1
|
De Marchi F, Venkatesan S, Saraceno M, Mazzini L, Grossini E. Acetyl-L-carnitine and Amyotrophic Lateral Sclerosis: Current Evidence and Potential use. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:588-601. [PMID: 36998125 DOI: 10.2174/1871527322666230330083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND The management of neurodegenerative diseases can be frustrating for clinicians, given the limited progress of conventional medicine in this context. AIM For this reason, a more comprehensive, integrative approach is urgently needed. Among various emerging focuses for intervention, the modulation of central nervous system energetics, oxidative stress, and inflammation is becoming more and more promising. METHODS In particular, electrons leakage involved in the mitochondrial energetics can generate reactive oxygen-free radical-related mitochondrial dysfunction that would contribute to the etiopathology of many disorders, such as Alzheimer's and other dementias, Parkinson's disease, multiple sclerosis, stroke, and amyotrophic lateral sclerosis (ALS). RESULTS In this context, using agents, like acetyl L-carnitine (ALCAR), provides mitochondrial support, reduces oxidative stress, and improves synaptic transmission. CONCLUSION This narrative review aims to update the existing literature on ALCAR molecular profile, tolerability, and translational clinical potential use in neurodegeneration, focusing on ALS.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale 28100, Novara, Italy
| | - Massimo Saraceno
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale 28100, Novara, Italy
| |
Collapse
|
2
|
Nicoletti F, Di Menna L, Iacovelli L, Orlando R, Zuena AR, Conn PJ, Dogra S, Joffe ME. GPCR interactions involving metabotropic glutamate receptors and their relevance to the pathophysiology and treatment of CNS disorders. Neuropharmacology 2023; 235:109569. [PMID: 37142158 DOI: 10.1016/j.neuropharm.2023.109569] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Cellular responses to metabotropic glutamate (mGlu) receptor activation are shaped by mechanisms of receptor-receptor interaction. mGlu receptor subtypes form homodimers, intra- or inter-group heterodimers, and heteromeric complexes with other G protein-coupled receptors (GPCRs). In addition, mGlu receptors may functionally interact with other receptors through the βγ subunits released from G proteins in response to receptor activation or other mechanisms. Here, we discuss the interactions between (i) mGlu1 and GABAB receptors in cerebellar Purkinje cells; (ii) mGlu2 and 5-HT2Aserotonergic receptors in the prefrontal cortex; (iii) mGlu5 and A2A receptors or mGlu5 and D1 dopamine receptors in medium spiny projection neurons of the indirect and direct pathways of the basal ganglia motor circuit; (iv) mGlu5 and A2A receptors in relation to the pathophysiology of Alzheimer's disease; and (v) mGlu7 and A1 adenosine or α- or β1 adrenergic receptors. In addition, we describe in detail a novel form of non-heterodimeric interaction between mGlu3 and mGlu5 receptors, which appears to be critically involved in mechanisms of activity-dependent synaptic plasticity in the prefrontal cortex and hippocampus. Finally, we highlight the potential implication of these interactions in the pathophysiology and treatment of cerebellar disorders, schizophrenia, Alzheimer's disease, Parkinson's disease, l-DOPA-induced dyskinesias, stress-related disorders, and cognitive dysfunctions.
Collapse
Affiliation(s)
- Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | | | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - P Jeffrey Conn
- Department of Pharmacology, Italy; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Shalini Dogra
- Department of Pharmacology, Italy; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Max E Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
3
|
Group II metabotropic glutamate receptor activation suppresses ATP currents in rat dorsal root ganglion neurons. Neuropharmacology 2023; 227:109443. [PMID: 36709909 DOI: 10.1016/j.neuropharm.2023.109443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
P2X3 receptors and group II metabotropic glutamate receptors (mGluRs) have been found to be expressed in primary sensory neurons. P2X3 receptors participate in a variety of pain processes, while the activation of mGluRs has an analgesic effect. However, it's still unclear whether there is a link between them in pain. Herein, we reported that the group II mGluR activation inhibited the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. Group II mGluR agonist LY354740 concentration-dependently decreased P2X3 receptor-mediated and α,β-methylene-ATP (α,β-meATP)-evoked inward currents in DRG neurons. LY354740 significantly suppressed the maximum response of P2X3 receptor to α,β-meATP, but did not change their affinity. Inhibition of ATP currents by LY354740 was blocked by the group II mGluR antagonist LY341495, also prevented by the intracellular dialysis of either the Gi/o protein inhibitor pertussis toxin, the cAMP analog 8-Br-cAMP, or the protein kinase A (PKA) inhibitor H-89. Moreover, LY354740 decreased α,β-meATP-induced membrane potential depolarization and action potential bursts in DRG neurons. Finally, intraplantar injection of LY354740 also relieved α,β-meATP-induced spontaneous nociceptive behaviors and mechanical allodynia in rats by activating peripheral group Ⅱ mGluRs. These results indicated that peripheral group II mGluR activation inhibited the functional activity of P2X3 receptors via a Gi/o protein and cAMP/PKA signaling pathway in rat DRG neurons, which revealed a novel mechanism underlying analgesic effects of peripheral group II mGluRs. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
|
4
|
Group II metabotropic glutamate receptor activation attenuates acid-sensing ion channel currents in rat primary sensory neurons. J Biol Chem 2023; 299:102953. [PMID: 36731795 PMCID: PMC9976456 DOI: 10.1016/j.jbc.2023.102953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Acid-sensing ion channels (ASICs) play an important role in pain associated with tissue acidification. Peripheral inhibitory group II metabotropic glutamate receptors (mGluRs) have analgesic effects in a variety of pain conditions. Whether there is a link between ASICs and mGluRs in pain processes is still unclear. Herein, we show that the group II mGluR agonist LY354740 inhibited acid-evoked ASIC currents and action potentials in rat dorsal root ganglia neurons. LY354740 reduced the maximum current response to protons, but it did not change the sensitivity of ASICs to protons. LY354740 inhibited ASIC currents by activating group II mGluRs. We found that the inhibitory effect of LY354740 was blocked by intracellular application of the Gi/o protein inhibitor pertussis toxin and the cAMP analogue 8-Br-cAMP and mimicked by the protein kinase A (PKA) inhibitor H-89. LY354740 also inhibited ASIC3 currents in CHO cells coexpressing mGluR2 and ASIC3 but not in cells expressing ASIC3 alone. In addition, intraplantar injection of LY354740 dose-dependently alleviated acid-induced nociceptive behavior in rats through local group II mGluRs. Together, these results suggested that activation of peripheral group II mGluRs inhibited the functional activity of ASICs through a mechanism that depended on Gi/o proteins and the intracellular cAMP/PKA signaling pathway in rat dorsal root ganglia neurons. We propose that peripheral group II mGluRs are an important therapeutic target for ASIC-mediated pain.
Collapse
|
5
|
Mazzitelli M, Presto P, Antenucci N, Meltan S, Neugebauer V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. Cells 2022; 11:2608. [PMID: 36010684 PMCID: PMC9406805 DOI: 10.3390/cells11162608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/22/2023] Open
Abstract
Metabotropic glutamate receptors (mGluR or mGlu) are G-protein coupled receptors activated by the binding of glutamate, the main classical neurotransmitter of the nervous system. Eight different mGluR subtypes (mGluR1-8) have been cloned and are classified in three groups based on their molecular, pharmacological and signaling properties. mGluRs mediate several physiological functions such as neuronal excitability and synaptic plasticity, but they have also been implicated in numerous pathological conditions including pain. The availability of new and more selective allosteric modulators together with the canonical orthosteric ligands and transgenic technologies has led to significant advances in our knowledge about the role of the specific mGluR subtypes in the pathophysiological mechanisms of various diseases. Although development of successful compounds acting on mGluRs for clinical use has been scarce, the subtype-specific-pharmacological manipulation might be a compelling approach for the treatment of several disorders in humans, including pain; this review aims to summarize and update on preclinical evidence for the roles of different mGluRs in the pain system and discusses knowledge gaps regarding mGluR-related sex differences and neuroimmune signaling in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shakira Meltan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Orlando R, Ginerete RP, Cavalleri L, Aliperti V, Imbriglio T, Battaglia G, Zuena AR, Nicoletti F, Merlo Pich E, Collo G. Synergic action of L-acetylcarnitine and L-methylfolate in Mouse Models of Stress-Related Disorders and Human iPSC-Derived Dopaminergic Neurons. Front Pharmacol 2022; 13:913210. [PMID: 35721218 PMCID: PMC9201783 DOI: 10.3389/fphar.2022.913210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
The epigenetic agents, L-acetylcarnitine (LAC) and L-methylfolate (MF) are putative candidates as add-on drugs in depression. We evaluated the effect of a combined treatment with LAC and MF in two different paradigms of chronic stress in mice and in human inducible pluripotent stem cells (hiPSCs) differentiated into dopaminergic neurons. Two groups of mice were exposed to chronic unpredictable stress (CUS) for 28 days or chronic restraint stress (CRS) for 21 day, and LAC (30 or 100 mg/kg) and/or MF (0.75 or 3 mg/kg) were administered i.p. once a day for 14 days, starting from the last week of stress. In both stress paradigms, LAC and MF acted synergistically in reducing the immobility time in the forced swim test and enhancing BDNF protein levels in the frontal cortex and hippocampus. In addition, LAC and MF acted synergistically in enhancing type-2 metabotropic glutamate receptor (mGlu2) protein levels in the hippocampus of mice exposed to CRS. Interestingly, CRS mice treated with MF showed an up-regulation of NFκB p65, which is a substrate for LAC-induced acetylation. We could also demonstrate a synergism between LAC and MF in cultured hiPSCs differentiated into dopamine neurons, by measuring dendrite length and number, and area of the cell soma after 3 days of drug exposure. These findings support the combined use of LAC and MF in the treatment of MDD and other stress-related disorders.
