1
|
Liu J, Huang J, Peng S, Xiong D. Rewatering after drought: Unravelling the drought thresholds and function recovery-limiting factors in maize leaves. PLANT, CELL & ENVIRONMENT 2024; 47:5457-5469. [PMID: 39205650 DOI: 10.1111/pce.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Drought and subsequent rewatering are common in agriculture, where recovery from mild droughts is easier than from severe ones. The specific drought threshold and factors limiting recovery are under-researched. This study subjected maize plants to varying drought degrees before rewatering, and measuring plant water status, gas exchange, hydraulic conductance, hormone levels, and cellular damage throughout. We discovered that stomatal reopening in plants was inhibited with leaf water potentials below about -1.7 MPa, hindering postdrought photosynthetic recovery. Neither hydraulic loss nor abscisic acid (ABA) content was the factor inhibited stomatal reopening on the second day following moderate drought stress and rewatering. But stomatal reopening was significantly correlated to the interaction between hydraulic signals and ABA content under severe drought. Extended drought led to leaf death at about -2.8 MPa or 57% relative water content, influenced by reduced rehydration capacity, not hydraulic failure. The lethal threshold remained relatively constant across leaf stages, but the recoverable safety margin (RSM), that is, the water potential difference between stomatal closure and recovery capacity loss, significantly decreased with leaf aging due to delayed stomatal closure during drought. Our findings indicate hydraulic failure alone does not cause maize leaf death, highlighting the importance of RSM in future research.
Collapse
Affiliation(s)
- Junzhou Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Bekkai D, Chiofalo MT, Torre D, Mileto S, Genovese G, Cimino F, Toscano G, Iannazzo D, Trifilò P. Chronic mild cadmium exposure increases the vulnerability of tomato plants to dehydration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109200. [PMID: 39454536 DOI: 10.1016/j.plaphy.2024.109200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Heavy metal contamination increases plant susceptibility to both biotic and abiotic stresses. However, the comprehensive impact of heavy metal pollution on plant hydraulics, which is crucial for plant productivity, and the interaction between heavy metal stress and environmental factors on plant health are not yet fully understood. In this study, we investigated the effects of cadmium exposure on plant-water relations and hydraulics of Solanum lycopersicum L., cultivar Piccadilly. Particular attention was given to leaf hydraulic conductance (KL) in response to cadmium pollution and dehydration. Cadmium exposure exhibited negligible impacts on tomato productivity but resulted in significant differences in pressure-volume derived traits. Leaves and roots of Cd-treated plants showed reduced wall stiffness compared to control samples. However, Cd-treated leaves had a less negative turgor loss point (Ψtlp), whereas Cd-treated roots exhibited more negative Ψtlp values due to lower osmotic potential at full turgor compared to control samples. Leaves and root cells of Cd-treated plants showed higher values of saturated water content compared to control plants, along with a distinct mineral profile between the two experimental groups. Despite similar leaf water potential thresholds for 50% and 80% loss of KL in control and cadmium-treated leaves, plants grown in cadmium-polluted soil showed higher leaf cell damages even under well watered conditions. This, in turn, affected the plant ability to recover from drought upon rehydration by compromising cell rehydration ability. Overall, the present findings suggest that under conditions of low water availability, cadmium pollution increases the risk of leaf hydraulic failure.
Collapse
Affiliation(s)
- Douaa Bekkai
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Maria T Chiofalo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, 98166, Messina, Italy.
| | - Daniele Torre
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Stefano Mileto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Giuseppa Genovese
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Francesco Cimino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Giovanni Toscano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina, Contrada Di Dio, 98166, Messina, Italy
| | - Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, salita F. Stagno D'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
3
|
Kane CN, McAdam SAM. Spatial and Temporal Freezing Dynamics of Leaves Revealed by Time-Lapse Imaging. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39253967 DOI: 10.1111/pce.15118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/01/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Freezing air temperatures kill most leaves, yet the leaves of some species can survive these events. Tracking the temporal and spatial dynamics of freezing remains an impediment to characterizing frost tolerance. Here we deploye time-lapse imaging and image subtraction analysis, coupled with fine wire thermocouples, to discern the in situ spatial dynamics of freezing and thawing. Our method of analysis of pixel brightness reveals that ice formation in leaves exposed to natural frosts initiates in mesophyll before spreading to veins, and that while ex situ xylem sap freezes near 0°C, in situ xylem sap has a freezing point of -2°C in our model freezing-resistant species of Lonicera. Photosynthetic rates in leaves that have been exposed to a rapid freeze or thaw do not recover, but leaves exposed to a slow, natural freezing and thawing to -10°C do recover. Using this method, we are able to quantify the spatial formation and timing of freezing events in leaves, and suggest that in situ and ex situ freezing points for xylem sap can differ by more than 4°C depending on the rate of temperature decline.
Collapse
Affiliation(s)
- Cade N Kane
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Huang X, Hou ZL, Ma BL, Zhao H, Jiang ZM, Cai J. Seasonality in embolism resistance and hydraulic capacitance jointly mediate hydraulic safety in branches and leaves of oriental cork oak (Quercus variabilis Bl.). TREE PHYSIOLOGY 2024; 44:tpae109. [PMID: 39216110 DOI: 10.1093/treephys/tpae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/31/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Seasonality in temperate regions is prominent during the era of increased climatic variability. A hydraulic trait that can adjust to seasonally changing climatic conditions is crucial for tree safety. However, little attention has been paid to the intraspecific seasonality of drought-related traits and hydraulic safety of keystone forest trees. We examined seasonal variations in the key morphological and physiological traits as well as multiple hydraulic safety margins (SMs) at the branch and leaf levels in oriental cork oak (Quercus variabilis Bl.), which is predominant in Chinese temperate forests. Pneumatic measurements indicated that, as seasons progressed, the water potential at which 50% of branch embolisms occur (P50_branch) decreased from -3.34 to -4.23 MPa, with a coefficient of variation (CV) of 9.08%. Sapwood capacitance ranged from 48.19 to 248.08 kg m-3 MPa-1, peaking in autumn and reaching minimum in winter (CV 60.58%). Rehydration kinetics confirmed higher leaf embolism vulnerability (P50_leaf) in spring and autumn than those in summer, with values ranging from -1.06 to -3.02 MPa (CV 39.85%). All leaf pressure-volume (PV) traits shifted with growth, with CVs ranging from 6.95% to 46.69%. Sapwood density had significant negative correlations with P50_branch and hydraulic capacitance for elastic water storage, whereas leaf mass per area was linearly associated with PV traits but not with P50_leaf. Furthermore, the branch typical SMs (difference between branch midday water potential and P50_branch) were consistently >1.84 MPa, and vulnerability segmentation was prevalent throughout, implying a plausible hydraulic foundation for the dominance of Q. variabilis. Diverse hydraulic response patterns existed across seasons, leading to positive SMs mediated by the aforementioned physiological traits. Although Q. variabilis exhibits a high level of hydraulic safety, its susceptibility to sudden summer droughts may increase due to global climate change.
Collapse
Affiliation(s)
- Xin Huang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zhuo-Liang Hou
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Bo-Long Ma
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Han Zhao
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zai-Min Jiang
- College of Life, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|
5
|
Jhaveri R, Cannanbilla L, Bhat KSA, Sankaran M, Krishnadas M. Anatomical traits explain drought response of seedlings from wet tropical forests. Ecol Evol 2024; 14:e70155. [PMID: 39224158 PMCID: PMC11366499 DOI: 10.1002/ece3.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Water availability regulates plant community dynamics but the drought response of seedlings remains poorly known, despite their vulnerability, especially for the Asian tropics. In particular, discerning how functional traits of seedlings mediate drought response can aid generalizable predictions of tree responses to global environmental change. We assessed interspecific variation in drought response explained by above- and below-ground seedling traits. We conducted a dry-down experiment in the greenhouse using 16 tree species from the humid forests of Western Ghats in southern India, chosen to represent differences in affinity to conditions of high and low seasonal drought (seasonality affiliation). We compared survival, growth, and photosynthetic performance under drought and well-watered conditions and assessed the extent to which species' responses were explained by seasonality affiliation and 12 traits of root, stem and leaf. We found that the species from seasonally dry forest reduced photosynthetic rate in drought compared with well-watered conditions, but seasonality affiliation did not explain differences in growth and survival. Performance in drought vs well-watered conditions were best explained by anatomical traits of xylem, veins and stomata. Species with larger xylem reduced their growth and photosynthesis to tolerate desiccation. In drought, species with smaller stomata correlated with lower survival even though photosynthetic activity decreased by a larger extent with larger stomata. Overall, anatomical traits of xylem and stomata, directly related to water transport and gas-exchange, played a more prominent role than commonly used traits (e.g., specific leaf area, leaf dry matter content) in explaining species response to drought, and may offer a good proxy for physiological traits related to drought tolerance of seedlings.
Collapse
Affiliation(s)
- Rishiddh Jhaveri
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Lakshmipriya Cannanbilla
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Chair of Plant EcologyUniversity of BayreuthBayreuthGermany
| | - K. S. Arpitha Bhat
- Department of Life ScienceBangalore UniversityBangaloreIndia
- Ashoka Trust for Research in Ecology and the Environment (ATREE)BangaloreIndia
| | | | - Meghna Krishnadas
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- National Centre for Biological Sciences, TIFRBangaloreIndia
| |
Collapse
|
6
|
Qie YD, Zhang QW, McAdam SA, Cao KF. Stomatal dynamics are regulated by leaf hydraulic traits and guard cell anatomy in nine true mangrove species. PLANT DIVERSITY 2024; 46:395-405. [PMID: 38798723 PMCID: PMC11119510 DOI: 10.1016/j.pld.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 05/29/2024]
Abstract
Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant. However, very little is known about the stomatal sensitivity to vapour pressure deficit (VPD) in mangroves, and its co-ordination with stomatal morphology and leaf hydraulic traits. We measured the stomatal response to a step increase in VPD in situ, stomatal anatomy, leaf hydraulic vulnerability and pressure-volume traits in nine true mangrove species of five families and collected the data of genome size. We aimed to answer two questions: (1) Does stomatal morphology influence stomatal dynamics in response to a high VPD in mangroves? with a consideration of possible influence of genome size on stomatal morphology; and (2) do leaf hydraulic traits influence stomatal sensitivity to VPD in mangroves? We found that the stomata of mangrove plants were highly sensitive to a step rise in VPD and the stomatal responses were directly affected by stomatal anatomy and hydraulic traits. Smaller, denser stomata was correlated with faster stomatal closure at high VPD across the species of Rhizophoraceae, and stomata size negatively and vein density positively correlated with genome size. Less negative leaf osmotic pressure at the full turgor (πo) was related to higher operating steady-state stomatal conductance (gs); and a higher leaf capacitance (Cleaf) and more embolism resistant leaf xylem were associated with slower stomatal responses to an increase in VPD. In addition, stomatal responsiveness to VPD was indirectly affected by leaf morphological traits, which were affected by site salinity and consequently leaf water status. Our results demonstrate that mangroves display a unique relationship between genome size, stomatal size and vein packing, and that stomatal responsiveness to VPD is regulated by leaf hydraulic traits and stomatal morphology. Our work provides a quantitative framework to better understand of stomatal regulation in mangroves in an environment with high salinity and dynamic water availability.
