facilitated by microbes acquired from native microbiomes. We present a minimal mathematical model to explore this hypothesis and show that a delayed acquisition of native microbes may explain the occurrence of an invasion lag. Overall, our results contribute to broadening the conceptualization of rapid adaptation via microbiome transfer and offer insights towards designing early intervention strategies for invasive species management.
Collapse
Affiliation(s)
- Maria M. Martignoni
- Department of Ecology, Evolution and Behavior, A. Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Oren Kolodny
- Department of Ecology, Evolution and Behavior, A. Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Jerusalem9190401, Israel
| |
Collapse
|
7
|
Hernández F, Vercellino RB, Todesco M, Bercovich N, Alvarez D, Brunet J, Presotto A, Rieseberg LH. Admixture With Cultivated Sunflower Likely Facilitated Establishment and Spread of Wild Sunflower (Helianthus annuus) in Argentina. Mol Ecol 2024; 33:e17560. [PMID: 39422702 DOI: 10.1111/mec.17560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
A better understanding of the genetic and ecological factors underlying successful invasions is critical to mitigate the negative impacts of invasive species. Here, we study the invasion history of Helianthus annuus populations from Argentina, with particular emphasis on the role of post-introduction admixture with cultivated sunflower (also H. annuus) and climate adaptation driven by large haploblocks. We conducted genotyping-by-sequencing of samples of wild populations as well as Argentinian cultivars and compared them with wild (including related annual Helianthus species) and cultivated samples from the native range. We also characterised samples for 11 known haploblocks associated with environmental variation in native populations to test whether haploblocks contributed to invasion success. Population genomics analyses supported two independent geographic sources for Argentinian populations, the central United States and Texas, but no significant contribution of related annual Helianthus species. We found pervasive admixture with cultivated sunflower, likely as result of post-introduction hybridization. Genomic scans between invasive populations and their native sources identified multiple genomic regions of divergence, possibly indicative of selection, in the invaded range. These regions significantly overlapped between the two native-invasive comparisons and showed disproportionally high crop ancestry, suggesting that crop alleles contributed to invasion success. We did not find evidence of climate adaptation mediated by haploblocks, yet outliers of genome scans were enriched in haploblock regions and, for at least two haploblocks, the cultivar haplotype was favoured in Argentina. Our results show that admixture with cultivated sunflower played a major role in the establishment and spread of H. annuus populations in Argentina.
Collapse
Affiliation(s)
- Fernando Hernández
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Román B Vercellino
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Marco Todesco
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Irving K. Barber Faculty of Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Natalia Bercovich
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Alvarez
- Estación Experimental Agropecuaria INTA Manfredi, Córdoba, Argentina
| | - Johanne Brunet
- Vegetable Crops Research Unit, USDA-ARS, Madison, Wisconsin, USA
| | - Alejandro Presotto
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Shi X, Yang G, Zheng Y. Effects of Microplastics, Fertilization and Pesticides on Alien and Native Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2947. [PMID: 39519866 PMCID: PMC11547785 DOI: 10.3390/plants13212947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Plastic mulches, fertilizers and pesticides have been extensively employed in agriculture to increase crop yields, though it has also led to the inadvertent accumulation of them over time. These accumulations have the potential to disrupt the soil ecological process and subsequently impact the plant community composition. Alien plants always benefit from environmental variability, thus whether the accumulation of fertilizer, plastic, and pesticide in soil promotes the dominance of alien plants in an invaded community. Here, five aliens and co-occurring natives were selected as study materials, and a full factorial experiment was conducted to answer this question. Our study found that microplastics promote the biomass production of native plants at higher nutrient availability while having marginal influence on growth of alien plants. Alien plants exhibited a lower root mass fraction (RMF) with increased nutrient availability and a higher specific leaf area (SLA) in response to the addition of nutrients and microplastics. Pesticide residues in the soil also significantly decreased the root mass fraction of three species, but there was no significant difference between the effects on alien and native species. Overall, our results revealed that alien species adjusted their functional traits more quickly, but native species gained more growth advantages in response to fertilization and microplastics.
Collapse
Affiliation(s)
- Xiong Shi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilin Yang
- College of Biology and Chemistry, Puer University, Puer 665000, China;
| | - Yulong Zheng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Iqbal U, Daad A, Ali A, Gul MF, Aslam MU, Rehman FU, Farooq U. Surviving the desert's grasp: Decipherment phreatophyte Tamarix aphylla (L.) Karst. Adaptive strategies for arid resilience. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112201. [PMID: 39053515 DOI: 10.1016/j.plantsci.2024.112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Phreatophytes play an important role in maintaining the ecological services in arid and semi-arid areas. Characterizing the interaction between groundwater and phreatophytes is critical for the land and water management in such areas. Therefore, the identification of key traits related to mitigating desertification in differently adapted T. aphylla populations was the focus. Fifteen naturally adapted populations of the prominent phreatophyte T. aphylla from diverse ecological regions of Punjab, Pakistan were selected. Key structural and functional modifications involved in ecological success and adaptations against heterogeneous environments for water conservation include widened metaxylem vessels in roots, enlarged brachy sclereids in stems/leaves, tissues succulence, and elevated organic osmolytes and antioxidants activity for osmoregulation and defense mechanism. Populations from hot and dry deserts (Dratio: 43.17-34.88) exhibited longer roots and fine-scaled leaves, along with enlarged vascular bundles and parenchyma cells in stems. Populations inhabiting saline deserts (Dratio: 38.59-33.29) displayed enhanced belowground biomass production, larger root cellular area, broadest phloem region in stems, and numerous large stomata in leaves. Hyper-arid populations (Dratio: 33.54-23.07) excelled in shoot biomass production, stem cellular area, epidermal thickness, pith region in stems, and lamina thickness in leaves. In conclusion, this research highlights T. aphylla as a vital model for comprehending plant resilience to environmental stresses, with implications for carbon sequestration and ecosystem restoration.
Collapse
Affiliation(s)
- Ummar Iqbal
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, 64200, Pakistan.
| | - Ali Daad
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, 64200, Pakistan
| | - Ahmad Ali
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, 64200, Pakistan
| | - Muhammad Faisal Gul
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, 64200, Pakistan
| | - Muhammad Usama Aslam
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, 64200, Pakistan
| | - Fahad Ur Rehman
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, 64200, Pakistan
| | - Umar Farooq
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, 64200, Pakistan
| |
Collapse
|
10
|
Gallo E, De Renzis S, Sharpe J, Mayor R, Hartmann J. Versatile system cores as a conceptual basis for generality in cell and developmental biology. Cell Syst 2024; 15:790-807. [PMID: 39236709 DOI: 10.1016/j.cels.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/26/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
The discovery of general principles underlying the complexity and diversity of cellular and developmental systems is a central and long-standing aim of biology. While new technologies collect data at an ever-accelerating rate, there is growing concern that conceptual progress is not keeping pace. We contend that this is due to a paucity of conceptual frameworks that support meaningful generalizations. This led us to develop the core and periphery (C&P) hypothesis, which posits that many biological systems can be decomposed into a highly versatile core with a large behavioral repertoire and a specific periphery that configures said core to perform one particular function. Versatile cores tend to be widely reused across biology, which confers generality to theories describing them. Here, we introduce this concept and describe examples at multiple scales, including Turing patterning, actomyosin dynamics, multi-cellular morphogenesis, and vertebrate gastrulation. We also sketch its evolutionary basis and discuss key implications and open questions. We propose that the C&P hypothesis could unlock new avenues of conceptual progress in mesoscale biology.
Collapse
Affiliation(s)
- Elisa Gallo
- Institute of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Stefano De Renzis
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory (EMBL), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Jonas Hartmann
- Institute of Molecular Life Sciences, University of Zurich (UZH), 8057 Zurich, Switzerland; Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; EMBL Barcelona, European Molecular Biology Laboratory (EMBL), 08003 Barcelona, Spain; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
11
|
Croft L, Matheson P, Butterworth NJ, McGaughran A. Fitness consequences of population bottlenecks in an invasive blowfly. Mol Ecol 2024; 33:e17492. [PMID: 39136044 DOI: 10.1111/mec.17492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Invasive species often undergo demographic bottlenecks that cause a decrease in genetic diversity and associated reductions in population fitness. Despite this, they manage to thrive in novel environments. Investigating the effects of inbreeding and genetic bottlenecks on population fitness for invasive species is, therefore, key to understanding how they may survive in new environments. We used the blowfly Calliphora vicina (Sciences, Mathématiques et Physique, 1830, 2, 1), which is native to Europe and was introduced to Australia and New Zealand, to examine the effects of genetic diversity on population fitness. We first collected 59 samples from 15 populations across New Zealand and one in Australia, and used 20,501 biallelic SNPs to investigate population genomic diversity, structure and admixture. We then explored the impacts of repeated experimental bottlenecks on population fitness by creating inbred and outbred lines of C. vicina and measuring a variety of fitness traits. In wild-caught samples, we found low overall genetic diversity, signals of genetic admixture and limited (<3%) genetic differentiation between North and South Island populations, with genetic links between the South Island and Australia. Following experimental bottlenecks, we found significant reductions in fitness for inbred lines. However, fitness effects were not felt equally across all phenotypic traits. Moreover, they were not enough to cause population collapse in any experimental line, suggesting that C. vicina (when under relaxed selection, as in laboratory settings) may be able to compensate for population bottlenecks even when highly inbred. Our results demonstrate the value of a tractable experimental system for investigating processes that may facilitate or hamper biological invasion.
Collapse
Affiliation(s)
- Lilly Croft
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | - Paige Matheson
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
12
|
Golo R, Santamaría J, Vergés A, Cebrian E. The role of species thermal plasticity for alien species invasibility in a changing climate: A case study of Lophocladia trichoclados. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106642. [PMID: 39024996 DOI: 10.1016/j.marenvres.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The Mediterranean Sea provides fertile ground for understanding the complex interplay between invasive species and native habitats, particularly within the context of climate change. This thermal tolerance study reveals the remarkable ability of Lophocladia trichoclados, a red algae species that has proven highly invasive, to adapt to varying temperatures, particularly thriving in colder Mediterranean waters, where it can withstand temperatures as low as 14 °C, a trait not observed in its native habitat. This rapid acclimation, occurring in less than a century, might entail a trade-off with high temperature resistance. Additionally, all sampled populations in the Mediterranean share the same haplotype, suggesting a common origin and the possibility that we might be facing an exceptionally acclimatable and invasive strain. This high degree of acclimatability could determine the future spread capacity in a changing scenario, highlighting the importance of considering both acclimation and adaptation in understanding the expansion of invasive species' ranges.
