1
|
Wang A, Ali A, Baciu C, Bellissimo C, Siebiger G, Yamanashi K, Montagne J, Garza G, Goligher E, Keshavjee S, Liu M, Cypel M. Metabolomic studies reveal an organ-protective hibernation state in donor lungs preserved at 10 °C. J Thorac Cardiovasc Surg 2024:S0022-5223(24)00699-8. [PMID: 39173706 DOI: 10.1016/j.jtcvs.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE Previous reports showed enhanced graft function in both healthy and injured porcine lungs after preservation at 10 °C. The objective of the study is to elucidate the mechanism of lung protection by 10 °C and identify potential therapeutic targets to improve organ preservation. METHODS Metabolomics data were analyzed from healthy and injured porcine lungs that underwent extended hypothermic preservation on ice and at 10 °C. Tissue sampled before and after preservation were subjected to untargeted metabolic profiling. Principal component analysis was performed to test for the separability of the paired samples. Significantly changed metabolites between the 2 time points were identified and analyzed to determine the underlying metabolic pathways. The levels of respiratory activity of lung tissue at hypothermic temperatures were confirmed using high resolution respirometry. RESULTS In both healthy and injured lungs (n = 5 per intervention), principal component analysis suggested minimal change in metabolites after ice preservation but significant change of metabolites after 10 °C preservation, which was associated with significantly improved lung function as assessed by ex vivo lung perfusion and lung transplantation. For healthy lungs, lipid energy pathway was found primarily active at 10 °C. For injured lungs, additional carbohydrate energy pathway and anti-ferroptosis pathways aiding organ repair were identified. These metabolic features are also key features involved in mammal hibernation. CONCLUSIONS Untargeted metabolomics revealed a dynamic metabolic gradient for lungs stored at 10 °C. Elucidating the underlying mechanisms behind this pathway regulation may lead to strategies that will allow organs "hibernate" for days, potentially making organ banking a reality.
Collapse
Affiliation(s)
- Aizhou Wang
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Aadil Ali
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Cristina Baciu
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Catherine Bellissimo
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gabriel Siebiger
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Keiji Yamanashi
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Juan Montagne
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Guillermo Garza
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ewan Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada; Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada; Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Zhang X, Ji W, Deng X, Bo L. High-dose ascorbic acid potentiates immune modulation through STAT1 phosphorylation inhibition and negative regulation of PD-L1 in experimental sepsis. Inflammopharmacology 2024; 32:537-550. [PMID: 37620622 DOI: 10.1007/s10787-023-01319-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Abstract
Sepsis is a complex, multifactorial syndrome characterized by a dysregulated host response to infection, leading to severe organ dysfunction and high mortality rates among critically ill patients. Hypovitaminosis C and vitamin C deficiency are frequently observed in septic patients, prompting interest in the potential therapeutic role of ascorbic acid. Although intravenous administration of ascorbic acid has been investigated in multiple clinical trials for sepsis treatment, the specific immunomodulatory mechanisms underlying its effects remain elusive. This study aimed to investigate the protective effects of high-dose ascorbic acid on experimental sepsis. Results show that intravenous administration of high-dose ascorbic acid (250 mg/kg) attenuated sepsis-induced organ dysfunctions in a cecal ligation and puncture (CLP)-induced septic mouse model. Ascorbic acid improved splenic cell apoptosis and increased the number of CD3+ T cells in septic mice induced by CLP. Furthermore, ascorbic acid downregulated PD-L1 expression in livers, reduced PD-1 expression in spleens, and inhibited the phosphorylation of STAT1 at Y701 in multiple organs of CLP-induced septic mice. The in vitro experiments also revealed that 800 μM ascorbic acid suppressed STAT1 phosphorylation and inhibited lipopolysaccharide (LPS) and IFN-γ-induced PD-L1 expression in macrophages. These findings suggest that ascorbic acid prevents sepsis-associated organ dysfunction through the p-STAT1/PD-L1 signaling pathway. Our study provides new insights into the potential therapeutic use of ascorbic acid in sepsis.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Wentao Ji
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
3
|
Beyoğlu D, Huang P, Skelton-Badlani D, Zong C, Popov YV, Idle JR. Metabolic Hijacking of Hexose Metabolism to Ascorbate Synthesis Is the Unifying Biochemical Basis of Murine Liver Fibrosis. Cells 2023; 12:cells12030485. [PMID: 36766828 PMCID: PMC9914390 DOI: 10.3390/cells12030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
We wished to understand the metabolic reprogramming underlying liver fibrosis progression in mice. Administration to male C57BL/6J mice of the hepatotoxins carbon tetrachloride (CCl4), thioacetamide (TAA), or a 60% high-fat diet, choline-deficient, amino-acid-defined diet (HF-CDAA) was conducted using standard protocols. Livers collected at different times were analyzed by gas chromatography-mass spectrometry-based metabolomics. RNA was extracted from liver and assayed by qRT-PCR for mRNA expression of 11 genes potentially involved in the synthesis of ascorbic acid from hexoses, Gck, Adpgk, Hk1, Hk2, Ugp2, Ugdh, Ugt1a1, Akr1a4, Akr1b3, Rgn and Gulo. All hepatotoxins resulted in similar metabolic changes during active fibrogenesis, despite different etiology and resultant scarring pattern. Diminished hepatic glucose, galactose, fructose, pentose phosphate pathway intermediates, glucuronic acid and long-chain fatty acids were compensated by elevated ascorbate and the product of collagen prolyl 4-hydroxylase, succinate and its downstream metabolites fumarate and malate. Recovery from the HF-CDAA diet challenge (F2 stage fibrosis) after switching to normal chow was accompanied by increased glucose, galactose, fructose, ribulose 5-phosphate, glucuronic acid, the ascorbate metabolite threonate and diminished ascorbate. During the administration of CCl4, TAA and HF-CDAA, aldose reductase Akr1b3 transcription was induced six- to eightfold, indicating increased conversion of glucuronic acid to gulonic acid, a precursor of ascorbate synthesis. Triggering hepatic fibrosis by three independent mechanisms led to the hijacking of glucose and galactose metabolism towards ascorbate synthesis, to satisfy the increased demand for ascorbate as a cofactor for prolyl 4-hydroxylase for mature collagen production. This metabolic reprogramming and causal gene expression changes were reversible. The increased flux in this pathway was mediated predominantly by increased transcription of aldose reductase Akr1b3.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Arthur G. Zupko Institute for Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Pinzhu Huang
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Disha Skelton-Badlani
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Christine Zong
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Yury V. Popov
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Jeffrey R. Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Arthur G. Zupko Institute for Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Correspondence: ; Tel.: +1-929-888-6534
| |
Collapse
|
4
|
Zaher A, Stephens LM, Miller AM, Hartwig SM, Stolwijk JM, Petronek MS, Zacharias ZR, Wadas TJ, Monga V, Cullen JJ, Furqan M, Houtman JCD, Varga SM, Spitz DR, Allen BG. Pharmacological ascorbate as a novel therapeutic strategy to enhance cancer immunotherapy. Front Immunol 2022; 13:989000. [PMID: 36072595 PMCID: PMC9444023 DOI: 10.3389/fimmu.2022.989000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pharmacological ascorbate (i.e., intravenous infusions of vitamin C reaching ~ 20 mM in plasma) is under active investigation as an adjuvant to standard of care anti-cancer treatments due to its dual redox roles as an antioxidant in normal tissues and as a prooxidant in malignant tissues. Immune checkpoint inhibitors (ICIs) are highly promising therapies for many cancer patients but face several challenges including low response rates, primary or acquired resistance, and toxicity. Ascorbate modulates both innate and adaptive immune functions and plays a key role in maintaining the balance between pro and anti-inflammatory states. Furthermore, the success of pharmacological ascorbate as a radiosensitizer and a chemosensitizer in pre-clinical studies and early phase clinical trials suggests that it may also enhance the efficacy and expand the benefits of ICIs.
Collapse
Affiliation(s)
- Amira Zaher
- Cancer Biology Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Laura M. Stephens
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Ann M. Miller
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Stacey M. Hartwig
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Jeffrey M. Stolwijk
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Michael S. Petronek
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Zeb R. Zacharias
- Human Immunology Core & Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Thaddeus J. Wadas
- Department of Radiology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Varun Monga
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Joseph J. Cullen
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Muhammad Furqan
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Steven M. Varga
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bryan G. Allen,
| |
Collapse
|
5
|
Travaglini S, Gurnari C, Antonelli S, Silvestrini G, Noguera NI, Ottone T, Voso MT. The Anti-Leukemia Effect of Ascorbic Acid: From the Pro-Oxidant Potential to the Epigenetic Role in Acute Myeloid Leukemia. Front Cell Dev Biol 2022; 10:930205. [PMID: 35938170 PMCID: PMC9352950 DOI: 10.3389/fcell.2022.930205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Data derived from high-throughput sequencing technologies have allowed a deeper understanding of the molecular landscape of Acute Myeloid Leukemia (AML), paving the way for the development of novel therapeutic options, with a higher efficacy and a lower toxicity than conventional chemotherapy. In the antileukemia drug development scenario, ascorbic acid, a natural compound also known as Vitamin C, has emerged for its potential anti-proliferative and pro-apoptotic activities on leukemic cells. However, the role of ascorbic acid (vitamin C) in the treatment of AML has been debated for decades. Mechanistic insight into its role in many biological processes and, especially, in epigenetic regulation has provided the rationale for the use of this agent as a novel anti-leukemia therapy in AML. Acting as a co-factor for 2-oxoglutarate-dependent dioxygenases (2-OGDDs), ascorbic acid is involved in the epigenetic regulations through the control of TET (ten-eleven translocation) enzymes, epigenetic master regulators with a critical role in aberrant hematopoiesis and leukemogenesis. In line with this discovery, great interest has been emerging for the clinical testing of this drug targeting leukemia epigenome. Besides its role in epigenetics, ascorbic acid is also a pivotal regulator of many physiological processes in human, particularly in the antioxidant cellular response, being able to scavenge reactive oxygen species (ROS) to prevent DNA damage and other effects involved in cancer transformation. Thus, for this wide spectrum of biological activities, ascorbic acid possesses some pharmacologic properties attractive for anti-leukemia therapy. The present review outlines the evidence and mechanism of ascorbic acid in leukemogenesis and its therapeutic potential in AML. With the growing evidence derived from the literature on situations in which the use of ascorbate may be beneficial in vitro and in vivo, we will finally discuss how these insights could be included into the rational design of future clinical trials.