Collapse
Affiliation(s)
- Rosamaria Orlando
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Laura Cavalleri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vincenza Aliperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Ginetta Collo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
7
|
Formaggio F, Rimondini R, Delprete C, Scalia L, Merlo Pich E, Liguori R, Nicoletti F, Caprini M. L-Acetylcarnitine causes analgesia in mice modeling Fabry disease by up-regulating type-2 metabotropic glutamate receptors. Mol Pain 2022; 18:17448069221087033. [PMID: 35255745 PMCID: PMC9008852 DOI: 10.1177/17448069221087033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fabry disease (FD) is a X-linked lysosomal storage disorder caused by deficient
function of the alpha-galactosidase A (α-GalA) enzyme. α-GalA deficiency leads
to multisystemic clinical manifestations caused by the preferential accumulation
of globotriaosylceramide (Gb3). A hallmark symptom of FD patients is neuropathic
pain that appears in the early stage of the disease as a result of peripheral
small fiber damage. Previous studies have shown that Acetyl-L-carnitine (ALC)
has neuroprotective, neurotrophic, and analgesic activity in animal models of
neuropathic pain. To study the action of ALC on neuropathic pain associated with
FD, we treated α-GalA gene null mice (α-GalA(-/0)) with ALC for 30 days. In
α-Gal KO mice, ALC treatment induced acute and long-lasting analgesia, which
persisted 1 month after drug withdrawal. This effect was antagonized by single
administration of LY341495, an orthosteric antagonist of mGlu2/3 metabotropic
glutamate receptors. We also found an up-regulation of mGlu2 receptors in
cultured DRG neurons isolated from 30-day ALC-treated α-GalA KO mice. However,
the up-regulation of mGlu2 receptors was no longer present in DRG neurons
isolated 30 days after the end of treatment. Taken together, these findings
suggest that ALC induces analgesia in an animal model of FD by up-regulating
mGlu2 receptors, and that analgesia is maintained by additional mechanisms after
ALC withdrawal. ALC might represent a valuable pharmacological strategy to
reduce pain in FD patients.
Collapse
Affiliation(s)
| | - Roberto Rimondini
- Dipartimento di Scienze Mediche e Chirurgiche 9296University of Bologna
| | - Cecilia Delprete
- Department of Pharmacy and Biotechnology9296University of Bologna
| | | | | | | | | | | |
Collapse
|
8
|
Torres-Perez JV, Irfan J, Febrianto MR, Di Giovanni S, Nagy I. Histone post-translational modifications as potential therapeutic targets for pain management. Trends Pharmacol Sci 2021; 42:897-911. [PMID: 34565578 DOI: 10.1016/j.tips.2021.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Effective pharmacological management of pain associated with tissue pathology is an unmet medical need. Transcriptional modifications in nociceptive pathways are pivotal for the development and the maintenance of pain associated with tissue damage. Accumulating evidence has shown the importance of the epigenetic control of transcription in nociceptive pathways via histone post-translational modifications (PTMs). Hence, histone PTMs could be targets for novel effective analgesics. Here, we discuss the current understanding of histone PTMs in the modulation of gene expression affecting nociception and pain phenotypes following tissue injury. We also provide a critical view of the translational implications of preclinical models and discuss opportunities and challenges of targeting histone PTMs to relieve pain in clinically relevant tissue injuries.
Collapse
Affiliation(s)
- Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK.
| | - Jahanzaib Irfan
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK
| | - Muhammad Rizki Febrianto
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK
| | - Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, E505, Burlington Danes, Du Cane Road, London W12 ONN, UK.
| | - Istvan Nagy
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK.
| |
Collapse
|
9
|
Sarzi-Puttini P, Giorgi V, Di Lascio S, Fornasari D. Acetyl-L-carnitine in chronic pain: A narrative review. Pharmacol Res 2021; 173:105874. [PMID: 34500063 DOI: 10.1016/j.phrs.2021.105874] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Acetyl-L-carnitine (ALC) is an endogenous molecule that not only plays a role in energy metabolism, but also has antioxidant properties, protects from oxidative stress, modulates brain neurotransmitters such as acetylcholine, serotonin and dopamine, and acts on neurotrophic factors such as nerve growth factor (NGF) and metabotropic glutamate (mGlu) receptors by means of epigenetic mechanisms. Importantly, it induces mGlu2 expression at nerve terminals, thus giving rise to analgesia and preventing spinal sensitisation. It has also been found to have even long-term neurotrophic and analgesic activity in experimental models of chronic inflammatory and neuropathic pain. The aim of this narrative review is to summarise the current evidence regarding the use of ALC in patients with chronic pain, and cognitive and mood disorders, and investigate the rationale underlying its use in patients with fibromyalgia syndrome, which is characterised by nociplastic changes that increase the sensitivity of the nervous system to pain.
Collapse
Affiliation(s)
| | - Valeria Giorgi
- Rheumatology Unit, ASST Fatebenefratelli Luigi Sacco University Hospital, Milan, Italy.
| | - Simona Di Lascio
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Zhu YF, Linher-Melville K, Wu J, Fazzari J, Miladinovic T, Ungard R, Zhu KL, Singh G. Bone cancer-induced pain is associated with glutamate signalling in peripheral sensory neurons. Mol Pain 2021; 16:1744806920911536. [PMID: 32133928 PMCID: PMC7059229 DOI: 10.1177/1744806920911536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We previously identified that several cancer cell lines known to induce
nociception in mouse models release glutamate in vitro. Although the mechanisms
of glutamatergic signalling have been characterized primarily in the central
nervous system, its importance in the peripheral nervous system has been
recognized in various pathologies, including cancer pain. We therefore
investigated the effect of glutamate on intracellular electrophysiological
characteristics of peripheral sensory neurons in an immunocompetent rat model of
cancer-induced pain based on surgical implantation of mammary rat metastasis
tumour-1 cells into the distal epiphysis of the right femur. Behavioural
evidence of nociception was detected using von Frey tactile assessment. Activity
of sensory neurons was measured by intracellular electrophysiological recordings
in vivo. Glutamate receptor expression at the mRNA level in relevant dorsal root
ganglia was determined by reverse transcription polymerase chain reaction using
rat-specific primers. Nociceptive and non-nociceptive mechanoreceptor neurons
exhibiting changes in neural firing patterns associated with increased
nociception due to the presence of a bone tumour rapidly responded to
sulphasalazine injection, an agent that pharmacologically blocks non-vesicular
glutamate release by inhibiting the activity of the system
xC− antiporter. In addition, both types of
mechanoreceptor neurons demonstrated excitation in response to intramuscular
glutamate injection near the femoral head, which corresponds to the location of
cancer cell injection to induce the bone cancer-induced pain model. Therefore,
glutamatergic signalling contributes to cancer pain and may be a factor in
peripheral sensitization and induced tactile hypersensitivity associated with
bone cancer-induced pain.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Katja Linher-Melville
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jianhan Wu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jennifer Fazzari
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Tanya Miladinovic
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Robert Ungard
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Kan Lun Zhu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Notartomaso S, Scarselli P, Mascio G, Liberatore F, Mazzon E, Mammana S, Gugliandolo A, Cruccu G, Bruno V, Nicoletti F, Battaglia G. N-Acetylcysteine causes analgesia in a mouse model of painful diabetic neuropathy. Mol Pain 2021; 16:1744806920904292. [PMID: 32009537 PMCID: PMC6997966 DOI: 10.1177/1744806920904292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
N-Acetylcysteine, one of the most prescribed antioxidant drugs, enhances pain
threshold in rodents and humans by activating mGlu2 metabotropic glutamate
receptors. Here, we assessed the analgesic activity of N-acetylcysteine in the
streptozotocin model of painful diabetic neuropathy and examined the effect of
N-acetylcysteine on proteins that are involved in mechanisms of nociceptive
sensitization. Mice with blood glucose levels ≥250 mg/dl in response to a single
intraperitoneal (i.p.) injection of streptozotocin (200 mg/kg) were used for the
assessment of mechanical pain thresholds. Systemic treatment with
N-acetylcysteine (100 mg/kg, i.p., either single injection or daily injections
for seven days) caused analgesia in diabetic mice. N-acetylcysteine-induced
analgesia was abrogated by the Sxc− inhibitors, sulfasalazine (8 mg/kg, i.p.), erastin (30 mg/kg,
i.p.), and sorafenib (10 mg/kg, i.p.), or by the mGlu2/3 receptor antagonist,
LY341495 (1 mg/kg, i.p.). Repeated administrations of N-acetylcysteine in
diabetic mice reduced ERK1/2 phosphorylation in the dorsal region of the lumbar
spinal cord. The analgesic activity of N-acetylcysteine was occluded by the MEK
inhibitor, PD0325901 (25 mg/kg, i.p.), the TRPV1 channel blocker, capsazepine
(40 mg/kg, i.p.), or by a cocktail of NMDA and mGlu5 metabotropic glutamate
receptor antagonists (memantine, 25 mg/kg, plus MTEP, 5 mg/kg,
both i.p.). These findings offer the first demonstration that N-acetylcysteine
relieves pain associated with diabetic neuropathy and holds promise for the use
of N-acetylcysteine as an add-on drug in diabetic patients.
Collapse
Affiliation(s)
| | - Pamela Scarselli
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giada Mascio
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | | | | | - Santa Mammana
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | - Giorgio Cruccu
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Valeria Bruno
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
12
|
Latham LE, Wang C, Patterson TA, Slikker W, Liu F. Neuroprotective Effects of Carnitine and Its Potential Application to Ameliorate Neurotoxicity. Chem Res Toxicol 2021; 34:1208-1222. [PMID: 33570912 DOI: 10.1021/acs.chemrestox.0c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carnitine is an essential metabolite that is absorbed from the diet and synthesized in the kidney, liver, and brain. It ferries fatty acids across the mitochondrial membrane to undergo β-oxidation. Carnitine has been studied as a therapy or protective agent for many neurological diseases and neurotoxicity (e.g., prolonged anesthetic exposure-induced developmental neurotoxicity in preclinical models). Preclinical and clinical data support the notion that carnitine or acetyl carnitine may improve a patient's quality of life through increased mitochondrial respiration, release of neurotransmitters, and global gene expression changes, showing the potential of carnitine beyond its approved use to treat primary and secondary carnitine deficiency. In this review, we summarize the beneficial effects of carnitine or acetyl carnitine on the central nervous system, highlighting protective effects against neurotoxicity-induced damage caused by various chemicals and encouraging a thorough evaluation of carnitine use as a therapy for patients suffering from neurotoxicant exposure.
