1
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Guo S, Zhang D, Dong Y, Shu Y, Wu X, Ni Y, Zhao R, Ma W. Sulfiredoxin-1 accelerates erastin-induced ferroptosis in HT-22 hippocampal neurons by driving heme Oxygenase-1 activation. Free Radic Biol Med 2024; 223:430-442. [PMID: 39159887 DOI: 10.1016/j.freeradbiomed.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis, a recently identified non-apoptotic form of cell death, is strongly associated with neurological diseases and has emerged as a potential therapeutic target. Nevertheless, the fundamental mechanisms are still predominantly unidentified. In the current investigation, sulfiredoxin-1 (SRXN1) has been identified as a crucial regulator that enhances the susceptibility to ferroptosis in HT-22 mouse hippocampal cells treated with erastin. Utilizing TMT-based proteomics, a significant increase in SRXN1 expression was observed in erastin-exposed HT-22 cells. Efficient amelioration of erastin-induced ferroptosis was achieved via the knockdown of SRXN1, which resulted in the reduction of intracellular Fe2+ levels and reactive oxygen species (ROS) in HT-22 cells. Notably, the activation of Heme Oxygenase-1 (HO-1) was found to be crucial for inducing SRXN1 expression in HT-22 cells upon treatment with erastin. SRXN1 increased intracellular ROS and Fe2+ levels by activating HO-1 expression, which promoted erastin-induced ferroptosis in HT-22 cells. Inhibiting SRXN1 or HO-1 alleviated erastin-induced autophagy in HT-22 cells. Additionally, upregulation of SRXN1 or HO-1 increased the susceptibility of HT-22 cells to ferroptosis, a process that was counteracted by the autophagy inhibitor 3-Methyladenine (3-MA). These results indicate that SRXN1 is a key regulator of ferroptosis, activating the HO-1 protein through cellular redox regulation, ferrous iron accumulation, and autophagy in HT-22 cells. These findings elucidate a novel molecular mechanism of erastin-induced ferroptosis sensitivity and suggest that SRXN1-HO-1-autophagy-dependent ferroptosis serves as a promising treatment approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Dongxu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingying Dong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xuanfu Wu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
3
|
Padalko V, Posnik F, Adamczyk M. Mitochondrial Aconitase and Its Contribution to the Pathogenesis of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9950. [PMID: 39337438 PMCID: PMC11431987 DOI: 10.3390/ijms25189950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This survey reviews modern ideas on the structure and functions of mitochondrial and cytosolic aconitase isoenzymes in eukaryotes. Cumulative experimental evidence about mitochondrial aconitases (Aco2) as one of the main targets of reactive oxygen and nitrogen species is generalized. The important role of Aco2 in maintenance of homeostasis of the intracellular iron pool and maintenance of the mitochondrial DNA is discussed. The role of Aco2 in the pathogenesis of some neurodegenerative diseases is highlighted. Inactivation or dysfunction of Aco2 as well as mutations found in the ACO2 gene appear to be significant factors in the development and promotion of various types of neurodegenerative diseases. A restoration of efficient mitochondrial functioning as a source of energy for the cell by targeting Aco2 seems to be one of the promising therapeutic directions to minimize progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Volodymyr Padalko
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- School of Medicine, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Filip Posnik
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Malgorzata Adamczyk
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
4
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
5
|
Samuel Olajide T, Oyerinde TO, Omotosho OI, Okeowo OM, Olajide OJ, Ijomone OM. Microglial senescence in neurodegeneration: Insights, implications, and therapeutic opportunities. NEUROPROTECTION 2024; 2:182-195. [PMID: 39364217 PMCID: PMC11449118 DOI: 10.1002/nep3.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 10/05/2024]
Abstract
The existing literature on neurodegenerative diseases (NDDs) reveals a common pathological feature: the accumulation of misfolded proteins. However, the heterogeneity in disease onset mechanisms and the specific brain regions affected complicates the understanding of the diverse clinical manifestations of individual NDDs. Dementia, a hallmark symptom across various NDDs, serves as a multifaceted denominator, contributing to the clinical manifestations of these disorders. There is a compelling hypothesis that therapeutic strategies capable of mitigating misfolded protein accumulation and disrupting ongoing pathogenic processes may slow or even halt disease progression. Recent research has linked disease-associated microglia to their transition into a senescent state-characterized by irreversible cell cycle arrest-in aging populations and NDDs. Although senescent microglia are consistently observed in NDDs, few studies have utilized animal models to explore their role in disease pathology. Emerging evidence from experimental rat models suggests that disease-associated microglia exhibit characteristics of senescence, indicating that deeper exploration of microglial senescence could enhance our understanding of NDD pathogenesis and reveal novel therapeutic targets. This review underscores the importance of investigating microglial senescence and its potential contributions to the pathophysiology of NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Additionally, it highlights the potential of targeting microglial senescence through iron chelation and senolytic therapies as innovative approaches for treating age-related NDDs.
Collapse
Affiliation(s)
- Tobiloba Samuel Olajide
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Toheeb O. Oyerinde
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Omolabake I. Omotosho
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Oritoke M. Okeowo
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Physiology, School of Basic Medical Science, Federal University of Technology, Akure, Ondo, Nigeria
| | - Olayemi J. Olajide
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Division of Neurobiology, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara, Nigeria
| | - Omamuyouwi M. Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
6
|
Yadav S, Deepika, Moar K, Kumar A, Khola N, Pant A, Kakde GS, Maurya PK. Reconsidering red blood cells as the diagnostic potential for neurodegenerative disorders. Biol Cell 2024; 116:e2400019. [PMID: 38822416 DOI: 10.1111/boc.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Red blood cells (RBCs) are usually considered simple cells and transporters of gases to tissues. HYPOTHESIS However, recent research has suggested that RBCs may have diagnostic potential in major neurodegenerative disorders (NDDs). RESULTS This review summarizes the current knowledge on changes in RBC in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and other NDDs. It discusses the deposition of neuronal proteins like amyloid-β, tau, and α-synuclein, polyamines, changes in the proteins of RBCs like band-3, membrane transporter proteins, heat shock proteins, oxidative stress biomarkers, and altered metabolic pathways in RBCs during neurodegeneration. It also highlights the comparison of RBC diagnostic markers to other in-market diagnoses and discusses the challenges in utilizing RBCs as diagnostic tools, such as the need for standardized protocols and further validation studies. SIGNIFICANCE STATEMENT The evidence suggests that RBCs have diagnostic potential in neurodegenerative disorders, and this study can pave the foundation for further research which may lead to the development of novel diagnostic approaches and treatments.
Collapse
Affiliation(s)
- Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Deepika
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Akshay Kumar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Nikhila Khola
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Ganseh S Kakde
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
7
|
Totten MS, Howell JM, Tomberlin JA, Erikson KM. Relationship Between a High-Fat Diet, Reduced Mobility, and Trace Element Overload in the Olfactory Bulbs of C57BL/6J and DBA/2J Mice. Biol Trace Elem Res 2024; 202:3215-3224. [PMID: 37864044 DOI: 10.1007/s12011-023-03911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
The dysregulation of trace elements in the brain, which can be caused by genetic or environmental factors, has been associated with disease and compromised mobility. Research regarding trace elements and motor function has focused mainly on the basal ganglia, but few studies have examined the olfactory bulb in this context. Diets high in fat have been shown to have consequences of dysregulated iron and manganese in the brain and disrupted motor activity. The aim of our study was to examine the relationship between mobility and trace element disruption in the olfactory bulb in male and female C57BL/6J and DBA/2J mice fed a high-fat diet. Mobility was significantly reduced in male C57BL/6Js, but the correlation between iron and manganese in the olfactory bulb with velocity, distance travelled, and habituation was not statistically significant. However, there appears to be an overall pattern of a high-fat diet having a statistically significant impact individually on elevated iron and manganese in the olfactory bulb, reduced velocity, reduced distance travelled, and reduced habituation mainly in the male C57BL/6J strain. We found similar trends within the scientific literature to suggest that dysregulated trace element status in the olfactory bulb may be related to motor function in both humans and animals and that males may be more susceptible to the negative outcomes. Our findings contribute new information regarding the impact of diet on the brain, behavior, and potential connection between trace element dysregulation in the olfactory bulb with mobility.
Collapse
Affiliation(s)
- Melissa S Totten
- Department of Chemistry and Physics, Salem College, Winston-Salem, NC, USA.
| | - Jenna M Howell
- Department of Chemistry and Physics, Salem College, Winston-Salem, NC, USA
| | | | - Keith M Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
8
|
Solana-Balaguer J, Garcia-Segura P, Campoy-Campos G, Chicote-González A, Fernández-Irigoyen J, Santamaría E, Pérez-Navarro E, Masana M, Alberch J, Malagelada C. Motor skill learning modulates striatal extracellular vesicles' content in a mouse model of Huntington's disease. Cell Commun Signal 2024; 22:321. [PMID: 38863004 PMCID: PMC11167907 DOI: 10.1186/s12964-024-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Huntington's disease (HD) is a neurological disorder caused by a CAG expansion in the Huntingtin gene (HTT). HD pathology mostly affects striatal medium-sized spiny neurons and results in an altered cortico-striatal function. Recent studies report that motor skill learning, and cortico-striatal stimulation attenuate the neuropathology in HD, resulting in an amelioration of some motor and cognitive functions. During physical training, extracellular vesicles (EVs) are released in many tissues, including the brain, as a potential means for inter-tissue communication. To investigate how motor skill learning, involving acute physical training, modulates EVs crosstalk between cells in the striatum, we trained wild-type (WT) and R6/1 mice, the latter with motor and cognitive deficits, on the accelerating rotarod test, and we isolated their striatal EVs. EVs from R6/1 mice presented alterations in the small exosome population when compared to WT. Proteomic analyses revealed that striatal R6/1 EVs recapitulated signaling and energy deficiencies present in HD. Motor skill learning in R6/1 mice restored the amount of EVs and their protein content in comparison to naïve R6/1 mice. Furthermore, motor skill learning modulated crucial pathways in metabolism and neurodegeneration. All these data provide new insights into the pathogenesis of HD and put striatal EVs in the spotlight to understand the signaling and metabolic alterations in neurodegenerative diseases. Moreover, our results suggest that motor learning is a crucial modulator of cell-to-cell communication in the striatum.