Collapse
Affiliation(s)
- Ya-Dong Qie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Qi-Wei Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin 541001, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin 541001, China
| | - Scott A.M. McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Tonet V, Brodribb T, Bourbia I. Variation in xylem vulnerability to cavitation shapes the photosynthetic legacy of drought. PLANT, CELL & ENVIRONMENT 2024; 47:1160-1170. [PMID: 38108586 DOI: 10.1111/pce.14788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Increased drought conditions impact tree health, negatively disrupting plant water transport which, in turn, affects plant growth and survival. Persistent drought legacy effects have been documented in many diverse ecosystems, yet we still lack a mechanistic understanding of the physiological processes limiting tree recovery after drought. Tackling this question, we exposed saplings of a common Australian evergreen tree (Eucalyptus viminalis) to a cycle of drought and rewatering, seeking evidence for a link between the spread of xylem cavitation within the crown and the degree of photosynthetic recovery postdrought. Individual leaves experiencing >35% vein cavitation quickly died but this did not translate to a rapid overall canopy damage. Rather, whole canopies showed a gradual decline in mean postdrought gas exchange rates as water stress increased. This gradual loss of canopy function postdrought was due to a significant variation in cavitation vulnerability of leaves within canopies leading to diversity in the capacity of leaves within a single crown to recover function after drought. These results from the evergreen E. viminalis emphasise the importance of within-crown variation in xylem vulnerability as a central character regulating the dynamics of canopy death and the severity of drought legacy through time.
Collapse
Affiliation(s)
- Vanessa Tonet
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
- School of Forestry & Environmental Studies, Yale University, New Haven, Connecticut, USA
| | - Timothy Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Ibrahim Bourbia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
8
|
Nawaz M, Sun J, Shabbir S, Khattak WA, Ren G, Nie X, Bo Y, Javed Q, Du D, Sonne C. A review of plants strategies to resist biotic and abiotic environmental stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165832. [PMID: 37524179 DOI: 10.1016/j.scitotenv.2023.165832] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Plants exposed to a variety of abiotic and biotic stressors including environmental pollution and global warming pose significant threats to biodiversity and ecosystem services. Despite substantial literature documenting how plants adapt to distinct stressors, there still is a lack of knowledge regarding responses to multiple stressors and how these affects growth and development. Exposure of plants to concurrent biotic and abiotic stressors such as cadmium and drought, leads to pronounced inhibition in above ground biomass, imbalance in oxidative homeostasis, nutrient assimilation and stunted root growth, elucidating the synergistic interactions of multiple stressors culminating in adverse physiological outcomes. Impact of elevated heavy metal and water deficit exposure extends beyond growth and development, influencing the biodiversity of the microenvironment including the rhizosphere nutrient profile and microbiome. These findings have significant implications for plant-stress interactions and ecosystem functioning that prompt immediate action in order to eliminate effect of pollution and address global environmental issues to promote sustainable tolerance for multiple stress combinations in plants. Here, we review plant tolerance against stress combinations, highlighting the need for interdisciplinary approaches and advanced technologies, such as omics and molecular tools, to achieve a comprehensive understanding of underlying stress tolerance mechanisms. To accelerate progress towards developing stress-tolerance in plants against multiple environmental stressors, future research in plant stress tolerance should adopt a collaborative approach, involving researchers from multiple disciplines with diverse expertise and resources.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Samina Shabbir
- Department of Chemistry, The Women University Multan, Pakistan
| | - Wajid Ali Khattak
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guangqian Ren
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qaiser Javed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
9
|
Smith-Martin CM, Muscarella R, Hammond WM, Jansen S, Brodribb TJ, Choat B, Johnson DM, Vargas-G G, Uriarte M. Hydraulic variability of tropical forests is largely independent of water availability. Ecol Lett 2023; 26:1829-1839. [PMID: 37807917 DOI: 10.1111/ele.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023]
Abstract
Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50 ), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< -2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.
Collapse
Affiliation(s)
- Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York City, New York, USA
| | - Robert Muscarella
- Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - William M Hammond
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - German Vargas-G
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - María Uriarte
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York City, New York, USA
| |
Collapse
|
10
|
Au J, Bloom AA, Parazoo NC, Deans RM, Wong CYS, Houlton BZ, Magney TS. Forest productivity recovery or collapse? Model-data integration insights on drought-induced tipping points. GLOBAL CHANGE BIOLOGY 2023; 29:5652-5665. [PMID: 37497614 DOI: 10.1111/gcb.16867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/03/2023] [Indexed: 07/28/2023]
Abstract
More frequent and severe droughts are driving increased forest mortality around the globe. We urgently need to describe and predict how drought affects forest carbon cycling and identify thresholds of environmental stress that trigger ecosystem collapse. Quantifying the effects of drought at an ecosystem level is complex because dynamic climate-plant relationships can cause rapid and/or prolonged shifts in carbon balance. We employ the CARbon DAta MOdel fraMework (CARDAMOM) to investigate legacy effects of drought on forest carbon pools and fluxes. Our Bayesian model-data fusion approach uses tower observed meteorological forcing and carbon fluxes to determine the response and sensitivity of aboveground and belowground ecological processes associated with the 2012-2015 California drought. Our study area is a mid-montane mixed conifer forest in the Southern Sierras. CARDAMOM constrained with gross primary productivity (GPP) estimates covering 2011-2017 show a ~75% reduction in GPP, compared to negligible GPP change when constrained with 2011 only. Precipitation across 2012-2015 was 45% (474 mm) lower than the historical average and drove a cascading depletion in soil moisture and carbon pools (foliar, labile, roots, and litter). Adding 157 mm during an especially stressful year (2014, annual rainfall = 293 mm) led to a smaller depletion of water and carbon pools, steering the ecosystem away from a state of GPP tipping-point collapse to recovery. We present novel process-driven insights that demonstrate the sensitivity of GPP collapse to ecosystem foliar carbon and soil moisture states-showing that the full extent of GPP response takes several years to arise. Thus, long-term changes in soil moisture and carbon pools can provide a mechanistic link between drought and forest mortality. Our study provides an example for how key precipitation threshold ranges can influence forest productivity, making them useful for monitoring and predicting forest mortality events.
Collapse
Affiliation(s)
- J Au
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - A A Bloom
- Jet Propulsion Laboratory California Institute of Technology, Pasadena, California, USA
| | - N C Parazoo
- Jet Propulsion Laboratory California Institute of Technology, Pasadena, California, USA
| | - R M Deans
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - C Y S Wong
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - B Z Houlton
- Department of Ecology and Evolutionary Biology and Department of Global Development, Cornell University, Ithaca, New York, USA
| | - T S Magney
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
11
|
Wagner Y, Volkov M, Nadal-Sala D, Ruehr NK, Hochberg U, Klein T. Relationships between xylem embolism and tree functioning during drought, recovery, and recurring drought in Aleppo pine. PHYSIOLOGIA PLANTARUM 2023; 175:e13995. [PMID: 37882273 DOI: 10.1111/ppl.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 10/27/2023]
Abstract
Recent findings suggest that trees can survive high levels of drought-induced xylem embolism. In many cases, the embolism is irreversible and, therefore, can potentially affect post-drought recovery and tree function under recurring droughts. We examined the development of embolism in potted Aleppo pines, a common species in hot, dry Mediterranean habitats. We asked (1) how post-drought recovery is affected by different levels of embolism and (2) what consequences this drought-induced damage has under a recurring drought scenario. Young trees were dehydrated to target water potential (Ψx ) values of -3.5, -5.2 and -9.5 MPa (which corresponded to ~6%, ~41% and ~76% embolism), and recovery of the surviving trees was measured over an 8-months period (i.e., embolism, leaf gas-exchange, Ψx ). An additional group of trees was exposed to Ψx of -6.0 MPa, either with or without preceding drought (Ψx of -5.2 MPa) to test the effect of hydraulic damage during repeated drought. Trees that reached -9.5 MPa died, but none from the other groups. Embolism levels in dying trees were on average 76% of conductive xylem and no tree was dying below 62% embolism. Stomatal recovery was negatively proportional to the level of hydraulic damage sustained during drought, for at least a month after drought relief. Trees that experienced drought for the second time took longer to reach fatal Ψx levels than first-time dehydrating trees. Decreased stomatal conductance following drought can be seen as "drought legacy," impeding recovery of tree functioning, but also as a safety mechanism during a consecutive drought.
Collapse
Affiliation(s)
- Yael Wagner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mila Volkov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Nadal-Sala
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
| | - Nadine Katrin Ruehr
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Nadal M, Carriquí M, Badel E, Cochard H, Delzon S, King A, Lamarque LJ, Flexas J, Torres-Ruiz JM. Photosynthesis, leaf hydraulic conductance and embolism dynamics in the resurrection plant Barbacenia purpurea. PHYSIOLOGIA PLANTARUM 2023; 175:e14035. [PMID: 37882305 DOI: 10.1111/ppl.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
The main parameters determining photosynthesis are stomatal and mesophyll conductance and electron transport rate, and for hydraulic dynamics they are leaf hydraulic conductance and the spread of embolism. These parameters have scarcely been studied in desiccation-tolerant (resurrection) plants exposed to drought. Here, we characterized photosynthesis and hydraulics during desiccation and rehydration in a poikilochlorophyllous resurrection plant, Barbacenia purpurea (Velloziaceae). Gas exchange, chlorophyll fluorescence, and leaf water status were monitored along the whole dehydration-rehydration cycle. Simultaneously, embolism formation and hydraulic functioning recovery were measured at leaf level using micro-computed tomography imaging. Photosynthesis and leaf hydraulic conductance ceased at relatively high water potential (-1.28 and -1.54 MPa, respectively), whereas the onset of leaf embolism occurred after stomatal closure and photosynthesis cessation (<-1.61 MPa). This sequence of physiological processes during water stress may be associated with the need to delay dehydration, to prepare the molecular changes required in the desiccated state. Complete rehydration occurred rapidly in the mesophyll, whereas partial xylem refilling, and subsequent recovery of photosynthesis, occurred at later stages after rewatering. These results highlight the importance of stomata as safety valves to protect the vascular system from embolism, even in a plant able to fully recover after complete embolism.