Collapse
Affiliation(s)
- Leah E Latham
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Cheng Wang
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Tucker A Patterson
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - William Slikker
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| |
Collapse
|
13
|
Maldonado C, Vázquez M, Fagiolino P. Potential Therapeutic Role of Carnitine and Acetylcarnitine in Neurological Disorders. Curr Pharm Des 2020; 26:1277-1285. [PMID: 32048954 DOI: 10.2174/1381612826666200212114038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Current therapy of neurological disorders has several limitations. Although a high number of drugs are clinically available, several subjects do not achieve full symptomatic remission. In recent years, there has been an increasing interest in the therapeutic potential of L-carnitine (LCAR) and acetyl-L-carnitine (ALCAR) because of the multiplicity of actions they exert in energy metabolism, as antioxidants, neuromodulators and neuroprotectors. They also show excellent safety and tolerability profile. OBJECTIVE To assess the role of LCAR and ALCAR in neurological disorders. METHODS A meticulous review of the literature was conducted in order to establish the linkage between LCAR and ALCAR and neurological diseases. RESULTS LCAR and ALCAR mechanisms and effects were studied for Alzheimer's disease, depression, neuropathic pain, bipolar disorder, Parkinson's disease and epilepsy in the elderly. Both substances exert their actions mainly on primary metabolism, enhancing energy production, through β-oxidation, and the ammonia elimination via urea cycle promotion. These systemic actions impact positively on the Central Nervous System state, as Ammonia and energy depletion seem to underlie most of the neurotoxic events, such as inflammation, oxidative stress, membrane degeneration, and neurotransmitters disbalances, present in neurological disorders, mainly in the elderly. The impact on bipolar disorder is controversial. LCAR absorption seems to be impaired in the elderly due to the decrease of active transportation; therefore, ALCAR seems to be the more effective option to administer. CONCLUSION ALCAR emerges as a simple, economical and safe adjuvant option in order to impair the progression of most neurological disorders.
Collapse
Affiliation(s)
- Cecilia Maldonado
- Biopharmaceutics and Therapeutics, Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la Republica, Montevideo, Uruguay
| | - Marta Vázquez
- Biopharmaceutics and Therapeutics, Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la Republica, Montevideo, Uruguay
| | - Pietro Fagiolino
- Biopharmaceutics and Therapeutics, Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la Republica, Montevideo, Uruguay
| |
Collapse
|
14
|
Basheer A, Kirubakaran R, Tan K, Vishnu VY, Fialho D. Disease-modifying therapy for HIV-related distal symmetrical polyneuropathy (including antiretroviral toxic neuropathy). Hippokratia 2020. [DOI: 10.1002/14651858.cd013716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aneesh Basheer
- Department of Medicine; Pondicherry Institute of Medical Sciences; Pondicherry India
| | - Richard Kirubakaran
- Cochrane South Asia, Prof. BV Moses Centre for Evidence-Informed Healthcare and Health Policy; Christian Medical College; Vellore India
| | - Kevin Tan
- National Neuroscience Institute; Singapore Singapore
| | - Venugopalan Y Vishnu
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - Doreen Fialho
- Department of Clinical Neurophysiology; King's College Hospital; London UK
| |
Collapse
|
15
|
Cisani F, Roggeri A, Olivero G, Garrone B, Tongiani S, Di Giorgio FP, Pittaluga A. Acute Low Dose of Trazodone Recovers Glutamate Release Efficiency and mGlu2/3 Autoreceptor Impairments in the Spinal Cord of Rats Suffering From Chronic Sciatic Ligation. Front Pharmacol 2020; 11:1108. [PMID: 32765286 PMCID: PMC7379891 DOI: 10.3389/fphar.2020.01108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
We investigated whether chronic sciatic ligation modifies the glutamate release in spinal cord nerve endings (synaptosomes) as well as the expression and the function of presynaptic release-regulating mGlu2/3 autoreceptors and 5-HT2A heteroreceptors in these particles. Synaptosomes were from the spinal cord of animals suffering from the sciatic ligation that developed on day 6 post-surgery a significant decrease of the force inducing paw-withdrawal in the lesioned paw. The exocytosis of glutamate (quantified as release of preloaded [3H]D-aspartate, [3H]D-Asp) elicited by a mild depolarizing stimulus (15 mM KCl) was significantly increased in synaptosomes from injured rats when compared to controls (uninjured rats). The mGlu2/3 agonist LY379268 (1000 pM) significantly inhibited the 15 mM KCl-evoked [3H]D-Asp overflow from control synaptosomes, but not in terminals isolated from injured animals. Differently, a low concentration (10 nM) of (±) DOI, unable to modify the 15 mM KCl-evoked [3H]D-Asp overflow in control spinal cord synaptosomes, significantly reduced the glutamate exocytosis in nerve endings isolated from the injured rats. Acute oral trazodone (TZD, 0.3 mg/kg on day 7 post-surgery) efficiently recovered glutamate exocytosis as well as the efficiency of LY379268 in inhibiting this event in spinal cord synaptosomes from injured animals. The sciatic ligation significantly reduced the expression of mGlu2/3, but not of 5-HT2A, receptor proteins in spinal cord synaptosomal lysates. Acute TZD recovered this parameter. Our results support the use of 5-HT2A antagonists for restoring altered spinal cord glutamate plasticity in rats suffering from sciatic ligation.
Collapse
Affiliation(s)
- Francesca Cisani
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Alessandra Roggeri
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Beatrice Garrone
- Angelini RR&D (Research, Regulatory & Development), Angelini Pharma S.p.A., Rome, Italy
| | - Serena Tongiani
- Angelini RR&D (Research, Regulatory & Development), Angelini Pharma S.p.A., Rome, Italy
| | | | - Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
16
|
Heidari N, Sajedi F, Mohammadi Y, Mirjalili M, Mehrpooya M. Ameliorative Effects Of N-Acetylcysteine As Adjunct Therapy On Symptoms Of Painful Diabetic Neuropathy. J Pain Res 2019; 12:3147-3159. [PMID: 31819599 PMCID: PMC6875491 DOI: 10.2147/jpr.s228255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose Painful diabetic neuropathy (PDN) is a variant of diabetic peripheral neuropathy which is highly prevalent and distressing in diabetic patients. Despite its high burden, the optimal treatment of PDN has remained a clinical challenge. To explain the emergence and maintenance of PDN, increasing attention has been focused on dimensions of inflammation and oxidative toxic stress (OTS). Accordingly, the aim of this study was to investigate the effects of oral N-acetylcysteine (NAC), an agent with known anti-oxidant and anti-inflammatory effects, as an adjunct therapy in patients suffering from PDN. Patients and methods 113 eligible patients with type 2 diabetes suffering from PDN were randomly assigned to either the pregabalin + placebo or pregabalin + NAC group for 8 weeks (pregabalin at a dose of 150 mg per day, NAC and matched placebo at doses of 600 mg twice a day). Mean pain score was evaluated at baseline, week 1, 2, 4, 6, and 8 of the study based on the mean 24 hr average pain score, using an 11-point numeric rating scale (NRS). As secondary efficacy measures, mean sleep interference score (SIS) resulting from PDN, responder rates, Patient Global Impression of Change (PGIC), Clinical Global Impression of Change (CGIC), and safety were also assessed. Additionally, serum levels of total antioxidant capacity (TAC), total thiol groups (TTG), catalase activity (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), nitric oxide (NO), and malondialdehyde (MDA) were assessed at baseline and at the end of the study. Results Ninety patients completed the eight-week course of the study. The decrease in mean pain scores and mean sleep interference score in pregabalin + NAC group was greater in comparison with pregabalin + placebo group (p value<0.001 in both conditions). Moreover, more responders (defined as ≥50% reduction in mean pain score from baseline to end-point) were observed in the pregabalin + NAC group, in comparison with pregabalin + placebo group (72.1% vs 46.8%). More improvement in PGIC and CGIC from baseline to the end of the study was reported in pregabalin + NAC group. Oral NAC had minimal adverse effects and was well tolerated in almost all patients. Furthermore, in respect to OTS biomarkers, adjuvant NAC significantly decreased serum level of MDA and significantly increased serum levels of SOD, GPx, TAC, and TTG. Conclusion The pattern of results suggests that compared to placebo and over a time period of 8 weeks, adjuvant NAC is more efficacious in improving neuropathic pain associated with diabetic neuropathy than placebo. Ameliorative effects of NAC on OTS biomarkers demonstrated that NAC may alleviate painful symptoms of diabetic neuropathy, at least in part by its antioxidant effects.
Collapse
Affiliation(s)
- Narges Heidari
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Firozeh Sajedi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
17
|
Anikin GS, Makhova AA, Shikh EV. [Prospects of application of acetyl-L-carnitine in neurology and psychiatry (the treatment of polyneuropathy and depressive states)]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:130-135. [PMID: 31626181 DOI: 10.17116/jnevro2019119081130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acetyl-L-carnitine (ALA) is a biologically active form of L-carnitine, which is a readily available substrate for triggering energy-dependent metabolic processes in the mitochondria. The mechanism of the protective effect of ALA on brain tissue is a significant reduction in the amount of oxygen consumed for energy supply of the needs of the nervous system. ALA also has antioxidant and antiapoptotic activity. In addition, ALK plays a neuromodulating effect on both synaptic morphology and synaptic transmission. The similarity in structure with acetylcholine allows to have a cholinomimetic effect, as well as to show neuroprotective and neurotrophic properties. ALK has an antidepressant and analgesic effect in painful neuropathies. Therefore, ALA is a promising drug for the treatment of polyneuropathy of various origins. Compared with antidepressants efficacy and a minimum of side effects open up wide possibilities of using ALA in the treatment of depression with a low risk of developing NLR.