Collapse
Affiliation(s)
- R Golo
- Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - J Santamaría
- Centre d'Estudis Avançats de Blanes, CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain
| | - A Vergés
- Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - E Cebrian
- Centre d'Estudis Avançats de Blanes, CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain.
| |
Collapse
|
13
|
Sun Y, Ren ZK, Müller-Schärer H, Callaway RM, van Kleunen M, Huang W. Increasing and fluctuating resource availability enhances invasional meltdown. Ecology 2024; 105:e4387. [PMID: 39016245 DOI: 10.1002/ecy.4387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 07/18/2024]
Abstract
Exotic plant invaders can promote others via direct or indirect facilitation, known as "invasional meltdown." Increased soil nutrients can also promote invaders by increasing their competitive impacts, but how this might affect meltdown is unknown. In a mesocosm experiment, we evaluated how eight exotic plant species and eight Eurasian native species responded individually to increasing densities of the invasive plant Conyza canadensis, while varying the supply and fluctuations of nutrients. We found that increasing density of C. canadensis intensified competitive suppression of natives but intensified facilitation of other exotics. Higher and fluctuating nutrients exacerbated the competitive effects on natives and facilitative effects on exotics. Overall, these results show a pronounced advantage of exotics over native target species with increased relative density of C. canadensis under high nutrient availability and fluctuation. We integrate these results with the observation that exotic species commonly drive increases in soil resources to suggest the Resource-driven Invasional Meltdown and Inhibition of Natives hypothesis in which biotic acceleration of resource availability promotes other exotic species over native species, leading to invasional meltdown.
Collapse
Affiliation(s)
- Yan Sun
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Kun Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Heinz Müller-Schärer
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ragan M Callaway
- Division of Biological Sciences and Wildlife Biology, University of Montana, Missoula, Montana, USA
| | - Mark van Kleunen
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Wei Huang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
14
|
Holden CA, McAinsh M, Taylor JE, Beckett P, Martin FL. Attenuated total reflection Fourier-transform infrared spectroscopy reveals environment specific phenotypes in clonal Japanese knotweed. BMC PLANT BIOLOGY 2024; 24:769. [PMID: 39135189 PMCID: PMC11321083 DOI: 10.1186/s12870-024-05200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/24/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Japanese knotweed (Reynoutria japonica var. japonica), a problematic invasive species, has a wide geographical distribution. We have previously shown the potential for attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and chemometrics to segregate regional differentiation between Japanese knotweed plants. However, the contribution of environment to spectral differences remains unclear. Herein, the response of Japanese knotweed to varied environmental habitats has been studied. Eight unique growth environments were created by manipulation of the red: far-red light ratio (R: FR), water availability, nitrogen, and micronutrients. Their impacts on plant growth, photosynthetic parameters, and ATR-FTIR spectral profiles, were explored using chemometric techniques, including principal component analysis (PCA), linear discriminant analysis, support vector machines (SVM) and partial least squares regression. Key wavenumbers responsible for spectral differences were identified with PCA loadings, and molecular biomarkers were assigned. Partial least squared regression (PLSR) of spectral absorbance and root water potential (RWP) data was used to create a predictive model for RWP. RESULTS Spectra from plants grown in different environments were differentiated using ATR-FTIR spectroscopy coupled with SVM. Biomarkers highlighted through PCA loadings corresponded to several molecules, most commonly cell wall carbohydrates, suggesting that these wavenumbers could be consistent indicators of plant stress across species. R: FR most affected the ATR-FTIR spectra of intact dried leaf material. PLSR prediction of root water potential achieved an R2 of 0.8, supporting the potential use of ATR-FTIR spectrometers as sensors for prediction of plant physiological parameters. CONCLUSIONS Japanese knotweed exhibits environmentally induced phenotypes, indicated by measurable differences in their ATR-FTIR spectra. This high environmental plasticity reflected by key biomolecular changes may contribute to its success as an invasive species. Light quality (R: FR) appears critical in defining the growth and spectral response to environment. Cross-species conservation of biomarkers suggest that they could function as indicators of plant-environment interactions including abiotic stress responses and plant health.
Collapse
Affiliation(s)
- Claire A Holden
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Martin McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | - Francis L Martin
- Biocel Ltd, Hull, HU10 7TS, UK
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool, FY3 8NR, UK
| |
Collapse
|
15
|
Liñán-Vigo F, Núñez-Farfán J. Plasticity in biomass allocation underlies tolerance to leaf damage in native and non-native populations of Datura stramonium. Oecologia 2024; 205:613-626. [PMID: 39048862 PMCID: PMC11358249 DOI: 10.1007/s00442-024-05585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
An introduction to a novel habitat represents a challenge to plants because they likely would face new interactions and possibly different physical context. When plant populations arrive to a new region free from herbivores, we can expect an evolutionary change in their defense level, although this may be contingent on the type of defense, resistance or tolerance, and cost of defense. Here, we addressed questions on the evolution of tolerance to damage in non-native Spanish populations of Datura stramonium by means of two comparative greenhouse experiments. We found differences in seed production, specific leaf area, and biomass allocation to stems and roots between ranges. Compared to the Mexican native populations of this species, non-native populations produced less seeds despite damage and allocate more biomass to roots and less to stems, and had higher specific leaf area values. Plasticity to leaf damage was similar between populations and no difference in tolerance to damage between native and non-native populations was detected. Costs for tolerance were detected in both regions. Two plasticity traits of leaves were associated with tolerance and were similar between regions. These results suggest that tolerance remains beneficial to plants in the non-native region despite it incurs in fitness costs and that damage by herbivores is low in the non-native region. The study of the underlying traits of tolerance can improve our understanding on the evolution of tolerance in novel environments, free from plants' specialist herbivores.
Collapse
Affiliation(s)
- Franco Liñán-Vigo
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510, Ciudad de Mexico, Mexico
| | - Juan Núñez-Farfán
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510, Ciudad de Mexico, Mexico.
| |
Collapse
|
16
|
Qin W, Sun Y, Müller-Schärer H, Huang W. Responses of non-native and native plant species to fluctuations of water availability in a greenhouse experiment. Ecol Evol 2024; 14:e11692. [PMID: 38983706 PMCID: PMC11232050 DOI: 10.1002/ece3.11692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Water availability strongly influences the survival, growth, and reproduction of most terrestrial plant species. Experimental evidence has well documented the effect of changes in total amount of water availability on non-native vs. native plants. However, little is known about how fluctuations in water availability affect these two groups, although more extreme fluctuations in water availability increasingly occur with prolonged drought and extreme precipitation events. Here, we grew seven non-native and seven native plant species individually in the greenhouse. Then, we exposed them to four watering treatments, each treatment with the same total amount of water, but with different divisions: W1 (added water 16 times with 125 mL per time), W2 (8 times, 250 mL per time), W3 (4 times, 500 mL per time), and W4 (2 times, 1000 mL per time). We found that both non-native and native plants produced the most biomass under medium frequency/magnitude watering treatments (W2 and W3). Interestingly, non-native plants produced 34% more biomass with the infrequent, substantial watering treatment (W4) than with frequent, minor watering treatment (W1), whereas native plants showed opposite patterns, producing 26% more biomass with W1 than with W4. Differences in the ratio of root to shoot under few/large and many/small watering treatments of non-native vs. native species probably contributed to their different responses in biomass production. Our results advance the current understanding of the effect of water availability on non-native plants, which are affected not only by changes in amount of water availability but also by fluctuations in water availability. Furthermore, our results indicate that an increased few/large precipitation pattern expected under climate change conditions might further promote non-native plant invasions. Future field experiments with multiple phylogenetically controlled pairs of non-native and native species will be required to enhance our understanding of how water availability fluctuations impact on non-native invasions.
Collapse
Affiliation(s)
- Wenchao Qin
- Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Yan Sun
- College of Resources and Environment Huazhong Agricultural University Wuhan China
| | - Heinz Müller-Schärer
- College of Resources and Environment Huazhong Agricultural University Wuhan China
- Department of Biology University of Fribourg Fribourg Switzerland
| | - Wei Huang
- Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
| |
Collapse
|
17
|
Yuan W, Pigliucci M, Richards CL. Rapid phenotypic differentiation in the iconic Japanese knotweed s.l. invading novel habitats. Sci Rep 2024; 14:14640. [PMID: 38918411 PMCID: PMC11199593 DOI: 10.1038/s41598-024-64109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Understanding the mechanisms that underlie plant invasions is critical for management and conservation of biodiversity. At the same time, invasive species also provide a unique opportunity to study rapid adaptation to complex environmental conditions. Using four replicate reciprocal transplant experiments across three habitats, we described patterns of phenotypic response and assessed the degree of local adaptation in knotweed populations. We found plants from beach habitats were generally smaller than plants from marsh and roadside habitats when grown in their home habitat. In the marsh habitat, marsh plants were generally larger than beach plants, but not different from roadside plants. There were no differences among plants grown in the roadside habitat. We found mixed evidence for local adaptation: plants from the marsh habitat had greater biomass in their "home" sites, while plants from beaches and roadsides had greater survival in their "home" sites compared to other plants. In sum, we found phenotypic differentiation and some support for the hypothesis of rapid local adaptation of plants from beach, marsh and roadside habitats. Identifying whether these patterns of differentiation result from genetic or heritable non-genetic mechanisms will require further work.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Massimo Pigliucci
- Department of Philosophy, City College of New York, New York, NY, USA
| | - Christina L Richards
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany.