Collapse
Affiliation(s)
- Miquel Nadal
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | - Eric Badel
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | | | - Andrew King
- Synchrotron Source Optimisée de Lumière d'Energie Intermédiaire du LURE, L'Orme de Merisiers, France
| | | | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
| | | |
Collapse
|
13
|
Bi MH, Jiang C, Brodribb T, Yang YJ, Yao GQ, Jiang H, Fang XW. Ethylene constrains stomatal reopening in Fraxinus chinensis post moderate drought. TREE PHYSIOLOGY 2023; 43:883-892. [PMID: 36547259 DOI: 10.1093/treephys/tpac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 06/11/2023]
Abstract
Clarifying the mechanisms underlying the recovery of gas exchange following drought is the key to providing insights into plant drought adaptation and habitat distribution. However, the mechanisms are still largely unknown. Targeting processes known to inhibit gas exchange during drought recovery, we measured leaf water potential, the leaf hydraulic conductance, stomatal reopening, abscisic acid (ABA) and the ethylene emission rate (EER) following moderate drought stress in seedlings of the globally pervasive woody tree Fraxinus chinensis. We found strong evidence that the slow stomatal reopening after rehydration is regulated by a slow decrease in EER, rather than changes in leaf hydraulics or foliar ABA levels. This was supported by evidence of rapid gas exchange recovery in plants after treatment with the ethylene antagonist 1-methylcyclopropene. These findings provide evidence to rigorously support ethylene as a key factor constraining stomatal reopening from moderate drought directly, thereby potentially opening new windows for understanding species drought adaptation.
Collapse
Affiliation(s)
- Min-Hui Bi
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Chao Jiang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Timothy Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Yu-Jie Yang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hui Jiang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Feng F, Wagner Y, Klein T, Hochberg U. Xylem resistance to cavitation increases during summer in Pinus halepensis. PLANT, CELL & ENVIRONMENT 2023; 46:1849-1859. [PMID: 36793149 DOI: 10.1111/pce.14573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 05/04/2023]
Abstract
Cavitation resistance has often been viewed as a relatively static trait, especially for stems of forest trees. Meanwhile, other hydraulic traits, such as turgor loss point (Ψtlp ) and xylem anatomy, change during the season. In this study, we hypothesized that cavitation resistance is also dynamic, changing in coordination with Ψtlp . We began with a comparison of optical vulnerability (OV), microcomputed tomography (µCT) and cavitron methods. All three methods significantly differed in the slope of the curve,Ψ12 and Ψ88 , but not in Ψ50 (xylem pressures that cause 12%, 88%, 50% cavitation, respectively). Thus, we followed the seasonal dynamics (across 2 years) of Ψ50 in Pinus halepensis under Mediterranean climate using the OV method. We found that Ψ50 is a plastic trait with a reduction of approximately 1 MPa from the end of the wet season to the end of the dry season, in coordination with the dynamics of the midday xylem water potential (Ψmidday ) and the Ψtlp . The observed plasticity enabled the trees to maintain a stable positive hydraulic safety margin and avoid cavitation during the long dry season. Seasonal plasticity is vital for understanding the actual risk of cavitation to plants and for modeling species' ability to tolerate harsh environments.
Collapse
Affiliation(s)
- Feng Feng
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Yael Wagner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
15
|
Yang D, Wang YSD, Wang Q, Ke Y, Zhang YB, Zhang SB, Zhang YJ, McDowell NG, Zhang JL. Physiological response and photosynthetic recovery to an extreme drought: Evidence from plants in a dry-hot valley savanna of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161711. [PMID: 36682563 DOI: 10.1016/j.scitotenv.2023.161711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The frequency of extreme drought events has been rising worldwide, but due to its unpredictability, how plants will respond remains poorly understood. Here, we aimed to characterize how the hydraulics and photosynthesis of savanna plants respond to extreme drought, and tested whether they can subsequently recover photosynthesis after drought. There was an extreme drought in 2019 in Southwest (SW) China. We investigated photosynthetic gas exchange, leaf-, stem-, and whole-shoot hydraulic conductance of 18 plant species with diverse leaf habits (deciduous, semi-deciduous and evergreen) and growth forms (tree and shrub) from a dry-hot valley savanna in SW China for three rainy seasons from 2019 to 2021. We also compared photosynthetic gas exchange to those of a regular year (2014). We found that leaf stomatal and hydraulic conductance and maximum photosynthetic rate were significantly lower during the drought in 2019 than in the wetter years. In 2019, all studied plants maintained stomatal conductance at their minimum level observed, which could be related to high vapor pressure deficits (VPD, >2 kPa). However, no significant difference in stem and shoot hydraulic conductance was detected across years. The reductions in leaf hydraulic conductance and stomatal regulation under extreme drought might help keep the stem hydraulic function. Stomatal conductance and photosynthesis after drought (2020 and 2021) showed comparable or even higher values compared to that of 2014, suggesting high recovery of photosynthetic gas exchange. In addition, the response of hydraulic and photosynthetic traits to extreme drought was convergent across leaf habits and growth forms. Our results will help better understand the physiological mechanism underlying the response of savanna ecosystems to climate change.
Collapse
Affiliation(s)
- Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yang-Si-Ding Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA.
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA; School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| |
Collapse
|
16
|
Wood JD, Gu L, Hanson PJ, Frankenberg C, Sack L. The ecosystem wilting point defines drought response and recovery of a Quercus-Carya forest. GLOBAL CHANGE BIOLOGY 2023; 29:2015-2029. [PMID: 36600482 DOI: 10.1111/gcb.16582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 05/28/2023]
Abstract
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP ), a property that integrates the drought response of an ecosystem's plant community across the soil-plant-atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an "ecosystem pressure-volume (PV) curve," which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd ) was above ΨEWP (=-2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP , the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP , the forest is commonly only 2-4 weeks of intense drought away from reaching ΨEWP , and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP , and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.
Collapse
Affiliation(s)
- Jeffrey D Wood
- School of Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Paul J Hanson
- Environmental Sciences Division and Climate Change Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Christian Frankenberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
17
|
Zlobin IE, Vankova R, Dobrev PI, Gaudinova A, Kartashov AV, Ivanov YV, Ivanova AI, Kuznetsov VV. Abscisic Acid and Cytokinins Are Not Involved in the Regulation of Stomatal Conductance of Scots Pine Saplings during Post-Drought Recovery. Biomolecules 2023; 13:biom13030523. [PMID: 36979458 PMCID: PMC10046708 DOI: 10.3390/biom13030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Delayed or incomplete recovery of gas exchange after water stress relief limits assimilation in the post-drought period and can thus negatively affect the processes of post-drought recovery. Abscisic acid (ABA) accumulation and antagonistic action between ABA and cytokinins (CKs) play an important role in regulation of stomatal conductance under water deficit. Specifically, in pine species, sustained ABA accumulation is thought to be the main cause of delayed post-drought gas exchange recovery, although the role of CKs is not yet known. Therefore, we aimed to study the effects of ABA and CKs on recovery of stomatal conductance in greenhouse-grown 3-year-old Scots pine saplings recovering from water stress. We analysed both changes in endogenous ABA and CK contents and the effects of treatment with exogenous CK on stomatal conductance. Drought stress suppressed stomatal conductance, and post-drought stomatal conductance remained suppressed for 2 weeks after plant rewatering. ABA accumulated during water stress, but ABA levels decreased rapidly after rewatering. Additionally, trans-zeatin/ABA and isopentenyladenine/ABA ratios, which were decreased in water-stressed plants, recovered rapidly in rewatered plants. Spraying plants with 6-benzylaminopurine (0.1–100 µM) did not influence recovery of either stomatal conductance or needle water status. It can be concluded that the delayed recovery of stomatal conductance in Scots pine needles was not due to sustained ABA accumulation or a sustained decrease in the CK/ABA ratio, and CK supplementation was unable to overcome this delayed recovery.
Collapse
Affiliation(s)
- Ilya E. Zlobin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Alexander V. Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
| | - Yury V. Ivanov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
| | - Alexandra I. Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
| | - Vladimir V. Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia; (I.E.Z.); (A.V.K.); (Y.V.I.)
- Correspondence:
| |
Collapse
|
18
|
Skelton RP, West AG, Buttner D, Dawson TE. Consistent responses to moisture stress despite diverse growth forms within mountain fynbos communities. Oecologia 2023; 201:323-339. [PMID: 36692692 PMCID: PMC9944370 DOI: 10.1007/s00442-023-05326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Understanding climate change impacts on the Cape Floristic Region requires improved knowledge of plant physiological responses to the environment. Studies examining physiological responses of mountain fynbos have consisted of campaign-based measurements, capturing snapshots of plant water relations and photosynthesis. We examine conclusions drawn from prior studies by tracking in situ physiological responses of three species, representing dominant growth forms (proteoid, ericoid, restioid), over 2 years using miniature continuous sap flow technology, long-term observations of leaf/culm water potential and gas exchange, and xylem vulnerability to embolism. We observed considerable inter-specific variation in the timing and extent of seasonal declines in productivity. Shallow-rooted Erica monsoniana exhibited steep within-season declines in sap flow and water potentials, and pronounced inter-annual variability in total daily sap flux (Js). Protea repens showed steady reductions in Js across both years, despite deeper roots and less negative water potentials. Cannomois congesta-a shallow-rooted restioid-was least negatively impacted. Following rehydrating rain at the end of summer, gas exchange recovery was lower in the drier year compared with the normal year, but did not differ between species. Loss of function in the drier year was partially accounted for by loss of xylem transport capacity in Erica and Cannomois, but not Protea. Hitherto unseen water use patterns, including inter-annual variability of gas exchange associated with contrasting water uptake properties, reveal that species use different mechanisms to cope with summer dry periods. Revealing physiological responses of key growth forms enhances predictions of plant function within mountain fynbos under future conditions.
Collapse
Affiliation(s)
| | - Adam G West
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Daniel Buttner
- Department of Botany, Nelson Mandela University, Gqeberha, South Africa
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA
| |
Collapse
|
19
|
Docherty EM, Gloor E, Sponchiado D, Gilpin M, Pinto CAD, Junior HM, Coughlin I, Ferreira L, Junior JAS, da Costa ACL, Meir P, Galbraith D. Long-term drought effects on the thermal sensitivity of Amazon forest trees. PLANT, CELL & ENVIRONMENT 2023; 46:185-198. [PMID: 36230004 PMCID: PMC10092618 DOI: 10.1111/pce.14465] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv /Fm ) of eight hyper-dominant Amazonian tree species at the world's longest-running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C-2°C increase in canopy air temperatures following long-term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme-heat damage (T50 ) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long-term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves.