Collapse
Affiliation(s)
- G S Anikin
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A A Makhova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - E V Shikh
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
18
|
Pereira V, Goudet C. Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors. Front Mol Neurosci 2019; 11:464. [PMID: 30662395 PMCID: PMC6328474 DOI: 10.3389/fnmol.2018.00464] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pain is an essential protective mechanism meant to prevent tissue damages in organisms. On the other hand, chronic or persistent pain caused, for example, by inflammation or nerve injury is long lasting and responsible for long-term disability in patients. Therefore, chronic pain and its management represents a major public health problem. Hence, it is critical to better understand chronic pain molecular mechanisms to develop innovative and efficient drugs. Over the past decades, accumulating evidence has demonstrated a pivotal role of glutamate in pain sensation and transmission, supporting glutamate receptors as promising potential targets for pain relieving drug development. Glutamate is the most abundant excitatory neurotransmitter in the brain. Once released into the synapse, glutamate acts through ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels triggering fast excitatory neurotransmission, and metabotropic glutamate receptors (mGluRs), which are G protein-coupled receptors modulating synaptic transmission. Eight mGluRs subtypes have been identified and are divided into three classes based on their sequence similarities and their pharmacological and biochemical properties. Of note, all mGluR subtypes (except mGlu6 receptor) are expressed within the nociceptive pathways where they modulate pain transmission. This review will address the role of mGluRs in acute and persistent pain processing and emerging pharmacotherapies for pain management.
Collapse
Affiliation(s)
- Vanessa Pereira
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Mazzitelli M, Palazzo E, Maione S, Neugebauer V. Group II Metabotropic Glutamate Receptors: Role in Pain Mechanisms and Pain Modulation. Front Mol Neurosci 2018; 11:383. [PMID: 30356691 PMCID: PMC6189308 DOI: 10.3389/fnmol.2018.00383] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the nervous system and plays a critical role in nociceptive processing and pain modulation. G-protein coupled metabotropic glutamate receptors (mGluRs) are widely expressed in the central and peripheral nervous system, and they mediate neuronal excitability and synaptic transmission. Eight different mGluR subtypes have been identified so far, and are classified into Groups I-III. Group II mGluR2 and mGluR3 couple negatively to adenylyl cyclase through Gi/Go proteins, are mainly expressed presynaptically, and typically inhibit the release of neurotransmitters, including glutamate and GABA. Group II mGluRs have consistently been linked to pain modulation; they are expressed in peripheral, spinal and supraspinal elements of pain-related neural processing. Pharmacological studies have shown anti-nociceptive/analgesic effects of group II mGluR agonists in preclinical models of acute and chronic pain, although much less is known about mechanisms and sites of action for mGluR2 and mGluR3 compared to other mGluRs. The availability of orthosteric and new selective allosteric modulators acting on mGluR2 and mGluR3 has provided valuable tools for elucidating (subtype) specific contributions of these receptors to the pathophysiological mechanisms of pain and other disorders and their potential as therapeutic targets. This review focuses on the important role of group II mGluRs in the neurobiology of pain mechanisms and behavioral modulation, and discusses evidence for their therapeutic potential in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Enza Palazzo
- Section of Pharmacology L. Donatelli, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sabatino Maione
- Section of Pharmacology L. Donatelli, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
20
|
Penas C, Navarro X. Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain After Neural Trauma. Front Cell Neurosci 2018; 12:158. [PMID: 29930500 PMCID: PMC5999732 DOI: 10.3389/fncel.2018.00158] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that epigenetic alterations lie behind the induction and maintenance of neuropathic pain. Neuropathic pain is usually a chronic condition caused by a lesion, or pathological change, within the nervous system. Neuropathic pain appears frequently after nerve and spinal cord injuries or diseases, producing a debilitation of the patient and a decrease of the quality of life. At the cellular level, neuropathic pain is the result of neuronal plasticity shaped by an increase in the sensitivity and excitability of sensory neurons of the central and peripheral nervous system. One of the mechanisms thought to contribute to hyperexcitability and therefore to the ontogeny of neuropathic pain is the altered expression, trafficking, and functioning of receptors and ion channels expressed by primary sensory neurons. Besides, neuronal and glial cells, such as microglia and astrocytes, together with blood borne macrophages, play a critical role in the induction and maintenance of neuropathic pain by releasing powerful neuromodulators such as pro-inflammatory cytokines and chemokines, which enhance neuronal excitability. Altered gene expression of neuronal receptors, ion channels, and pro-inflammatory cytokines and chemokines, have been associated to epigenetic adaptations of the injured tissue. Within this review, we discuss the involvement of these epigenetic changes, including histone modifications, DNA methylation, non-coding RNAs, and alteration of chromatin modifiers, that have been shown to trigger modification of nociception after neural lesions. In particular, the function on these processes of EZH2, JMJD3, MeCP2, several histone deacetylases (HDACs) and histone acetyl transferases (HATs), G9a, DNMT, REST and diverse non-coding RNAs, are described. Despite the effort on developing new therapies, current treatments have only produced limited relief of this pain in a portion of patients. Thus, the present review aims to contribute to find novel targets for chronic neuropathic pain treatment.
Collapse
Affiliation(s)
- Clara Penas
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Xavier Navarro
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
21
|
Olivero G, Grilli M, Vergassola M, Bonfiglio T, Padolecchia C, Garrone B, Di Giorgio FP, Tongiani S, Usai C, Marchi M, Pittaluga A. 5-HT 2A-mGlu2/3 receptor complex in rat spinal cord glutamatergic nerve endings: A 5-HT 2A to mGlu2/3 signalling to amplify presynaptic mechanism of auto-control of glutamate exocytosis. Neuropharmacology 2018; 133:429-439. [PMID: 29499271 DOI: 10.1016/j.neuropharm.2018.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/25/2022]
Abstract
Presynaptic mGlu2/3 autoreceptors exist in rat spinal cord nerve terminals as suggested by the finding that LY379268 inhibited the 15 mM KCl-evoked release of [3H]D-aspartate ([3H]D-Asp) in a LY341495-sensitive manner. Spinal cord glutamatergic nerve terminals also possess presynaptic release-regulating 5-HT2A heteroreceptors. Actually, the 15 mM KCl-evoked [3H]D-Asp exocytosis from spinal cord synaptosomes was reduced by the 5-HT2A agonist (±)DOI, an effect reversed by the 5-HT2A antagonists MDL11,939, MDL100907, ketanserin and trazodone (TZD). We investigated whether mGlu2/3 and 5-HT2A receptors colocalize and cross-talk in these terminals and if 5-HT2A ligands modulate the mGlu2/3-mediated control of glutamate exocytosis. Western blot analysis and confocal microscopy highlighted the presence of mGlu2/3 and 5-HT2A receptor proteins in spinal cord VGLUT1 positive synaptosomes, where mGlu2/3 and 5-HT2A receptor immunoreactivities largely colocalize. Furthermore, mGlu2/3 immunoprecipitates from spinal cord synaptosomes were also 5-HT2A immunopositive. Interestingly, the 100 pM LY379268-induced reduction of the 15 mM KCl-evoked [3H]D-Asp overflow as well as its inhibition by 100 nM (±)DOI became undetectable when the two agonists were concomitantly added. Conversely, 5-HT2A antagonists (MDL11,939, MDL100907, ketanserin and TZD) reinforced the release-regulating activity of mGlu2/3 autoreceptors. Increased expression of mGlu2/3 receptor proteins in synaptosomal plasmamembranes paralleled the gain of function of the mGlu2/3 autoreceptors elicited by 5-HT2A antagonists. Based on these results, we propose that in spinal cord glutamatergic terminals i) mGlu2/3 and 5-HT2A receptors colocalize and interact one each other in an antagonist-like manner, ii) 5-HT2A antagonists are indirect positive allosteric modulator of mGlu2/3 autoreceptors controlling glutamate exocytosis.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132, Genoa, Italy
| | - Matteo Vergassola
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy
| | - Cristina Padolecchia
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy
| | - Beatrice Garrone
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., Piazzale della Stazione Snc, 00071, S. Palomba-Pomezia (Rome), Italy
| | - Francesco Paolo Di Giorgio
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., Piazzale della Stazione Snc, 00071, S. Palomba-Pomezia (Rome), Italy
| | - Serena Tongiani
- Angelini RR&D (Research, Regulatory & Development) - Angelini S.p.A., Piazzale della Stazione Snc, 00071, S. Palomba-Pomezia (Rome), Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149, Genoa, Italy
| | - Mario Marchi
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132, Genoa, Italy.
| |
Collapse
|
22
|
Sergi G, Pizzato S, Piovesan F, Trevisan C, Veronese N, Manzato E. Effects of acetyl-L-carnitine in diabetic neuropathy and other geriatric disorders. Aging Clin Exp Res 2018; 30:133-138. [PMID: 28534301 DOI: 10.1007/s40520-017-0770-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/05/2017] [Indexed: 01/31/2023]
Abstract
A long history of diabetes mellitus and increasing age are associated with the onset of diabetic neuropathy, a painful and highly disabling complication with a prevalence peaking at 50% among elderly diabetic patients. Acetyl-L-carnitine (ALC) is a molecule derived from the acetylation of carnitine in the mitochondria that has an essential role in energy production. It has recently been proposed as a therapy to improve the symptoms of diabetic neuropathy. ALC is widely distributed in mammalian tissues, including the brain, blood-brain barrier, brain neurons, and astrocytes. Aside from its metabolic activity, ALC has demonstrated cytoprotective, antioxidant, and antiapoptotic effects in the nervous system. It exerts an analgesic action by reducing the concentration of glutamate in the synapses. It facilitates nerve regeneration and damage repair after primary trauma: its positive effects on metabolism promote the synthesis, fluidity, and functionality of neuronal membranes, increase protein synthesis, and improve the axonal transport of neurofilament proteins and tubulin. It also amplifies nerve growth factor responsiveness, an effect that is believed to enhance overall neurite growth. ALC has been proposed for the treatment of various neurological and psychiatric diseases, such as mood disorders and depression, dementias, Alzheimer's disease, and Parkinson's disease, because synaptic energy states and mitochondrial dysfunction are core factors in their pathogenesis.
