1
|
Kazansky Y, Mueller HS, Cameron D, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Mundi PS, Kuwahara Y, Somwar R, Qu R, Califano A, de Stanchina E, Dela Cruz FS, Kung AL, Gounder MM, Kentsis A. Epigenetic targeting of PGBD5-dependent DNA damage in SMARCB1-deficient sarcomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.03.592420. [PMID: 38766189 PMCID: PMC11100591 DOI: 10.1101/2024.05.03.592420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Despite the potential of targeted epigenetic therapies, most cancers do not respond to current epigenetic drugs. The Polycomb repressive complex EZH2 inhibitor tazemetostat was recently approved for the treatment of SMARCB1-deficient epithelioid sarcomas, based on the functional antagonism between PRC2 and loss of SMARCB1. Through the analysis of tazemetostat-treated patient tumors, we recently defined key principles of their response and resistance to EZH2 epigenetic therapy. Here, using transcriptomic inference from SMARCB1-deficient tumor cells, we nominate the DNA damage repair kinase ATR as a target for rational combination EZH2 epigenetic therapy. We show that EZH2 inhibition promotes DNA damage in epithelioid and rhabdoid tumor cells, at least in part via its induction of the transposase-derived PGBD5. We leverage this collateral synthetic lethal dependency to target PGBD5-dependent DNA damage by inhibition of ATR but not CHK1 using elimusertib. Consequently, combined EZH2 and ATR inhibition improves therapeutic responses in diverse patient-derived epithelioid and rhabdoid tumors in vivo. This advances a combination epigenetic therapy based on EZH2-PGBD5 synthetic lethal dependency suitable for immediate translation to clinical trials for patients.
Collapse
Affiliation(s)
- Yaniv Kazansky
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen S. Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Prabhjot S. Mundi
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Chan Zuckerberg Biohub, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
2
|
Glover JC. Hodological patterning as an organizing principle in vertebrate motor circuitry. Front Neuroanat 2025; 18:1510944. [PMID: 39844798 PMCID: PMC11750774 DOI: 10.3389/fnana.2024.1510944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Hodological patterning refers to developmental mechanisms that link the location of neurons in the brain or spinal cord to specific axonal trajectories that direct connectivity to synaptic targets either within the central nervous system or in the periphery. In vertebrate motor circuits, hodological patterning has been demonstrated at different levels, from the final motor output of somatic and preganglionic autonomic neurons targeting peripheral motoneurons and ganglion cells, to premotor inputs from spinal and brainstem neuron populations targeting the somatic motoneurons and preganglionic autonomic neurons, to cortical neurons that delegate movement commands to the brainstem and spinal neurons. In many cases molecular profiling reveals potential underlying mechanisms whereby selective gene expression creates the link between location and axon trajectory. At the cortical level, somatotopic organization suggests a potential underlying hodological patterning, but this has not been proven. This review describes examples of hodological patterning in motor circuits and covers current knowledge about how this patterning arises.
Collapse
Affiliation(s)
- Joel C. Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Wang H, Liu X, Liu Y, Yang C, Ye Y, Yu X, Sheng N, Zhang S, Mao B, Ma P. The E3 ubiquitin ligase RNF220 maintains hindbrain Hox expression patterns through regulation of WDR5 stability. eLife 2024; 13:RP94657. [PMID: 39526890 PMCID: PMC11554307 DOI: 10.7554/elife.94657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The spatial and temporal linear expression of Hox genes establishes a regional Hox code, which is crucial for the antero-posterior (A-P) patterning, segmentation, and neuronal circuit development of the hindbrain. RNF220, an E3 ubiquitin ligase, is widely involved in neural development via targeting of multiple substrates. Here, we found that the expression of Hox genes in the pons was markedly up-regulated at the late developmental stage (post-embryonic day E15.5) in Rnf220-/- and Rnf220+/- mouse embryos. Single-nucleus RNA sequencing (RNA-seq) analysis revealed different Hox de-repression profiles in different groups of neurons, including the pontine nuclei (PN). The Hox pattern was disrupted and the neural circuits were affected in the PN of Rnf220+/- mice. We showed that this phenomenon was mediated by WDR5, a key component of the TrxG complex, which can be polyubiquitinated and degraded by RNF220. Intrauterine injection of WDR5 inhibitor (WDR5-IN-4) and genetic ablation of Wdr5 in Rnf220+/- mice largely recovered the de-repressed Hox expression pattern in the hindbrain. In P19 embryonal carcinoma cells, the retinoic acid-induced Hox expression was further stimulated by Rnf220 knockdown, which can also be rescued by Wdr5 knockdown. In short, our data suggest a new role of RNF220/WDR5 in Hox pattern maintenance and pons development in mice.
