1
|
Jiang Y, Bradshaw JJ, Sharma R, Gan RZ. Multiscale Finite Element Modeling of Human Ear for Acoustic Wave Transmission Into Cochlea and Hair Cells Fatigue Failure. J Biomech Eng 2025; 147:041002. [PMID: 39790080 DOI: 10.1115/1.4067577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses and failures of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics. This study harnessed a multiscale FE model to investigate the mechanical behaviors of ear tissues in response to acoustic wave and developed a fatigue mechanical model to describe the outer hair cells (OHCs) failure. A three-dimensional (3D) multiscale FE model consisting of a macroscale model of the ear canal, middle ear, and three-chambered cochlea and a microscale OC model on a representative basilar membrane section, including the hair cells, membranes, and supporting cells, was established. Harmonic acoustic mode was used in the FE model for simulating various acoustic pressures and frequencies. The cochlear basilar membrane and the cochlear pressure induced by acoustic pressures were derived from the macroscale model and used as inputs for microscale OC model. The OC model identified the stress and strain concentrations in the reticular lamina (RL) at the root of stereocilia hair bundles and in the Deiter's cells at the connecting ends with OHCs, indicating the potential mechanical damage sites. OHCs were under cyclic loading and the alternating stress was quantified by the FE model. A fatigue mechanism for OHCs was established based on the modeling results and experimental data. This mechanism would be used for predicting fatigue failure and the resulting hearing loss.
Collapse
Affiliation(s)
- Yijie Jiang
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019
| | - John J Bradshaw
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019
- University of Oklahoma
| | - Roshan Sharma
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019
- University of Oklahoma
| | - Rong Z Gan
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019
| |
Collapse
|
2
|
Yi Y, Wu MY, Chen KT, Chen AH, Li LQ, Xiong Q, Wang XR, Lei WB, Xiong GX, Fang SB. LDHA-mediated glycolysis in stria vascularis endothelial cells regulates macrophages function through CX3CL1-CX3CR1 pathway in noise-induced oxidative stress. Cell Death Dis 2025; 16:65. [PMID: 39900910 PMCID: PMC11791080 DOI: 10.1038/s41419-025-07394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
According to the World Health Organization, more than 12% of the world's population suffers from noise-induced hearing loss (NIHL). Oxidative stress-mediated damage to the stria vascularis (SV) is one of the pathogenic mechanisms of NIHL. Recent studies indicate that glycolysis plays a critical role in endothelial cells (ECs)-related diseases. However, the specific role of glycolysis in dysfunction of SV-ECs remain largely unknown. In this study, we investigated the effects of glycolysis on SV-ECs in vitro and on the SV in vivo. Our previous research identified the glycolysis pathway as a potential mechanism underlying the SV-ECs injuries induced by oxidative stress. We further examined the expression levels of glycolytic genes in SV-ECs under H2O2 stimulation and in noise-exposed mice. We found that the gene and protein expression levels of glycolytic-related enzyme LDHA significantly decreased at early phase after oxidative stress injury both in vitro and in vivo, and exhibited anti-inflammatory effects on macrophages (Mφ). Moreover, we analyzed the differential secretomes of SV-ECs with and without inhibition of LDHA using LC-MS/MS technology, identifying CX3CL1 as a candidate mediator for cellular communication between SV-ECs and Mφ. We found that CX3CL1 secretion from SV-ECs was decreased following LDHA inhibition and exhibited anti-inflammatory effects on Mφ via the CX3CR1 pathway. Similarly, the pro-inflammatory effect of LDHA-overexpressing SV-ECs was attenuated following inhibition of CX3CL1. In conclusion, our study revealed that glycolysis-related LDHA was reduced in oxidative stress-induced SV-ECs, and that LDHA inhibition in SV-ECs elicited anti-inflammatory effects on Mφ, at least partially through the CX3CL1-CX3CR1 pathway. These findings suggest that LDHA represent a novel therapeutic strategy for the treatment of NIHL.
Collapse
Affiliation(s)
- Ying Yi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Min-Yu Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Kai-Tian Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - An-Hai Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Lin-Qiu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Qin Xiong
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Xian-Ren Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Wen-Bin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| | - Guan-Xia Xiong
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| | - Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
3
|
Liu D, Sai N, Zhou Y, Yu N, Jiang QQ, Sun W, Han WJ, Guo W. CD38 Coordinates with NF-κB to Promote Cochlear Inflammation in Noise-Induced Hearing Loss: the Protective Effect of Apigenin. Mol Neurobiol 2024:10.1007/s12035-024-04675-7. [PMID: 39725836 DOI: 10.1007/s12035-024-04675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Noise exposure is one of the most common causes of sensorineural hearing loss. Although many studies considered inflammation to be a major contributor to noise-induced hearing loss, the process of cochlear inflammation is still unclear. Studies have found that activation of the NF-κB signaling pathway results in the accumulation of macrophages in the inner ear plays an important role in hair cell damage. In this study, tandem mass tag (TMT) technique was used to analyze the changes in basilar membrane proteome expression before and after acoustic injury. After noise exposure, the nicotinamide adenine dinucleotide (NAD) metabolism level was decreased, and the NF-κB signaling pathway was activated. The expression of CD38, the main NAD hydrolase in mammals, may directly lead to inflammation onset. Then, anakinra, an IL-1 receptor blocker, and apigenin, a CD38 inhibitor, were administered to animals to protect against noise-induced hearing loss. Our results showed that anakinra had little influence on the hearing threshold shift, while apigenin significantly reduce the threshold shift of hearing by inhibiting the expression of NF-κB and CD38 can be a promising target for protecting against noise-induced hearing loss.
Collapse
Affiliation(s)
- Da Liu
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Na Sai
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Ying Zhou
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Ning Yu
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Qing-Qing Jiang
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, the State University of New York at Buffalo, Buffalo, NY, USA
| | - Wei-Ju Han
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China.
- National Key Laboratory of Hearing and Balance Science, Beijing, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.
- Key Lab of Hearing Science, Ministry of Education, Beijing, China.
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China.
| | - Weiwei Guo
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100853, China.
- National Key Laboratory of Hearing and Balance Science, Beijing, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.
- Key Lab of Hearing Science, Ministry of Education, Beijing, China.
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China.
| |
Collapse
|
4
|
Yaşar NG, Yiğman Z, Billur D, Tufan A, Gündüz B, Kamişli GIŞ, Karamert R. Comparison of IL-1 Receptor Antagonist and Dexamethasone in Noise-Induced Hearing Loss: Animal Model. Otolaryngol Head Neck Surg 2024. [PMID: 39709545 DOI: 10.1002/ohn.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE This study aimed to attenuate cochlear inflammation following noise-induced hearing loss by targeting IL-1. We evaluated the effectiveness of IL-1 inhibition through auditory and histological assessments in an animal model. STUDY DESIGN Experimental animal study. SETTING Gazi University Faculty of Medicine, Ankara, Turkey. METHODS Twenty-four rats were randomly assigned into 3 groups: Anakinra, dexamethasone, and control groups. All animals were exposed to broadband noise (110 dB SPL, 8 hours), auditory brainstem response (ABR) tests were conducted before noise exposure, immediately after, and on Day 14. Anakinra, dexamethasone, and saline were administered intraperitoneally, cochlear tissues were harvested for histological and immunohistochemical evaluation. RESULTS On Day 14, ABR thresholds in Anakinra group were better than the control group across all frequencies, with a significant difference observed at 8 kHz (P = .036). The mean number of OHC was significantly higher in Anakinra group compared to the control group (P < .05). The mean number of IHC in the Anakinra group was greater than in the dexamethasone group. IL-1β immunopositivity in the stria vascularis and spiral ganglia was significantly higher in Anakinra group compared to dexamethasone group (P = .022 and P = .013, respectively). TNF-α immunopositivity in the stria vascularis and spiral ganglia was significantly greater in control group than in Anakinra group (P = .037 and P = .01, respectively). CONCLUSION The comparable efficacy of Anakinra and dexamethasone in both histological and auditory assessments suggests that Anakinra may serve as a promising therapeutic option for noise-induced hearing loss.
Collapse
Affiliation(s)
- Nagihan G Yaşar
- Department of Otolaryngology-Head and Neck Surgery, Ankara City Hospital, Ankara, Turkey
| | - Zeynep Yiğman
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
- Neuroscience and Neurotechnology Center of Excellence NOROM, Gazi University, Ankara, Turkey
| | - Deniz Billur
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Abdurrahman Tufan
- Department of Internal Medicine, Division of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Bülent Gündüz
- Department of Audiology, Gazi University Faculty of Health Sciences, Ankara, Turkey
| | - Gurbet I Ş Kamişli
- Department of Audiology, Gazi University Faculty of Health Sciences, Ankara, Turkey
| | - Recep Karamert
- Department of Otorhinolaryngology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Zhang J, Guo T, Chen Y, Wang X, Wu L, Xie H. Investigating the causal relationship between inflammation and multiple types of hearing loss: a multi-omics approach combining Mendelian randomization and molecular docking. Front Neurol 2024; 15:1422241. [PMID: 39677857 PMCID: PMC11638537 DOI: 10.3389/fneur.2024.1422241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Background Hearing loss affects over 10% of the global population. Inflammation is a key factor in hearing loss caused by noise, infection, and aging, damaging various hearing-related tissues (e.g., spiral ligament, stria vascularis). Mendelian randomization (MR) can help identify potential causal relationships and therapeutic targets. Methods We conducted MR analyses on 91 inflammatory proteins (n = 14,824) and genome-wide association study results for various hearing loss types in European ancestry populations, including sensorineural hearing loss (SNHL; ncases = 15,952, ncontrols = 196,592), sudden idiopathic hearing loss (SIHL; ncases = 1,491, ncontrols = 196,592), and other hearing loss (OHL; ncases = 4,157, ncontrols = 196,592). Additionally, hearing loss with difficulty in hearing (ncases = 14,654, ncontrols = 474,839) served as a validation set. To predict inflammatory protein-enriched pathways and tissues, we performed enrichment analysis, functional annotation, and tissue analyses using "OmicsNet2.0" and "FUMA" platforms. We also combined "CoreMine" and molecular docking to explore potential drugs targeting inflammatory proteins and investigate binding efficacy. Results CCL19 was identified as a common risk factor for SNHL and OHL, which was validated in the hearing loss with difficulty in hearing dataset. Tissue analysis revealed that SIHL-related inflammatory proteins were enriched in the amygdala. Multi-omics research indicated associations between inflammatory proteins and neurodegenerative diseases. Molecular docking studies suggested that Chuanxiong Rhizoma and Uncariae Ramulus Cumuncis are potential drugs for targeting CCL19. Conclusion This study identified CCL19 as a common risk factor for various types of hearing loss through MR analysis, highlighting the crucial role of inflammatory proteins in hearing loss. The enrichment of related inflammatory proteins in the amygdala and their association with neurodegenerative diseases provide new insights into the mechanisms of hearing loss.
Collapse
Affiliation(s)
- Jingqi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaxin Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Lijiao Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Mennink LM, Albakri LBM, Aalbers MW, Dijk PV, van Dijk JMC. Cross-sectional screening for inflammation in tinnitus with near-normal hearing. Hear Res 2024; 453:109124. [PMID: 39332207 DOI: 10.1016/j.heares.2024.109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Tinnitus is the perception of sound without an external stimulus. Recently, inflammation has been implicated in the pathophysiology of tinnitus. In tinnitus animal models, cytokine levels are increased throughout the whole auditory pathway, and microglia and astrocytes are activated. However, only a few human studies on inflammation in tinnitus were conducted, which generally did not account for confounders such as hearing loss, anxiety and depression. The current study therefore aimed to evaluate the association between inflammation and tinnitus specifically in participants with (near-)normal hearing and without signs of anxiety or depression. In this cross-sectional study, fifty tinnitus participants and fifty healthy controls completed a tinnitus questionnaire and underwent audiometric testing. Complete blood count measures were determined in blood plasma, as well as cytokine concentrations by using the enzyme-linked immunosorbent assay (ELISA) technique. Platelet count and cytokine concentrations of IL-10 and IFN-γ were lower in participants with tinnitus compared to controls, and male sex, lower MCV, lower platelet count, and lower IL-10 and IFN-γ concentrations were significant predictors of tinnitus presence. The current study shows that inflammatory parameters are altered in tinnitus patients after exclusion of important confounders such as hearing loss, anxiety, depression, and inflammatory diseases.
