1
|
Huang 黄玉莹 Y, Shao 邵建英 JY, Chen 陈红 H, Zhou 周京京 JJ, Chen 陈少瑞 SR, Pan 潘惠麟 HL. Calcineurin and CK2 Reciprocally Regulate Synaptic AMPA Receptor Phenotypes via α2δ-1 in Spinal Excitatory Neurons. J Neurosci 2024; 44:e0392242024. [PMID: 38886057 PMCID: PMC11255431 DOI: 10.1523/jneurosci.0392-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506), are commonly used immunosuppressants for preserving transplanted organs and tissues. However, these drugs can cause severe and persistent pain. GluA2-lacking, calcium-permeable AMPA receptors (CP-AMPARs) are implicated in various neurological disorders, including neuropathic pain. It is unclear whether and how constitutive calcineurin, a Ca2+/calmodulin protein phosphatase, controls synaptic CP-AMPARs. In this study, we found that blocking CP-AMPARs with IEM-1460 markedly reduced the amplitude of AMPAR-EPSCs in excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2), but not in inhibitory neurons expressing vesicular GABA transporter, in the spinal cord of FK506-treated male and female mice. FK506 treatment also caused an inward rectification in the current-voltage relationship of AMPAR-EPSCs specifically in VGluT2 neurons. Intrathecal injection of IEM-1460 rapidly alleviated pain hypersensitivity in FK506-treated mice. Furthermore, FK506 treatment substantially increased physical interaction of α2δ-1 with GluA1 and GluA2 in the spinal cord and reduced GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of spinal cords. Correspondingly, inhibiting α2δ-1 with pregabalin, Cacna2d1 genetic knock-out, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide reversed inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons caused by FK506 treatment. In addition, CK2 inhibition reversed FK506 treatment-induced pain hypersensitivity, α2δ-1 interactions with GluA1 and GluA2, and inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons. Thus, the increased prevalence of synaptic CP-AMPARs in spinal excitatory neurons plays a major role in calcineurin inhibitor-induced pain hypersensitivity. Calcineurin and CK2 antagonistically regulate postsynaptic CP-AMPARs through α2δ-1-mediated GluA1/GluA2 heteromeric assembly in the spinal dorsal horn.
Collapse
Affiliation(s)
- Yuying Huang 黄玉莹
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jian-Ying Shao 邵建英
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen 陈红
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jing-Jing Zhou 周京京
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen 陈少瑞
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan 潘惠麟
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
2
|
Déciga-Campos M, Jaramillo-Morales OA, Espinosa-Juárez JV, Aguilera-Martínez ME, Ventura-Martínez R, López-Muñoz FJ. N-palmitoylethanolamide synergizes the antinociception of morphine and gabapentin in the formalin test in mice. J Pharm Pharmacol 2023; 75:1154-1162. [PMID: 36905375 DOI: 10.1093/jpp/rgad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/19/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVE The antinociceptive pharmacological interaction between N-palmitoylethanolamide (PEA) and morphine (MOR), as well as gabapentin (GBP), was investigated to obtain synergistic antinociception at doses where side effects were minimal. In addition, the possible antinociceptive mechanism of PEA + MOR or PEA + GBP combinations was explored. METHODS Individual dose-response curves (DRCs) of PEA, MOR and GBP were evaluated in female mice in which intraplantar nociception was induced with 2% formalin. Isobolographic method was used to detect the pharmacological interaction in the combination of PEA + MOR or PEA + GBP. KEY FINDINGS The ED50 was calculated from the DRC; the order of potency was MOR > PEA > GBP. The isobolographic analysis was obtained at a 1:1 ratio to determine the pharmacological interaction. The experimental values of flinching (PEA + MOR, Zexp = 2.72 ± 0.2 μg/paw and PEA + GBP Zexp = 2.77 ± 0.19 μg/paw) were significantly lower than those calculated theoretically (PEA + MOR Zadd = 7.78 ± 1.07 and PEA + GBP Zadd = 24.05 ± 1.91 μg/paw), resulting in synergistic antinociception. Pretreatment with GW6471 and naloxone demonstrated that peroxisome proliferator-activated receptor alpha (PPARα) and opioid receptors are involved in both interactions. CONCLUSIONS These results suggest that MOR and GBP synergistically enhance PEA-induced antinociception through PPARα and opioid receptor mechanisms. Furthermore, the results suggest that combinations containing PEA with MOR or GBP could be of interest in aiding the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, México
| | - Osmar Antonio Jaramillo-Morales
- Departamento de Enfermería y Obstetricia, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | | | - María Elena Aguilera-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, México
| | - Rosa Ventura-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Delegación Coyoacán, México, México
| | | |
Collapse
|
3
|
Wang Q, #, Zhang Y, #, Du Q, Zhao X, Wang W, Zhai Q, Xiang M. SKF96365 impedes spinal glutamatergic transmission-mediated neuropathic allodynia. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:39-48. [PMID: 36575932 PMCID: PMC9806642 DOI: 10.4196/kjpp.2023.27.1.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 09/08/2022] [Indexed: 12/29/2022]
Abstract
Spinal nerve injury causes mechanical allodynia and structural imbalance of neurotransmission, which were typically associated with calcium overload. Store-operated calcium entry (SOCE) is considered crucial elements-mediating intracellular calcium homeostasis, ion channel activity, and synaptic plasticity. However, the underlying mechanism of SOCE in mediating neuronal transmitter release and synaptic transmission remains ambiguous in neuropathic pain. Neuropathic rats were operated by spinal nerve ligations. Neurotransmissions were assessed by whole-cell recording in substantia gelatinosa. Immunofluorescence staining of STIM1 with neuronal and glial biomarkers in the spinal dorsal horn. The endoplasmic reticulum stress level was estimated from qRT-PCR. Intrathecal injection of SOCE antagonist SKF96365 dose-dependently alleviated mechanical allodynia in ipsilateral hind paws of neuropathic rats with ED50 of 18 μg. Immunofluorescence staining demonstrated that STIM1 was specifically and significantly expressed in neurons but not astrocytes and microglia in the spinal dorsal horn. Bath application of SKF96365 inhibited enhanced miniature excitatory postsynaptic currents in a dosage-dependent manner without affecting miniature inhibitory postsynaptic currents. Mal-adaption of SOCE was commonly related to endoplasmic reticulum (ER) stress in the central nervous system. SKF96365 markedly suppressed ER stress levels by alleviating mRNA expression of C/EBP homologous protein and heat shock protein 70 in neuropathic rats. Our findings suggested that nerve injury might promote SOCE-mediated calcium levels, resulting in long-term imbalance of spinal synaptic transmission and behavioral sensitization, SKF96365 produces antinociception by alleviating glutamatergic transmission and ER stress. This work demonstrated the involvement of SOCE in neuropathic pain, implying that SOCE might be a potential target for pain management.
Collapse
Affiliation(s)
- Qiru Wang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - #
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Yang Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200240, China
| | - #
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Qiong Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Xinjie Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Wei Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200240, China,Correspondence Ming Xiang, E-mail: , Qing Zhai, E-mail: , Wei Wang, E-mail:
| | - Qing Zhai
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China,Correspondence Ming Xiang, E-mail: , Qing Zhai, E-mail: , Wei Wang, E-mail:
| | - Ming Xiang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China,Correspondence Ming Xiang, E-mail: , Qing Zhai, E-mail: , Wei Wang, E-mail:
| |
Collapse
|
4
|
Yin JB, Lu YC, Li F, Zhang T, Ding T, Hu HQ, Chen YB, Guo HW, Kou ZZ, Zhang MM, Yuan J, Chen T, Li H, Cao BZ, Dong YL, Li YQ. Morphological investigations of endomorphin-2 and spinoparabrachial projection neurons in the spinal dorsal horn of the rat. Front Neuroanat 2022; 16:1072704. [PMID: 36506871 PMCID: PMC9726772 DOI: 10.3389/fnana.2022.1072704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
It has been proved that endomorphin-2 (EM2) produced obvious analgesic effects in the spinal dorsal horn (SDH), which existed in our human bodies with remarkable affinity and selectivity for the μ-opioid receptor (MOR). Our previous study has demonstrated that EM2 made synapses with the spinoparabrachial projection neurons (PNs) in the SDH and inhibited their activities by reducing presynaptic glutamate release. However, the morphological features of EM2 and the spinoparabrachial PNs in the SDH have not been completely investigated. Here, we examined the morphological features of EM2 and the spinoparabrachial PNs by using triple fluorescence and electron microscopic immunohistochemistry. EM2-immunoreactive (-ir) afferents directly contacted with the spinoparabrachial PNs in lamina I of the SDH. Immunoelectron microscopy (IEM) were used to confirm that these contacts were synaptic connections. It was also observed that EM2-ir axon terminals contacting with spinoparabrachial PNs in lamina I contained MOR, substance P (SP) and vesicular glutamate transporter 2 (VGLUT2). In lamina II, MOR-ir neurons were observed to receive direct contacts from EM2-ir varicosities. The synaptic connections among EM2, MOR, SP, VGLUT2, and the spinoparabrachial PNs were also confirmed by IEM. In sum, our results supply morphological evidences for the analgesic effects of EM2 on the spinoparabrachial PNs in the SDH.
Collapse
Affiliation(s)
- Jun-Bin Yin
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China,Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China,State Key Laboratory of Military Medical Psychology, The Fourth Military Medical University, Xi’an, China
| | - Ya-Cheng Lu
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Fei Li
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Ting Zhang
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Tan Ding
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Huai-Qiang Hu
- Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China,State Key Laboratory of Military Medical Psychology, The Fourth Military Medical University, Xi’an, China
| | - Ying-Biao Chen
- Department of Human Anatomy, Fujian Health College, Fuzhou, China
| | - Hong-Wei Guo
- Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China
| | - Zhen-Zhen Kou
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Ming-Ming Zhang
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Jun Yuan
- Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China
| | - Tao Chen
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Hui Li
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Bing-Zhen Cao
- Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China
| | - Yu-Lin Dong
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China,Yu-Lin Dong,
| | - Yun-Qing Li
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China,*Correspondence: Yun-Qing Li,
| |
Collapse
|
5
|
Jin D, Chen H, Huang Y, Chen SR, Pan HL. δ-Opioid receptors in primary sensory neurons tonically restrain nociceptive input in chronic pain but do not enhance morphine analgesic tolerance. Neuropharmacology 2022; 217:109202. [PMID: 35917874 DOI: 10.1016/j.neuropharm.2022.109202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
δ-Opioid receptors (DORs, encoded by the Oprd1 gene) are expressed throughout the peripheral and central nervous system, and DOR stimulation reduces nociception. Previous studies suggest that DORs promote the development of analgesic tolerance of μ-opioid receptor (MOR) agonists. It is uncertain whether DORs expressed in primary sensory neurons are involved in regulating chronic pain and MOR agonist-induced tolerance. In this study, we generated Oprd1 conditional knockout (Oprd1-cKO) mice by crossing Advillin-Cre mice with Oprd1-floxed mice. DOR expression in the dorsal root ganglion was diminished in Oprd1-cKO mice. Systemic or intrathecal injection of the DOR agonist SNC-80 produced analgesia in wild-type (WT), but not Oprd1-cKO, mice. In contrast, intracerebroventricular injection of SNC-80 produced a similar analgesic effect in WT and Oprd1-cKO mice. However, morphine-induced analgesia, hyperalgesia, or analgesic tolerance did not differ between WT and Oprd1-cKO mice. Compared with WT mice, Oprd1-cKO mice showed increased mechanical and heat hypersensitivity after nerve injury or tissue inflammation. Furthermore, blocking DORs with naltrindole increased nociceptive sensitivity induced by nerve injury or tissue inflammation in WT, but not Oprd1-cKO, mice. In addition, naltrindole potentiated glutamatergic input from primary afferents to spinal dorsal horn neurons increased by nerve injury or CFA in WT mice; this effect was absent in Oprd1-cKO mice. Our findings indicate that DORs in primary sensory neurons are critically involved in the analgesic effect of DOR agonists but not morphine-induced analgesic tolerance. Presynaptic DORs at primary afferent central terminals constitutively inhibit inflammatory and neuropathic pain by restraining glutamatergic input to spinal dorsal horn neurons.