Collapse
Affiliation(s)
- S. Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - C. Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - S. Antonelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - G. Silvestrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - N. I. Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - T. Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M. T. Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- *Correspondence: M. T. Voso,
| |
Collapse
|
6
|
Vasile Gutsanu, Natalia Baerle. Interaction of L-Ascorbic Acid with Activated Carbon: Kinetic Studies and the Effect of pH. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Kory P, Meduri GU, Iglesias J, Varon J, Cadegiani FA, Marik PE. "MATH+" Multi-Modal Hospital Treatment Protocol for COVID-19 Infection: Clinical and Scientific Rationale. J Clin Med Res 2022; 14:53-79. [PMID: 35317360 PMCID: PMC8912998 DOI: 10.14740/jocmr4658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
In December 2019, coronavirus disease 2019 (COVID-19), a severe respiratory illness caused by the new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. The greatest impact that COVID-19 had was on intensive care units (ICUs), given that approximately 20% of hospitalized cases developed acute respiratory failure (ARF) requiring ICU admission. Based on the assumption that COVID-19 represented a viral pneumonia and no anti-coronaviral therapy existed, nearly all national and international health care societies recommended "supportive care only" avoiding other therapies outside of randomized controlled trials, with a specific prohibition against the use of corticosteroids in treatment. However, early studies of COVID-19-associated ARF reported inexplicably high mortality rates, with frequent prolonged durations of mechanical ventilation (MV), even from centers expert in such supportive care strategies. These reports led the authors to form a clinical expert panel called the Front-Line COVID-19 Critical Care Alliance (www.flccc.net). The panel collaboratively reviewed the emerging clinical, radiographic, and pathological reports of COVID-19 while initiating multiple discussions among a wide clinical network of front-line clinical ICU experts from initial outbreak areas in China, Italy, and New York. Based on the shared early impressions of "what was working and what wasn't working", the increasing medical journal publications and the rapidly accumulating personal clinical experiences with COVID-19 patients, a treatment protocol was created for the hospitalized patients based on the core therapies of methylprednisolone, ascorbic acid, thiamine, heparin and non-antiviral co-interventions (MATH+). This manuscript reviews the scientific and clinical rationale behind MATH+ based on published in-vitro, pre-clinical, and clinical data in support of each medicine, with a special emphasis of studies supporting their use in the treatment of patients with viral syndromes and COVID-19 specifically.
Collapse
Affiliation(s)
- Pierre Kory
- Front Line Critical Care Consortium (FLCCC.org), Washington DC, USA
| | | | - Jose Iglesias
- Jersey Shore University Medical Center, Hackensack School of Medicine at Seton Hall, NJ, USA
| | - Joseph Varon
- University of Texas Health Science Center, Houston, TX, USA
| | | | - Paul E. Marik
- Front Line Critical Care Consortium (FLCCC.org), Washington DC, USA
| |
Collapse
|
8
|
Stress amelioration potential of vitamin C in ruminants: a review. Trop Anim Health Prod 2021; 54:24. [PMID: 34957536 DOI: 10.1007/s11250-021-03026-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
Ruminants, as well as other livestock, can synthesize vitamin C (VC) in their liver, and therefore, dietary requirements from exogenous supplementation are often ignored. However, metabolic demand may be exceeded, leading to a decreased endogenous synthetic capacity of VC following exposure to stressful conditions. Such conditions include high thermal load, limited water intake (induced by water scarcity), physiological status and infectious diseases. The obvious consequences are decreased performance, susceptibility to infections and increased mortality. This review discusses the potential role of vitamin C in ruminants' stress management and summarizes the in vitro and in vivo research to date. The different administration routes, comparative advantages and supplementation outcomes on growth, production parameters and physiological status were also identified. Also, areas where there was a lack of evidence or controversy, including critical literature research gaps, were identified, while the mechanism of VC's actions on significant outcomes was explained.
Collapse
|
9
|
Wang A, Luo J, Zhang T, Zhang D. Dietary Vitamin C and Vitamin C Derived from Vegetables Are Inversely Associated with the Risk of Depressive Symptoms among the General Population. Antioxidants (Basel) 2021; 10:antiox10121984. [PMID: 34943087 PMCID: PMC8750333 DOI: 10.3390/antiox10121984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/04/2022] Open
Abstract
Vitamin C is a water-soluble antioxidant. Reducing the level of oxidative stress can alleviate depression. Therefore, we investigated the correlation between dietary vitamin C intake and the risk of depressive symptoms in the general population. Data from the 2007–2018 National Health and Nutrition Examination Survey were used in our study. The dietary intake of vitamin C was assessed by two 24-h dietary recalls. Depressive symptoms were assessed with the Patient Health Questionnaire-9. Logistic regression and restricted cubic spline models were applied to assess the relationship between dietary vitamin C intake and the risk of depressive symptoms. The multivariate adjusted odds ratio (95% confidence interval) of depressive symptoms for the highest vs. lowest category of dietary vitamin C intake and vitamin C intake derived from vegetables were 0.73 (0.58–0.91) and 0.73 (0.56–0.95). In subgroup analyses, dietary vitamin C intake was negatively correlated with the risk of depressive symptoms in females 18–39 years old and 40–59 year-old groups. A dose-response analysis showed that there was a nonlinear relationship between dietary vitamin C intake and the risk of depressive symptoms. Dietary vitamin C intake and vitamin C intake derived from vegetables were inversely associated with the risk of depressive symptoms among the general population. We recommend increasing the intake of vegetables in daily diet.
Collapse
|
10
|
Tran Le N, Viet Dao H. Colorectal Cancer in Vietnam. COLORECTAL CANCER 2021. [DOI: 10.5772/intechopen.93730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this chapter, we focus on the up-to-date status of colorectal cancer occurrence in an Asian country with nearly 100 million in population. Protective and risk factors, time trend of colorectal cancer from 2005 to 2018 will be presented. Perspective of colorectal cancer prevention and research will be highlighted. Data will be derived and based out of current running research projects of prospective cohort study, case-control study, and population-based mortality registration in Vietnam from 2005 to 2020. The association colorectal cancer with lifestyle, diet, cooking methods, demographic factors is taken into analysis. Time trend, colorectal cancer survival, mortality will be presented.
Collapse
|
11
|
Kory P, Meduri GU, Iglesias J, Varon J, Marik PE. Clinical and Scientific Rationale for the "MATH+" Hospital Treatment Protocol for COVID-19. J Intensive Care Med 2020; 36:135-156. [PMID: 33317385 DOI: 10.1177/0885066620973585] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In December 2019, COVID-19, a severe respiratory illness caused by the new coronavirus SARS-CoV-2 (COVID-19) emerged in Wuhan, China. The greatest impact that COVID-19 had was on intensive care units (ICUs), given that approximately 20% of hospitalized cases developed acute respiratory failure (ARF) requiring ICU admission. Based on the assumption that COVID-19 represented a viral pneumonia and no anti-coronaviral therapy existed, nearly all national and international health care societies' recommended "supportive care only" avoiding other therapies outside of randomized controlled trials, with a specific prohibition against the use of corticosteroids in treatment. However, early studies of COVID-19-associated ARF reported inexplicably high mortality rates, with frequent prolonged durations of mechanical ventilation (MV), even from centers expert in such supportive care strategies. These reports led the authors to form a clinical expert panel called the Front-Line COVID-19 Critical Care Alliance (www.flccc.net). The panel collaboratively reviewed the emerging clinical, radiographic, and pathological reports of COVID-19 while initiating multiple discussions among a wide clinical network of front-line clinical ICU experts from initial outbreak areas in China, Italy, and New York. Based on the shared early impressions of "what was working and what wasn't working," the increasing medical journal publications and the rapidly accumulating personal clinical experiences with COVID-19 patients, a treatment protocol was created for the hospitalized patients based on the core therapies of methylprednisolone, ascorbic acid, thiamine, heparin and co-interventions (MATH+). This manuscript reviews the scientific and clinical rationale behind MATH+ based on published in-vitro, pre-clinical, and clinical data in support of each medicine, with a special emphasis of studies supporting their use in the treatment of patients with viral syndromes and COVID-19 specifically. The review concludes with a comparison of published multi-national mortality data with MATH+ center outcomes.
