1
|
Zhou Y, Chapagain P, Desmarini D, Uredi D, Rameh LE, Djordjevic JT, Blind RD, Wang X. Design, synthesis and cellular characterization of a new class of IPMK kinase inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593371. [PMID: 38798512 PMCID: PMC11118372 DOI: 10.1101/2024.05.09.593371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Many genetic studies have established the kinase activity of inositol phosphate multikinase (IPMK) is required for the synthesis of higher-order inositol phosphate signaling molecules, the regulation of gene expression and control of the cell cycle. These genetic studies await orthogonal validation by specific IPMK inhibitors, but no such inhibitors have been synthesized. Here, we report complete chemical synthesis, cellular characterization, structure-activity relationships and rodent pharmacokinetics of a novel series of highly potent IPMK inhibitors. The first-generation compound 1 (UNC7437) decreased cellular proliferation and tritiated inositol phosphate levels in metabolically labeled human U251-MG glioblastoma cells. Compound 1 also regulated the transcriptome of these cells, selectively regulating genes that are enriched in cancer, inflammatory and viral infection pathways. Further optimization of compound 1 eventually led to compound 15 (UNC9750), which showed improved potency and pharmacokinetics in rodents. Compound 15 specifically inhibited cellular accumulation of InsP 5 , a direct product of IPMK kinase activity, while having no effect on InsP 6 levels, revealing a novel metabolic signature detected for the first time by rapid chemical attenuation of cellular IPMK activity. These studies designed, optimized and synthesized a new series of IPMK inhibitors, which reduces glioblastoma cell growth, induces a novel InsP 5 metabolic signature, and reveals novel aspects inositol phosphate cellular metabolism and signaling.
Collapse
|
2
|
Sowd GA, Stivison EA, Chapagain P, Hale AT, Poland JC, Rameh LE, Blind RD. IPMK regulates HDAC3 activity and histone H4 acetylation in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591660. [PMID: 38746349 PMCID: PMC11092501 DOI: 10.1101/2024.04.29.591660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Histone deacetylases (HDACs) repress transcription by catalyzing the removal of acetyl groups from histones. Class 1 HDACs are activated by inositol phosphate signaling molecules in vitro , but it is unclear if this regulation occurs in human cells. Inositol Polyphosphate Multikinase (IPMK) is required for production of inositol hexakisphosphate (IP6), pentakisphosphate (IP5) and certain tetrakisphosphate (IP4) species, all known activators of Class 1 HDACs in vitro . Here, we generated IPMK knockout (IKO) human U251 glioblastoma cells, which decreased cellular inositol phosphate levels and increased histone H4-acetylation by mass spectrometry. ChIP-seq showed IKO increased H4-acetylation at IKO-upregulated genes, but H4-acetylation was unchanged at IKO-downregulated genes, suggesting gene-specific responses to IPMK knockout. HDAC deacetylase enzyme activity was decreased in HDAC3 immunoprecipitates from IKO vs . wild-type cells, while deacetylase activity of other Class 1 HDACs had no detectable changes in activity. Wild-type IPMK expression in IKO cells fully rescued HDAC3 deacetylase activity, while kinase-dead IPMK expression had no effect. Further, the deficiency in HDAC3 activity in immunoprecipitates from IKO cells could be fully rescued by addition of synthesized IP4 (Ins(1,4,5,6)P4) to the enzyme assay, while control inositol had no effect. These data suggest that cellular IPMK-dependent inositol phosphates are required for full HDAC3 enzyme activity and proper histone H4-acetylation. Implications for targeting IPMK in HDAC3-dependent diseases are discussed.
Collapse
|
3
|
Zahedi Y, Zeng S, Ekwall K. An essential role for the Ino80 chromatin remodeling complex in regulation of gene expression during cellular quiescence. Chromosome Res 2023; 31:14. [PMID: 37043046 PMCID: PMC10097750 DOI: 10.1007/s10577-023-09723-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023]
Abstract
Cellular quiescence is an important physiological state both in unicellular and multicellular eukaryotes. Quiescent cells are halted for proliferation and stop the cell cycle at the G0 stage. Using fission yeast as a model organism, we have previously found that several subunits of a conserved chromatin remodeling complex, Ino80C (INOsitol requiring nucleosome remodeling factor), are required for survival in quiescence. Here, we demonstrate that Ino80C has a key function in the regulation of gene expression in G0 cells. We show that null mutants for two Ino80C subunits, Iec1 and Ies2, a putative subunit Arp42, a null mutant for the histone variant H2A.Z, and a null mutant for the Inositol kinase Asp1 have very similar phenotypes in quiescence. These mutants show reduced transcription genome-wide and specifically fail to activate 149 quiescence genes, of which many are localized to the subtelomeric regions. Using spike in normalized ChIP-seq experiments, we show that there is a global reduction of H2A.Z levels in quiescent wild-type cells but not in iec1∆ cells and that a subtelomeric chromosome boundary element is strongly affected by Ino80C. Based on these observations, we propose a model in which Ino80C is evicting H2A.Z from chromatin in quiescent cells, thereby inactivating the subtelomeric boundary element, leading to a reorganization of the chromosome structure and activation of genes required to survive in quiescence.
Collapse
Affiliation(s)
- Yasaman Zahedi
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo Building, 141 83, Huddinge, Sweden
| | - Shengyuan Zeng
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo Building, 141 83, Huddinge, Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo Building, 141 83, Huddinge, Sweden.
| |
Collapse
|
4
|
Wang YH, Sheetz MP. When PIP 2 Meets p53: Nuclear Phosphoinositide Signaling in the DNA Damage Response. Front Cell Dev Biol 2022; 10:903994. [PMID: 35646908 PMCID: PMC9136457 DOI: 10.3389/fcell.2022.903994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that maintain genome stability are critical for preventing tumor progression. In the past decades, many strategies were developed for cancer treatment to disrupt the DNA repair machinery or alter repair pathway selection. Evidence indicates that alterations in nuclear phosphoinositide lipids occur rapidly in response to genotoxic stresses. This implies that nuclear phosphoinositides are an upstream element involved in DNA damage signaling. Phosphoinositides constitute a new signaling interface for DNA repair pathway selection and hence a new opportunity for developing cancer treatment strategies. However, our understanding of the underlying mechanisms by which nuclear phosphoinositides regulate DNA damage repair, and particularly the dynamics of those processes, is rather limited. This is partly because there are a limited number of techniques that can monitor changes in the location and/or abundance of nuclear phosphoinositide lipids in real time and in live cells. This review summarizes our current knowledge regarding the roles of nuclear phosphoinositides in DNA damage response with an emphasis on the dynamics of these processes. Based upon recent findings, there is a novel model for p53's role with nuclear phosphoinositides in DNA damage response that provides new targets for synthetic lethality of tumors.
Collapse
Affiliation(s)
| | - Michael P. Sheetz
- Biochemistry and Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
5
|
Beon J, Han S, Yang H, Park SE, Hyun K, Lee SY, Rhee HW, Seo JK, Kim J, Kim S, Lee D. Inositol polyphosphate multikinase physically binds to the SWI/SNF complex and modulates BRG1 occupancy in mouse embryonic stem cells. eLife 2022; 11:73523. [PMID: 35551737 PMCID: PMC9098221 DOI: 10.7554/elife.73523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Inositol polyphosphate multikinase (IPMK), a key enzyme in inositol polyphosphate (IP) metabolism, is a pleiotropic signaling factor involved in major biological events, including transcriptional control. In the yeast, IPMK and its IP products promote the activity of the chromatin remodeling complex SWI/SNF, which plays a critical role in gene expression by regulating chromatin accessibility. However, the direct link between IPMK and chromatin remodelers remains unclear, raising the question of how IPMK contributes to transcriptional regulation in mammals. By employing unbiased screening approaches and in vivo/in vitro immunoprecipitation, here we demonstrate that mammalian IPMK physically interacts with the SWI/SNF complex by directly binding to SMARCB1, BRG1, and SMARCC1. Furthermore, we identified the specific domains required for IPMK-SMARCB1 binding. Notably, using CUT&RUN and ATAC-seq assays, we discovered that IPMK co-localizes with BRG1 and regulates BRG1 localization as well as BRG1-mediated chromatin accessibility in a genome-wide manner in mouse embryonic stem cells. Together, these findings show that IPMK regulates the promoter targeting of the SWI/SNF complex, thereby contributing to SWI/SNF-meditated chromatin accessibility, transcription, and differentiation in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Jiyoon Beon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sungwook Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyeokjun Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seung Eun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kwangbeom Hyun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Song-Yi Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KAIST Stem Cell Center, KAIST, Daejeon, Republic of Korea.,KAIST Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
6
|
Ghosh N, Das A, Biswas N, Mahajan SP, Madeshiya AK, Khanna S, Sen CK, Roy S. MYO-Inositol In Fermented Sugar Matrix Improves Human Macrophage Function. Mol Nutr Food Res 2022; 66:e2100852. [PMID: 35073444 PMCID: PMC9420542 DOI: 10.1002/mnfr.202100852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Indexed: 11/07/2022]
Abstract
SCOPE Reactive oxygen species production by innate immune cells plays a central role in host defense against invading pathogens at wound-site. A weakened hos-defense results in persistent infection leading to wound chronicity. Fermented Papaya Preparation (FPP), a complex sugar matrix, bolstered respiratory burst activity and improved wound healing outcomes in chronic wound patients. The objective of the current study was to identify underlying molecular factor/s responsible for augmenting macrophage host defense mechanisms following FPP supplementation. METHODS AND RESULTS In depth LC-MS/MS analysis of cells supplemented with FPP led to identification of myo-inositol as a key determinant of FPP activity towards improving macrophage function. Myo-inositol, in quantities that is present in FPP, significantly improved macrophage respiratory burst and phagocytosis via de novo synthesis pathway of ISYNA1. Additionally, myo-inositol transporters, HMIT and SMIT1, played a significant role in such activity. Blocking these pathways using siRNA attenuated FPP-induced improved macrophage host defense activities. FPP supplementation emerges as a novel approach to increase intracellular myo-inositol levels. Such supplementation also modified wound microenvironment in chronic wound patients to augment myo-inositol levels in wound fluid. CONCLUSION These observations indicate that myo-inositol in FPP influences multiple aspects of macrophage function critical for host defense against invading pathogens. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nandini Ghosh
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amitava Das
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Nirupam Biswas
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sanskruti P Mahajan
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amit K Madeshiya
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Savita Khanna
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Chandan K Sen
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sashwati Roy
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| |
Collapse
|
7
|
Unconventional metabolites in chromatin regulation. Biosci Rep 2022; 42:230604. [PMID: 34988581 PMCID: PMC8777195 DOI: 10.1042/bsr20211558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Chromatin, the complex of DNA and histone proteins, serves as a main integrator of cellular signals. Increasing evidence links cellular functional to chromatin state. Indeed, different metabolites are emerging as modulators of chromatin function and structure. Alterations in chromatin state are decisive for regulating all aspects of genome function and ultimately have the potential to produce phenotypic changes. Several metabolites such as acetyl-CoA, S-adenosylmethionine (SAM) or adenosine triphosphate (ATP) have now been well characterized as main substrates or cofactors of chromatin-modifying enzymes. However, there are other metabolites that can directly interact with chromatin influencing its state or that modulate the properties of chromatin regulatory factors. Also, there is a growing list of atypical enzymatic and nonenzymatic chromatin modifications that originate from different cellular pathways that have not been in the limelight of chromatin research. Here, we summarize different properties and functions of uncommon regulatory molecules originating from intermediate metabolism of lipids, carbohydrates and amino acids. Based on the various modes of action on chromatin and the plethora of putative, so far not described chromatin-regulating metabolites, we propose that there are more links between cellular functional state and chromatin regulation to be discovered. We hypothesize that these connections could provide interesting starting points for interfering with cellular epigenetic states at a molecular level.