Collapse
Affiliation(s)
- Lilian M Mennink
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Otorhinolaryngology / Head & Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Lina B M Albakri
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marlien W Aalbers
- Department of Neurosurgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Pim van Dijk
- Department of Otorhinolaryngology / Head & Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Samara P, Athanasopoulos M, Markatos N, Athanasopoulos I. From sound waves to molecular and cellular mechanisms: Understanding noise‑induced hearing loss and pioneering preventive approaches (Review). MEDICINE INTERNATIONAL 2024; 4:60. [PMID: 39114262 PMCID: PMC11304036 DOI: 10.3892/mi.2024.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Noise-induced hearing loss (NIHL) is a significant and urgent global public health concern, arising from prolonged exposure to elevated levels of noise. This auditory impairment harms delicate inner ear structures, particularly the essential hair cells transmitting auditory signals to the brain. Recognized by the World Health Organization as a major contributor to worldwide hearing loss, NIHL requires a comprehensive examination of its molecular and cellular mechanisms. Animal models emerge as indispensable tools for unraveling these intricacies, allowing researchers to simulate and study the impact of noise exposure on auditory structures, shedding light on the interplay of oxidative stress, inflammation and immune responses-crucial factors in NIHL progression. The present review focuses on elucidating the molecular mechanisms of NIHL, with a specific emphasis on findings derived from animal models, alongside the exploration of thorough preventive strategies, including protective measures and probing potential interventions. Understanding the molecular underpinnings not only provides insight into targeted treatment approaches, but also unlocks pathways for exploring and implementing preventive actions. This approach not only deepens the current comprehension of NIHL, but also has the potential to influence the shaping of public health policies, offering a nuanced perspective on this prevalent auditory disorder.
Collapse
Affiliation(s)
- Pinelopi Samara
- Children's Oncology Unit ‘Marianna V. Vardinoyannis-ELPIDA’, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | | | - Nikolaos Markatos
- Otolaryngology-Head and Neck Surgery, Athens Pediatric Center, 15125 Athens, Greece
| | | |
Collapse
|
8
|
Zhang L, Liao H, Li Z, Yuan J. Individual and combined effects of noise exposure and diabetes mellitus on hearing. Noise Health 2024; 26:449-460. [PMID: 39787545 PMCID: PMC11813245 DOI: 10.4103/nah.nah_71_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 10/11/2024] [Indexed: 01/12/2025] Open
Abstract
Hearing loss (HL) is a prevalent health concern with a significant impact on society and the economy. Several factors contribute to the development of hearing impairment, with noise overexposure being the primary culprit. Diabetes mellitus (DM) is also a factor in hearing impairment, and studies have shown a positive correlation between DM and HL; however, the exact causal relationship and pathogenesis remain contentious. Given the ubiquity of noise exposure and the high incidence of DM, individuals may develop diabetes while being chronically exposed to noise. It is particularly important to explore the independent and combined effects of noise and DM on hearing, which can help healthcare professionals understand the potential risks posed by these factors and inspire prevention strategies and potential interventions for hearing impairment. This review summarizes the current research advancements in noise-induced HL and diabetes-related HL and discusses their characteristics and potential mechanisms. Furthermore, this review focuses on the combined effects of noise exposure and DM on hearing, setting the stage for further research and development of intervention strategies to address HL.
Collapse
Affiliation(s)
- Lan Zhang
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
| | - Hui Liao
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
| | - Zongnan Li
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
- School of Public Health, Guangdong Medical University, Dongguan 523000, Guangdong, China
| | - Jianhui Yuan
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
- School of Public Health, Guangdong Medical University, Dongguan 523000, Guangdong, China
| |
Collapse
|
9
|
Tanaka LS, de Moraes Marchiori LL, de Almeida Soares Ciquinato D, de Castro Teixeira D, de Moraes Marchiori G, Branco BHM, Poli-Frederico RC. Inflammatory Biomarkers and Tinnitus in Older Adults. Noise Health 2024; 26:535-542. [PMID: 39787555 PMCID: PMC11813249 DOI: 10.4103/nah.nah_39_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/27/2024] [Accepted: 09/24/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Tinnitus refers to a common disorder affecting older adults frequently. This condition can disturb mental health and psychological well-being and contribute to cognitive decline. Despite recent advances in research, its pathophysiology remains incompletely understood. Therefore, this study aimed to investigate the sensation of tinnitus, its consequences on the quality of life of older adults, and its correlation with cytokine levels. METHODS AND MATERIAL This cross-sectional study included a sample of 103 independent older adults. Information regarding clinical history, tinnitus, and hearing loss was obtained through interviews. Assessment of tinnitus intensity and resulting impairments was conducted using Visual Analogue Scale (VAS) and Tinnitus Handicap Index (THI), respectively. Subjects underwent audiological evaluation and were measured for inflammatory markers. Statistical analyses included chi-square, Mann-Whitney, and Kruskal-Wallis tests and calculation of the effect size (Φ). RESULTS The condition of older adults with tinnitus (51.5%) was associated with hearing loss and previous noise exposure. No differences were observed in the cytokines between groups with and without tinnitus (P > 0.05), whereas a difference was found in the interleukin-10 (IL-10) of the male group (P = 0.016; r = 0.69). In those with tinnitus, VAS had a median and (interquartile range) of 5 (2-7), and the values were 21 (10-38) for THI. In addition, VAS and minimum masking level exhibited a significant correlation with IL-6 (P = 0.018; rs = 0.335) and IL-2 (P = 0.035; rs = 0.299), respectively. Furthermore, the groups with intense and mild VAS presented different levels of tumour necrosis factor alpha (TNF-α) (P = 0.041; E2R = 0.12). CONCLUSION The results reveal an association between tinnitus and hearing loss and previous noise exposure. Moreover, increased sound-masking levels and VAS correlated with IL-2 and IL-6, respectively. TNF-α levels varied between the mild and intense VAS groups.
Collapse
Affiliation(s)
- Licia Sayuri Tanaka
- Associate Postgraduation Program UEL/UNOPAR, Curitiba, Paraná, Brazil
- GEFFEND Group/Unicesumar, Maringá, Brazil
| | - Luciana Lozza de Moraes Marchiori
- GEFFEND Group/Unicesumar, Maringá, Brazil
- Interdisciplinary Health Promotion Intervention Laboratory (LIIPS), Unicesumar University, Maringá, Paraná, Brazil
- Postgraduation Program in Health Promotion, Unicesumar, Maringá, Paraná, Brazil
| | | | | | - Glória de Moraes Marchiori
- GEFFEND Group/Unicesumar, Maringá, Brazil
- Interdisciplinary Health Promotion Intervention Laboratory (LIIPS), Unicesumar University, Maringá, Paraná, Brazil
- Scholarship Undergraduate Research, Unicesumar, Maringá, Paraná, Brazil
| | - Braulio Henrique Magnani Branco
- GEFFEND Group/Unicesumar, Maringá, Brazil
- Interdisciplinary Health Promotion Intervention Laboratory (LIIPS), Unicesumar University, Maringá, Paraná, Brazil
- Postgraduation Program in Health Promotion, Unicesumar, Maringá, Paraná, Brazil
| | | |
Collapse
|
10
|
Kurabi A, Pak K, Lee EJ, Ryan AF. Combinatorial protection of cochlear hair cells: not too little but not too much. Front Cell Neurosci 2024; 18:1458720. [PMID: 39355176 PMCID: PMC11442228 DOI: 10.3389/fncel.2024.1458720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Background A number of drugs are toxic to the cochlear sensory cells known as hair cells (HCs), resulting in hearing loss. Treatment with survival-promoting growth factors, antioxidants, and inhibitors of cell death pathways or proteinases have been shown to reduce HC damage in in vivo and/or in vitro animal models. Conversely, translation to humans has often been disappointing. This may be due to the complexity of intracellular damage processes. We hypothesized that combining treatments targeting different cellular processes would be more effective. Methods Using an in vitro model of gentamicin ototoxicity for murine cochlear hair cells, we screened all 56 possible combinations of inhibitors targeting five different cell damage mechanisms, plus the activator of one cell survival pathway, each of which have been shown to be singly effective in preventing HC loss in experimental studies. A high dose of gentamicin (200 μM) was used over three days in culture. All compounds were added at a dosage below that required for significant protection in the assay, and only this single dose was then employed. This was done so that we could more easily detect interactive, as opposed to additive, effects. Results Increasing protection of hair cells was observed as combinations of compounds were increased from two to four factors, although not all combinations were equally protective. The optimal combination of four compounds consisted of an anti-oxidant, an apoptosis inhibitor, an autophagy inhibitor and a protective growth factor. Increasing the number of factors to five or six resulted in decreased protection. Conclusion The results support the hypothesis that targeting multiple cellular damage or survival pathways provides more an effective hair cell protection approach. The results help to identify critical interactions among the cellular processes that operate in gentamicin ototoxicity. They also suggest that inhibiting too many biological processes impairs functions critical to HC survival, resulting in decreased protection.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Otolaryngology, University of California San Diego, La Jolla, CA, United States
| | - Kwang Pak
- Department of Otolaryngology, University of California San Diego, La Jolla, CA, United States
| | - Eun Jung Lee
- Department of Otolaryngology, University of California San Diego, La Jolla, CA, United States
- Department of Otorhinolaryngology-Head & Neck Surgery, Jeonbuk National University School of Medicine, Jeonju, Republic of Korea
| | - Allen F. Ryan
- Department of Otolaryngology, University of California San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
- San Diego Veterans Administration Healthcare System, La Jolla, CA, United States
| |
Collapse
|
11
|
Chen F, Jiang Q, Xu B, Huang Y, Xu K, Xu X, Yu D, Chen Y, Wang X. Ototoxicity-Alleviating and Cytoprotective Allomelanin Nanomedicine for Efficient Sensorineural Hearing Loss Treatment. ACS NANO 2024. [PMID: 39259947 DOI: 10.1021/acsnano.4c10610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a significant clinical challenge, predominantly attributed to oxidative stress-related mechanisms. In this work, we report an innovative antioxidant strategy for mitigating SNHL, utilizing synthetically engineered allomelanin nanoparticles (AMNPs). Empirical evidence elucidates AMNPs' profound capability in free radical neutralization, substantiated by a significant decrement in reactive oxygen species (ROS) levels within HEI-OC1 auditory cells exposure to cisplatin or hydrogen peroxide (H2O2). Comparative analyses reveal that AMNPs afford protection against cisplatin-induced and noise-induced auditory impairments, mirroring the effect of dexamethasone (DEX), a standard pharmacological treatment for acute SNHL. AMNPs exhibit notable cytoprotective properties for auditory hair cells (HCs), effectively preventing ototoxicity from cisplatin or H2O2 exposure, as confirmed by both in vitro assays and cultured organ of Corti studies. Further in vivo research corroborates AMNPs' ability to reverse auditory brainstem response (ABR) threshold shifts resulting from acoustic injury, concurrently reducing HCs loss, ribbon synapse depletion, and spiral ganglion neuron degeneration. The therapeutic benefits of AMNPs are attributed to mitigating oxidative stress and inflammation within the cochlea, with transcriptome analysis indicating downregulated gene expression related to these processes post-AMNPs treatment. The pronounced antioxidative and anti-inflammatory effects of AMNPs position them as a promising alternative to DEX for SNHL treatment.