Collapse
Affiliation(s)
- Pierre Kory
- 22392Aurora St. Luke's Medical Center, Milwaukee, WI, USA
| | - G Umberto Meduri
- Memphis VA Medical Center, 12326University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jose Iglesias
- Jersey Shore University Medical Center, Hackensack School of Medicine at Seton Hall, NJ, USA
| | - Joseph Varon
- 12340University of Texas Health Science Center, Houston, TX, USA
| | - Paul E Marik
- 6040Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
12
|
Johnston CS, Martin LJ, Cai X. Antihistamine Effect of Supplemental Ascorbic Acid and Neutrophil Chemotaxis. J Am Coll Nutr 2020. [DOI: 10.1080/07315724.1992.12098241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Carol S. Johnston
- Foods and Nutrition Laboratory, Department of Family Resources and Human Development, Arizona State University, Tempe
| | - Linda J. Martin
- Foods and Nutrition Laboratory, Department of Family Resources and Human Development, Arizona State University, Tempe
| | - Xi Cai
- Foods and Nutrition Laboratory, Department of Family Resources and Human Development, Arizona State University, Tempe
| |
Collapse
|
13
|
Affiliation(s)
- Joel A. Simon
- Prevention Sciences Group of the University of California, San Francisco, School of Medicine and the General Internal Medicine Section, VA Medical Center, San Francisco
| |
Collapse
|
14
|
Mujittapha SU, Kauthar M, Azeez IO, Oyem JC. Ascorbic acid improves extrapyramidal syndromes and corpus striatal degeneration induced by dopamine-2 receptor inhibition in Wistar rats. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0137/dmdi-2020-0137.xml. [PMID: 33125337 DOI: 10.1515/dmdi-2020-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022]
Abstract
Objectives The prolonged uses of fourth-generation antipsychotics have been implicated in inducing extrapyramidal syndromes characterized by the motor deficit. This was attributed to the loss of dopamine-2 receptor (D2R) signaling. However, ascorbic acid (SVCT2R stimulation) in the brain is proposed to modulate D2R activity. We, therefore, investigated the beneficial roles of ascorbic acid in improving the extrapyramidal symptoms seen in D2R loss. Methods Twenty adult male Wistar rats of average weight 200 g were distributed randomly into four groups. The control (NS) received normal saline for 28 days, Untreated D2R inhibition group (-D2R) received normal saline for seven days and then subsequently received chlorpromazine for 21 days, D2R inhibition group treated with ascorbic acid (-D2R+SVCT2R) received chlorpromazine for 21 days and was subsequently treated with ascorbate for seven days while the withdrawal group (WG) received chlorpromazine for 21 days and subsequently received normal saline for seven days. Motor deficits were assessed using a rotarod and cylinder test. The corpus striatum was harvested, processed, and stained using H&E and Nissl stains. Cellular density was analyzed using Image J software 1.8.0. Results Motor deficit was observed in -D2R animals administered chlorpromazine with less improvement in WG compared to control (p<0.05) in both rotarod and cylinder test. Ascorbic acid (SVCT2R stimulation) significantly (p<0.001) improved the latency of fall and climbing attempts observed in -D2R animals. The density of basophilic trigoid bodies was significantly (p<0.001) restored in -D2R+SVCT2R group, suggesting recovery of neural activity in the corpus striatum. Moreover, the hallmarks of neuronal degeneration were less expressed in the ascorbic acid treatment groups. Conclusions Ascorbic acid putatively ameliorates extrapyramidal symptoms observed in D2R blockage by chlorpromazine in Wistar rats.
Collapse
Affiliation(s)
| | - Murtala Kauthar
- Department of Medical Laboratory, Ahmadu Bello University, Kano, Nigeria
| | - Ishola O Azeez
- Department of Human Anatomy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - John C Oyem
- Department of Anatomy, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
15
|
Nogueira BA, Ildiz GO, Canotilho J, Eusébio MES, Henriques MSC, Paixão JA, Fausto R. Conformational Landscape and Polymorphism in 5-Acetic Acid Hydantoin. J Phys Chem A 2020; 124:6303-6318. [PMID: 32513000 DOI: 10.1021/acs.jpca.0c03789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformational space of 5-acetic acid hydantoin {5AAH; [2-(2,5-dioxoimidazolidin-4-yl)acetic acid]} was investigated by quantum chemical calculations performed at the DFT(B3LYP)/6-311++G(d,p) level of theory. A total of 13 conformers were located in the potential energy surface of the molecule, six of them bearing the carboxylic group in the cis arrangement (O═C-O-H dihedral equal to ∼0°) and the other seven possessing this group in the trans configuration (O═C-O-H dihedral equal to ∼180°). The most stable conformer (cis-I) was trapped from the gas phase into a low temperature argon matrix (10 K), and its infrared spectrum was fully assigned, also with help of results of normal coordinates' analysis based on the DFT computed vibrational data. The electronic structure of this conformer was analyzed by using the natural bond orbital (NBO) method. The investigation of the thermal properties of 5AAH was undertaken by differential scanning calorimetry (DSC), polarized light thermal microscopy (PLTM) and Raman spectroscopy, allowing identification of five different polymorphs. Very interestingly, in the room temperature stable polymorph the molecular units of 5AAH assume the geometry of the highest-energy conformer predicted by the calculations for the isolated molecule.
Collapse
Affiliation(s)
- B A Nogueira
- CQC, Department of Chemistry, University of Coimbra, P-3004-535 Coimbra, Portugal
| | - G O Ildiz
- CQC, Department of Chemistry, University of Coimbra, P-3004-535 Coimbra, Portugal.,Faculty of Sciences and Letters, Department of Physics, Istanbul Kultur University, Atakoy Campus, Bakirkoy 34156, Istanbul, Turkey
| | - J Canotilho
- Faculty of Pharmacy, University of Coimbra, P-3000-548 Coimbra, Portugal
| | - M E S Eusébio
- CQC, Department of Chemistry, University of Coimbra, P-3004-535 Coimbra, Portugal
| | - M S C Henriques
- CFisUC, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal
| | - J A Paixão
- CFisUC, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal
| | - R Fausto
- CQC, Department of Chemistry, University of Coimbra, P-3004-535 Coimbra, Portugal
| |
Collapse
|
16
|
Sharma PK, Wells L, Rizzo G, Elson JL, Passchier J, Rabiner EA, Gunn RN, Dexter DT, Pienaar IS. DREADD Activation of Pedunculopontine Cholinergic Neurons Reverses Motor Deficits and Restores Striatal Dopamine Signaling in Parkinsonian Rats. Neurotherapeutics 2020; 17:1120-1141. [PMID: 31965550 PMCID: PMC7609798 DOI: 10.1007/s13311-019-00830-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The brainstem-based pedunculopontine nucleus (PPN) traditionally associates with motor function, but undergoes extensive degeneration during Parkinson's disease (PD), which correlates with axial motor deficits. PPN-deep brain stimulation (DBS) can alleviate certain symptoms, but its mechanism(s) of action remains unknown. We previously characterized rats hemi-intranigrally injected with the proteasomal inhibitor lactacystin, as an accurate preclinical model of PD. Here we used a combination of chemogenetics with positron emission tomography imaging for in vivo interrogation of discrete neural networks in this rat model of PD. Stimulation of excitatory designer receptors exclusively activated by designer drugs expressed within PPN cholinergic neurons activated residual nigrostriatal dopaminergic neurons to produce profound motor recovery, which correlated with striatal dopamine efflux as well as restored dopamine receptor 1- and dopamine receptor 2-based medium spiny neuron activity, as was ascertained with c-Fos-based immunohistochemistry and stereological cell counts. By revealing that the improved axial-related motor functions seen in PD patients receiving PPN-DBS may be due to stimulation of remaining PPN cholinergic neurons interacting with dopaminergic ones in both the substantia nigra pars compacta and the striatum, our data strongly favor the PPN cholinergic-midbrain dopaminergic connectome as mechanism for PPN-DBS's therapeutic effects. These findings have implications for refining PPN-DBS as a promising treatment modality available to PD patients.
Collapse
Affiliation(s)
- Puneet K Sharma
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Lisa Wells
- Invicro, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - Gaia Rizzo
- Invicro, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jan Passchier
- Invicro, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - Roger N Gunn
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Invicro, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - David T Dexter
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Ilse S Pienaar
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, UK.
| |
Collapse
|
17
|
Gordon DS, Rudinsky AJ, Guillaumin J, Parker VJ, Creighton KJ. Vitamin C in Health and Disease: A Companion Animal Focus. Top Companion Anim Med 2020; 39:100432. [PMID: 32482285 DOI: 10.1016/j.tcam.2020.100432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Vitamin C is synthesized in the liver in most species, including dogs and cats, and is widely distributed through body tissues. Vitamin C has an important physiologic role in numerous metabolic functions including tissue growth and maintenance, amelioration of oxidative stress, and immune regulation. It is also a co-factor in the production of important substances such as catecholamines and vasopressin. Decreased vitamin C levels have been documented in a wide variety of diseases, and in critically ill human patients may be associated with increased severity of disease and decreased survival. Intravenous supplementation with vitamin C has been proposed as a potential life-saving treatment in conditions such as septic shock, and results of small some human trials are promising. Data in companion in animals is very limited, but the possible benefits and , seemingly low risk of adverse effects , and the low cost of this treatment make vitamin C therapy a promising area of future investigation in critically ill dogs and cats.