Collapse
Affiliation(s)
- Emma M. Docherty
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | - Emanuel Gloor
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | - Daniela Sponchiado
- Departamento de Ciências Biológicas, Laboratório de Ecologia VegetalUniversidade do Estado de Mato GrossoNova XavantinaMato GrossoBrasil
| | - Martin Gilpin
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | | | | | - Ingrid Coughlin
- Departamento de Biologia, FFCLRPUniversidade de São PauloRibeirao PretoSão PauloBrasil
- College of Science, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritorAustralia
| | | | | | - Antonio C. L. da Costa
- Instituto de GeosciênciasUniversidade Federaldo ParáBelémParáBrasil
- Museu Paraense Emílio GoeldiBelémParáBrasil
| | - Patrick Meir
- College of Science, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritorAustralia
- College of Science and Engineering, School of GeoSciencesUniversity of EdinburghEdinburghUK
| | - David Galbraith
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| |
Collapse
|
20
|
Haberstroh S, Werner C. The role of species interactions for forest resilience to drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1098-1107. [PMID: 35312142 DOI: 10.1111/plb.13415] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Increasing durations and frequencies of droughts under climate change endanger the sustainable functioning of forests worldwide. The admixture of species with complementary resource use may increase the resilience of forests towards drought; however, little is known about modifications of species interactions (i.e. facilitation and competition) by increasing drought severity in mixed forests. In particular, knowledge on the regulation of central ecohydrological processes, such as tree water fluxes, is lacking. Therefore, we conducted a literature review to assess the impact of species interactions on tree resilience (resistance + recovery) under increasing drought severity. The classification of studies into three drought classes suggested that beneficial species interactions, i.e. through improved water relations, were prevalent under mild droughts. However, with increasing drought, negative effects, such as interspecific competition, occurred. These negative interactions were prominent under extreme droughts, where even trees with complementary resource-use strategies competed for water resources. Fewer data are available on recovery of water fluxes. The limited evidence supported the patterns observed for drought resistance, with facilitation and complementarity of species in mixtures enhancing tree recovery after moderate droughts. However, after extreme droughts, competition effects and reduced recovery for some species were observed, which can strongly compromise tree resilience. While we acknowledge the importance of mixed forests for biodiversity, ecosystem services or pest resistance, we caution that beneficial species interactions may shift under extreme droughts. Thus, there is an urgent need to investigate species interaction effects on resilience in more depth to adapt forest trees to increasing drought stress.
Collapse
Affiliation(s)
- S Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - C Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Haberstroh S, Werner C, Grün M, Kreuzwieser J, Seifert T, Schindler D, Christen A. Central European 2018 hot drought shifts scots pine forest to its tipping point. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1186-1197. [PMID: 35869655 DOI: 10.1111/plb.13455] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of hot drought, i.e. low water availability and simultaneous high air temperature, represents a severe threat to ecosystems. Here, we investigated how the 2018 hot drought in Central Europe caused a tipping point in tree and ecosystem functioning in a Scots pine (Pinus sylvestris L.) forest in southwest Germany. Measurements of stress indicators, such as needle water potential, carbon assimilation and volatile organic compound (VOC) emissions, of dominant P. sylvestris trees were deployed to evaluate tree functioning during hot drought. Ecosystem impact and recovery were assessed as ecosystem carbon exchange, normalized difference vegetation index (NDVI) from satellite data and tree mortality data. During summer 2018, needle water potentials of trees dropped to minimum values of -7.5 ± 0.2 MPa, which implied severe hydraulic impairment of P. sylvestris. Likewise, carbon assimilation and VOC emissions strongly declined after mid-July. Decreasing NDVI values from August 2018 onwards were detected, along with severe defoliation in P. sylvestris, impairing ecosystem carbon flux recovery in 2019, shifting the forest into a year-round carbon source. A total of 47% of all monitored trees (n = 368) died by September 2020. NDVI recovered to pre-2018 levels in 2019, likely caused by emerging broadleaved understorey species. The 2018 hot drought had severe negative impacts on P. sylvestris. The co-occurrence of unfavourable site-specific conditions with recurrent severe droughts resulted in accelerated mortality. Thus, the 2018 hot drought pushed the P. sylvestris stand towards its tipping point, with a subsequent vegetation shift to a broadleaf-dominated forest.
Collapse
Affiliation(s)
- S Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - C Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - M Grün
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - J Kreuzwieser
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - T Seifert
- Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
- Department of Forest and Wood Science, Stellenbosch University, Matieland, South Africa
| | - D Schindler
- Environmental Meteorology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| | - A Christen
- Environmental Meteorology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Knüver T, Bär A, Ganthaler A, Gebhardt T, Grams TEE, Häberle K, Hesse BD, Losso A, Tomedi I, Mayr S, Beikircher B. Recovery after long-term summer drought: Hydraulic measurements reveal legacy effects in trunks of Picea abies but not in Fagus sylvatica. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1240-1253. [PMID: 35611757 PMCID: PMC10084041 DOI: 10.1111/plb.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Climate change is expected to increase the frequency and intensity of summer droughts. Sufficient drought resistance, the ability to acclimate to and/or recover after drought, is thus crucial for forest tree species. However, studies on the hydraulics of mature trees during and after drought in natura are scarce. In this study, we analysed trunk water content (electrical resistivity: ER) and further hydraulic (water potential, sap flow density, specific hydraulic conductivity, vulnerability to embolism) as well as wood anatomical traits (tree ring width, conduit diameter, conduit wall reinforcement) of drought-stressed (artificially induced summer drought via throughfall-exclusion) and unstressed Picea abies and Fagus sylvatica trees. In P. abies, ER indicated a strong reduction in trunk water content after 5 years of summer drought, corresponding to significantly lower pre-dawn leaf water potential and xylem sap flow density. Vulnerability to embolism tended to be higher in drought-stressed trees. In F. sylvatica, only small differences between drought-stressed and control trees were observed. Re-watering led to a rapid increase in water potentials and xylem sap flow of both drought-stressed trees, and to increased growth rates in the next growing season. ER analyses revealed lower trunk water content in P. abies trees growing on throughfall-exclusion plots even 1 year after re-watering, indicating a limited capacity to restore internal water reserves. Results demonstrated that P. abies is more susceptible to recurrent summer drought than F. sylvatica, and can exhibit long-lasting and pronounced legacy effects in trunk water reserves.
Collapse
Affiliation(s)
- T. Knüver
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - A. Bär
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - A. Ganthaler
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - T. Gebhardt
- Technical University of MunichSchool of Life SciencesProfessorship for Land Surface‐Atmosphere Interactions AG Ecophysiology of PlantsFreisingGermany
| | - T. E. E. Grams
- Technical University of MunichSchool of Life SciencesProfessorship for Land Surface‐Atmosphere Interactions AG Ecophysiology of PlantsFreisingGermany
| | - K.‐H. Häberle
- Technical University of MunichSchool of Life SciencesChair of Restoration EcologyFreisingGermany
| | - B. D. Hesse
- Technical University of MunichSchool of Life SciencesProfessorship for Land Surface‐Atmosphere Interactions AG Ecophysiology of PlantsFreisingGermany
| | - A. Losso
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondAustralia
| | - I. Tomedi
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - S. Mayr
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - B. Beikircher
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
23
|
Ribeyre Z, Messier C, Nolet P. No stress memory pattern was detected in sugar maple and white spruce seedlings subjected to experimental droughts. Ecosphere 2022. [DOI: 10.1002/ecs2.4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Zoé Ribeyre
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
| | - Christian Messier
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
- Département des Sciences Biologiques, Centre d'Étude de la Forêt (CEF) University of Québec à Montréal (UQAM) Montreal Quebec Canada
| | - Philippe Nolet
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
| |
Collapse
|
24
|
Wang L, Li J, Wang Y, Xue H, Dai Y, Han Y. Interactive effect between tree ageing and trunk-boring pest reduces hydraulics and carbon metabolism in Hippophae rhamnoides. AOB PLANTS 2022; 14:plac051. [PMID: 36545298 PMCID: PMC9762721 DOI: 10.1093/aobpla/plac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Sea-buckthorn (Hippophae rhamnoides) is widely distributed across the Eurasian continent. Recently sea-buckthorn has shown premature ageing and decline when confronted with water deficiency and Holcocerus hippophaecolus damage in northwest China and the Loess Plateau region. However, the physiological process of sea-buckthorn senescence in response to drought and pest damage is still unknown. In this study, 4-year-old (4y), 15-year-old normal growth (15yN) and 15-year-old seriously moth-damaged sea-buckthorn plants (15yH) were used as the research objects. The growth of branches and roots, branch water potential and percentage loss of conductivity (PLC), branch vulnerability to embolism (quantified by P50, xylem water potential at 50 % of PLC), branch xylem parenchyma cell viability, photosynthesis and the non-structural carbohydrate (NSC) content in branches and roots in dry and wet seasons were measured. The results showed that the length, basal diameter of 1-year-old branches and the leaf area of 4y trees were significantly larger than that of 15yN and 15yH trees, and the fine root density of 15yH trees was significantly lower than that of 15yN trees in all measured areas. The branch-specific hydraulic conductivity of 15yN and 15yH trees was only 50.2 % and 12.3 % of that of 4y trees, and the P50 of 4y, 15yH and 15yN trees was -3.69 MPa, -2.71 MPa and -1.15 MPa, respectively. The midday water potential and photosynthetic rate were highest in 4y trees, followed by 15yN and then 15yH trees in both the dry season and wet seasons, while branch PLC declined in the opposite direction (15yH trees highest, 4y trees lowest). The degree of PLC repair within a day was highest in 4y trees, followed by 15yN and then 15yH trees, and the viability of xylem cells was consistent with this pattern. The branch xylem starch and NSC content of 4y and 15yN trees were significantly higher than that of 15yH trees in the dry season, and the root starch and NSC content of 4y trees were significantly higher than that of 15yH trees in the two seasons. The above results suggest that the hydraulic properties of the normal elderly and seriously pest-damaged sea-buckthorn were significantly worse than in juvenile plants. Narrower early wood width and vessel density, high embolism vulnerability and weak embolism repair capacity led to the decline in water-conducting ability, and similarly further affected photosynthesis and the root NSC content. The decline in xylem parenchyma cell viability was the main reason for the limited embolism repair in the branches.