Collapse
Affiliation(s)
- G Sergi
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - S Pizzato
- Department of Medicine - DIMED, University of Padova, Padova, Italy.
| | - F Piovesan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - C Trevisan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - N Veronese
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - E Manzato
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
23
|
l-Acetylcarnitine: A Mechanistically Distinctive and Potentially Rapid-Acting Antidepressant Drug. Int J Mol Sci 2017; 19:ijms19010011. [PMID: 29267192 PMCID: PMC5795963 DOI: 10.3390/ijms19010011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/09/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
Current therapy of mood disorders has several limitations. Although a high number of drugs are clinically available, as of today, nearly two-thirds of individuals do not achieve full symptomatic remission after treatment with conventional antidepressants. Moreover, several weeks of drug treatment are usually required to obtain clinical effects, a limitation that has considerable clinical implications, ranging from high suicide risk to reduced compliance. The characteristic lag time in classical antidepressant effectiveness has given great impulse to the search for novel therapeutics with more rapid effects. l-acetylcarnitine (LAC), a small molecule of growing interest for its pharmacological properties, is currently marketed for treatment of neuropathic pain. Recent preclinical and clinical data suggested that LAC may exert antidepressant effects with a more rapid onset than conventional drugs. Herein, we review data supporting LAC antidepressant activity and its distinctive mechanisms of action compared with monoaminergic antidepressants. Furthermore, we discuss the unique pharmacological properties of LAC that allow us to look at this molecule as representative of next generation antidepressants with a safe profile.
Collapse
|
24
|
Zammataro M, Merlo S, Barresi M, Parenti C, Hu H, Sortino MA, Chiechio S. Chronic Treatment with Fluoxetine Induces Sex-Dependent Analgesic Effects and Modulates HDAC2 and mGlu2 Expression in Female Mice. Front Pharmacol 2017; 8:743. [PMID: 29104538 PMCID: PMC5654865 DOI: 10.3389/fphar.2017.00743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Gender and sex differences in pain recognition and drug responses have been reported in clinical trials and experimental models of pain. Among antidepressants, contradictory results have been observed in patients treated with selective serotonin reuptake inhibitors (SSRIs). This study evaluated sex differences in response to the SSRI fluoxetine after chronic administration in the mouse formalin test. Adult male and female CD1 mice were intraperitoneally injected with fluoxetine (10 mg/kg) for 21 days and subjected to pain assessment. Fluoxetine treatment reduced the second phase of the formalin test only in female mice without producing behavioral changes in males. We also observed that fluoxetine was able to specifically increase the expression of metabotropic glutamate receptor type-2 (mGlu2) in females. Also a reduced expression of the epigenetic modifying enzyme, histone deacetylase 2 (HDAC2), in dorsal root ganglia (DRG) and dorsal horn (DH) together with an increase histone 3 acetylation (H3) level was observed in females but not in males. With this study we provide evidence that fluoxetine induces sex specific changes in HDAC2 and mGlu2 expression in the DH of the spinal cord and in DRGs and suggests a molecular explanation for the analgesic effects in female mice.
Collapse
Affiliation(s)
- Magda Zammataro
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Carmela Parenti
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, University of Catania, Catania, Italy
| |
Collapse
|
25
|
Notartomaso S, Mascio G, Bernabucci M, Zappulla C, Scarselli P, Cannella M, Imbriglio T, Gradini R, Battaglia G, Bruno V, Nicoletti F. Analgesia induced by the epigenetic drug, L-acetylcarnitine, outlasts the end of treatment in mouse models of chronic inflammatory and neuropathic pain. Mol Pain 2017; 13:1744806917697009. [PMID: 28326943 PMCID: PMC5407675 DOI: 10.1177/1744806917697009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background L-acetylcarnitine, a drug marketed for the treatment of chronic pain, causes analgesia by epigenetically up-regulating type-2 metabotropic glutamate (mGlu2) receptors in the spinal cord. Because the epigenetic mechanisms are typically long-lasting, we hypothesized that analgesia could outlast the duration of L-acetylcarnitine treatment in models of inflammatory and neuropathic pain. Results A seven-day treatment with L-acetylcarnitine (100 mg/kg, once a day, i.p.) produced an antiallodynic effect in the complete Freund adjuvant mouse model of chronic inflammatory pain. L-Acetylcarnitine-induced analgesia persisted for at least 14 days after drug withdrawal. In contrast, the analgesic effect of pregabalin, amitryptiline, ceftriaxone, and N-acetylcysteine disappeared seven days after drug withdrawal. L-acetylcarnitine treatment enhanced mGlu2/3 receptor protein levels in the dorsal region of the spinal cord. This effect also persisted for two weeks after drug withdrawal and was associated with increased levels of acetylated histone H3 bound to the Grm2 gene promoter in the dorsal root ganglia. A long-lasting analgesic effect of L-acetylcarnitine was also observed in mice subjected to chronic constriction injury of the sciatic nerve. In these animals, a 14-day treatment with pregabalin, amitryptiline, tramadol, or L-acetylcarnitine produced a significant antiallodynic effect, with pregabalin displaying the greatest efficacy. In mice treated with pregabalin, tramadol or L-acetylcarnitine the analgesic effect was still visible 15 days after the end of drug treatment. However, only in mice treated with L-acetylcarnitine analgesia persisted 37 days after drug withdrawal. This effect was associated with an increase in mGlu2/3 receptor protein levels in the dorsal horns of the spinal cord. Conclusions Our findings suggest that L-acetylcarnitine has the unique property to cause a long-lasting analgesic effect that might reduce relapses in patients suffering from chronic pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roberto Gradini
- 1 I.R.C.C.S. Neuromed, Pozzilli, Italy.,2 Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Valeria Bruno
- 1 I.R.C.C.S. Neuromed, Pozzilli, Italy.,3 Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- 1 I.R.C.C.S. Neuromed, Pozzilli, Italy.,3 Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
26
|
Johnson MP, Muhlhauser MA, Nisenbaum ES, Simmons RMA, Forster BM, Knopp KL, Yang L, Morrow D, Li DL, Kennedy JD, Swanson S, Monn JA. Broad spectrum efficacy with LY2969822, an oral prodrug of metabotropic glutamate 2/3 receptor agonist LY2934747, in rodent pain models. Br J Pharmacol 2017; 174:822-835. [PMID: 28177520 DOI: 10.1111/bph.13740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE A body of evidence suggests activation of metabotropic glutamate 2/3 (mGlu2/3 ) receptors would be an effective analgesic in chronic pain conditions. Thus, the analgesic properties of a novel mGlu2/3 receptor agonist prodrug were investigated. EXPERIMENTAL APPROACH After oral absorption, the prodrug LY2969822 rapidly converts to the brain penetrant, potent and subtype-selective mGlu2/3 receptor agonist LY2934747. Behavioural assessments of allodynia, hyperalgesia and nocifensive behaviours were determined in preclinical pain models after administration of LY2969822 0.3-10 mg·kg-1 . In addition, the ability of i.v. LY2934747 to modulate dorsal horn spinal cord wide dynamic range (WDR) neurons in spinal nerve ligated (SNL) rats was assessed. KEY RESULTS Following treatment with LY2934747, the spontaneous activity and electrically-evoked wind-up of WDR neurons in rats that had undergone spinal nerve ligation and developed mechanical allodynia were suppressed. In a model of sensitization, orally administered LY2969822 prevented the nociceptive behaviours induced by an intraplantar injection of formalin. The on-target nature of this effect was confirmed by blockade with an mGlu2/3 receptor antagonist. LY2969822 prevented capsaicin-induced tactile hypersensitivity, reversed the SNL-induced tactile hypersensitivity and reversed complete Freund's adjuvant - induced mechanical hyperalgesia. The mGlu2/3 receptor agonist prodrug demonstrated efficacy in visceral pain models, including a colorectal distension model and partially prevented the nocifensive behaviours in the mouse acetic acid writhing model. CONCLUSIONS AND IMPLICATIONS Following oral administration of the prodrug LY2969822, the mGlu2/3 receptor agonist LY2934747 was formed and this attenuated pain behaviours across a broad range of preclinical pain models.
Collapse
Affiliation(s)
- Michael P Johnson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mark A Muhlhauser
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Eric S Nisenbaum
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Rosa M A Simmons
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Beth M Forster
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Kelly L Knopp
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Lijuan Yang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Denise Morrow
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Dominic L Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jeffrey D Kennedy
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Steven Swanson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - James A Monn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
27
|
Matrisciano F, Panaccione I, Grayson DR, Nicoletti F, Guidotti A. Metabotropic Glutamate 2/3 Receptors and Epigenetic Modifications in Psychotic Disorders: A Review. Curr Neuropharmacol 2016; 14:41-7. [PMID: 26813121 PMCID: PMC4787284 DOI: 10.2174/1570159x13666150713174242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia and Bipolar Disorder are chronic psychiatric disorders, both considered as “major psychosis”; they are thought to share some pathogenetic factors involving a dysfunctional gene x environment interaction. Alterations in the glutamatergic transmission have been suggested to be involved in the pathogenesis of psychosis. Our group developed an epigenetic model of schizophrenia originated by Prenatal Restraint Stress (PRS) paradigm in mice. PRS mice developed some behavioral alterations observed in schizophrenic patients and classic animal models of schizophrenia, i.e. deficits in social interaction, locomotor activity and prepulse inhibition. They also showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Interestingly, behavioral and molecular alterations were reversed by treatment with mGlu2/3 agonists. Based on these findings, we speculate that pharmacological modulation of these receptors could have a great impact on early phase treatment of psychosis together with the possibility to modulate specific epigenetic key protein involved in the development of psychosis. In this review, we will discuss in more details the specific features of the PRS mice as a suitable epigenetic model for
major psychosis. We will then focus on key proteins of chromatin remodeling machinery as potential target for new
pharmacological treatment through the activation of metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Psychiatry and Behavioral Science, Northwestern University, Feinberg School of Medicine, 303E Chicago Ave, Chicago, IL 60611.
| | | | | | | | | |
Collapse
|
28
|
Cid JM, Tresadern G, Vega JA, de Lucas AI, Del Cerro A, Matesanz E, Linares ML, García A, Iturrino L, Pérez-Benito L, Macdonald GJ, Oehlrich D, Lavreysen H, Peeters L, Ceusters M, Ahnaou A, Drinkenburg W, Mackie C, Somers M, Trabanco AA. Discovery of 8-Trifluoromethyl-3-cyclopropylmethyl-7-[(4-(2,4-difluorophenyl)-1-piperazinyl)methyl]-1,2,4-triazolo[4,3-a]pyridine (JNJ-46356479), a Selective and Orally Bioavailable mGlu2 Receptor Positive Allosteric Modulator (PAM). J Med Chem 2016; 59:8495-507. [PMID: 27579727 DOI: 10.1021/acs.jmedchem.6b00913] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Positive allosteric modulators of the metabotropic glutamate 2 receptor have generated great interest in the past decade. There is mounting evidence of their potential as therapeutic agents in the treatment of multiple central nervous system disorders. We have previously reported substantial efforts leading to potent and selective mGlu2 PAMs. However, finding compounds with the optimal combination of in vitro potency and good druglike properties has remained elusive, in part because of the hydrophobic nature of the allosteric binding site. Herein, we report on the lead optimization process to overcome the poor solubility inherent to the advanced lead 6. Initial prototypes already showed significant improvements in solubility while retaining good functional activity but displayed new liabilities associated with metabolism and hERG inhibition. Subsequent subtle modifications efficiently addressed those issues leading to the identification of compound 27 (JNJ-46356479). This new lead represents a more balanced profile that offers a significant improvement on the druglike attributes compared to previously reported leads.