Collapse
Affiliation(s)
- Daozhong Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Otsu Y, Aubrey KR. Kappa opioids inhibit the GABA/glycine terminals of rostral ventromedial medulla projections in the superficial dorsal horn of the spinal cord. J Physiol 2022; 600:4187-4205. [PMID: 35979937 PMCID: PMC9540474 DOI: 10.1113/jp283021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Descending projections from neurons in the rostral ventromedial medulla (RVM) make synapses within the superficial dorsal horn (SDH) of the spinal cord that are involved in the modulation of nociception, the development of chronic pain and itch, and an important analgesic target for opioids. This projection is primarily inhibitory, but the relative contribution of GABAergic and glycinergic transmission is unknown and there is limited knowledge about the SDH neurons targeted. Additionally, the details of how spinal opioids mediate analgesia remain unclear, and no study has investigated the opioid modulation of this synapse. We address this using ex vivo optogenetic stimulation of RVM fibres in conjunction with whole-cell patch-clamp recordings from the SDH in spinal cord slices. We demonstrate that both GABAergic and glycinergic neurotransmission is employed and show that SDH target neurons have diverse morphological and electrical properties, consistent with both inhibitory and excitatory interneurons. Then, we describe a subtype of SDH neurons that have a glycine-dominant input, indicating that the quality of descending inhibition across cells is not uniform. Finally, we discovered that the kappa-opioid receptor agonist U69593 presynaptically suppressed most RVM-SDH synapses. By contrast, the mu-opioid receptor agonist DAMGO acted both pre- and post-synaptically at a subset of synapses, and the delta-opioid receptor agonist deltorphin II had little effect. These data provide important mechanistic information about a descending control pathway that regulates spinal circuits. This information is necessary to understand how sensory inputs are shaped and develop more reliable and effective alternatives to current opioid analgesics. Abstract figure legend We combined ex vivo optogenetic stimulation of RVM fibres with whole cell electrophysiology of SDH neurons to investigate the final synapse in a key descending pain modulatory pathway. We demonstrate that both glycine and GABA mediate signalling at the RVM-SDH synapse, that the SDH targets of RVM projections have diverse electrical and morphological characteristics, and that presynaptic inhibition is directly and consistently achieved by kappa opioid agonists. Opioid receptors shown are sized relative to the proportion of neurons that responded to its specific agonists (81 and 84percent of DF and non-DF neurons responded to kappa opioid receptor agonists, respectively. Responses that occurred in <255 percentage of neurons are not indicated here). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yo Otsu
- Pain Management Research, Kolling Institute at the Royal North Shore Hospital NSLHD, St Leonard, NSW, 2065, Australia.,Faculty of Medicine and Health, Sydney Pain Consortium, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Karin R Aubrey
- Pain Management Research, Kolling Institute at the Royal North Shore Hospital NSLHD, St Leonard, NSW, 2065, Australia.,Faculty of Medicine and Health, Sydney Pain Consortium, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
7
|
Omura CM, Lüdtke DD, Horewicz VV, Fernandes PF, Galassi TDO, Salgado ASI, Palandi J, Baldança HDS, Bittencourt EB, Mack JM, Seim LA, Martins DF, Bobinski F. Decrease of IL-1β and TNF in the Spinal Cord Mediates Analgesia Produced by Ankle Joint Mobilization in Complete Freund Adjuvant-Induced Inflammation Mice Model. Front Physiol 2022; 12:816624. [PMID: 35095573 PMCID: PMC8795789 DOI: 10.3389/fphys.2021.816624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 01/26/2023] Open
Abstract
Objective This study aims to investigate the effects of ankle joint mobilization (AJM) on mechanical hyperalgesia and peripheral and central inflammatory biomarkers after intraplantar (i.pl.) Complete Freund’s Adjuvant (CFA)-induced inflammation. Methods Male Swiss mice were randomly assigned to 3 groups (n = 7): Saline/Sham, CFA/Sham, and CFA/AJM. Five AJM sessions were carried out at 6, 24, 48, 72, and 96 h after CFA injection. von Frey test was used to assess mechanical hyperalgesia. Tissues from paw skin, paw muscle and spinal cord were collected to measure pro-inflammatory (TNF, IL-1β) and anti-inflammatory cytokines (IL-4, IL-10, and TGF-β1) by ELISA. The macrophage phenotype at the inflammation site was evaluated by Western blotting assay using the Nitric Oxide Synthase 2 (NOS 2) and Arginase-1 immunocontent to identify M1 and M2 macrophages, respectively. Results Our results confirm a consistent analgesic effect of AJM following the second treatment session. AJM did not change cytokines levels at the inflammatory site, although it promoted a reduction in M2 macrophages. Also, there was a reduction in the levels of pro-inflammatory cytokines IL-1β and TNF in the spinal cord. Conclusion Taken together, the results confirm the anti-hyperalgesic effect of AJM and suggest a central neuroimmunomodulatory effect in a model of persistent inflammation targeting the pro-inflammatory cytokines IL-1β and TNF.
Collapse
Affiliation(s)
- Carlos Minoru Omura
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
| | - Daniela Dero Lüdtke
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
- Faculty of Physical Therapy, University of Southern Santa Catarina, Palhoça, Brazil
| | - Verônica Vargas Horewicz
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
| | - Paula Franson Fernandes
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
| | - Taynah de Oliveira Galassi
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
| | | | - Juliete Palandi
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
- Laboratory of Experimentation in Neuropathology (LEN), Graduate Program in Neuroscience, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Heloiza dos Santos Baldança
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
- Faculty of Physical Therapy, University of Southern Santa Catarina, Palhoça, Brazil
| | | | - Josiel Mileno Mack
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
- Graduate Program in Medical Sciences, Department of Medical Clinic, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
- Faculty of Medicine, University of Southern Santa Catarina, Palhoça, Brazil
| | - Lynsey A. Seim
- Department of Hospital Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
- *Correspondence: Franciane Bobinski,
| |
Collapse
|
8
|
Wang Y, Qin D, Guo Z, Shi F, Cannella N, Ciccocioppo R, Li H. Research progress on the potential novel analgesic BU08028. Eur J Pharmacol 2022; 914:174678. [PMID: 34875275 DOI: 10.1016/j.ejphar.2021.174678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022]
Abstract
Pain is a common symptom accompanying several clinical conditions and causes serious distress to patients. Addressing pain management is an important aspect of disease treatment, including cancer therapy. Opioid analgesics used to manage pain in human and veterinary medicine have been associated with substance dependence and other adverse effects, thereby limiting their application. Thus, the development of opioid analgesics with good safety profiles with minimal adverse effects and no addictive effects, is presently the focus of pain research. As a new potential analgesic, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028) has fewer adverse effects than other analgesics and is expected to be a safer alternative. In this review, we discuss the development of the opioid analog BU08028 and summarize its analgesic effects and biological characteristics, including efficiency, safety, and tolerance. Furthermore, we elaborate on studies showing the bifunctional effect of BU08028, which targets both mu opioid peptide and nociceptin-orphanin FQ peptide receptors, as well as the unique advantages of using BU08028 over single-target opioid agonists. Previous studies have suggested that BU08028 can not only weaken the reward and abuse effects of opioids and other drugs, but also enhance the anti-nociceptive effect of the mu opioid peptide receptors, making it a potent analgesic. Besides, we describe studies suggesting that BU08028 inhibits the effects of alcohol, making it a candidate drug for the management of alcohol addiction. Our review suggests that BU08028 is a potential novel medicine for managing pain and addiction.
Collapse
Affiliation(s)
- Ya Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China
| | - Di Qin
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Zhihua Guo
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China
| | - Fuqiang Shi
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032, Italy
| | - Hongwu Li
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China.
| |
Collapse
|
9
|
Gerum M, Simonin F. Behavioral characterization, potential clinical relevance and mechanisms of latent pain sensitization. Pharmacol Ther 2021; 233:108032. [PMID: 34763010 DOI: 10.1016/j.pharmthera.2021.108032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Chronic pain is a debilitating disorder that can occur as painful episodes that alternates with bouts of remission and occurs despite healing of the primary insult. Those episodes are often triggered by stressful events. In the last decades, a similar situation has been evidenced in a wide variety of rodent models (including inflammatory pain, neuropathy and opioid-induced hyperalgesia) where animals develop a chronic latent hyperalgesia that silently persists after behavioral signs of pain resolution. This state, referred as latent pain sensitization, is due to the compensatory activation of antinociceptive systems, such as the opioid system or NPY and its receptors. A transitory phase of hyperalgesia can then be reinstated by pharmacological or genetic blockade of these antinociceptive systems or by submitting animals to acute stress. Those observations reveal that there is a constant endogenous analgesia responsible for chronic pain inhibition that might paradoxically contribute to maintain this maladaptive state and could then participate to the transition from acute to chronic pain. Thus, demonstration of the existence of this phenomenon in humans and a better understanding of the mechanisms by which latent pain sensitization develops and maintains over long periods of time will be of particular interest to help identifying new therapeutic strategies and targets for chronic pain treatment. The present review aims to recapitulate behavioral expression, potential clinical relevance, cellular mechanisms and intracellular signaling pathways involved so far in latent pain sensitization.
Collapse
Affiliation(s)
- Manon Gerum
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Illkirch-Graffenstaden, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, Illkirch-Graffenstaden, France.
| |
Collapse
|
10
|
Zhang 张广芬 GF, Chen 陈少瑞 SR, Jin 金道忠 D, Huang 黄玉莹 Y, Chen 陈红 H, Pan 潘惠麟 HL. α2δ-1 Upregulation in Primary Sensory Neurons Promotes NMDA Receptor-Mediated Glutamatergic Input in Resiniferatoxin-Induced Neuropathy. J Neurosci 2021; 41:5963-5978. [PMID: 34252037 PMCID: PMC8265797 DOI: 10.1523/jneurosci.0303-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
Systemic treatment with resiniferatoxin (RTX) induces small-fiber sensory neuropathy by damaging TRPV1-expressing primary sensory neurons and causes distinct thermal sensory impairment and tactile allodynia, which resemble the unique clinical features of postherpetic neuralgia. However, the synaptic plasticity associated with RTX-induced tactile allodynia remains unknown. In this study, we found that RTX-induced neuropathy is associated with α2δ-1 upregulation in the dorsal root ganglion (DRG) and increased physical interaction between α2δ-1 and GluN1 in the spinal cord synaptosomes. RNAscope in situ hybridization showed that RTX treatment significantly increased α2δ-1 expression in DRG neurons labeled with calcitonin gene-related peptide, isolectin B4, NF200, and tyrosine hydroxylase. Electrophysiological recordings revealed that RTX treatment augmented the frequency of miniature excitatory postsynaptic currents (mEPSCs) and the amplitude of evoked EPSCs in spinal dorsal horn neurons, and these effects were reversed by blocking NMDA receptors with AP-5. Inhibiting α2δ-1 with gabapentin, genetically ablating α2δ-1, or targeting α2δ-1-bound NMDA receptors with α2δ-1Tat peptide largely normalized the baseline frequency of mEPSCs and the amplitude of evoked EPSCs potentiated by RTX treatment. Furthermore, systemic treatment with memantine or gabapentin and intrathecal injection of AP-5 or Tat-fused α2δ-1 C terminus peptide reversed allodynia in RTX-treated rats and mice. In addition, RTX-induced tactile allodynia was attenuated in α2δ-1 knock-out mice and in mice in which GluN1 was conditionally knocked out in DRG neurons. Collectively, our findings indicate that α2δ-1-bound NMDA receptors at presynaptic terminals of sprouting myelinated afferent nerves contribute to RTX-induced potentiation of nociceptive input to the spinal cord and tactile allodynia.SIGNIFICANCE STATEMENT Postherpetic neuralgia (PHN), associated with shingles, is a distinct form of neuropathic pain commonly seen in elderly and immunocompromised patients. The synaptic plasticity underlying touch-induced pain hypersensitivity in PHN remains unclear. Using a nonviral animal model of PHN, we found that glutamatergic input from primary sensory nerves to the spinal cord is increased via tonic activation of glutamate NMDA receptors. Also, we showed that α2δ-1 (encoded by Cacna2d1), originally considered a calcium channel subunit, serves as an auxiliary protein that promotes activation of presynaptic NMDA receptors and pain hypersensitivity. This new information advances our understanding of the molecular mechanism underlying PHN and suggests new strategies for treating this painful condition.