Collapse
Affiliation(s)
- Fengqiu Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Qingjun Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Xiaoju Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| |
Collapse
|
12
|
Foster T, Lim P, Jones M, Wagle SR, Kovacevic B, Ionescu CM, Wong EYM, Mooranian A, Al-Salami H. Polymer-Based Nanoparticles for Inner Ear Targeted Trans Differentiation Gene Therapy. ChemMedChem 2024; 19:e202400038. [PMID: 38818625 DOI: 10.1002/cmdc.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hearing loss is a significant disability that often goes under recognised, largely due to poor identification, prevention, and treatment. Steps are being made to amend these pitfalls in the investigation of hearing loss, however, the development of a cure to reverse advanced forms remains distant. This review details some current advances in the treatment of hearing loss, with a particular focus on genetic-based nanotechnology and how it may provide a useful avenue for further research. This review presents a broad background on the pathophysiology of hearing loss and some current interventions. We also highlight some potential genes that may be useful in the amelioration of hearing loss. Pathways of cellular differentiation from stem or supporting cell to functional hair cell are covered in detail, as this mechanism represents a key means of regenerating these cell types. Overall, we believe that polymer-based nanotechnology coupled with novel excipients represents a useful area of further research in the treatment of hearing loss, although further studies in this area are required.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, 6000, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
13
|
Ding D, Manohar S, Kador PF, Salvi R. Multifunctional redox modulator prevents blast-induced loss of cochlear and vestibular hair cells and auditory spiral ganglion neurons. Sci Rep 2024; 14:15296. [PMID: 38961203 PMCID: PMC11222375 DOI: 10.1038/s41598-024-66406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Blast wave exposure, a leading cause of hearing loss and balance dysfunction among military personnel, arises primarily from direct mechanical damage to the mechanosensory hair cells and supporting structures or indirectly through excessive oxidative stress. We previously reported that HK-2, an orally active, multifunctional redox modulator (MFRM), was highly effective in reducing both hearing loss and hair cells loss in rats exposed to a moderate intensity workday noise that likely damages the cochlea primarily from oxidative stress versus direct mechanical trauma. To determine if HK-2 could also protect cochlear and vestibular cells from damage caused primarily from direct blast-induced mechanical trauma versus oxidative stress, we exposed rats to six blasts of 186 dB peak SPL. The rats were divided into four groups: (B) blast alone, (BEP) blast plus earplugs, (BHK-2) blast plus HK-2 and (BEPHK-2) blast plus earplugs plus HK-2. HK-2 was orally administered at 50 mg/kg/d from 7-days before to 30-day after the blast exposure. Cochlear and vestibular tissues were harvested 60-d post-exposure and evaluated for loss of outer hair cells (OHC), inner hair cells (IHC), auditory nerve fibers (ANF), spiral ganglion neurons (SGN) and vestibular hair cells in the saccule, utricle and semicircular canals. In the untreated blast-exposed group (B), massive losses occurred to OHC, IHC, ANF, SGN and only the vestibular hair cells in the striola region of the saccule. In contrast, rats treated with HK-2 (BHK-2) sustained significantly less OHC (67%) and IHC (57%) loss compared to the B group. OHC and IHC losses were smallest in the BEPHK-2 group, but not significantly different from the BEP group indicating lack of protective synergy between EP and HK-2. There was no loss of ANF, SGN or saccular hair cells in the BHK-2, BEP and BEPHK-2 groups. Thus, HK-2 not only significantly reduced OHC and IHC damage, but completely prevented loss of ANF, SGN and saccule hair cells. The powerful protective effects of this oral MFRM make HK-2 an extremely promising candidate for human clinical trials.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | | | | | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
14
|
Lutze RD, Ingersoll MA, Thotam A, Joseph A, Fernandes J, Teitz T. ERK1/2 Inhibition via the Oral Administration of Tizaterkib Alleviates Noise-Induced Hearing Loss While Tempering down the Immune Response. Int J Mol Sci 2024; 25:6305. [PMID: 38928015 PMCID: PMC11204379 DOI: 10.3390/ijms25126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Noise-induced hearing loss (NIHL) is a major cause of hearing impairment and is linked to dementia and mental health conditions, yet no FDA-approved drugs exist to prevent it. Downregulating the mitogen-activated protein kinase (MAPK) cellular pathway has emerged as a promising approach to attenuate NIHL, but the molecular targets and the mechanism of protection are not fully understood. Here, we tested specifically the role of the kinases ERK1/2 in noise otoprotection using a newly developed, highly specific ERK1/2 inhibitor, tizaterkib, in preclinical animal models. Tizaterkib is currently being tested in phase 1 clinical trials for cancer treatment and has high oral bioavailability and low predicted systemic toxicity in mice and humans. In this study, we performed dose-response measurements of tizaterkib's efficacy against permanent NIHL in adult FVB/NJ mice, and its minimum effective dose (0.5 mg/kg/bw), therapeutic index (>50), and window of opportunity (<48 h) were determined. The drug, administered orally twice daily for 3 days, 24 h after 2 h of 100 dB or 106 dB SPL noise exposure, at a dose equivalent to what is prescribed currently for humans in clinical trials, conferred an average protection of 20-25 dB SPL in both female and male mice. The drug shielded mice from the noise-induced synaptic damage which occurs following loud noise exposure. Equally interesting, tizaterkib was shown to decrease the number of CD45- and CD68-positive immune cells in the mouse cochlea following noise exposure. This study suggests that repurposing tizaterkib and the ERK1/2 kinases' inhibition could be a promising strategy for the treatment of NIHL.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Alena Thotam
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Anjali Joseph
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Joshua Fernandes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
- The Scintillon Research Institute, San Diego, CA 92121, USA
| |
Collapse
|
15
|
Gröschel M, Manchev T, Fröhlich F, Voigt S, Ernst A, Basta D. Early Loss of Spiral Ganglion Neurons in the Auditory System after Noise Trauma. Audiol Neurootol 2024; 29:472-479. [PMID: 38749408 PMCID: PMC11651671 DOI: 10.1159/000539359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
INTRODUCTION Noise-induced hearing loss is one of the most frequent recognized occupational diseases. The time course of the involved pathologies is still under investigation. Several studies have demonstrated an acute damage of the sensory tissue, but only few experiments investigated the degeneration of (type I) spiral ganglion neurons (SGNs), representing the primary neurons in the auditory system. The aim of the present study was to investigate the time course of SGN degeneration within a 7-day period after traumatic noise exposure starting immediately after trauma. METHODS Young adult normal hearing mice were noise exposed for 3 h with a broadband noise (5-20 kHz) at 115 dB SPL. Auditory threshold shift was measured by auditory brainstem recordings, and SGN densities were analyzed at different time points during the first week after acoustic trauma. RESULTS Significant reduction of SGN densities was detected and is accompanied by a significant hearing loss. Degeneration starts within hours after the applied trauma, further progressing within days post-exposure. DISCUSSION Early neurodegeneration in the auditory periphery seems to be induced by direct overstimulation of the auditory nerve fibers. SGN loss is supposed to be a result of inflammatory responses and neural deprivation, leading to permanent hearing loss and auditory processing deficits.
Collapse
Affiliation(s)
- Moritz Gröschel
- Department of Otorhinolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Tanyo Manchev
- Department of Otorhinolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Felix Fröhlich
- Department of Otorhinolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Stefan Voigt
- Department of Otorhinolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Arne Ernst
- Department of Otorhinolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Dietmar Basta
- Department of Otorhinolaryngology, Unfallkrankenhaus Berlin, Berlin, Germany
| |
Collapse
|
16
|
Nitta Y, Kurioka T, Mogi S, Sano H, Yamashita T. Suppression of the TGF-β signaling exacerbates degeneration of auditory neurons in kanamycin-induced ototoxicity in mice. Sci Rep 2024; 14:10910. [PMID: 38740884 PMCID: PMC11091189 DOI: 10.1038/s41598-024-61630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Transforming growth factor-β (TGF-β) signaling plays a significant role in multiple biological processes, including inflammation, immunity, and cell death. However, its specific impact on the cochlea remains unclear. In this study, we aimed to investigate the effects of TGF-β signaling suppression on auditory function and cochlear pathology in mice with kanamycin-induced ototoxicity. Kanamycin and furosemide (KM-FS) were systemically administered to 8-week-old C57/BL6 mice, followed by immediate topical application of a TGF-β receptor inhibitor (TGF-βRI) onto the round window membrane. Results showed significant TGF-β receptor upregulation in spiral ganglion neurons (SGNs) after KM-FA ototoxicity, whereas expression levels in the TGF-βRI treated group remained unchanged. Interestingly, despite no significant change in cochlear TGF-β expression after KM-FS ototoxicity, TGF-βRI treatment resulted in a significant decrease in TGF-β signaling. Regarding auditory function, TGF-βRI treatment offered no therapeutic effects on hearing thresholds and hair cell survival following KM-FS ototoxicity. However, SGN loss and macrophage infiltration were significantly increased with TGF-βRI treatment. These results imply that inhibition of TGF-β signaling after KM-FS ototoxicity promotes cochlear inflammation and SGN degeneration.
Collapse
Affiliation(s)
- Yoshihiro Nitta
- Department of Otorhinolaryngology and Head and Neck Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Takaomi Kurioka
- Department of Otorhinolaryngology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Sachiyo Mogi
- Department of Otorhinolaryngology and Head and Neck Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hajime Sano
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology and Head and Neck Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
17
|
Lin YC, Shih CP, Lin YY, Lin HC, Kuo CY, Chen HK, Chen HC, Wang CH. C-Phycocyanin Attenuates Noise-Induced Cochlear Synaptopathy via the Inhibition of Oxidative Stress and Intercellular Adhesion Molecule-1 in the Cochlea. Int J Mol Sci 2024; 25:5154. [PMID: 38791192 PMCID: PMC11120661 DOI: 10.3390/ijms25105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 μg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.
Collapse
MESH Headings
- Animals
- Oxidative Stress/drug effects
- Guinea Pigs
- Phycocyanin/pharmacology
- Phycocyanin/therapeutic use
- Cochlea/metabolism
- Cochlea/drug effects
- Cochlea/pathology
- Synapses/drug effects
- Synapses/metabolism
- Noise/adverse effects
- Intercellular Adhesion Molecule-1/metabolism
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Reactive Oxygen Species/metabolism
- Male
- Spiral Ganglion/drug effects
- Spiral Ganglion/metabolism
- Spiral Ganglion/pathology
- Hydrogen Peroxide/metabolism
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Antioxidants/pharmacology
- Cell Line
- Hearing Loss, Hidden
Collapse
Affiliation(s)
- Yi-Chun Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Yuan-Yung Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Hung-Che Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (H.-C.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
- Division of Otolaryngology, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan 33052, Taiwan
| |
Collapse
|
18
|
Sailor-Longsworth E, Lutze RD, Ingersoll MA, Kelmann RG, Ly K, Currier D, Chen T, Zuo J, Teitz T. Oseltamivir (Tamiflu), a Commonly Prescribed Antiviral Drug, Mitigates Hearing Loss in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592815. [PMID: 38765999 PMCID: PMC11100672 DOI: 10.1101/2024.05.06.592815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hearing loss affects up to 10% of all people worldwide, but currently there is only one FDA-approved drug for its prevention in a subgroup of cisplatin-treated pediatric patients. Here, we performed an unbiased screen of 1,300 FDA-approved drugs for protection against cisplatin-induced cell death in an inner ear cell line, and identified oseltamivir phosphate (brand name Tamiflu), a common influenza antiviral drug, as a top candidate. Oseltamivir phosphate was found to be otoprotective by oral delivery in multiple established cisplatin and noise exposure mouse models. The drug conferred permanent hearing protection of 15-25 dB SPL for both female and male mice. Oseltamivir treatment reduced in mice outer hair cells death after cisplatin treatment and mitigated cochlear synaptopathy after noise exposure. A potential binding protein, ERK1/2, associated with inflammation, was shown to be activated with cisplatin treatment and reduced by oseltamivir cotreatment in cochlear explants. Importantly, the number of infiltrating immune cells to the cochleae in mice post noise exposure, were significantly reduced with oseltamivir treatment, suggesting an anti-inflammatory mechanism of action. Our results support oseltamivir, a widespread drug for influenza with low side effects, as a promising otoprotective therapeutic candidate in both cisplatin chemotherapy and traumatic noise exposure.