Collapse
Affiliation(s)
- Jose María Cid
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Gary Tresadern
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Juan Antonio Vega
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Ana Isabel de Lucas
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Alcira Del Cerro
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Encarnación Matesanz
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - María Lourdes Linares
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Aránzazu García
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Laura Iturrino
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Laura Pérez-Benito
- Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina, Universitat Autonoma de Barcelona , Bellaterra 08193, Spain
| | - Gregor J Macdonald
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Daniel Oehlrich
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Hilde Lavreysen
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Luc Peeters
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Marc Ceusters
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Abdellah Ahnaou
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | | | - Claire Mackie
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Marijke Somers
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Andrés A Trabanco
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| |
Collapse
|
29
|
Davidson S, Golden JP, Copits BA, Ray PR, Vogt SK, Valtcheva MV, Schmidt RE, Ghetti A, Price T, Gereau RW. Group II mGluRs suppress hyperexcitability in mouse and human nociceptors. Pain 2016; 157:2081-2088. [PMID: 27218869 PMCID: PMC4988887 DOI: 10.1097/j.pain.0000000000000621] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We introduce a strategy for preclinical research wherein promising targets for analgesia are tested in rodent and subsequently validated in human sensory neurons. We evaluate group II metabotropic glutamate receptors, the activation of which is efficacious in rodent models of pain. Immunohistochemical analysis showed positive immunoreactivity for mGlu2 in rodent dorsal root ganglia (DRG), peripheral fibers in skin, and central labeling in the spinal dorsal horn. We also found mGlu2-positive immunoreactivity in human neonatal and adult DRG. RNA-seq analysis of mouse and human DRG revealed a comparative expression profile between species for group II mGluRs and for opioid receptors. In rodent sensory neurons under basal conditions, activation of group II mGluRs with a selective group II agonist produced no changes to membrane excitability. However, membrane hyperexcitability in sensory neurons exposed to the inflammatory mediator prostaglandin E2 (PGE2) was prevented by (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC). In human sensory neurons from donors without a history of chronic pain, we show that PGE2 produced hyperexcitability that was similarly blocked by group II mGluR activation. These results reveal a mechanism for peripheral analgesia likely shared by mice and humans and demonstrate a translational research strategy to improve preclinical validation of novel analgesics using cultured human sensory neurons.
Collapse
Affiliation(s)
- Steve Davidson
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Judith P. Golden
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Bryan A. Copits
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Pradipta R. Ray
- School of Brain and Behavioral Sciences, University of Texas at Dallas. 75080
| | - Sherri K. Vogt
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Manouela V. Valtcheva
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Robert E. Schmidt
- Washington University in St. Louis, School of Medicine Department of Neuropathology, St. Louis, MO. 63110
| | | | - Theodore Price
- School of Brain and Behavioral Sciences, University of Texas at Dallas. 75080
| | - Robert W. Gereau
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| |
Collapse
|
30
|
Dogra S, Sona C, Kumar A, Yadav PN. Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders. Int J Biochem Cell Biol 2016; 77:226-39. [PMID: 27046448 DOI: 10.1016/j.biocel.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) act as a relay center through which extracellular signals, in the form of neurotransmitters or therapeutics, are converted into an intracellular response, which ultimately shapes the overall response at the tissue and behavioral level. Remarkably in similar ways, epigenetic mechanisms also modulate the expression pattern of a large number of genes in response to the dynamic environment inside and outside of the body, and consequently overall response. Emerging evidences from the pharmacogenomics and preclinical studies clearly suggest that these two distinct mechanisms criss-cross each other in several neurological disorders. At one hand such cross-talks between two distinct mechanisms make disease etiology more challenging to understand, while on the other hand if dealt appropriately, such situations might provide an opportunity to find novel druggable target and strategy for the treatment of complex diseases. In this review article, we have summarized and highlighted the main findings that tie epigenetic mechanisms to GPCR mediated signaling in the pathophysiology of central nervous system (CNS) disorders, including depression, addiction and pain.
Collapse
Affiliation(s)
- Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Chandan Sona
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ajeet Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.
| |
Collapse
|
31
|
Di Prisco S, Merega E, Bonfiglio T, Olivero G, Cervetto C, Grilli M, Usai C, Marchi M, Pittaluga A. Presynaptic, release-regulating mGlu2 -preferring and mGlu3 -preferring autoreceptors in CNS: pharmacological profiles and functional roles in demyelinating disease. Br J Pharmacol 2016; 173:1465-77. [PMID: 26791341 DOI: 10.1111/bph.13442] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/08/2016] [Accepted: 01/17/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Presynaptic, release-regulating metabotropic glutamate 2 and 3 (mGlu2/3) autoreceptors exist in the CNS. They represent suitable targets for therapeutic approaches to central diseases that are typified by hyperglutamatergicity. The availability of specific ligands able to differentiate between mGlu2 and mGlu3 subunits allows us to further characterize these autoreceptors. In this study we investigated the pharmacological profile of mGlu2/3 receptors in selected CNS regions and evaluated their functions in mice with experimental autoimmune encephalomyelitis (EAE). EXPERIMENTAL APPROACH The comparative analysis of presynaptic mGlu2/3 autoreceptors was performed by determining the effect of selective mGlu2/3 receptor agonist(s) and antagonist(s) on the release of [(3)H]-D-aspartate from cortical and spinal cord synaptosomes in superfusion. In EAE mice, mGlu2/3 autoreceptor-mediated release functions were investigated and effects of in vivo LY379268 administration on impaired glutamate release examined ex vivo. KEY RESULTS Western blot analysis and confocal microscopy confirmed the presence of presynaptic mGlu2/3 receptor proteins. Cortical synaptosomes possessed LY541850-sensitive, NAAG-insensitive autoreceptors having low affinity for LY379268, while LY541850-insensitive, NAAG-sensitive autoreceptors with high affinity for LY379268 existed in spinal cord terminals. In EAE mice, mGlu2/3 autoreceptors completely lost their inhibitory activity in cortical, but not in spinal cord synaptosomes. In vivo LY379268 administration restored the glutamate exocytosis capability in spinal cord but not in cortical terminals in EAE mice. CONCLUSIONS AND IMPLICATIONS We propose the existence of mGlu2-preferring and mGlu3-preferring autoreceptors in mouse cortex and spinal cord respectively. The mGlu3 -preferring autoreceptors could represent a target for new pharmacological approaches for treating demyelinating diseases.
Collapse
Affiliation(s)
- Silvia Di Prisco
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Elisa Merega
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Chiara Cervetto
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Genoa, Italy
| | - Mario Marchi
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
32
|
Chiechio S. Modulation of Chronic Pain by Metabotropic Glutamate Receptors. PHARMACOLOGICAL MECHANISMS AND THE MODULATION OF PAIN 2016; 75:63-89. [DOI: 10.1016/bs.apha.2015.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
33
|
Lim TKY, Rone MB, Lee S, Antel JP, Zhang J. Mitochondrial and bioenergetic dysfunction in trauma-induced painful peripheral neuropathy. Mol Pain 2015; 11:58. [PMID: 26376783 PMCID: PMC4574230 DOI: 10.1186/s12990-015-0057-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/26/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction is observed in various neuropathic pain phenotypes, such as chemotherapy induced neuropathy, diabetic neuropathy, HIV-associated neuropathy, and in Charcot-Marie-Tooth neuropathy. To investigate whether mitochondrial dysfunction is present in trauma-induced painful mononeuropathy, a time-course of mitochondrial function and bioenergetics was characterized in the mouse partial sciatic nerve ligation model. RESULTS Traumatic nerve injury induces increased metabolic indices of the nerve, resulting in increased oxygen consumption and increased glycolysis. Increased metabolic needs of the nerve are concomitant with bioenergetic and mitochondrial dysfunction. Mitochondrial dysfunction is characterized by reduced ATP synthase activity, reduced electron transport chain activity, and increased futile proton cycling. Bioenergetic dysfunction is characterized by reduced glycolytic reserve, reduced glycolytic capacity, and increased non-glycolytic acidification. CONCLUSION Traumatic peripheral nerve injury induces persistent mitochondrial and bioenergetic dysfunction which implies that pharmacological agents which seek to normalize mitochondrial and bioenergetic dysfunction could be expected to be beneficial for pain treatment. Increases in both glycolytic acidification and non-glycolytic acidification suggest that pH sensitive drugs which preferentially act on acidic tissue will have the ability to preferential act on injured nerves without affecting healthy tissues.