Collapse
Affiliation(s)
- Guang-Fen Zhang 张广芬
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- Department of Anesthesiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | - Shao-Rui Chen 陈少瑞
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daozhong Jin 金道忠
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuying Huang 黄玉莹
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen 陈红
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan 潘惠麟
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
11
|
Ma L, Peng S, Wei J, Zhao M, Ahmad KA, Chen J, Wang YX. Spinal microglial β-endorphin signaling mediates IL-10 and exenatide-induced inhibition of synaptic plasticity in neuropathic pain. CNS Neurosci Ther 2021; 27:1157-1172. [PMID: 34111331 PMCID: PMC8446220 DOI: 10.1111/cns.13694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
AIM This study aimed to investigate the regulation of pain hypersensitivity induced by the spinal synaptic transmission mechanisms underlying interleukin (IL)-10 and glucagon-like peptide 1 receptor (GLP-1R) agonist exenatide-induced pain anti-hypersensitivity in neuropathic rats through spinal nerve ligations. METHODS Neuropathic pain model was established by spinal nerve ligation of L5/L6 and verified by electrophysiological recording and immunofluorescence staining. Microglial expression of β-endorphin through autocrine IL-10- and exenatide-induced inhibition of glutamatergic transmission were performed by behavioral tests coupled with whole-cell recording of miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) through application of endogenous and exogenous IL-10 and β-endorphin. RESULTS Intrathecal injections of IL-10, exenatide, and the μ-opioid receptor (MOR) agonists β-endorphin and DAMGO inhibited thermal hyperalgesia and mechanical allodynia in neuropathic rats. Whole-cell recordings of bath application of exenatide, IL-10, and β-endorphin showed similarly suppressed enhanced frequency and amplitude of the mEPSCs in the spinal dorsal horn neurons of laminae II, but did not reduce the frequency and amplitude of mIPSCs in neuropathic rats. The inhibitory effects of IL-10 and exenatide on pain hypersensitive behaviors and spinal synaptic plasticity were totally blocked by pretreatment of IL-10 antibody, β-endorphin antiserum, and MOR antagonist CTAP. In addition, the microglial metabolic inhibitor minocycline blocked the inhibitory effects of IL-10 and exenatide but not β-endorphin on spinal synaptic plasticity. CONCLUSION This suggests that spinal microglial expression of β-endorphin mediates IL-10- and exenatide-induced inhibition of glutamatergic transmission and pain hypersensitivity via presynaptic and postsynaptic MORs in spinal dorsal horn.
Collapse
Affiliation(s)
- Le Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai Mental Health Center, Shanghai, China
| | - Shiyu Peng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai Mental Health Center, Shanghai, China.,School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, China
| | - Jinbao Wei
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Mengjing Zhao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Jinghong Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai Mental Health Center, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
12
|
Bessière B, Iris F, Milet A, Beopoulos A, Billoet C, Farjot G. A new mechanistic approach for the treatment of chronic neuropathic pain with nitrous oxide integrated from a systems biology narrative review. Med Gas Res 2021; 11:34-41. [PMID: 33642336 PMCID: PMC8103977 DOI: 10.4103/2045-9912.310058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
The limitations of the currently available treatments for chronic neuropathic pain highlight the need for safer and more effective alternatives. The authors carried out a focused review using a systems biology approach to integrate the complex mechanisms of nociception and neuropathic pain, and to decipher the effects of nitrous oxide (N2O) on those pathways, beyond the known effect of N2O on N-methyl-D-aspartate receptors. This review identified a number of potential mechanisms by which N2O could impact the processes involved in peripheral and central sensitization. In the ascending pathway, the effects of N2O include activating TWIK-related K+ channel 1 potassium channels on first-order neurons, blocking voltage-dependent calcium channels to attenuate neuronal excitability, attenuating postsynaptic glutamatergic receptor activation, and possibly blocking voltage-dependent sodium channels. In the descending pathway, N2O induces the release of endogenous opioid ligands and stimulates norepinephrine release. In addition, N2O may mediate epigenetic changes by inhibiting methionine synthase, a key enzyme involved in DNA and RNA methylation. This could explain why this short-acting analgesic has shown long-lasting anti-pain sensitization effects in animal models of chronic pain. These new hypotheses support the rationale for investigating N2O, either alone or in combination with other analgesics, for the management of chronic neuropathic pain.
Collapse
Affiliation(s)
- Baptiste Bessière
- Air Liquide Santé International, Paris Innovation Campus, Jouy-en-Josas, France
| | | | - Aude Milet
- Air Liquide Santé International, Paris Innovation Campus, Jouy-en-Josas, France
| | | | - Catherine Billoet
- Air Liquide Santé International, Paris Innovation Campus, Jouy-en-Josas, France
| | - Géraldine Farjot
- Air Liquide Santé International, Paris Innovation Campus, Jouy-en-Josas, France
| |
Collapse
|
13
|
Ohashi N, Kohno T. Analgesic Effect of Acetaminophen: A Review of Known and Novel Mechanisms of Action. Front Pharmacol 2020; 11:580289. [PMID: 33328986 PMCID: PMC7734311 DOI: 10.3389/fphar.2020.580289] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
Acetaminophen is one of the most commonly used analgesic agents for treating acute and chronic pain. However, its metabolism is complex, and its analgesic mechanisms have not been completely understood. Previously, it was believed that acetaminophen induces analgesia by inhibiting cyclooxygenase enzymes; however, it has been considered recently that the main analgesic mechanism of acetaminophen is its metabolization to N-acylphenolamine (AM404), which then acts on the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid 1 receptors in the brain. We also recently revealed that the acetaminophen metabolite AM404 directly induces analgesia via TRPV1 receptors on terminals of C-fibers in the spinal dorsal horn. It is known that, similar to the brain, the spinal dorsal horn is critical to pain pathways and modulates nociceptive transmission. Therefore, acetaminophen induces analgesia by acting not only on the brain but also the spinal cord. In addition, acetaminophen is not considered to possess any anti-inflammatory activity because of its weak inhibition of cyclooxygenase (COX). However, we also revealed that AM404 induces analgesia via TRPV1 receptors on the spinal dorsal horn in an inflammatory pain rat model, and these analgesic effects were stronger in the model than in naïve rats. The purpose of this review was to summarize the previous and new issues related to the analgesic mechanisms of acetaminophen. We believe that it will allow clinicians to consider new pain management techniques involving acetaminophen.
Collapse
Affiliation(s)
- Nobuko Ohashi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuro Kohno
- Department of Anesthesiology and Intensive Care Medicine, International University of Health and Welfare School of Medicine, Narita, Japan
| |
Collapse
|
14
|
Lisowska B, Jakubiak J, Siewruk K, Sady M, Kosson D. Which idea is better with regard to immune response? Opioid anesthesia or opioid free anesthesia. J Inflamm Res 2020; 13:859-869. [PMID: 33177861 PMCID: PMC7652233 DOI: 10.2147/jir.s275986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The stress of surgery is characterized by an inflammatory response with immune suppression resulting from many factors, including the type of surgery and the kind of anesthesia, linked with the drugs that are used and the underlying disease of the patient. The trauma of surgery triggers a cascade of reactions involving the immune response and nociception. As strong analgesics, opioids provide the analgesic component of general anesthesia with bi-directional effect on the immune system. Opioids influence almost all aspects of the immune response in regards to leukocytes, macrophages, mast cells, lymphocytes, and NK cells. The suppressive effect of opioids on the immune system is limiting their use, especially in patients with impaired immune response, so the possibility of using multimodal anesthesia without opioids, known as opioid-free anesthesia (OFA), is gaining more and more sympathizers. The idea of OFA is to eliminate opioid analgesia in the treatment of acute pain and to replace it with drugs from other groups that are assumed to have a comparable analgesic effect without affecting the immune system. Here, we present a review on the impact of anesthesia, with and without the use of opioids, on the immune response to surgical stress.
Collapse
Affiliation(s)
- Barbara Lisowska
- Department Anesthesiology and Intensive Medical Care, National Geriatrics, Rheumatology and Rehabilitation Institute, Warsaw 02-637, Poland
| | - Jakub Jakubiak
- Department of Anesthesiology and Intensive Care, John Paul II Western Hospital, Grodzisk Mazowiecki 05-825, Poland
| | - Katarzyna Siewruk
- Faculty of Veterinary Medicine, Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences, Warsaw 02-797, Poland
| | - Maria Sady
- Faculty of Veterinary Medicine, Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences, Warsaw 02-797, Poland
| | - Dariusz Kosson
- Department of Anaesthesiology and Intensive Care, Division of Teaching, Medical University of Warsaw, Warsaw 02-005, Poland
| |
Collapse
|
15
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Chu WG, Wang FD, Sun ZC, Ma SB, Wang X, Han WJ, Wang F, Bai ZT, Wu SX, Freichel M, Xie RG, Luo C. TRPC1/4/5 channels contribute to morphine-induced analgesic tolerance and hyperalgesia by enhancing spinal synaptic potentiation and structural plasticity. FASEB J 2020; 34:8526-8543. [PMID: 32359120 DOI: 10.1096/fj.202000154rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/10/2024]
Abstract
Opioid analgesics remain the mainstay for managing intractable chronic pain, but their use is limited by detrimental side effects such as analgesic tolerance and hyperalgesia. Calcium-dependent synaptic plasticity is a key determinant in opiates tolerance and hyperalgesia. However, the exact substrates for this calcium-dependent synaptic plasticity in mediating these maladaptive processes are largely unknown. Canonical transient receptor potential 1, 4, and 5 (TRPC1, 4, 5) proteins assemble into heteromultimeric nonselective cation channels with high Ca2+ permeability and influence various neuronal functions. However, whether and how TRPC1/4/5 channels contribute to the development of opiates tolerance and hyperalgesia remains elusive. Here, we show that TRPC1/4/5 channels contribute to the generation of morphine tolerance and hyperalgesia. Chronic morphine exposure leads to upregulation of TRPC1/4/5 channels in the spinal cord. Spinally expressed TRPC1, TPRC4, and TRPC5 are required for chronic morphine-induced synaptic long-term potentiation (LTP) as well as remodeling of synaptic spines in the dorsal horn, thereby orchestrating functional and structural plasticity during the course of morphine-induced hyperalgesia and tolerance. These effects are attributed to TRPC1/4/5-mediated Ca2+ elevation in the spinal dorsal horn induced by chronic morphine treatment. This study identifies TRPC1/4/5 channels as a promising novel target to prevent the unwanted morphine tolerance and hyperalgesia.
Collapse
Affiliation(s)
- Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fu-Dong Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- The Fourth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhi-Chuan Sun
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xu Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Research Center for Resource Polypeptide Drugs & College of Life Sciences, Yanan University, Yanan, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhan-Tao Bai
- Research Center for Resource Polypeptide Drugs & College of Life Sciences, Yanan University, Yanan, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
On the Role of Peripheral Sensory and Gut Mu Opioid Receptors: Peripheral Analgesia and Tolerance. Molecules 2020; 25:molecules25112473. [PMID: 32466522 PMCID: PMC7321260 DOI: 10.3390/molecules25112473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence on the role of peripheral µ-opioid receptors (MORs) in analgesia and analgesic tolerance. Opioid analgesics are the mainstay in the management of moderate to severe pain, and their efficacy in the alleviation of pain is well recognized. Unfortunately, chronic treatment with opioid analgesics induces central analgesic tolerance, thus limiting their clinical usefulness. Numerous molecular mechanisms, including receptor desensitization, G-protein decoupling, β-arrestin recruitment, and alterations in the expression of peripheral MORs and microbiota have been postulated to contribute to the development of opioid analgesic tolerance. However, these studies are largely focused on central opioid analgesia and tolerance. Accumulated literature supports that peripheral MORs mediate analgesia, but controversial results on the development of peripheral opioid receptors-mediated analgesic tolerance are reported. In this review, we offer evidence on the consequence of the activation of peripheral MORs in analgesia and analgesic tolerance, as well as approaches that enhance analgesic efficacy and decrease the development of tolerance to opioids at the peripheral sites. We have also addressed the advantages and drawbacks of the activation of peripheral MORs on the sensory neurons and gut (leading to dysbiosis) on the development of central and peripheral analgesic tolerance.