Collapse
Affiliation(s)
- Emma Sailor-Longsworth
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Kristina Ly
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
19
|
McBurney MI, Tintle NL, Westra J, Harris WS, Curhan SE. Cross-sectional analysis of plasma n-3 fatty acid levels and self-reported hearing difficulty in the UK Biobank Cohort. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102654. [PMID: 39504918 DOI: 10.1016/j.plefa.2024.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Disabling hearing loss affects ∼430 million people globally. Fish consumption and long-chain n-3 polyunsaturated fatty acid (PUFA) intake were inversely associated with risk of hearing loss, but the association of plasma n-3 PUFAs and hearing loss is unclear. OBJECTIVE To examine the associations between plasma n-3 PUFA fractions (as % of total fatty acids), i.e., DHA % and Other n-3 PUFA % (defined as total n-3 PUFA minus DHA), with self-reported hearing difficulty in a population-based cohort in the UK. METHODS Our study includes 175,177 UK Biobank participants (40-69y, 54 % women) with data on plasma n-3 PUFA and hearing status. Baseline plasma PUFA levels were analyzed by nuclear magnetic resonance, and self-reported hearing difficulty was obtained by questionnaire between 2007 and 2010. Logistic regression was used to estimate age-adjusted odds ratios (ORs), multivariable-adjusted odds ratios (MVORs) by adjusting for 14 demographic, behavioral, biomarker and health-related potential confounders, and 95 % confidence intervals (CIs). RESULTS Hearing difficulty was reported by 26.7 % of participants. Higher plasma n-3 PUFA levels were independently associated with lower odds of self-reported hearing difficulty. The prevalence of hearing difficulty rose across age strata (40-49y, 15.8 %; 50-59y, 24.9 % and 60+y, 34.4 %; p < 0.0001) and overall was higher in males (33.2 %) than females (21.3 %). Compared with those in the lowest quintile of plasma DHA % or Other n-3 PUFA %, the MVOR (95 % CI) for hearing difficulty was 0.88 (0.85, 0.92) in highest quintile of plasma DHA %, and 0.91 (0.87, 0.94) in the highest quintile of Other n-3 PUFA %. The associations with DHA % did not differ by age or sex (p-for-interaction 0.83 and 0.58, respectively). MVORs for DHA % and Other n-3 PUFA % were similar among the 44,486 individuals with data on noise exposure at work. CONCLUSIONS Higher plasma n-3 PUFA levels were independently associated with lower odds of hearing difficulty.
Collapse
Affiliation(s)
- Michael I McBurney
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Nutritional Sciences & Human Health, University of Guelph, Guelph, ON; Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA, USA.
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Population Health Nursing Science, University of Illinois, Chicago, IL, USA
| | - Jason Westra
- Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Sharon E Curhan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Wang TC, Yu YC, Hsu A, Lin JY, Tsou YA, Liu CS, Chuang KJ, Pan WC, Yang CA, Hu SL, Ho CY, Chen TL, Lin CD, Pai PY, Chang TY. Impact of occupational noise exposure on the hearing level in hospital staffs: a longitudinal study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24129-24138. [PMID: 38436861 DOI: 10.1007/s11356-024-32747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The study aimed to evaluate the impact of occupational noise on hearing loss among healthcare workers using audiometry. A longitudinal study was conducted with a six-month follow-up period in a hospital with 21 participants, divided into high-noise-exposure (HNE) and low-noise-exposure (LNE) groups. Mean noise levels were higher in the HNE group (70.4 ± 4.5 dBA), and hearing loss was measured using pure-tone audiometry at baseline and follow-up. The HNE group had significantly higher mean threshold levels at frequencies of 0.25 kHz, 0.5 kHz, 4.0 kHz, and an average of 0.5, 1, 2, and 4 kHz (all p-values < 0.05) after the follow-up period. After adjusting for confounding factors, the HNE group had significantly higher hearing loss levels at 0.25 kHz, 0.5 kHz, and average frequencies of 0.5, 1, 2, and 4 kHz compared to the LNE group at the second measurement. Occupational noise levels above 65 dBA over six months were found to cause significant threshold changes at frequencies of 0.25 kHz, 0.5 kHz, and an average of 0.5-4.0 kHz. This study highlights the risk of noise-induced hearing loss among healthcare workers and emphasizes the importance of implementing effective hearing conservation programs in the workplace. Regular monitoring and assessment of noise levels and hearing ability, along with proper use of personal protective equipment, are crucial steps in mitigating the impact of occupational noise exposure on the hearing health of healthcare workers.
Collapse
Affiliation(s)
- Tang-Chuan Wang
- Department of Public Health, College of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
- Department of Otolaryngology - Head and Neck Surgery, China Medical University Hsinchu Hospital, No. 199, Section 1Xinglong Road, Zhubei City, Hsinchu County, 302056, Taiwan
- School of Medicine, College of Medicine, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
- Master Program for Biomedical Engineering, College of Biomedical Engineering, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - You-Cheng Yu
- Department of Otolaryngology - Head and Neck Surgery, China Medical University Hsinchu Hospital, No. 199, Section 1Xinglong Road, Zhubei City, Hsinchu County, 302056, Taiwan
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, College of Biomedical Engineering, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Alan Hsu
- Department of Otolaryngology - Head and Neck Surgery, China Medical University Hsinchu Hospital, No. 199, Section 1Xinglong Road, Zhubei City, Hsinchu County, 302056, Taiwan
| | - Jia-Yi Lin
- Department of Public Health, College of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
- Department of Occupational Safety and Health, College of Public Health, China Medical University, No. 100, Section 1Jingmao Road, Beitun District, Taichung City, 406040, Taiwan
| | - Yung-An Tsou
- School of Medicine, College of Medicine, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Chiu-Shong Liu
- School of Medicine, College of Medicine, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist., Taipei City, 110, Taiwan
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St. Beitou Dist., Taipei City, 112304, Taiwan
| | - Chin-An Yang
- School of Medicine, College of Medicine, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Sung-Lin Hu
- School of Medicine, College of Medicine, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Chien-Yi Ho
- Department of Biomedical Imaging and Radiological Science, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
- Division of Family Medicine, Physical Examination Center, Department of Medical Research, China Medical University Hsinchu Hospital, No. 199, Section 1Xinglong Road, Zhubei City, Hsinchu County, 302, Taiwan
| | - Tzu-Liang Chen
- School of Medicine, College of Medicine, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Chia-Der Lin
- School of Medicine, College of Medicine, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Pei-Ying Pai
- School of Medicine, College of Medicine, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung, 406040, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, No. 100, Section 1Jingmao Road, Beitun District, Taichung City, 406040, Taiwan.
| |
Collapse
|
21
|
Cosentino A, Agafonova A, Modafferi S, Trovato Salinaro A, Scuto M, Maiolino L, Fritsch T, Calabrese EJ, Lupo G, Anfuso CD, Calabrese V. Blood-Labyrinth Barrier in Health and Diseases: Effect of Hormetic Nutrients. Antioxid Redox Signal 2024; 40:542-563. [PMID: 37565276 DOI: 10.1089/ars.2023.0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Significance: The stria vascularis, located in the inner ear, consists of three layers, one of which is the blood-labyrinth barrier (BLB). It is formed by endothelial cells, sealed together to prevent the passage of toxic substances from the blood to the inner ear, by pericytes and perivascular-resident macrophage-like melanocyte. Recent Advances: There are various causes that lead to hearing loss, and among these are noise-induced and autoimmune hearing loss, ear disorders related to ototoxic medication, Ménière's disease, and age-related hearing loss. For all of these, major therapeutic interventions include drug-loaded nanoparticles, via intratympanic or intracochlear delivery. Critical Issues: Since many pathologies associated with hearing loss are characterized by a weakening of the BLB, in this review, the molecular mechanisms underlying the response to damage of BLB cellular components have been discussed. In addition, insight into the role of hormetic nutrients against hearing loss pathology is proposed. Future Directions: BLB cellular components of neurovascular cochlear unit play important physiological roles, owing to their impermeable function against all ototoxic substances that can induce damage. Studies are needed to investigate the cross talk occurring between these cellular components to exploit their possible role as novel targets for therapeutic interventions that may unravel future path based on the use of hormetic nutrients. Antioxid. Redox Signal. 40, 542-563.
Collapse
Affiliation(s)
- Alessia Cosentino
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Aleksandra Agafonova
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Sergio Modafferi
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Angela Trovato Salinaro
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Maria Scuto
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | | | - Edward J Calabrese
- Department of Environmental Health, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gabriella Lupo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Carmelina Daniela Anfuso
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| | - Vittorio Calabrese
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine; Surgical and Advanced Technologies "G. F. Ingrassia"; University of Catania, Catania, Italy
| |
Collapse
|
22
|
Birru B, Veit JGS, Arrigali EM, Van Tine J, Barrett-Catton E, Tonnerre Z, Diaz P, Serban MA. Hyaluronic acid-ibuprofen conjugation: a novel ototherapeutic approach protecting inner ear cells from inflammation-mediated damage. Front Pharmacol 2024; 15:1355283. [PMID: 38425644 PMCID: PMC10902153 DOI: 10.3389/fphar.2024.1355283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
There is a substantial need of effective drugs for the treatment of hearing loss, which affects nearly 500 million individuals globally. Hearing loss can be the result of intense or prolonged noise exposure, ototoxic drugs, infections, and trauma, which trigger inflammatory signaling cascades that lead to irreversible damage to cochlear structures. To address this, we developed and characterized a series of covalent conjugates of anti-inflammatory drugs to hyaluronic acid (HA), for potential use as topical ototherapeutics. These conjugates were tested in in vitro assays designed to mirror physiological processes typically observed with acoustic trauma. Intense noise exposure leads to macrophage recruitment to the cochlea and subsequent inflammatory damage to sensory cells. We therefore first tested our conjugates' ability to reduce the release of inflammatory cytokines in macrophages. This anti-inflammatory effect on macrophages also translated to increased cochlear cell viability. In our initial screening, one conjugate, ibuprofen-HA, demonstrated significantly higher anti-inflammatory potential than its counterparts. Subsequent cytokine release profiling of ibuprofen-HA further confirmed its ability to reduce a wider range of inflammatory markers, to a greater extent than its equivalent unconjugated drug. The conjugate's potential as a topical therapeutic was then assessed in previously developed tympanic and round window membrane tissue permeation models. As expected, our data indicate that the conjugate has limited tympanic membrane model permeability; however, it readily permeated the round window membrane model and to a greater extent than the unconjugated drug. Interestingly, our data also revealed that ibuprofen-HA was well tolerated in cellular and tissue cytocompatibility assays, whereas the unconjugated drug displayed significant cytotoxicity at equivalent concentrations. Moreover, our data highlighted the importance of chemical conjugation of ibuprofen to HA; the conjugate had improved anti-inflammatory effects, significantly reduced cytotoxicity, and is more suitable for therapeutic formulation. Overall, this work suggests that ibuprofen-HA could be a promising safe and effective topical ototherapeutic for inflammation-mediated cochlear damage.