Collapse
Affiliation(s)
- Júlia Solana-Balaguer
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | - Pol Garcia-Segura
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Genís Campoy-Campos
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Almudena Chicote-González
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Enrique Santamaría
- Proteored-ISCIII, Proteomics Unit, Departamento de Salud, UPNA, Navarrabiomed, Pamplona, IdiSNA, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mercè Masana
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Malagelada
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Casanova 143, North Wing, 3rd Floor, Barcelona, Catalonia, 08036, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| |
Collapse
|
9
|
Niu L, Zhou Y, Wang J, Zeng W. Nuclear translocation of STAT5 initiates iron overload in huntington's disease by up-regulating IRP1 expression. Metab Brain Dis 2024; 39:559-567. [PMID: 38261161 DOI: 10.1007/s11011-024-01340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
Mutant huntingtin (mHtt) proteins interact to form aggregates, disrupting cellular functions including transcriptional dysregulation and iron imbalance in patients with Huntington's disease (HD) and mouse disease models. Previous studies have indicated that mHtt may lead to abnormal iron homeostasis by upregulating the expression of iron response protein 1 (IRP1) in the striatum and cortex of N171-82Q HD transgenic mice, as well as in HEK293 cells expressing the N-terminal fragment of mHtt containing 160 CAG repeats. However, the mechanism underlying the upregulation of IRP1 remains unclear. We investigated the levels and phosphorylation status of signal transducer and activator of transcription 5 (STAT5) in the brains of N171-82Q HD transgenic mice using immunohistochemistry staining. We also assessed the nuclear localization of STAT5 protein through western blot and immunofluorescence, and measured the relative RNA expression levels of STAT5 and IRP1 using RT-PCR in both N171-82Q HD transgenic mice and HEK293 cells expressing the N-terminal fragment of huntingtin. Our findings demonstrate that the transcription factor STAT5 regulates the transcription of the IPR1 gene in HEK293 cells. Notably, both the brains of N171-82Q mice and 160Q HEK293 cells exhibited increased nuclear content of STAT5, despite unchanged total STAT5 expression. These results suggest that mHtt promotes the nuclear translocation of STAT5, leading to enhanced expression of IRP1. The nuclear translocation of STAT5 initiates abnormal iron homeostatic pathways, characterized by elevated IRP1 expression, increased levels of transferrin and transferrin receptor, and iron accumulation in the brains of HD mice. These findings provide valuable insights into potential therapeutic strategies targeting iron homeostasis in HD.
Collapse
Affiliation(s)
- Li Niu
- Department of Pathology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Yongze Zhou
- Department of Pathology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Jie Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Wei Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, 430071, Wuhan, China.
- Hubei Cancer Clinical Study Centre & Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
10
|
Yao J, Morrison MA, Jakary A, Avadiappan S, Rowley P, Glueck J, Driscoll T, Geschwind MD, Nelson AB, Possin KL, Xu D, Hess CP, Lupo JM. Altered Iron and Microstructure in Huntington's Disease Subcortical Nuclei: Insight From 7T MRI. J Magn Reson Imaging 2024:10.1002/jmri.29195. [PMID: 38206986 PMCID: PMC11521114 DOI: 10.1002/jmri.29195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Pathophysiological changes of Huntington's disease (HD) can precede symptom onset by decades. Robust imaging biomarkers are needed to monitor HD progression, especially before the clinical onset. PURPOSE To investigate iron dysregulation and microstructure alterations in subcortical regions as HD imaging biomarkers, and to associate such alterations with motor and cognitive impairments. STUDY TYPE Prospective. POPULATION Fourteen individuals with premanifest HD (38.0 ± 11.0 years, 9 females; far-from-onset N = 6, near-onset N = 8), 21 manifest HD patients (49.1 ± 12.1 years, 11 females), and 33 age-matched healthy controls (43.9 ± 12.2 years, 17 females). FIELD STRENGTH/SEQUENCE 7 T, T1 -weighted imaging, quantitative susceptibility mapping, and diffusion tensor imaging. ASSESSMENT Volume, susceptibility, fractional anisotropy (FA), and mean diffusivity (MD) within subcortical brain structures were compared across groups, used to establish HD classification models, and correlated to clinical measures and cognitive assessments. STATISTICAL TESTS Generalized linear model, multivariate logistic regression, receiver operating characteristics with the area under the curve (AUC), and likelihood ratio test comparing a volumetric model to one that also includes susceptibility and diffusion metrics, Wilcoxon paired signed-rank test, and Pearson's correlation. A P-value <0.05 after Benjamini-Hochberg correction was considered statistically significant. RESULTS Significantly higher striatal susceptibility and FA were found in premanifest and manifest HD preceding atrophy, even in far-from-onset premanifest HD compared to controls (putamen susceptibility: 0.027 ± 0.022 vs. 0.018 ± 0.013 ppm; FA: 0.358 ± 0.048 vs. 0.313 ± 0.039). The model with additional susceptibility, FA, and MD features showed higher AUC compared to volume features alone when differentiating premanifest HD from HC (0.83 vs. 0.66), and manifest from premanifest HD (0.94 vs. 0.83). Higher striatal susceptibility significantly correlated with cognitive deterioration in HD (executive function: r = -0.600; socioemotional function: r = -0.486). DATA CONCLUSION 7 T MRI revealed iron dysregulation and microstructure alterations with HD progression, which could precede volume loss, provide added value to HD differentiation, and might be associated with cognitive changes. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jingwen Yao
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- Department of Radiological Sciences, UCLA, Los Angeles, California, USA
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Melanie A Morrison
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco and Berkeley, California, USA
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Sivakami Avadiappan
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Paul Rowley
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Julia Glueck
- Department of Neurology, UCSF, San Francisco, California, USA
| | | | | | | | | | - Duan Xu
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco and Berkeley, California, USA
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- Department of Neurology, UCSF, San Francisco, California, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco and Berkeley, California, USA
| |
Collapse
|
11
|
Sharma SK, Mohanty BP, Singh V, Bansal MP, Singhal NK, Sharma SK, Sandhir R. Trace elements dyshomeostasis in liver and brain of weanling mice under altered dietary selenium conditions. J Trace Elem Med Biol 2023; 80:127305. [PMID: 37778095 DOI: 10.1016/j.jtemb.2023.127305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND A balanced diet containing selenium (Se) and other trace elements is essential for normal development and growth. Se has been recognized as an essential trace element; however, its interaction with other elements has not been fully investigated. In the present study, sodium (Na), magnesium (Mg), potassium (K), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), Se and rubidium (Rb), were analysed in liver and brain regions under altered dietary Se intake in weanling mice to identify major discriminatory elements. METHODS The study investigated the effects of different levels of Se intake on the elemental composition in liver and brain tissues of weaned mice. After 24 weeks of feeding with Se adequate, deficient, and excess diets, elemental analysis was performed on the harvested tissues using Inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis that included analysis of covariance (ANCOVA), correlation coefficient analysis, principal component analysis, and partial least squares discriminant analysis were performed. RESULTS The ANCOVA showed statistically significant changes and correlations among the analysed elements under altered dietary Se status. The multivariate analysis showed differential changes in elements in liver and brain regions. The results suggest that long-term dietary Se alternations lead to dyshomeostasis in trace elements that are required in higher concentrations compared to Se. It was observed that changes in the Fe, Co, and Rb levels were similar in all the tissues studied, whereas the changes in Mg, Cr, and Mn levels were different among the tissues under altered dietary Se status. Additionally, the changes in Rb levels correlated with the dietary Se intake but had no relation with the tissue Se levels. CONCLUSIONS The findings suggest interactions between Mg, Cr, Mn, Fe, Co, and Se under altered Se status may impact cellular functions during postnatal development. However, the possible biological significance of alterations in Rb levels under different dietary Se paradigms needs to be further explored.
Collapse
Affiliation(s)
| | | | - Vishal Singh
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar 140306, India
| | | | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar 140306, India
| | | | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
12
|
Wang Y, Lv MN, Zhao WJ. Research on ferroptosis as a therapeutic target for the treatment of neurodegenerative diseases. Ageing Res Rev 2023; 91:102035. [PMID: 37619619 DOI: 10.1016/j.arr.2023.102035] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Ferroptosis is an iron- and lipid peroxidation (LPO)-mediated programmed cell death type. Recently, mounting evidence has indicated the involvement of ferroptosis in neurodegenerative diseases, especially in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and so on. Treating ferroptosis presents opportunities as well as challenges for neurodegenerative diseases. This review provides a comprehensive overview of typical features of ferroptosis and the underlying mechanisms that contribute to its occurrence, as well as their implications in the pathogenesis and advancement of major neurodegenerative disorders. Meanwhile, we summarize the utilization of ferroptosis inhibition in both experimental and clinical approaches for the treatment of major neurodegenerative disorders. In addition, we specifically summarize recent advances in developing therapeutic means targeting ferroptosis in these diseases, which may guide future approaches for the effective management of these devastating medical conditions.
Collapse
Affiliation(s)
- Yi Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Meng-Nan Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
13
|
Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther 2023; 8:372. [PMID: 37735472 PMCID: PMC10514338 DOI: 10.1038/s41392-023-01606-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death with distinct characteristics, including altered iron homeostasis, reduced defense against oxidative stress, and abnormal lipid peroxidation. Recent studies have provided compelling evidence supporting the notion that ferroptosis plays a key pathogenic role in many diseases such as various cancer types, neurodegenerative disease, diseases involving tissue and/or organ injury, and inflammatory and infectious diseases. Although the precise regulatory networks that underlie ferroptosis are largely unknown, particularly with respect to the initiation and progression of various diseases, ferroptosis is recognized as a bona fide target for the further development of treatment and prevention strategies. Over the past decade, considerable progress has been made in developing pharmacological agonists and antagonists for the treatment of these ferroptosis-related conditions. Here, we provide a detailed overview of our current knowledge regarding ferroptosis, its pathological roles, and its regulation during disease progression. Focusing on the use of chemical tools that target ferroptosis in preclinical studies, we also summarize recent advances in targeting ferroptosis across the growing spectrum of ferroptosis-associated pathogenic conditions. Finally, we discuss new challenges and opportunities for targeting ferroptosis as a potential strategy for treating ferroptosis-related diseases.
Collapse
Affiliation(s)
- Shumin Sun
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shen
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Jiang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Ferlazzo GM, Gambetta AM, Amato S, Cannizzaro N, Angiolillo S, Arboit M, Diamante L, Carbognin E, Romani P, La Torre F, Galimberti E, Pflug F, Luoni M, Giannelli S, Pepe G, Capocci L, Di Pardo A, Vanzani P, Zennaro L, Broccoli V, Leeb M, Moro E, Maglione V, Martello G. Genome-wide screening in pluripotent cells identifies Mtf1 as a suppressor of mutant huntingtin toxicity. Nat Commun 2023; 14:3962. [PMID: 37407555 DOI: 10.1038/s41467-023-39552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by CAG-repeat expansions in the huntingtin (HTT) gene. The resulting mutant HTT (mHTT) protein induces toxicity and cell death via multiple mechanisms and no effective therapy is available. Here, we employ a genome-wide screening in pluripotent mouse embryonic stem cells (ESCs) to identify suppressors of mHTT toxicity. Among the identified suppressors, linked to HD-associated processes, we focus on Metal response element binding transcription factor 1 (Mtf1). Forced expression of Mtf1 counteracts cell death and oxidative stress caused by mHTT in mouse ESCs and in human neuronal precursor cells. In zebrafish, Mtf1 reduces malformations and apoptosis induced by mHTT. In R6/2 mice, Mtf1 ablates motor defects and reduces mHTT aggregates and oxidative stress. Our screening strategy enables a quick in vitro identification of promising suppressor genes and their validation in vivo, and it can be applied to other monogenic diseases.