Collapse
Affiliation(s)
- Daniel S Gordon
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus OH, USA
| | - Adam J Rudinsky
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus OH, USA
| | - Julien Guillaumin
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus OH, USA
| | - Valerie J Parker
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus OH, USA
| | - Karina J Creighton
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus OH, USA.
| |
Collapse
|
18
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
19
|
Spankovich C, Le Prell CG. The role of diet in vulnerability to noise-induced cochlear injury and hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4033. [PMID: 31795697 DOI: 10.1121/1.5132707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The influence of dietary nutrient intake on the onset and trajectory of hearing loss during aging and in mediating protection from challenges such as noise is an important relationship yet to be fully appreciated. Dietary intake provides essential nutrients that support basic cellular processes related to influencing cellular stress response, immune response, cardiometabolic status, neural status, and psychological well-being. Dietary quality has been shown to alter risk for essentially all chronic health conditions including hearing loss and tinnitus. Evidence of nutrients with antioxidant, anti-inflammatory, and anti-ischemic properties, and overall healthy diet quality as otoprotective strategies are slowly accumulating, but many questions remain unanswered. In this article, the authors will discuss (1) animal models in nutritional research, (2) evidence of dietary nutrient-based otoprotection, and (3) consideration of confounds and limitations to nutrient and dietary study in hearing sciences. Given that there are some 60 physiologically essential nutrients, unraveling the intricate biochemistry and multitude of interactions among nutrients may ultimately prove infeasible; however, the wealth of available data suggesting healthy nutrient intake to be associated with improved hearing outcomes suggests the development of evidence-based guidance regarding diets that support healthy hearing may not require precise understanding of all possible interactions among variables. Clinical trials evaluating otoprotective benefits of nutrients should account for dietary quality, noise exposure history, and exercise habits as potential covariates that may influence the efficacy and effectiveness of test agents; pharmacokinetic measures are also encouraged.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
20
|
El Kertaoui N, Lund I, Assogba H, Domínguez D, Izquierdo MS, Baekelandt S, Cornet V, Mandiki SNM, Montero D, Kestemont P. Key nutritional factors and interactions during larval development of pikeperch (Sander lucioperca). Sci Rep 2019; 9:7074. [PMID: 31068643 PMCID: PMC6506547 DOI: 10.1038/s41598-019-43491-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/25/2019] [Indexed: 01/18/2023] Open
Abstract
The effects of 8 nutritional variables (Ca/P, Eicosapentaenoic acid (20:5n-3) + Docosahexaenoic acid (22:6n − 3) (EPA + DHA), Arachidonic acid (20:4n − 6) (ARA), Se, vitamins E, C, D and A) were investigated to identify their respective importance and interactions in pikeperch larval development. In this respect, two modalities (low and high levels) of each variable were tested through a fractional factorial experimental design allowing a reduction from 256 (28) to 16 (28 – 4) experimental units. Survival was significantly higher in larvae fed a high Ca/P diet while larval growth was significantly lower in larvae fed the same diet variant, associated with a higher incidence of kyphosis and pectoral anomalies in these larvae. Lordosis and scoliosis seemed to be mostly affected by dietary long chain polyunsaturated fatty acids (LC-PUFAs). A significant interaction was shown between n-3 LC-PUFA and vitamin C on jaw anomalies, while myocyte-specific enhancer factor 2C (mef2c) gene expression correlated positively with dietary vitamin C increment. Results also demonstrated an effect of the different nutrients and their interactions on the activity levels of digestive enzymatic activities. The results of the present study highlight the importance of the interactions between Ca/P, LC-PUFAs and vitamins C and E, suggesting their essential roles as key nutritional factors influencing pikeperch larval development.
Collapse
Affiliation(s)
- Najlae El Kertaoui
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Rue de Bruxelles, 61-5000, Namur, Belgium.
| | - Ivar Lund
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, P.O. Box 101, DK-9850, Hirtshals, Denmark
| | - Hospice Assogba
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Rue de Bruxelles, 61-5000, Namur, Belgium
| | - David Domínguez
- Instituto ECOAQUA, Universidad de Las Palmas de Gran Canaria. Grupo de Investigación en Acuicultura (GIA), Muelle de Taliarte s/n, 35200 Telde, Las Palmas, Canary Islands, Spain
| | - Maria S Izquierdo
- Instituto ECOAQUA, Universidad de Las Palmas de Gran Canaria. Grupo de Investigación en Acuicultura (GIA), Muelle de Taliarte s/n, 35200 Telde, Las Palmas, Canary Islands, Spain
| | - Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Rue de Bruxelles, 61-5000, Namur, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Rue de Bruxelles, 61-5000, Namur, Belgium
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Rue de Bruxelles, 61-5000, Namur, Belgium
| | - Daniel Montero
- Instituto ECOAQUA, Universidad de Las Palmas de Gran Canaria. Grupo de Investigación en Acuicultura (GIA), Muelle de Taliarte s/n, 35200 Telde, Las Palmas, Canary Islands, Spain
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Rue de Bruxelles, 61-5000, Namur, Belgium
| |
Collapse
|
21
|
Benefits of Vitamins in the Treatment of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9426867. [PMID: 30915197 PMCID: PMC6402202 DOI: 10.1155/2019/9426867] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the elderly, which is clinically characterized by bradykinesia, resting tremor, abnormal posture balance, and hypermyotonia. Currently, the pathogenic mechanism of PD remains unclear. Numerous clinical studies as well as animal and cell experiments have found a certain relationship between the vitamin family and PD. The antioxidant properties of vitamins and their biological functions of regulating gene expression may be beneficial for the treatment of PD. Current clinical evidence indicates that proper supplementation of various vitamins can reduce the incidence of PD in the general population and improve the clinical symptoms of patients with PD; nevertheless, the safety of regular vitamin supplements still needs to be highlighted. Vitamin supplementation may be an effective adjuvant treatment for PD. In this review, we summarized the biological correlations between vitamins and PD as well as the underlying pathophysiological mechanisms. Additionally, we elaborated the therapeutic potentials of vitamins for PD.
Collapse
|
22
|
Cantoni O, Guidarelli A, Fiorani M. Mitochondrial Uptake and Accumulation of Vitamin C: What Can We Learn from Cell Culture Studies? Antioxid Redox Signal 2018; 29:1502-1515. [PMID: 28699359 DOI: 10.1089/ars.2017.7253] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The mitochondrial fraction of l-ascorbic acid (AA) is of critical importance for the regulation of the redox status of these organelles and for cell survival. Recent Advances: Most cell types take up AA by the high-affinity sodium-dependent vitamin C transporter 2 (SVCT2) sensitive to inhibition by dehydroascorbic acid (DHA). DHA can also be taken up by glucose transporters (GLUTs) and then reduced back to AA. DHA concentrations, normally very low in biological fluids, may only become significant next to superoxide-releasing cells. Very little is known about the mechanisms mediating the mitochondrial transport of the vitamin. CRITICAL ISSUES Information on AA transport is largely derived from studies using cultured cells and is therefore conditioned by possible cell culture effects as overexpression of SVCT2 in the plasma membrane and mitochondria. Mitochondrial SVCT2 is susceptible to inhibition by DHA and transports AA with a low affinity as a consequence of the restrictive ionic conditions. In some cells, however, high-affinity mitochondrial transport of AA is observed. Mitochondrial uptake of DHA may take place through GLUTs, an event followed by its prompt reduction to AA in the matrix. Intracellular levels of DHA are, however, normally very low. FUTURE DIRECTIONS We need to establish, or rule out, the role and significance of mitochondrial SVCT2 in vivo. The key question for mitochondrial DHA transport is instead related to its very low intracellular concentrations.
Collapse
Affiliation(s)
- Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| |
Collapse
|
23
|
Ascorbic acid inhibits visceral obesity and nonalcoholic fatty liver disease by activating peroxisome proliferator-activated receptor α in high-fat-diet-fed C57BL/6J mice. Int J Obes (Lond) 2018; 43:1620-1630. [PMID: 30283077 DOI: 10.1038/s41366-018-0212-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/04/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Ascorbic acid is a known cofactor in the biosynthesis of carnitine, a molecule that has an obligatory role in fatty acid oxidation. Our previous studies have demonstrated that obesity is regulated effectively through peroxisome proliferator-activated receptor α (PPARα)-mediated fatty acid β-oxidation. Thus, this study aimed to determine whether ascorbic acid can inhibit obesity and nonalcoholic fatty liver disease (NAFLD) in part through the actions of PPARα. DESIGN After C57BL/6J mice received a low-fat diet (LFD, 10% kcal fat), a high-fat diet (HFD, 45% kcal fat), or the same HFD supplemented with ascorbic acid (1% w/w) (HFD-AA) for 15 weeks, variables and determinants of visceral obesity and NAFLD were examined using metabolic measurements, histology, and gene expression. RESULTS Compared to HFD-fed obese mice, administration of HFD-AA to obese mice reduced body weight gain, visceral adipose tissue mass, and visceral adipocyte size without affecting food consumption profiles. Concomitantly, circulating ascorbic acid concentrations were significantly higher in HFD-AA mice than in HFD mice. Ascorbic acid supplementation increased the mRNA levels of PPARα and its target enzymes involved in fatty acid β-oxidation in visceral adipose tissues. Consistent with the effects of ascorbic acid on visceral obesity, ascorbic acid not only inhibited hepatic steatosis but also increased the mRNA levels of PPARα-dependent fatty acid β-oxidation genes in livers. Similarly, hepatic inflammation, fibrosis, and apoptosis were also decreased during ascorbic acid-induced inhibition of visceral obesity. In addition, serum levels of alanine aminotransferase, aspartate aminotransferase, total cholesterol, and LDL cholesterol were lower in HFD-AA-fed mice than in those of HFD-fed mice. CONCLUSIONS These results suggest that ascorbic acid seems to suppress HFD-induced visceral obesity and NAFLD in part through the activation of PPARα.
Collapse
|
24
|
|
25
|
Vissers MCM, Das AB. Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence. Front Physiol 2018; 9:809. [PMID: 30018566 PMCID: PMC6037948 DOI: 10.3389/fphys.2018.00809] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Whether vitamin C (ascorbate) has a role to play as an anti-cancer agent has been debated for decades. Ascorbate has been used by cancer patients in an unregulated environment, either as a dietary supplement or in pharmacological doses administered by infusion, with numerous reports of clinical benefit, but in the absence of rigorous clinical trial data. The design of appropriate clinical trials has been hindered by a lack of understanding of the mechanism(s) of action that would inform the choice of effective dose, timing of administration and likely responsive cancer models. More recently, expanded understanding of the biological activities of ascorbate has led to a number of plausible hypotheses for mechanisms of anti-cancer activity. Prominent among these are the generation of significant quantities of hydrogen peroxide by the autoxidation of supra-physiological concentrations of ascorbate and stimulation of the 2-oxoglutarate-dependent dioxygenase family of enzymes (2-OGDDs) that have a cofactor requirement for ascorbate. Hydrogen peroxide generation is postulated to generate oxidative stress that preferentially targets cancer cells. The 2-OGDDs include the hydroxylases that regulate the hypoxic response, a major driver of tumor survival, angiogenesis, stem cell phenotype and metastasis, and the epigenetic histone and DNA demethylases. The latter are of particular interest, with recent studies suggesting a promising role for ascorbate in the regulation of the ten-eleven translocase (TET) DNA demethylases in hematological cancers. Support for these proposed mechanisms has come from many in vitro studies, and xenograft animal models have consistently shown an anti-cancer effect of ascorbate administration. However, decisive evidence for any particular mechanism(s) of action is not yet available from an in vivo setting. With a number of early phase clinical trials currently underway, evidence for potential mechanism(s) of action is required to inform the most appropriate study design and choice of cancer model. Hopefully such information will result in sound clinical data that will avert adding any further controversy to this already contentious debate.