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
18
|
Holden CA, McAinsh MR, Taylor JE, Beckett P, Albacete A, Martínez-Andújar C, Morais CLM, Martin FL. Attenuated total reflection Fourier-transform infrared spectroscopy for the prediction of hormone concentrations in plants. Analyst 2024; 149:3380-3395. [PMID: 38712606 DOI: 10.1039/d3an01817b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Plant hormones are important in the control of physiological and developmental processes including seed germination, senescence, flowering, stomatal aperture, and ultimately the overall growth and yield of plants. Many currently available methods to quantify such growth regulators quickly and accurately require extensive sample purification using complex analytic techniques. Herein we used ultra-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) to create and validate the prediction of hormone concentrations made using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectral profiles of both freeze-dried ground leaf tissue and extracted xylem sap of Japanese knotweed (Reynoutria japonica) plants grown under different environmental conditions. In addition to these predictions made with partial least squares regression, further analysis of spectral data was performed using chemometric techniques, including principal component analysis, linear discriminant analysis, and support vector machines (SVM). Plants grown in different environments had sufficiently different biochemical profiles, including plant hormonal compounds, to allow successful differentiation by ATR-FTIR spectroscopy coupled with SVM. ATR-FTIR spectral biomarkers highlighted a range of biomolecules responsible for the differing spectral signatures between growth environments, such as triacylglycerol, proteins and amino acids, tannins, pectin, polysaccharides such as starch and cellulose, DNA and RNA. Using partial least squares regression, we show the potential for accurate prediction of plant hormone concentrations from ATR-FTIR spectral profiles, calibrated with hormonal data quantified by UHPLC-HRMS. The application of ATR-FTIR spectroscopy and chemometrics offers accurate prediction of hormone concentrations in plant samples, with advantages over existing approaches.
Collapse
Affiliation(s)
- Claire A Holden
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Martin R McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | - Alfonso Albacete
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/ Mayor s/n, La Alberca, E-30150 Murcia, Spain
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | | | - Camilo L M Morais
- Center for Education, Science and Technology of the Inhamuns Region, State University of Ceará, Tauá 63660-000, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil
| | - Francis L Martin
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
- Biocel UK Ltd, Hull HU10 6TS, UK
| |
Collapse
|
19
|
Li C, Li Y, Xu Z, Zhong S, Cheng H, Liu J, Yu Y, Wang C, Du D. The effects of co-invasion by three Asteraceae invasive alien species on plant taxonomic and functional diversity in herbaceous ruderal communities in southern Jiangsu, China. Biol Futur 2024; 75:205-217. [PMID: 38300414 DOI: 10.1007/s42977-024-00202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Invasive alien species can affect plant taxonomic and functional diversity. Multiple invasive alien species can co-invade the same plant community. However, the effects of such co-invasion on plant taxonomic and functional diversity are currently unclear. Our study aimed to estimate the effects of co-invasion by three Asteraceae invasive alien species (i.e., Conyza canadensis (L.) Cronquist, Conyza sumatrensis (S.F. Blake) Pruski and G. Sancho, and Solidago canadensis L.) on plant taxonomic and functional diversity in herbaceous ruderal communities in southern Jiangsu, China. The effects of these three invasive alien species under seven invasion combinations (including invasion by one invasive alien species, co-invasion by two invasive alien species, and co-invasion by these three invasive alien species) on plant taxonomic and functional diversity were investigated in a comparative field study of herbaceous ruderal communities. Niche differentiation mediated the functional divergence between these three invasive alien species and natives under all invasion combinations. These three invasive alien species significantly increased plant taxonomic diversity (especially plant diversity and richness) and plant functional diversity (especially Rao's quadratic entropies) under all invasion combinations. The relative abundance of invasive alien species was significantly positively associated with plant functional diversity (especially community-weighted mean trait values and Rao's quadratic entropy). The number of invasive alien species was significantly positively associated with plant taxonomic diversity (especially plant diversity and richness) and plant functional diversity (especially Rao's quadratic entropies). Thus, co-invasion by these three invasive alien species may synergistically increase plant taxonomic diversity (especially plant diversity and richness) and functional diversity (especially Rao's quadratic entropies).
Collapse
Affiliation(s)
- Chuang Li
- Institute of Environment and Ecology and School of Environment and Safety Engineering and School of Emergency Management, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yue Li
- Institute of Environment and Ecology and School of Environment and Safety Engineering and School of Emergency Management, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zhelun Xu
- Institute of Environment and Ecology and School of Environment and Safety Engineering and School of Emergency Management, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shanshan Zhong
- Institute of Environment and Ecology and School of Environment and Safety Engineering and School of Emergency Management, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Huiyuan Cheng
- Institute of Environment and Ecology and School of Environment and Safety Engineering and School of Emergency Management, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jun Liu
- Zhenjiang Environmental Monitoring Center of Jiangsu Province, Zhenjiang, 212009, People's Republic of China
| | - Youli Yu
- Institute of Environment and Ecology and School of Environment and Safety Engineering and School of Emergency Management, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Congyan Wang
- Institute of Environment and Ecology and School of Environment and Safety Engineering and School of Emergency Management, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Daolin Du
- Jingjiang College and Institute of Enviroment and Ecology and School of Emergency Management and School of Environment and Safety Engineering and School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
20
|
Xie A, Wang Y, Xiao L, Wang Y, Liao S, Yang M, Su S, Meng S, Liu H. Plasticity in resource allocation of the invasive Phytolacca americana: Balancing growth, reproduction, and defense along urban-rural gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173532. [PMID: 38802014 DOI: 10.1016/j.scitotenv.2024.173532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
In response to varying environments along urban and rural gradients, invasive plants may strategically allocate resources to enhance their invasiveness. However, how invasive plants balance their resources for growth, reproduction, and defense as responses to biotic and abiotic factors across these gradients remain unclear. We conducted field surveys on the growth, reproduction, and herbivory of the invasive species Phytolacca americana across diverse urban and rural habitats. Leaf samples were collected to analyze the nutritional content, primary and secondary metabolites. We found that plant growth rates, specific leaf area, leaf nitrogen content, and concentrations of flavonoids and saponins were higher in urban habitats, while reproduction, herbivory, and carbon-to‑nitrogen ratios were lower than those in rural habitats. We also found a trade-off between growth rate and herbivory, as well as trade-offs among defense traits associated with herbivory (e.g., leaf mass per area, the inverse of leaf nitrogen content, and carbon‑nitrogen ratio) and the production of metabolites associated with abiotic stress tolerance (e.g., soluble sugars, flavonoids, and saponins). As earlier studies showed low levels of genetic diversity within and between populations, our findings suggest that the urban-rural gradient patterns of resource allocation are primarily phenotypic plasticity in response to herbivory in rural areas and abiotic factors in urban areas. Our study sheds light on the mechanisms by which urbanization affects plant invasions and offers insights for the implementation of their management strategies.
Collapse
Affiliation(s)
- Anni Xie
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yajie Wang
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Li Xiao
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yuanyuan Wang
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Shuang Liao
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Miao Yang
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Sese Su
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Shibo Meng
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Hongjia Liu
- College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
21
|
Dai JX, Cao LJ, Chen JC, Yang F, Shen XJ, Ma LJ, Hoffmann AA, Chen M, Wei SJ. Testing for adaptive changes linked to range expansion following a single introduction of the fall webworm. Mol Ecol 2024; 33:e17038. [PMID: 37277936 DOI: 10.1111/mec.17038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Adaptive evolution following colonization can affect the impact of invasive species. The fall webworm (FWW) invaded China 40 years ago through a single introduction event involving a severe bottleneck and subsequently diverged into two genetic groups. The well-recorded invasion history of FWW, coupled with a clear pattern of genetic divergence, provides an opportunity to investigate whether there is any sign of adaptive evolution following the invasion. Based on genome-wide SNPs, we identified genetically separated western and eastern groups of FWW and correlated spatial variation in SNPs with geographical and climatic factors. Geographical factors explained a similar proportion of the genetic variation across all populations compared with climatic factors. However, when the two population groups were analysed separately, environmental factors explained more variation than geographical factors. SNP outliers in populations of the western group had relatively stronger response to precipitation than temperature-related variables. Functional annotation of SNP outliers identified genes associated with insect cuticle protein potentially related to desiccation adaptation in the western group and genes associated with lipase biosynthesis potentially related to temperature adaptation in the eastern group. Our study suggests that invasive species may maintain the evolutionary potential to adapt to heterogeneous environments despite a single invasion event. The molecular data suggest that quantitative trait comparisons across environments would be worthwhile.
Collapse
Affiliation(s)
- Jin-Xu Dai
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangyuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Min Chen
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
22
|
Bock DG, Baeckens S, Kolbe JJ, Losos JB. When adaptation is slowed down: Genomic analysis of evolutionary stasis in thermal tolerance during biological invasion in a novel climate. Mol Ecol 2024; 33:e17075. [PMID: 37489260 DOI: 10.1111/mec.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Research conducted during the past two decades has demonstrated that biological invasions are excellent models of rapid evolution. Even so, characteristics of invasive populations such as a short time for recombination to assemble optimal combinations of alleles may occasionally limit adaptation to new environments. Here, we investigated such genetic constraints to adaptation in the invasive brown anole (Anolis sagrei)-a tropical ectotherm that was introduced to the southeastern United States, a region with a much colder climate than in its native Caribbean range. We examined thermal physiology for 30 invasive populations and tested for a climatic cline in cold tolerance. Also, we used genomics to identify mechanisms that may limit adaptation. We found no support for a climatic cline, indicating that thermal tolerance did not shift adaptively. Concomitantly, population genomic results were consistent with the occurrence of recombination cold spots that comprise more than half of the genome and maintain long-range associations among alleles in invasive populations. These genomic regions overlap with both candidate thermal tolerance loci that we identified using a standard genome-wide association test. Moreover, we found that recombination cold spots do not have a large contribution to population differentiation in the invasive range, contrary to observations in the native range. We suggest that limited recombination is constraining the contribution of large swaths of the genome to adaptation in invasive brown anoles. Our study provides an example of evolutionary stasis during invasion and highlights the possibility that reduced recombination occasionally slows down adaptation in invasive populations.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Simon Baeckens
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
- Functional Morphology Lab, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jonathan B Losos
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Worthy SJ, Umaña MN, Zhang C, Lin L, Cao M, Swenson NG. Intraspecific alternative phenotypes contribute to variation in species' strategies for growth. Oecologia 2024; 205:39-48. [PMID: 38652293 DOI: 10.1007/s00442-024-05553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Ecologists have historically sought to identify the mechanisms underlying the maintenance of local species diversity. High-dimensional trait-based relationships, such as alternative phenotypes, have been hypothesized as important for maintaining species diversity such that phenotypically dissimilar individuals compete less for resources but have similar performance in a given environment. The presence of alternative phenotypes has primarily been investigated at the community level, despite the importance of intraspecific variation to diversity maintenance. The aims of this research are to (1) determine the presence or absence of intraspecific alternative phenotypes in three species of tropical tree seedlings, (2) investigate if these different species use the same alternative phenotypes for growth success, and (3) evaluate how findings align with species co-occurrence patterns. We model species-specific relative growth rate with individual-level measurements of leaf mass per area (LMA) and root mass fraction (RMF), environmental data, and their interactions. We find that two of the three species have intraspecific alternative phenotypes, with individuals within species having different functional forms leading to similar growth. Interestingly, individuals within these species use the same trait combinations, high LMA × low RMF and low LMA × high RMF, in high soil nutrient environments to acquire resources for higher growth. This similarity among species in intraspecific alternative phenotypes and variables that contribute most to growth may lead to their negative spatial co-occurrence. Overall, we find that multiple traits or interactions between traits and the environment drive species-specific strategies for growth, but that individuals within species leverage this multi-dimensionality in different ways for growth success.