Collapse
Affiliation(s)
- Giorgia Maria Ferlazzo
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
- Aptuit (Verona) S.r.l., an Evotec Company, Campus Levi-Montalcini, 37135, Verona, Italy
| | - Anna Maria Gambetta
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
| | - Sonia Amato
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
- Department of Neuroscience, University of Padova, Via Belzoni, 160, 35131, Padua, Italy
| | - Noemi Cannizzaro
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Silvia Angiolillo
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Mattia Arboit
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Linda Diamante
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
| | - Elena Carbognin
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
| | - Patrizia Romani
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Federico La Torre
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
| | - Elena Galimberti
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030, Vienna, Austria
| | - Florian Pflug
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030, Vienna, Austria
| | - Mirko Luoni
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Serena Giannelli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | | | | | - Paola Vanzani
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Lucio Zennaro
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20854, Vedrano al Lambro, Italy
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030, Vienna, Austria
| | - Enrico Moro
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | | | - Graziano Martello
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy.
| |
Collapse
|
15
|
van de Zande NA, Bulk M, Najac C, van der Weerd L, de Bresser J, Lewerenz J, Ronen I, de Bot ST. Study protocol of IMAGINE-HD: Imaging iron accumulation and neuroinflammation with 7T-MRI + CSF in Huntington's disease. Neuroimage Clin 2023; 39:103450. [PMID: 37327706 PMCID: PMC10509525 DOI: 10.1016/j.nicl.2023.103450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Strong evidence suggests a significant role for iron accumulation in the brain in addition to the well-documented neurodegenerative aspects of Huntington's disease (HD). The putative mechanisms by which iron is linked to the HD pathogenesis are multiple, including oxidative stress, ferroptosis and neuroinflammation. However, no previous study in a neurodegenerative disease has linked the observed increase of brain iron accumulation as measured by MRI with well-established cerebrospinal fluid (CSF) and blood biomarkers for iron accumulation, or with associated processes such as neuroinflammation. This study is designed to link quantitative data from iron levels and neuroinflammation metabolites obtained from 7T MRI of HD patients, with specific and well-known clinical biofluid markers for iron accumulation, neurodegeneration and neuroinflammation. Biofluid markers will provide quantitative measures of overall iron accumulation, neurodegeneration and neuroinflammation, while MRI measurements on the other hand will provide quantitative spatial information on brain pathology, neuroinflammation and brain iron accumulation, which will be linked to clinical outcome measures. METHODS This is an observational cross-sectional study, IMAGINE-HD, in HD gene expansion carriers and healthy controls. We include premanifest HD gene expansion carriers and patients with manifest HD in an early or moderate stage. The study includes a 7T MRI scan of the brain, clinical evaluation, motor, functional, and neuropsychological assessments, and sampling of CSF and blood for the detection of iron, neurodegenerative and inflammatory markers. Quantitative Susceptibility Maps will be reconstructed using T2* weighted images to quantify brain iron levels and Magnetic Resonance Spectroscopy will be used to obtain information about neuroinflammation by measuring cell-specific intracellular metabolites' level and diffusion. Age and sex matched healthy subjects are included as a control group. DISCUSSION Results from this study will provide an important basis for the evaluation of brain iron levels and neuroinflammation metabolites as an imaging biomarker for disease stage in HD and their relationship with the salient pathomechanisms of the disease on the one hand, and with clinical outcome on the other.
Collapse
Affiliation(s)
| | - Marjolein Bulk
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Baden-Württemberg, Germany.
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom.
| | | |
Collapse
|
16
|
Kamitsuka PJ, Ghanem MM, Ziar R, McDonald SE, Thomas MG, Kwakye GF. Defective Mitochondrial Dynamics and Protein Degradation Pathways Underlie Cadmium-Induced Neurotoxicity and Cell Death in Huntington's Disease Striatal Cells. Int J Mol Sci 2023; 24:ijms24087178. [PMID: 37108341 PMCID: PMC10139096 DOI: 10.3390/ijms24087178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure to heavy metals, including cadmium (Cd), can induce neurotoxicity and cell death. Cd is abundant in the environment and accumulates in the striatum, the primary brain region selectively affected by Huntington's disease (HD). We have previously reported that mutant huntingtin protein (mHTT) combined with chronic Cd exposure induces oxidative stress and promotes metal dyshomeostasis, resulting in cell death in a striatal cell model of HD. To understand the effect of acute Cd exposure on mitochondrial health and protein degradation pathways, we hypothesized that expression of mHTT coupled with acute Cd exposure would cooperatively alter mitochondrial bioenergetics and protein degradation mechanisms in striatal STHdh cells to reveal novel pathways that augment Cd cytotoxicity and HD pathogenicity. We report that mHTT cells are significantly more susceptible to acute Cd-induced cell death as early as 6 h after 40 µM CdCl2 exposure compared with wild-type (WT). Confocal microscopy, biochemical assays, and immunoblotting analysis revealed that mHTT and acute Cd exposure synergistically impair mitochondrial bioenergetics by reducing mitochondrial potential and cellular ATP levels and down-regulating the essential pro-fusion proteins MFN1 and MFN2. These pathogenic effects triggered cell death. Furthermore, Cd exposure increases the expression of autophagic markers, such as p62, LC3, and ATG5, and reduces the activity of the ubiquitin-proteasome system to promote neurodegeneration in HD striatal cells. Overall, these results reveal a novel mechanism to further establish Cd as a pathogenic neuromodulator in striatal HD cells via Cd-triggered neurotoxicity and cell death mediated by an impairment in mitochondrial bioenergetics and autophagy with subsequent alteration in protein degradation pathways.
Collapse
Affiliation(s)
- Paul J Kamitsuka
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Marwan M Ghanem
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Rania Ziar
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Sarah E McDonald
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Morgan G Thomas
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Gunnar F Kwakye
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| |
Collapse
|
17
|
Hamed MR, Eissa A, Elsamahy M, M Elsayed T, Gohary MIE. Susceptibility phase imaging of deep gray matter: Presenting the effects of slice orientation. Neuroradiol J 2023; 36:213-219. [PMID: 36031875 PMCID: PMC10034696 DOI: 10.1177/19714009221122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Susceptibility-weighted image (SWI) is a T2* gradient echo sequence, which is highly sensitive to substances that have magnetic properties. The phase and magnitude of SWI can play an important role in the diagnosis of several diseases. The phase data is highly affected by spatial variations in the main magnetic field of the magnetic resonance imaging (MRI) scanner. The axial acquisition is the frequent plane alignment while acquiring SWI in diagnostic imaging. Clinical requirements often lead to changing of the alignment angles due to variability in patient positioning and anatomy. For many patients undergoing brain MRI, the line of the anterior and posterior commissure AC-PC can vary in direction with respect to the transverse plane of the MRI system. We investigated whether there exist significant effect on phase data of SWI, and this is due to oblique orientation. The obtained results showed significant differences in phase values between axial and anatomically alignments.
Collapse
Affiliation(s)
- Mahmoud R Hamed
- Biophysics Branch, Department of
Physics, Faculty of Science, Al-Azhar University, Egypt
| | - Amir Eissa
- Biophysics Branch, Department of
Physics, Faculty of Science, Al-Azhar University, Egypt
| | - Mohamed Elsamahy
- Neuropsychiatry Department, Faculty
of Medicine, Suez Canal University, Egypt
| | - Tamer M Elsayed
- Biophysics Branch, Department of
Physics, Faculty of Science, Al-Azhar University, Egypt
| | - MI El- Gohary
- Biophysics Branch, Department of
Physics, Faculty of Science, Al-Azhar University, Egypt
| |
Collapse
|
18
|
Dai Y, Wang H, Lian A, Li J, Zhao G, Hu S, Li B. A comprehensive perspective of Huntington's disease and mitochondrial dysfunction. Mitochondrion 2023; 70:8-19. [PMID: 36906250 DOI: 10.1016/j.mito.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/04/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease. It is caused by the expansion of the CAG trinucleotide repeat sequence in the HTT gene. HD mainly manifests as involuntary dance-like movements and severe mental disorders. As it progresses, patients lose the ability to speak, think, and even swallow. Although the pathogenesis is unclear, studies have found that mitochondrial dysfunctions occupy an important position in the pathogenesis of HD. Based on the latest research advances, this review sorts out and discusses the role of mitochondrial dysfunction on HD in terms of bioenergetics, abnormal autophagy, and abnormal mitochondrial membranes. This review provides researchers with a more complete perspective on the mechanisms underlying the relationship between mitochondrial dysregulation and HD.
Collapse
Affiliation(s)
- Yinghong Dai
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Haonan Wang
- Department of Physical Education and Research, Central South University, 932 Lushan South Rd., Changsha, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shenghui Hu
- The Second Xiangya Hospital of Central South University, China
| | - Bin Li
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
19
|
CNS Redox Homeostasis and Dysfunction in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020405. [PMID: 35204286 PMCID: PMC8869494 DOI: 10.3390/antiox11020405] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
A single paragraph of about 200 words maximum. Neurodegenerative diseases (ND), such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, pose a global challenge in the aging population due to the lack of treatments for their cure. Despite various disease-specific clinical symptoms, ND have some fundamental common pathological mechanisms involving oxidative stress and neuroinflammation. The present review focuses on the major causes of central nervous system (CNS) redox homeostasis imbalance comprising mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial disturbances, leading to reduced mitochondrial function and elevated reactive oxygen species (ROS) production, are thought to be a major contributor to the pathogenesis of ND. ER dysfunction has been implicated in ND in which protein misfolding evidently causes ER stress. The consequences of ER stress ranges from an increase in ROS production to altered calcium efflux and proinflammatory signaling in glial cells. Both pathological pathways have links to ferroptotic cell death, which has been implicated to play an important role in ND. Pharmacological targeting of these pathological pathways may help alleviate or slow down neurodegeneration.