Collapse
Affiliation(s)
- Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| |
Collapse
|
26
|
de la Torre M, Gómez-Botrán JL, Olivera ER, Bermejo F, Rodríguez-Morán J, Luengo JM. Histamine catabolism in Pseudomonas putida U: identification of the genes, catabolic enzymes and regulators. Environ Microbiol 2018; 20:1828-1841. [PMID: 29614211 DOI: 10.1111/1462-2920.14118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/22/2018] [Indexed: 01/25/2023]
Abstract
In this study, the catabolic pathway required for the degradation of the biogenic amine histamine (Hin) was genetically and biochemically characterized in Pseudomonas putida U. The 11 proteins (HinABCDGHFLIJK) that participate in this pathway are encoded by genes belonging to three loci hin1, hin2 and hin3 and by the gene hinK. The enzymes HinABCD catalyze the transport and oxidative deamination of histamine to 4-imidazoleacetic acid (ImAA). This reaction is coupled to those of other well-known enzymatic systems (DadXAR and CoxBA-C) that ensure both the recovery of the pyruvate required for Hin deamination and the genesis of the energy needed for Hin uptake. The proteins HinGHFLKIJ catalyze the sequential transformation of ImAA to fumaric acid via N2 -formylisoasparagine, formylaspartic acid and aspartic acid. The identified Hin pathway encompasses all the genes and proteins (transporters, energizing systems, catabolic enzymes and regulators) needed for the biological degradation of Hin. Our work was facilitated by the design and isolation of genetically engineered strains that degrade Hin or ImAA and of mutants that accumulate Ala, Asp and Hin catabolites. The implications of this research with respect to potential biotechnological applications are discussed.
Collapse
Affiliation(s)
- Manuel de la Torre
- Departamento de Biología Molecular, Facultades de Veterinaria y de Biología, Universidad de León, León 24071, España
| | - José L Gómez-Botrán
- Departamento de Biología Molecular, Facultades de Veterinaria y de Biología, Universidad de León, León 24071, España
| | - Elías R Olivera
- Departamento de Biología Molecular, Facultades de Veterinaria y de Biología, Universidad de León, León 24071, España
| | - Francisco Bermejo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Salamanca 37008, España
| | - Joaquín Rodríguez-Morán
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Salamanca 37008, España
| | - José M Luengo
- Departamento de Biología Molecular, Facultades de Veterinaria y de Biología, Universidad de León, León 24071, España
| |
Collapse
|
27
|
Shen ZJ, Zhang SD, Liu YJ, Liu XM, Li Z, Zhang QW, Liu XX. Functional analysis by RNAi of an glutaredoxin gene in Helicoverpa armigera. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:98-105. [PMID: 29066324 DOI: 10.1016/j.jinsphys.2017.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Glutaredoxins play crucial roles in maintaining intracellular redox homeostasis via scavenging of excess reactive oxygen species. In this study, a glutaredoxin domain-containing cysteine-rich gene from Helicoverpa armigera, named HaGdccr, was characterized. Sequence analysis revealed that it contains a glutaredoxin domain and a conserved cysteine and shares high sequence identity with other insect genes. HaGdccr mRNA expression was highest in molting larvae of the 3rd instar and was mainly detected in the central nervous system of larvae and the wings of adults. Quantitative real-time PCR results revealed that the expression of HaGdccr was suppressed at 1 and 6 h and increased at 24 h after the larvae were treated with 4 °C and hydrogen peroxide. When the larvae were exposed to 20 °C, HaGdccr decreased at 1 h and was induced at 12 and 24 h. HaGdccr transcription level was downregulated at 2 and 12 h and upregulated at 24 h after the adults were exposed to 0 °C. However, transcript levels were increased by high temperature in both larvae and adults. After knockdown of HaGdccr by RNA interference, the expression of antioxidant genes, including thioredoxin-like (Trx-like), catalase (CAT), glutathione-S-transferase (GST), thioredoxin reductase (TrxR), and thioredoxin (Trx), was increased, whereas that of thioredoxin peroxidase (Tpx) was decreased. In addition, we found that HaGdccr knockdown enhanced the enzymatic activity of superoxide dismutase and the contents of hydrogen peroxide and ascorbate. Taken together, these results indicate that HaGdccr may play significant roles in protecting organisms against oxidative damage.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Song-Dou Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Yan-Jun Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiao-Ming Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qing-Wen Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiao-Xia Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Cowieson A, Abdollahi M, Zaefarian F, Pappenberger G, Ravindran V. The effect of a mono-component exogenous protease and graded concentrations of ascorbic acid on the performance, nutrient digestibility and intestinal architecture of broiler chickens. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2017.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Lee JK, Jung SH, Lee SE, Han JH, Jo E, Park HS, Heo KS, Kim D, Park JS, Myung CS. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 22:35-42. [PMID: 29302210 PMCID: PMC5746510 DOI: 10.4196/kjpp.2018.22.1.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/25/2017] [Accepted: 09/20/2017] [Indexed: 01/10/2023]
Abstract
Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the Cmax value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their Tmax values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders.
Collapse
Affiliation(s)
- Joon-Kyung Lee
- Department of Physical Pharmacy, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Hyuk Jung
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Eun Lee
- Department of Physical Pharmacy, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Joo-Hui Han
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Eunji Jo
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Hyun-Soo Park
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Deasun Kim
- PHARMCROSS Co., Ltd., Chuncheon 24398, Korea
| | - Jeong-Sook Park
- Department of Physical Pharmacy, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Chang-Seon Myung
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
30
|
Bivona JJ, Patel S, Vajdy M. Induction of cellular and molecular Immunomodulatory pathways by vitamin E and vitamin C. Expert Opin Biol Ther 2017; 17:1539-1551. [PMID: 28905653 DOI: 10.1080/14712598.2017.1375096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Vitamins E and C are well known small molecules that have been used to maintain health for decades. Recent studies of the cellular and molecular pathways leading to immunomodulation by these molecules have been of interest, as have their anti-oxidant properties and signal transduction pathways for curing or improving infectious diseases and cancer. Areas covered: Herein, the authors provide a definition and the structural classification of vitamins E and C and how these molecules influence cellular function. The studies include in vitro, ex vivo and in vivo studies in animal models as well as clinical trials. The authors give particular focus to the scientifically factual and putative roles of these molecules in innate and adaptive immunomodulation and prevention or cure of diseases. Expert opinion: The antioxidant properties of vitamins E and C are well studied. However, whether there is a link between their antioxidant and immunomodulation properties is unclear. In addition, there is a strong, albeit putative, prevailing notion that vitamin C can prevent or cure infectious diseases or cancer. Presently, while there is proven evidence that vitamin E possesses immunomodulatory properties that may play a positive role in disease outcomes, this evidence is less available for vitamin C.
Collapse
Affiliation(s)
- Joseph J Bivona
- a EpitoGenesis, Inc , Vernon , CT , USA.,b Department of Medicine , University of Vermont , Burlington , VT , USA
| | | | | |
Collapse
|
31
|
Abstract
Disturbance of cerebral redox homeostasis is the primary cause of human neurodegenerative disorders, such as Parkinson's disease or Alzheimer's disease. Well known experimental research demonstrates that oxidative stress is a main cause of cell death. A high concentration of reactive oxygen and nitrogen species leads to damage of a lot of proteins, lipids and also DNA. Synthetic compounds used for the treatment in the neurodegenerative diseases failed to meet the hopes they had raised and often exhibit a number of side effects. Therefore, in recent years interest in natural compounds derived from plants appears to be on the rise. This review describes a few natural compounds (1MeTIQ, resveratrol, curcumin, vitamin C and Gingko biloba) which revealed neuroprotective potential both in experimental studies and clinical trials. 1MeTIQ has a privileged position because, as opposed to the remaining compounds, it is an endogenous amine synthesized in human and animal brain. Based on evidence from research, it seems that a common protective mechanism for all the above-mentioned natural compounds relies on their ability to inhibit or even scavenge the excess of free radicals generated in oxidative and neurotoxin-induced processes in nerve cells of the brain. However, it was demonstrated that further different molecular processes connected with neurotoxicity (e.g. the inhibition of mitochondrial complex I, activation of caspase-3, apoptosis) follow later and are initiated by the reactive oxygen species. What is more, these natural compounds are able to inhibit further stages of apoptosis triggered by neurotoxins in the brain.