Collapse
Affiliation(s)
- Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, 95616, USA.
| | - María N Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caicai Zhang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- National Forest Ecosystem Research Station at Xishuangbanna, Mengla, 666303, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| |
Collapse
|
24
|
Temme AA, Kerr KL, Nolting KM, Dittmar EL, Masalia RR, Bucksch AK, Burke JM, Donovan LA. The genomic basis of nitrogen utilization efficiency and trait plasticity to improve nutrient stress tolerance in cultivated sunflower. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2527-2544. [PMID: 38270266 DOI: 10.1093/jxb/erae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Maintaining crop productivity is challenging as population growth, climate change, and increasing fertilizer costs necessitate expanding crop production to poorer lands whilst reducing inputs. Enhancing crops' nutrient use efficiency is thus an important goal, but requires a better understanding of related traits and their genetic basis. We investigated variation in low nutrient stress tolerance in a diverse panel of cultivated sunflower genotypes grown under high and low nutrient conditions, assessing relative growth rate (RGR) as performance. We assessed variation in traits related to nitrogen utilization efficiency (NUtE), mass allocation, and leaf elemental content. Across genotypes, nutrient limitation generally reduced RGR. Moreover, there was a negative correlation between vigor (RGR in control) and decline in RGR in response to stress. Given this trade-off, we focused on nutrient stress tolerance independent of vigor. This tolerance metric correlated with the change in NUtE, plasticity for a suite of morphological traits, and leaf element content. Genome-wide associations revealed regions associated with variation and plasticity in multiple traits, including two regions with seemingly additive effects on NUtE change. Our results demonstrate potential avenues for improving sunflower nutrient stress tolerance independent of vigor, and highlight specific traits and genomic regions that could play a role in enhancing tolerance.
Collapse
Affiliation(s)
- Andries A Temme
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Plant Breeding, Wageningen University & Research, 6700 HB Wageningen, The Netherlands
| | - Kelly L Kerr
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristen M Nolting
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily L Dittmar
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Rishi R Masalia
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
25
|
Wan JSH, Bonser SP, Pang CK, Fazlioglu F, Rutherford S. Adaptive responses to living in stressful habitats: Do invasive and native plant populations use different strategies? Ecol Lett 2024; 27:e14419. [PMID: 38613177 DOI: 10.1111/ele.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
Plants inhabit stressful environments characterized by a variety of stressors, including mine sites, mountains, deserts, and high latitudes. Populations from stressful and reference (non-stressful) sites often have performance differences. However, while invasive and native species may respond differently to stressful environments, there is limited understanding of the patterns in reaction norms of populations from these sites. Here, we use phylogenetically controlled meta-analysis to assess the performance of populations under stress and non-stress conditions. We ask whether stress populations of natives and invasives differ in the magnitude of lowered performance under non-stress conditions and if they vary in the degree of performance advantage under stress. We also assessed whether these distinctions differ with stress intensity. Our findings revealed that natives not only have greater adaptive advantages but also more performance reductions than invasives. Populations from very stressful sites had more efficient adaptations, and performance costs increased with stress intensity in natives only. Overall, the results support the notion that adaptation is frequently costless. Reproductive output was most closely associated with adaptive costs and benefits. Our study characterized the adaptive strategies used by invasive and native plants under stressful conditions, thereby providing important insights into the limitations of adaptation to extreme sites.
Collapse
Affiliation(s)
- Justin S H Wan
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Stephen P Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Clara K Pang
- PlantClinic, Australian Institute of Botanical Science, Royal Botanic Garden, Sydney, New South Wales, Australia
| | | | - Susan Rutherford
- Center for Sustainable Environmental and Ecosystem Research, Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Department of Environmental and Sustainability Sciences, The Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, New Jersey, USA
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, China
| |
Collapse
|
26
|
Salomé-Díaz J, Golubov J, Eguiarte LE, Búrquez A. Difference in Germination Traits between Congeneric Native and Exotic Species May Affect Invasion. PLANTS (BASEL, SWITZERLAND) 2024; 13:478. [PMID: 38498464 PMCID: PMC10892991 DOI: 10.3390/plants13040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 03/20/2024]
Abstract
Germination traits are components of invasion potential, and comparing seed traits in sympatric native and invasive species can offer insights into the invasion process. We characterized seed germination traits and how they influenced the success of Eragrostis mexicana, a native species, and Eragrostis tenuifolia, an exotic species (Poaceae) in Mexico, in the context of their potential for biological invasion. Seeds from both species were collected from four sites in a natural protected area in Mexico City, and the germination of seeds of different ages was conducted in experiments at different temperatures. E. tenuifolia exhibited higher germination percentages than the native E. mexicana across all treatments. Seed age had differential effects, with older seeds of the native E. mexicana germinating better, while E. tenuifolia performed better with younger seeds. Temperature positively impacted germination for both species, although E. mexicana was limited at lower temperatures. Exotic E. tenuifolia can germinate over a wider temperature range with earlier germination rates, and generate a seed bank lasting several years, which may contribute to naturalization. The importance of germination traits in the context of invasive species establishment underscores the potential role of seed banks in facilitating biological invasions.
Collapse
Affiliation(s)
- Julieta Salomé-Díaz
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Department of Evolutionary Ecology, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Plant Taxonomy and Systematics Laboratory, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico
| | - Jordan Golubov
- Plant Taxonomy and Systematics Laboratory, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico
| | - Luis E. Eguiarte
- Department of Evolutionary Ecology, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Alberto Búrquez
- Estación Regional Noroeste, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo 83250, Mexico;
| |
Collapse
|
27
|
Krintza N, Dener E, Seifan M. Stress Induces Trait Variability across Multiple Spatial Scales in the Arid Annual Plant Anastatica hierochuntica. PLANTS (BASEL, SWITZERLAND) 2024; 13:256. [PMID: 38256809 PMCID: PMC10820187 DOI: 10.3390/plants13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Variations in plant characteristics in response to habitat heterogeneity can provide valuable insights into the mechanisms governing plant responses to environmental conditions. In this study, we investigated the role of environmental factors associated with arid conditions in shaping the phenotypic responses of an arid annual plant, Anastatica hierochuntica, across several populations found along an aridity gradient and across multiple spatial scales. Utilizing both field surveys and a net house experiment, we assessed the effects of environmental factors on trait variability within and between populations. The results indicated a significant convergence in plant height due to site aridity, reflecting growth potential based on abiotic resources. Convergence was also observed in the plant's electrolyte leakage with aridity and in plant height concerning soil salinity at specific sites. Phenotypic plasticity was pivotal in maintaining trait variability, with plant height plasticity increasing with soil salinity, SLA plasticity decreasing with aridity, and leaf number plasticity rising with aridity. In conclusion, our findings underscore the adaptive significance of phenotypic variability, especially plasticity, in arid conditions. Notably, trait variability and plasticity did not consistently diminish in stressful settings, emphasizing the adaptive value of flexible responses in such environments.
Collapse
Affiliation(s)
- Nir Krintza
- Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel;
| | - Efrat Dener
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environment and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel;
| | - Merav Seifan
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environment and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel;
| |
Collapse
|
28
|
Núñez-Farfán J, Velázquez-Márquez S, Torres-García JR, De-la-Cruz IM, Arroyo J, Valverde PL, Flores-Ortiz CM, Hernández-Portilla LB, López-Cobos DE, Matías JD. A Trip Back Home: Resistance to Herbivores of Native and Non-Native Plant Populations of Datura stramonium. PLANTS (BASEL, SWITZERLAND) 2024; 13:131. [PMID: 38202439 PMCID: PMC10780412 DOI: 10.3390/plants13010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
When colonizing new ranges, plant populations may benefit from the absence of the checks imposed by the enemies, herbivores, and pathogens that regulated their numbers in their original range. Therefore, rates of plant damage or infestation by natural enemies are expected to be lower in the new range. Exposing both non-native and native plant populations in the native range, where native herbivores are present, can be used to test whether resistance mechanisms have diverged between populations. Datura stramonium is native to the Americas but widely distributed in Spain, where populations show lower herbivore damage than populations in the native range. We established experiments in two localities in the native range (Mexico), exposing two native and two non-native D. stramonium populations to natural herbivores. Plant performance differed between the localities, as did the abundance of the main specialist herbivore, Lema daturaphila. In Teotihuacán, where L. daturaphila is common, native plants had significantly more adult beetles and herbivore damage than non-native plants. The degree of infestation by the specialist seed predator Trichobaris soror differed among populations and between sites, but the native Ticumán population always had the lowest level of infestation. The Ticumán population also had the highest concentration of the alkaloid scopolamine. Scopolamine was negatively related to the number of eggs deposited by L. daturaphila in Teotihuacán. There was among-family variation in herbivore damage (resistance), alkaloid content (scopolamine), and infestation by L. daturaphila and T. soror, indicating genetic variation and potential for further evolution. Although native and non-native D. stramonium populations have not yet diverged in plant resistance/constitutive defense, the differences between ranges (and the two experimental sites) in the type and abundance of herbivores suggest that further research is needed on the role of resource availability and adaptive plasticity, specialized metabolites (induced, constitutive), and the relationship between genealogical origin and plant defense in both ranges.