Collapse
Affiliation(s)
- Lin Wang
- Corresponding author’s e-mail address:
| | - Junpeng Li
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Yang Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Hao Xue
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Yongxin Dai
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
| |
Collapse
|
25
|
Pritzkow C, Brown MJM, Carins-Murphy MR, Bourbia I, Mitchell PJ, Brodersen C, Choat B, Brodribb TJ. Conduit position and connectivity affect the likelihood of xylem embolism during natural drought in evergreen woodland species. ANNALS OF BOTANY 2022; 130:431-444. [PMID: 35420657 PMCID: PMC9486930 DOI: 10.1093/aob/mcac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Hydraulic failure is considered a main cause of drought-induced forest mortality. Yet, we have a limited understanding of how the varying intensities and long time scales of natural droughts induce and propagate embolism within the xylem. METHODS X-ray computed tomography (microCT) images were obtained from different aged branch xylem to study the number, size and spatial distribution of in situ embolized conduits among three dominant tree species growing in a woodland community. KEY RESULTS Among the three studied tree species, those with a higher xylem vulnerability to embolism (higher water potential at 50 % loss of hydraulic conductance; P50) were more embolized than species with lower P50. Within individual stems, the probability of embolism was independent of conduit diameter but associated with conduit position. Rather than the occurrence of random or radial embolism, we observed circumferential clustering of high and low embolism density, suggesting that embolism spreads preferentially among conduits of the same age. Older xylem also appeared more likely to accumulate embolisms than young xylem, but there was no pattern suggesting that branch tips were more vulnerable to cavitation than basal regions. CONCLUSIONS The spatial analysis of embolism occurrence in field-grown trees suggests that embolism under natural drought probably propagates by air spreading from embolized into neighbouring conduits in a circumferential pattern. This pattern offers the possibility to understand the temporal aspects of embolism occurrence by examining stem cross-sections.
Collapse
Affiliation(s)
- Carola Pritzkow
- School of Biology, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Matilda J M Brown
- School of Biology, University of Tasmania, Hobart, TAS, 7005, Australia
| | | | - Ibrahim Bourbia
- School of Biology, University of Tasmania, Hobart, TAS, 7005, Australia
| | | | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2750, Australia
| | | |
Collapse
|
26
|
Duan H, Wang D, Zhao N, Huang G, Resco de Dios V, Tissue DT. Limited hydraulic recovery in seedlings of six tree species with contrasting leaf habits in subtropical China. FRONTIERS IN PLANT SCIENCE 2022; 13:967187. [PMID: 36035730 PMCID: PMC9403191 DOI: 10.3389/fpls.2022.967187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Subtropical tree species may experience severe drought stress due to variable rainfall under future climates. However, the capacity to restore hydraulic function post-drought might differ among co-occurring species with contrasting leaf habits (e.g., evergreen and deciduous) and have implications for future forest composition. Moreover, the links between hydraulic recovery and physiological and morphological traits related to water-carbon availability are still not well understood. Here, potted seedlings of six tree species (four evergreen and two deciduous) were grown outdoors under a rainout shelter. They grew under favorable water conditions until they were experimentally subjected to a soil water deficit leading to losses of ca. 50% of hydraulic conductivity, and then soils were re-watered to field capacity. Traits related to carbon and water relations were measured. There were differences in drought responses and recovery between species, but not as a function of evergreen or deciduous groups. Sapindus mukorossi exhibited the most rapid drought response, which was associated with a suite of physiological and morphological traits (larger plant size, the lowest hydraulic capacitance (C branch), higher minimum conductance (g min) and lower HV (Huber value)). Upon re-watering, xylem water potential exhibited fast recovery in 1-3 days among species, while photosynthesis at saturating light (A sat) and stomatal conductance (g s) recovery lagged behind water potential recovery depending on species, with g s recovery being more delayed than A sat in most species. Furthermore, none of the six species exhibited significant hydraulic recovery during the 7 days re-watering period, indicating that xylem refilling was apparently limited; in addition, NSC availability had a minimal role in facilitating hydraulic recovery during this short-term period. Collectively, if water supply is limited by insignificant hydraulic recovery post-drought, the observed carbon assimilation recovery of seedlings may not be sustained over the longer term, potentially altering seedling regeneration and shifting forest species composition in subtropical China under climate change.
Collapse
Affiliation(s)
- Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Defu Wang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Nan Zhao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Guomin Huang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA Center, Lleida, Spain
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
27
|
Rehschuh R, Ruehr NK. Diverging responses of water and carbon relations during and after heat and hot drought stress in Pinus sylvestris. TREE PHYSIOLOGY 2022; 42:1532-1548. [PMID: 34740258 PMCID: PMC9366868 DOI: 10.1093/treephys/tpab141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Forests are increasingly affected by heatwaves, often co-occurring with drought, with consequences for water and carbon (C) cycling. However, our ability to project tree resilience to more intense hot droughts remains limited. Here, we used single tree chambers (n = 18) to investigate transpiration (E), net assimilation (Anet), root respiration (Rroot) and stem diameter change in Scots pine seedlings in a control treatment and during gradually intensifying heat or drought-heat stress (max. 42 °C), including recovery. Alongside this, we assessed indicators of stress impacts and recovery capacities. In the heat treatment, excessive leaf heating was mitigated via increased E, while under drought-heat, E ceased and leaf temperatures reached 46 °C. However, leaf electrolyte leakage was negligible, while light-adapted quantum yield of photosystem II (F'v/F'm) declined alongside Anet moderately in heat, but strongly in drought-heat seedlings, in which respiration exceeded C uptake. Drought-heat largely affected the hydraulic system as apparent in stem diameter shrinkage, declining relative needle water content (RWCNeedle) and water potential (ΨNeedle) reaching -2.7 MPa, alongside a 90% decline of leaf hydraulic conductance (KLeaf). Heat alone resulted in low functional impairment and all measured parameters recovered quickly. Contrary, following drought-heat, the recovery of KLeaf was incomplete and stem hydraulic conductivity (KS) was 25% lower than the control. However, F'v/F'm recovered and the tree net C balance reached control values 2 days post-stress, with stem increment rates accelerating during the second recovery week. This indicates a new equilibrium of C uptake and release in drought-heat seedlings independent of hydraulic impairment, which may slowly contribute to the repair of damaged tissues. In summary, Scots pine recovered rapidly following moderate heat stress, while combined with drought, hydraulic and thermal stress intensified, resulting in functional damage and slow recovery of hydraulic conductance. This incomplete hydraulic recovery could critically limit evaporative cooling capacities and C uptake under repeated heatwaves.
Collapse
Affiliation(s)
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| |
Collapse
|
28
|
Jiang (蒋国凤) GF, Li (李溯源) SY, Li (李艺蝉) YC, Roddy AB. Coordination of hydraulic thresholds across roots, stems, and leaves of two co-occurring mangrove species. PLANT PHYSIOLOGY 2022; 189:2159-2174. [PMID: 35640109 PMCID: PMC9342987 DOI: 10.1093/plphys/kiac240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 05/30/2023]
Abstract
Mangroves are frequently inundated with saline water and have evolved different anatomical and physiological mechanisms to filter and, in some species, excrete excess salt from the water they take up. Because salts impose osmotic stress, interspecific differences in salt tolerance and salt management strategy may influence physiological responses to drought throughout the entire plant hydraulic pathway, from roots to leaves. Here, we characterized embolism vulnerability simultaneously in leaves, stems, and roots of seedlings of two mangrove species (Avicennia marina and Bruguiera gymnorrhiza) along with turgor-loss points in roots and leaves and xylem anatomical traits. In both species, the water potentials causing 50% of total embolism were less negative in roots and leaves than they were in stems, but the water potentials causing incipient embolism (5%) were similar in roots, stems, and leaves. Stomatal closure in leaves and turgor loss in both leaves and roots occurred at water potentials only slightly less negative than the water potentials causing 5% of total embolism. Xylem anatomical traits were unrelated to vulnerability to embolism. Vulnerability segmentation may be important in limiting embolism spread into stems from more vulnerable roots and leaves. Interspecific differences in salt tolerance affected hydraulic traits from roots to leaves: the salt-secretor A. marina lost turgor at more negative water potentials and had more embolism-resistant xylem than the salt-excluder B. gymnorrhiza. Characterizing physiological thresholds of roots may help to explain recent mangrove mortality after drought and extended saltwater inundation.
Collapse
Affiliation(s)
| | - Su-Yuan Li (李溯源)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yi-Chan Li (李艺蝉)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | | |
Collapse
|
29
|
Cardoso AA, Kane CN, Rimer IM, McAdam SAM. Seeing is believing: what visualising bubbles in the xylem has revealed about plant hydraulic function. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:759-772. [PMID: 35718950 DOI: 10.1071/fp21326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Maintaining water transport in the xylem is critical for vascular plants to grow and survive. The drought-induced accumulation of embolism, when gas enters xylem conduits, causes declines in hydraulic conductance (K ) and is ultimately lethal. Several methods can be used to estimate the degree of embolism in xylem, from measuring K in tissues to directly visualising embolism in conduits. One method allowing a direct quantification of embolised xylem area is the optical vulnerability (OV) technique. This method has been used across different organs and has a high spatial and temporal resolution. Here, we review studies using the OV technique, discuss the main advantages and disadvantages of this method, and summarise key advances arising from its use. Vulnerability curves generated by the OV method are regularly comparable to other methods, including the centrifuge and X-ray microtomography. A major advantage of the OV technique over other methods is that it can be simultaneously used to determine in situ embolism formation in leaves, stems and roots, in species spanning the phylogeny of land plants. The OV method has been used to experimentally investigate the spreading of embolism through xylem networks, associate embolism with downstream tissue death, and observe embolism formation in the field.
Collapse
Affiliation(s)
- Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Cade N Kane
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Ian M Rimer
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
30
|
Hu Y, Xiang W, Schäfer KVR, Lei P, Deng X, Forrester DI, Fang X, Zeng Y, Ouyang S, Chen L, Peng C. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154517. [PMID: 35278541 DOI: 10.1016/j.scitotenv.2022.154517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Drought events lead to depressions in gross primary productivity (GPP) of forest ecosystems. Photosynthetic and hydraulic traits are important factors governing GPP variation. However, how these functional traits affect GPP responses to drought has not been well understood. We quantified the capacity of GPP to withstand changes during droughts (GPP_resistance) and its post-drought responses (GPP_resilience) using eddy covariance data from the FLUXNET2015 dataset, and investigated how functional traits of dominant tree species that comprised >80% of the biomass (or composition) influenced GPP_resistance or GPP_resilience. Light-saturated photosynthetic rate of dominant tree species was negatively related to GPP_resistance, and was positively correlated with GPP_resilience. Forests dominated by species with higher hydraulic safety margins (HSM), smaller vessel diameter (Vdia) and lower sensitivity of canopy stomatal conductance per unit land area (Gs) to droughts had a higher GPP_resistance, while those dominated by species with lower HSM, larger Vdia and higher sensitivity of Gs to droughts exhibited a higher GPP_resilience. Differences in functional traits of forests located in diverse climate regions led to distinct GPP sensitivities to droughts. Forests located in humid regions had a higher GPP_resilience while those in arid regions exhibited a higher GPP_resistance. Forest GPP_resistance was negatively related to drought intensity, and GPP_resilience was negatively related to drought duration. Our findings highlight the significant role of functional traits in governing forest resistance and resilience to droughts. Overall, forests dominated by species with higher hydraulic safety were more resistant to droughts, while forests containing species with higher photosynthetic and hydraulic efficiency recovered better from drought stress.