Collapse
|
18
|
Inhibition of Fast Nerve Conduction Produced by Analgesics and Analgesic Adjuvants-Possible Involvement in Pain Alleviation. Pharmaceuticals (Basel) 2020; 13:ph13040062. [PMID: 32260535 PMCID: PMC7243109 DOI: 10.3390/ph13040062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Nociceptive information is transmitted from the periphery to the cerebral cortex mainly by action potential (AP) conduction in nerve fibers and chemical transmission at synapses. Although this nociceptive transmission is largely inhibited at synapses by analgesics and their adjuvants, it is possible that the antinociceptive drugs inhibit nerve AP conduction, contributing to their antinociceptive effects. Many of the drugs are reported to inhibit the nerve conduction of AP and voltage-gated Na+ and K+ channels involved in its production. Compound action potential (CAP) is a useful measure to know whether drugs act on nerve AP conduction. Clinically-used analgesics and analgesic adjuvants (opioids, non-steroidal anti-inflammatory drugs, 2-adrenoceptor agonists, antiepileptics, antidepressants and local anesthetics) were found to inhibit fast-conducting CAPs recorded from the frog sciatic nerve by using the air-gap method. Similar actions were produced by antinociceptive plant-derived chemicals. Their inhibitory actions depended on the concentrations and chemical structures of the drugs. This review article will mention the inhibitory actions of the antinociceptive compounds on CAPs in frog and mammalian peripheral (particularly, sciatic) nerves and on voltage-gated Na+ and K+ channels involved in AP production. Nerve AP conduction inhibition produced by analgesics and analgesic adjuvants is suggested to contribute to at least a part of their antinociceptive effects.
Collapse
|
19
|
Nguyen HTT, Jang SH, Park SJ, Cho DH, Han SK. Potentiation of the Glycine Response by Bisphenol A, an Endocrine Disrupter, on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice. Chem Res Toxicol 2020; 33:782-788. [PMID: 31997638 DOI: 10.1021/acs.chemrestox.9b00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lamina II, also called the substantia gelatinosa (SG) of the medullary dorsal horn (the trigeminal subnucleus caudalis, Vc), is thought to play an essential role in the control of orofacial nociception because it receives the nociceptive signals from primary afferents, including thin myelinated Aδ- and unmyelinated C-fibers. Glycine, the main inhibitory neurotransmitter in the central nervous system, plays an essential role in the transference of nociceptive messages from the periphery to higher brain regions. Bisphenol A (BPA) is reported to alter the morphological and functional characteristics of neuronal cells and to be an effector of a great number of ion channels in the central nervous system. However, the electrophysiological effects of BPA on the glycine receptors of SG neurons in the Vc have not been well studied. Therefore, in this study, we used the whole-cell patch-clamp technique to determine the effect of BPA on the glycine response in SG neurons of the Vc in male mice. We demonstrated that in early neonatal mice (0-3 postnatal day mice), BPA did not affect the glycine-induced inward current. However, in the juvenile and adult groups, BPA enhanced the glycine-mediated responses. Heteromeric glycine receptors were involved in the modulation by BPA. The interaction between BPA and glycine appears to have a significant role in regulating transmission in the nociceptive pathway.
Collapse
Affiliation(s)
- Hoang Thi Thanh Nguyen
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea.,Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Seon Hui Jang
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute and Institute for Medical Sciences, Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
20
|
Bai Y, Li MY, Ma JB, Li JN, Teng XY, Chen YB, Yin JB, Huang J, Chen J, Zhang T, Qiu XT, Chen T, Li H, Wu SX, Peng YN, Li X, Kou ZZ, Li YQ. Enkephalinergic Circuit Involved in Nociceptive Modulation in the Spinal Dorsal Horn. Neuroscience 2020; 429:78-91. [PMID: 31917345 DOI: 10.1016/j.neuroscience.2019.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022]
Abstract
Enkephalin (ENK) has been implicated in pain modulation within the spinal dorsal horn (SDH). Revealing the mechanisms underlying ENK analgesia entails the anatomical and functional knowledge of spinal ENK-ergic circuits. Herein, we combined morphological and electrophysiological studies to unravel local ENK-ergic circuitry within the SDH. First, the distribution pattern of spinal ENK-ergic neurons was observed in adult preproenkephalin (PPE)-GFP knock-in mice. Next, the retrograde tracer tetramethylrhodamine (TMR) or horseradish peroxidase (HRP) was injected into the parabrachial nucleus (PBN) in PPE-GFP mice. Immunofluorescent staining showed I-isolectin B4 (IB4) labeled non-peptidergic afferents were in close apposition to TMR-labeled PBN-projecting neurons within lamina I as well as PPE-immunoreactivity (-ir) neurons within lamina II. Some TMR-labeled neurons were simultaneously in close association with both IB4 and PPE-ir terminals. Synaptic connections of these components were further confirmed by electron microscopy. Finally, TMR was injected into the PBN in adult C57BL/6 mice. Whole-cell patch recordings showed that δ-opioid receptor (DOR) agonist, [D-Pen2,5]-enkephalin (DPDPE, 1 µM), significantly reduced the frequency of miniature excitatory postsynaptic current (mEPSC) and decreased the activity of TMR-labeled neurons. In conclusion, spinal ENKergic neurons receive direct excitatory inputs from primary afferents, which might be directly recruited to release ENK under the condition of noxious stimuli; ENK could inhibit the glutamatergic transmission towards projecting neurons via presynaptic and postsynaptic DORs. These morphological and functional evidence may explain the mechanisms underlying the analgesic effects exerted by ENK within the SDH.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Meng-Ying Li
- Department of Endocrinology and Metabolism, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiang-Bo Ma
- Department of Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Yu Teng
- Department of Anatomy, Guangxi Medical University, Nanning, China
| | - Ying-Biao Chen
- Department of Anatomy, Fujian Health College, Fuzhou, China
| | - Jun-Bin Yin
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jing Huang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Sheng-Xi Wu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, China
| | - Ya-Nan Peng
- Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou, China
| | - Xiang Li
- Department of Orthopaedics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China; Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou, China.
| |
Collapse
|
21
|
μ-Opioid receptors in primary sensory neurons are involved in supraspinal opioid analgesia. Brain Res 2019; 1729:146623. [PMID: 31881186 DOI: 10.1016/j.brainres.2019.146623] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 11/21/2022]
Abstract
Both inhibiting ascending nociceptive transmission and activating descending inhibition are involved in the opioid analgesic effect. The spinal dorsal horn is a critical site for modulating nociceptive transmission by descending pathways elicited by opioids in the brain. μ-Opioid receptors (MORs, encoded by Oprm1) are highly expressed in primary sensory neurons and their central terminals in the spinal cord. In the present study, we tested the hypothesis that MORs expressed in primary sensory neurons contribute to the descending inhibition and supraspinal analgesic effect induced by centrally administered opioids. We generated Oprm1 conditional knockout (Oprm1-cKO) mice by crossing AdvillinCre/+ mice with Oprm1flox/flox mice. Immunocytochemical labeling in Oprm1-cKO mice showed that MORs are completely ablated from primary sensory neurons and are profoundly reduced in the superficial spinal dorsal horn. Intracerebroventricular injection of morphine or fentanyl produced a potent analgesic effect in wild-type mice, but such an effect was significantly attenuated in Oprm1-cKO mice. Furthermore, the analgesic effect produced by morphine or fentanyl microinjected into the periaqueductal gray was significantly greater in wild-type mice than in Oprm1-cKO mice. Blocking MORs at the spinal cord level diminished the analgesic effect of morphine and fentanyl microinjected into the periaqueductal gray in both groups of mice. Our findings indicate that MORs expressed at primary afferent terminals in the spinal cord contribute to the supraspinal opioid analgesic effect. These presynaptic MORs in the spinal cord may serve as an interface between ascending inhibition and descending modulation that are involved in opioid analgesia.
Collapse
|
22
|
Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II-Comparison with Those of Other Endogenous Pain Modulators. Pharmaceuticals (Basel) 2019; 12:ph12030136. [PMID: 31527474 PMCID: PMC6789548 DOI: 10.3390/ph12030136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 01/23/2023] Open
Abstract
Much evidence indicates that hypothalamus-derived neuropeptides, oxytocin, orexins A and B, inhibit nociceptive transmission in the rat spinal dorsal horn. In order to unveil cellular mechanisms for this antinociception, the effects of the neuropeptides on synaptic transmission were examined in spinal lamina II neurons that play a crucial role in antinociception produced by various analgesics by using the whole-cell patch-clamp technique and adult rat spinal cord slices. Oxytocin had no effect on glutamatergic excitatory transmission while producing a membrane depolarization, γ-aminobutyric acid (GABA)-ergic and glycinergic spontaneous inhibitory transmission enhancement. On the other hand, orexins A and B produced a membrane depolarization and/or a presynaptic spontaneous excitatory transmission enhancement. Like oxytocin, orexin A enhanced both GABAergic and glycinergic transmission, whereas orexin B facilitated glycinergic but not GABAergic transmission. These inhibitory transmission enhancements were due to action potential production. Oxytocin, orexins A and B activities were mediated by oxytocin, orexin-1 and orexin-2 receptors, respectively. This review article will mention cellular mechanisms for antinociception produced by oxytocin, orexins A and B, and discuss similarity and difference in antinociceptive mechanisms among the hypothalamic neuropeptides and other endogenous pain modulators (opioids, nociceptin, adenosine, adenosine 5’-triphosphate (ATP), noradrenaline, serotonin, dopamine, somatostatin, cannabinoids, galanin, substance P, bradykinin, neuropeptide Y and acetylcholine) exhibiting a change in membrane potential, excitatory or inhibitory transmission in the spinal lamina II neurons.
Collapse
|
23
|
Koga A, Fujita T, Piao LH, Nakatsuka T, Kumamoto E. Inhibition by O-desmethyltramadol of glutamatergic excitatory transmission in adult rat spinal substantia gelatinosa neurons. Mol Pain 2019; 15:1744806918824243. [PMID: 30799694 PMCID: PMC6348506 DOI: 10.1177/1744806918824243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To reveal cellular mechanisms for antinociception produced by clinically used tramadol, we investigated the effect of its metabolite O-desmethyltramadol (M1) on glutamatergic excitatory transmission in spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons. The whole-cell patch-clamp technique was applied at a holding potential of −70 mV to SG neurons of an adult rat spinal cord slice with an attached dorsal root. Under the condition where a postsynaptic action of M1 was inhibited, M1 superfused for 2 min reduced the frequency of spontaneous excitatory postsynaptic current in a manner sensitive to a μ-opioid receptor antagonist CTAP; its amplitude and also a response of SG neurons to bath-applied AMPA were hardly affected. The presynaptic effect of M1 was different from that of noradrenaline or serotonin which was examined in the same neuron. M1 also reduced by almost the same extent the peak amplitudes of monosynaptic primary-afferent Aδ-fiber and C-fiber excitatory postsynaptic currents evoked by stimulating the dorsal root. These actions of M1 persisted for >10 min after its washout. These results indicate that M1 inhibits the quantal release of L-glutamate from nerve terminals by activating μ-opioid but not noradrenaline and serotonin receptors; this inhibition is comparable in extent between monosynaptic primary-afferent Aδ-fiber and C-fiber transmissions. Considering that the SG plays a pivotal role in regulating nociceptive transmission, the present findings could contribute to at least a part of the inhibitory action of tramadol on nociceptive transmission together with its hyperpolarizing effect as reported previously.