Collapse
Affiliation(s)
- Bhaskar Birru
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Joachim G. S. Veit
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT, United States
| | - Elizabeth M. Arrigali
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Jack Van Tine
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Emma Barrett-Catton
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Zachary Tonnerre
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT, United States
| | - Monica A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT, United States
| |
Collapse
|
23
|
Piterà P, Cremascoli R, Alito A, Bianchi L, Galli F, Verme F, Fontana JM, Bigoni M, Priano L, Mauro A, Capodaglio P. Whole-Body Cryostimulation as an Adjunctive Treatment for Neurophysiologic Tinnitus and Associated Disorders: Preliminary Evidence from a Case Study. J Clin Med 2024; 13:993. [PMID: 38398306 PMCID: PMC10888542 DOI: 10.3390/jcm13040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Tinnitus, which is often associated with reduced quality of life, depression, and sleep disturbances, lacks a definitive treatment targeting its pathophysiological mechanism. Inflammatory markers like TNF-α have been linked to tinnitus, thereby underlining the necessity for innovative therapies. This case study investigates the potential benefits of a multi-approach rehabilitation intervention involving whole-body cryostimulation (WBC) for a 47-year-old male suffering from chronic neurophysiologic tinnitus, who had underwent various unsuccessful treatments from 2005. METHODS the patient underwent a personalized, multidisciplinary rehabilitation intervention covering diet, pharmacotherapy, physiotherapy and physical activity classes tailored to the patient's needs and capacities, repetitive transcranial magnetic stimulation (rTMS), and whole-body cryostimulation (WBC). RESULTS The adjunctive WBC intervention resulted in a significant progressive improvement in tinnitus severity (tinnitus handicap inventory Δ% = -46.3%, VAS tinnitus score Δ% = -40%). Additional positive outcomes were noted in sleep quality (PSQI Δ% = -41.67%), emotional wellbeing (BDI Δ% = -41.2%), and quality of life (SF-36, WHO-5 Δ% = +16.5). CONCLUSIONS This study supports the existing literature suggesting the potential of WBC as an adjunct in a multi-approach intervention in ameliorating tinnitus severity and tinnitus-associated disorders. However, randomized controlled trials in larger populations, which specifically consider WBC's effects on tinnitus, are necessary to confirm these findings and to explore the mechanisms that underlie the observed improvements.
Collapse
Affiliation(s)
- Paolo Piterà
- Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, IRCCS Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy; (F.V.); (J.M.F.); (P.C.)
| | - Riccardo Cremascoli
- Unit of Neurophysiology, IRCCS Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy; (R.C.); (L.B.); (F.G.); (M.B.); (L.P.); (A.M.)
| | - Angelo Alito
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98122 Messina, Italy;
| | - Laura Bianchi
- Unit of Neurophysiology, IRCCS Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy; (R.C.); (L.B.); (F.G.); (M.B.); (L.P.); (A.M.)
| | - Federica Galli
- Unit of Neurophysiology, IRCCS Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy; (R.C.); (L.B.); (F.G.); (M.B.); (L.P.); (A.M.)
| | - Federica Verme
- Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, IRCCS Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy; (F.V.); (J.M.F.); (P.C.)
| | - Jacopo Maria Fontana
- Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, IRCCS Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy; (F.V.); (J.M.F.); (P.C.)
| | - Matteo Bigoni
- Unit of Neurophysiology, IRCCS Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy; (R.C.); (L.B.); (F.G.); (M.B.); (L.P.); (A.M.)
| | - Lorenzo Priano
- Unit of Neurophysiology, IRCCS Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy; (R.C.); (L.B.); (F.G.); (M.B.); (L.P.); (A.M.)
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10124 Torino, Italy
| | - Alessandro Mauro
- Unit of Neurophysiology, IRCCS Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy; (R.C.); (L.B.); (F.G.); (M.B.); (L.P.); (A.M.)
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10124 Torino, Italy
| | - Paolo Capodaglio
- Research Laboratory in Biomechanics, Rehabilitation and Ergonomics, IRCCS Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy; (F.V.); (J.M.F.); (P.C.)
- Department of Surgical Sciences, University of Torino, Physical Medicine and Rehabilitation, 10121 Torino, Italy
| |
Collapse
|
24
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
25
|
Rincon Sabatino S, Sangaletti R, Griswold A, Dietrich WD, King CS, Rajguru SM. Transcriptional response to mild therapeutic hypothermia in noise-induced cochlear injury. Front Neurosci 2024; 17:1296475. [PMID: 38298897 PMCID: PMC10827921 DOI: 10.3389/fnins.2023.1296475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Prevention or treatment for acoustic injury has been met with many translational challenges, resulting in the absence of FDA-approved interventions. Localized hypothermia following noise exposure mitigates acute cochlear injury and may serve as a potential avenue for therapeutic approaches. However, the mechanisms by which hypothermia results in therapeutic improvements are poorly understood. Methods This study performs the transcriptomic analysis of cochleae from juvenile rats that experienced noise-induced hearing loss (NIHL) followed by hypothermia or control normothermia treatment. Results Differential gene expression results from RNA sequencing at 24 h post-exposure to noise suggest that NIHL alone results in increased inflammatory and immune defense responses, involving complement activation and cytokine-mediated signaling. Hypothermia treatment post-noise, in turn, may mitigate the acute inflammatory response. Discussion This study provides a framework for future research to optimize hypothermic intervention for ameliorating hearing loss and suggests additional pathways that could be targeted for NIHL therapeutic intervention.
Collapse
Affiliation(s)
| | - Rachele Sangaletti
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Anthony Griswold
- Department of Human Genetics, University of Miami, Coral Gables, FL, United States
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
| | | | - Suhrud M. Rajguru
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
- RestorEar Devices LLC, Bozeman, MT, United States
| |
Collapse
|
26
|
Liu YC, Xu K. Macrophage-related immune responses in inner ear: a potential therapeutic target for sensorineural hearing loss. Front Neurosci 2024; 17:1339134. [PMID: 38274500 PMCID: PMC10808290 DOI: 10.3389/fnins.2023.1339134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Hearing loss is the most common sensory disorder in human beings. Cochlear sensory cells are the basis of hearing. Cochlear sensory cells suffer from various acute or chronic injuries, such as excessive sound stimulation, ototoxic drugs, and age-related degeneration. In response to these stresses, the cochlea develops an immune response. In recent years, studies have shown that the immune response of the inner ear has been regarded as one of the important pathological mechanisms of inner ear injury. Therapeutic interventions for inflammatory responses can effectively alleviate different types of inner ear injury. As the main immune cells in the inner ear, macrophages are involved in the process of inner ear injury caused by various exogenous factors. However, its specific role in the immune response of the inner ear is still unclear. This review focuses on discusses the dynamic changes of macrophages during different types of inner ear injury, and clarifies the potential role of macrophage-related immune response in inner ear injury.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Yang L, Gutierrez DE, Guthrie OW. Systemic health effects of noise exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:21-54. [PMID: 37957800 DOI: 10.1080/10937404.2023.2280837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Noise, any unwanted sound, is pervasive and impacts large populations worldwide. Investigators suggested that noise exposure not only induces auditory damage but also produces various organ system dysfunctions. Although previous reviews primarily focused on noise-induced cardiovascular and cerebral dysfunctions, this narrow focus has unintentionally led the research community to disregard the importance of other vital organs. Indeed, limited studies revealed that noise exposure impacts other organs including the liver, kidneys, pancreas, lung, and gastrointestinal tract. Therefore, the aim of this review was to examine the effects of noise on both the extensively studied organs, the brain and heart, but also determine noise impact on other vital organs. The goal was to illustrate a comprehensive understanding of the systemic effects of noise. These systemic effects may guide future clinical research and epidemiological endpoints, emphasizing the importance of considering noise exposure history in diagnosing various systemic diseases.
Collapse
Affiliation(s)
- Li Yang
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Daniel E Gutierrez
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
28
|
Ionescu CM, Jones MA, Wagle SR, Kovacevic B, Foster T, Mikov M, Mooranian A, Al-Salami H. Bile Acid Application in Cell-Targeting for Molecular Receptors in Relation to Hearing: A Comprehensive Review. Curr Drug Targets 2024; 25:158-170. [PMID: 38192136 DOI: 10.2174/0113894501278292231223035733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Bile acids play important roles in the human body, and changes in their pool can be used as markers for various liver pathologies. In addition to their functional effects in modulating inflammatory responses and cellular survivability, the unconjugated or conjugated, secondary, or primary nature of bile acids accounts for their various ligand effects. The common hydrophilic bile acids have been used successfully as local treatment to resolve drug-induced cell damage or to ameliorate hearing loss. From various literature references, bile acids show concentration and tissue-dependent effects. Some hydrophobic bile acids act as ligands modulating vitamin D receptors, muscarinic receptors, and calcium-activated potassium channels, important proteins in the inner ear system. Currently, there are limited resources investigating the therapeutic effects of bile acid on hearing loss and little to no information on detecting bile acids in the remote ear system, let alone baseline bile acid levels and their prevalence in healthy and disease conditions. This review presents both hydrophilic and hydrophobic human bile acids and their tissue-specific effects in modulating cellular integrity, thus considering the possible effects and extended therapeutic applicability of bile acids to the inner ear tissue.
Collapse
Affiliation(s)
- Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Melissa A Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Susbin R Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth 6009, Western Australia, Australia
| |
Collapse
|
29
|
Weaver DF. Thirty Risk Factors for Alzheimer's Disease Unified by a Common Neuroimmune-Neuroinflammation Mechanism. Brain Sci 2023; 14:41. [PMID: 38248256 PMCID: PMC10813027 DOI: 10.3390/brainsci14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
One of the major obstacles confronting the formulation of a mechanistic understanding for Alzheimer's disease (AD) is its immense complexity-a complexity that traverses the full structural and phenomenological spectrum, including molecular, macromolecular, cellular, neurological and behavioural processes. This complexity is reflected by the equally complex diversity of risk factors associated with AD. However, more than merely mirroring disease complexity, risk factors also provide fundamental insights into the aetiology and pathogenesis of AD as a neurodegenerative disorder since they are central to disease initiation and subsequent propagation. Based on a systematic literature assessment, this review identified 30 risk factors for AD and then extended the analysis to further identify neuroinflammation as a unifying mechanism present in all 30 risk factors. Although other mechanisms (e.g., vasculopathy, proteopathy) were present in multiple risk factors, dysfunction of the neuroimmune-neuroinflammation axis was uniquely central to all 30 identified risk factors. Though the nature of the neuroinflammatory involvement varied, the activation of microglia and the release of pro-inflammatory cytokines were a common pathway shared by all risk factors. This observation provides further evidence for the importance of immunopathic mechanisms in the aetiopathogenesis of AD.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Departments of Medicine, Chemistry, Pharmaceutical Sciences, University of Toronto, Toronto, ON M5T 0S8, Canada
| |
Collapse
|
30
|
Seicol BJ, Guo Z, Garrity K, Xie R. Potential uses of auditory nerve stimulation to modulate immune responses in the inner ear and auditory brainstem. Front Integr Neurosci 2023; 17:1294525. [PMID: 38162822 PMCID: PMC10755874 DOI: 10.3389/fnint.2023.1294525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Bioelectronic medicine uses electrical stimulation of the nervous system to improve health outcomes throughout the body primarily by regulating immune responses. This concept, however, has yet to be applied systematically to the auditory system. There is growing interest in how cochlear damage and associated neuroinflammation may contribute to hearing loss. In conjunction with recent findings, we propose here a new perspective, which could be applied alongside advancing technologies, to use auditory nerve (AN) stimulation to modulate immune responses in hearing health disorders and following surgeries for auditory implants. In this article we will: (1) review the mechanisms of inflammation in the auditory system in relation to various forms of hearing loss, (2) explore nerve stimulation to reduce inflammation throughout the body and how similar neural-immune circuits likely exist in the auditory system (3) summarize current methods for stimulating the auditory system, particularly the AN, and (4) propose future directions to use bioelectronic medicine to ameliorate harmful immune responses in the inner ear and auditory brainstem to treat refractory conditions. We will illustrate how current knowledge from bioelectronic medicine can be applied to AN stimulation to resolve inflammation associated with implantation and disease. Further, we suggest the necessary steps to get discoveries in this emerging field from bench to bedside. Our vision is a future for AN stimulation that includes additional protocols as well as advances in devices to target and engage neural-immune circuitry for therapeutic benefits.