Collapse
Affiliation(s)
- Yanting Hu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China.
| | - Karina V R Schäfer
- Department of Earth and Environmental Sciences, Rutgers University, 195 University Avenue, Newark 07102, NJ, USA
| | - Pifeng Lei
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Xiangwen Deng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - David I Forrester
- Swiss Federal Institute of Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Xi Fang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Yelin Zeng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China; Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong, China
| | - Changhui Peng
- Department of Biological Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
31
|
Jacob V, Choat B, Churchill AC, Zhang H, Barton CVM, Krishnananthaselvan A, Post AK, Power SA, Medlyn BE, Tissue DT. High safety margins to drought-induced hydraulic failure found in five pasture grasses. PLANT, CELL & ENVIRONMENT 2022; 45:1631-1646. [PMID: 35319101 DOI: 10.1111/pce.14318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Determining the relationship between reductions in stomatal conductance (gs ) and leaf water transport during dehydration is key to understanding plant drought responses. While numerous studies have analysed the hydraulic function of woody species, minimal research has been conducted on grasses. Here, we sought to characterize hydraulic vulnerability in five widely-occurring pasture grasses (including both C3 and C4 grasses) and determine whether reductions in gs and leaf hydraulic conductance (Kleaf ) during dehydration could be attributed to xylem embolism. Using the optical vulnerability (OV) technique, we found that all species were highly resistant to xylem embolism when compared to other herbaceous angiosperms, with 50% xylem embolism (PX50 ) occurring at xylem pressures ranging from -4.4 to -6.1 MPa. We observed similar reductions in gs and Kleaf under mild water stress for all species, occurring well before PX50 . The onset of xylem embolism (PX12 ) occurred consistently after stomatal closure and 90% reduction of Kleaf . Our results suggest that factors other than xylem embolism are responsible for the majority of reductions in gs and Kleaf during drought and reductions in the productivity of pasture species under moderate drought may not be driven by embolism.
Collapse
Affiliation(s)
- Vinod Jacob
- Western Sydney University, Penrith, New South Wales, Australia
| | - Brendan Choat
- Western Sydney University, Penrith, New South Wales, Australia
| | | | - Haiyang Zhang
- Western Sydney University, Penrith, New South Wales, Australia
| | | | | | - Alison K Post
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sally A Power
- Western Sydney University, Penrith, New South Wales, Australia
| | | | - David T Tissue
- Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
32
|
Duan CY, Li MY, Fang LD, Cao Y, Wu DD, Liu H, Ye Q, Hao GY. Greater hydraulic safety contributes to higher growth resilience to drought across seven pine species in a semi-arid environment. TREE PHYSIOLOGY 2022; 42:727-739. [PMID: 34718811 DOI: 10.1093/treephys/tpab137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Quantifying inter-specific variations of tree resilience to drought and revealing the underlying mechanisms are of great importance to the understanding of forest functionality, particularly in water-limited regions. So far, comprehensive studies incorporating investigations in inter-specific variations of long-term growth patterns of trees and the underlying physiological mechanisms are very limited. Here, in a semi-arid site of northern China, tree radial growth rate, inter-annual tree-ring growth responses to climate variability, as well as physiological characteristics pertinent to xylem hydraulics, carbon assimilation and drought tolerance were analyzed in seven pine species growing in a common environment. Considerable inter-specific variations in radial growth rate, growth response to drought and physiological characteristics were observed among the studied species. Differently, the studied species exhibited similar degrees of resistance to drought-induced branch xylem embolism, with water potential corresponding to 50% loss hydraulic conductivity ranging from -2.31 to -2.96 MPa. We found that higher branch hydraulic efficiency is related to greater leaf photosynthetic capacity, smaller hydraulic safety margin and lower woody density (P < 0.05, linear regressions), but not related to higher tree radial growth rate (P > 0.05). Rather, species with higher hydraulic conductivity and photosynthetic capacity were more sensitive to drought stress and tended to show weaker growth resistance to extreme drought events as quantified by tree-ring analyses, which is at least partially due to a trade-off between hydraulic efficiency and safety across species. This study thus demonstrates the importance of drought resilience rather than instantaneous water and carbon flux capacity in determining tree growth in water-limited environments.
Collapse
Affiliation(s)
- Chun-Yang Duan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yong Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Li-Dong Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- Institute of Sand Land Control and Utilization, Fuxin 123000, Liaoning, China
| | - De-Dong Wu
- Institute of Sand Land Control and Utilization, Fuxin 123000, Liaoning, China
| | - Hui Liu
- CAS Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
| | - Qing Ye
- CAS Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| |
Collapse
|
33
|
Gauthey A, Peters JMR, Lòpez R, Carins-Murphy MR, Rodriguez-Dominguez CM, Tissue DT, Medlyn BE, Brodribb TJ, Choat B. Mechanisms of xylem hydraulic recovery after drought in Eucalyptus saligna. PLANT, CELL & ENVIRONMENT 2022; 45:1216-1228. [PMID: 35119114 DOI: 10.1111/pce.14265] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The mechanisms by which woody plants recover xylem hydraulic capacity after drought stress are not well understood, particularly with regard to the role of embolism refilling. We evaluated the recovery of xylem hydraulic capacity in young Eucalyptus saligna plants exposed to cycles of drought stress and rewatering. Plants were exposed to moderate and severe drought stress treatments, with recovery monitored at time intervals from 24 h to 6 months after rewatering. The percentage loss of xylem vessels due to embolism (PLV) was quantified at each time point using microcomputed tomography with stem water potential (Ψx ) and canopy transpiration (Ec ) measured before scans. Plants exposed to severe drought stress suffered high levels of embolism (47.38% ± 10.97% PLV) and almost complete canopy loss. No evidence of embolism refilling was observed at 24 h, 1 week, or 3 weeks after rewatering despite rapid recovery in Ψx . Recovery of hydraulic capacity was achieved over a 6-month period by growth of new xylem tissue, with canopy leaf area and Ec recovering over the same period. These findings indicate that E. saligna recovers slowly from severe drought stress, with potential for embolism to persist in the xylem for many months after rainfall events.
Collapse
Affiliation(s)
- Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Environmental Sciences Division, Oak Ridge National Laboratory, Climate Change Science Institute, Oak Ridge, Tennessee, USA
| | - Rosana Lòpez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Celia M Rodriguez-Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Syndey University, Richmond, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
34
|
Duan H, Resco de Dios V, Wang D, Zhao N, Huang G, Liu W, Wu J, Zhou S, Choat B, Tissue DT. Testing the limits of plant drought stress and subsequent recovery in four provenances of a widely distributed subtropical tree species. PLANT, CELL & ENVIRONMENT 2022; 45:1187-1203. [PMID: 34985807 DOI: 10.1111/pce.14254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Drought-induced tree mortality may increase with ongoing climate change. Unraveling the links between stem hydraulics and mortality thresholds, and the effects of intraspecific variation, remain important unresolved issues. We conducted a water manipulation experiment in a rain-out shelter, using four provenances of Schima superba originating from a gradient of annual precipitation (1124-1796 mm) and temperature (16.4-22.4°C). Seedlings were droughted to three levels of percentage loss of hydraulic conductivity (i.e., P50 , P88 and P99) and subsequently rewatered to field capacity for 30 days; traits related to water and carbon relations were measured. The lethal water potential associated with incipient mortality was between P50 and P88 . Seedlings exhibited similar drought responses in xylem water potential, hydraulic conductivity and gas exchange. Upon rehydration, patterns of gas exchange differed among provenances but were not related to the climate at the origin. The four provenances exhibited a similar degree of stem hydraulic recovery, which was correlated with the magnitude of antecedent drought and stem soluble sugar at the end of the drought. Results suggest that there were intraspecific differences in the capacity of S. superba seedlings for carbon assimilation during recovery, indicating a decoupling between gas exchange recovery and stem hydraulics across provenances.
Collapse
Affiliation(s)
- Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences, Unversitat de Lleida, Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA Centre, Lleida, Spain
| | - Defu Wang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Nan Zhao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Guomin Huang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Wenfei Liu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Jianping Wu
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shuangxi Zhou
- Department of Biological Sciences, Macquarie University, New South Wales, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, New South Wales, Australia
- Global Centre for Land-based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, New South Wales, Australia
| |
Collapse
|
35
|
Wardlaw TJ. Eucalyptus obliqua tall forest in cool, temperate Tasmania becomes a carbon source during a protracted warm spell in November 2017. Sci Rep 2022; 12:2661. [PMID: 35177740 PMCID: PMC8854404 DOI: 10.1038/s41598-022-06674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022] Open
Abstract
Tasmania experienced a protracted warm spell in November 2017. Temperatures were lower than those usually characterising heatwaves. Nonetheless the warm spell represented an extreme anomaly based on the historical local climate. Eddy covariance measurements of fluxes in a Eucalyptus obliqua tall forest at Warra, southern Tasmania during the warm spell were compared with measurements in the same period of the previous year when temperatures were closer to average. Compared with previous year, the warm spell resulted in 31% lower gross primary productivity (GPP), 58% higher ecosystem respiration (ER) and the forest switching from a carbon sink to a source. Significantly higher net radiation received during the warm spell was dissipated by increased latent heat flux, while canopy conductance was comparable with the previous year. Stomatal regulation to limit water loss was therefore unlikely as the reason for the lower GPP during the warm spell. Temperatures during the warm spell were supra-optimal for GPP for 75% of the daylight hours. The decline in GPP at Warra during the warm spell was therefore most likely due to temperatures exceeding the optimum for GPP. All else being equal, these forests will be weaker carbon sinks if, as predicted, warming events become more common.