Collapse
|
20
|
Cheng R, Dhorajia VV, Kim J, Kim Y. Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology 2022; 88:88-101. [PMID: 34748789 PMCID: PMC8748425 DOI: 10.1016/j.neuro.2021.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Iron is a key element for mitochondrial function and homeostasis, which is also crucial for maintaining the neuronal system, but too much iron promotes oxidative stress. A large body of evidence has indicated that abnormal iron accumulation in the brain is associated with various neurodegenerative diseases such as Huntington's disease, Alzheimer's disease, Parkinson's disease, and Friedreich's ataxia. However, it is still unclear how irregular iron status contributes to the development of neuronal disorders. Hence, the current review provides an update on the causal effects of iron overload in the development and progression of neurodegenerative diseases and discusses important roles of mitochondrial iron homeostasis in these disease conditions. Furthermore, this review discusses potential therapeutic targets for the treatments of iron overload-linked neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruiying Cheng
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, USA
| | | | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, USA.
| | - Yuho Kim
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, USA.
| |
Collapse
|
21
|
Manigandan S, Muthusamy A, Nandhakumar R, David CI, Anand S. Synthesis, characterization, theoretical investigations and fluorescent sensing behavior of oligomeric azine-based Fe3+Chemosensors. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211055675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three azine oligomeric esters were synthesized, characterized by IR, UV, 1H, 13C{1H} and GPC technique, and applied to chemosensor application. The sensitivity response of the oligomers towards the metal ion was evaluated for a metal ion series. The results have shown selective and sensitive “turn off” fluorescence response towards Fe3+ ion in DMF/H2O (1:1, pH: 7.4, fluorophore: 5 μM) solution. The binding stoichiometry and binding constant of the fluorophores were calculated using the Stern–Volmer equation and Benesi–Hildebrand plots, respectively. The quenching of fluorophores on the addition of Fe3+ ion indicates the capability of fluorophore towards quantitative analysis of Fe3+. The dimer of oligomers was theoretically studied using DFT, B3LYP/6-311G level basic set to support and explain the quenching mechanism of LMCT, PET process and to explain the DC, AC electrical studies results. The electrical conductivity measurements of solid-state, I2 doped and undoped oligomers were carried out and the conductivity gradually increases with increase in iodine vapor contact time of oligomers. The electrical conductivity was related with band gap and charge density values of imine nitrogen obtained by Huckel calculations. The dielectric measurements at different temperatures and frequencies were made by two probe method. Among the oligomers, EBHAP has recorded a high dielectric constant at the low applied frequency of 50 Hz at 373 K due to loosely attached π bonds resulting good polarization.
Collapse
Affiliation(s)
- Subramani Manigandan
- PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India
| | - Athianna Muthusamy
- PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India
| | - Raju Nandhakumar
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, India
| | - Charles Immanuel David
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, India
| | - Siddeswaran Anand
- Department of Chemistry, Muthayammal Engineering College, Namakkal, India
| |
Collapse
|
22
|
Kaur J, Parveen S, Shamim U, Sharma P, Suroliya V, Sonkar AK, Ahmad I, Garg J, Anand KS, Laskar S, Chowdhury D, Kushwaha S, Goyal V, Srivastava AK, Singh G, Faruq M. Investigations of Huntington's Disease and Huntington's Disease-Like Syndromes in Indian Choreatic Patients. J Huntingtons Dis 2021; 9:283-289. [PMID: 32675418 DOI: 10.3233/jhd-200398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The diagnostic workup for choreiform movement disorders including Huntington's disease (HD) and those mimicking HD like phenotype is complex. OBJECTIVE The aim of the present study was to genetically define HD and HD-like presentations in an Indian cohort. We also describe HTT-CAG expansion manifesting as neuroferritinopathy-like disorder in four families from Punjab in India. MATERIALS AND METHODS 159 patients clinically diagnosed as HD and HD-like presentations from various tertiary neurology clinics were referred to our centre (CSIR-IGIB) for genetic investigations. As a first tier test, CAG-TNR for HTT was performed and subsequently HD-negative samples were screened for JPH3 (HDL2), TBP (SCA17), ATN1 (DRPLA), PPP2R2B (SCA12) and GGGGCC expansion in C9orf72 gene. Four families presenting as neuroferritinopathy-like disorder were also investigated for HTT-CAG expansion. RESULTS 94 of 159 (59%) patients were found to have expanded HTT-CAG repeats. Pathogenic repeat expansion in JPH3, TBP, ATN1 and C9orf72 were not found in HD negative cases. Two patients were positive for SCA12-CAG expansion in pathogenic length, whereas 5 cases harboured TBP-CAG repeats falling in reduced penetrance range of 41- 48 repeats for SCA17. Four unrelated families, presented with atypical chorea and brain MRI findings suggestive of basal ganglia abnormalities mimicking neuroferritinopathy were found to harbour HTT-CAG expansion. CONCLUSION We present SCA12 as a new reported phenocopy of HD which should be considered for diagnostic workout along with SCA17 for HD-like syndromes. This study also illustrates the necessity, to consider evolving HD like phenotype, as a clinical diagnosis for cases with initial manifestations depicting neuroferritinopathy.
Collapse
Affiliation(s)
- Jaslovleen Kaur
- Department of Neurology, Dayanand Medical College & Hospital, Civil Lines, Ludhiana, India
| | - Shaista Parveen
- Genomics and Molecular Medicine, CSIR - Institute of Genomics and Integrative Biology, Delhi, India
| | - Uzma Shamim
- Genomics and Molecular Medicine, CSIR - Institute of Genomics and Integrative Biology, Delhi, India
| | - Pooja Sharma
- Genomics and Molecular Medicine, CSIR - Institute of Genomics and Integrative Biology, Delhi, India
| | - Varun Suroliya
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Akhilesh Kumar Sonkar
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Istaq Ahmad
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Jyoti Garg
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Kuljeet Singh Anand
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | | | | | - Suman Kushwaha
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, Delhi, India
| | - Vinay Goyal
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Achal K Srivastava
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College & Hospital, Civil Lines, Ludhiana, India
| | - Mohd Faruq
- Genomics and Molecular Medicine, CSIR - Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
23
|
Cheng H, Yang B, Ke T, Li S, Yang X, Aschner M, Chen P. Mechanisms of Metal-Induced Mitochondrial Dysfunction in Neurological Disorders. TOXICS 2021; 9:142. [PMID: 34204190 PMCID: PMC8235163 DOI: 10.3390/toxics9060142] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/31/2023]
Abstract
Metals are actively involved in multiple catalytic physiological activities. However, metal overload may result in neurotoxicity as it increases formation of reactive oxygen species (ROS) and elevates oxidative stress in the nervous system. Mitochondria are a key target of metal-induced toxicity, given their role in energy production. As the brain consumes a large amount of energy, mitochondrial dysfunction and the subsequent decrease in levels of ATP may significantly disrupt brain function, resulting in neuronal cell death and ensuing neurological disorders. Here, we address contemporary studies on metal-induced mitochondrial dysfunction and its impact on the nervous system.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
| | - Bobo Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China;
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| |
Collapse
|
24
|
Reguera Acuña A, Suárez San Martín E, García Fernández C, Fernández Menéndez S, Blázquez Estrada M, Amorín Díaz M, Menéndez González M, Álvarez Martínez V. A series of cases with Huntington-like phenotype and intermediate repeats in HTT. J Neurol Sci 2021; 425:117452. [PMID: 33892278 DOI: 10.1016/j.jns.2021.117452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Intermediate Alleles (IAs) are expansions of CAG repeats in the HTT gene between 27 and 35 repeats which pathogenic meaning remains controversial. They are present in the general population but there is an increasing number of cases with Huntington-like phenotype reported. METHODS We reviewed the medical records of cases in our centre where the neurologist suspected Huntington's disease (HD) as one of the feasible diagnoses and genetic testing showed the number of CAG repeats was in the "intermediate range". We gathered the type of symptoms in all cases and the main neuroimaging findings when available. RESULTS We found 14 cases, 8 males and 6 females, with average age at onset at 64 years old. Most cases exhibited some type of extrapyramidal symptoms. Cognitive and/or behavioral symptoms were also present in most cases (being depression, anxiety and cognitive impairment the most frequent ones). In one case we found deposits of iron in the basal ganglia in the MRI, and in another case we found diffuse cortical hypometabolism with predominantly frontal bilateral involvement and bilateral focal deficit of both caudate and thalamus in the FDG-PET. CONCLUSION The clinical and neuroimaging findings of some cases with IA in this series are compatible with the clinical picture of HD but also with several other alternative diagnoses. Therefore we can not establish association between IA and HD. Larger series with more comprehensive diagnostic workout and neuropathological studies are needed to confirm or rule out whether IAs in the HTT gene may cause HD.
Collapse
Affiliation(s)
| | - Esther Suárez San Martín
- Servicio de Neurología, Hospital Universitario Central de Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Spain
| | - Ciara García Fernández
- Servicio de Neurología, Hospital Universitario Central de Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Spain
| | - Santiago Fernández Menéndez
- Servicio de Neurología, Hospital Universitario Central de Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Spain
| | - Marta Blázquez Estrada
- Servicio de Neurología, Hospital Universitario Central de Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Spain; Departamento de Medicina, Universidad de Oviedo, Spain
| | - Manuel Amorín Díaz
- Servicio de Neurología, Hospital Universitario Central de Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Spain
| | - Manuel Menéndez González
- Servicio de Neurología, Hospital Universitario Central de Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Spain; Departamento de Medicina, Universidad de Oviedo, Spain.
| | - Victoria Álvarez Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Spain; Servicio de Genética, Hospital Universitario Central de Asturias, Spain
| |
Collapse
|
25
|
Gozt A, Hellewell S, Ward PGD, Bynevelt M, Fitzgerald M. Emerging Applications for Quantitative Susceptibility Mapping in the Detection of Traumatic Brain Injury Pathology. Neuroscience 2021; 467:218-236. [PMID: 34087394 DOI: 10.1016/j.neuroscience.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a common but heterogeneous injury underpinned by numerous complex and interrelated pathophysiological mechanisms. An essential trace element, iron is abundant within the brain and involved in many fundamental neurobiological processes, including oxygen transportation, oxidative phosphorylation, myelin production and maintenance, as well as neurotransmitter synthesis and metabolism. Excessive levels of iron are neurotoxic and thus iron homeostasis is tightly regulated in the brain, however, many details about the mechanisms by which this is achieved are yet to be elucidated. A key mediator of oxidative stress, mitochondrial dysfunction and neuroinflammatory response, iron dysregulation is an important contributor to secondary injury in TBI. Advances in neuroimaging that leverage magnetic susceptibility properties have enabled increasingly comprehensive investigations into the distribution and behaviour of iron in the brain amongst healthy individuals as well as disease states such as TBI. Quantitative Susceptibility Mapping (QSM) is an advanced neuroimaging technique that promises quantitative estimation of local magnetic susceptibility at the voxel level. In this review, we provide an overview of brain iron and its homeostasis, describe recent advances enabling applications of QSM within the context of TBI and summarise the current state of the literature. Although limited, the emergent research suggests that QSM is a promising neuroimaging technique that can be used to investigate a host of pathophysiological changes that are associated with TBI.