Collapse
|
8
|
Zhou X, Li J, Tang N, Xie H, Fan X, Chen H, Tang M, Xie X. Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Microorganisms 2021; 9:1557. [PMID: 34442636 PMCID: PMC8401276 DOI: 10.3390/microorganisms9081557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/03/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi form a mutualistic symbiosis with a majority of terrestrial vascular plants. To achieve an efficient nutrient trade with their hosts, AM fungi sense external and internal nutrients, and integrate different hierarchic regulations to optimize nutrient acquisition and homeostasis during mycorrhization. However, the underlying molecular networks in AM fungi orchestrating the nutrient sensing and signaling remain elusive. Based on homology search, we here found that at least 72 gene components involved in four nutrient sensing and signaling pathways, including cAMP-dependent protein kinase A (cAMP-PKA), sucrose non-fermenting 1 (SNF1) protein kinase, target of rapamycin kinase (TOR) and phosphate (PHO) signaling cascades, are well conserved in AM fungi. Based on the knowledge known in model yeast and filamentous fungi, we outlined the possible gene networks functioning in AM fungi. These pathways may regulate the expression of downstream genes involved in nutrient transport, lipid metabolism, trehalase activity, stress resistance and autophagy. The RNA-seq analysis and qRT-PCR results of some core genes further indicate that these pathways may play important roles in spore germination, appressorium formation, arbuscule longevity and sporulation of AM fungi. We hope to inspire further studies on the roles of these candidate genes involved in these nutrient sensing and signaling pathways in AM fungi and AM symbiosis.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China;
| | - Nianwu Tang
- UMR Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280 Champenoux, France;
| | - Hongyun Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| |
Collapse
|
9
|
Lev S, Bowring B, Desmarini D, Djordjevic JT. Inositol polyphosphate-protein interactions: Implications for microbial pathogenicity. Cell Microbiol 2021; 23:e13325. [PMID: 33721399 PMCID: PMC9286782 DOI: 10.1111/cmi.13325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
Inositol polyphosphates (IPs) and inositol pyrophosphates (PP-IPs) regulate diverse cellular processes in eukaryotic cells. IPs and PP-IPs are highly negatively charged and exert their biological effects by interacting with specific protein targets. Studies performed predominantly in mammalian cells and model yeasts have shown that IPs and PP-IPs modulate target function through allosteric regulation, by promoting intra- and intermolecular stabilization and, in the case of PP-IPs, by donating a phosphate from their pyrophosphate (PP) group to the target protein. Technological advances in genetics have extended studies of IP function to microbial pathogens and demonstrated that disrupting PP-IP biosynthesis and PP-IP-protein interaction has a profound impact on pathogenicity. This review summarises the complexity of IP-mediated regulation in eukaryotes, including microbial pathogens. It also highlights examples of poor conservation of IP-protein interaction outcome despite the presence of conserved IP-binding domains in eukaryotic proteomes.
Collapse
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Sydney Medical School-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Abstract
BACKGROUND Dengue virus causes dengue fever (DF)disease, transmitted by the mosquito Aedes aegypti. The symptoms could be severe and disable the affected individuals for weeks. The severe form, dengue hemorrhagic fever (DHF), can lead to death if not adequately attended to. Due to global warming, the vector mosquito will advance over new areas and expose more people to this disease over the next decades. Despite the severity, there are no treatments nor efficient vaccines available. Metabolomic studies have shown a new perspective to understand this disease better at a new molecular level. AIM OF REVIEW Many published works rely on samples obtained from animal studies. This review will mainly focus on human samples and cell culture experiments to view how the dengue virus affects the metabolomic profile. KEY SCIENTIFIC CONCEPTS OF REVIEW The review compiles the sample sources, metabolomic techniques used, the detected compounds, and how they behave in different DF stages. This disease causes a significant change in many metabolites, but some results are still conflicting between studies. The results gathered here show that metabolomic approaches prove to be an excellent and viable way to expand knowledge about DF.
Collapse
Affiliation(s)
| | - Karina Inacio Carvalho
- Hospital Israelita Albert Einstein, São Paulo, Brazil.
- Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
11
|
Seo HR, Jeong D, Lee S, Lee HS, Lee SA, Kang SW, Kwon J. CHIP and BAP1 Act in Concert to Regulate INO80 Ubiquitination and Stability for DNA Replication. Mol Cells 2021; 44:101-115. [PMID: 33658435 PMCID: PMC7941006 DOI: 10.14348/molcells.2021.2258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
The INO80 chromatin remodeling complex has roles in many essential cellular processes, including DNA replication. However, the mechanisms that regulate INO80 in these processes remain largely unknown. We previously reported that the stability of Ino80, the catalytic ATPase subunit of INO80, is regulated by the ubiquitin proteasome system and that BRCA1-associated protein-1 (BAP1), a nuclear deubiquitinase with tumor suppressor activity, stabilizes Ino80 via deubiquitination and promotes replication fork progression. However, the E3 ubiquitin ligase that targets Ino80 for proteasomal degradation was unknown. Here, we identified the C-terminus of Hsp70-interacting protein (CHIP), the E3 ubiquitin ligase that functions in cooperation with Hsp70, as an Ino80-interacting protein. CHIP polyubiquitinates Ino80 in a manner dependent on Hsp70. Contrary to our expectation that CHIP degrades Ino80, CHIP instead stabilizes Ino80 by extending its halflife. The data suggest that CHIP stabilizes Ino80 by inhibiting degradative ubiquitination. We also show that CHIP works together with BAP1 to enhance the stabilization of Ino80, leading to its chromatin binding. Interestingly, both depletion and overexpression of CHIP compromise replication fork progression with little effect on fork stalling, as similarly observed for BAP1 and Ino80, indicating that an optimal cellular level of Ino80 is important for replication fork speed but not for replication stress suppression. This work therefore idenitifes CHIP as an E3 ubiquitin ligase that stabilizes Ino80 via nondegradative ubiquitination and suggests that CHIP and BAP1 act in concert to regulate Ino80 ubiquitination to fine-tune its stability for efficient DNA replication.
Collapse
Affiliation(s)
- Hye-Ran Seo
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Daun Jeong
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Sunmi Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Han-Sae Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
- Present address: Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jongbum Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
12
|
Hoffmeister H, Fuchs A, Komives E, Groebner-Ferreira R, Strobl L, Nazet J, Heizinger L, Merkl R, Dove S, Längst G. Sequence and functional differences in the ATPase domains of CHD3 and SNF2H promise potential for selective regulability and drugability. FEBS J 2021; 288:4000-4023. [PMID: 33403747 DOI: 10.1111/febs.15699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
Chromatin remodelers use the energy of ATP hydrolysis to regulate chromatin dynamics. Their impact for development and disease requires strict enzymatic control. Here, we address the differential regulability of the ATPase domain of hSNF2H and hCHD3, exhibiting similar substrate affinities and enzymatic activities. Both enzymes are comparably strongly inhibited in their ATP hydrolysis activity by the competitive ATPase inhibitor ADP. However, the nucleosome remodeling activity of SNF2H is more strongly affected than that of CHD3. Beside ADP, also IP6 inhibits the nucleosome translocation of both enzymes to varying degrees, following a competitive inhibition mode at CHD3, but not at SNF2H. Our observations are further substantiated by mutating conserved Q- and K-residues of ATPase domain motifs. The variants still bind both substrates and exhibit a wild-type similar, basal ATP hydrolysis. Apart from three CHD3 variants, none of the variants can translocate nucleosomes, suggesting for the first time that the basal ATPase activity of CHD3 is sufficient for nucleosome remodeling. Together with the ADP data, our results propose a more efficient coupling of ATP hydrolysis and remodeling in CHD3. This aspect correlates with findings that CHD3 nucleosome translocation is visible at much lower ATP concentrations than SNF2H. We propose sequence differences between the ATPase domains of both enzymes as an explanation for the functional differences and suggest that aa interactions, including the conserved Q- and K-residues distinctly regulate ATPase-dependent functions of both proteins. Our data emphasize the benefits of remodeler ATPase domains for selective drugability and/or regulability of chromatin dynamics.
Collapse
Affiliation(s)
- Helen Hoffmeister
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| | - Andreas Fuchs
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| | - Elizabeth Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Regina Groebner-Ferreira
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| | - Laura Strobl
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| | - Julian Nazet
- Department of Biochemistry II, University of Regensburg, Germany
| | | | - Rainer Merkl
- Department of Biochemistry II, University of Regensburg, Germany
| | - Stefan Dove
- Department of Pharmaceutical and Medical Chemistry II, University of Regensburg, Germany
| | - Gernot Längst
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| |
Collapse
|
13
|
Weinberg SE, Sun LY, Yang AL, Liao J, Yang GY. Overview of Inositol and Inositol Phosphates on Chemoprevention of Colitis-Induced Carcinogenesis. Molecules 2020; 26:E31. [PMID: 33374769 PMCID: PMC7796135 DOI: 10.3390/molecules26010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic inflammation is one of the most common and well-recognized risk factors for human cancer, including colon cancer. Inflammatory bowel disease (IBD) is defined as a longstanding idiopathic chronic active inflammatory process in the colon, including ulcerative colitis and Crohn's disease. Importantly, patients with IBD have a significantly increased risk for the development of colorectal carcinoma. Dietary inositol and its phosphates, as well as phospholipid derivatives, are well known to benefit human health in diverse pathologies including cancer prevention. Inositol phosphates including InsP3, InsP6, and other pyrophosphates, play important roles in cellular metabolic and signal transduction pathways involved in the control of cell proliferation, differentiation, RNA export, DNA repair, energy transduction, ATP regeneration, and numerous others. In the review, we highlight the biologic function and health effects of inositol and its phosphates including the nature and sources of these molecules, potential nutritional deficiencies, their biologic metabolism and function, and finally, their role in the prevention of colitis-induced carcinogenesis.