Collapse
Affiliation(s)
- Timothy J Wardlaw
- ARC Training Centre for Forest Values, University of Tasmania, Hobart, Australia.
| |
Collapse
|
36
|
Manzi OJL, Bellifa M, Ziegler C, Mihle L, Levionnois S, Burban B, Leroy C, Coste S, Stahl C. Drought stress recovery of hydraulic and photochemical processes in Neotropical tree saplings. TREE PHYSIOLOGY 2022; 42:114-129. [PMID: 34302178 DOI: 10.1093/treephys/tpab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Climate models predict an increase in the severity and the frequency of droughts. Tropical forests are among the ecosystems that could be highly impacted by these droughts. Here, we explore how hydraulic and photochemical processes respond to drought stress and re-watering. We conducted a pot experiment on saplings of five tree species. Before the onset of drought, we measured a set of hydraulic traits, including minimum leaf conductance, leaf embolism resistance and turgor loss point. During drought stress, we monitored traits linked to leaf hydraulic functioning (leaf water potential (ψmd) and stomatal conductance (gs)) and traits linked to leaf photochemical functioning (maximum quantum yield of photosystem II (Fv/Fm) and maximum electron transport rate (ETRmax)) at different wilting stages. After re-watering, the same traits were measured after 3, 7 and 14 days. Hydraulic trait values decreased faster than photochemical trait values. After re-watering, the values of the four traits recovered at different rates. Fv/Fm recovered very fast close to their initial values only 3 days after re-watering. This was followed by ETRmax, Ψmd and gs. Finally, we show that species with large stomatal and leaf safety margin and low πtlp are not strongly impacted by drought, whereas they have a low recovery on photochemical efficiency. These results demonstrate that πtlp, stomatal and leaf safety margin are a good indicators of plant responses to drought stress and also to recovery for photochemical efficiency.
Collapse
Affiliation(s)
- Olivier Jean Leonce Manzi
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Integrated Polytechnic Regional College-Kitabi, Rwanda Polytechnic, PO Box 330, Huye, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-40530 Gothenburg, Sweden
| | - Maxime Bellifa
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Camille Ziegler
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| | - Louis Mihle
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Sébastien Levionnois
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Benoit Burban
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Céline Leroy
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Sabrina Coste
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Clément Stahl
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, 97310 Kourou, France
| |
Collapse
|
37
|
Zhang Q, Tang W, Peng S, Li Y. Limiting factors for panicle photosynthesis at the anthesis and grain filling stages in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:77-91. [PMID: 34704647 DOI: 10.1111/tpj.15554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Panicle photosynthesis is crucial for grain yield in cereal crops; however, the limiting factors for panicle photosynthesis are poorly understood, greatly impeding improvement in this trait. In the present study, pot experiments were conducted to investigate the limiting factors for panicle photosynthesis at the anthesis stage in seven rice genotypes and to examine the temporal variations in photosynthesis during the grain filling stage in the Liangyou 287 genotype. At the anthesis stage, leaf and panicle photosynthesis was positively correlated with stomatal conductance and maximum carboxylation rate, which were in turn associated with hydraulic conductance and nitrogen content, respectively. Panicle hydraulic conductance was positively correlated with the area of bundle sheaths in the panicle neck. During grain filling, leaf and panicle photosynthesis remained constant at the early stage but dramatically decreased from 8 to 9 days after anthesis. The trends of variations in panicle photosynthesis were consistent with those in stomatal conductance but not with those in maximum carboxylation rate. At first, the maximum carboxylation rate and respiration rate in the panicle increased, through elevated panicle nitrogen content, but then drastically decreased, as a result of dehydration. The present study systematically investigated the limiting factors for panicle photosynthesis, which are vital for improving photosynthesis and crop yield.
Collapse
Affiliation(s)
- Qiangqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Tang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yong Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
38
|
Sakoda K, Taniyoshi K, Yamori W, Tanaka Y. Drought stress reduces crop carbon gain due to delayed photosynthetic induction under fluctuating light conditions. PHYSIOLOGIA PLANTARUM 2022; 174:e13603. [PMID: 34807462 DOI: 10.1111/ppl.13603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Drought stress is a major limiting factor for crop growth and yield. Water availability in the field can cyclically change between drought and rewatering conditions, depending on precipitation patterns. Concurrently, light intensity under field conditions can fluctuate, inducing dynamic photosynthesis and transpiration during the crop growth period. The present study aimed to characterize carbon gain and water use in fluctuating light under drought and rewatering conditions in two major crops, namely rice and soybean. We conducted gas exchange measurements under fluctuating light conditions with rice and soybean plants exposed to drought treatment (9-13 days) imposed by withholding water and subsequent rewatering treatment (8-9 days). Drought stress significantly reduced the maximum CO2 assimilation rate (A) in soybean but not in rice. Under drought conditions, A increased after a step increase in light and then gradually decreased in both crops, resulting in the significant reduction of steady-state A in rice and soybean. Moreover, drought stress delayed photosynthetic induction in both crops even when it had relatively small impact on maximum A. These results suggest that the drought effects on photosynthesis should be evaluated based on induction, maximum, and steady states. The delayed photosynthetic induction under drought owing to the reduced gas diffusional conductance via stomata resulted in a substantial loss of leaf carbon gain under fluctuating light conditions. Meanwhile, rewatering, after drought, completely recovered photosynthesis under fluctuating light in both crops. Therefore, the stability of photosynthetic induction can be a promising target to improve drought tolerance during crop breeding in the future.
Collapse
Affiliation(s)
- Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Kazuki Taniyoshi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo, Japan
| | - Yu Tanaka
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
39
|
Capelari ÉF, Dos Anjos L, Rodrigues NF, Sousa RMDJ, Silvera JAG, Margis R. Transcriptional profiling and physiological responses reveal new insights into drought tolerance in a semiarid adapted species, Anacardium occidentale. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1074-1085. [PMID: 34418258 DOI: 10.1111/plb.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
Water stress affects plant performance at various organisational levels, from morphological to molecular, with a drastic drop in crop yield. Integrative studies involving transcriptomics and physiological data in recognized tolerant species are appropriate strategies to identify and understand molecular and functional processes related to water deficit tolerance. The cashew tree (Anacardium occidentale) is a species naturally adapted to environments with low water availability associated with adverse conditions such as heat, high radiation and salinity. We used an integrative strategy, combining classical physiological measurements with high throughput RNA-seq to understand the main adaptive mechanisms of cashew to water deficit followed by recovery. Physiological analyses indicate that young cashew plants display typical isohydric behaviour. They first exhibit rapid stomatal closure, followed by CO2 assimilation, thus preserving the relative water content, membrane integrity and photosystem II activity. Differential expression was observed in 1733 genes from plant leaves exposed to water deficit stress for 26 days. Among them, 705 were upregulated and 1028 were downregulated. After rewatering, 1330 (76.7%) genes returned to their basal expression level. Transcriptional, combined with physiological data, reveal that cashew plants display high phenotypic plasticity and resilience to acute water deficit, and do not activate senescence pathways. A series of genes/pathways and processes involved with drought tolerance in cashew are evidenced, particularly in carbon metabolism, photosynthesis and chloroplast homeostasis.
Collapse
Affiliation(s)
- É F Capelari
- Programa de Pós Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - L Dos Anjos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CEP, Brazil
| | - N F Rodrigues
- Programa de Pós Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - R M de J Sousa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CEP, Brazil
| | - J A G Silvera
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CEP, Brazil
| | - R Margis
- Programa de Pós Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas (LGPP), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
40
|
Rosas T, Mencuccini M, Batlles C, Regalado Í, Saura‐Mas S, Sterck F, Martínez‐Vilalta J. Are leaf, stem and hydraulic traits good predictors of individual tree growth? Funct Ecol 2021. [DOI: 10.1111/1365-2435.13906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Teresa Rosas
- CREAF Bellaterra (Cerdanyola del Vallès) Catalonia Spain
| | - Maurizio Mencuccini
- CREAF Bellaterra (Cerdanyola del Vallès) Catalonia Spain
- ICREA Barcelona Spain
| | - Carles Batlles
- CREAF Bellaterra (Cerdanyola del Vallès) Catalonia Spain
| | | | - Sandra Saura‐Mas
- CREAF Bellaterra (Cerdanyola del Vallès) Catalonia Spain
- Universitat Autònoma de Barcelona Bellaterra (Cerdanyola del Vallès) Catalonia Spain
| | - Frank Sterck
- Forest Ecology and Forest Management Group Wageningen University and Research Centre Wageningen The Netherlands
| | - Jordi Martínez‐Vilalta
- CREAF Bellaterra (Cerdanyola del Vallès) Catalonia Spain
- Universitat Autònoma de Barcelona Bellaterra (Cerdanyola del Vallès) Catalonia Spain
| |
Collapse
|
41
|
Qin DW, Chen WJ, Zhong LX, Qin WM, Cao KF. Gas exchange and hydraulic function in seedlings of three basal angiosperm tree-species during water-withholding and re-watering. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
42
|
Lyu M, Giardina CP, Litton CM. Interannual variation in rainfall modulates temperature sensitivity of carbon allocation and flux in a tropical montane wet forest. GLOBAL CHANGE BIOLOGY 2021; 27:3824-3836. [PMID: 33934457 DOI: 10.1111/gcb.15664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Tropical forests exert a disproportionately large influence on terrestrial carbon (C) balance but projecting the effects of climate change on C cycling in tropical forests remains uncertain. Reducing this uncertainty requires improved quantification of the independent and interactive effects of variable and changing temperature and precipitation regimes on C inputs to, cycling within and loss from tropical forests. Here, we quantified aboveground litterfall and soil-surface CO2 efflux ("soil respiration"; FS ) in nine plots organized across a highly constrained 5.2°C mean annual temperature (MAT) gradient in tropical montane wet forest. We used five consecutive years of these measurements, during which annual rainfall (AR) steadily increased, in order to: (a) estimate total belowground C flux (TBCF); (b) examine how interannual variation in AR alters the apparent temperature dependency (Q10 ) of above- and belowground C fluxes; and (c) quantify stand-level C allocation responses to MAT and AR. Averaged across all years, FS , litterfall, and TBCF increased positively and linearly with MAT, which accounted for 49, 47, and 46% of flux rate variation, respectively. Rising AR lowered TBCF and FS , but increased litterfall, with patterns representing interacting responses to declining light. The Q10 of FS , litterfall, and TBCF all decreased with increasing AR, with peak sensitivity to MAT in the driest year and lowest sensitivity in the wettest. These findings support the conclusion that for this tropical montane wet forest, variations in light, water, and nutrient availability interact to strongly influence productivity (litterfall+TBCF), the sensitivity of above- and belowground C fluxes to rising MAT (Q10 of FS , litterfall, and TBCF), and C allocation patterns (TBCF:[litterfall+TBCF]).