Collapse
Affiliation(s)
- Juan Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (S.V.-M.); (J.R.T.-G.); (I.M.D.-l.-C.); (D.E.L.-C.); (J.D.M.)
| | - Sabina Velázquez-Márquez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (S.V.-M.); (J.R.T.-G.); (I.M.D.-l.-C.); (D.E.L.-C.); (J.D.M.)
| | - Jesús R. Torres-García
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (S.V.-M.); (J.R.T.-G.); (I.M.D.-l.-C.); (D.E.L.-C.); (J.D.M.)
| | - Ivan M. De-la-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (S.V.-M.); (J.R.T.-G.); (I.M.D.-l.-C.); (D.E.L.-C.); (J.D.M.)
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, 41080 Sevilla, Spain;
| | - Pedro L. Valverde
- Departament of Biology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09310, Mexico;
| | - César M. Flores-Ortiz
- Plant Physiology Laboratory, UBIPRO, FES Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico; (C.M.F.-O.); (L.B.H.-P.)
| | - Luis B. Hernández-Portilla
- Plant Physiology Laboratory, UBIPRO, FES Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico; (C.M.F.-O.); (L.B.H.-P.)
| | - Diana E. López-Cobos
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (S.V.-M.); (J.R.T.-G.); (I.M.D.-l.-C.); (D.E.L.-C.); (J.D.M.)
| | - Javier D. Matías
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (S.V.-M.); (J.R.T.-G.); (I.M.D.-l.-C.); (D.E.L.-C.); (J.D.M.)
| |
Collapse
|
29
|
Croft L, Matheson P, Flemming C, Butterworth NJ, McGaughran A. Population structure and interspecific hybridisation of two invasive blowflies (Diptera: Calliphoridae) following replicated incursions into New Zealand. Ecol Evol 2024; 14:e10832. [PMID: 38192906 PMCID: PMC10772223 DOI: 10.1002/ece3.10832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Rates of biological invasion are increasing globally, with associated negative effects on native biodiversity and ecosystem services. Among other genetic processes, hybridisation can facilitate invasion by producing new combinations of genetic variation that increase adaptive potential and associated population fitness. Yet the role of hybridisation (and resulting gene flow) in biological invasion in invertebrate species is under-studied. Calliphora hilli and Calliphora stygia are blowflies proposed to have invaded New Zealand separately from Australia between 1779 and 1841, and are now widespread throughout the country. Here, we analysed genome-wide single nucleotide polymorphisms (SNPs), generating genotyping-by-sequencing data for 154 individuals collected from 24 populations across New Zealand and Australia to assess the extent of gene flow and hybridisation occurring within and between these blowflies and to better understand their overall population structure. We found that New Zealand populations of both species had weak genetic structure, suggesting high gene flow and an absence of dispersal limitations across the country. We also found evidence that interspecific hybridisation is occurring in the wild between C. hilli and C. stygia in both the native and invasive ranges, and that intraspecific admixture is occurring among populations at appreciable rates. Collectively, these findings provide new insights into the population structure of these two invasive invertebrates and highlight the potential importance of hybridisation and gene flow in biological invasion.
Collapse
Affiliation(s)
- Lilly Croft
- Te Aka Mātuatua – School of ScienceUniversity of WaikatoHamiltonNew Zealand
| | - Paige Matheson
- Te Aka Mātuatua – School of ScienceUniversity of WaikatoHamiltonNew Zealand
| | - Chloe Flemming
- Te Aka Mātuatua – School of ScienceUniversity of WaikatoHamiltonNew Zealand
| | | | - Angela McGaughran
- Te Aka Mātuatua – School of ScienceUniversity of WaikatoHamiltonNew Zealand
| |
Collapse
|
30
|
Otieno EO, Shen C, Zhang K, Wan J, He M, Tao Z, Huang W, Siemann E. Effects of nutrient pulses on exotic species shift from positive to neutral with decreasing water availability. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2805. [PMID: 36583667 DOI: 10.1002/eap.2805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Temporal fluctuation in nutrient availability generally promotes the growth of exotic plant species and has been recognized as an important driver of exotic plant invasions. However, little is known about how the impact of fluctuating nutrients on exotic species is dependent on the availability of other resources, although most ecosystems are experiencing dramatic variations in a wide variety of resources due to global change and human disturbance. Here, we explored how water availability mediates the effect of nutrient pulses on the growth of six exotic and six native plant species. We subjected individual plants of exotic and native species to well watered or water stressed conditions. For each level of water availability, we added equivalent amounts of nutrients at a constant rate, as a single large pulse, or in multiple small pulses. Under well watered conditions, nutrient pulses promoted exotic plant growth relative to nutrients supplied constantly, while they had no significant effect on natives. In contrast, under water stressed conditions, water deficiency inhibited the growth of all exotic and native species. More importantly, nutrient pulses did not increase plant growth relative to nutrients supplied constantly and these phenomena were observed for both exotic and native species. Taken together, our study shows that the impact of fluctuating nutrient availability on the growth of exotic plant species strongly depends on the variation of other resources, and that the positive effect of nutrient pulses under well watered conditions disappears under water stressed conditions. Our findings suggest that the variation in multiple resources may have complex feedback on exotic plant invasions and, therefore, it is critical to encompass multiple resources for the evaluation of fluctuating resource availability effects on exotic plant species. This will allow us to project the invasive trajectory of exotic plant species more accurately under future global change and human disturbance.
Collapse
Affiliation(s)
- Evans O Otieno
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changchao Shen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaoping Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Jinlong Wan
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Minyan He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Zhibin Tao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, Texas, USA
| |
Collapse
|
31
|
Liu X, Man X, Chen M, Zhao C, Liu C, Tong J, Meng F, Shao M, Qu B. Transgenerational plasticity in morphological characteristics and biomass of the invasive plant Xanthium strumarium. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2920. [PMID: 37750229 DOI: 10.1002/eap.2920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
Transgenerational plasticity (TGP) allows a plant to acclimate to external variable environments and is a potential mechanism that explains the range expansion and invasion success of some exotic plants. Most studies explored the traits of TGP associated with the success of exotic plant invasions by comparison studies among exotic, native, invasive, and noninvasive species. However, studies on the TGP of invasive plants in different resource environments are scarce, and the biological mechanisms involved are not well understood. This study aimed to determine the role of TGP in the invasiveness of Xanthium strumarium in northeast China. We measured the plant morphology of aboveground parts and the growth of three generations of the invader under different environmental conditions. The results showed that the intergenerational plasticity of X. strumarium was stronger under stress conditions. We found that the X. strumarium parent generation (F0) grown under water and/or nutrient deficiency conditions transferred the environmental information to their offspring (F1 and F2). The F1 generation grown under high-resource conditions has greater height with larger crown sizes, thicker basal diameters, and higher biomass. Both water and nutrients can affect the intergenerational transmission of plant plasticity, nutrients play a more important role compared with water. The high morphological intergenerational plasticity of X. strumarium under a pressure environment can help it quickly adapt to the new environment and accelerate the rapid expansion of the population in the short term. The root:shoot ratio and reproductive and nutrient distribution of the X. strumarium F0 and F1 generations showed high stability when the growth environment of the F0 generation differed from that of the F1 generation. The stable resource allocation strategy can ensure that the obtained resources are evenly distributed to each organ to maintain the long-term existence of the community. Therefore, the study of intergenerational transmission plasticity is of great significance for understanding the invasion process, mechanism, and prevention of invasive plants.
Collapse
Affiliation(s)
- Xinyue Liu
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Xiaozhen Man
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Meishan Chen
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Changxin Zhao
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Chuang Liu
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Jialin Tong
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Fanqi Meng
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Meini Shao
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Bo Qu
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| |
Collapse
|
32
|
Xiong Y, Oduor AMO, Zhao C. Population genetic differentiation and phenotypic plasticity of Ambrosia artemisiifolia under different nitrogen levels. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2903. [PMID: 37347236 DOI: 10.1002/eap.2903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Rapid adaptive evolution and phenotypic plasticity are two mechanisms that often underlie invasiveness of alien plant species, but whether they can co-occur within invasive plant populations under altered environmental conditions such as nitrogen (N) enrichment has seldom been explored. Latitudinal clines in plant trait responses to variation in environmental factors may provide evidence of local adaptation. Here, we inferred the relative contributions of phenotypic plasticity and local adaptation to the performance of the invasive plant Ambrosia artemisiifolia under different soil N levels, using a common garden approach. We grew A. artemisiifolia individuals raised from seeds that were sampled from six invasive populations along a wide latitudinal cline in China (23°42' N to 45°43' N) under three N (0, 5, and 10 g N m-2 ) levels in a common garden. Results show significant interpopulation genetic differentiation in plant height, number of branches, total biomass, and transpiration rate of the invader A. artemisiifolia across the N treatments. The populations also expressed genetic differentiation in basal diameter, growth rate, leaf area, seed width, root biomass, aboveground biomass, stomatal conductance, and intercellular CO2 concentration regardless of N treatments. Moreover, plants from different populations of the invader displayed plastic responses in time to first flower, hundred-grain weight, net photosynthetic rate, and relative biomass allocation to roots and shoots and seed length under different N treatments. Additionally, individuals of A. artemisiifolia from higher latitudes grew shorter and allocated less biomass to the roots regardless of N treatment, while latitudinal cline (or lack thereof) in other traits depended on the level of N in which the plants were grown. Overall, these results suggest that rapid adaptive evolution and phenotypic plasticity in the various traits that we quantified may jointly contribute to invasiveness of A. artemisiifolia under different levels of N availability. More broadly, the results support the idea that phenotypic plasticity and rapid adaptive evolution can jointly enable invasive plants to colonize a wide range of environmental conditions.
Collapse
Affiliation(s)
- Yunqi Xiong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ayub M O Oduor
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- Department of Applied Biology, Technical University of Kenya, Nairobi, Kenya
| | - Caiyun Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
33
|
Tobias Z, Solow A, Tepolt C. Geography and developmental plasticity shape post-larval thermal tolerance in the golden star tunicate, Botryllus schlosseri. J Therm Biol 2024; 119:103763. [PMID: 38071896 DOI: 10.1016/j.jtherbio.2023.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 02/25/2024]
Abstract
Local adaptation and phenotypic plasticity play key roles in mediating organisms' ability to respond to spatiotemporal variation in temperature. These two processes often act together to generate latitudinal or elevational clines in acute temperature tolerance. Phenotypic plasticity is also subject to local adaptation, with the expectation that populations inhabiting more variable environments should exhibit greater phenotypic plasticity of thermal tolerance. Here we examine the potential for local adaptation and developmental plasticity of thermal tolerance in the widespread invasive tunicate Botryllus schlosseri. By comparing five populations across a thermal gradient spanning 4.4° of latitude in the northwest Atlantic, we demonstrate that warmer populations south of the Gulf of Maine exhibit significantly increased (∼0.2 °C) post-larval temperature tolerance relative to the colder populations within it. We also show that B. schlosseri post-larvae possess a high degree of developmental plasticity for this trait, shifting their median temperature of survival (LT50) upwards by as much as 0.18 °C per 1 °C increase in environmental temperature. Lastly, we found that populations vary in their degrees of developmental plasticity, with populations that experience more pronounced short-term temperature variability exhibiting greater developmental plasticity, suggesting the local adaptation of developmental plasticity. By comparing the thermal tolerance of populations across space and through time, we demonstrate how geography and developmental plasticity have shaped thermal tolerance in B. schlosseri. These results help inform our understanding of how species are able to adjust their thermal physiology in new environments, including those encountered during invasion and under increasingly novel climate conditions.