Collapse
Affiliation(s)
- Samuel E. Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA; (S.E.W.); (L.Y.S.); (J.L.)
| | - Le Yu Sun
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA; (S.E.W.); (L.Y.S.); (J.L.)
| | - Allison L. Yang
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 1293 York Avenue, New York, NY 10065, USA;
| | - Jie Liao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA; (S.E.W.); (L.Y.S.); (J.L.)
| | - Guang Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA; (S.E.W.); (L.Y.S.); (J.L.)
| |
Collapse
|
14
|
Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. ADVANCES IN GENETICS 2020; 107:89-120. [PMID: 33641749 DOI: 10.1016/bs.adgen.2020.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural or synthetic compounds that interfere with the bioavailability of nutrients are called antinutrients. Phytic acid (PA) is one of the major antinutrients present in the grains and acts as a chelator of micronutrients. The presence of six reactive phosphate groups in PA hinders the absorption of micronutrients in the gut of non-ruminants. Consumption of PA-rich diet leads to deficiency of minerals such as iron and zinc among human population. On the contrary, PA is a natural antioxidant, and PA-derived molecules function in various signal transduction pathways. Therefore, optimal concentration of PA needs to be maintained in plants to avoid adverse pleiotropic effects, as well as to ensure micronutrient bioavailability in the diets. Given this, the chapter enumerates the structure, biosynthesis, and accumulation of PA in food grains followed by their roles in growth, development, and stress responses. Further, the chapter elaborates on the antinutritional properties of PA and explains the conventional breeding and transgene-based approaches deployed to develop low-PA varieties. Studies have shown that conventional breeding methods could develop low-PA lines; however, the pleiotropic effects of these methods viz. reduced yield, embryo abnormalities, and poor seed quality hinder the use of breeding strategies. Overexpression of phytase in the endosperm and RNAi-mediated silencing of genes involved in myo-inositol biosynthesis overcome these constraints. Next-generation genome editing approaches, including CRISPR-Cas9 enable the manipulation of more than one gene involved in PA biosynthesis pathway through multiplex editing, and scope exists to deploy such tools in developing varieties with optimal PA levels.
Collapse
Affiliation(s)
- J Lydia Pramitha
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Rajasekaran Ravikesavan
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - A John Joel
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai, Tamil Nadu, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
15
|
The Host Cell Metabolite Inositol Hexakisphosphate Promotes Efficient Endogenous HIV-1 Reverse Transcription by Stabilizing the Viral Capsid. mBio 2020; 11:mBio.02820-20. [PMID: 33262260 PMCID: PMC7733946 DOI: 10.1128/mbio.02820-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
HIV-1 infection requires reverse transcription of the viral genome. While much is known about the biochemistry of reverse transcription from simplified biochemical reactions, reverse transcription during infection takes place within a viral core. However, endogenous reverse transcription reactions using permeabilized HIV-1 virions or purified viral cores have been inefficient. Using viral cores purified from infectious HIV-1 particles, we show that efficient reverse transcription is achieved in vitro by addition of the capsid-stabilizing metabolite inositol hexakisphosphate. The enhancement of reverse transcription was linked to the capsid-stabilizing effect of the compound, consistent with the known requirement for an intact or semi-intact viral capsid for HIV-1 infection. Our results establish a biologically relevant system for dissecting the function of the viral capsid and its disassembly during reverse transcription. The system should also prove useful for mechanistic studies of capsid-targeting antiviral drugs. A defining activity of retroviruses is reverse transcription, the process by which the viral genomic RNA is converted into the double-stranded DNA required for virus replication. Reverse transcriptase (RT), the viral enzyme responsible for this process, was identified in 1970 by assaying permeabilized retrovirus particles for DNA synthesis in vitro. Such reactions are inefficient, with only a small fraction of viral genomes being converted to full-length double-stranded DNA molecules, possibly owing to disruption of the structure of the viral core. Here, we show that reverse transcription in purified HIV-1 cores is enhanced by the addition of the capsid-binding host cell metabolite inositol hexakisphosphate (IP6). IP6 potently enhanced full-length minus-strand synthesis, as did hexacarboxybenzene (HCB), which also stabilizes the HIV-1 capsid. Both IP6 and HCB stabilized the association of the viral CA and RT proteins with HIV-1 cores. In contrast to the wild type, cores isolated from mutant HIV-1 particles containing intrinsically hyperstable capsids exhibited relatively efficient reverse transcription in the absence of IP6, further indicating that the compound promotes reverse transcription by stabilizing the viral capsid. We also observed that the capsid-destabilizing antiviral compound PF74 inhibited endogenous reverse transcription with a potency that mirrors its ability to inhibit reverse transcription during infection. Our results show that the stabilization of the HIV-1 capsid permits efficient reverse transcription in HIV-1 cores, providing a sensitive experimental system for analyzing the functions of viral and host cell molecules and the role of capsid disassembly (uncoating) in the process.
Collapse
|
16
|
Yang ZL, Chen JN, Lu YY, Lu M, Wan QL, Wu GS, Luo HR. Inositol polyphosphate multikinase IPMK-1 regulates development through IP3/calcium signaling in Caenorhabditis elegans. Cell Calcium 2020; 93:102327. [PMID: 33316585 DOI: 10.1016/j.ceca.2020.102327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/17/2023]
Abstract
Inositol polyphosphate multikinase (IPMK) is a conserved protein that initiates the production of inositol phosphate intracellular messengers and is critical for regulating a variety of cellular processes. Here, we report that the C. elegans IPMK-1, which is homologous to the mammalian inositol polyphosphate multikinase, plays a crucial role in regulating rhythmic behavior and development. The deletion mutant ipmk-1(tm2687) displays a long defecation cycle period and retarded postembryonic growth. The expression of functional ipmk-1::GFP was detected in the pharyngeal muscles, amphid sheath cells, the intestine, excretory (canal) cells, proximal gonad, and spermatheca. The expression of IPMK-1 in the intestine was sufficient for the wild-type phenotype. The IP3-kinase activity of IPMK-1 is required for defecation rhythms and postembryonic development. The defective phenotypes of ipmk-1(tm2687) could be rescued by a loss-of-function mutation in type I inositol 5-phosphatase homolog (IPP-5) and improved by a supplemental Ca2+ in the medium. Our work demonstrates that IPMK-1 and the signaling molecule inositol triphosphate (IP3) pathway modulate rhythmic behaviors and development by dynamically regulating the concentration of intracellular Ca2+ in C. elegans. Advances in understanding the molecular regulation of Ca2+ homeostasis and regulation of organism development may lead to therapeutic strategies that modulate Ca2+ signaling to enhance function and counteract disease processes. Unraveling the physiological role of IPMK and the underlying functional mechanism in C. elegans would contribute to understanding the role of IPMK in other species, especially in mammals, and benefit further research on the involvement of IPMK in disease.
Collapse
Affiliation(s)
- Zhong-Lin Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Graduate University of the Chinese Academy of Science, Beijing, 100049, China
| | - Jian-Ning Chen
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yu-Yang Lu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Min Lu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qin-Li Wan
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Graduate University of the Chinese Academy of Science, Beijing, 100049, China; Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
17
|
Maffucci T, Falasca M. Signalling Properties of Inositol Polyphosphates. Molecules 2020; 25:molecules25225281. [PMID: 33198256 PMCID: PMC7696153 DOI: 10.3390/molecules25225281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Several studies have identified specific signalling functions for inositol polyphosphates (IPs) in different cell types and have led to the accumulation of new information regarding their cellular roles as well as new insights into their cellular production. These studies have revealed that interaction of IPs with several proteins is critical for stabilization of protein complexes and for modulation of enzymatic activity. This has not only revealed their importance in regulation of several cellular processes but it has also highlighted the possibility of new pharmacological interventions in multiple diseases, including cancer. In this review, we describe some of the intracellular roles of IPs and we discuss the pharmacological opportunities that modulation of IPs levels can provide.
Collapse
Affiliation(s)
- Tania Maffucci
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Correspondence: (T.M.); (M.F.); Tel.: +61-08-92669712 (M.F.)
| | - Marco Falasca
- School of Pharmacy and Biomedical Sciences, CHIRI, Curtin University, Perth 6102, Australia
- Correspondence: (T.M.); (M.F.); Tel.: +61-08-92669712 (M.F.)
| |
Collapse
|
18
|
Zhu H, Zhu N, Peng L, Zhang B, Yu Q, Li M. The inositol polyphosphate kinase Ipk1 transcriptionally regulates mitochondrial functions in Candida albicans. FEMS Yeast Res 2020; 20:5896454. [DOI: 10.1093/femsyr/foaa050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
Inositol polyphosphates (IPs) is an important family of signaling molecules that regulate multiple cellular processes, such as chromatin remodeling, transcription and mRNA export. Inositol polyphosphate kinases, as the critical enzymes for production and transformation of IPs, directly determine the intracellular levels of IPs and therefore are involved in many cellular processes. However, its roles in Candida albicans, the leading fungal pathogen in human beings, remain to be investigated. In this study, we identified the inositol polyphosphate kinase Ipk1 in C. albicans and found that it localizes in the nucleus. Moreover, in the ipk1Δ/Δ mutant, the activity of mitochondrial respiratory chain complexes and the mitochondrial function was severely impaired, which were associated with down-regulation of mitochondrial function-related genes revealed by transcription profiling analysis. The ipk1Δ/Δ mutant also displayed hypersensitivity to a series of environmental stresses, such as antifungal drugs, oxidants, cell wall perturbing agents and macrophage attacks, followed by attenuation of virulence in a mouse systematic infection model. These findings firstly reported the importance of inositol polyphosphate kinase Ipk1 in C. albicans, especially its role in mitochondrial function maintenance and pathogenicity.