Collapse
Affiliation(s)
- Akiko Koga
- 1 Department of Physiology, Saga Medical School, Saga, Japan.,2 Department of Anesthesiology & Critical Care Medicine, Saga Medical School, Saga, Japan
| | - Tsugumi Fujita
- 1 Department of Physiology, Saga Medical School, Saga, Japan
| | - Lian-Hua Piao
- 1 Department of Physiology, Saga Medical School, Saga, Japan
| | | | - Eiichi Kumamoto
- 1 Department of Physiology, Saga Medical School, Saga, Japan
| |
Collapse
|
24
|
Sun J, Chen SR, Chen H, Pan HL. μ-Opioid receptors in primary sensory neurons are essential for opioid analgesic effect on acute and inflammatory pain and opioid-induced hyperalgesia. J Physiol 2019; 597:1661-1675. [PMID: 30578671 DOI: 10.1113/jp277428] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS μ-Opioid receptors (MORs) are expressed peripherally and centrally, but the loci of MORs responsible for clinically relevant opioid analgesia are uncertain. Crossing Oprm1flox/flox and AdvillinCre/+ mice completely ablates MORs in dorsal root ganglion neurons and reduces the MOR expression level in the spinal cord. Presynaptic MORs expressed at primary afferent central terminals are essential for synaptic inhibition and potentiation of sensory input by opioids. MOR ablation in primary sensory neurons diminishes analgesic effects produced by systemic and intrathecal opioid agonists and abolishes chronic opioid treatment-induced hyperalgesia. These findings demonstrate a critical role of MORs expressed in primary sensory neurons in opioid analgesia and suggest new strategies to increase the efficacy and reduce adverse effects of opioids. ABSTRACT The pain and analgesic systems are complex, and the actions of systemically administered opioids may be mediated by simultaneous activation of μ-opioid receptors (MORs, encoded by the Oprm1 gene) at multiple, interacting sites. The loci of MORs and circuits responsible for systemic opioid-induced analgesia and hyperalgesia remain unclear. Previous studies using mice in which MORs are removed from Nav1.8- or TRPV1-expressing neurons provided only an incomplete and erroneous view about the role of peripheral MORs in opioid actions in vivo. In the present study, we determined the specific role of MORs expressed in primary sensory neurons in the analgesic and hyperalgesic effects produced by systemic opioid administration. We generated Oprm1 conditional knockout (Oprm1-cKO) mice in which MOR expression is completely deleted from dorsal root ganglion neurons and substantially reduced in the spinal cord, which was confirmed by immunoblotting and immunocytochemical labelling. Both opioid-induced inhibition and potentiation of primary sensory input were abrogated in Oprm1-cKO mice. Remarkably, systemically administered morphine potently inhibited acute thermal and mechanical nociception and persistent inflammatory pain in control mice but had little effect in Oprm1-cKO mice. The analgesic effect of intrathecally administered morphine was also profoundly reduced in Oprm1-cKO mice. Additionally, chronic morphine treatment-induced hyperalgesia was absent in Oprm1-cKO mice. Our findings directly challenge the notion that clinically relevant opioid analgesia is mediated mostly by centrally expressed MORs. MORs in primary sensory neurons, particularly those expressed presynaptically at the first sensory synapse in the spinal cord, are crucial for both opioid analgesia and opioid-induced hyperalgesia.
Collapse
Affiliation(s)
- Jie Sun
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Anesthesiology, The First Affiliated Hospital/Jiangsu Province Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
25
|
Zhang J, Chen SR, Chen H, Pan HL. RE1-silencing transcription factor controls the acute-to-chronic neuropathic pain transition and Chrm2 receptor gene expression in primary sensory neurons. J Biol Chem 2018; 293:19078-19091. [PMID: 30327427 DOI: 10.1074/jbc.ra118.005846] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is associated with persistent changes in gene expression in primary sensory neurons, but the underlying epigenetic mechanisms that cause these changes remain unclear. The muscarinic cholinergic receptors (mAChRs), particularly the M2 subtype (encoded by the cholinergic receptor muscarinic 2 (Chrm2) gene), are critically involved in the regulation of spinal nociceptive transmission. However, little is known about how Chrm2 expression is transcriptionally regulated. Here we show that nerve injury persistently increased the expression of RE1-silencing transcription factor (REST, also known as neuron-restrictive silencing factor [NRSF]), a gene-silencing transcription factor, in the dorsal root ganglion (DRG). Remarkably, nerve injury-induced chronic but not acute pain hypersensitivity was attenuated in mice with Rest knockout in DRG neurons. Also, siRNA-mediated Rest knockdown reversed nerve injury-induced chronic pain hypersensitivity in rats. Nerve injury persistently reduced Chrm2 expression in the DRG and diminished the analgesic effect of muscarine. The RE1 binding site on the Chrm2 promoter is required for REST-mediated Chrm2 repression, and nerve injury increased the enrichment of REST in the Chrm2 promoter in the DRG. Furthermore, Rest knockdown or genetic ablation in DRG neurons normalized Chrm2 expression and augmented muscarine's analgesic effect on neuropathic pain and fully reversed the nerve injury-induced reduction in the inhibitory effect of muscarine on glutamatergic input to spinal dorsal horn neurons. Our findings indicate that nerve injury-induced REST up-regulation in DRG neurons plays an important role in the acute-to-chronic pain transition and is essential for the transcriptional repression of Chrm2 in neuropathic pain.
Collapse
Affiliation(s)
- Jixiang Zhang
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
26
|
Rojewska E, Wawrzczak-Bargiela A, Szucs E, Benyhe S, Starnowska J, Mika J, Przewlocki R, Przewlocka B. Alterations in the Activity of Spinal and Thalamic Opioid Systems in a Mice Neuropathic Pain Model. Neuroscience 2018; 390:293-302. [DOI: 10.1016/j.neuroscience.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/29/2023]
|
27
|
Snyder LM, Chiang MC, Loeza-Alcocer E, Omori Y, Hachisuka J, Sheahan TD, Gale JR, Adelman PC, Sypek EI, Fulton SA, Friedman RL, Wright MC, Duque MG, Lee YS, Hu Z, Huang H, Cai X, Meerschaert KA, Nagarajan V, Hirai T, Scherrer G, Kaplan DH, Porreca F, Davis BM, Gold MS, Koerber HR, Ross SE. Kappa Opioid Receptor Distribution and Function in Primary Afferents. Neuron 2018; 99:1274-1288.e6. [PMID: 30236284 PMCID: PMC6300132 DOI: 10.1016/j.neuron.2018.08.044] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 02/02/2023]
Abstract
Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KOR is expressed in several populations of primary afferents: a subset of peptidergic sensory neurons, as well as low-threshold mechanoreceptors that form lanceolate or circumferential endings around hair follicles. We find that KOR acts centrally to inhibit excitatory neurotransmission from KOR-cre afferents in laminae I and III, and this effect is likely due to KOR-mediated inhibition of Ca2+ influx, which we observed in sensory neurons from both mouse and human. In the periphery, KOR signaling inhibits neurogenic inflammation and nociceptor sensitization by inflammatory mediators. Finally, peripherally restricted KOR agonists selectively reduce pain and itch behaviors, as well as mechanical hypersensitivity associated with a surgical incision. These experiments provide a rationale for the use of peripherally restricted KOR agonists for therapeutic treatment.
Collapse
Affiliation(s)
- Lindsey M Snyder
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael C Chiang
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Emanuel Loeza-Alcocer
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yu Omori
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Junichi Hachisuka
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tayler D Sheahan
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jenna R Gale
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter C Adelman
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Elizabeth I Sypek
- Department of Anesthesiology, Perioperative, and Pain Medicine, Department of Molecular and Cellular Physiology, and Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Stephanie A Fulton
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert L Friedman
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Margaret C Wright
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Melissa Giraldo Duque
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yeon Sun Lee
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Zeyu Hu
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huizhen Huang
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Tsinghua University School of Medicine Beijing, Beijing 100084, China
| | - Xiaoyun Cai
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kimberly A Meerschaert
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vidhya Nagarajan
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Toshiro Hirai
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gregory Scherrer
- Department of Anesthesiology, Perioperative, and Pain Medicine, Department of Molecular and Cellular Physiology, and Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; New York Stem Cell Foundation-Robertson Investigator, Stanford University, Palo Alto, CA 94304, USA
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85719, USA
| | - Brian M Davis
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael S Gold
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - H Richard Koerber
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Sarah E Ross
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
28
|
Kim YR, Shim HG, Kim CE, Kim SJ. The effect of µ-opioid receptor activation on GABAergic neurons in the spinal dorsal horn. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:419-425. [PMID: 29962856 PMCID: PMC6019873 DOI: 10.4196/kjpp.2018.22.4.419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022]
Abstract
The superficial dorsal horn of the spinal cord plays an important role in pain transmission and opioid activity. Several studies have demonstrated that opioids modulate pain transmission, and the activation of µ-opioid receptors (MORs) by opioids contributes to analgesic effects in the spinal cord. However, the effect of the activation of MORs on GABAergic interneurons and the contribution to the analgesic effect are much less clear. In this study, using transgenic mice, which allow the identification of GABAergic interneurons, we investigated how the activation of MORs affects the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive afferent and GABAergic interneurons. We found that a selective µ-opioid agonist, [D-Ala2, NMe-Phe4, Gly-ol]-enkephanlin (DAMGO), induced an outward current mediated by K+ channels in GABAergic interneurons. In addition, DAMGO reduced the amplitude of evoked excitatory postsynaptic currents (EPSCs) of GABAergic interneurons which receive monosynaptic inputs from primary nociceptive C fibers. Taken together, we found that DAMGO reduced the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive C fibers and GABAergic interneurons. These results suggest one possibility that suppression of GABAergic interneurons by DMAGO may reduce the inhibition on secondary GABAergic interneurons, which increase the inhibition of the secondary GABAergic interneurons to excitatory neurons in the spinal dorsal horn. In this circumstance, the sum of excitation of the entire spinal network will control the pain transmission.
Collapse
Affiliation(s)
- Yoo Rim Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Chang-Eop Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
29
|
Seino Y, Ohashi N, Kohno T. The endogenous agonist, β-alanine, activates glycine receptors in rat spinal dorsal neurons. Biochem Biophys Res Commun 2018; 500:897-901. [DOI: 10.1016/j.bbrc.2018.04.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/23/2018] [Indexed: 11/26/2022]
|
30
|
Abstract
The mechanisms by which noxious stimuli produce the sensation of pain in animals are complex. Noxious stimuli are transduced at the periphery and transmitted to the CNS, where this information is subject to considerable modulation. Finally, the information is projected to the brain where it is perceived as pain. Additionally, plasticity can develop in the pain pathway and hyperalgesia and allodynia may develop through sensitisation both peripherally and centrally. A large number of different ion channels, receptors, and cell types are involved in pain perception, and it is hoped that through a better understanding of these, new and refined treatments for pain will result.
Collapse
Affiliation(s)
- A Bell
- School of Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
31
|
Wang C, Fujita T, Kumamoto E. Orexin B Modulates Spontaneous Excitatory and Inhibitory Transmission in Lamina II Neurons of Adult Rat Spinal Cord. Neuroscience 2018; 383:114-128. [PMID: 29752983 DOI: 10.1016/j.neuroscience.2018.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/13/2018] [Accepted: 04/30/2018] [Indexed: 01/23/2023]
Abstract
Cellular mechanisms underlying the antinociceptive properties of orexins, a group of neuropeptides produced by the hypothalamus, in the spinal dorsal horn have not been thoroughly investigated. We examined how orexin B affects spontaneous synaptic transmission in lamina II neurons, which play a pivotal role in regulating nociceptive transmission, by applying a whole-cell patch-clamp technique to lamina II neurons in adult rat spinal cord slices. In 66% of neurons tested, bath-applied orexin B concentration dependently produced an inward current at -70 mV and/or increased the frequency of glutamatergic spontaneous excitatory postsynaptic current (sEPSC) without changing its amplitude, in a manner resistant to the voltage-gated Na+-channel blocker tetrodotoxin (TTX). Glycinergic spontaneous inhibitory transmission was enhanced by orexin B in a TTX-sensitive manner in 71% of neurons examined, whereas GABAergic transmission was unaffected in the majority of these neurons. These activities were inhibited by an orexin-2 receptor antagonist (JNJ10397049) but not an orexin-1 receptor antagonist (SB334867). While the effects of orexin B in orexin B-sensitive neurons were mimicked by orexin A, another hypothalamic neuropeptide, oxytocin, produced an inward current but no increase in sEPSC frequency. These results indicate that orexin B produces membrane depolarization and/or increased spontaneous l-glutamate release in lamina II neurons by activating orexin-2 receptors, leading to increased excitability of these neurons. Such increases potentially produce an action potential, resulting in enhancement of glycinergic transmission in lamina II neurons. This activity of orexin B, and possibly orexin A, may contribute to its antinociceptive effects, which are partly shared by oxytocin.