Collapse
Affiliation(s)
- Zachary Tobias
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Andrew Solow
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Carolyn Tepolt
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
34
|
Kalirad A, Sommer RJ. Spatial and temporal heterogeneity alter the cost of plasticity in Pristionchus pacificus. PLoS Comput Biol 2024; 20:e1011823. [PMID: 38289972 PMCID: PMC10857712 DOI: 10.1371/journal.pcbi.1011823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 02/09/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Phenotypic plasticity, the ability of a single genotype to produce distinct phenotypes under different environmental conditions, has become a leading concept in ecology and evolutionary biology, with the most extreme examples being the formation of alternative phenotypes (polyphenisms). However, several aspects associated with phenotypic plasticity remain controversial, such as the existence of associated costs. While already predicted by some of the pioneers of plasticity research, i.e. Schmalhausen and Bradshaw, experimental and theoretical approaches have provided limited support for the costs of plasticity. In experimental studies, one common restriction is the measurement of all relevant parameters over long time periods. Similarly, theoretical studies rarely use modelling approaches that incorporate specific experimentally-derived fitness parameters. Therefore, the existence of the costs of plasticity remains disputed. Here, we provide an integrative approach to understand the cost of adaptive plasticity and its ecological ramifications, by combining laboratory data from the nematode plasticity model system Pristionchus pacificus with a stage-structured population model. Taking advantage of measurements of two isogenic strains grown on two distinct diets, we illustrate how spatial and temporal heterogeneity with regard to the distribution of resources on a metapopulation can alter the outcome of the competition and alleviate the realized cost of plasticity.
Collapse
Affiliation(s)
- Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Fletcher RA, Atwater DZ, Haak DC, Bagavathiannan MV, DiTommaso A, Lehnhoff E, Paterson AH, Auckland S, Govindasamy P, Lemke C, Morris E, Rainville L, Barney JN. Adaptive constraints at the range edge of a widespread and expanding invasive plant. AOB PLANTS 2023; 15:plad070. [PMID: 38028747 PMCID: PMC10651072 DOI: 10.1093/aobpla/plad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Identifying the factors that facilitate and limit invasive species' range expansion has both practical and theoretical importance, especially at the range edges. Here, we used reciprocal common garden experiments spanning the North/South and East/West range that include the North American core, intermediate and range edges of the globally invasive plant, Johnsongrass (Sorghum halepense) to investigate the interplay of climate, biotic interactions (i.e. competition) and patterns of adaptation. Our results suggest that the rapid range expansion of Johnsongrass into diverse environments across wide geographies occurred largely without local adaptation, but that further range expansion may be restricted by a fitness trade-off that limits population growth at the range edge. Interestingly, plant competition strongly dampened Johnsongrass growth but did not change the rank order performance of populations within a garden, though this varied among gardens (climates). Our findings highlight the importance of including the range edge when studying the range dynamics of invasive species, especially as we try to understand how invasive species will respond to accelerating global changes.
Collapse
Affiliation(s)
- Rebecca A Fletcher
- School of Plant and Environmental Sciences, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Daniel Z Atwater
- Department of Animal & Range Sciences, Montana State University, 103 Animal Biosciences Building, Bozeman, MT 59717, USA
| | - David C Haak
- School of Plant and Environmental Sciences, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Muthukumar V Bagavathiannan
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Boulevard, College Station, TX 77843, USA
| | - Antonio DiTommaso
- School of Integrative Plant Science, Section of Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Erik Lehnhoff
- Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, MSC 3BE, Las Cruces, NM 88003, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | - Susan Auckland
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | - Prabhu Govindasamy
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Boulevard, College Station, TX 77843, USA
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Cornelia Lemke
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | - Edward Morris
- Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, MSC 3BE, Las Cruces, NM 88003, USA
| | - Lisa Rainville
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | | |
Collapse
|
36
|
Lau JA, Funk JL. How ecological and evolutionary theory expanded the 'ideal weed' concept. Oecologia 2023; 203:251-266. [PMID: 37340279 PMCID: PMC10684629 DOI: 10.1007/s00442-023-05397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023]
Abstract
Since Baker's attempt to characterize the 'ideal weed' over 50 years ago, ecologists have sought to identify features of species that predict invasiveness. Several of Baker's 'ideal weed' traits are well studied, and we now understand that many traits can facilitate different components of the invasion process, such as dispersal traits promoting transport or selfing enabling establishment. However, the effects of traits on invasion are context dependent. The traits promoting invasion in one community or at one invasion stage may inhibit invasion of other communities or success at other invasion stages, and the benefits of any given trait may depend on the other traits possessed by the species. Furthermore, variation in traits among populations or species is the result of evolution. Accordingly, evolution both prior to and after invasion may determine invasion outcomes. Here, we review how our understanding of the ecology and evolution of traits in invasive plants has developed since Baker's original efforts, resulting from empirical studies and the emergence of new frameworks and ideas such as community assembly theory, functional ecology, and rapid adaptation. Looking forward, we consider how trait-based approaches might inform our understanding of less-explored aspects of invasion biology ranging from invasive species responses to climate change to coevolution of invaded communities.
Collapse
Affiliation(s)
- Jennifer A Lau
- Department of Biology and the Environmental Resilience Institute, Indiana University, Bloomington, IN, 47405, USA
| | - Jennifer L Funk
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
37
|
Brown J, Merchant A, Ingram L. Utilising random forests in the modelling of Eragrostis curvula presence and absence in an Australian grassland system. Sci Rep 2023; 13:16603. [PMID: 37789139 PMCID: PMC10547844 DOI: 10.1038/s41598-023-43667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Eragrostis curvula is an agronomically and ecologically undesirable perennial tussock grass dispersed across Australia. The objective of this study is to investigate relationships of ecologically relevant abiotic variables with the presence of E. curvula at a landscape scale in the Snowy Monaro region, Australia. Through vegetation surveys across 21 privately owned properties and freely available ancillary data on E. curvula presence, we used seven predictor variables, including Sentinel 2 NDVI reflectance, topography, distance from roads and watercourses and climate, to predict the presence or absence of E. curvula across its invaded range using a random forest (RF) algorithm. Assessment of performance metrics resulted in a pseudo-R squared of 0.96, a kappa of 0.97 and an R squared for out-of-bag samples of 0.67. Temperature had the largest influence on the model's performance, followed by linear features such as highways and rivers. Highways' high importance in the model may indicate that the presence or absence of E. curvula is related to the density of human transit, thus as a vector of E. curvula propagule dispersal. Further, humans' tendency to reside adjacent to rivers may indicate that E. curvula's presence or absence is related to human density and E. curvula's potential to spread via water courses.
Collapse
Affiliation(s)
- J Brown
- The University of Sydney, Sydney, Australia.
| | - A Merchant
- The University of Sydney, Sydney, Australia
| | - L Ingram
- The University of Sydney, Sydney, Australia
- NSW Department of Primary Industries, Queanbeyan, Australia
| |
Collapse
|
38
|
Gao L, Kantar MB, Moxley D, Ortiz-Barrientos D, Rieseberg LH. Crop adaptation to climate change: An evolutionary perspective. MOLECULAR PLANT 2023; 16:1518-1546. [PMID: 37515323 DOI: 10.1016/j.molp.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.
Collapse
Affiliation(s)
- Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dylan Moxley
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
39
|
de la Mata R, Zas R. Plasticity in growth is genetically variable and highly conserved across spatial scales in a Mediterranean pine. THE NEW PHYTOLOGIST 2023; 240:542-554. [PMID: 37491863 DOI: 10.1111/nph.19158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023]
Abstract
Phenotypic plasticity is a main mechanism for sessile organisms to cope with changing environments. Plasticity is genetically based and can evolve under natural selection so that populations within a species show distinct phenotypic responses to environment. An important question that remains elusive is whether the intraspecific variation in plasticity at different spatial scales is independent from each other. To test whether variation in plasticity to macro- and micro-environmental variation is related among each other, we used growth data of 25 Pinus pinaster populations established in seven field common gardens in NW Spain. Phenotypic plasticity to macro-environmental variation was estimated across test sites while plasticity to micro-environmental variation was estimated by using semivariography and kriging for modeling within-site heterogeneity. We provide empirical evidence of among-population variation in the magnitude of plastic responses to both micro- and macro-environmental variation. Importantly, we found that such responses were positively correlated across spatial scales. Selection for plasticity at one scale of environmental variation may impact the expression of plasticity at other scales, having important consequences on the ability of populations to buffer climate change. These results improve our understanding of the ecological drivers underlying the expression of phenotypic plasticity.