Collapse
Affiliation(s)
- Tony K Y Lim
- Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, 740 Docteur Penfield Ave, Suite 3200, Montreal, QC, H3A 0G1, Canada.
| | - Malena B Rone
- Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada.
| | - Seunghwan Lee
- Alan Edwards Centre for Research on Pain, McGill University, 740 Docteur Penfield Ave, Suite 3200, Montreal, QC, H3A 0G1, Canada. .,Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
| | - Jack P Antel
- Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada.
| | - Ji Zhang
- Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, 740 Docteur Penfield Ave, Suite 3200, Montreal, QC, H3A 0G1, Canada. .,Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
34
|
Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci 2015; 38:237-46. [PMID: 25765319 DOI: 10.1016/j.tins.2015.02.001] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 12/12/2022]
Abstract
Neuropathic and inflammatory pain promote a large number of persisting adaptations at the cellular and molecular level, allowing even transient tissue or nerve damage to elicit changes in cells that contribute to the development of chronic pain and associated symptoms. There is evidence that injury-induced changes in chromatin structure drive stable changes in gene expression and neural function, which may cause several symptoms, including allodynia, hyperalgesia, anxiety, and depression. Recent findings on epigenetic changes in the spinal cord and brain during chronic pain may guide fundamental advances in new treatments. Here, we provide a brief overview of epigenetic regulation in the nervous system and then discuss the still-limited literature that directly implicates epigenetic modifications in chronic pain syndromes.
Collapse
Affiliation(s)
- Giannina Descalzi
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daigo Ikegami
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan; Life Science Tokyo Advanced Research Center (L-StaR), 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Eric J Nestler
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venetia Zachariou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Life Science Tokyo Advanced Research Center (L-StaR), 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
35
|
Holder BR, McNaney CA, Luchetti D, Schaeffer E, Drexler DM. Bioanalysis of acetylcarnitine in cerebrospinal fluid by HILIC-mass spectrometry. Biomed Chromatogr 2015; 29:1375-9. [PMID: 25712252 DOI: 10.1002/bmc.3433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/05/2014] [Accepted: 12/29/2014] [Indexed: 11/09/2022]
Abstract
Acetyl-L-carnitine (ALCAR) is a potential biomarker for the modulation of brain neurotransmitter activity, but is also present in cerebrospinal fluid (CSF). Recent studies have utilized hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) based assays to detect and quantify ALCAR within biofluids such as urine, plasma and serum, using various sample pretreatment procedures. In order to address the need to quantify ALCAR in CSF on a high-throughput scale, a new and simple HILIC-MS/MS assay has been successfully developed and validated. For rapid analysis, CSF sample pretreatment was performed via 'dilute and shoot' directly onto an advanced HILIC column prior to MS/MS detection. This newly developed HILIC-MS/MS assay shows good recoveries of ALCAR without the need for chemical derivatization and multistep sample extraction procedures. The employment of this assay is suitable for the high-throughput bioanalysis and quantification of ALCAR within the CSF of various animal models and human clinical studies.
Collapse
Affiliation(s)
- Brian R Holder
- Pharmaceutical Candidate Optimization, Bioanalytical and Discovery Analytical Sciences, Bristol-Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA.,Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Eastern Point Road, Groton, CT, 06340, USA
| | - Colleen A McNaney
- Pharmaceutical Candidate Optimization, Bioanalytical and Discovery Analytical Sciences, Bristol-Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - David Luchetti
- Exploratory Clinical and Translational Research, Bristol-Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Eric Schaeffer
- Exploratory Clinical and Translational Research, Bristol-Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| | - Dieter M Drexler
- Pharmaceutical Candidate Optimization, Bioanalytical and Discovery Analytical Sciences, Bristol-Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT, 06492, USA
| |
Collapse
|
36
|
Kolber BJ. mGluRs Head to Toe in Pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:281-324. [DOI: 10.1016/bs.pmbts.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Zammataro M, Sortino MA, Parenti C, Gereau RW, Chiechio S. HDAC and HAT inhibitors differently affect analgesia mediated by group II metabotropic glutamate receptors. Mol Pain 2014; 10:68. [PMID: 25406541 PMCID: PMC4247606 DOI: 10.1186/1744-8069-10-68] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 12/24/2022] Open
Abstract
Background Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are key players in epigenetic regulation of gene expression. Analgesic activity by HDAC inhibitors has been reported in different pain models including inflammatory and neuropathic pain. These drugs interfere with gene expression through different mechanisms including chromatin remodeling and/or activation of transcription factors. Among other targets, HDAC inhibitors regulate metabotropic glutamate receptors type 2 (mGlu2) expression in central and peripheral central nervous system. However whether inhibition of HAT activity also regulates mGlu2 expression has not been reported. Findings Here we report that curcumin (CUR), a naturally occurring compound endowed with p300/CREB-binding protein HAT inhibitory activity, is able to induce a drastic down-regulation of the mGlu2 receptor in the mouse spinal cord after systemic administration together with a marked hypoacetylation of histones H3 and H4 in dorsal root ganglia (DRG). Furthermore, the analgesic activity of the mGlu2/3 agonist, LY379268 is lost after a 3-day treatment with CUR. Conversely the analgesic activity of LY379268 is potentiated in mice pretreated for 5 consecutive days with the HDAC inhibitor, Suberoylanilide Hydroxamic Acid (SAHA), known to induce mGlu2-upregulation. Conclusions Our results demonstrate that systemically injected CUR is able to inhibit H3 and H4 acetylation in the DRG and to down-regulate mGlu2 receptors in the spinal cord. We also demonstrate that long term modification of the mGlu2 expression affects the analgesic properties of the orthosteric mGlu2/3 agonist, LY379268. These data open up the possibility that epigenetic modulators might be given in combination with “traditional” drugs in a context of a multi target approach for a better analgesic efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Santina Chiechio
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
38
|
Onofrj M, Ciccocioppo F, Varanese S, di Muzio A, Calvani M, Chiechio S, Osio M, Thomas A. Acetyl-L-carnitine: from a biological curiosity to a drug for the peripheral nervous system and beyond. Expert Rev Neurother 2014; 13:925-36. [DOI: 10.1586/14737175.2013.814930] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Carland JE, Mansfield RE, Ryan RM, Vandenberg RJ. Oleoyl-L-carnitine inhibits glycine transport by GlyT2. Br J Pharmacol 2013; 168:891-902. [PMID: 22978602 DOI: 10.1111/j.1476-5381.2012.02213.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/27/2012] [Accepted: 09/03/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Concentrations of extracellular glycine in the CNS are regulated by two Na(+)/Cl(-) -dependent glycine transporters, GlyT1 and GlyT2. Selective inhibitors of GlyT1 have been developed for the treatment of schizophrenia, whilst selective inhibitors of GlyT2 are analgesic in animal models of pain. We have assessed a series of endogenous lipids as inhibitors of GlyT1 and GlyT2. EXPERIMENTAL APPROACH Human GlyT1 and GlyT2 were expressed in Xenopus laevis oocytes, and the inhibitory actions of a series of acylcarnitines on glycine transport were measured using electrophysiological techniques. KEY RESULTS Oleoyl-L-carnitine inhibited glycine transport by GlyT2, with an IC(50) of 340 nM, which is 15-fold more potent than the previously identified lipid inhibitor N-arachidonyl-glycine. Oleoyl-L-carnitine had a slow onset of inhibition and a slow washout. Using a series of chimeric GlyT1/2 transporters and point mutant transporters, we have identified an isoleucine residue in extracellular loop 4 of GlyT2 that conferred differences in sensitivity to oleoyl-L-carnitine between GlyT2 and GlyT1. CONCLUSIONS AND IMPLICATIONS Oleoyl-L-carnitine is a potent non-competitive inhibitor of GlyT2. Previously identified GlyT2 inhibitors show potential as analgesics and the identification of oleoyl-L-carnitine as a novel GlyT2 inhibitor may lead to new ways of treating pain.
Collapse
Affiliation(s)
- J E Carland
- Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
40
|
Differentially expressed genes in Hirudo medicinalis ganglia after acetyl-L-carnitine treatment. PLoS One 2013; 8:e53605. [PMID: 23308261 PMCID: PMC3537667 DOI: 10.1371/journal.pone.0053605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
Acetyl-L-carnitine (ALC) is a naturally occurring substance that, when administered at supra-physiological concentration, is neuroprotective. It is involved in membrane stabilization and in enhancement of mitochondrial functions. It is a molecule of considerable interest for its clinical application in various neural disorders, including Alzheimer's disease and painful neuropathies. ALC is known to improve the cognitive capability of aged animals chronically treated with the drug and, recently, it has been reported that it impairs forms of non-associative learning in the leech. In the present study the effects of ALC on gene expression have been analyzed in the leech Hirudo medicinalis. The suppression subtractive hybridisation methodology was used for the generation of subtracted cDNA libraries and the subsequent identification of differentially expressed transcripts in the leech nervous system after ALC treatment. The method detects differentially but also little expressed transcripts of genes whose sequence or identity is still unknown. We report that a single administration of ALC is able to modulate positively the expression of genes coding for functions that reveal a lasting effect of ALC on the invertebrate, and confirm the neuroprotective and neuromodulative role of the substance. In addition an important finding is the modulation of genes of vegetal origin. This might be considered an instance of ectosymbiotic mutualism.
Collapse
|
41
|
Bernabucci M, Notartomaso S, Zappulla C, Fazio F, Cannella M, Motolese M, Battaglia G, Bruno V, Gradini R, Nicoletti F. N-Acetyl-cysteine causes analgesia by reinforcing the endogenous activation of type-2 metabotropic glutamate receptors. Mol Pain 2012; 8:77. [PMID: 23088864 PMCID: PMC3543227 DOI: 10.1186/1744-8069-8-77] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/28/2012] [Indexed: 01/21/2023] Open
Abstract
Background Pharmacological activation of type-2 metabotropic glutamate receptors (mGlu2 receptors) causes analgesia in experimental models of inflammatory and neuropathic pain. Presynaptic mGlu2 receptors are activated by the glutamate released from astrocytes by means of the cystine/glutamate antiporter (System xc- or Sxc-). We examined the analgesic activity of the Sxc- activator, N-acetyl-cysteine (NAC), in mice developing inflammatory or neuropathic pain. Results A single injection of NAC (100 mg/kg, i.p.) reduced nocifensive behavior in the second phase of the formalin test. NAC-induced analgesia was abrogated by the Sxc- inhibitor, sulphasalazine (8 mg/kg, i.p.) or by the mGlu2/3 receptor antagonist, LY341495 (1 mg/kg, i.p.). NAC still caused analgesia in mGlu3−/− mice, but was inactive in mGlu2−/− mice. In wild-type mice, NAC retained the analgesic activity in the formalin test when injected daily for 7 days, indicating the lack of tolerance. Both single and repeated injections of NAC also caused analgesia in the complete Freund’s adjuvant (CFA) model of chronic inflammatory pain, and, again, analgesia was abolished by LY341495. Data obtained in mice developing neuropathic pain in response to chronic constriction injury (CCI) of the sciatic nerve were divergent. In this model, a single injection of NAC caused analgesia that was reversed by LY341495, whereas repeated injections of NAC were ineffective. Thus, tolerance to NAC-induced analgesia developed in the CCI model, but not in models of inflammatory pain. The CFA and CCI models differed with respect to the expression levels of xCT (the catalytic subunit of Sxc-) and activator of G-protein signaling type-3 (AGS3) in the dorsal portion of the lumbar spinal cord. CFA-treated mice showed no change in either protein, whereas CCI mice showed an ipislateral reduction in xCT levels and a bilateral increase in AGS3 levels in the spinal cord. Conclusions These data demonstrate that pharmacological activation of Sxc- causes analgesia by reinforcing the endogenous activation of mGlu2 receptors. NAC has an excellent profile of safety and tolerability when clinically used as a mucolytic agent or in the management of acetaminophen overdose. Thus, our data encourage the use of NAC for the experimental treatment of inflammatory pain in humans.