Collapse
Affiliation(s)
- Aleksandra Gozt
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia
| | - Sarah Hellewell
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia
| | - Phillip G D Ward
- Australian Research Council Centre of Excellence for Integrative Brain Function, VIC Australia; Turner Institute for Brain and Mental Health, Monash University, VIC Australia
| | - Michael Bynevelt
- Neurological Intervention and Imaging Service of Western Australia, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| | - Melinda Fitzgerald
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia.
| |
Collapse
|
26
|
Leitão R, Guerreiro C, Nunes RG, Gonçalves N, Galati G, Rosário M, Guedes LC, Ferreira JJ, Reimão S. Neuromelanin Magnetic Resonance Imaging of the Substantia Nigra in Huntington's Disease. J Huntingtons Dis 2021; 9:143-148. [PMID: 32065802 DOI: 10.3233/jhd-190388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder inducing motor, psychiatric changes and cognitive decline, characterized pathologically by striatal atrophy. Pathological changes in the extra-striatal structures, such as the substantia nigra (SN), and abnormalities in pre-synaptic striatal dopamine neurotransmission are also known to occur. Neuromelanin (NM)-sensitive magnetic resonance imaging (NM-MRI) is an innovative technique that was recently developed allowing the in vivo study of pathological changes in the dopaminergic neurons of the SN. OBJECTIVE To investigate the SN MR signal in HD patients. METHODS We performed a cross-sectional study using a specific T1-weighted MR sequence to visualize NM. The areas and signal intensity contrast ratios of the T1 hyperintense SN regions were obtained using a semi-automatic segmentation method. RESULTS A total of 8 HD patients and 12 healthy subjects were evaluated. The SN area was markedly reduced in the HD group compared with the control group (p = 0.02), even after normalization of the SN area with the midbrain area and age correction (p = 0.01). There was a significant reduction in the intensity contrast ratio of the hyperintense SN areas to crus cerebri in HD patients comparing with controls (p = 0.04) after correction for age. CONCLUSIONS NM-sensitive MR techniques were used for the first time to study the SN in HD patients, showing loss of NM in this region, supporting the implication of dopaminergic neuronal changes in disease pathology. Future research needs to be conducted to evaluate the potential of SN area and intensity contrast as biomarkers for HD.
Collapse
Affiliation(s)
- Ricardo Leitão
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Guerreiro
- Neurological Imaging Department, Hospital de Santa Maria - CHULN, Lisbon, Portugal
| | - Rita G Nunes
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nilza Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Giulia Galati
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Rosário
- Department of Neuroscience and Mental Health, Neurology, Hospital de Santa Maria - CHULN, Lisbon, Portugal
| | - Leonor Correia Guedes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Neuroscience and Mental Health, Neurology, Hospital de Santa Maria - CHULN, Lisbon, Portugal
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,CNS - Campus Neurológico Sénior, Torres Vedras, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sofia Reimão
- Neurological Imaging Department, Hospital de Santa Maria - CHULN, Lisbon, Portugal.,Imaging University Clinic, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
27
|
Simmons DA, Mills BD, Butler Iii RR, Kuan J, McHugh TLM, Akers C, Zhou J, Syriani W, Grouban M, Zeineh M, Longo FM. Neuroimaging, Urinary, and Plasma Biomarkers of Treatment Response in Huntington's Disease: Preclinical Evidence with the p75 NTR Ligand LM11A-31. Neurotherapeutics 2021; 18:1039-1063. [PMID: 33786806 PMCID: PMC8423954 DOI: 10.1007/s13311-021-01023-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is caused by an expansion of the CAG repeat in the huntingtin gene leading to preferential neurodegeneration of the striatum. Disease-modifying treatments are not yet available to HD patients and their development would be facilitated by translatable pharmacodynamic biomarkers. Multi-modal magnetic resonance imaging (MRI) and plasma cytokines have been suggested as disease onset/progression biomarkers, but their ability to detect treatment efficacy is understudied. This study used the R6/2 mouse model of HD to assess if structural neuroimaging and biofluid assays can detect treatment response using as a prototype the small molecule p75NTR ligand LM11A-31, shown previously to reduce HD phenotypes in these mice. LM11A-31 alleviated volume reductions in multiple brain regions, including striatum, of vehicle-treated R6/2 mice relative to wild-types (WTs), as assessed with in vivo MRI. LM11A-31 also normalized changes in diffusion tensor imaging (DTI) metrics and diminished increases in certain plasma cytokine levels, including tumor necrosis factor-alpha and interleukin-6, in R6/2 mice. Finally, R6/2-vehicle mice had increased urinary levels of the p75NTR extracellular domain (ecd), a cleavage product released with pro-apoptotic ligand binding that detects the progression of other neurodegenerative diseases; LM11A-31 reduced this increase. These results are the first to show that urinary p75NTR-ecd levels are elevated in an HD mouse model and can be used to detect therapeutic effects. These data also indicate that multi-modal MRI and plasma cytokine levels may be effective pharmacodynamic biomarkers and that using combinations of these markers would be a viable and powerful option for clinical trials.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Brian D Mills
- Department of Radiology, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Robert R Butler Iii
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jason Kuan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tyne L M McHugh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Carolyn Akers
- Department of Radiology, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - James Zhou
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Wassim Syriani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maged Grouban
- Department of Radiology, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Michael Zeineh
- Department of Radiology, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
28
|
Tabibian F, Adibi I, Ardestani PE, Tabibian E, Akbaripour S, Bürk K. Cerebral venous thrombosis, neutropenia and iron-deficiency anemia in Huntington disease. Neurodegener Dis Manag 2021; 11:137-142. [PMID: 33703929 DOI: 10.2217/nmt-2020-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurologic and nonneurologic manifestations have been shown for Huntington disease (HD) as a genetic neurodegenerative disorder. However, cerebral venous thrombosis (CVT), iron-deficiency anemia and neutropenia have not been reported as its presentations to date. We introduce the first case of a HD patient with CVT, iron-deficiency anemia and neutropenia. All transient and chronic risk factors for development of these manifestations were ruled out. According to the experimental evidences reviewed in this article, we suggest that HD itself could promote formation of CVT, iron-deficiency anemia and neutropenia through vascular and blood cell abnormalities.
Collapse
Affiliation(s)
- Farinaz Tabibian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Iman Adibi
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Emami Ardestani
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elnaz Tabibian
- Department of Radiology, Medical Imaging Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Akbaripour
- Ayatollah Kashani Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Katrin Bürk
- Kliniken Schmieder Stuttgart-Gerlingen, Gerlingen, Germany
| |
Collapse
|
29
|
Abstract
Significance: The molecular processes that determine Huntington's disease (HD) pathogenesis are not yet fully understood, and until now no effective neuroprotective therapeutic strategies have been developed. Mitochondria are one of most important organelles required for neuronal homeostasis, by providing metabolic pathways relevant for energy production, regulating calcium homeostasis, or controlling free radical generation and cell death. Because augmented reactive oxygen species (ROS) accompanied by mitochondrial dysfunction are relevant early HD mechanisms, targeting these cellular mechanisms may constitute relevant therapeutic approaches. Recent Advances: Previous findings point toward a close relationship between mitochondrial dysfunction and redox changes in HD. Mutant huntingtin (mHTT) can directly interact with mitochondrial proteins, as translocase of the inner membrane 23 (TIM23), disrupting mitochondrial proteostasis and favoring ROS production and HD progression. Furthermore, abnormal brain and muscle redox signaling contributes to altered proteostasis and motor impairment in HD, which can be improved with the mitochondria-targeted antioxidant mitoquinone or resveratrol, an SIRT1 activator that ameliorates mitochondrial biogenesis and function. Critical Issues: Various antioxidants and metabolic enhancers have been studied in HD; however, the real outcome of these molecules is still debatable. New compounds have proven to ameliorate mitochondrial and redox-based signaling pathways in early stages of HD, potentially precluding selective neurodegeneration. Future Directions: Unraveling the molecular etiology of deregulated mitochondrial function and dynamics, and oxidative stress opens new prospects for HD therapeutics. In this review, we explore the role of redox unbalance and mitochondrial dysfunction in HD progression, and further describe advances on clinical trials in HD based on mitochondrial and redox-based therapeutic strategies.
Collapse
Affiliation(s)
- Lígia Fão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
30
|
Li S, Kerman K. Electrochemical biosensors for biometal-protein interactions in neurodegenerative diseases. Biosens Bioelectron 2021; 179:113035. [PMID: 33578115 DOI: 10.1016/j.bios.2021.113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Electrochemical biosensors have been adopted into a wide range of applications in the study of biometal-protein interactions in neurodegenerative diseases. Transition metals such as zinc, copper, and iron that are significant to biological functions have been shown to have strong implications in the progressive neural degeneration in Alzheimer's disease (AD), Parkinson's disease (PD), and prion protein diseases. This review presents a summative examination of the progress made in the design, fabrication, and applications of electrochemical biosensors in recent literature at understanding the metal-protein interactions in neurodegenerative diseases. The focus will be drawn on disease-causing biomarkers such as amyloid-β (Aβ) and tau proteins for AD, α-synuclein (α-syn) for PD, and prion proteins (PrP). Topics such as the use of electrochemical biosensing in monitoring biometal-induced conformational changes, elucidation of complexation motifs, production of reactive oxygen species (ROS) as well as the influence on downstream biomolecular interactions will be discussed. Major results and important concepts presented in these studies will be summarized in the hope to spark inspiration for the next generation of electrochemical sensors.
Collapse
Affiliation(s)
- Shaopei Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
31
|
Iron Chelation in Movement Disorders: Logical or Ironical. Can J Neurol Sci 2021; 48:752-759. [PMID: 33397531 DOI: 10.1017/cjn.2020.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Iron is probably as old as the universe itself and is essential for sustaining biological processes. The remarkable property of iron complexes to facilitate electron transfer makes it a significant component of redox reactions that drive the essential steps in nucleic acid biosynthesis and cellular functions. This, however, also generates potentially harmful hydroxyl radicals causing cell damage. In the movement disorder world, iron accumulation is well known to occur in neurodegeneration with brain iron accumulation, while dysfunctional iron homeostasis has been linked with neurodegenerative diseases like Parkinson's disease and Huntington's disease to name a few. Targeting excess iron in these patients with chelation therapy has been attempted over the last few decades, though the results have not been that promising. In this review, we have discussed iron, its metabolism, and proposed mechanisms causing movement disorder abnormalities. We have reviewed the available literature on attempts to treat these movement disorders with chelation therapy. Finally, based on our understanding of the pathogenic role of iron, we have critically analyzed the limitations of chelation therapy in the current scenario and the various unmet needs that should be addressed for selecting the patient population amenable to this therapy.