Collapse
Affiliation(s)
- Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
| | - Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
| | - Liping Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
| |
Collapse
|
19
|
L'Abbate S, Nicolini G, Forini F, Marchetti S, Di Lascio N, Faita F, Kusmic C. Myo-inositol and d-chiro-inositol oral supplementation ameliorate cardiac dysfunction and remodeling in a mouse model of diet-induced obesity. Pharmacol Res 2020; 159:105047. [PMID: 32590101 DOI: 10.1016/j.phrs.2020.105047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 11/30/2022]
Abstract
Obesity is an independent risk factor to develop cardiac functional and structural impairments. Here, we investigated the effects of supplementation of inositols on the electrical, structural, and functional cardiac alterations in the mouse model of high fat diet (HFD) induced obesity. Three groups of C57BL6 mice (n = 16 each) were studied: j) HFD feeding; jj) HFD feeding + inositols from week 9 to 13; jjj) standard diet feeding. Study observation period was 13 weeks. Inositols were administered as mixture of myo-inositol and d-chiro-inositol in the drinking water. Effects of inositols were evaluated based on electrical, structural, and functional cardiac features, autonomic sympatho-vagal balance and arrhythmogenic susceptibility to adrenergic challenge. Heart samples were collected for histological evaluations and transcriptional analyses of genes involved in defining the shape and propagation of the action potential, fatty acid metabolism and oxidative stress. Inositol supplementation significantly restored control values of heart rate and QTc interval on ECG and of sympatho-vagal balance. Moreover, it blunted the increase in left ventricular mass and cardiomyocyte hypertrophy, reversed diastolic dysfunction, reduced the susceptibility to arrhythmic events and restored the expression level of cardiac genes altered by HFD. The present study shows, for the first time, how a short period of supplementation with inositols is able to ameliorate the HFD-induced electrical, structural and functional heart alterations including ventricular remodeling. Results provide a new insight into the cardioprotective effect of inositols, which could pave the way for a novel therapeutic approach to the treatment of HFD obesity-induced heart dysfunction.
Collapse
Affiliation(s)
- Serena L'Abbate
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Giuseppina Nicolini
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Francesca Forini
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Sabrina Marchetti
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Nicole Di Lascio
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Francesco Faita
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Claudia Kusmic
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy.
| |
Collapse
|
20
|
Lee B, Park SJ, Lee S, Park SE, Lee E, Song JJ, Byun Y, Kim S. Identification of the Antidepressant Vilazodone as an Inhibitor of Inositol Polyphosphate Multikinase by Structure-Based Drug Repositioning. Mol Cells 2020; 43:222-227. [PMID: 32209735 PMCID: PMC7103885 DOI: 10.14348/molcells.2020.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
Inositol polyphosphate multikinase (IPMK) is required for the biosynthesis of inositol phosphates (IPs) through the phosphorylation of multiple IP metabolites such as IP3 and IP4. The biological significance of IPMK's catalytic actions to regulate cellular signaling events such as growth and metabolism has been studied extensively. However, pharmacological reagents that inhibit IPMK have not yet been identified. We employed a structure-based virtual screening of publicly available U.S. Food and Drug Administration-approved drugs and chemicals that identified the antidepressant, vilazodone, as an IPMK inhibitor. Docking simulations and pharmacophore analyses showed that vilazodone has a higher affinity for the ATP-binding catalytic region of IPMK than ATP and we validated that vilazodone inhibits IPMK's IP kinase activities in vitro . The incubation of vilazodone with NIH3T3-L1 fibroblasts reduced cellular levels of IP5 and other highly phosphorylated IPs without influencing IP4 levels. We further found decreased Akt phosphorylation in vilazodone-treated HCT116 cancer cells. These data clearly indicate selective cellular actions of vilazodone against IPMK-dependent catalytic steps in IP metabolism and Akt activation. Collectively, our data demonstrate vilazodone as a method to inhibit cellular IPMK, providing a valuable pharmacological agent to study and target the biological and pathological processes governed by IPMK.
Collapse
Affiliation(s)
- Boah Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 344, Korea
| | - Seung Ju Park
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Seulgi Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Seung Eun Park
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Eunhye Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 0019, Korea
| | - Seyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
- KAIST Institute for the BioCentury, KAIST, Daejeon 311, Korea
| |
Collapse
|
21
|
Ngan WY, Habimana O. From farm-scale to lab-scale: The characterization of engineered irrigation water distribution system biofilm models using an artificial freshwater source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134025. [PMID: 31493571 DOI: 10.1016/j.scitotenv.2019.134025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Contaminants in freshwater environments, as well as the associated negative impacts on agricultural produce, have emerged as a critical theme of the water-energy-food nexus affecting food safety and irrigation management. Agricultural produce exposed to irrigation with questionable freshwater can internalize and concentrate pollutants. However, the potential risks posed by the ubiquitous presence of biofilms within irrigation water distribution systems (IWDS) remains overlooked, even though such biofilms may harbor and spread pathogenic, chemical, and other environmental pollutants. Our limited knowledge about the role and functional attributes of IWDS biofilms can be blamed mostly to experimental challenges encountered during attempted studies of these biofilms in their natural environments. Hence, a laboratory-based experimental system designed to simulate a freshwater environment was combined with a biofilm reactor capable of recreating the piping environments in water distribution systems. This experimental system was then tested to assess the robustness and repeatability of experimental early-stage biofilms with respect to physical structure and microbial community, using state-of-the-art confocal microscopy and next-generation sequencing, respectively. The results demonstrated the suitability of this laboratory-based experimental system for studying the impacts of selected pollutants on irrigation water distribution systems.
Collapse
Affiliation(s)
- W Y Ngan
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - O Habimana
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; The University Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong Province, People's Republic of China.
| |
Collapse
|
22
|
Structural analyses of inositol phosphate second messengers bound to signaling effector proteins. Adv Biol Regul 2019; 75:100667. [PMID: 31648945 DOI: 10.1016/j.jbior.2019.100667] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023]
Abstract
The higher-order inositol phosphate second messengers inositol tetrakisphosphate (IP4), inositol pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) are important signaling molecules that regulate DNA-damage repair, cohesin dynamics, RNA-editing, retroviral assembly, nuclear transport, phosphorylation, acetylation, crotonylation, and ubiquitination. This functional diversity has made understanding how inositol polyphosphates regulate cellular processes challenging to dissect. However, some inositol phosphates have been unexpectedly found in X-ray crystal structures, occasionally revealing structural and mechanistic details of effector protein regulation before functional consequences have been described. This review highlights a sampling of crystal structures describing the interaction between inositol phosphates and protein effectors. This list includes the RNA editing enzyme "adenosine deaminase that acts on RNA 2" (ADAR2), the Pds5B regulator of cohesin dynamics, the class 1 histone deacetylases (HDACs) HDAC1 and HDAC3, and the PH domain of Bruton's tyrosine kinase (Btk). One of the most important enzymes responsible for higher-order inositol phosphate synthesis is inositol polyphosphate multikinase (IPMK), which plays dual roles in both inositol and phosphoinositide signaling. Structures of phosphoinositide lipid binding proteins have also revealed new aspects of protein effector regulation, as mediated by the nuclear receptors Steroidogenic Factor-1 (SF-1, NR5A2) and Liver Receptor Homolog-1 (LRH-1, NR5A2). Together, these studies underscore the structural diversity in binding interactions between effector proteins and inositol phosphate small signaling molecules, and further support that detailed structural studies can lead to new biological discovery.
Collapse
|
23
|
Chhetri DR. Myo-Inositol and Its Derivatives: Their Emerging Role in the Treatment of Human Diseases. Front Pharmacol 2019; 10:1172. [PMID: 31680956 PMCID: PMC6798087 DOI: 10.3389/fphar.2019.01172] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Myo-inositol has been established as an important growth-promoting factor of mammalian cells and animals. The role of myo-inositol as a lipotropic factor has been proven, in addition to its involvement as co-factors of enzymes and as messenger molecules in signal transduction. Myo-inositol deficiency leads to intestinal lipodystrophy in animals and "inositol-less death" in some fungi. Of late, diverse uses of myo-inositol and its derivatives have been discovered in medicinal research. These compounds are used in the treatment of a variety of ailments from diabetes to cancer, and continued research in this direction promises a new future in therapeutics. In different diseases, inositols implement different strategies for therapeutic actions such as tissue specific increase or decrease in inositol products, production of inositol phosphoglycans (IPGs), conversion of myo-inositol (MI) to D-chiro-inositol (DCI), modulation of signal transduction, regulation of reactive oxygen species (ROS) production, etc. Though inositol pharmacology is a relatively lesser-known field, recent years of research has generated a critical mass of information on the subject. This review aims to summarize our current understanding on the role of inositol derivatives in ameliorating the symptoms of different diseases.
Collapse
Affiliation(s)
- Dhani Raj Chhetri
- Department of Botany, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|
24
|
Lev S, Li C, Desmarini D, Sorrell TC, Saiardi A, Djordjevic JT. Fungal Kinases With a Sweet Tooth: Pleiotropic Roles of Their Phosphorylated Inositol Sugar Products in the Pathogenicity of Cryptococcus neoformans Present Novel Drug Targeting Opportunities. Front Cell Infect Microbiol 2019; 9:248. [PMID: 31380293 PMCID: PMC6660261 DOI: 10.3389/fcimb.2019.00248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Invasive fungal pathogens cause more than 300 million serious human infections and 1.6 million deaths per year. A clearer understanding of the mechanisms by which these fungi cause disease is needed to identify novel targets for urgently needed therapies. Kinases are key components of the signaling and metabolic circuitry of eukaryotic cells, which include fungi, and kinase inhibition is currently being exploited for the treatment of human diseases. Inhibiting evolutionarily divergent kinases in fungal pathogens is a promising avenue for antifungal drug development. One such group of kinases is the phospholipase C1-dependent inositol polyphosphate kinases (IPKs), which act sequentially to transfer a phosphoryl group to a pre-phosphorylated inositol sugar (IP). This review focuses on the roles of fungal IPKs and their IP products in fungal pathogenicity, as determined predominantly from studies performed in the model fungal pathogen Cryptococcus neoformans, and compares them to what is known in non-pathogenic model fungi and mammalian cells to highlight potential drug targeting opportunities.
Collapse
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Cecilia Li
- Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, NSW Health Pathology, Westmead Hospital, Sydney, NSW, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Nuclear Phosphoinositides: Their Regulation and Roles in Nuclear Functions. Int J Mol Sci 2019; 20:ijms20122991. [PMID: 31248120 PMCID: PMC6627530 DOI: 10.3390/ijms20122991] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Polyphosphoinositides (PPIns) are a family of seven lipid messengers that regulate a vast array of signalling pathways to control cell proliferation, migration, survival and differentiation. PPIns are differentially present in various sub-cellular compartments and, through the recruitment and regulation of specific proteins, are key regulators of compartment identity and function. Phosphoinositides and the enzymes that synthesise and degrade them are also present in the nuclear membrane and in nuclear membraneless compartments such as nuclear speckles. Here we discuss how PPIns in the nucleus are modulated in response to external cues and how they function to control downstream signalling. Finally we suggest a role for nuclear PPIns in liquid phase separations that are involved in the formation of membraneless compartments within the nucleus.