Collapse
Affiliation(s)
- Raul de la Mata
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (EBD-CSIC), Sevilla, Andalucía, 41092, Spain
| | - Rafael Zas
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo 28, Pontevedra, 36080, Spain
| |
Collapse
|
40
|
Donnelly S, Akin‐Fajiye M, Fraser LH. Plant provenance can influence the impacts of temperature and moisture on intraspecific competition in Pseudoroegneria spicata. Ecol Evol 2023; 13:e10603. [PMID: 37886429 PMCID: PMC10598250 DOI: 10.1002/ece3.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 10/28/2023] Open
Abstract
Warming and changing precipitation can alter the performance of native grasses that are essential to grassland ecosystems. Native grasses may respond to changing climate by phenotypic plasticity or lose their current ranges. Establishing plant species from southern, warmer provenances may reduce the likelihood of biodiversity loss and improve restoration success in cool, northern locations that are undergoing warming. We conducted competition trials for Pseudoroegneria spicata (bluebunch wheatgrass), a native grass commonly found in western North American grasslands, to understand the impact of temperature and moisture on plant-plant interactions. We obtained seeds from three locations along a latitudinal gradient in North America, two in British Columbia (BC), Canada, and one in California, USA. We compared the effects of warming, changing water inputs, and competitor provenance on pairwise competitive interactions among Pseudoroegneria spicata plants grown from seeds obtained from the three locations. We quantified interactions using the relative interaction intensity, which has values from -1 (complete competition) to +1 (complete facilitation). Target plants from northern British Columbia, the location with the coldest summer temperature, were generally more competitively suppressed when competing with plants from California, which had the warmest summer temperature and lowest summer precipitation. Competitive suppression of target plants from northern British Columbia and southern British Columbia was more intense when competitor provenance was more geographically distant from target plant provenance. Finally, plants from northern British Columbia and southern British Columbia were more suppressed at higher temperatures, indicating some local adaptation, while plants from California were not affected by competitors, temperature, or water input. Plants grown from seeds obtained from warm and dry locations appear to be more tolerant to competition at higher temperatures, compared to plants from cooler regions. Native plant diversity and restoration success in grasslands subjected to climate change may be preserved or improved by assisted migration of seeds from warm to cooler but warming locations.
Collapse
Affiliation(s)
- Sabina Donnelly
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| | - Morodoluwa Akin‐Fajiye
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| | - Lauchlan H. Fraser
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| |
Collapse
|
41
|
Lake TA, Briscoe Runquist RD, Flagel LE, Moeller DA. Chronosequence of invasion reveals minimal losses of population genomic diversity, niche expansion, and trait divergence in the polyploid, leafy spurge. Evol Appl 2023; 16:1680-1696. [PMID: 38020872 PMCID: PMC10660801 DOI: 10.1111/eva.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/05/2023] [Accepted: 08/25/2023] [Indexed: 12/01/2023] Open
Abstract
Rapid evolution may play an important role in the range expansion of invasive species and modify forecasts of invasion, which are the backbone of land management strategies. However, losses of genetic variation associated with colonization bottlenecks may constrain trait and niche divergence at leading range edges, thereby impacting management decisions that anticipate future range expansion. The spatial and temporal scales over which adaptation contributes to invasion dynamics remain unresolved. We leveraged detailed records of the ~130-year invasion history of the invasive polyploid plant, leafy spurge (Euphorbia virgata), across ~500 km in Minnesota, U.S.A. We examined the consequences of range expansion for population genomic diversity, niche breadth, and the evolution of germination behavior. Using genotyping-by-sequencing, we found some population structure in the range core, where introduction occurred, but panmixia among all other populations. Range expansion was accompanied by only modest losses in sequence diversity, with small, isolated populations at the leading edge harboring similar levels of diversity to those in the range core. The climatic niche expanded during most of the range expansion, and the niche of the range core was largely non-overlapping with the invasion front. Ecological niche models indicated that mean temperature of the warmest quarter was the strongest determinant of habitat suitability and that populations at the leading edge had the lowest habitat suitability. Guided by these findings, we tested for rapid evolution in germination behavior over the time course of range expansion using a common garden experiment and temperature manipulations. Germination behavior diverged from the early to late phases of the invasion, with populations from later phases having higher dormancy at lower temperatures. Our results suggest that trait evolution may have contributed to niche expansion during invasion and that distribution models, which inform future management planning, may underestimate invasion potential without accounting for evolution.
Collapse
Affiliation(s)
- Thomas A. Lake
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | | | - Lex E. Flagel
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
- GencoveLong Island CityNew YorkUSA
| | - David A. Moeller
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
42
|
Tesfay YB, Blaschke A, Ashley N, Portillo L, Scalisi A, Adli B, Kreyling J. Increased Plasticity in Invasive Populations of a Globally Invasive Cactus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3287. [PMID: 37765451 PMCID: PMC10536680 DOI: 10.3390/plants12183287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Biological invasions pose global threats to biodiversity and ecosystem functions. Invasive species often display a high degree of phenotypic plasticity, enabling them to adapt to new environments. This study examines plasticity to water stress in native and invasive Opuntia ficus-indica populations, a prevalent invader in arid and semi-arid ecosystems. Through controlled greenhouse experiments, we evaluated three native and nine invasive populations. While all plants survived the dry treatment, natives exhibited lower plasticity to high water availability with only a 36% aboveground biomass increase compared to the invasives with a greater increase of 94%. In terms of belowground biomass, there was no significant response to increased water availability for native populations, but plants from the invasive populations showed a 75% increase from the dry to the wet treatment. Enhanced phenotypic plasticity observed in invasive populations of O. ficus-indica is likely a significant driver of their success and invasiveness across different regions, particularly with a clear environmental preference towards less arid conditions. Climate change is expected to amplify the invasion success due to the expansion of arid areas and desertification. Opuntia ficus-indica adapts to diverse environments, survives dry spells, and grows rapidly in times of high-water supply, making it a candidate for increased invasion potential with climate change.
Collapse
Affiliation(s)
- Yohannes B. Tesfay
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Annika Blaschke
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Nathan Ashley
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Liberato Portillo
- Department of Botany and Zoology, University of Guadalajara, Guadalajara 44100, Mexico
| | - Alessio Scalisi
- Department of Energy, Environment and Climate Action, Agriculture, Agriculture Victoria Research, Tatura, VIC 3616, Australia
| | - Benziane Adli
- Department of Biology, Faculty of Nature and Life Sciences, University of Djelfa, Djelfa 17000, Algeria
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
43
|
Kaur A, Kaur S, Singh HP, Batish DR. Is intraspecific trait differentiation in Parthenium hysterophorus a consequence of hereditary factors and/or phenotypic plasticity? PLANT DIVERSITY 2023; 45:611-620. [PMID: 37936811 PMCID: PMC10625975 DOI: 10.1016/j.pld.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/03/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2023]
Abstract
Of the various strategies adopted by an invasive plant species for expanding its niche breadth, phenotypic differentiation (either due to plasticity and/or adaptive evolution) is proven to be the most successful. Lately, we studied the persistence of substantial morpho-functional variations within the individuals of alien invasive plant, Parthenium hysterophorus in Chandigarh, India, through field surveys. Based on observed differences, the individuals were categorized into two morphotypes, PA and PB. PA had higher leaf area, leaf biomass, and chlorophyll content as compared with PB. However, PB had a higher stem circumference, stem specific density, twig dry matter content, profuse branching, bigger canopy, and better reproductive output than PA. To substantiate the persistence of intraspecific variations in P. hysterophorus and to deduce the possible genesis of these variations, we propagated both the morphotypes under experimental conditions in winter and summer. Apart from the key morpho-functional differences observed during the field studies, protein and carbohydrate metabolism were studied in leaves and roots of the propagated plants. Differences in plant metabolism were observed only during the early growth period, whereas the morpho-functional traits varied in the mature flowering plants. The effect of growth season was highly significant on all the studied morpho-functional and biochemical parameters (p ≤ 0.05). Parent morphotypes (P) and interactions between morphotypes and seasons significantly affected several growth parameters (p ≤ 0.05). The analyses revealed that the contrasting growth conditions at the time of transplantation and early growth may regulate the phenotype of P. hysterophorus. The pattern of intraspecific variations observed during the study is justified to consider morphotype PA as winter biotype and morphotype PB as summer biotype of P. hysterophorus. The study points towards the role of plasticity or a combination of genetic and environmental (G × E) factors in producing the phenotypic variability observed in the population of P. hysterophorus.
Collapse
Affiliation(s)
- Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Daizy R. Batish
- Department of Botany, Panjab University, Chandigarh 160014, India
| |
Collapse
|
44
|
Alfaro B, Marshall DL. Evidence of differential phenotypic plasticity in a desert mustard. Ecol Evol 2023; 13:e10479. [PMID: 37664494 PMCID: PMC10468984 DOI: 10.1002/ece3.10479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Understanding the effect of the environment on trait variation is critical for ecologically and economically important plants. Here, we asked whether differences in soil moisture are a source of variation in Sahara mustard (Brassica tournefortii). We subjected common garden populations of plants derived from native, invasive, and landrace sources (ranges) to varying water addition treatments. Using principal component analysis, we generated composite variables of life history traits for ANCOVA tests and plotted norms of reaction. Planting time was included as a covariate because we observed differences in seedling emergence despite efforts to standardize germination. We also examined the population coefficient of variation of individual traits (plasticity) and the association of trait CVs with fitness. The amount of plasticity varied but was inconsistent among range sources for all composite traits. Planting time did not affect treatments, but plants from different ranges responded differently to variable planting times. With a surplus of water, plants derived from native and invasive populations plateaued in vegetative trait values but showed a continuous linear increase in reproductive trait values. Possibly as a result of domestication, moderate and high water treatments in landrace plants caused plateaus in composite trait values for flowering phenology, seed count, plant size, and branching. The ecological breadth shown by our plants is likely due to drought tolerance that evolved in Brassica tournefortii source populations.
Collapse
Affiliation(s)
- Brian Alfaro
- Department of BiologyEastern UniversitySt. DavidsPennsylvaniaUSA
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Diane L. Marshall
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
45
|
Zhang C, Wang ST, Li JZ, Feng YL. Molecular bases for the stronger plastic response to high nitrate in the invasive plant Xanthium strumarium compared with its native congener. PLANTA 2023; 258:61. [PMID: 37542564 DOI: 10.1007/s00425-023-04220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
MAIN CONCLUSION High expressions of nitrate use and photosynthesis-related transcripts contribute to the stronger plasticity to high nitrate for the invader relative to its native congener, which may be driven by hormones. Strong phenotypic plasticity is often considered as one of the main mechanisms underlying exotic plant invasions. However, few studies have been conducted to investigate the related molecular mechanisms. Here, we determined the differences in the plastic responses to high nitrate between the invasive plant X. strumarium and its native congener, and the molecular bases by transcriptome analysis and quantitative real-time PCR validation. Our results showed that the invader had higher plasticity of growth, nitrogen accumulation and photosynthesis in responses to high nitrate than its native congener. Compared with its congener, more N utilization-related transcripts, including nitrate transporter 1/peptide transporter family 6.2 and nitrate reductase 1, were induced by high nitrate in the root of X. strumarium, improving its N utilization ability. More transcripts coding for photosynthetic antenna proteins were also induced by high nitrate in the shoot of X. strumarium, enhancing its photosynthesis. Hormones may be involved in the regulation of the plastic responses to high nitrate in the two species. Our study contributes to understanding the molecular mechanisms underlying the stronger plasticity of the invader in responses to high nitrate, and the potential function of plant hormones in these processes, providing bases for precise control of invasive plants using modern molecular techniques.