Collapse
Affiliation(s)
- Agnieszka Wąsik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, Kraków, Poland.
| | | |
Collapse
|
32
|
Cyclodextrin-Graphite Oxide-Carbon Nanotube Composites for Electrochemical Supramolecular Recognition. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Qu K, Ma XF, Li GH, Zhang H, Liu YM, Zhang K, Zeng JF, Lei JJ, Wei DH, Wang Z. Vitamin C down-regulate apo(a) expression via Tet2-dependent DNA demethylation in HepG2 cells. Int J Biol Macromol 2017; 98:637-645. [PMID: 28192139 DOI: 10.1016/j.ijbiomac.2017.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/16/2017] [Accepted: 02/06/2017] [Indexed: 01/01/2023]
Abstract
Lipoprotein(a)[Lp(a)] is a risk factor for coronary heart diseases. However, the metabolism of this protein remains poorly understood. Efficient and specific drugs that can decrease high plasma levels of Lp(a) have not been developed yet. Vitamin C is responsible for maintaining the catalytic activity of a group of iron and 2-oxoglutarate (2OG)-dependent dioxygenases and induces the generation of 5-hydroxymethylcytosine (5hmC) via Ten-eleven translocation (Tet) dioxygenases. In addition, It has been reported vitamin C deficiency induces atherosclerosis and increases Lp(a) and apo(a) plasma levels in Lp(a)+ mice. However, the mechanism is still unclear. In this study, we investigated the effects of vitamin C on apo(a) expression and the possible molecular mechanism of vitamin C that influences apolipoprotein(a) [apo(a)] biosynthesis in HepG2 cells. Results showed that vitamin C significantly inhibited the expression and secretion levels of apo(a). Vitamin C can also increase ELK1 expression and hydroxymethylation of ELK1 promoter and the globle DNA in HepG2 cells. In addition, the effects of vitamin C inhibiting the apo(a) expression were attenuated by ELK1siRNA and Tet2siRNA. These results suggested vitamin C down-regulate apo(a) expression via Tet2-dependent DNA demethylation in HepG2 cells.
Collapse
Affiliation(s)
- Kai Qu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001 China
| | - Xiao-Feng Ma
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001 China
| | - Guo-Hua Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001 China
| | - Hai Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001 China
| | - Ya-Mi Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001 China
| | - Kai Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001 China; The Second Hospital Affiliated to University of South China, Hengyang 421001, Hunan, China
| | - Jun-Fa Zeng
- The Second Hospital Affiliated to University of South China, Hengyang 421001, Hunan, China
| | - Jian-Jun Lei
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001 China
| | - Dang-Heng Wei
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001 China
| | - Zuo Wang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001 China.
| |
Collapse
|
34
|
Narra MR. Haematological and immune upshots in Clarias batrachus exposed to dimethoate and defying response of dietary ascorbic acid. CHEMOSPHERE 2017; 168:988-995. [PMID: 27816289 DOI: 10.1016/j.chemosphere.2016.10.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Dimethoate (DM) is an organophosphate insecticide used worldwide in agriculture, household practices. It has resulted in a series of environmental and toxicological impacts on non-target aquatic organisms. The present study investigated the potential ameliorative effects of dietary ascorbic acid (AA) against dimethoate toxicity in the haematological and immune parameters in Clarias batrachus. The experiment included group A (basal diet), group B (basal diet with 1.245 mg L-1 DM) and group C (200 mg kg-1 AA with 1.245 mg L-1 DM) were fed for 8 weeks. Samples were collected at the end of every week in each group and estimated haematological profile (red blood cell count, haemoglobin concentration, haematocrit %, albumin and globulin levels), erythrocyte indices (mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration), biochemical parameters (AA levels in blood and liver, total proteins, glucose, serum triglycerides, creatinine levels and glutamic oxaloacetate, glutamic pyruvate transaminase (GOT, GPT)) and immune responses (white blood cell count, serum IgM levels and activities of nitroblue tetrazolium, lysozyme and peroxidase) of the fish. Fish fed with ascorbic acid, showed red blood cell, haemoglobin, haematocrit, erythrocyte indices, albumin, globulin and serum triglycerides, creatinine, plasma total proteins, glucose levels are not differed (≤10%) from control. Likewise, ascorbic acid maintains optimal levels in activities of GOT, GPT, nitroblue tetrazolium, lysozyme and peroxidase, white blood cells and serum IgM levels. Further studies are needed to ascertain how ascorbic acid improves the innate and humoral immune system of the fish and the mechanisms involved.
Collapse
|
35
|
Karanth S, Yu WH, Mastronardi CA, McCann SM. Inhibition of Stimulated Ascorbic Acid and Luteinizing Hormone-Releasing Hormone Release by Nitric Oxide Synthase or Guanyl Cyclase Inhibitors. Exp Biol Med (Maywood) 2016; 229:72-9. [PMID: 14709779 DOI: 10.1177/153537020422900109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ascorbic acid (AA), an antioxidant, is present in high concentrations in the hypothalamus. Previously, we have shown that AA inhibited stimulated release of luteinizing hormone-releasing hormone (LHRH) from medial basal hypothalami in vitro. We have also demonstrated that cell membrane depolarization by high [K+] media-induced AA release that is blocked by NG-monomethyl-l-arginine, a competitive inhibitor of nitric oxide synthase (NOS), indicating that the release process is mediated by NO. The release of LHRH is also mediated by NO. We hypothesized that AA is a co-transmitter released with classical transmitters from synaptic vesicles that acts to reduce chemically the NO formed, thereby providing feed-forward inhibitory control over LHRH release. Because NO acts by activating guanylyl cyclase (GC) resulting in production of cGMP, in the present investigation we studied the effects of an NOS inhibitor LY 83583 and GC inhibitor, O.D.Q. to further characterize the role of NO in high [K+]-induced AA and LHRH release. Medial basal hypothalami were incubated in 0.5 ml of Krebs-Ringer Bicarbonate buffer or medium containing increased potassium [K+ = 56 mM] for 1 hr or combinations of high [K+] + LY 83583 or O.D.Q. for 1 hr. AA and LHRH released into the incubation medium were measured by high-pressure liquid chromatography and radioimmunoassay, respectively. Cell membrane depolarization with high [K+] produced a significant increase in both AA and LHRH release. A combination of high [K+] + LY 83583 or high [K+] + O.D.Q. decreased basal AA and completely blocked high [K+]-induced AA and LHRH release. As in the case of high [K+], LHRH release induced by the excitatory amino acid N-methyl-d-aspartic acid (NMDA) was blocked by both the inhibitors. NMDA alone failed to alter AA release, but the combined presence of NMDA and the inhibitors totally blocked AA release. Because LY 83583 and O.D.Q. were shown to inhibit NOS and soluble GC, respectively, the data demonstrate that basal and high [K+]-induced AA and high [K+] and NMDA-stimulated LHRH release were mediated by NO by its activation of GC and consequent generation of cGMP.
Collapse
Affiliation(s)
- Sharada Karanth
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808-4124, USA
| | | | | | | |
Collapse
|
36
|
Zhang YY, Guo XL, Liu YL, Liu F, Wang HF, Guo XQ, Xu BH. Functional and mutational analyses of an omega-class glutathione S-transferase (GSTO2) that is required for reducing oxidative damage in Apis cerana cerana. INSECT MOLECULAR BIOLOGY 2016; 25:470-486. [PMID: 27170478 DOI: 10.1111/imb.12236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glutathione S-transferases perform a variety of vital functions, particularly in reducing oxidative damage. Here, we investigated the expression patterns of Apis cerana cerana omega-class glutathione S-transferase 2 (AccGSTO2) under various stresses and explored its connection with antioxidant defences. We found that AccGSTO2 knockdown by RNA interference triggered increased mortality in Ap. cerana cerana, and immunohistochemistry revealed significantly decreased AccGSTO2 expression, particularly in the midgut and fat body. Further analyses indicated that AccGSTO2 knockdown resulted in decreases in catalase and glutathione reductase activities, ascorbate content and the ratio of reduced to oxidized glutathione, and increases in H2 O2 , malondialdehyde and carbonyl contents. We also analysed the transcripts of other antioxidant genes and found that many genes were down-regulated in the AccGSTO2 knockdown samples, revealing that AccGSTO2 may be indispensable for attaining a normal lifespan by enhancing cellular oxidative resistance. In addition, the roles of cysteine residues in AccGSTO2 were explored using site-directed mutagenesis. Mutants of Cys(28) and Cys(124) significantly affected the enzyme and antioxidant activities of AccGSTO2, which may be attributed to the changes in the spatial structures of mutants as determined by homology modelling. In summary, these observations provide novel insight into the structural and functional characteristics of GSTOs.
Collapse
Affiliation(s)
- Y-Y Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
- School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong, China
| | - X-L Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Y-L Liu
- School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong, China
| | - F Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - H-F Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - X-Q Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - B-H Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
37
|
Ogawa E, Neo S. Akita dogs possess GLUT1 in erythrocytes, and Na,K-ATPase activity enables more efficient ascorbic acid recycling. J Vet Med Sci 2016; 78:1557-1561. [PMID: 27320814 PMCID: PMC5095624 DOI: 10.1292/jvms.16-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated hematologic characteristics of healthy Akita dogs. All were found to contain glucose transporters, GLUT1 and GLUT4, in erythrocyte membrane,
whereas Beagle and any other Western dogs have only GLUT4. Of 47 Akitas, ten showed high K and low Na concentrations with elevated glutathione (GSH) in
erythrocytes due to Na,K-ATPase activity in the membrane (HK). Akitas showed increased capacity for recycling vitamin C or ascorbic acid (AA) from oxidized
ascorbic acid (DHA) compared to Beagle dogs. Particularly, HK Akitas performed even greater AA recycling and ferricyanide reduction than normal Akitas which
have normal GSH, low K and high Na concentrations (LK). All HK Akitas also had stomatin in erythrocyte membrane, while half of LK Akitas had it at lower levels
than HK Akitas. Stomatin did not have any influence on AA recycling. GLUT1, Na,K-ATPase and stomatin in erythrocytes are characteristics of Akita dogs, and the
high prevalence of these proteins suggests their positive roles in biological efficiency.