Collapse
|
32
|
Santana-Codina N, Gikandi A, Mancias JD. The Role of NCOA4-Mediated Ferritinophagy in Ferroptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1301:41-57. [PMID: 34370287 DOI: 10.1007/978-3-030-62026-4_4] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptor coactivator 4 (NCOA4) is a selective cargo receptor that mediates the autophagic degradation of ferritin, the cytosolic iron storage complex, in a process known as ferritinophagy. NCOA4-mediated ferritinophagy is required to maintain intracellular and systemic iron homeostasis and thereby iron-dependent physiologic processes such as erythropoiesis. Given this role of ferritinophagy in regulating iron homeostasis, modulating NCOA4-mediated ferritinophagic flux alters sensitivity to ferroptosis, a non-apoptotic iron-dependent form of cell death triggered by peroxidation of polyunsaturated fatty acids (PUFAs). A role for ferroptosis has been established in the pathophysiology of cancer and neurodegeneration; however, the importance of ferritinophagy in these pathologies remains largely unknown. Here, we review the available evidence on biochemical regulation of NCOA4-mediated ferritinophagy and its role in modulating sensitivity to innate and induced ferroptosis in neurodegenerative diseases and cancer. Finally, we evaluate the potential of modulating ferritinophagy in combination with ferroptosis inducers as a therapeutic strategy.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ajami Gikandi
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
33
|
Mintz J, Mirza J, Young E, Bauckman K. Iron Therapeutics in Women's Health: Past, Present, and Future. Pharmaceuticals (Basel) 2020; 13:E449. [PMID: 33302392 PMCID: PMC7762600 DOI: 10.3390/ph13120449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Iron plays a unique physiological role in the maintenance of homeostasis and the pathological outcomes of the female reproductive tract. The dual nature of elemental iron has created an evolutionary need to tightly regulate its biological concentration. The female reproductive tract is particularly unique due to the constant cycle of endometrial growth and shedding, in addition to the potential need for iron transfer to a developing fetus. Here, iron regulation is explored in a number of physiologic states including the endometrial lining and placenta. While iron dysregulation is a common characteristic in many women's health pathologies there is currently a lack of targeted therapeutic options. Traditional iron therapies, including iron replacement and chelation, are common treatment options for gynecological diseases but pose long term negative health consequences; therefore, more targeted interventions directed towards iron regulation have been proposed. Recent findings show potential benefits in a therapeutic focus on ferritin-hepcidin regulation, modulation of reactive oxygen species (ROS), and iron mediated cell death (ferroptosis). These novel therapeutics are the direct result of previous research in iron's complex signaling pathway and show promise for improved therapy, diagnosis, and prognosis in women's health.
Collapse
Affiliation(s)
| | | | | | - Kyle Bauckman
- Department of Academic Affairs, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33314, USA; (J.M.); (J.M.); (E.Y.)
| |
Collapse
|
34
|
Disease Ionomics: Understanding the Role of Ions in Complex Disease. Int J Mol Sci 2020; 21:ijms21228646. [PMID: 33212764 PMCID: PMC7697569 DOI: 10.3390/ijms21228646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ionomics is a novel multidisciplinary field that uses advanced techniques to investigate the composition and distribution of all minerals and trace elements in a living organism and their variations under diverse physiological and pathological conditions. It involves both high-throughput elemental profiling technologies and bioinformatic methods, providing opportunities to study the molecular mechanism underlying the metabolism, homeostasis, and cross-talk of these elements. While much effort has been made in exploring the ionomic traits relating to plant physiology and nutrition, the use of ionomics in the research of serious diseases is still in progress. In recent years, a number of ionomic studies have been carried out for a variety of complex diseases, which offer theoretical and practical insights into the etiology, early diagnosis, prognosis, and therapy of them. This review aims to give an overview of recent applications of ionomics in the study of complex diseases and discuss the latest advances and future trends in this area. Overall, disease ionomics may provide substantial information for systematic understanding of the properties of the elements and the dynamic network of elements involved in the onset and development of diseases.
Collapse
|
35
|
Bulk M, Hegeman-Kleinn I, Kenkhuis B, Suidgeest E, van Roon-Mom W, Lewerenz J, van Duinen S, Ronen I, van der Weerd L. Pathological characterization of T2*-weighted MRI contrast in the striatum of Huntington's disease patients. Neuroimage Clin 2020; 28:102498. [PMID: 33395988 PMCID: PMC7677121 DOI: 10.1016/j.nicl.2020.102498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/19/2023]
Abstract
Previous MRI studies consistently reported iron accumulation within the striatum of patients with Huntington's disease (HD). However, the pattern and origin of iron accumulation is poorly understood. This study aimed to characterize the histopathological correlates of iron-sensitive ex vivo MRI contrast change in HD brains. To this end, T2*-weighted 7T MRI was performed on postmortem tissue of the striatum of three control subjects and 10 HD patients followed by histological examination. In addition, formalin-fixed paraffin-embedded material of three control subjects and 14 HD patients was selected for only histology to identify the cellular localization of iron using stainings for iron, myelin, microglia and astrocytes. As expected HD striata showed prominent atrophy. Compared to controls, the striatum of HD patients was in general more hypointense on T2*-weighted high-field MRI and showed a more intense histopathological staining for iron. In addition, T2*-weighted MRI identified large focal hypointensities within the striatum of HD patients. Upon histological examination, these large focal hypointensities frequently colocalized with enlarged perivascular spaces and iron was found within the vessel wall and reactive astrocytes. In conclusion, we show that the striatum of HD patients has a distinctive phenotype on T2*-weighted MRI compared to control subjects. On ex vivo MRI, these contrast changes are heavily biased by enlarged perivascular spaces from which it is currently unknown whether this is a fixation artefact or a disease specific observation. Clinically, the observation of iron within reactive astrocytes is of importance for the interpretation and understanding of the potential underlying mechanisms of T2*-weighted MRI results in HD patients.
Collapse
Affiliation(s)
- Marjolein Bulk
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| | | | - Boyd Kenkhuis
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Ernst Suidgeest
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Willeke van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Lewerenz
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Sjoerd van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Itamar Ronen
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
36
|
Lessons learned from CHMP2B, implications for frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 147:105144. [PMID: 33144171 DOI: 10.1016/j.nbd.2020.105144] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are two neurodegenerative diseases with clinical, genetic and pathological overlap. As such, they are commonly regarded as a single spectrum disorder, with pure FTD and pure ALS representing distinct ends of a continuum. Dysfunctional endo-lysosomal and autophagic trafficking, leading to impaired proteostasis is common across the FTD-ALS spectrum. These pathways are, in part, mediated by CHMP2B, a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Here we review how ALS and FTD disease causing mutations in CHMP2B have greatly contributed to our understanding of how endosomal-lysosomal and autophagic dysfunction contribute to neurodegeneration, and how in vitro and in vivo models have helped elucidate novel candidates for potential therapeutic intervention with implications across the FTD-ALS spectrum.
Collapse
|
37
|
Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants (Basel) 2020; 9:antiox9070577. [PMID: 32630706 PMCID: PMC7401865 DOI: 10.3390/antiox9070577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative condition and one of the so-called rare or minority diseases, due to its low prevalence (affecting 1–10 of every 100,000 people in western countries). The causative gene, HTT, encodes huntingtin, a protein with a yet unknown function. Mutant huntingtin causes a range of phenotypes, including oxidative stress and the activation of microglia and astrocytes, which leads to chronic inflammation of the brain. Although substantial efforts have been made to find a cure for HD, there is currently no medical intervention able to stop or even delay progression of the disease. Among the many targets of therapeutic intervention, oxidative stress and inflammation have been extensively studied and some clinical trials have been promoted to target them. In the present work, we review the basic research on oxidative stress in HD and the strategies used to fight it. Many of the strategies to reduce the phenotypes associated with oxidative stress have produced positive results, yet no substantial functional recovery has been observed in animal models or patients with the disease. We discuss possible explanations for this and suggest potential ways to overcome it.
Collapse
|
38
|
Abstract
Ferroptosis is a recently identified form of regulated cell death that differs from other known forms of cell death morphologically, biochemically, and genetically. The main properties of ferroptosis are free redox-active iron and consequent iron-dependent peroxidation of polyunsaturated fatty acids in cell membrane phospholipids, which results in the accumulation of lipid-based reactive oxygen species due to loss of glutathione peroxidase 4 activity. Ferroptosis has increasingly been associated with neurodegenerative diseases, carcinogenesis, stroke, intracerebral haemorrhage, traumatic brain injury, and ischemia-reperfusion injury. It has also shown a significant therapeutic potential in the treatment of cancer and other diseases. This review summarises current knowledge about and the mechanisms that regulate ferroptosis.
Collapse
|
39
|
Moreno-Delgado D, Puigdellívol M, Moreno E, Rodríguez-Ruiz M, Botta J, Gasperini P, Chiarlone A, Howell LA, Scarselli M, Casadó V, Cortés A, Ferré S, Guzmán M, Lluís C, Alberch J, Canela EI, Ginés S, McCormick PJ. Modulation of dopamine D 1 receptors via histamine H 3 receptors is a novel therapeutic target for Huntington's disease. eLife 2020; 9:51093. [PMID: 32513388 PMCID: PMC7282811 DOI: 10.7554/elife.51093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 05/26/2020] [Indexed: 01/11/2023] Open
Abstract
Early Huntington's disease (HD) include over-activation of dopamine D1 receptors (D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D1R over-activation, we present a strategy based on targeting complexes of D1R and histamine H3 receptors (H3R). Using an HD mouse striatal cell model and HD mouse organotypic brain slices we found that D1R-induced cell death signaling and neuronal degeneration, are mitigated by an H3R antagonist. We demonstrate that the D1R-H3R heteromer is expressed in HD mice at early but not late stages of HD, correlating with HD progression. In accordance, we found this target expressed in human control subjects and low-grade HD patients. Finally, treatment of HD mice with an H3R antagonist prevented cognitive and motor learning deficits and the loss of heteromer expression. Taken together, our results indicate that D1R - H3R heteromers play a pivotal role in dopamine signaling and represent novel targets for treating HD.