Collapse
|
42
|
Montana MC, Gereau RW. Metabotropic glutamate receptors as targets for analgesia: antagonism, activation, and allosteric modulation. Curr Pharm Biotechnol 2012; 12:1681-8. [PMID: 21466446 DOI: 10.2174/138920111798357438] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/20/2010] [Indexed: 12/20/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) are expressed pre- and post-synaptically throughout the nervous system where they serve as modulators of synaptic transmission and neuronal excitability. Activation of mGluRs can be pro- or anti-nociceptive, depending on their anatomic location and the signaling cascades to which they couple. Antagonists of Group I mGluRs and agonists of Group II and III mGluRs have shown therapeutic promise in animal pain models. This article reviews the potential therapeutic utility of several agents that act predominantly via mGluRs, specifically focusing on their analgesic efficacy and discussing possible off-target effects. Glutamate, the primary excitatory neurotransmitter in the vertebrate nervous system, mediates its effects via activation of two main classes of receptors: ligand-gated ion channels known as ionotropic receptors and G-protein coupled metabotropic receptors. Antagonists of ionotropic glutamate receptors, such as ketamine, have robust analgesic properties; however, their analgesic utility is limited to monitored clinical settings due to the potential for psychomimetic effects.
Collapse
Affiliation(s)
- Michael C Montana
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
43
|
Durand D, Carniglia L, Caruso C, Lasaga M. mGlu3 receptor and astrocytes: partners in neuroprotection. Neuropharmacology 2012; 66:1-11. [PMID: 22564439 DOI: 10.1016/j.neuropharm.2012.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/28/2012] [Accepted: 04/08/2012] [Indexed: 01/11/2023]
Abstract
Astrocytes are currently studied intensively because of their now highlighted relevance as key players with neurons that modulate a wide range of central functions, from synaptic plasticity and synaptogenesis to regulation of metabolic and neuroinflammatory processes. Since the discovery of mGlu3 receptors on astrocytes, accumulating evidence supports a role of these receptors not only in maintaining synaptic homeostasis and treating psychiatric disorders but also in promoting astrocyte survival in several pathologic conditions. This review focuses on providing up-to-date knowledge regarding effects of activating astroglial mGlu3 receptors on psychiatric disorders, astrocyte and neuronal survival, and neurodegenerative diseases. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED), School of Medicine, University of Buenos Aires, Paraguay 2155 Piso 10, CABA 1121 Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
44
|
Doehring A, Geisslinger G, Lötsch J. Epigenetics in pain and analgesia: An imminent research field. Eur J Pain 2012; 15:11-6. [DOI: 10.1016/j.ejpain.2010.06.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/15/2010] [Accepted: 06/01/2010] [Indexed: 01/13/2023]
|
45
|
Chiechio S, Nicoletti F. Metabotropic glutamate receptors and the control of chronic pain. Curr Opin Pharmacol 2011; 12:28-34. [PMID: 22040745 DOI: 10.1016/j.coph.2011.10.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/10/2011] [Accepted: 10/10/2011] [Indexed: 01/13/2023]
Abstract
Over the past two decades metabotropic glutamate (mGlu) receptor ligands have been investigated for their potential therapeutic effects in different disorders of the central nervous system (CNS), including anxiety, depression, schizophrenia, and neurodegenerative diseases. In addition, it has been widely demonstrated that mGlu receptors are able to modulate pain transmission both in inflammatory and neuropathic pain models. A large number of preclinical studies combining the use of selective ligands with the knockout strategy have revealed more details about the role of the different mGlu receptor subtypes in the modulation of pain information. This review will address the role of mGlu receptors in pain sensitivity focusing on different strategies to achieve pain control by targeting specific mGlu receptor subtypes. Specifically, pharmacological interventions aimed at inhibiting group I mGlu receptor-mediated signaling and/or potentiating groups II and III mGlu receptor signaling together with an epigenetic approach leading to an increased expression of mGlu2 receptors will be discussed.
Collapse
|
46
|
Rabchevsky AG, Patel SP, Springer JE. Pharmacological interventions for spinal cord injury: where do we stand? How might we step forward? Pharmacol Ther 2011; 132:15-29. [PMID: 21605594 DOI: 10.1016/j.pharmthera.2011.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 04/28/2011] [Indexed: 12/15/2022]
Abstract
Despite numerous studies reporting some measures of efficacy in the animal literature, there are currently no effective therapies for the treatment of traumatic spinal cord injuries (SCI) in humans. The purpose of this review is to delineate key pathophysiological processes that contribute to neurological deficits after SCI, as well as to describe examples of pharmacological approaches that are currently being tested in clinical trials, or nearing clinical translation, for the therapeutic management of SCI. In particular, we will describe the mechanistic rationale to promote neuroprotection and/or functional recovery based on theoretical, yet targeted pathological events. Finally, we will consider the clinical relevancy for emerging evidence that pharmacologically targeting mitochondrial dysfunction following injury may hold the greatest potential for increasing tissue sparing and, consequently, the extent of functional recovery following traumatic SCI.
Collapse
Affiliation(s)
- Alexander G Rabchevsky
- Spinal Cord & Brain injury Research Center, Lexington, University of Kentucky, KY 40536-0509, USA.
| | | | | |
Collapse
|
47
|
mGlu2 metabotropic glutamate receptors restrain inflammatory pain and mediate the analgesic activity of dual mGlu2/mGlu3 receptor agonists. Mol Pain 2011; 7:6. [PMID: 21235748 PMCID: PMC3030510 DOI: 10.1186/1744-8069-7-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/14/2011] [Indexed: 02/07/2023] Open
Abstract
Group II metabotropic glutamate receptors (mGluRs) couple to the inhibitory G-protein Gi. The group II mGluRs include two subtypes, mGlu2 and mGlu3, and their pharmacological activation produces analgesic effects in inflammatory and neuropathic pain states. However, the specific contribution of each one of the two subtypes has not been clarified due to the lack of selective orthosteric ligands that can discriminate between mGlu2 and mGlu3 subtypes. In this study we used mGlu2 or mGlu3 knock-out mice to dissect the specific role for these two receptors in the endogenous control of inflammatory pain and their specific contribution to the analgesic activity of mixed mGlu2/3 receptor agonists. Our results showed that mGlu2-/- mice display a significantly greater pain response compared to their wild type littermates. Interestingly the increased pain sensitivity in mGlu2-/- mice occurred only in the second phase of the formalin test. No differences were observed in the first phase. In contrast, mGlu3-/- mice did not significantly differ from their wild type littermates in either phase of the formalin test. When systemically injected, a single administration of the mGlu2/3 agonist, LY379268 (3 mg/kg, ip), showed a significant reduction of both phases in wild-type mice and in mGlu3-/- but not in mGlu2-/- mice. However tolerance to the analgesic effect of LY379268 (3 mg/kg, ip) in mGlu3-/- mice developed following 5 consecutive days of injection. Taken together, these results demonstrate that: (i) mGlu2 receptors play a predominant role over mGlu3 receptors in the control of inflammatory pain in mice; (ii) the analgesic activity of mixed mGlu2/3 agonists is entirely mediated by the activation of the mGlu2 subtype and (iii) the development of tolerance to the analgesic effect of mGlu2/3 agonists develops despite the lack of mGlu3 receptors.
Collapse
|
48
|
Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2010; 60:1017-41. [PMID: 21036182 DOI: 10.1016/j.neuropharm.2010.10.022] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/15/2010] [Accepted: 10/21/2010] [Indexed: 12/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson's disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chiechio S, Copani A, Nicoletti F, Gereau RW. L-acetylcarnitine: a proposed therapeutic agent for painful peripheral neuropathies. Curr Neuropharmacol 2010; 4:233-7. [PMID: 18615142 DOI: 10.2174/157015906778019509] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/27/2006] [Accepted: 03/28/2006] [Indexed: 11/22/2022] Open
Abstract
During the past two decades, many pharmacological strategies have been investigated for the management of painful neuropathies. However, neuropathic pain still remains a clinical challenge. A combination of therapies is often required, but unfortunately in most cases adequate pain relief is not achieved. Recently, attention has been focused on the physiological and pharmacological effects of L-acetylcarnitine in neurological disorders. There are a number of reports indicating that L-acetylcarnitine can be considered as a therapeutic agent in neuropathic disorders including painful peripheral neuropathies. In this review article, we will examine the antinociceptive and the neuroprotective effects of Lacetylcarnitine as tested in clinical studies and in animal models of nerve injury.
Collapse
Affiliation(s)
- S Chiechio
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | |
Collapse
|
50
|
Abstract
SummaryAt times providing pain relief in elderly patients can prove troublesome. Their tolerance and perception of pain can differ from that of younger patients, while the incidence of pain is above that found in those of less advanced years.Conventional approaches to providing pain relief can be successful, but the tolerance to the side-effects of those drugs used to provide pain relief can be less. Furthermore, polypharmacy can have implications for the range of analgesic drugs that can be considered. Fortunately there are an increasing range of medicinal products with reduced potential for side-effects that can be considered when treating older patients with pain.
Collapse
|