Collapse
|
26
|
Gene Expression Pattern and Regulatory Network of α-Toxin Treatment in Bombyx mori. Int J Genomics 2019; 2019:7859121. [PMID: 30956974 PMCID: PMC6425383 DOI: 10.1155/2019/7859121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 11/24/2022] Open
Abstract
Bacillus bombyseptieus is a pathogen of Bombyx mori; it can cause bacterial septicemia in silkworm. One of the components of the parasporal crystal toxin of B. bombyseptieus, α-toxin, plays an important role in the process of infection in silkworm. In this study, we investigated the immune response of silkworm induced by α-toxin by using RNA-seq. We compared the changes in gene expression in the midgut, fatbody, and hemocytes of silkworm and in the B. mori embryonic cell line (BmE) after treatment with α-toxin and identified 952 differentially expressed genes and 353 differentially expressed long noncoding RNAs (lncRNAs). These regulated genes in different tissues were found to be enriched in different pathways. The upregulated genes in the midgut were mainly involved in peptidoglycan catabolic process and tyrosine kinase signaling pathway, whereas the downregulated genes were mainly involved in chitin metabolic pathways. The upregulated genes in fatbody were also involved in peptidoglycan catabolic process, but they were for a different peptidoglycan subtype. Further, genes encoding cecropins were enriched in the fatbody. The downregulated genes were mainly involved in the metabolic pathways of fundamental substances such as cellular protein metabolic process and nucleobase-containing compound metabolic process. These results suggest that α-toxin can induce various immune responses in silkworm, and further studies are warranted to understand the mechanism of α-toxin action in silkworm. Further, lncRNAs and differentially expressed genes were correlated using coexpression network analysis. Our findings revealed potential candidate genes and lncRNAs that might play important physiological functions in the immune response to α-toxins in silkworm.
Collapse
|
27
|
Simintiras CA, Sánchez JM, McDonald M, Lonergan P. Progesterone alters the bovine uterine fluid lipidome during the period of elongation. Reproduction 2019; 157:399-411. [DOI: 10.1530/rep-18-0615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/14/2019] [Indexed: 01/08/2023]
Abstract
Successful bovine pregnancy establishment hinges on conceptus elongation, a key reproductive phenomenon coinciding with the period during which most pregnancies fail. Elongation is yet to be recapitulated in vitro, whereas in vivo it is directly driven by uterine secretions and indirectly influenced by prior circulating progesterone levels. To better understand the microenvironment evolved to facilitate this fundamental developmental event, uterine fluid was recovered on Days 12–14 of the oestrous cycle – the window of conceptus elongation initiation – from cycling heifers supplemented, or not, with progesterone. Subsequent lipidomic profiling of uterine luminal fluid by advanced high-throughput metabolomics revealed the consistent presence of 75 metabolites, of which 47% were intricately linked to membrane biogenesis, and with seven displaying a day by progesterone interaction (P ≤ 0.05). Four metabolic pathways were correspondingly enriched according to day and P4 – i.e. comprised metabolites whose concentrations differed between groups (normal vs high P4) at different times (Days 12 vs 13 vs 14). These were inositol, phospholipid, glycerolipid and primary bile acid metabolism. Moreover, P4 elevated total uterine luminal fluid lipid content on Day 14 (P < 0.0001) relative to all other comparisons. The data combined suggest that maternal lipid supply during the elongation-initiation window is primarily geared towards conceptus membrane biogenesis. In summary, progesterone supplementation alters the lipidomic profile of bovine uterine fluid during the period of conceptus elongation initiation.
Collapse
Affiliation(s)
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
28
|
Zhou CY, Johnson SL, Lee LJ, Longhurst AD, Beckwith SL, Johnson MJ, Morrison AJ, Narlikar GJ. The Yeast INO80 Complex Operates as a Tunable DNA Length-Sensitive Switch to Regulate Nucleosome Sliding. Mol Cell 2019; 69:677-688.e9. [PMID: 29452642 DOI: 10.1016/j.molcel.2018.01.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/01/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022]
Abstract
The yeast INO80 chromatin remodeling complex plays essential roles in regulating DNA damage repair, replication, and promoter architecture. INO80's role in these processes is likely related to its ability to slide nucleosomes, but the underlying mechanism is poorly understood. Here we use ensemble and single-molecule enzymology to study INO80-catalyzed nucleosome sliding. We find that the rate of nucleosome sliding by INO80 increases ∼100-fold when the flanking DNA length is increased from 40 to 60 bp. Furthermore, once sliding is initiated, INO80 moves the nucleosome rapidly at least 20 bp without pausing to re-assess flanking DNA length, and it can change the direction of nucleosome sliding without dissociation. Finally, we show that the Nhp10 module of INO80 plays an auto-inhibitory role, tuning INO80's switch-like response to flanking DNA. Our results indicate that INO80 is a highly processive remodeling motor that is tightly regulated by both substrate cues and non-catalytic subunits.
Collapse
Affiliation(s)
- Coral Y Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephanie L Johnson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Laura J Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam D Longhurst
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sean L Beckwith
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Ashby J Morrison
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
29
|
Brehm MA, Klemm U, Rehbach C, Erdmann N, Kolšek K, Lin H, Aponte-Santamaría C, Gräter F, Rauch BH, Riley AM, Mayr GW, Potter BVL, Windhorst S. Inositol hexakisphosphate increases the size of platelet aggregates. Biochem Pharmacol 2018; 161:14-25. [PMID: 30557554 PMCID: PMC6372069 DOI: 10.1016/j.bcp.2018.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 12/28/2022]
Abstract
The inositol phosphates, InsP5 and InsP6, have recently been identified as binding partners of fibrinogen, which is critically involved in hemostasis by crosslinking activated platelets at sites of vascular injury. Here, we investigated the putative physiological role of this interaction and found that platelets increase their InsP6 concentration upon stimulation with the PLC-activating agonists thrombin, collagen I and ADP and present a fraction of it at the outer plasma membrane. Cone and plate analysis in whole blood revealed that InsP6 specifically increases platelet aggregate size. This effect is fibrinogen-dependent, since it is inhibited by an antibody that blocks fibrinogen binding to platelets. Furthermore, InsP6 has only an effect on aggregate size of washed platelets when fibrinogen is present, while it has no influence in presence of von Willebrand factor or collagen. By employing blind docking studies we predicted the binding site for InsP6 at the bundle between the γ and β helical subunit of fibrinogen. Since InsP6 is unable to directly activate platelets and it did not exhibit an effect on thrombin formation or fibrin structure, our data indicate that InsP6 might be a hemostatic agent that is produced by platelets upon stimulation with PLC-activating agonists to promote platelet aggregation by supporting crosslinking of fibrinogen and activated platelets.
Collapse
Affiliation(s)
- Maria A Brehm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Klemm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Rehbach
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Nina Erdmann
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Katra Kolšek
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Hongying Lin
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | - Frauke Gräter
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Bernhard H Rauch
- Institute of Pharmacology, University Medicine Greifswald, Ernst-Moritz-Arndt University, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Georg W Mayr
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| |
Collapse
|
30
|
Shayanfar S, Broumand A, Pillai SD. Acid stress induces differential accumulation of metabolites in Escherichia coli O26:H11. J Appl Microbiol 2018; 125:1911-1919. [PMID: 30144243 DOI: 10.1111/jam.14081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 11/27/2022]
Abstract
AIMS Acid exposure induces accumulation of certain metabolites in bacteria. The experimental objective was to identify the primary metabolites accumulating in Escherichia coli O26:H11 as a function of acid (pH 3·6) exposure. METHODS AND RESULTS Different buffers of pH 7·5 and 3·6 were used to study the metabolites accumulating in E. coli O26:H11 cells during such pH exposure. After 24 h of acid exposure, there was a 7-log decline in E. coli populations on trypticase soy agar plates. Untargeted metabolomic analysis identified 293 primary metabolites of which 145 metabolites were differentially (P < 0·01) accumulating between pH 7·5 and 3·6 in E. coli O26:H11. CONCLUSIONS After 24 h of acid exposure, 21 different metabolic pathways appeared to be functional, suggesting that the cells were still metabolically active. Among the identifiable pathways, the key differentially expressed pathways were associated with peptidoglycan biosynthesis, purine metabolism, d-Glutamine/d-glutamate metabolism, nitrogen metabolism, unsaturated fatty acid biosynthesis and inositol phosphate metabolism. SIGNIFICANCE AND IMPACT OF THE STUDY Shiga toxin producing non-O157 E. coli strains such as E. coli O26 are responsible for a growing number of food-related illnesses in the United States and around the world. From food production to consumption, micro-organisms in foods experience dramatic pH fluctuations by organic acids introduced either during food processing or by inorganic acids in the stomach. Acid exposure induces specific metabolite accumulation in bacterial cells. Understanding the survival mechanisms of pathogenic micro-organisms by studying the metabolome would be helpful in introducing effective hurdles and thus ensuring food safety.
Collapse
Affiliation(s)
- S Shayanfar
- Department of Nutrition and Food Science, National Center for Electron Beam Research, IAEA Collaborating Centre for Electron Beam Technology, Texas A&M University, College Station, TX, USA
| | - A Broumand
- Genomic Signal Processing Lab, Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - S D Pillai
- Department of Nutrition and Food Science, National Center for Electron Beam Research, IAEA Collaborating Centre for Electron Beam Technology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
31
|
Punjabi M, Bharadvaja N, Sachdev A, Krishnan V. Molecular characterization, modeling, and docking analysis of late phytic acid biosynthesis pathway gene, inositol polyphosphate 6-/ 3-/ 5-kinase, a potential candidate for developing low phytate crops. 3 Biotech 2018; 8:344. [PMID: 30073129 PMCID: PMC6064606 DOI: 10.1007/s13205-018-1343-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/06/2018] [Indexed: 01/08/2023] Open
Abstract
The coding sequence of inositol polyphosphate 6-/3-/5-kinase (GmIPK2) gene was identified and cloned from popular Indian soybean cultivar Pusa-16. The clone was predicted to encode 279 amino acids long, 30.97 kDa protein. Multiple sequence alignment revealed an inositol phosphate-binding motif, PxxxDxKxG throughout the IPK2 sequences along with other motifs unique to inositol phosphate kinase superfamily. Eight α-helices and eight β-strands in antiparallel β-sheets arrangement were predicted in the secondary structure of GmIPK2. The temporal analysis of GmIPK2 revealed maximum expression in the seed tissues during later stages of development while spatially the transcript levels were lowest in leaf and stem tissues. Endosperm-specific cis-regulatory motifs (GCN4 and Skn_1) which support high levels of expression, as observed in the developing seeds, were detected in its promoter region. The protein structure of GmIPK2 was modeled based on the crystal structure of inositol polyphosphate multikinase from Arabidopsis thaliana (PDB:4FRF) and subsequently docked with inositol phosphate ligands (PDB: 5GUG-I3P and PDB: 4A69-I0P). Molecular dynamics (MD) simulation established the structural stability of both, modeled enzyme and ligand-bound complexes. Docking in combination with trajectory analysis for 50 ns MD run confirmed the participation of Lys105, Lys126 and Arg153 residues in the formation of a network of hydrogen bonds to stabilize the ligand-receptor interaction. Results of the present study thus provide valuable information on structural and functional aspects of GmIPK2 which shall assist in strategizing our long-term goal of achieving phytic acid reduction in soybean by genetic modification of its biosynthetic pathway to develop a nutritionally enhanced crop in the future.