Collapse
Affiliation(s)
- Benjamin J. Seicol
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Zixu Guo
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Katy Garrity
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Ruili Xie
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
31
|
Tan WJT, Vlajkovic SM. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int J Mol Sci 2023; 24:16545. [PMID: 38003734 PMCID: PMC10671929 DOI: 10.3390/ijms242216545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its clinical use is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and retinal toxicity. Cisplatin-induced ototoxicity manifests as irreversible, bilateral, high-frequency sensorineural hearing loss in 40-60% of adults and in up to 60% of children. Hearing loss can lead to social isolation, depression, and cognitive decline in adults, and speech and language developmental delays in children. Cisplatin causes hair cell death by forming DNA adducts, mitochondrial dysfunction, oxidative stress, and inflammation, culminating in programmed cell death by apoptosis, necroptosis, pyroptosis, or ferroptosis. Contemporary medical interventions for cisplatin ototoxicity are limited to prosthetic devices, such as hearing aids, but these have significant limitations because the cochlea remains damaged. Recently, the U.S. Food and Drug Administration (FDA) approved the first therapy, sodium thiosulfate, to prevent cisplatin-induced hearing loss in pediatric patients with localized, non-metastatic solid tumors. Other pharmacological treatments for cisplatin ototoxicity are in various stages of preclinical and clinical development. This narrative review aims to highlight the molecular mechanisms involved in cisplatin-induced ototoxicity, focusing on cochlear inflammation, and shed light on potential antioxidant and anti-inflammatory therapeutic interventions to prevent or mitigate the ototoxic effects of cisplatin. We conducted a comprehensive literature search (Google Scholar, PubMed) focusing on publications in the last five years.
Collapse
Affiliation(s)
- Winston J. T. Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Srdjan M. Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
32
|
Lutze RD, Ingersoll MA, Thotam A, Joseph A, Fernandes J, Teitz T. ERK1/2 Inhibition Alleviates Noise-Induced Hearing Loss While Tempering Down the Immune Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563007. [PMID: 37905140 PMCID: PMC10614960 DOI: 10.1101/2023.10.18.563007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Noise-induced hearing loss (NIHL) is a major cause of hearing impairment, yet no FDA-approved drugs exist to prevent it. Targeting the mitogen activated protein kinase (MAPK) cellular pathway has emerged as a promising approach to attenuate NIHL. Tizaterkib is an orally bioavailable, highly specific ERK1/2 inhibitor, currently in Phase-1 anticancer clinical trials. Here, we tested tizaterkib's efficacy against permanent NIHL in mice at doses equivalent to what humans are currently prescribed in clinical trials. The drug given orally 24 hours after noise exposure, protected an average of 20-25 dB SPL in three frequencies, in female and male mice, had a therapeutic window >50, and did not confer additional protection to KSR1 genetic knockout mice, showing the drug works through the MAPK pathway. Tizaterkib shielded from noise-induced cochlear synaptopathy, and a 3-day, twice daily, treatment with the drug was the optimal determined regimen. Importantly, tizaterkib was shown to decrease the number of CD45 and CD68 positive immune cells in the cochlea following noise exposure, which could be part of the protective mechanism of MAPK inhibition.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Alena Thotam
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Anjali Joseph
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Joshua Fernandes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
33
|
贾 玉, 屈 永, 许 夏, 王 册, 郭 明. [The role of TLR4/NF-κB signaling pathway in sleep deprivation induced Meniere's disease]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2023; 37:790-795. [PMID: 37828881 PMCID: PMC10803234 DOI: 10.13201/j.issn.2096-7993.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Indexed: 10/14/2023]
Abstract
Objective:By detecting the levels of proteins in the Toll-like receptor-4/nuclear factor-κB (TLR4/NF-κB) signaling pathway and downstream proinflammatory cytokines in peripheral blood of patients with Meniere's disease (MD), Pittsburgh Sleep Quality Index (PSQI) scores were collected to investigate the correlation between sleep disorders and MD and the role of TLR4/NF-κB signaling pathway in mediating sleep disorders inducing MD. Methods:Thirty-two MD patients and 20 family members of patients without middle ear and inner ear related diseases were selected. Basic data, PSQI and fasting peripheral blood of all subjects were collected. Enzyme linked immunosorbent assay.The levels of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), monocyte chemokine-1(MCP-1), Toll-like receptor 4(TLR4) and nuclear factor-κB(NF-κB) in peripheral blood were detected by ELISA, and the data were statistically analyzed. Results:①PSQI score of MD group was higher than that of normal control group, and the difference was statistically significant(P<0.01); The scores of every factors of PSQI in MD group were higher than those in normal control group, and the scores of factors 2, 4 and 6 were significantly different from those in normal control group. ②In the MD group, there were 18 patients with sleep disorders, with a prevalence rate of 56.25%, including 6 males with a prevalence rate of 50.00% and 12 females with a prevalence rate of 60.00%. ③The levels of five test indexes in MD group, sleep disorder group and non-sleep disorder group were higher than those in control group, and the levels of TLR4 and NF-κB in MD group were significantly different from those in control group(P<0.05). The levels of IL-1β, TNF-α, TLR4 and NF-κB in sleep disorder group were significantly different from those in control group(P<0.05). The levels of five test indexes in non-sleep disorder group were not statistically significant compared with those in control group. The levels of five test indexes in the MD sleep disorder group were higher than those in the MD group and the non-sleep disorder group, with no statistical significance. The levels of five test indexes in MD group were higher than those in non-sleep disorder group, with no statistical significance(P>0.05). Conclusion:①Sleep disorders may be one of the important predisposing factors of some MD, and the effects of sleep disorders on MD are different between the sexes. ②Sleep disorders may activate TLR4/NF-κB signaling pathway to induce MD. The selection of TLR4/NF-κB signaling pathway related proteins and downstream pro-inflammatory factor inhibitors to intervene MD may provide a new idea for protecting the hearing balance function of MD.
Collapse
Affiliation(s)
- 玉其 贾
- 河北省胸科医院耳鼻咽喉科(石家庄,050041)Department of Otolaryngology, Hebei Province Chest Hospital, Shijiazhuang, 050041, China
| | - 永涛 屈
- 河北省人民医院耳鼻咽喉科Department of Otolaryngology, Hebei General Hospital
| | - 夏 许
- 河北省人民医院耳鼻咽喉科Department of Otolaryngology, Hebei General Hospital
| | - 册 王
- 河北省人民医院耳鼻咽喉科Department of Otolaryngology, Hebei General Hospital
| | - 明丽 郭
- 河北省人民医院耳鼻咽喉科Department of Otolaryngology, Hebei General Hospital
| |
Collapse
|
34
|
Di Stadio A, De Luca P, Koohi N, Kaski D, Ralli M, Giesemann A, Hartung HP, Altieri M, Messineo D, Warnecke A, Frohman T, Frohman EM. Neuroinflammatory disorders of the brain and inner ear: a systematic review of auditory function in patients with migraine, multiple sclerosis, and neurodegeneration to support the idea of an innovative 'window of discovery'. Front Neurol 2023; 14:1204132. [PMID: 37662038 PMCID: PMC10471191 DOI: 10.3389/fneur.2023.1204132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Background Hearing can be impaired in many neurological conditions and can even represent a forme fruste of specific disorders. Auditory function can be measured by either subjective or objective tests. Objective tests are more useful in identifying which auditory pathway (superior or inferior) is most affected by disease. The inner ear's perilymphatic fluid communicates with the cerebrospinal fluid (CSF) via the cochlear aqueduct representing a window from which pathological changes in the contents of the CSF due to brain inflammation could, therefore, spread to and cause inflammation in the inner ear, damaging inner hair cells and leading to hearing impairment identifiable on tests of auditory function. Methods A systematic review of the literature was performed, searching for papers with case-control studies that analyzed the hearing and migraine function in patients with neuro-inflammatory, neurodegenerative disorders. With data extracted from these papers, the risk of patients with neurological distortion product otoacoustic emission (DPOAE) was then calculated. Results Patients with neurological disorders (headache, Parkinson's disease, and multiple sclerosis) had a higher risk of having peripheral auditory deficits when compared to healthy individuals. Conclusion Existing data lend credence to the hypothesis that inflammatory mediators transmitted via fluid exchange across this communication window, thereby represents a key pathobiological mechanism capable of culminating in hearing disturbances associated with neuroimmunological and neuroinflammatory disorders of the nervous system.
Collapse
Affiliation(s)
- Arianna Di Stadio
- GF Ingrassia Department, University of Catania, Catania, Italy
- IRCCS Santa Lucia, Rome, Italy
| | - Pietro De Luca
- Head and Neck Department, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Nehzat Koohi
- The UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Diego Kaski
- The UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Massimo Ralli
- Department of Sense Organs, University Sapienza, Rome, Italy
| | - Anja Giesemann
- Department of Interventional Neuroradiologie, Hannover Medical School, Hannover, Germany
| | - Hans-Peter Hartung
- Klinik für Neurologie UKD Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Marta Altieri
- Department of Neurology, University Sapienza, Rome, Italy
| | - Daniela Messineo
- Department of Radiology and Pathology, University Sapienza, Rome, Italy
| | - Athanasia Warnecke
- Department of Otolaryngology-Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Teresa Frohman
- Distinguished Senior Fellows (Sabbatical), Laboratory of Neuroimmunology of Professor Lawrence Steinman, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Elliot M. Frohman
- Distinguished Senior Fellows (Sabbatical), Laboratory of Neuroimmunology of Professor Lawrence Steinman, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
35
|
Jindal DA, Leier HC, Salazar G, Foden AJ, Seitz EA, Wilkov AJ, Coutinho-Budd JC, Broihier HT. Early Draper-mediated glial refinement of neuropil architecture and synapse number in the Drosophila antennal lobe. Front Cell Neurosci 2023; 17:1166199. [PMID: 37333889 PMCID: PMC10272751 DOI: 10.3389/fncel.2023.1166199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Glial phagocytic activity refines connectivity, though molecular mechanisms regulating this exquisitely sensitive process are incompletely defined. We developed the Drosophila antennal lobe as a model for identifying molecular mechanisms underlying glial refinement of neural circuits in the absence of injury. Antennal lobe organization is stereotyped and characterized by individual glomeruli comprised of unique olfactory receptor neuronal (ORN) populations. The antennal lobe interacts extensively with two glial subtypes: ensheathing glia wrap individual glomeruli, while astrocytes ramify considerably within them. Phagocytic roles for glia in the uninjured antennal lobe are largely unknown. Thus, we tested whether Draper regulates ORN terminal arbor size, shape, or presynaptic content in two representative glomeruli: VC1 and VM7. We find that glial Draper limits the size of individual glomeruli and restrains their presynaptic content. Moreover, glial refinement is apparent in young adults, a period of rapid terminal arbor and synapse growth, indicating that synapse addition and elimination occur simultaneously. Draper has been shown to be expressed in ensheathing glia; unexpectedly, we find it expressed at high levels in late pupal antennal lobe astrocytes. Surprisingly, Draper plays differential roles in ensheathing glia and astrocytes in VC1 and VM7. In VC1, ensheathing glial Draper plays a more significant role in shaping glomerular size and presynaptic content; while in VM7, astrocytic Draper plays the larger role. Together, these data indicate that astrocytes and ensheathing glia employ Draper to refine circuitry in the antennal lobe before the terminal arbors reach their mature form and argue for local heterogeneity of neuron-glia interactions.
Collapse
Affiliation(s)
- Darren A. Jindal
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Hans C. Leier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Gabriela Salazar
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Alexander J. Foden
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elizabeth A. Seitz
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Abigail J. Wilkov
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jaeda C. Coutinho-Budd
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Heather T. Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
36
|
Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434:108783. [PMID: 37167889 DOI: 10.1016/j.heares.2023.108783] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand.
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Otolaryngology - Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
37
|
Gill NB, Dowker-Key PD, Hubbard K, Voy BH, Whelan J, Hedrick M, Bettaieb A. Ginsenoside Rc from Panax Ginseng Ameliorates Palmitate-Induced UB/OC-2 Cochlear Cell Injury. Int J Mol Sci 2023; 24:7345. [PMID: 37108509 PMCID: PMC10139021 DOI: 10.3390/ijms24087345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
By 2050, at least 700 million people will require hearing therapy while 2.5 billion are projected to suffer from hearing loss. Sensorineural hearing loss (SNHL) arises from the inability of the inner ear to convert fluid waves into neural electric signals because of injury to cochlear hair cells that has resulted in their death. In addition, systemic chronic inflammation implicated in other pathologies may exacerbate cell death leading to SNHL. Phytochemicals have emerged as a possible solution because of the growing evidence of their anti-inflammatory, antioxidant, and anti-apoptotic properties. Ginseng and its bioactive molecules, ginsenosides, exhibit effects that suppress pro-inflammatory signaling and protect against apoptosis. In the current study, we investigated the effects of ginsenoside Rc (G-Rc) on UB/OC-2 primary murine sensory hair cell survival in response to palmitate-induced injury. G-Rc promoted UB/OC-2 cell survival and cell cycle progression. Additionally, G-Rc enhanced the differentiation of UB/OC-2 cells into functional sensory hair cells and alleviated palmitate-induced inflammation, endoplasmic reticulum stress, and apoptosis. The current study offers novel insights into the effects of G-Rc as a potential adjuvant for SNHL and warrants further studies elucidating the molecular mechanisms.