Collapse
Affiliation(s)
- Chong Wang
- Department of Physiology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Tsugumi Fujita
- Department of Physiology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Eiichi Kumamoto
- Department of Physiology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| |
Collapse
|
32
|
Effects of naftopidil on inhibitory transmission in substantia gelatinosa neurons of the rat spinal dorsal horn in vitro. J Neurol Sci 2017; 380:205-211. [DOI: 10.1016/j.jns.2017.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/07/2017] [Accepted: 07/22/2017] [Indexed: 01/14/2023]
|
33
|
Luan YH, Wang D, Yu Q, Chai XQ. Action of β-endorphin and nonsteroidal anti-inflammatory drugs, and the possible effects of nonsteroidal anti-inflammatory drugs on β-endorphin. J Clin Anesth 2017; 37:123-128. [PMID: 28235500 DOI: 10.1016/j.jclinane.2016.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/02/2016] [Accepted: 12/25/2016] [Indexed: 12/22/2022]
Abstract
This study aimed to review research on the effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on β-endorphin. NSAIDs are commonly used as anti-inflammatory and analgesic drugs. They are well known for inducing peripheral analgesia by inhibiting cyclooxygenase (COX). However, an increasing number of studies have shown that NSAIDs have an analgesic effect not only in the periphery but also at the center. It means that a central analgesic mechanism of the action of NSAIDs exists besides the peripheral mechanism, and the central mechanism likely involves β-endorphin. β-Endorphin is one of the most prominent endogenous peptides, existing in the hypophysis cerebri and hypothalamus. It plays an irreplaceable role in the central and peripheral analgesia in the human body mainly through three mechanisms including three parts, the spinal cord, the supraspinal cord, and peripheries. β-Endorphin plays an important role in the development of hyperalgesia. However, the specific signal transduction pathways between prostaglandin E2 or NSAIDs and β-endorphin are still not quite clear. Whether NSAIDs can lead to the increased content of β-endorphin in all patients after any operation needs further investigation. Further studies should determine the optimal dose when NSAIDs and opioid drugs are used together, and also explore the existence of one NSAID that has the potential to replace the traditional opioid drugs and can achieve adequate analgesia.
Collapse
Affiliation(s)
- Yuan-Hang Luan
- Department of Anesthesiology, Affiliated Provincial Hospital of Anhui Medical University, Anhui Provincial Hospital, Hefei 230001, China
| | - Di Wang
- Department of Anesthesiology, Affiliated Provincial Hospital of Anhui Medical University, Anhui Provincial Hospital, Hefei 230001, China
| | - Qi Yu
- Department of PET CT, the 105th Hospital of Chinese People's Liberation Army, Hefei 230001, China
| | - Xiao-Qing Chai
- Department of Anesthesiology, Affiliated Provincial Hospital of Anhui Medical University, Anhui Provincial Hospital, Hefei 230001, China.
| |
Collapse
|
34
|
Martins DF, Siteneski A, Ludtke DD, Dal-Secco D, Santos ARS. High-Intensity Swimming Exercise Decreases Glutamate-Induced Nociception by Activation of G-Protein-Coupled Receptors Inhibiting Phosphorylated Protein Kinase A. Mol Neurobiol 2016; 54:5620-5631. [PMID: 27624384 DOI: 10.1007/s12035-016-0095-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
Several studies in humans have reported that improved pain control is associated with exercise in a variety of painful conditions, including osteoarthritis, fibromyalgia, and neuropathic pain. Despite the growing amount of experimental data on physical exercise and nociception, the precise mechanisms through which high-intensity exercise reduces pain remain elusive. Since the glutamatergic system plays a major role in pain transmission, we firstly analyzed if physical exercise could be able to decrease glutamate-induced nociception through G-protein-coupled receptor (G-PCR) activation. The second purpose of this study was to examine the effect of exercising upon phosphorylation of protein kinase A (PKA) isoforms induced by intraplantar (i.pl.) glutamate injection in mice. Our results demonstrate that high-intensity swimming exercise decreases nociception induced by glutamate and that i.pl. or intrathecal injections of cannabinoid, opioid, and adenosine receptor antagonists, AM281, naloxone, and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), respectively, prevent this effect. Furthermore, the peripheral A1 and opioid receptors, but not CB1, are also involved in exercise's effect. We also verified that glutamate injection increases levels of phosphorylated PKA (p-PKA). High-intensity swimming exercise significantly prevented p-PKA increase. The current data show the direct involvement of the glutamatergic system on the hyponociceptive effect of high-intensity swimming exercise as well as demonstrate that physical exercise can activate multiple intracellular pathways through G-PCR activation, which share the same endogenous mechanism, i.e., inhibition of p-PKA.
Collapse
Affiliation(s)
- Daniel F Martins
- Experimental Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern of Santa Catarina, Campus Grande Florianópolis, Palhoça, Santa Catarina, Brazil.
| | - Aline Siteneski
- Experimental Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern of Santa Catarina, Campus Grande Florianópolis, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern of Santa Catarina, Campus Grande Florianópolis, Palhoça, Santa Catarina, Brazil
| | - Daniela Dal-Secco
- Neurobiology Laboratory of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Adair R S Santos
- Neurobiology Laboratory of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
35
|
Differential Activation of TRP Channels in the Adult Rat Spinal Substantia Gelatinosa by Stereoisomers of Plant-Derived Chemicals. Pharmaceuticals (Basel) 2016; 9:ph9030046. [PMID: 27483289 PMCID: PMC5039499 DOI: 10.3390/ph9030046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/19/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
Activation of TRPV1, TRPA1 or TRPM8 channel expressed in the central terminal of dorsal root ganglion (DRG) neuron increases the spontaneous release of l-glutamate onto spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons which play a pivotal role in regulating nociceptive transmission. The TRP channels are activated by various plant-derived chemicals. Although stereoisomers activate or modulate ion channels in a distinct manner, this phenomenon is not fully addressed for TRP channels. By applying the whole-cell patch-clamp technique to SG neurons of adult rat spinal cord slices, we found out that all of plant-derived chemicals, carvacrol, thymol, carvone and cineole, increase the frequency of spontaneous excitatory postsynaptic current, a measure of the spontaneous release of l-glutamate from nerve terminals, by activating TRP channels. The presynaptic activities were different between stereoisomers (carvacrol and thymol; (-)-carvone and (+)-carvone; 1,8-cineole and 1,4-cineole) in the extent or the types of TRP channels activated, indicating that TRP channels in the SG are activated by stereoisomers in a distinct manner. This result could serve to know the properties of the central terminal TRP channels that are targets of drugs for alleviating pain.
Collapse
|
36
|
Smith KM, Boyle KA, Mustapa M, Jobling P, Callister RJ, Hughes DI, Graham BA. Distinct forms of synaptic inhibition and neuromodulation regulate calretinin-positive neuron excitability in the spinal cord dorsal horn. Neuroscience 2016; 326:10-21. [PMID: 27045594 PMCID: PMC4919388 DOI: 10.1016/j.neuroscience.2016.03.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/26/2016] [Accepted: 03/25/2016] [Indexed: 01/12/2023]
Abstract
CR+ spinal dorsal horn neurons form excitatory (Typical) and inhibitory (Atypical) subpopulations. Typical neurons received mixed (GABAergic and glycinergic) inhibition. Atypical neurons received inhibition dominated by glycine. Noradrenaline and serotonin evoke responses in Typical but not Atypical neurons. Enkephalins evoke responses in Atypical but not typical neurons.
The dorsal horn (DH) of the spinal cord contains a heterogenous population of neurons that process incoming sensory signals before information ascends to the brain. We have recently characterized calretinin-expressing (CR+) neurons in the DH and shown that they can be divided into excitatory and inhibitory subpopulations. The excitatory population receives high-frequency excitatory synaptic input and expresses delayed firing action potential discharge, whereas the inhibitory population receives weak excitatory drive and exhibits tonic or initial bursting discharge. Here, we characterize inhibitory synaptic input and neuromodulation in the two CR+ populations, in order to determine how each is regulated. We show that excitatory CR+ neurons receive mixed inhibition from GABAergic and glycinergic sources, whereas inhibitory CR+ neurons receive inhibition, which is dominated by glycine. Noradrenaline and serotonin produced robust outward currents in excitatory CR+ neurons, predicting an inhibitory action on these neurons, but neither neuromodulator produced a response in CR+ inhibitory neurons. In contrast, enkephalin (along with selective mu and delta opioid receptor agonists) produced outward currents in inhibitory CR+ neurons, consistent with an inhibitory action but did not affect the excitatory CR+ population. Our findings show that the pharmacology of inhibitory inputs and neuromodulator actions on CR+ cells, along with their excitatory inputs can define these two subpopulations further, and this could be exploited to modulate discrete aspects of sensory processing selectively in the DH.
Collapse
Affiliation(s)
- K M Smith
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
| | - K A Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - M Mustapa
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - P Jobling
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
| | - R J Callister
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
| | - D I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - B A Graham
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
37
|
Zhang Y, Chen SR, Laumet G, Chen H, Pan HL. Nerve Injury Diminishes Opioid Analgesia through Lysine Methyltransferase-mediated Transcriptional Repression of μ-Opioid Receptors in Primary Sensory Neurons. J Biol Chem 2016; 291:8475-85. [PMID: 26917724 DOI: 10.1074/jbc.m115.711812] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 12/21/2022] Open
Abstract
The μ-opioid receptor (MOR, encoded by Oprm1) agonists are the mainstay analgesics for treating moderate to severe pain. Nerve injury causes down-regulation of MORs in the dorsal root ganglion (DRG) and diminishes the opioid effect on neuropathic pain. However, the epigenetic mechanisms underlying the diminished MOR expression caused by nerve injury are not clear. G9a (encoded by Ehmt2), a histone 3 at lysine 9 methyltransferase, is a key chromatin regulator responsible for gene silencing. In this study, we determined the role of G9a in diminished MOR expression and opioid analgesic effects in animal models of neuropathic pain. We found that nerve injury in rats induced a long-lasting reduction in the expression level of MORs in the DRG but not in the spinal cord. Nerve injury consistently increased the enrichment of the G9a product histone 3 at lysine 9 dimethylation in the promoter of Oprm1 in the DRG. G9a inhibition or siRNA knockdown fully reversed MOR expression in the injured DRG and potentiated the morphine effect on pain hypersensitivity induced by nerve injury. In mice lacking Ehmt2 in DRG neurons, nerve injury failed to reduce the expression level of MORs and the morphine effect. In addition, G9a inhibition or Ehmt2 knockout in DRG neurons normalized nerve injury-induced reduction in the inhibitory effect of the opioid on synaptic glutamate release from primary afferent nerves. Our findings indicate that G9a contributes critically to transcriptional repression of MORs in primary sensory neurons in neuropathic pain. G9a inhibitors may be used to enhance the opioid analgesic effect in the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Yuhao Zhang
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Geoffroy Laumet
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
38
|
Sumie M, Shiokawa H, Yamaura K, Karashima Y, Hoka S, Yoshimura M. Direct Effect of Remifentanil and Glycine Contained in Ultiva® on Nociceptive Transmission in the Spinal Cord: In Vivo and Slice Patch Clamp Analyses. PLoS One 2016; 11:e0147339. [PMID: 26771515 PMCID: PMC4714899 DOI: 10.1371/journal.pone.0147339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/01/2016] [Indexed: 11/19/2022] Open
Abstract
Background Ultiva® is commonly administered intravenously for analgesia during general anaesthesia and its main constituent remifentanil is an ultra-short-acting μ-opioid receptor agonist. Ultiva® is not approved for epidural or intrathecal use in clinical practice. Previous studies have reported that Ultiva® provokes opioid-induced hyperalgesia by interacting with spinal dorsal horn neurons. Ultiva® contains glycine, an inhibitory neurotransmitter but also an N-methyl-D-aspartate receptor co-activator. The presence of glycine in the formulation of Ultiva® potentially complicates its effects. We examined how Ultiva® directly affects nociceptive transmission in the spinal cord. Methods We made patch-clamp recordings from substantia gelatinosa (SG) neurons in the adult rat spinal dorsal horn in vivo and in spinal cord slices. We perfused Ultiva® onto the SG neurons and analysed its effects on the membrane potentials and synaptic responses activated by noxious mechanical stimuli. Results Bath application of Ultiva® hyperpolarized membrane potentials under current-clamp conditions and produced an outward current under voltage-clamp conditions. A barrage of excitatory postsynaptic currents (EPSCs) evoked by the stimuli was suppressed by Ultiva®. Miniature EPSCs (mEPSCs) were depressed in frequency but not amplitude. Ultiva®-induced outward currents and suppression of mEPSCs were not inhibited by the μ-opioid receptor antagonist naloxone, but were inhibited by the glycine receptor antagonist strychnine. The Ultiva®-induced currents demonstrated a specific equilibrium potential similar to glycine. Conclusions We found that intrathecal administration of Ultiva® to SG neurons hyperpolarized membrane potentials and depressed presynaptic glutamate release predominantly through the activation of glycine receptors. No Ultiva®-induced excitatory effects were observed in SG neurons. Our results suggest different analgesic mechanisms of Ultiva® between intrathecal and intravenous administrations.