Collapse
Affiliation(s)
- David Moreno-Delgado
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mar Puigdellívol
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Department of Biomedical Science, Faculty of Medicine, University of Barcelona, Institut of Neuroscience, Barcelona, Spain.,Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mar Rodríguez-Ruiz
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Joaquín Botta
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Paola Gasperini
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Anna Chiarlone
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Instituto Universitario de Investigación Neuroquímica, and Instituto Ramón y Cajal de Investigación Sanitaria, Complutense University of Madrid, Madrid, Spain
| | - Lesley A Howell
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Antoni Cortés
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Sergi Ferré
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, United States
| | - Manuel Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Instituto Universitario de Investigación Neuroquímica, and Instituto Ramón y Cajal de Investigación Sanitaria, Complutense University of Madrid, Madrid, Spain
| | - Carmen Lluís
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jordi Alberch
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Department of Biomedical Science, Faculty of Medicine, University of Barcelona, Institut of Neuroscience, Barcelona, Spain.,Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Enric I Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Silvia Ginés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Department of Biomedical Science, Faculty of Medicine, University of Barcelona, Institut of Neuroscience, Barcelona, Spain.,Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Peter J McCormick
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
40
|
Witkowski G, Jachinska K, Stepniak I, Ziora-Jakutowicz K, Sienkiewicz-Jarosz H. Alterations in transcranial sonography among Huntington's disease patients with psychiatric symptoms. J Neural Transm (Vienna) 2020; 127:1047-1055. [PMID: 32285254 PMCID: PMC7293686 DOI: 10.1007/s00702-020-02187-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/05/2020] [Indexed: 11/30/2022]
Abstract
Transcranial sonography (TCS) is a diagnostic tool in mood and movement disorders. Alterations within the raphe mesencephalic nucleus in the brain have been reported not only in patients with major depression but in patients with depressive symptoms accompanying several neurodegenerative disorders. The aim of the study was to assess the echogenicity of the nucleus raphe and other basal ganglia in patients with Huntington’s disease (HD). TCS was performed in 127 HD patients participating in observational studies (Registry/Enroll-HD) in the Institute of Psychiatry and Neurology (Warsaw, Poland). Raphe hypoechogenicity was found in 78% of HD patients with current symptoms of depression (according to DSM-IV criteria), 57% of patients with a previous history of depression, and 56.8% patients who lacked signs or history of depression. Patients with hypoechogenic raphe reported significantly higher depression as measured on the BDI (15.6 ± 1.7) as compared to patients with normal echogenicity (9.5 ± 1.2), (p = 0.023). The diameter of the third ventricle was negatively correlated with Mini-Mental State Examination (MMSE) (rho − 0.37) and total functional capacity (TFC) scores (rho − 0.26). Hyperechogenic substantia nigra was visualized in 66,4% patients with HD and the degree of hyperechogenicity was correlated with the total motor score (TMS) (rho − 0.38). Changes in echogenicity of the basal ganglia are related to both depressive and motor symptoms among patients with HD.
Collapse
Affiliation(s)
- Grzegorz Witkowski
- I-st Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 Str., 02-957, Warsaw, Poland.
| | - Katarzyna Jachinska
- I-st Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 Str., 02-957, Warsaw, Poland
| | - Iwona Stepniak
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Halina Sienkiewicz-Jarosz
- I-st Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 Str., 02-957, Warsaw, Poland
| |
Collapse
|
41
|
Costain G, Ghosh MC, Maio N, Carnevale A, Si YC, Rouault TA, Yoon G. Absence of iron-responsive element-binding protein 2 causes a novel neurodegenerative syndrome. Brain 2020; 142:1195-1202. [PMID: 30915432 DOI: 10.1093/brain/awz072] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/07/2019] [Accepted: 01/31/2019] [Indexed: 11/13/2022] Open
Abstract
Disruption of cellular iron homeostasis can contribute to neurodegeneration. In mammals, two iron-regulatory proteins (IRPs) shape the expression of the iron metabolism proteome. Targeted deletion of Ireb2 in a mouse model causes profoundly disordered iron metabolism, leading to functional iron deficiency, anemia, erythropoietic protoporphyria, and a neurodegenerative movement disorder. Using exome sequencing, we identified the first human with bi-allelic loss-of-function variants in the gene IREB2 leading to an absence of IRP2. This 16-year-old male had neurological and haematological features that emulate those of Ireb2 knockout mice, including neurodegeneration and a treatment-resistant choreoathetoid movement disorder. Cellular phenotyping at the RNA and protein level was performed using patient and control lymphoblastoid cell lines, and established experimental assays. Our studies revealed functional iron deficiency, altered post-transcriptional regulation of iron metabolism genes, and mitochondrial dysfunction, as observed in the mouse model. The patient's cellular abnormalities were reversed by lentiviral-mediated restoration of IRP2 expression. These results confirm that IRP2 is essential for regulation of iron metabolism in humans, and reveal a previously unrecognized subclass of neurodegenerative disease. Greater understanding of how the IRPs mediate cellular iron distribution may ultimately provide new insights into common and rare neurodegenerative processes, and could result in novel therapies.
Collapse
Affiliation(s)
- Gregory Costain
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Manik C Ghosh
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nunziata Maio
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Amanda Carnevale
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Tracey A Rouault
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Routhe LJ, Andersen IK, Hauerslev LV, Issa II, Moos T, Thomsen MS. Astrocytic expression of ZIP14 (SLC39A14) is part of the inflammatory reaction in chronic neurodegeneration with iron overload. Glia 2020; 68:1810-1823. [DOI: 10.1002/glia.23806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Lisa J. Routhe
- Laboratory of Neurobiology, Department of Health Science and TechnologyAalborg University Aalborg Denmark
| | - Ida K. Andersen
- Laboratory of Neurobiology, Department of Health Science and TechnologyAalborg University Aalborg Denmark
| | - Lissa V. Hauerslev
- Laboratory of Neurobiology, Department of Health Science and TechnologyAalborg University Aalborg Denmark
| | - Issa I. Issa
- Laboratory of Neurobiology, Department of Health Science and TechnologyAalborg University Aalborg Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Department of Health Science and TechnologyAalborg University Aalborg Denmark
| | - Maj S. Thomsen
- Laboratory of Neurobiology, Department of Health Science and TechnologyAalborg University Aalborg Denmark
| |
Collapse
|
43
|
Bandookwala M, Sengupta P. 3-Nitrotyrosine: a versatile oxidative stress biomarker for major neurodegenerative diseases. Int J Neurosci 2020; 130:1047-1062. [PMID: 31914343 DOI: 10.1080/00207454.2020.1713776] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species are generated as a by-product of routine biochemical reactions. However, dysfunction of the antioxidant system or mutations in gene function may result in the elevated production of the pro-oxidant species. Modified endogenous molecules due to chemical interactions with increased levels of reactive oxygen and nitrogen species in the cellular microenvironment can be termed as biomarkers of oxidative stress. 3-Nitrotyrosine is one such promising biomarker of oxidative stress formed due to nitration of protein-bound and free tyrosine residues by reactive peroxynitrite molecules. Nitration of proteins at the subcellular level results in conformational alterations that damage the cytoskeleton and result in neurodegeneration. In this review, we summarized the role of oxidative/nitrosative processes as a contributing factor for progressive neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, Lou Gehrig's disease and Prion disease. The selective tyrosine protein nitration of the major marker proteins in related pathologies has been discussed. The alteration in 3-Nitrotyrosine profile occurs well before any symptoms appear and can be considered as a potential target for early diagnosis of neurodegenerative diseases. Furthermore, the reduction in 3-Nitrotyrosine levels in response to treatment with neuroprotective has been highlighted which is indicative of the importance of this particular marker in oxidative stress-related brain and central nervous system pathologies.
Collapse
Affiliation(s)
- Maria Bandookwala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
44
|
Gregory S, Johnson E, Byrne LM, Rodrigues FB, Henderson A, Moss J, Thomas D, Zhang H, De Vita E, Tabrizi SJ, Rees G, Scahill RI, Wild EJ. Characterizing White Matter in Huntington's Disease. Mov Disord Clin Pract 2020; 7:52-60. [PMID: 31970212 PMCID: PMC6962665 DOI: 10.1002/mdc3.12866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Investigating early white matter (WM) change in Huntington's disease (HD) can improve our understanding of the way in which disease spreads from the striatum. OBJECTIVES We provide a detailed characterization of pathology-related WM change in HD. We first examined WM microstructure using diffusion-weighted imaging and then investigated both underlying biological properties of WM and products of WM damage including iron, myelin plus neurofilament light, a biofluid marker of axonal degeneration-in parallel with the mutant huntingtin protein. METHODS We examined WM change in HD gene carriers from the HD-CSFcohort, baseline visit. We used standard-diffusion magnetic resonance imaging to measure metrics including fractional anisotropy, a marker of WM integrity, and diffusivity; a novel diffusion model (neurite orientation dispersion and density imaging) to measure axonal density and organization; T1-weighted and T2-weighted structural magnetic resonance imaging images to derive proxy iron content and myelin-contrast measures; and biofluid concentrations of neurofilament light (in cerebrospinal fluid (CSF) and plasma) and mutant huntingtin protein (in CSF). RESULTS HD gene carriers displayed reduced fractional anisotropy and increased diffusivity when compared with controls, both of which were also associated with disease progression, CSF, and mutant huntingtin protein levels. HD gene carriers also displayed proxy measures of reduced myelin contrast and iron in the striatum. CONCLUSION Collectively, these findings present a more complete characterization of HD-related microstructural brain changes. The correlation between reduced fractional anisotropy, increased axonal orientation, and biofluid markers suggest that axonal breakdown is associated with increased WM degeneration, whereas higher quantitative T2 signal and lower myelin-contrast may indicate a process of demyelination limited to the striatum.