Collapse
Affiliation(s)
- Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
| | - Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
| | - Katelin Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
| | - Brynn H. Voy
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
| | - Jay Whelan
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
| | - Mark Hedrick
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN 37996-0240, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
38
|
Identification and Characterization of TMEM119-Positive Cells in the Postnatal and Adult Murine Cochlea. Brain Sci 2023; 13:brainsci13030516. [PMID: 36979326 PMCID: PMC10046579 DOI: 10.3390/brainsci13030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Transmembrane protein 119 (TMEM119) is expressed in a subset of resident macrophage cells of the brain and was proposed as a marker for native brain microglia. The presence of cells expressing TMEM119 in the cochlea has not yet been described. Thus, the present study aimed to characterize the TMEM119-expressing cells of the postnatal and adult cochlea, the latter also after noise exposure. Immunofluorescent staining of cochlear cryosections detected TMEM119 protein in the spiral limbus fibrocytes and the developing stria vascularis at postnatal Day 3. Applying the macrophage marker Iba1 revealed that TMEM119 is not a marker of cochlear macrophages or a subset of them. In the adult murine cochlea, TMEM119 expression was detected in the basal cells of the stria vascularis and the dark mesenchymal cells of the supralimbal zone. Exposure to noise trauma was not associated with a qualitative change in the types or distributions of the TMEM119-expressing cells of the adult cochlea. Western blot analysis indicated a similar TMEM119 protein expression level in the postnatal cochlea and brain tissues. The findings do not support using TMEM119 as a specific microglial or macrophage marker in the cochlea. The precise role of TMEM119 in the cochlea remains to be investigated through functional experiments. TMEM119 expression in the basal cells of the stria vascularis implies a possible role in the gap junction system of the blood–labyrinth barrier and merits further research.
Collapse
|
39
|
Gregory GE, Munro KJ, Couper KN, Pathmanaban ON, Brough D. The NLRP3 inflammasome as a target for sensorineural hearing loss. Clin Immunol 2023; 249:109287. [PMID: 36907540 DOI: 10.1016/j.clim.2023.109287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
Sensorineural hearing loss is the most common type of hearing loss in adults and occurs due to damage of the inner ear caused by a range of factors including ageing, excessive noise, toxins, and cancer. Auto-inflammatory disease is also a cause of hearing loss and there is evidence that inflammation could contribute to hearing loss in other conditions. Within the inner ear there are resident macrophage cells that respond to insults and whose activation correlates with damage. The NLRP3 inflammasome is a multi-molecular pro-inflammatory protein complex that forms in activated macrophages and may contribute to hearing loss. The aim of this article is to discuss the evidence for the NLRP3 inflammasome and associated cytokines as potential therapeutic targets for sensorineural hearing loss in conditions ranging from auto-inflammatory disease to tumour-induced hearing loss in vestibular schwannoma.
Collapse
Affiliation(s)
- Grace E Gregory
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK; Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Kevin N Couper
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Omar N Pathmanaban
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK.
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
40
|
Barnes CC, Yee KT, Vetter DE. Conditional Ablation of Glucocorticoid and Mineralocorticoid Receptors from Cochlear Supporting Cells Reveals Their Differential Roles for Hearing Sensitivity and Dynamics of Recovery from Noise-Induced Hearing Loss. Int J Mol Sci 2023; 24:3320. [PMID: 36834731 PMCID: PMC9961551 DOI: 10.3390/ijms24043320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Endogenous glucocorticoids (GC) are known to modulate basic elements of cochlear physiology. These include both noise-induced injury and circadian rhythms. While GC signaling in the cochlea can directly influence auditory transduction via actions on hair cells and spiral ganglion neurons, evidence also indicates that GC signaling exerts effects via tissue homeostatic processes that can include effects on cochlear immunomodulation. GCs act at both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Most cell types in the cochlea express both receptors sensitive to GCs. The GR is associated with acquired sensorineural hearing loss (SNHL) through its effects on both gene expression and immunomodulatory programs. The MR has been associated with age-related hearing loss through dysfunction of ionic homeostatic balance. Cochlear supporting cells maintain local homeostatic requirements, are sensitive to perturbation, and participate in inflammatory signaling. Here, we have used conditional gene manipulation techniques to target Nr3c1 (GR) or Nr3c2 (MR) for tamoxifen-induced gene ablation in Sox9-expressing cochlear supporting cells of adult mice to investigate whether either of the receptors sensitive to GCs plays a role in protecting against (or exacerbating) noise-induced cochlear damage. We have selected mild intensity noise exposure to examine the role of these receptors related to more commonly experienced noise levels. Our results reveal distinct roles of these GC receptors for both basal auditory thresholds prior to noise exposure and during recovery from mild noise exposure. Prior to noise exposure, auditory brainstem responses (ABRs) were measured in mice carrying the floxed allele of interest and the Cre recombinase transgene, but not receiving tamoxifen injections (defined as control (no tamoxifen treatment), versus conditional knockout (cKO) mice, defined as mice having received tamoxifen injections. Results revealed hypersensitive thresholds to mid- to low-frequencies after tamoxifen-induced GR ablation from Sox9-expressing cochlear supporting cells compared to control (no tamoxifen) mice. GR ablation from Sox9-expressing cochlear supporting cells resulted in a permanent threshold shift in mid-basal cochlear frequency regions after mild noise exposure that produced only a temporary threshold shift in both control (no tamoxifen) f/fGR:Sox9iCre+ and heterozygous f/+GR:Sox9iCre+ tamoxifen-treated mice. A similar comparison of basal ABRs measured in control (no tamoxifen) and tamoxifen-treated, floxed MR mice prior to noise exposure indicated no difference in baseline thresholds. After mild noise exposure, MR ablation was initially associated with a complete threshold recovery at 22.6 kHz by 3 days post-noise. Threshold continued to shift to higher sensitivity over time such that by 30 days post-noise exposure the 22.6 kHz ABR threshold was 10 dB more sensitive than baseline. Further, MR ablation produced a temporary reduction in peak 1 neural amplitude one day post-noise. While supporting cell GR ablation trended towards reducing numbers of ribbon synapses, MR ablation reduced ribbon synapse counts but did not exacerbate noise-induced damage including synapse loss at the experimental endpoint. GR ablation from the targeted supporting cells increased the basal resting number of Iba1-positive (innate) immune cells (no noise exposure) and decreased the number of Iba1-positive cells seven days following noise exposure. MR ablation did not alter innate immune cell numbers at seven days post-noise exposure. Taken together, these findings support differential roles of cochlear supporting cell MR and GR expression at basal, resting conditions and especially during recovery from noise exposure.
Collapse
Affiliation(s)
- Charles C. Barnes
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kathleen T. Yee
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Douglas E. Vetter
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
41
|
Zhang X, Ma Z, Zheng J, Xu H, Pan J, Lv L. Analysis of Serum Inflammatory Markers in Infants Under 6 Months of Age with Non-Syndromic Moderate and Severe Hearing Loss Associated with GJB2 Gene Mutations. Med Sci Monit 2023; 29:e938165. [PMID: 36593740 PMCID: PMC9825025 DOI: 10.12659/msm.938165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The GJB2 gene is reported to be the main hereditary factor responsible for non-syndromic hearing impairment in infants. Several kinds of hearing loss have been linked to elevated inflammatory markers. This study aimed to evaluate serum levels of IL-2, IL-4, IL-6, IL-10, IL-17, alpha-TNF, and γ-IFN and the severity of hearing loss. MATERIAL AND METHODS Ninety newborns were divided into 3 groups: severe hearing impairment (31 infants), moderate hearing impairment (30 infants), and normal hearing (29 infants). Hearing screening was performed using otoacoustic emissions test. Mutations of the GJB2 gene were detected with Sanger sequencing. The patients had DNFB1 mutation. Seven blood inflammatory markers were tested using Cytometric Bead Array. We performed the t test to examine differences in expression of 7 inflammatory markers between sexes in the groups. The correlation between indicators within groups was studied using the Pearson correlation test. Correlation of different indicators among groups was studied using the Spearman correlation test. RESULTS When compared among the 3 groups (severe, moderate hearing impairment, and normal hearing group), we found that IL-10 had a positive correlation with the severity of GJB2-associated hearing loss, which was statistically significant (P<0.05). CONCLUSIONS This research aimed to assess the relationship of 7 serum inflammatory markers with GJB2-associated hearing loss in infants. Inflammatory marker IL-10 had a positive correlation with the severity of GJB2-associated infant hearing loss, and it might have the potential to become a future therapeutic target.
Collapse
Affiliation(s)
- Xingang Zhang
- Department of Otorhinolaryngology – Head and Neck Surgery, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, PR China
| | - Zhaoxin Ma
- Department of Otorhinolaryngology – Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jishan Zheng
- Department of Pediatrics, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, PR China
| | - Huiqing Xu
- Department of Pediatrics, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, PR China
| | - Jiewen Pan
- Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, PR China
| | - Lanqiu Lv
- Department of Child Healthcare, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, PR China
| |
Collapse
|
42
|
Xiao L, Zhang Z, Liu J, Zheng Z, Xiong Y, Li C, Feng Y, Yin S. HMGB1 accumulation in cytoplasm mediates noise-induced cochlear damage. Cell Tissue Res 2023; 391:43-54. [PMID: 36287265 DOI: 10.1007/s00441-022-03696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/05/2022] [Indexed: 01/18/2023]
Abstract
Damage-associated molecular pattern molecules (DAMPs) play a critical role in mediating cochlear cell death, which leads to noise-induced hearing loss (NIHL). High-mobility group box 1 (HMGB1), a prototypical DAMP released from cells, has been extensively studied in the context of various diseases. However, whether extracellular HMGB1 contributes to cochlear pathogenesis in NIHL and the potential signals initiating HMGB1 release from cochlear cells are not well understood. Here, through the transfection of the adeno-associated virus with HMGB1-HA-tag, we first investigated early cytoplasmic accumulation of HMGB1 in cochlear hair cells after noise exposure. We found that the cochlear administration of HMGB1-neutralizing antibody immediately after noise exposure significantly alleviated hearing loss and outer hair cells (OHCs) death induced by noise exposure. In addition, activation of signal transducer and activators of transcription 1 (STAT1) and cellular hyperacetylation were verified as potential canonical initiators of HMGB1 cytoplasmic accumulation. These findings reveal the adverse effects of extracellular HMGB1 on the cochlea and the potential signaling events mediating HMGB1 release in hair cells, indicating multiple potential pharmacotherapeutic targets for NIHL.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Jianju Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhong Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Yuanping Xiong
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Chunyan Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| |
Collapse
|
43
|
Trevino M, Zang A, Lobarinas E. The middle ear muscle reflex: Current and future role in assessing noise-induced cochlear damage. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:436. [PMID: 36732247 PMCID: PMC9867568 DOI: 10.1121/10.0016853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
The middle ear muscle reflex (MEMR) in humans is a bilateral contraction of the middle ear stapedial muscle in response to moderate-to-high intensity acoustic stimuli. Clinically, MEMR thresholds have been used for differential diagnosis of otopathologies for decades. More recently, changes in MEMR amplitude or threshold have been proposed as an assessment for noise-induced synaptopathy, a subclinical form of cochlear damage characterized by suprathreshold hearing problems that occur as a function of inner hair cell (IHC) synaptic loss, including hearing-in-noise deficits, tinnitus, and hyperacusis. In animal models, changes in wideband MEMR immittance have been correlated with noise-induced synaptopathy; however, studies in humans have shown more varied results. The discrepancies observed across studies could reflect the heterogeneity of synaptopathy in humans more than the effects of parametric differences or relative sensitivity of the measurement. Whereas the etiology and degree of synaptopathy can be carefully controlled in animal models, synaptopathy in humans likely stems from multiple etiologies and thus can vary greatly across the population. Here, we explore the evolving research evidence of the MEMR response in relation to subclinical noise-induced cochlear damage and the MEMR as an early correlate of suprathreshold deficits.