Collapse
Affiliation(s)
- Mansi Punjabi
- Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), New Delhi, 110042 India
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), New Delhi, 110042 India
| | - Archana Sachdev
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Veda Krishnan
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
32
|
Fleet CM, Yen JY, Hill EA, Gillaspy GE. Co-suppression of AtMIPS demonstrates cooperation of MIPS1, MIPS2 and MIPS3 in maintaining myo-inositol synthesis. PLANT MOLECULAR BIOLOGY 2018; 97:253-263. [PMID: 29777485 DOI: 10.1007/s11103-018-0737-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Co-suppressed MIPS2 transgenic lines allow bypass of the embryo lethal phenotype of the previously published triple knock-out and demonstrate the effects of MIPS on later stages of development. Regulation of inositol production is of interest broadly for its effects on plant growth and development. The enzyme L-myo-inositol 1-phosphate synthase (MIPS, also known as IPS) isomerizes D-glucose-6-P to D-inositol 3-P, and this is the rate-limiting step in inositol production. In Arabidopsis thaliana, the MIPS enzyme is encoded by three different genes, (AtMIPS1, AtMIPS2 and AtMIPS3), each of which has been shown to produce proteins with biochemically similar properties but differential expression patterns. Here, we report phenotypic and biochemical effects of MIPS co-suppression. We show that some plants engineered to overexpress MIPS2 in fact show reduced expression of AtMIPS1, AtMIPS2 and AtMIPS3, and show altered vegetative phenotype, reduced size and root length, and delayed flowering. Additionally, these plants show reduced inositol, increased glucose levels, and alteration of other metabolites. Our results suggest that the three AtMIPS genes work together to impact the overall synthesis of myo-inositol and overall inositol homeostasis.
Collapse
Affiliation(s)
- C M Fleet
- Biology Department, Emory & Henry College, Emory, VA, 24327, USA.
| | - J Y Yen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 93405, USA
| | - E A Hill
- Biology Department, Emory & Henry College, Emory, VA, 24327, USA
- Lincoln Memorial University College of Veterinary Medicine, Harrogate, TN, 37752, USA
| | - G E Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
33
|
Sobol M, Krausová A, Yildirim S, Kalasová I, Fáberová V, Vrkoslav V, Philimonenko V, Marášek P, Pastorek L, Čapek M, Lubovská Z, Uličná L, Tsuji T, Lísa M, Cvačka J, Fujimoto T, Hozak P. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J Cell Sci 2018; 131:jcs.211094. [PMID: 29507116 DOI: 10.1242/jcs.211094] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/22/2018] [Indexed: 12/18/2022] Open
Abstract
This paper describes a novel type of nuclear structure - nuclear lipid islets (NLIs). They are of 40-100 nm with a lipidic interior, and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] molecules comprise a significant part of their surface. Most of NLIs have RNA at the periphery. Consistent with that, RNA is required for their integrity. The NLI periphery is associated with Pol II transcription machinery, including the largest Pol II subunit, transcription factors and NM1 (also known as NMI). The PtdIns(4,5)P2-NM1 interaction is important for Pol II transcription, since NM1 knockdown reduces the Pol II transcription level, and the overexpression of wild-type NM1 [but not NM1 mutated in the PtdIns(4,5)P2-binding site] rescues the transcription. Importantly, Pol II transcription is dependent on NLI integrity, because an enzymatic reduction of the PtdIns(4,5)P2 level results in a decrease of the Pol II transcription level. Furthermore, about half of nascent transcripts localise to NLIs, and transcriptionally active transgene loci preferentially colocalise with NLIs. We hypothesize that NLIs serve as a structural platform that facilitates the formation of Pol II transcription factories, thus participating in the formation of nuclear architecture competent for transcription.
Collapse
Affiliation(s)
- Margarita Sobol
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Alžběta Krausová
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Sukriye Yildirim
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Ilona Kalasová
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Veronika Fáberová
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry, CAS, v.v.i., Research Service Group of Mass Spectrometry, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Vlada Philimonenko
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic.,Institute of Molecular Genetics, CAS, v.v.i., Electron Microscopy Core Facility, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Pavel Marášek
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Lukáš Pastorek
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic.,Institute of Molecular Genetics, CAS, v.v.i., Electron Microscopy Core Facility, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Martin Čapek
- Institute of Molecular Genetics, CAS, v.v.i., Light Microscopy Core Facility, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Zuzana Lubovská
- Institute of Molecular Genetics, CAS, v.v.i., Electron Microscopy Core Facility, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Lívia Uličná
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Takuma Tsuji
- Nagoya University Graduate School of Medicine, Department of Molecular Cell Biology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Miroslav Lísa
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, CAS, v.v.i., Research Service Group of Mass Spectrometry, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Toyoshi Fujimoto
- Nagoya University Graduate School of Medicine, Department of Molecular Cell Biology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Pavel Hozak
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic .,Institute of Molecular Genetics, CAS, v.v.i., Division BIOCEV, Laboratory of Epigenetics of the Cell Nucleus, Průmyslová 595, 252 50, Vestec, Czech Republic.,Institute of Molecular Genetics, CAS, v.v.i., Microscopy Centre, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
34
|
Morrison AJ. Genome maintenance functions of the INO80 chromatin remodeller. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0289. [PMID: 28847826 DOI: 10.1098/rstb.2016.0289] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 12/15/2022] Open
Abstract
Chromatin modification is conserved in all eukaryotes and is required to facilitate and regulate DNA-templated processes. For example, chromatin manipulation, such as histone post-translational modification and nucleosome positioning, play critical roles in genome stability pathways. The INO80 chromatin-remodelling complex, which regulates the abundance and positioning of nucleosomes, is particularly important for proper execution of inducible responses to DNA damage. This review discusses the participation and activity of the INO80 complex in DNA repair and cell cycle checkpoint pathways, with emphasis on the Saccharomyces cerevisiae model system. Furthermore, the role of ATM/ATR kinases, central regulators of DNA damage signalling, in the regulation of INO80 function will be reviewed. In addition, emerging themes of chromatin remodelling in mitotic stability pathways and chromosome segregation will be introduced. These studies are critical to understanding the dynamic chromatin landscape that is rapidly and reversibly modified to maintain the integrity of the genome.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Ashby J Morrison
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Prion propagation and inositol polyphosphates. Curr Genet 2017; 64:571-574. [PMID: 29243174 DOI: 10.1007/s00294-017-0788-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 01/08/2023]
Abstract
The [PSI+] prion is a folded in-register parallel β-sheet amyloid (filamentous polymer) of Sup35p, a subunit of the translation termination factor. Our searches for anti-prion systems led to our finding that certain soluble inositol polyphosphates (IPs) are important for the propagation of the [PSI+] prion. The IPs affect a wide range of processes, including mRNA export, telomere length, phosphate and polyphosphate metabolism, energy regulation, transcription and translation. We found that 5-diphosphoinositol tetra(or penta)kisphosphate or inositol hexakisphosphate could support [PSI+] prion propagation, and 1-diphosphoinositol pentakisphosphate appears to inhibit the process.
Collapse
|
36
|
Nagashima H, Sasayama T, Tanaka K, Kyotani K, Sato N, Maeyama M, Kohta M, Sakata J, Yamamoto Y, Hosoda K, Itoh T, Sasaki R, Kohmura E. Myo-inositol concentration in MR spectroscopy for differentiating high grade glioma from primary central nervous system lymphoma. J Neurooncol 2017; 136:317-326. [DOI: 10.1007/s11060-017-2655-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 10/24/2017] [Indexed: 01/26/2023]
|
37
|
Franco-Echevarría E, Sanz-Aparicio J, Troffer-Charlier N, Poterszman A, González B. Crystallization and Preliminary X-Ray Diffraction Analysis of a Mammal Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase. Protein J 2017; 36:240-248. [PMID: 28429156 DOI: 10.1007/s10930-017-9717-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5 2-K) is an enzyme that catalyses the formation of phytic acid (IP6) from IP5 and ATP. In mammals, IP6 is involved in multiple events such as DNA repair and mRNA edit and it is the precursor of inositol pyrophosphates, emerging compounds shown to have an essential role in apoptosis. In addition, IP5 2-K have functions in cells independently of its catalytic activity, for example in rRNA biogenesis. We pursue the structure determination of a mammal IP5 2-K by Protein Crystallography. For this purpose, we have designed protocols for recombinant expression and purification of Mus musculus IP5 2-K (mIP5 2-K). The recombinant protein has been expressed in two different hosts, E. coli and insect cells using the LSLt and GST fusion proteins, respectively. Both macromolecule preparations yielded crystals of similar quality. Best crystals diffracted to 4.3 Å (E. coli expression) and 4.0 Å (insect cells expression) maximum resolution. Both type of crystals belong to space group P212121 with an estimated solvent content compatible with the presence of two molecules per asymmetric unit. Gel filtration experiments are in agreement with this enzyme being a monomer. Crystallographic data analysis is currently undergoing.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- Departament of Crystallography and Structural Biology, Insitute of Physical-Chemistry "Rocasolano," CSIC, Serrano 119, 28006, Madrid, Spain
| | - Julia Sanz-Aparicio
- Departament of Crystallography and Structural Biology, Insitute of Physical-Chemistry "Rocasolano," CSIC, Serrano 119, 28006, Madrid, Spain
| | - Nathalie Troffer-Charlier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France
| | - Beatriz González
- Departament of Crystallography and Structural Biology, Insitute of Physical-Chemistry "Rocasolano," CSIC, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
38
|
Kim E, Ahn H, Kim MG, Lee H, Kim S. The Expanding Significance of Inositol Polyphosphate Multikinase as a Signaling Hub. Mol Cells 2017; 40:315-321. [PMID: 28554203 PMCID: PMC5463039 DOI: 10.14348/molcells.2017.0066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022] Open
Abstract
The inositol polyphosphates are a group of multifunctional signaling metabolites whose synthesis is catalyzed by a family of inositol kinases that are evolutionarily conserved from yeast to humans. Inositol polyphosphate multikinase (IPMK) was first identified as a subunit of the arginine-responsive transcription complex in budding yeast. In addition to its role in the production of inositol tetrakis- and pentakisphosphates (IP4 and IP5), IPMK also exhibits phosphatidylinositol 3-kinase (PI3-kinase) activity. Through its PI3-kinase activity, IPMK activates Akt/PKB and its downstream signaling pathways. IPMK also regulates several protein targets non-catalytically via protein-protein interactions. These non-catalytic targets include cytosolic signaling factors and transcription factors in the nucleus. In this review, we highlight the many known functions of mammalian IPMK in controlling cellular signaling networks and discuss future challenges related to clarifying the unknown roles IPMK plays in physiology and disease.