Collapse
Affiliation(s)
- Makoto Sumie
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Shiokawa
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Hospital, Fukuoka, Japan
- * E-mail:
| | - Ken Yamaura
- Department of Anesthesiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yuji Karashima
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sumio Hoka
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Megumu Yoshimura
- Division of Health Sciences, Graduate School of Health Sciences, Kumamoto Health Science University, Kumamoto, Japan
| |
Collapse
|
39
|
Pronociceptive and Antinociceptive Effects of Buprenorphine in the Spinal Cord Dorsal Horn Cover a Dose Range of Four Orders of Magnitude. J Neurosci 2015; 35:9580-94. [PMID: 26134641 DOI: 10.1523/jneurosci.0731-14.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Due to its distinct pharmacological profile and lower incidence of adverse events compared with other opioids, buprenorphine is considered a safe option for pain and substitution therapy. However, despite its wide clinical use, little is known about the synaptic effects of buprenorphine in nociceptive pathways. Here, we demonstrate dose-dependent, bimodal effects of buprenorphine on transmission at C-fiber synapses in rat spinal cord dorsal horn in vivo. At an analgesically active dose of 1500 μg·kg(-1), buprenorphine reduced the strength of spinal C-fiber synapses. This depression required activation of spinal opioid receptors, putatively μ1-opioid receptors, as indicated by its sensitivity to spinal naloxone and to the selective μ1-opioid receptor antagonist naloxonazine. In contrast, a 15,000-fold lower dose of buprenorphine (0.1 μg·kg(-1)), which caused thermal and mechanical hyperalgesia in behaving animals, induced an enhancement of transmission at spinal C-fiber synapses. The ultra-low-dose buprenorphine-induced synaptic facilitation was mediated by supraspinal naloxonazine-insensitive, but CTOP-sensitive μ-opioid receptors, descending serotonergic pathways, and activation of spinal glial cells. Selective inhibition of spinal 5-hydroxytryptamine-2 receptors (5-HT2Rs), putatively located on spinal astrocytes, abolished both the induction of synaptic facilitation and the hyperalgesia elicited by ultra-low-dose buprenorphine. Our study revealed that buprenorphine mediates its modulatory effects on transmission at spinal C-fiber synapses by dose dependently acting on distinct μ-opioid receptor subtypes located at different levels of the neuraxis.
Collapse
|
40
|
Déciga-Campos M, Ramírez-Marín PM, López-Muñoz FJ. Synergistic antinociceptive interaction between palmitoylethanolamide and tramadol in the mouse formalin test. Eur J Pharmacol 2015; 765:68-74. [PMID: 26297302 DOI: 10.1016/j.ejphar.2015.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
Pharmacological synergism has been used to obtain a higher efficacy using drug concentrations at which side effects are minimal. In this study, the pharmacological antinociceptive interaction between N-palmitoylethanolamide (PEA) and tramadol was investigated. The individual concentration-response curves for PEA (0.1-56.2 μg/paw) and tramadol (1-56.2 μg/paw) were evaluated in mice in which nociception was induced by an intraplantar injection of 2% formalin. Isobolographic analysis was used to evaluate the pharmacological interaction between PEA (EC50=23.7±1.6 μg/paw) and tramadol (EC50=26.02±2.96 μg/paw) using the EC50 and a fixed 1:1 ratio combination. The isobologram demonstrated that the combinations investigated in this study produced a synergistic interaction; the experimental values (Zexp=9.5±0.2 μg/paw) were significantly smaller than those calculated theoretically (Zadd=24.8±0.2 μg/paw). The antinociceptive mechanisms of the PEA and tramadol combination involved the opioid receptor, transient receptor potential cation channel subfamily V member 1 (TRPV1), and peroxisome proliferator-activated receptor alpha (PPAR-α). The sedative effect of the combination of PEA and tramadol was less than that generated by individual treatments. These findings suggest that the PEA and tramadol combination produced enhanced antinociceptive efficacy at concentrations at which side effects are minimal.
Collapse
Affiliation(s)
- Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F.11340, Mexico
| | - Pamela Moncerrat Ramírez-Marín
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F.11340, Mexico
| | | |
Collapse
|
41
|
Bao Y, Gao Y, Yang L, Kong X, Yu J, Hou W, Hua B. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Channels (Austin) 2015; 9:235-43. [PMID: 26176938 DOI: 10.1080/19336950.2015.1069450] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Initiated by the activation of various nociceptors, pain is a reaction to specific stimulus modalities. The μ-opioid receptor (MOR) agonists, including morphine, remain the most potent analgesics to treat patients with moderate to severe pain. However, the utility of MOR agonists is limited by the adverse effects associated with the use of these drugs, including analgesic tolerance and physical dependence. A strong connection has been suggested between the expression of the transient receptor potential vanilloid type 1 (TRPV1) ion channel and the development of inflammatory hyperalgesia. TRPV1 is important for thermal nociception induction, and is mainly expressed on sensory neurons. Recent reports suggest that opioid or TRPV1 receptor agonist exposure has contrasting consequences for anti-nociception, tolerance and dependence. Chronic morphine exposure modulates TRPV1 activation and induces the anti-nociception effects of morphine. The regulation of many downstream targets of TRPV1 plays a critical role in this process, including calcitonin gene-related peptide (CGRP) and substance P (SP). Additional factors also include capsaicin treatment blocking the anti-nociception effects of morphine in rats, as well as opioid modulation of TRPV1 responses through the cAMP-dependent PKA pathway and MAPK signaling pathways. Here, we review new insights concerning the mechanism underlying MOR-TRPV1 crosstalk and signaling pathways and discuss the potential mechanisms of morphine-induced anti-nociception, tolerance and dependence associated with the TRPV1 signaling pathway and highlight how understanding these mechanisms might help find therapeutic targets for the treatment of morphine induced antinociception, tolerance and dependence.
Collapse
Affiliation(s)
- Yanju Bao
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Yebo Gao
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China.,b Beijing University of Chinese Medicine ; Beijing , P. R. China
| | - Liping Yang
- c Department of Nephrology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Xiangying Kong
- d Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Jing Yu
- e Department of Oncology ; Beijing Friendship Hospital, Capital Medical University ; Beijing , China
| | - Wei Hou
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| | - Baojin Hua
- a Department of Oncology ; Guang'anmen Hospital, China Academy of Chinese Medical Sciences ; Beijing , P. R. China
| |
Collapse
|
42
|
Nguyen HTT, Bhattarai JP, Park SJ, Lee JC, Cho DH, Han SK. Enhanced GABA action on the substantia gelatinosa neurons of the medullary dorsal horn in the offspring of streptozotocin-injected mice. J Diabetes Complications 2015; 29:629-36. [PMID: 25891974 DOI: 10.1016/j.jdiacomp.2015.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 11/20/2022]
Abstract
Peripheral neuropathy is a frequent complication of diabetes mellitus and a common symptom of neuropathic pain, the mechanism of which is complex and involves both peripheral and central components of the sensory system. The lamina II of the medullary dorsal horn, called the substantia gelatinosa (SG), is well known to be a critical site for processing of orofacial nociceptive information. Although there have been a number of studies done on diabetic neuropathy related to the orofacial region, the action of neurotransmitter receptors on SG neurons in the diabetic state is not yet fully understood. Therefore, we used the whole-cell patch clamp technique to investigate this alteration on SG neurons in both streptozotocin (STZ)-induced diabetic mice and offspring from diabetic female mice. STZ (200 mg/kg)-injected mice showed a small decrease in body weight and a significant increase in blood glucose level when compared with their respective control group. However, application of different concentrations of glycine, gamma-aminobutyric acid (GABA) and glutamate on SG neurons from STZ-injected mice did not induce any significant differences in inward currents when compared to their control counterparts. On the other hand, the offspring of diabetic female mice (induced by multiple injections of STZ (40 mg/kg) for 5 consecutive days) led to a significant decrease in both body weight and blood glucose level compared to the control offspring. Glycine and glutamate responses in the SG neurons of the offspring from diabetic female mice were similar to those of control offspring. However, the GABA response in SG neurons of offspring from diabetic female mice was greater than that of control offspring. Furthermore, the GABA-mediated responses in offspring from diabetic and control mice were examined at different concentrations ranging from 3 to 1,000 μM. At each concentration, the GABA-induced mean inward currents in the SG neurons of offspring from diabetic female mice were larger than those of control mice. These results demonstrate that SG neurons in offspring from diabetic mice are more sensitive to GABA compared to control mice, suggesting that GABA sensitivity may alter orofacial pain processing in offspring from diabetic female mice.
Collapse
Affiliation(s)
- Hoang Thi Thanh Nguyen
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Janardhan Prasad Bhattarai
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Jeong Chae Lee
- Department of Orthodontics, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Chonbuk National University Hospital and School of Medicine, Jeonju, Republic of Korea.
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
43
|
Chen YB, Huang FS, Fen B, Yin JB, Wang W, Li YQ. Inhibitory effects of endomorphin-2 on excitatory synaptic transmission and the neuronal excitability of sacral parasympathetic preganglionic neurons in young rats. Front Cell Neurosci 2015; 9:206. [PMID: 26074773 PMCID: PMC4446531 DOI: 10.3389/fncel.2015.00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 01/23/2023] Open
Abstract
The function of the urinary bladder is partly controlled by parasympathetic preganglionic neurons (PPNs) of the sacral parasympathetic nucleus (SPN). Our recent work demonstrated that endomorphin-2 (EM-2)-immunoreactive (IR) terminals form synapses with μ-opioid receptor (MOR)-expressing PPNs in the rat SPN. Here, we examined the effects of EM-2 on excitatory synaptic transmission and the neuronal excitability of the PPNs in young rats (24–30 days old) using a whole-cell patch-clamp approach. PPNs were identified by retrograde labeling with the fluorescent tracer tetramethylrhodamine-dextran (TMR). EM-2 (3 μM) markedly decreased both the amplitude and the frequency of the spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) of PPNs. EM-2 not only decreased the resting membrane potentials (RMPs) in 61.1% of the examined PPNs with half-maximal response at the concentration of 0.282 μM, but also increased the rheobase current and reduced the repetitive action potential firing of PPNs. Analysis of the current–voltage relationship revealed that the EM-2-induced current was reversed at −95 ± 2.5 mV and was suppressed by perfusion of the potassium channel blockers 4-aminopyridine (4-AP) or BaCl2 or by the addition of guanosine 5′-[β-thio]diphosphate trilithium salt (GDP-β-S) to the pipette solution, suggesting the involvement of the G-protein-coupled inwardly rectifying potassium (GIRK) channel. The above EM-2-invoked inhibitory effects were abolished by the MOR selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), indicating that the effects of EM-2 on PPNs were mediated by MOR via pre- and/or post-synaptic mechanisms. EM-2 activated pre- and post-synaptic MORs, inhibiting excitatory neurotransmitter release from the presynaptic terminals and decreasing the excitability of PPNs due to hyperpolarization of their membrane potentials, respectively. These inhibitory effects of EM-2 on PPNs at the spinal cord level may explain the mechanism of action of morphine treatment and morphine-induced bladder dysfunction in the clinic.