Collapse
Affiliation(s)
- Monica Trevino
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Andie Zang
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Edward Lobarinas
- School of Behavioral and Brain Sciences, Department of Speech, Language and Hearing, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
44
|
Ma PW, Wang WL, Chen JW, Yuan H, Lu PH, Gao W, Ding XR, Lun YQ, Liang R, He ZH, Yang Q, Lu LJ. Treatment with the Ferroptosis Inhibitor Ferrostatin-1 Attenuates Noise-Induced Hearing Loss by Suppressing Ferroptosis and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3373828. [PMID: 36531206 PMCID: PMC9750774 DOI: 10.1155/2022/3373828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 08/17/2023]
Abstract
Hair cell death induced by excessive reactive oxygen species (ROS) has been identified as the major pathogenesis of noise-induced hearing loss (NIHL). Recent studies have demonstrated that cisplatin- and neomycin-induced ototoxicity can be alleviated by ferroptosis inhibitors. However, whether ferroptosis inhibitors have a protective effect against NIHL remains unknown. We investigated the protective effect of the ferroptosis inhibitor ferrostatin-1 (Fer-1) on NIHL in vivo in CBA/J mice and investigated the protective effect of Fer-1 on tert-butyl hydroperoxide (TBHP)-induced hair cell damage in vitro in cochlear explants and HEI-OC1 cells. We observed ROS overload and lipid peroxidation, which led to outer hair cell (OHC) apoptosis and ferroptosis, in the mouse cochlea after noise exposure. The expression level of apoptosis-inducing factor mitochondria-associated 2 (AIFM2) was substantially increased following elevation of the expression of its upstream protein P53 after noise exposure. The ferroptosis inhibitor Fer-1was demonstrated to enter the inner ear after the systemic administration. Administration of Fer-1 significantly alleviated noise-induced auditory threshold elevation and reduced the loss of OHCs, inner hair cell (IHC) ribbon synapses, and auditory nerve fibers (ANFs) caused by noise. Mechanistically, Fer-1 significantly reduced noise- and TBHP-induced lipid peroxidation and iron accumulation in hair cells, alleviating ferroptosis in cochlear cells consequently. Furthermore, Fer-1 treatment decreased the levels of TfR1, P53, and AIFM2. These results suggest that Fer-1 exerted its protective effects by scavenging of ROS and inhibition of TfR1-mediated ferroptosis and P53-AIFM2 signaling pathway-mediated apoptosis. Our findings suggest that Fer-1 is a promising drug for treating NIHL because of its ability to inhibit noise-induced hair cell apoptosis and ferroptosis, opening new avenues for the treatment of NIHL.
Collapse
Affiliation(s)
- Peng-Wei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Wei-Long Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jia-Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Pei-Heng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xue-Rui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yu-Qiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Zu-Hong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Lian-Jun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
45
|
Martin JL, Dawson SJ, Gale JE. An emerging role for stress granules in neurodegenerative disease and hearing loss. Hear Res 2022; 426:108634. [PMID: 36384053 DOI: 10.1016/j.heares.2022.108634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
Abstract
Stress granules (SGs) are membrane-less cytosolic assemblies that form in response to stress (e.g., heat, oxidative stress, hypoxia, viral infection and UV). Composed of mRNA, RNA binding proteins and signalling proteins, SGs minimise stress-related damage and promote cell survival. Recent research has shown that the stress granule response is vital to the cochlea's response to stress. However, emerging evidence suggests stress granule dysfunction plays a key role in the pathophysiology of multiple neurodegenerative diseases, several of which present with hearing loss as a symptom. Hearing loss has been identified as the largest potentially modifiable risk factor for dementia. The underlying reason for the link between hearing loss and dementia remains to be established. However, several possible mechanisms have been proposed including a common pathological mechanism. Here we will review the role of SGs in the pathophysiology of neurodegenerative diseases and explore possible links and emerging evidence that they may play an important role in maintenance of hearing and may be a common mechanism underlying age-related hearing loss and dementia.
Collapse
Affiliation(s)
- Jack L Martin
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Sally J Dawson
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK.
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK.
| |
Collapse
|
46
|
Guo L, Wang W, Song W, Cao H, Tian H, Wang Z, Ren J, Ning F, Zhang D, Duan H. Genome-wide DNA methylation analysis of middle-aged and elderly monozygotic twins with age-related hearing loss in Qingdao, China. Gene 2022; 849:146918. [PMID: 36179964 DOI: 10.1016/j.gene.2022.146918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the differences in DNA methylation associated with age-related hearing loss in a study of 57 twin pairs from China. DESIGN Monozygotic twins were identified through the Qingdao Twin Registration system. The median age of participants was >50 years. Their hearing thresholds were measured using a multilevel pure-tone audiometry assessment. The pure-tone audiometry was calculated at low frequencies (0.5, 1.0, and 2.0 kHz), speech frequencies (0.5, 1.0, 2.0, and 4.0kHz), and high frequencies (4.0 and 8 kHz). The CpG sites were tested using a linear mixed-effects model, and the function of the cis-regulatory regions and ontological enrichments were predicted using the online Genomic Regions Enrichment of Annotations Tool. The differentially methylated regions were identified using a comb-p python library approach. RESULTS In each of the PTA categories (low-, speech-, high-frequency), age-related hearing loss was detected in 25.9%, 19.3%, and 52.8% of participants. In the low-, speech- and high-frequency categories we identified 18, 42, and 12 individual CpG sites and 6, 11, and 6 differentially methylated regions. The CpG site located near DUSP4 had the strongest association with low- and speech-frequency, while the strongest association with high-frequency was near C21orf58. We identified associations of ALG10 with high-frequency hearing, C3 and LCK with low- and speech-frequency hearing, and GBX2 with low-frequency hearing. Top pathways that may be related to hearing, such as the Notch signaling pathway, were also identified. CONCLUSION Our study is the first of its kind to identify these genes and their associated with DNA methylation may play essential roles in the hearing process. The results of our epigenome-wide association study on twins clarify the complex mechanisms underlying age-related hearing loss.
Collapse
Affiliation(s)
- Longzi Guo
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Wanxue Song
- Qingdao Maternal and Child Health and Family Planning Service Center, Qingdao, China
| | - Hainan Cao
- Department of Otorhinolaryngology, Qingdao Municipal Hospital, Qingdao, China
| | - Huimin Tian
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Zhaoguo Wang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Jifeng Ren
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Feng Ning
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China.
| |
Collapse
|
47
|
Song XY, Wu WF, Dai YB, Xu HW, Roman A, Wang L, Warner M, Gustafsson JÅ. Ablation of Liver X receptor β in mice leads to overactive macrophages and death of spiral ganglion neurons. Hear Res 2022; 422:108534. [PMID: 35623301 DOI: 10.1016/j.heares.2022.108534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/30/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Age-related hearing loss is the most common type of hearing impairment, and is typically characterized by the loss of spiral ganglion neurons (SGNs). The two Liver X receptors (LXRs) are oxysterol-activated nuclear receptors which in adults, regulate genes involved in cholesterol homeostasis and modulation of macrophage activity. LXRβ plays a key role in maintenance of health of dopaminergic neurons in the substantia nigra, large motor neurons in the spinal cord, and retinal ganglion cells in adult mice. We now report that LXRβ is expressed in the SGNs of the cochlea and that loss of LXRβ leads to age-related cochlea degeneration. We found that in the cochlea of LXRβ-/- mice, there is loss of SGNs, activation of macrophages, demyelination in the spiral ganglion, decrease in glutamine synthetase (GS) expression and increase in glutamate accumulation in the cochlea. Part of the cause of damage to the SGNs might be glutamate toxicity which is known to be very toxic to these cells. Our study provides a so far unreported role of LXRβ in maintenance of SGNs whose loss is a very common cause of hearing impairment.
Collapse
Affiliation(s)
- Xiao-Yu Song
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Wan-Fu Wu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Yu-Bing Dai
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Hai-Wei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Andrew Roman
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Li Wang
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Margaret Warner
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States; Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Stockholm 14186, Sweden.
| |
Collapse
|
48
|
Idiopathic sudden sensorineural hearing loss: A critique on corticosteroid therapy. Hear Res 2022; 422:108565. [PMID: 35816890 DOI: 10.1016/j.heares.2022.108565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/10/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022]
Abstract
Idiopathic sudden sensorineural hearing loss (ISSNHL) is a condition affecting 5-30 per 100,000 individuals with the potential to significantly reduce one's quality of life. The true incidence of this condition is not known because it often goes undiagnosed and/or recovers within a few days. ISSNHL is defined as a ≥30 dB loss of hearing over 3 consecutive audiometric octaves within 3 days with no known cause. The disorder is typically unilateral and most of the cases spontaneously recover to functional hearing within 30 days. High frequency losses, ageing, and vertigo are associated with a poorer prognosis. Multiple causes of ISSNHL have been postulated and the most common are vascular obstruction, viral infection, or labyrinthine membrane breaks. Corticosteroids are the standard treatment option but this practice is not without opposition. Post mortem analyses of temporal bones of ISSNHL cases have been inconclusive. This report analyzed ISSNHL studies administering corticosteroids that met strict inclusion criteria and identified a number of methodologic shortcomings that compromise the interpretation of results. We discuss the issues and conclude that the data do not support present treatment practices. The current status on ISSNHL calls for a multi-institutional, randomized, double-blind trial with validated outcome measures to provide science-based treatment guidance.
Collapse
|
49
|
Chen XM, Xue XM, Yu N, Guo WW, Yuan SL, Jiang QQ, Yang SM. The Role of Genetic Variants in the Susceptibility of Noise-Induced Hearing Loss. Front Cell Neurosci 2022; 16:946206. [PMID: 35903368 PMCID: PMC9315435 DOI: 10.3389/fncel.2022.946206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Noised-induced hearing loss (NIHL) is an acquired, progressive neurological damage caused by exposure to intense noise in various environments including industrial, military and entertaining settings. The prevalence of NIHL is much higher than other occupational injuries in industrialized countries. Recent studies have revealed that genetic factors, together with environmental conditions, also contribute to NIHL. A group of genes which are linked to the susceptibility of NIHL had been uncovered, involving the progression of oxidative stress, potassium ion cycling, cilia structure, heat shock protein 70 (HSP70), DNA damage repair, apoptosis, and some other genes. In this review, we briefly summarized the studies primary in population and some animal researches concerning the susceptible genes of NIHL, intending to give insights into the further exploration of NIHL prevention and individual treatment.
Collapse
Affiliation(s)
- Xue-min Chen
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xin-miao Xue
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Ning Yu
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Wei-wei Guo
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shuo-long Yuan
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Qing-qing Jiang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shi-ming Yang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
50
|
Neuroinflammation in Tinnitus. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-022-00411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
The current review aims to explore recent studies that have illustrated a link between neuroinflammation and tinnitus and the consequential effect on neuronal functioning. We explore parallels amongst pain and tinnitus pathologies and a novel treatment option.
Recent Findings
Genetic and pharmacological blockage of pro-inflammatory cytokines mitigates the physiological and behavioral tinnitus phenotype in acute rodent models. In addition, recent pain studies target a signaling pathway to prevent the transition from acute to chronic neuropathic pain, which could translate to tinnitus.
Summary
Neuroinflammation likely mediates hyperexcitability of the auditory pathway, driving the development of acute tinnitus. In chronic tinnitus, we believe translational regulation plays a role in maintaining persistent tinnitus signaling. We therefore propose this pathway as a potential therapeutic strategy.
Collapse
|