Collapse
Affiliation(s)
- Maokui Lyu
- Ecology Postdoctoral Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Christian P Giardina
- Institute of Pacific Islands Forestry, Pacific Southwest Research Station, USDA Forest Service, Hilo, HI, USA
| | - Creighton M Litton
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
43
|
Skelton RP, Anderegg LDL, Diaz J, Kling MM, Papper P, Lamarque LJ, Delzon S, Dawson TE, Ackerly DD. Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks. Proc Natl Acad Sci U S A 2021; 118:e2008987118. [PMID: 33649205 PMCID: PMC7958251 DOI: 10.1073/pnas.2008987118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quantitative knowledge of xylem physical tolerance limits to dehydration is essential to understanding plant drought tolerance but is lacking in many long-vessel angiosperms. We examine the hypothesis that a fundamental association between sustained xylem water transport and downstream tissue function should select for xylem that avoids embolism in long-vessel trees by quantifying xylem capacity to withstand air entry of western North American oaks (Quercus spp.). Optical visualization showed that 50% of embolism occurs at water potentials below -2.7 MPa in all 19 species, and -6.6 MPa in the most resistant species. By mapping the evolution of xylem vulnerability to embolism onto a fossil-dated phylogeny of the western North American oaks, we found large differences between clades (sections) while closely related species within each clade vary little in their capacity to withstand air entry. Phylogenetic conservatism in xylem physical tolerance, together with a significant correlation between species distributions along rainfall gradients and their dehydration tolerance, suggests that closely related species occupy similar climatic niches and that species' geographic ranges may have shifted along aridity gradients in accordance with their physical tolerance. Such trends, coupled with evolutionary associations between capacity to withstand xylem embolism and other hydraulic-related traits, yield wide margins of safety against embolism in oaks from diverse habitats. Evolved responses of the vascular system to aridity support the embolism avoidance hypothesis and reveal the importance of quantifying plant capacity to withstand xylem embolism for understanding function and biogeography of some of the Northern Hemisphere's most ecologically and economically important plants.
Collapse
Affiliation(s)
- Robert P Skelton
- Department of Integrative Biology, University of California, Berkeley, CA 94720;
- Fynbos Node, South African Environmental Observation Network, Newlands 7735, Cape Town, South Africa
| | - Leander D L Anderegg
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93117
| | - Jessica Diaz
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Matthew M Kling
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Prahlad Papper
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Laurent J Lamarque
- Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
- Université de Bordeaux, INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), UMR BIOGECO, 33615 Pessac, France
| | - Sylvain Delzon
- Université de Bordeaux, INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement), UMR BIOGECO, 33615 Pessac, France
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - David D Ackerly
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| |
Collapse
|
44
|
Yao GQ, Li FP, Nie ZF, Bi MH, Jiang H, Liu XD, Wei Y, Fang XW. Ethylene, not ABA, is closely linked to the recovery of gas exchange after drought in four Caragana species. PLANT, CELL & ENVIRONMENT 2021; 44:399-411. [PMID: 33131059 DOI: 10.1111/pce.13934] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Drought is a cyclical phenomenon in natural environments. During dehydration, stomatal closure is mainly regulated by abscisic acid (ABA) dynamics that limit transpiration in seed plants, but following rehydration, the mechanism of gas exchange recovery is still not clear. In this study, leaf water potential (ψleaf ), stomatal conductance (gs ), leaf hydraulic conductance (Kleaf ), foliar ABA level, ethylene emission rate in response to dehydration and rehydration were investigated in four Caragana species with isohydric (Caragana spinosa and C. pruinosa) and anisohydric (C. intermedia and C. microphylla) traits. Two isohydric species with ABA-induced stomatal closure exhibited more sensitive gs and Kleaf to decreasing ψleaf than two anisohydric species which exhibited a switch from ABA to water potential-driven stomatal closure during dehydration. Following rehydration, the recovery of gas exchange was not associated with a decrease in ABA level but was strongly limited by the degradation of the ethylene emission rate in all species. Furthermore, two anisohydric species with low drought-induced ethylene production exhibited more rapid recovery in gas exchange upon rehydration. Our results indicated that ethylene is a key factor regulating the drought-recovery ability in terms of gas exchange, which may shape species adaptation to drought and potential species distribution.
Collapse
Affiliation(s)
- Guang-Qian Yao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng-Ping Li
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zheng-Fei Nie
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Min-Hui Bi
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hui Jiang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xu-Dong Liu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yang Wei
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
45
|
Peters JMR, Gauthey A, Lopez R, Carins-Murphy MR, Brodribb TJ, Choat B. Non-invasive imaging reveals convergence in root and stem vulnerability to cavitation across five tree species. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6623-6637. [PMID: 32822502 PMCID: PMC7586747 DOI: 10.1093/jxb/eraa381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/18/2020] [Indexed: 05/08/2023]
Abstract
Root vulnerability to cavitation is challenging to measure and under-represented in current datasets. This gap limits the precision of models used to predict plant responses to drought because roots comprise the critical interface between plant and soil. In this study, we measured vulnerability to drought-induced cavitation in woody roots and stems of five tree species (Acacia aneura, Cedrus deodara, Eucalyptus crebra, Eucalytus saligna, and Quercus palustris) with a wide range of xylem anatomies. X-ray microtomography was used to visualize the accumulation of xylem embolism in stems and roots of intact plants that were naturally dehydrated to varying levels of water stress. Vulnerability to cavitation, defined as the water potential causing a 50% loss of hydraulic function (P50), varied broadly among the species (-4.51 MPa to -11.93 MPa in stems and -3.13 MPa to -9.64 MPa in roots). The P50 of roots and stems was significantly related across species, with species that had more vulnerable stems also having more vulnerable roots. While there was strong convergence in root and stem vulnerability to cavitation, the P50 of roots was significantly higher than the P50 of stems in three species. However, the difference in root and stem vulnerability for these species was small; between 1% and 31% of stem P50. Thus, while some differences existed between organs, roots were not dramatically more vulnerable to embolism than stems, and the differences observed were less than those reported in previous studies. Further study is required to evaluate the vulnerability across root orders and to extend these conclusions to a greater number of species and xylem functional types.
Collapse
Affiliation(s)
- Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Oak Ridge National Laboratory, Climate Change Science Institute & Environmental Science Division, Oak Ridge, TN, USA
| | - Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Rosana Lopez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Departamento de Sistemas y Recursos Naturales. Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| | | | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
46
|
Deans RM, Brodribb TJ, Busch FA, Farquhar GD. Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations. NATURE PLANTS 2020; 6:1116-1125. [PMID: 32895529 DOI: 10.1038/s41477-020-00760-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/28/2020] [Indexed: 05/12/2023]
Abstract
Tight coordination in the photosynthetic, gas exchange and water supply capacities of leaves is a globally conserved trend across land plants. Strong selective constraints on leaf carbon gain create the opportunity to use quantitative optimization theory to understand the connected evolution of leaf photosynthesis and water relations. We developed an analytical optimization model that maximizes the long-term rate of leaf carbon gain, given the carbon costs in building and maintaining stomata, leaf hydraulics and osmotic pressure. Our model demonstrates that selection for optimal gain should drive coordination between key photosynthetic, gas exchange and water relations traits. It also provides predictions of adaptation to drought and the relative costs of key leaf functional traits. Our results show that optimization in terms of carbon gain, given the carbon costs of physiological traits, successfully unites leaf photosynthesis and water relations and provides a quantitative framework to consider leaf functional evolution and adaptation.
Collapse
Affiliation(s)
- Ross M Deans
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Florian A Busch
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Graham D Farquhar
- ARC Centre of Excellence in Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
47
|
Guo T, Tian C, Chen C, Duan Z, Zhu Q, Sun LZ. Growth and carbohydrate dynamic of perennial ryegrass seedlings during PEG-simulated drought and subsequent recovery. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:85-93. [PMID: 32535324 DOI: 10.1016/j.plaphy.2020.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Due to the increasing occurrence of drought events, drought recovery has become equally important as drought resistance for long-term growth and survival of plants. However, information regarding the mechanism that controls growth recovery of herbaceous perennials is not available. In this study, perennial ryegrass (Lolium perenne) was rewatered after eight-day exposure to three drought intensities simulated by polyethylene glycol-6000. The growth, nonstructural carbohydrates (NSC, i.e. sucrose, glucose, fructose and starch), shoot δ13C, and activities of enzymes for sucrose conversion were monitored for 24 days after rewatering, allowing investigation of the dynamic of NSCs and its relation with growth in the recovery phase. In response to drought, growth and NSC content decreased mainly in shoot rather than root, and the total dry matter was negatively correlated to shoot δ13C. After rewatering, the growth of drought-treated groups still lagged behind that of control (CK) group for more than 16 days, but it was no longer correlated to shoot δ13C, suggesting that the limited growth is caused by non-stomatal factors related to photosynthesis. On day 24 after rewatering, the final growth of drought-treated groups caught up or even exceeded that of CK group, and was accompanied by higher dry weight root to shoot ratio (R/S) and root NSC content, which may facilitate water and nutrient acquisition and emergency of new tillers, respectively. During drought and subsequent recovery, the variation of R/S and root NSC content mainly attributed to root acid invertase rather than leaf sucrose phosphate synthase activity.
Collapse
Affiliation(s)
- Tongtian Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Tian
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunyan Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaoyang Duan
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luan Zi Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
48
|
Affiliation(s)
- Timothy J. Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jennifer Powers
- Departments of Ecology, Evolution and Behavior and Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, Saint Paul, MN 55108, USA
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
49
|
Skelton R, Diaz J. Quantifying losses of plant hydraulic function: seeing the forest, the trees and the xylem. TREE PHYSIOLOGY 2020; 40:285-289. [PMID: 31972024 DOI: 10.1093/treephys/tpz141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Robert Skelton
- South African Environmental Observation Network, Fynbos Node, CBC Building, Rhodes Drive, Newlands, 7735, Cape Town, South Africa
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jessica Diaz
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
50
|
Smith‐Martin CM, Skelton RP, Johnson KM, Lucani C, Brodribb TJ. Lack of vulnerability segmentation among woody species in a diverse dry sclerophyll woodland community. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13519] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chris M. Smith‐Martin
- Department of Ecology, Evolution and Evolutionary Biology Columbia University New York NY USA
| | - Robert Paul Skelton
- South African Environmental Observation NetworkKirstenbosch Botanical Gardens Cape Town South Africa
| | - Kate M. Johnson
- School of Biological Sciences University of Tasmania Hobart TAS Australia
| | - Christopher Lucani
- School of Biological Sciences University of Tasmania Hobart TAS Australia
| | | |
Collapse
|