Collapse
Affiliation(s)
- Eri Ogawa
- Laboratory of Basic Education, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan
| | | |
Collapse
|
38
|
Old Things New View: Ascorbic Acid Protects the Brain in Neurodegenerative Disorders. Int J Mol Sci 2015; 16:28194-217. [PMID: 26633354 PMCID: PMC4691042 DOI: 10.3390/ijms161226095] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Ascorbic acid is a key antioxidant of the Central Nervous System (CNS). Under brain activity, ascorbic acid is released from glial reservoirs to the synaptic cleft, where it is taken up by neurons. In neurons, ascorbic acid scavenges reactive oxygen species (ROS) generated during synaptic activity and neuronal metabolism where it is then oxidized to dehydroascorbic acid and released into the extracellular space, where it can be recycled by astrocytes. Other intrinsic properties of ascorbic acid, beyond acting as an antioxidant, are important in its role as a key molecule of the CNS. Ascorbic acid can switch neuronal metabolism from glucose consumption to uptake and use of lactate as a metabolic substrate to sustain synaptic activity. Multiple evidence links oxidative stress with neurodegeneration, positioning redox imbalance and ROS as a cause of neurodegeneration. In this review, we focus on ascorbic acid homeostasis, its functions, how it is used by neurons and recycled to ensure antioxidant supply during synaptic activity and how this antioxidant is dysregulated in neurodegenerative disorders.
Collapse
|
39
|
Cao JJ, Picklo MJ. Involuntary wheel running improves but does not fully reverse the deterioration of bone structure of obese rats despite decreasing adiposity. Calcif Tissue Int 2015; 97:145-55. [PMID: 25903229 DOI: 10.1007/s00223-015-9992-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
This study investigated whether exercise or antioxidant supplementation with vitamin C and E during exercise affects bone structure and markers of bone metabolism in obese rat. Sprague-Dawley rats, 6-week old, were fed a normal-fat diet (NF, 10 % kcal as fat) and a high-fat diet (HF, 45 % with extra fat from lard) ad libitum for 14 weeks. Then, rats on the high-fat diet were assigned randomly to three treatment groups for additional 12 weeks with forced exercise: HF; HF + exercise (HF + Ex); and HF with vitamin C (0.5 g ascorbate/kg diet) and vitamin E (0.4 g α-tocopherol acetate/kg diet) supplementation + exercise (HF + Ex + VCE). At the end of the study, body weight and fat (%) were similar among NF, HF + Ex, and HF + Ex + VCE, whereas HF had greater body weight and fat (%) than other groups. Compared to NF, HF had elevated serum leptin, tartrate-resistant acid phosphatase (TRAP), and IGF-1; increased trabecular separation and structural model index; and lowered bone mineral density, trabecular connectivity density, and trabecular number in distal femur, while HF + Ex and HF + Ex + VCE had elevated serum TRAP and decreased bone volume/total volume and trabecular number of distal femurs. Compared to HF, HF + Ex and HF + Ex + VCE had decreased serum TRAP and osteocalcin and improved bone structural properties of the distal femur. These findings suggest that exercise, while decreasing body fat, does not fully protect against the negative skeletal effects of existing obesity induced by a high-fat diet. Furthermore, vitamin C and E supplementation has no additional benefits on bone structural properties during exercise.
Collapse
Affiliation(s)
- Jay J Cao
- Grand Forks Human Nutrition Research Center, USDA, Agricultural Research Service, 2420 2nd Ave N, Grand Forks, ND, 58202-9034, USA,
| | | |
Collapse
|
40
|
Romero SA, Ely MR, Sieck DC, Luttrell MJ, Buck TM, Kono JM, Branscum AJ, Halliwill JR. Effect of antioxidants on histamine receptor activation and sustained postexercise vasodilatation in humans. Exp Physiol 2015; 100:435-49. [PMID: 25664905 DOI: 10.1113/ep085030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/02/2015] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is exercise-induced oxidative stress the upstream exercise-related signalling mechanism that leads to sustained postexercise vasodilatation via activation of H1 and H2 histamine receptors? What is the main finding and its importance? Systemic administration of the antioxidant ascorbate inhibits sustained postexercise vasodilatation to the same extent as seen previously with H1 and H2 histamine receptor blockade following small muscle-mass exercise. However, ascorbate has a unique ability to catalyse the degradation of histamine. We also found that systemic infusion of the antioxidant N-acetylcysteine had no effect on sustained postexercise vasodilatation, suggesting that exercise-induced oxidative stress does not contribute to sustained postexercise vasodilatation. An acute bout of aerobic exercise elicits a sustained postexercise vasodilatation that is mediated by histamine H1 and H2 receptor activation. However, the upstream signalling pathway that leads to postexercise histamine receptor activation is unknown. We tested the hypothesis that the potent antioxidant ascorbate would inhibit this histaminergic vasodilatation following exercise. Subjects performed 1 h of unilateral dynamic knee extension at 60% of peak power in three conditions: (i) control; (ii) i.v. ascorbate infusion; and (iii) ascorbate infusion plus oral H1 /H2 histamine receptor blockade. Femoral artery blood flow was measured (using Doppler ultrasound) before exercise and for 2 h postexercise. Femoral vascular conductance was calculated as flow/pressure. Postexercise vascular conductance was greater for control conditions (3.4 ± 0.1 ml min(-1) mmHg(-1) ) compared with ascorbate (2.7 ± 0.1 ml min(-1) mmHg(-1) ; P < 0.05) and ascorbate plus H1 /H2 blockade (2.8 ± 0.1 ml min(-1) mmHg(-1) ; P < 0.05), which did not differ from one another (P = 0.9). Given that ascorbate may catalyse the degradation of histamine in vivo, we conducted a follow-up study, in which subjects performed exercise in two conditions: (i) control; and (ii) i.v. N-acetylcysteine infusion. Postexercise vascular conductance was similar for control (4.0 ± 0.1 ml min(-1) mmHg(-1) ) and N-acetylcysteine conditions (4.0 ± 0.1 ml min(-1) mmHg(-1) ; P = 0.8). Thus, the results in the initial study were due to the degradation of histamine in skeletal muscle by ascorbate, because the histaminergic vasodilatation was unaffected by N-acetylcysteine. Overall, exercise-induced oxidative stress does not appear to contribute to sustained postexercise vasodilatation.
Collapse
Affiliation(s)
- Steven A Romero
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403-1240, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gluckman PD, Low FM, Buklijas T, Hanson MA, Beedle AS. How evolutionary principles improve the understanding of human health and disease. Evol Appl 2015; 4:249-63. [PMID: 25567971 PMCID: PMC3352556 DOI: 10.1111/j.1752-4571.2010.00164.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 09/19/2010] [Indexed: 02/06/2023] Open
Abstract
An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies.
Collapse
Affiliation(s)
- Peter D Gluckman
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, The University of Auckland Auckland, New Zealand
| | - Felicia M Low
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, The University of Auckland Auckland, New Zealand
| | - Tatjana Buklijas
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, The University of Auckland Auckland, New Zealand
| | - Mark A Hanson
- Institute of Developmental Sciences, University of Southampton, Mailpoint 887, Southampton General Hospital Southampton, UK
| | - Alan S Beedle
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, The University of Auckland Auckland, New Zealand
| |
Collapse
|
42
|
Noguera JC, Monaghan P, Metcalfe NB. Interactive effects of early and later nutritional conditions on the adult antioxidant defence system in zebra finches. J Exp Biol 2015; 218:2211-7. [DOI: 10.1242/jeb.120956] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/10/2015] [Indexed: 12/25/2022]
Abstract
In vertebrates, antioxidant defences comprise a mixture of endogenously produced components and exogenously obtained antioxidants that are derived mostly from the diet. It has been suggested that early life micronutritional conditions might influence the way in which the antioxidant defence system operates, which could enable individuals to adjust the activity of the endogenous and exogenous components in line with their expected intake of dietary antioxidants if the future environment resembles the past. We investigated this possibility by experimentally manipulating the micronutrient content of the diet during different periods of postnatal development in the zebra finch (Taeniopygia guttata). Birds that had a low micronutrient diet during the growth phase initially had a lower total antioxidant capacity (TAC) than those reared under a high micronutrient diet, but then showed a compensatory response, so that by the end of the growth phase the TAC of the two groups was the same. Interestingly, we found an interactive effect of micronutrient intake early and late in development: only those birds that continued with the same dietary treatment (low or high) throughout development showed a significant increase in their TAC during the period of sexual maturation. A similar effect was also found in the level of enzymatic antioxidant defences (glutathione peroxidase; GPx). No significant effects were found in the level of oxidative damage in lipids (MDA). These findings demonstrate the importance of early and late developmental conditions in shaping multiple aspects of the antioxidant system. Furthermore, they suggest that young birds may adjust their antioxidant defences to enable them to ‘thrive’ on diets rich or poor in micronutrients later in life.
Collapse
Affiliation(s)
- José C. Noguera
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil B. Metcalfe
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
43
|
Abstract
Conformation, genetics, and behavioral drive are the major determinants of success in canine athletes, although controllable variables, such as training and nutrition, play an important role. The scope and breadth of canine athletic events has expanded dramatically in the past 30 years, but with limited research on performance nutrition. There are considerable data examining nutritional physiology in endurance dogs and in sprinting dogs; however, nutritional studies for agility, field trial, and detection are rare. This article highlights basic nutritional physiology and interventions for exercise, and reviews newer investigations regarding aging working and service dogs, and canine detection activities.