Collapse
Affiliation(s)
- Ying-Biao Chen
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China
| | - Fen-Sheng Huang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China ; Division of Medical Biophysics, Institute of Neuroscience and Physiology, Göteborg University Göteborg, Sweden
| | - Ban Fen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jun-Bin Yin
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Wei Wang
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China ; Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China ; Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
44
|
Yamasaki H, Funai Y, Funao T, Mori T, Nishikawa K. Effects of tramadol on substantia gelatinosa neurons in the rat spinal cord: an in vivo patch-clamp analysis. PLoS One 2015; 10:e0125147. [PMID: 25933213 PMCID: PMC4416729 DOI: 10.1371/journal.pone.0125147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/18/2015] [Indexed: 11/26/2022] Open
Abstract
Tramadol is thought to modulate synaptic transmissions in the spinal dorsal horn mainly by activating µ-opioid receptors and by inhibiting the reuptake of monoamines in the CNS. However, the precise mode of modulation remains unclear. We used an in vivo patch clamp technique in urethane-anesthetized rats to determine the antinociceptive mechanism of tramadol. In vivo whole-cell recordings of spontaneous inhibitory postsynaptic currents (sIPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) were made from substantia gelatinosa (SG) neurons (lamina II) at holding potentials of 0 mV and -70 mV, respectively. The effects of intravenous administration (0.5, 5, 15 mg/kg) of tramadol were evaluated. The effects of superfusion of tramadol on the surface of the spinal cord and of a tramadol metabolite (M1) were further analyzed. Intravenous administration of tramadol at doses >5 mg/kg decreased the sEPSCs and increased the sIPSCs in SG neurons. These effects were not observed following naloxone pretreatment. Tramadol superfusion at a clinically relevant concentration (10 µM) had no effect, but when administered at a very high concentration (100 µM), tramadol decreased sEPSCs, produced outward currents, and enhanced sIPSCs. The effects of M1 (1, 5 mg/kg intravenously) on sEPSCs and sIPSCs were similar to those of tramadol at a corresponding dose (5, 15 mg/kg). The present study demonstrated that systemically administered tramadol indirectly inhibited glutamatergic transmission, and enhanced GABAergic and glycinergic transmissions in SG neurons. These effects were mediated primarily by the activation of μ-opioid receptors. M1 may play a key role in the antinociceptive mechanisms of tramadol.
Collapse
Affiliation(s)
- Hiroyuki Yamasaki
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Funai
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomoharu Funao
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takashi Mori
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Kiyonobu Nishikawa
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
45
|
Lu C, Shi L, Zhang J, Kong M, Liu Y, Zhou Y, Xu L, He J, Ma Z, Gu X. Neuron-restrictive silencer factor in periaqueductal gray contributes to remifentanil-induced postoperative hyperalgesia via repression of the mu-opioid receptor. J Neurol Sci 2015; 352:48-52. [PMID: 25819118 DOI: 10.1016/j.jns.2015.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND The ultra-short-acting mu-opioid receptor (MOR) agonist remifentanil induces postoperative hyperalgesia both in preclinical and clinical research studies. However, the precise mechanisms remain unclear, although changes in opioid receptor expression might be a correlative feature. Neuron-restrictive silencer factor (NRSF) functions as a crucial regulator of MOR expression in specific neuronal cells. Using a mouse model of incisional postoperative pain, we assessed the expression of MOR and NRSF and investigated whether disruption of NRSF expression could prevent the postoperative nociceptive sensitization induced by surgical incision and subcutaneous infusion of remifentanil. METHODS Paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were independently used to assess mechanical allodynia and thermal hyperalgesia after surgery and cerebral ventricle injection of NRSF antisense oligonucleotide. Western blotting analyses were preformed to assess the expression levels of MOR and NRSF. RESULTS NRSF expression levels were enhanced after intraoperative infusion of remifentanil, resulting in repression of MOR expression in the periaqueductal gray (PAG). NRSF blockade with an NRSF antisense oligonucleotide significantly enhanced the expression levels of MOR and alleviated mechanical allodynia and thermal hyperalgesia induced by intraoperative infusion of remifentanil. CONCLUSION NRSF functions as a negative regulator of MOR in PAG and contributes to remifentanil-induced postoperative hyperalgesia. NRSF in PAG may be a potential target for this pain therapy.
Collapse
Affiliation(s)
- Cui'e Lu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Linyu Shi
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Juan Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Mingjian Kong
- Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province China.
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Yu Zhou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Li Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Jianhua He
- Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province China.
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, 321 Zhong Shan North Road, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
46
|
Zhuo M. Canadian Association of Neuroscience Review: Cellular and Synaptic Insights into Physiological and Pathological Pain. Can J Neurol Sci 2014; 32:27-36. [PMID: 15825543 DOI: 10.1017/s031716710001684x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurons and synapses in the central nervous system are plastic, undergoing long-term changes throughout life. Studies of molecular and cellular mechanisms of such changes not only provide important insight into how we learn and store new knowledge in our brains, but they also reveal the mechanisms of pathological changes that occur following injury. The author proposes that during induction, neuronal mechanisms underlying physiological functions, such as learning and memory, may share some common signaling molecules with abnormal or injury-related changes in the brain. Distinct synaptic and neuronal network mechanisms are involved in pathological pain as compared to cognitive learning and memory. Nociceptive information is transmitted and regulated at different levels of the brain, from the spinal cord to the forebrain. Furthermore, N-methyl-D-aspartate receptor-dependent and calcium-calmodulin activated adenylyl cyclases (AC1 and AC8) in the anterior cingulate cortex play important roles in the induction and expression of persistent inflammatory and neuropathic pain. Neuronal activity in the anterior cingulate cortex can also influence nociceptive transmission in the dorsal horn of the spinal cord by activating the endogenous facilitatory system. Our results provide important synaptic and molecular insights into physiological responses to injury.
Collapse
Affiliation(s)
- Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Taylor BK, Corder G. Endogenous analgesia, dependence, and latent pain sensitization. Curr Top Behav Neurosci 2014; 20:283-325. [PMID: 25227929 PMCID: PMC4464817 DOI: 10.1007/7854_2014_351] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endogenous activation of µ-opioid receptors (MORs) provides relief from acute pain. Recent studies have established that tissue inflammation produces latent pain sensitization (LS) that is masked by spinal MOR signaling for months, even after complete recovery from injury and re-establishment of normal pain thresholds. Disruption with MOR inverse agonists reinstates pain and precipitates cellular, somatic, and aversive signs of physical withdrawal; this phenomenon requires N-methyl-D-aspartate receptor-mediated activation of calcium-sensitive adenylyl cyclase type 1 (AC1). In this review, we present a new conceptual model of the transition from acute to chronic pain, based on the delicate balance between LS and endogenous analgesia that develops after painful tissue injury. First, injury activates pain pathways. Second, the spinal cord establishes MOR constitutive activity (MORCA) as it attempts to control pain. Third, over time, the body becomes dependent on MORCA, which paradoxically sensitizes pain pathways. Stress or injury escalates opposing inhibitory and excitatory influences on nociceptive processing as a pathological consequence of increased endogenous opioid tone. Pain begets MORCA begets pain vulnerability in a vicious cycle. The final result is a silent insidious state characterized by the escalation of two opposing excitatory and inhibitory influences on pain transmission: LS mediated by AC1 (which maintains the accelerator) and pain inhibition mediated by MORCA (which maintains the brake). This raises the prospect that opposing homeostatic interactions between MORCA analgesia and latent NMDAR-AC1-mediated pain sensitization creates a lasting vulnerability to develop chronic pain. Thus, chronic pain syndromes may result from a failure in constitutive signaling of spinal MORs and a loss of endogenous analgesic control. An overarching long-term therapeutic goal of future research is to alleviate chronic pain by either (a) facilitating endogenous opioid analgesia, thus restricting LS within a state of remission, or (b) extinguishing LS altogether.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY, 40536-0298, USA,
| | | |
Collapse
|
48
|
TRP Channels Involved in Spontaneous L-Glutamate Release Enhancement in the Adult Rat Spinal Substantia Gelatinosa. Cells 2014; 3:331-62. [PMID: 24785347 PMCID: PMC4092856 DOI: 10.3390/cells3020331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/10/2014] [Accepted: 04/18/2014] [Indexed: 12/31/2022] Open
Abstract
The spinal substantia gelatinosa (SG) plays a pivotal role in modulating nociceptive transmission through dorsal root ganglion (DRG) neurons from the periphery. TRP channels such as TRPV1 and TRPA1 channels expressed in the SG are involved in the regulation of the nociceptive transmission. On the other hand, the TRP channels located in the peripheral terminals of the DRG neurons are activated by nociceptive stimuli given to the periphery and also by plant-derived chemicals, which generates a membrane depolarization. The chemicals also activate the TRP channels in the SG. In this review, we introduce how synaptic transmissions in the SG neurons are affected by various plant-derived chemicals and suggest that the peripheral and central TRP channels may differ in property from each other.
Collapse
|
49
|
The mu opioid receptor activation does not affect ischemia-induced agonal currents in rat spinal ventral horn. J Anesth 2014; 28:839-45. [DOI: 10.1007/s00540-014-1829-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/27/2014] [Indexed: 11/26/2022]
|
50
|
Reduced number, G protein coupling, and antinociceptive efficacy of spinal mu-opioid receptors in diabetic rats are reversed by nerve growth factor. THE JOURNAL OF PAIN 2013; 14:720-30. [PMID: 23623572 DOI: 10.1016/j.jpain.2013.01.776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/16/2013] [Accepted: 01/31/2013] [Indexed: 02/01/2023]
Abstract
UNLABELLED This study investigated putative mechanisms of impaired spinal opioid antinociception such as a downregulation of mu-opioid receptor (MOR) number, coupling, and efficacy in rats with advanced (12 weeks) streptozotocin (STZ)-induced diabetes. Intravenous injection of STZ (45 mg/kg) in Wistar rats led to selective degeneration of insulin-producing pancreatic ß-cells, elevated blood glucose, and mechanical hyperalgesia. In these animals, dose-dependent and naloxone-reversible intrathecal fentanyl antinociception was significantly impaired and associated with a loss in MOR immunoreactivity of calcitonin gene-related peptide-immunoreactive (CGRP-IR) sensory nerve terminals, membrane-bound MOR binding sites, and MOR-stimulated G protein coupling within the dorsal horn of the spinal cord. Intrathecal delivery of nerve growth factor (NGF) in diabetic animals normalized spinal MOR number and G protein coupling and rescued spinal fentanyl-induced antinociception. These findings identify for the first time a loss in functional MOR on central terminals of sensory neurons as a contributing factor for the impaired spinal opioid responsiveness during advanced STZ-induced diabetes that can be reversed by NGF. Moreover, they support growing evidence of a distinct regulation of opioid responsiveness during various painful states of disease (eg, arthritis, cancer, neuropathy) and may give novel therapeutic incentives. PERSPECTIVE In diabetic neuropathy a loss in sensory neuron mu-opioid receptor number and coupling contributes to impaired spinal opioid antinociception that can be reversed by NGF. These findings support growing evidence of a distinct regulation of opioid responsiveness during various painful diseases and may give novel therapeutic incentives.
Collapse
|