Collapse
Affiliation(s)
- Eunha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Hyoungjoon Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Min Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Haein Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
39
|
Hamann BL, Blind RD. Nuclear phosphoinositide regulation of chromatin. J Cell Physiol 2017; 233:107-123. [PMID: 28256711 DOI: 10.1002/jcp.25886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
Phospholipid signaling has clear connections to a wide array of cellular processes, particularly in gene expression and in controlling the chromatin biology of cells. However, most of the work elucidating how phospholipid signaling pathways contribute to cellular physiology have studied cytoplasmic membranes, while relatively little attention has been paid to the role of phospholipid signaling in the nucleus. Recent work from several labs has shown that nuclear phospholipid signaling can have important roles that are specific to this cellular compartment. This review focuses on the nuclear phospholipid functions and the activities of phospholipid signaling enzymes that regulate metazoan chromatin and gene expression. In particular, we highlight the roles that nuclear phosphoinositides play in several nuclear-driven physiological processes, such as differentiation, proliferation, and gene expression. Taken together, the recent discovery of several specifically nuclear phospholipid functions could have dramatic impact on our understanding of the fundamental mechanisms that enable tight control of cellular physiology.
Collapse
Affiliation(s)
- Bree L Hamann
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Raymond D Blind
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,Departments of Medicine, Biochemistry and Pharmacology, Division of Diabetes Endocrinology and Metabolism, The Vanderbilt Diabetes Research and Training Center and the Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
40
|
Bae NS, Seberg AP, Carroll LP, Swanson MJ. Identification of Genes in Saccharomyces cerevisiae that Are Haploinsufficient for Overcoming Amino Acid Starvation. G3 (BETHESDA, MD.) 2017; 7:1061-1084. [PMID: 28209762 PMCID: PMC5386856 DOI: 10.1534/g3.116.037416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/11/2017] [Indexed: 12/17/2022]
Abstract
The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid of MET15 are sensitive to sulfometuron methyl, and loss of heterozygosity at the MET15 locus can complicate screening the heterozygous deletion collection. We identified 138 cases of loss of heterozygosity in this screen. After eliminating the issues of the MET15 loss of heterozygosity, strains isolated from the collection were retested on sulfometuron methyl. To determine the general effect of the mutations for a starvation response, SMM-sensitive strains were tested for the ability to grow in the presence of canavanine, which induces arginine starvation, and strains that were MET15 were also tested for growth in the presence of ethionine, which causes methionine starvation. Many of the genes identified in our study were not previously identified as starvation-responsive genes, including a number of essential genes that are not easily screened in a systematic way. The genes identified span a broad range of biological functions, including many involved in some level of gene expression. Several unnamed proteins have also been identified, giving a clue as to possible functions of the encoded proteins.
Collapse
Affiliation(s)
- Nancy S Bae
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308
| | - Andrew P Seberg
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295
| | - Leslie P Carroll
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207
| | - Mark J Swanson
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207
| |
Collapse
|
41
|
Han Y, He X. Integrating Epigenomics into the Understanding of Biomedical Insight. Bioinform Biol Insights 2016; 10:267-289. [PMID: 27980397 PMCID: PMC5138066 DOI: 10.4137/bbi.s38427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 12/13/2022] Open
Abstract
Epigenetics is one of the most rapidly expanding fields in biomedical research, and the popularity of the high-throughput next-generation sequencing (NGS) highlights the accelerating speed of epigenomics discovery over the past decade. Epigenetics studies the heritable phenotypes resulting from chromatin changes but without alteration on DNA sequence. Epigenetic factors and their interactive network regulate almost all of the fundamental biological procedures, and incorrect epigenetic information may lead to complex diseases. A comprehensive understanding of epigenetic mechanisms, their interactions, and alterations in health and diseases genome widely has become a priority in biological research. Bioinformatics is expected to make a remarkable contribution for this purpose, especially in processing and interpreting the large-scale NGS datasets. In this review, we introduce the epigenetics pioneering achievements in health status and complex diseases; next, we give a systematic review of the epigenomics data generation, summarize public resources and integrative analysis approaches, and finally outline the challenges and future directions in computational epigenomics.
Collapse
Affiliation(s)
- Yixing Han
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.; Present address: Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ximiao He
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.; Present address: Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
42
|
Crowder MK, Seacrist CD, Blind RD. Phospholipid regulation of the nuclear receptor superfamily. Adv Biol Regul 2016; 63:6-14. [PMID: 27838257 DOI: 10.1016/j.jbior.2016.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 11/27/2022]
Abstract
Nuclear receptors are ligand-activated transcription factors whose diverse biological functions are classically regulated by cholesterol-based small molecules. Over the past few decades, a growing body of evidence has demonstrated that phospholipids and other similar amphipathic molecules can also specifically bind and functionally regulate the activity of certain nuclear receptors, suggesting a critical role for these non-cholesterol-based molecules in transcriptional regulation. Phosphatidylcholines, phosphoinositides and sphingolipids are a few of the many phospholipid like molecules shown to quite specifically regulate nuclear receptors in mouse models, cell lines and in vitro. More recent evidence has also shown that certain nuclear receptors can "present" a bound phospholipid headgroup to key lipid signaling enzymes, which can then modify the phospholipid headgroup with very unique kinetic properties. Here, we review the broad array of phospholipid/nuclear receptor interactions, from the perspective of the chemical nature of the phospholipid, and the cellular abundance of the phospholipid. We also view the data in the light of well established paradigms for phospholipid mediated transcriptional regulation, as well as newer models of how phospholipids might effect transcription in the acute regulation of complex nuclear signaling pathways. Thus, this review provides novel insight into the new, non-membrane associated roles nuclear phospholipids play in regulating complex nuclear events, centered on the nuclear receptor superfamily of transcription factors.
Collapse
Affiliation(s)
- Mark K Crowder
- Department of Pharmacology, Vanderbilt University School of Medicine, USA
| | - Corey D Seacrist
- Department of Pharmacology, Vanderbilt University School of Medicine, USA
| | - Raymond D Blind
- Department of Pharmacology, Vanderbilt University School of Medicine, USA; Department of Biochemistry, Vanderbilt University School of Medicine, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University School of Medicine, USA.
| |
Collapse
|
43
|
Chemo-Genetic Interactions Between Histone Modification and the Antiproliferation Drug AICAR Are Conserved in Yeast and Humans. Genetics 2016; 204:1447-1460. [PMID: 27707786 PMCID: PMC5161278 DOI: 10.1534/genetics.116.192518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Identifying synthetic lethal interactions has emerged as a promising new therapeutic approach aimed at targeting cancer cells directly. Here, we used the yeast Saccharomyces cerevisiae as a simple eukaryotic model to screen for mutations resulting in a synthetic lethality with 5-amino-4-imidazole carboxamide ribonucleoside (AICAR) treatment. Indeed, AICAR has been reported to inhibit the proliferation of multiple cancer cell lines. Here, we found that loss of several histone-modifying enzymes, including Bre1 (histone H2B ubiquitination) and Set1 (histone H3 lysine 4 methylation), greatly enhanced AICAR inhibition on growth via the combined effects of both the drug and mutations on G1 cyclins. Our results point to AICAR impacting on Cln3 subcellular localization and at the Cln1 protein level, while the bre1 or set1 deletion affected CLN1 and CLN2 expression. As a consequence, AICAR and bre1/set1 deletions jointly affected all three G1 cyclins (Cln1, Cln2, and Cln3), leading to a condition known to result in synthetic lethality. Significantly, these chemo-genetic synthetic interactions were conserved in human HCT116 cells. Indeed, knock-down of RNF40, ASH2L, and KMT2D/MLL2 induced a highly significant increase in AICAR sensitivity. Given that KMT2D/MLL2 is mutated at high frequency in a variety of cancers, this synthetic lethal interaction has an interesting therapeutic potential.
Collapse
|
44
|
Vitale SG, Rossetti P, Corrado F, Rapisarda AMC, La Vignera S, Condorelli RA, Valenti G, Sapia F, Laganà AS, Buscema M. How to Achieve High-Quality Oocytes? The Key Role of Myo-Inositol and Melatonin. Int J Endocrinol 2016; 2016:4987436. [PMID: 27651794 PMCID: PMC5019888 DOI: 10.1155/2016/4987436] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022] Open
Abstract
Assisted reproductive technologies (ART) have experienced growing interest from infertile patients seeking to become pregnant. The quality of oocytes plays a pivotal role in determining ART outcomes. Although many authors have studied how supplementation therapy may affect this important parameter for both in vivo and in vitro models, data are not yet robust enough to support firm conclusions. Regarding this last point, in this review our objective has been to evaluate the state of the art regarding supplementation with melatonin and myo-inositol in order to improve oocyte quality during ART. On the one hand, the antioxidant effect of melatonin is well known as being useful during ovulation and oocyte incubation, two occasions with a high level of oxidative stress. On the other hand, myo-inositol is important in cellular structure and in cellular signaling pathways. Our analysis suggests that the use of these two molecules may significantly improve the quality of oocytes and the quality of embryos: melatonin seems to raise the fertilization rate, and myo-inositol improves the pregnancy rate, although all published studies do not fully agree with these conclusions. However, previous studies have demonstrated that cotreatment improves these results compared with melatonin alone or myo-inositol alone. We recommend that further studies be performed in order to confirm these positive outcomes in routine ART treatment.