Collapse
Affiliation(s)
- Joseph Wakshlag
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, VMC 1-120 Box 34, Ithaca, NY 14853, USA.
| | - Justin Shmalberg
- Department of Clinical Sciences, University of Florida, 2015 SW 15th Street, Gainesville, FL 32610, USA
| |
Collapse
|
44
|
Lane DJR, Richardson DR. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med 2014; 75:69-83. [PMID: 25048971 DOI: 10.1016/j.freeradbiomed.2014.07.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 01/18/2023]
Abstract
Ascorbate is a cofactor in numerous metabolic reactions. Humans cannot synthesize ascorbate owing to inactivation of the gene encoding the enzyme l-gulono-γ-lactone oxidase, which is essential for ascorbate synthesis. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance nonheme iron absorption in the gut, ascorbate within mammalian systems can regulate cellular iron uptake and metabolism. Ascorbate modulates iron metabolism by stimulating ferritin synthesis, inhibiting lysosomal ferritin degradation, and decreasing cellular iron efflux. Furthermore, ascorbate cycling across the plasma membrane is responsible for ascorbate-stimulated iron uptake from low-molecular-weight iron-citrate complexes, which are prominent in the plasma of individuals with iron-overload disorders. Importantly, this iron-uptake pathway is of particular relevance to astrocyte brain iron metabolism and tissue iron loading in disorders such as hereditary hemochromatosis and β-thalassemia. Recent evidence also indicates that ascorbate is a novel modulator of the classical transferrin-iron uptake pathway, which provides almost all iron for cellular demands and erythropoiesis under physiological conditions. Ascorbate acts to stimulate transferrin-dependent iron uptake by an intracellular reductive mechanism, strongly suggesting that it may act to stimulate iron mobilization from the endosome. The ability of ascorbate to regulate transferrin iron uptake could help explain the metabolic defect that contributes to ascorbate-deficiency-induced anemia.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
45
|
Abstract
Aging is a normal process characterized by a variety of physiologic changes. Geriatric dogs are also more likely to be afflicted with certain disease conditions. Both normal and abnormal physiologic changes associated with aging in the dog may be amenable to nutritional intervention. Specific alterations in nutrients or in dietary characteristics can be beneficial; however, these are best done in the context of an individualized nutritional assessment and monitoring paradigm.
Collapse
Affiliation(s)
- Jennifer A Larsen
- VM: Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Amy Farcas
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
Lane DJR, Lawen A. A rapid and specific microplate assay for the determination of intra- and extracellular ascorbate in cultured cells. J Vis Exp 2014. [PMID: 24747535 DOI: 10.3791/51322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vitamin C (ascorbate) plays numerous important roles in cellular metabolism, many of which have only come to light in recent years. For instance, within the brain, ascorbate acts in a neuroprotective and neuromodulatory manner that involves ascorbate cycling between neurons and vicinal astrocytes--a relationship that appears to be crucial for brain ascorbate homeostasis. Additionally, emerging evidence strongly suggests that ascorbate has a greatly expanded role in regulating cellular and systemic iron metabolism than is classically recognized. The increasing recognition of the integral role of ascorbate in normal and deregulated cellular and organismal physiology demands a range of medium-throughput and high-sensitivity analytic techniques that can be executed without the need for highly expensive specialist equipment. Here we provide explicit instructions for a medium-throughput, specific and relatively inexpensive microplate assay for the determination of both intra- and extracellular ascorbate in cell culture.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology & Bosch Institute, University of Sydney;
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University;
| |
Collapse
|
47
|
Yao P, Chen X, Yan Y, Liu F, Zhang Y, Guo X, Xu B. Glutaredoxin 1, glutaredoxin 2, thioredoxin 1, and thioredoxin peroxidase 3 play important roles in antioxidant defense in Apis cerana cerana. Free Radic Biol Med 2014; 68:335-46. [PMID: 24389255 DOI: 10.1016/j.freeradbiomed.2013.12.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 11/18/2022]
Abstract
Glutaredoxins (Grxs) and thioredoxins (Trxs) play important roles in maintaining intracellular thiol-redox homeostasis by scavenging reactive oxygen species. However, few Grxs and Trxs have been functionally characterized in Apis cerana cerana. In this study, we identified three genes, AccGrx1, AccGrx2, and AccTrx1, and investigated their connection to antioxidant defense. AccGrx1 and AccGrx2 were mainly detected in dark-eyed pupae, whereas AccTrx1 was highly concentrated in 15-day postemergence adults. The expression levels of AccGrx1 and AccTrx1 were the highest in fat body and epidermis, respectively. However, the expression level of AccGrx2 was the highest in muscle, followed by the epidermis. AccGrx1, AccGrx2, and AccTrx1 were induced by 4, 16, and 42°C; H2O2; and pesticide (acaricide, paraquat, cyhalothrin, and phoxime) treatments and repressed by UV light. AccGrx1 and AccGrx2 were upregulated by HgCl2 treatment, whereas AccTrx1 was downregulated. We investigated the knockdown of AccGrx1, AccGrx2, AccTpx-3, and AccTrx1 in A. cerana cerana and surprisingly found that knockdown of the these four genes enhanced the enzymatic activities of CAT and POD; the metabolite contents of hydrogen peroxide, carbonyls, and ascorbate; and the ratios of GSH/GSSG and NADP(+)/NADPH. In addition, we also analyzed the transcripts of other antioxidant genes and found that some were upregulated and others were downregulated, revealing that the upregulated genes may be involved in compensating for the knockdown of AccGrx1, AccGrx2, AccTpx-3, and AccTrx1. Taken together, these results suggest that AccGrx1, AccGrx2, AccTpx-3, and AccTrx1 may play critical roles in antioxidant defense.
Collapse
Affiliation(s)
- Pengbo Yao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xiaobo Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Yan Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Feng Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Yuanying Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|
48
|
Motorykin I, Traber MG, Tanguay RL, Maier CS. Proteome-driven elucidation of adaptive responses to combined vitamin E and C deficiency in zebrafish. J Proteome Res 2014; 13:1647-56. [PMID: 24476500 PMCID: PMC3993953 DOI: 10.1021/pr401108d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to determine the system-wide consequences of deficiencies in two essential micronutrients, vitamins E and C, on the proteome using zebrafish (Danio rerio) as one of the few vertebrate models that similar to humans cannot synthesize vitamin C. We describe a label-free proteomics workflow to detect changes in protein abundance estimates dependent on vitamin regimes. We used ion-mobility-enhanced data-independent tandem mass spectrometry to determine differential regulation of proteins in response to low dietary levels of vitamin C with or without vitamin E. The detection limit of the method was as low as 20 amol, and the dynamic range was five orders of magnitude for the protein-level estimates. On the basis of the quantitative changes obtained, we built a network of protein interactions that reflect the whole organism's response to vitamin C deficiency. The proteomics-driven study revealed that in vitamin-E-deficient fish, vitamin C deficiency is associated with induction of stress response, astrogliosis, and a shift from glycolysis to glutaminolysis as an alternative mechanism to satisfy cellular energy requirements.
Collapse
Affiliation(s)
- Ievgen Motorykin
- Department of Chemistry, Oregon State University , 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | | | | | | |
Collapse
|
49
|
Snow SJ, De Vizcaya-Ruiz A, Osornio-Vargas A, Thomas RF, Schladweiler MC, McGee J, Kodavanti UP. The effect of composition, size, and solubility on acute pulmonary injury in rats following exposure to Mexico city ambient particulate matter samples. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:1164-82. [PMID: 25119738 DOI: 10.1080/15287394.2014.917445] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Particulate matter (PM)-associated metals can contribute to adverse cardiopulmonary effects following exposure to air pollution. The aim of this study was to investigate how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity differences. Male Wistar Kyoto rats (14 wk) were intratracheally instilled with chemically characterized PM10 and PM2.5 from the north and PM10 from the south of Mexico City (3 mg/kg). Both water-soluble and acid-leachable fractions contained several metals, with levels generally higher in PM10 South. The insoluble and total, but not soluble, fractions of all PM induced pulmonary damage that was indicated by significant increases in neutrophilic inflammation, and several lung injury biomarkers including total protein, albumin, lactate dehydrogenase activity, and γ-glutamyl transferase activity 24 and 72 h postexposure. PM10 North and PM2.5 North also significantly decreased levels of the antioxidant ascorbic acid. Elevation in lung mRNA biomarkers of inflammation (tumor necrosis factor [TNF]-α and macrophage inflammatory protein [MIP]-2), oxidative stress (heme oxygenase [HO]-1, lectin-like oxidized low-density lipoprotein receptor [LOX]-1, and inducibile nitric oxide synthase [iNOS]), and thrombosis (tissue factor [TF] and plasminogen activator inhibitor [PAI]-1), as well as reduced levels of fibrinolytic protein tissue plasminogen activator (tPA), further indicated pulmonary injury following PM exposure. These responses were more pronounced with PM10 South (PM10 South > PM10 North > PM2.5 North), which contained higher levels of redox-active transition metals that may have contributed to specific differences in selected lung gene markers. These findings provide evidence that surface chemistry of the PM core and not the water-soluble fraction played an important role in regulating in vivo pulmonary toxicity responses to Mexico City PM.
Collapse
Affiliation(s)
- Samantha J Snow
- a Curriculum in Toxicology , University of North Carolina at Chapel Hill School of Medicine , Chapel Hill , North Carolina , USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Stuth EAE, Stucke AG, Zuperku EJ. Effects of anesthetics, sedatives, and opioids on ventilatory control. Compr Physiol 2013; 2:2281-367. [PMID: 23720250 DOI: 10.1002/cphy.c100061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This article provides a comprehensive, up to date summary of the effects of volatile, gaseous, and intravenous anesthetics and opioid agonists on ventilatory control. Emphasis is placed on data from human studies. Further mechanistic insights are provided by in vivo and in vitro data from other mammalian species. The focus is on the effects of clinically relevant agonist concentrations and studies using pharmacological, that is, supraclinical agonist concentrations are de-emphasized or excluded.
Collapse
Affiliation(s)
- Eckehard A E Stuth
- Medical College of Wisconsin, Anesthesia Research Service, Zablocki VA Medical Center, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|