Collapse
Affiliation(s)
- Chang Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Shi-Ting Wang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jian-Zhi Li
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
46
|
Du L, Oduor AMO, Zuo W, Liu H, Li J. Directional and stabilizing selection shaped morphological, reproductive, and physiological traits of the invader Solidago canadensis. Ecol Evol 2023; 13:e10410. [PMID: 37636867 PMCID: PMC10450839 DOI: 10.1002/ece3.10410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Trait evolution in invasive plant species is important because it can impact demographic parameters key to invasion success. Invasive plant species often show phenotypic clines along geographic and climatic gradients. However, the relative contributions of natural selection and neutral evolutionary processes to phenotypic trait variation among populations of invasive plants remain unclear. A common method to assess whether a trait has been shaped by natural selection or neutral evolutionary processes is to compare the geographical pattern for the trait of interest to the divergence in neutral genetic loci (i.e., Q ST -F ST comparisons). Subsequently, a redundancy analysis (RDA) can facilitate identification of putative agents of natural selection on the trait. Here, we employed both a Q ST -F ST comparisons approach and RDA to infer whether natural selection shaped traits of invasive populations of Solidago canadensis in China and identify the potential environmental drivers of natural selection. We addressed two questions: (1) Did natural selection drive phenotypic trait variation among S. canadensis populations? (2) Did climatic, latitudinal, longitudinal, and altitudinal gradients drive patterns of genetic variation among S. canadensis populations? We found significant directional selection for several morphological and reproductive traits (i.e., Q ST > F ST) and stabilizing selection for physiological traits (i.e., Q ST < F ST). The RDA showed that stem biomass of S. canadensis was strongly positively correlated with longitude, while leaf width ratio and specific leaf area were significantly positively correlated with the mean diurnal range. Stem biomass had a strong negative correlation with annual precipitation. Moreover, height of S. canadensis individuals was strongly positively correlated with altitude and precipitation of the wettest quarter. A longitudinal shift in precipitation seasonality likely selected for larger stem biomass in S. canadensis. Overall, these results suggest that longitudinal and altitudinal clines in climate exerted strong selection pressures that shaped the phenotypic traits of S. canadensis.
Collapse
Affiliation(s)
- Leshan Du
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
| | - Ayub M. O. Oduor
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
- Department of Applied BiologyTechnical University of KenyaNairobiKenya
| | - Wei Zuo
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
- Sanofi (Hangzhou) Pharmaceuticals Co. Ltd.HangzhouChina
| | - Haiyan Liu
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
| | - Jun‐Min Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
| |
Collapse
|
47
|
Hudson CM, Cuenca Cambronero M, Moosmann M, Narwani A, Spaak P, Seehausen O, Matthews B. Environmentally independent selection for hybrids between divergent freshwater stickleback lineages in semi-natural ponds. J Evol Biol 2023; 36:1166-1184. [PMID: 37394735 DOI: 10.1111/jeb.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Hybridization following secondary contact of genetically divergent populations can influence the range expansion of invasive species, though specific outcomes depend on the environmental dependence of hybrid fitness. Here, using two genetically and ecologically divergent threespine stickleback lineages that differ in their history of freshwater colonization, we estimate fitness variation of parental lineages and hybrids in semi-natural freshwater ponds with contrasting histories of nutrient loading. In our experiment, we found that fish from the older freshwater lineage (Lake Geneva) and hybrids outperformed fish from the younger freshwater lineage (Lake Constance) in terms of both growth and survival, regardless of the environmental context of our ponds. Across all ponds, hybrids exhibited the highest survival. Although wild-caught adult populations differed in their functional and defence morphology, it is unclear which of these traits underlie the fitness differences observed among juveniles in our experiment. Overall, our work suggests that when hybrid fitness is insensitive to environmental conditions, as observed here, introgression may promote population expansion into unoccupied habitats and accelerate invasion success.
Collapse
Affiliation(s)
- Cameron Marshall Hudson
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Maria Cuenca Cambronero
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Aquatic Ecology Group, University of Vic, Central University of Catalonia, Vic, Spain
| | - Marvin Moosmann
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
| |
Collapse
|
48
|
Retnamma J, Sarath S, Balachandran KK, Krishnan SS, Karnan C, Arunpandi N, Alok KT, Ramanamurty MV. Environmental and human facets of the waterweed proliferation in a Vast Tropical Ramsar Wetland-Vembanad Lake System. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:900. [PMID: 37380928 DOI: 10.1007/s10661-023-11417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/22/2023] [Indexed: 06/30/2023]
Abstract
The Vembanad Lake and its associated low-lying areas and network of canals (hereafter VBL) form the major part of India's second-largest Ramsar wetland (1512 km2) located in Kerala State along India's southwest coast. The extensive VBL has a large fishery, inland waterways, and popular tourist attractions that support the livelihoods of thousands of people. Over the last several decades, the proliferation of water weeds in the VBL has alarmingly increased, causing many adverse ecological and socioeconomic effects. This study based on a review and synthesis of long-term data introduced the environmental and human dimensions of water weed proliferation in the VBL. Eichhornia (= Pontederia) crassipes, Monochoria vaginalis, Salvinia molesta, Limnocharis flava, Pistia stratiotes, and Hydrilla verticillata are the most troublesome water weeds in the VBL, with the first three being the most widespread. They were mostly imported to India long ago before becoming a part of the VBL. These weeds harmed water quality, waterways, agriculture, fisheries, disease vector management, as well as the vertical and horizontal shrinkage of the VBL through increased siltation and faster ecological succession. The inherently fragile VBL was harmed by extensive and long-term reclamation, the construction of saltwater barrages, and many landfill roads that crisscross water bodies serving as coastal dams, creating water stagnation by blocking natural flushing/ventilation by periodic tides from the adjacent southeastern Arabian Sea. These ecological imbalances were exacerbated by excessive fertiliser use in agricultural areas, as well as the addition of nutrient-rich domestic and municipal sewage, which provided an adequate supply of nutrients and a favourable habitat for the expansion of water weeds. Furthermore, because of recurrent floods and a changing ecology in the VBL, the water weed proliferation has become a more significant problem, with the potential to disrupt their current distribution pattern and spread in the future.
Collapse
Affiliation(s)
| | - S Sarath
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - K K Balachandran
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - S Santhi Krishnan
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - C Karnan
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - N Arunpandi
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - K T Alok
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - M V Ramanamurty
- Ministry of Earth Sciences, National Centre for Coastal Research, Chennai, India
| |
Collapse
|
49
|
Hakim N, Ahmad M, Rathee S, Sharma P, Kaur S, Batish DR, Singh HP. Invasive Cirsium arvense displays different resource-use strategies along local habitat heterogeneity in the trans-Himalayan region of Ladakh. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:730. [PMID: 37231282 DOI: 10.1007/s10661-023-11221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Climate change and anthropogenic pressures have resulted in a significant shift in the invasion susceptibility and frequency of non-native species in mountain ecosystems. Cirsium arvense (L.) Scop. (Family: Asteraceae) is an invasive species that spreads quickly in mountains, especially in the trans-Himalayan region of Ladakh. The current study used a trait-based approach to evaluate the impact of local habitat heterogeneity (soil physico-chemical properties) on C. arvense. Thirteen plant functional traits (root, shoot, leaf, and reproductive traits) of C. arvense were studied in three different habitat types (agricultural, marshy, and roadside). Functional trait variability in C. arvense was higher between, than within habitats (between different populations). All the functional traits interacted with habitat change, except for leaf count and seed mass. Soil properties strongly affect C. arvense's resource-use strategies across habitats. The plant adapted to a resource-poor environment (roadside habitat) by conserving resources and to a resource-rich environment (agricultural and marshy land habitat) by acquiring them. The ability of C. arvense to use resources differently reflects its persistence in introduced habitats. In summary, our study shows that C. arvense invades different habitats in introduced regions through trait adaptations and resource-use strategies in the trans-Himalayan region.
Collapse
Affiliation(s)
- Nasmeen Hakim
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Mustaqeem Ahmad
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, 160 014, India.
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
50
|
Linck EB, Williamson JL, Bautista E, Beckman EJ, Benham PM, DuBay SG, Flores LM, Gadek CR, Johnson AB, Jones MR, Núñez-Zapata J, Quiñonez A, Schmitt CJ, Susanibar D, Tiravanti C J, Verde-Guerra K, Wright NA, Valqui T, Storz JF, Witt CC. Blood Variation Implicates Respiratory Limits on Elevational Ranges of Andean Birds. Am Nat 2023; 201:741-754. [PMID: 37130238 DOI: 10.1086/723222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
AbstractThe extent to which species ranges reflect intrinsic physiological tolerances is a major question in evolutionary ecology. To date, consensus has been hindered by the limited tractability of experimental approaches across most of the tree of life. Here, we apply a macrophysiological approach to understand how hematological traits related to oxygen transport shape elevational ranges in a tropical biodiversity hot spot. Along Andean elevational gradients, we measured traits that affect blood oxygen-carrying capacity-total and cellular hemoglobin concentration and hematocrit, the volume percentage of red blood cells-for 2,355 individuals of 136 bird species. We used these data to evaluate the influence of hematological traits on elevational ranges. First, we asked whether the sensitivity of hematological traits to changes in elevation is predictive of elevational range breadth. Second, we asked whether variance in hematological traits changed as a function of distance to the nearest elevational range limit. We found that birds showing greater hematological sensitivity had broader elevational ranges, consistent with the idea that a greater acclimatization capacity facilitates elevational range expansion. We further found reduced variation in hematological traits in birds sampled near their elevational range limits and at high absolute elevations, patterns consistent with intensified natural selection, reduced effective population size, or compensatory changes in other cardiorespiratory traits. Our findings suggest that constraints on hematological sensitivity and local genetic adaptation to oxygen availability promote the evolution of the narrow elevational ranges that underpin tropical montane biodiversity.
Collapse
|