Collapse
Affiliation(s)
- Salvatore Giovanni Vitale
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Messina, Italy
| | - Paola Rossetti
- Unit of Diabetology and Endocrino-Metabolic Diseases, Hospital for Emergency Cannizzaro, Catania, Italy
| | - Francesco Corrado
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Messina, Italy
| | | | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, Research Centre of Motor Activity and Metabolic Rehabilitation in Diabetes (CRAMD), University of Catania, Catania, Italy
| | - Rosita Angela Condorelli
- Department of Clinical and Experimental Medicine, Research Centre of Motor Activity and Metabolic Rehabilitation in Diabetes (CRAMD), University of Catania, Catania, Italy
| | - Gaetano Valenti
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Fabrizio Sapia
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Antonio Simone Laganà
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Messina, Italy
| | - Massimo Buscema
- Unit of Diabetology and Endocrino-Metabolic Diseases, Hospital for Emergency Cannizzaro, Catania, Italy
| |
Collapse
|
45
|
Bizzarri M, Fuso A, Dinicola S, Cucina A, Bevilacqua A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opin Drug Metab Toxicol 2016; 12:1181-96. [PMID: 27351907 DOI: 10.1080/17425255.2016.1206887] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Inositol and its derivatives comprise a huge field of biology. Myo-inositol is not only a prominent component of membrane-incorporated phosphatidylinositol, but participates in its free form, with its isomers or its phosphate derivatives, to a multitude of cellular processes, including ion channel permeability, metabolic homeostasis, mRNA export and translation, cytoskeleton remodeling, stress response. AREAS COVERED Bioavailability, safety, uptake and metabolism of inositol is discussed emphasizing the complexity of interconnected pathways leading to phosphoinositides, inositol phosphates and more complex molecules, like glycosyl-phosphatidylinositols. EXPERT OPINION Besides being a structural element, myo-inositol exerts unexpected functions, mostly unknown. However, several reports indicate that inositol plays a key role during phenotypic transitions and developmental phases. Furthermore, dysfunctions in the regulation of inositol metabolism have been implicated in several chronic diseases. Clinical trials using inositol in pharmacological doses provide amazing results in the management of gynecological diseases, respiratory stress syndrome, Alzheimer's disease, metabolic syndrome, and cancer, for which conventional treatments are disappointing. However, despite the widespread studies carried out to identify inositol-based effects, no comprehensive understanding of inositol-based mechanisms has been achieved. An integrated metabolomics-genomic study to identify the cellular fate of therapeutically administered myo-inositol and its genomic/enzymatic targets is urgently warranted.
Collapse
Affiliation(s)
- Mariano Bizzarri
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy.,b Systems Biology Group Lab , Sapienza University of Rome , Rome , Italy
| | - Andrea Fuso
- b Systems Biology Group Lab , Sapienza University of Rome , Rome , Italy.,c European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation , Rome , Italy
| | - Simona Dinicola
- d Department of Clinical and Molecular Medicine , Sapienza Universityof Rome , Rome , Italy.,e Department of Surgery 'Pietro Valdoni' , Sapienza University of Rome , Rome , Italy
| | - Alessandra Cucina
- e Department of Surgery 'Pietro Valdoni' , Sapienza University of Rome , Rome , Italy.,f Azienda Policlinico Umberto I , Rome , Italy
| | - Arturo Bevilacqua
- g Department of Psychology, Section of Neuroscience , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
46
|
Structure of chromatin remodeler Swi2/Snf2 in the resting state. Nat Struct Mol Biol 2016; 23:722-9. [PMID: 27399259 DOI: 10.1038/nsmb.3259] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/15/2016] [Indexed: 12/29/2022]
Abstract
SWI2/SNF2 family proteins regulate a myriad of nucleic acid transactions by sliding, removing and reconstructing nucleosomes in eukaryotic cells. They contain two RecA-like core domains, which couple ATP hydrolysis and DNA translocation to chromatin remodeling. Here we report the crystal structure of Snf2 from the yeast Myceliophthora thermophila. The data show the two RecA-like core domains of Snf2 stacking together and twisting their ATP-binding motifs away from each other, thus explaining the inactivity of the protein in the ground state. We identified several DNA-binding elements, which are fully exposed to solvent, thus suggesting that the protein is poised for its incoming substrate. The catalytic core of Snf2 showed a high chromatin-remodeling activity, which was suppressed by the N-terminal HSA domain. Our findings reveal that the catalytic core of Snf2 is a competent remodeling machine, which rests in an inactive conformation and requires a large conformational change upon activation.
Collapse
|
47
|
Willhoft O, Bythell-Douglas R, McCormack EA, Wigley DB. Synergy and antagonism in regulation of recombinant human INO80 chromatin remodeling complex. Nucleic Acids Res 2016; 44:8179-88. [PMID: 27257055 PMCID: PMC5041457 DOI: 10.1093/nar/gkw509] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/23/2016] [Indexed: 12/30/2022] Open
Abstract
We have purified a minimal core human Ino80 complex from recombinant protein expressed in insect cells. The complex comprises one subunit each of an N-terminally truncated Ino80, actin, Arp4, Arp5, Arp8, Ies2 and Ies6, together with a single heterohexamer of the Tip49a and Tip49b proteins. This core complex has nucleosome sliding activity that is similar to that of endogenous human and yeast Ino80 complexes and is also inhibited by inositol hexaphosphate (IP6). We show that IP6 is a non-competitive inhibitor that acts by blocking the stimulatory effect of nucleosomes on the ATPase activity. The IP6 binding site is located within the C-terminal region of the Ino80 subunit. We have also prepared complexes lacking combinations of Ies2 and Arp5/Ies6 subunits that reveal regulation imposed by each of them individually and synergistically that couples ATP hydrolysis to nucleosome sliding. This coupling between Ies2 and Arp5/Ies6 can be overcome in a bypass mutation of the Arp5 subunit that is active in the absence of Ies2. These studies reveal several underlying mechanisms for regulation of ATPase activity involving a complex interplay between these protein subunits and IP6 that in turn controls nucleosome sliding.
Collapse
Affiliation(s)
- Oliver Willhoft
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Rohan Bythell-Douglas
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Elizabeth A McCormack
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Dale B Wigley
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
48
|
Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat Commun 2016; 7:11262. [PMID: 27109927 PMCID: PMC4848466 DOI: 10.1038/ncomms11262] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/07/2016] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) 1, 2 and 3 form the catalytic subunit of several large transcriptional repression complexes. Unexpectedly, the enzymatic activity of HDACs in these complexes has been shown to be regulated by inositol phosphates, which bind in a pocket sandwiched between the HDAC and co-repressor proteins. However, the actual mechanism of activation remains poorly understood. Here we have elucidated the stereochemical requirements for binding and activation by inositol phosphates, demonstrating that activation requires three adjacent phosphate groups and that other positions on the inositol ring can tolerate bulky substituents. We also demonstrate that there is allosteric communication between the inositol-binding site and the active site. The crystal structure of the HDAC1:MTA1 complex bound to a novel peptide-based inhibitor and to inositol hexaphosphate suggests a molecular basis of substrate recognition, and an entropically driven allosteric mechanism of activation.
Collapse
|
49
|
Shin JH, Park JM, Kim HJ, Ahn JH, Kwak BM, Kim JM. Development Rapid Analytical Methods for Inositol as a Trace Component by HPLC and LC-MS/MS in Infant Formula. Korean J Food Sci Anim Resour 2016; 35:466-72. [PMID: 26761867 PMCID: PMC4662128 DOI: 10.5851/kosfa.2015.35.4.466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/29/2023] Open
Abstract
A rapid and simple analytical method, using liquid chromatography tandem mass spectrometry (LC-MS/MS), was developed to detect myo-inositol (MI) in infant formulas. For protein removal: acid hydrolysis and lipid removal through organic solvent extraction. The operating conditions for instrumental analysis were determined based on previously reported analogous methods that used LC-MS/MS. Quantitative analysis was used for the detection limit test, infant formula recovery test, and standard reference material (SRM) 1849a to verify the validity of our LC-MS/MS analytical method, which was developed to quantify MI. For validation, the results of our method were compared with the results of quantitative analyses of certified values. The test results showed that the limit of detection was 0.05 mg/L, the limit of quantitation was 0.17 mg/L, and the method detection limit was 17 mg/kg. The recovery test exhibited a recovery between 98.07-98.43% and a relative standard deviation between 1.93-2.74%. Therefore, the result values were good. Additionally, SRM 1849a was measured to have an MI content of 401.84 mg/kg and recovery of 98.25%, which is comparable to the median certified value of 409 mg/kg. From the aforementioned results, we judged that the instrumental analysis conditions and preparation method used in this study were valid. The rapid analytical method developed herein could be implemented in many laboratories that seek to save time and labor.
Collapse
Affiliation(s)
- Jin-Ho Shin
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea
| | - Jung-Min Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea
| | - Ha-Jung Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea
| | - Jang-Hyuk Ahn
- KOTITI Testing & Research Institute, Seongnam 462-807, Korea
| | - Byung-Man Kwak
- Food Safety Center, Research and Development Institute, Namyang Dairy Co., Ltd., Gongju 339-914, Korea
| | - Jin-Man Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
50
|
The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation. Mol Cell Biol 2016; 36:979-91. [PMID: 26755556 DOI: 10.1128/mcb.00801-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/30/2015] [Indexed: 11/20/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes are essential for transcription regulation, and yet it is unclear how these multisubunit complexes coordinate their activities to facilitate diverse transcriptional responses. In this study, we found that the conserved Arp5 and Ies6 subunits of the Saccharomyces cerevisiae INO80 chromatin-remodeler form an abundant and distinct subcomplex in vivo and stimulate INO80-mediated activity in vitro. Moreover, our genomic studies reveal that the relative occupancy of Arp5-Ies6 correlates with nucleosome positioning at transcriptional start sites and expression levels of >1,000 INO80-regulated genes. Notably, these genes are significantly enriched in energy metabolism pathways. Specifically, arp5Δ, ies6Δ, and ino80Δ mutants demonstrate decreased expression of genes involved in glycolysis and increased expression of genes in the oxidative phosphorylation pathway. Deregulation of these metabolic pathways results in constitutively elevated mitochondrial potential and oxygen consumption. Our results illustrate the dynamic nature of the INO80 complex assembly and demonstrate for the first time that a chromatin remodeler regulates glycolytic and respiratory capacity, thereby maintaining metabolic stability.
Collapse
|