Collapse
Affiliation(s)
- Sarah Gregory
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Eileanoir Johnson
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Lauren M. Byrne
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Filipe B. Rodrigues
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Alexandra Henderson
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - John Moss
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - David Thomas
- Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of NeurologyUniversity College LondonUnited Kingdom
- Leonard Wolfson Experimental Neurology Centre, University College London Queen Square Institute of NeurologyUniversity College LondonUnited Kingdom
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image ComputingUniversity College LondonLondonUnited Kingdom
| | - Enrico De Vita
- Lysholm Department of NeuroradiologyNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Sarah J. Tabrizi
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Geraint Rees
- Wellcome Trust Centre for Neuroimaging, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Rachael I. Scahill
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Edward J. Wild
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
45
|
Nakagawa Y, Yamada S. Metal homeostasis disturbances in neurodegenerative disorders, with special emphasis on Creutzfeldt-Jakob disease - Potential pathogenetic mechanism and therapeutic implications. Pharmacol Ther 2019; 207:107455. [PMID: 31863817 DOI: 10.1016/j.pharmthera.2019.107455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
Creutzfeldt-Jakob disease (CJD) is characterized by a rapidly progressive dementia often accompanied by myoclonus and other signs of brain dysfunction, relying on the conversion of the normal cellular form of the prion protein (PrPC) to a misfolded form (PrPSc). The neuropathological changes include spongiform degeneration, neuronal loss, astrogliosis, and deposition of PrPSc. It is still unclear how these pathological changes correlate with the development of CJD symptoms because few patients survive beyond 2 years after diagnosis. Inasmuch as the symptoms of CJD overlap some of those observed in Alzheimer's, Parkinson's, and Huntington's diseases, there may be some underlying pathologic mechanisms associated with CJD that may contribute to the symptoms of non-prion neurodegenerative diseases as well. Data suggest that imbalance of metals, including copper, zinc, iron, and manganese, induces abnormalities in processing and degradation of prion proteins that are accompanied by self-propagation of PrPSc. These events appear to be responsible for glutamatergic synaptic dysfunctions, neuronal death, and PrPSc aggregation. Given that the prodromal symptoms of CJD such as sleep disturbances and mood disorders are associated with brain stem and limbic system dysfunction, the pathological changes may initially occur in these brain regions, then spread throughout the entire brain. Alterations in cerebrospinal fluid homeostasis, which may be linked to imbalance of these metals, seem to be more important than neuroinflammation in causing the cell death. It is proposed that metal dyshomeostasis could be responsible for the initiation and progression of the pathological changes associated with symptoms of CJD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
46
|
Qian ZM, Ke Y. Hepcidin and its therapeutic potential in neurodegenerative disorders. Med Res Rev 2019; 40:633-653. [PMID: 31471929 DOI: 10.1002/med.21631] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Abnormally high brain iron, resulting from the disrupted expression or function of proteins involved in iron metabolism in the brain, is an initial cause of neuronal death in neuroferritinopathy and aceruloplasminemia, and also plays a causative role in at least some of the other neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Friedreich's ataxia. As such, iron is believed to be a novel target for pharmacological intervention in these disorders. Reducing iron toward normal levels or hampering the increases in iron associated with age in the brain is a promising therapeutic strategy for all iron-related neurodegenerative disorders. Hepcidin is a crucial regulator of iron homeostasis in the brain. Recent studies have suggested that upregulating brain hepcidin levels can significantly reduce brain iron content through the regulation of iron transport protein expression in the blood-brain barrier and in neurons and astrocytes. In this review, we focus on the discussion of the therapeutic potential of hepcidin in iron-associated neurodegenerative diseases and also provide a systematic overview of recent research progress on how misregulated brain iron metabolism is involved in the development of multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, Jiangsu, China.,Laboratory of Neuropharmacology, School of Pharmacy & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
47
|
Magistretti PJ, Geisler FH, Schneider JS, Li PA, Fiumelli H, Sipione S. Gangliosides: Treatment Avenues in Neurodegenerative Disease. Front Neurol 2019; 10:859. [PMID: 31447771 PMCID: PMC6691137 DOI: 10.3389/fneur.2019.00859] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023] Open
Abstract
Gangliosides are cell membrane components, most abundantly in the central nervous system (CNS) where they exert among others neuro-protective and -restorative functions. Clinical development of ganglioside replacement therapy for several neurodegenerative diseases was impeded by the BSE crisis in Europe during the 1990s. Nowadays, gangliosides are produced bovine-free and new pre-clinical and clinical data justify a reevaluation of their therapeutic potential in neurodegenerative diseases. Clinical experience is greatest with monosialo-tetrahexosyl-ganglioside (GM1) in the treatment of stroke. Fourteen randomized controlled trials (RCTs) in overall >2,000 patients revealed no difference in survival, but consistently superior neurological outcomes vs. placebo. GM1 was shown to attenuate ischemic neuronal injuries in diabetes patients by suppression of ERK1/2 phosphorylation and reduction of stress to the endoplasmic reticulum. There is level-I evidence from 5 RCTs of a significantly faster recovery with GM1 vs. placebo in patients with acute and chronic spinal cord injury (SCI), disturbance of consciousness after subarachnoid hemorrhage, or craniocerebral injuries due to closed head trauma. In Parkinson's disease (PD), two RCTs provided evidence of GM1 to be superior to placebo in improving motor symptoms and long-term to result in a slower than expected symptom progression, suggesting disease-modifying potential. In Alzheimer's disease (AD), the role of gangliosides has been controversial, with some studies suggesting a "seeding" role for GM1 in amyloid β polymerization into toxic forms, and others more recently suggesting a rather protective role in vivo. In Huntington's disease (HD), no clinical trials have been conducted yet. However, low GM1 levels observed in HD cells were shown to increase cell susceptibility to apoptosis. Accordingly, treatment with GM1 increased survival of HD cells in vitro and consistently ameliorated pathological phenotypes in several murine HD models, with effects seen at molecular, cellular, and behavioral level. Given that in none of the clinical trials using GM1 any clinically relevant safety issues have occurred to date, current data supports expanding GM1 clinical research, particularly to conditions with high, unmet medical need.
Collapse
Affiliation(s)
- Pierre J. Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Fred H. Geisler
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jay S. Schneider
- Parkinson's Disease Research Unit, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, United States
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Simonetta Sipione
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
48
|
Qian ZM, Ke Y. Brain iron transport. Biol Rev Camb Philos Soc 2019; 94:1672-1684. [PMID: 31190441 DOI: 10.1111/brv.12521] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022]
Abstract
Brain iron is a crucial participant and regulator of normal physiological activity. However, excess iron is involved in the formation of free radicals, and has been associated with oxidative damage to neuronal and other brain cells. Abnormally high brain iron levels have been observed in various neurodegenerative diseases, including neurodegeneration with brain iron accumulation, Alzheimer's disease, Parkinson's disease and Huntington's disease. However, the key question of why iron levels increase in the relevant regions of the brain remains to be answered. A full understanding of the homeostatic mechanisms involved in brain iron transport and metabolism is therefore critical not only for elucidating the pathophysiological mechanisms responsible for excess iron accumulation in the brain but also for developing pharmacological interventions to disrupt the chain of pathological events occurring in these neurodegenerative diseases. Numerous studies have been conducted, but to date no effort to synthesize these studies and ideas into a systematic and coherent summary has been made, especially concerning iron transport across the luminal (apical) membrane of the capillary endothelium and the membranes of different brain cell types. Herein, we review key findings on brain iron transport, highlighting the mechanisms involved in iron transport across the luminal (apical) as well as the abluminal (basal) membrane of the blood-brain barrier, the blood-cerebrospinal fluid barrier, and iron uptake and release in neurons, oligodendrocytes, astrocytes and microglia within the brain. We offer suggestions for addressing the many important gaps in our understanding of this important topic, and provide new insights into the potential causes of abnormally increased iron levels in regions of the brain in neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, 226019, China.,Laboratory of Neuropharmacology, School of Pharmacy, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
49
|
Li X, Chen L, Kutten K, Ceritoglu C, Li Y, Kang N, Hsu JT, Qiao Y, Wei H, Liu C, Miller MI, Mori S, Yousem DM, van Zijl PCM, Faria AV. Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility. Neuroimage 2019; 191:337-349. [PMID: 30738207 PMCID: PMC6464637 DOI: 10.1016/j.neuroimage.2019.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 01/09/2023] Open
Abstract
Quantification of tissue magnetic susceptibility using MRI offers a non-invasive measure of important tissue components in the brain, such as iron and myelin, potentially providing valuable information about normal and pathological conditions during aging. Despite many advances made in recent years on imaging techniques of quantitative susceptibility mapping (QSM), accurate and robust automated segmentation tools for QSM images that can help generate universal and sharable susceptibility measures in a biologically meaningful set of structures are still not widely available. In the present study, we developed an automated process to segment brain nuclei and quantify tissue susceptibility in these regions based on a susceptibility multi-atlas library, consisting of 10 atlases with T1-weighted images, gradient echo (GRE) magnitude images and QSM images of brains with different anatomic patterns. For each atlas in this library, 10 regions of interest in iron-rich deep gray matter structures that are better defined by QSM contrast were manually labeled, including caudate, putamen, globus pallidus internal/external, thalamus, pulvinar, subthalamic nucleus, substantia nigra, red nucleus and dentate nucleus in both left and right hemispheres. We then tested different pipelines using different combinations of contrast channels to bring the set of labels from the multi-atlases to each target brain and compared them with the gold standard manual delineation. The results showed that the segmentation accuracy using dual contrasts QSM/T1 pipeline outperformed other dual-contrast or single-contrast pipelines. The dice values of 0.77 ± 0.09 using the QSM/T1 multi-atlas pipeline rivaled with the segmentation reliability obtained from multiple evaluators with dice values of 0.79 ± 0.07 and gave comparable or superior performance in segmenting subcortical nuclei in comparison with standard FSL FIRST or recent multi-atlas package of volBrain. The segmentation performance of the QSM/T1 multi-atlas was further tested on QSM images acquired using different acquisition protocols and platforms and showed good reliability and reproducibility with average dice of 0.79 ± 0.08 to manual labels and 0.89 ± 0.04 in an inter-protocol manner. The extracted quantitative magnetic susceptibility values in the deep gray matter nuclei also correlated well between different protocols with inter-protocol correlation constants all larger than 0.97. Such reliability and performance was ultimately validated in an external dataset acquired at another study site with consistent susceptibility measures obtained using the QSM/T1 multi-atlas approach in comparison to those using manual delineation. In summary, we designed a susceptibility multi-atlas tool for automated and reliable segmentation of QSM images and for quantification of magnetic susceptibilities. It is publicly available through our cloud-based platform (www.mricloud.org). Further improvement on the performance of this multi-atlas tool is expected by increasing the number of atlases in the future.
Collapse
Affiliation(s)
- Xu Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Lin Chen
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Kwame Kutten
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA
| | - Can Ceritoglu
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yue Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ningdong Kang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John T Hsu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ye Qiao
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongjiang Wei
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David M Yousem
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Andreia V Faria
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
50
|
Chen L, Hua J, Ross CA, Cai S, van Zijl PC, Li X. Altered brain iron content and deposition rate in Huntington's disease as indicated by quantitative susceptibility MRI. J Neurosci Res 2019; 97:467-479. [PMID: 30489648 PMCID: PMC6367012 DOI: 10.1002/jnr.24358] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
Altered brain iron content in the striatum of premanifest and manifest Huntington's disease (HD) has been reported. However, its natural history remains unclear. This study aims to investigate altered brain iron content in premanifest and early HD, and the iron deposition rate in these patients through a longitudinal one-year follow-up test, with quantitative magnetic susceptibility as an iron imaging marker. Twenty-four gene mutation carriers divided into three groups (further-from-onset, closer-to-onset and early HD) and 16 age-matched healthy controls were recruited at baseline, and of these, 14 carriers and 7 controls completed the one-year follow-up. Quantitative magnetic susceptibility and effective transverse relaxation rate ( R 2 ∗ ) were measured at 7.0 Tesla and correlated with atrophy and available clinical and cognitive measurements. Higher susceptibility values indicating higher iron content in the striatum and globus pallidus were only observed in closer-to-onset (N = 6, p < 0.05 in caudate and p < 0.01 in putamen) and early HD (N = 9, p < 0.05 in caudate and globus pallidus and p < 0.01 in putamen). Similar results were found by R 2 ∗ measurement. Such increases directly correlated with HD CAG-age product score and brain atrophy, but not with motor or cognitive scores. More importantly, a significantly higher iron deposition rate (11.9%/years in caudate and 6.1%/years in globus pallidus) was firstly observed in closer-to-onset premanifest HD and early HD as compared to the controls. These results suggest that monitoring brain iron may provide further insights into the pathophysiology of HD disease progression, and may provide a biomarker for clinical trials.
Collapse
Affiliation(s)
- Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jun Hua
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Christopher A. Ross
- Department of Psychiatry, Division of Neurobiology, and Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|