Collapse
Affiliation(s)
- Huishan Wang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Xingyan Liu
- Academy of Mathematics and Systems Science, Chinese Academy of ScienceBeijingChina
- School of Mathematical Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Yamin Liu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Chencheng Yang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Yaxin Ye
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Xiaomei Yu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Nengyin Sheng
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Shihua Zhang
- Academy of Mathematics and Systems Science, Chinese Academy of ScienceBeijingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of SciencesHangzhouChina
| | - Bingyu Mao
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| | - Pengcheng Ma
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
4
|
Butts JC, Wu SR, Durham MA, Dhindsa RS, Revelli JP, Ljungberg MC, Saulnier O, McLaren ME, Taylor MD, Zoghbi HY. A single-cell transcriptomic map of the developing Atoh1 lineage identifies neural fate decisions and neuronal diversity in the hindbrain. Dev Cell 2024; 59:2171-2188.e7. [PMID: 39106860 DOI: 10.1016/j.devcel.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024]
Abstract
Proneural transcription factors establish molecular cascades to orchestrate neuronal diversity. One such transcription factor, Atonal homolog 1 (Atoh1), gives rise to cerebellar excitatory neurons and over 30 distinct nuclei in the brainstem critical for hearing, breathing, and balance. Although Atoh1 lineage neurons have been qualitatively described, the transcriptional programs that drive their fate decisions and the full extent of their diversity remain unknown. Here, we analyzed single-cell RNA sequencing and ATOH1 DNA binding in Atoh1 lineage neurons of the developing mouse hindbrain. This high-resolution dataset identified markers for specific brainstem nuclei and demonstrated that transcriptionally heterogeneous progenitors require ATOH1 for proper migration. Moreover, we identified a sizable population of proliferating unipolar brush cell progenitors in the mouse Atoh1 lineage, previously described in humans as the origin of one medulloblastoma subtype. Collectively, our data provide insights into the developing mouse hindbrain and markers for functional assessment of understudied neuronal populations.
Collapse
Affiliation(s)
- Jessica C Butts
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| | - Sih-Rong Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark A Durham
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan S Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Pierre Revelli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Genomics and Development of Childhood Cancers, Institut Curie, PSL University, 75005 Paris, France; INSERM U830, Cancer Heterogeneity Instability and Plasticity, Institut Curie, PSL University, 75005 Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| | - Madison E McLaren
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Surgery, Department of Laboratory Medicine and Pathobiology, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics-Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Cui K, Xia Y, Patnaik A, Salivara A, Lowenstein ED, Isik EG, Knorz AL, Airaghi L, Crotti M, Garratt AN, Meng F, Schmitz D, Studer M, Rijli FM, Nothwang HG, Rost BR, Strauß U, Hernandez-Miranda LR. Genetic identification of medullary neurons underlying congenital hypoventilation. SCIENCE ADVANCES 2024; 10:eadj0720. [PMID: 38896627 PMCID: PMC11186509 DOI: 10.1126/sciadv.adj0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Mutations in the transcription factors encoded by PHOX2B or LBX1 correlate with congenital central hypoventilation disorders. These conditions are typically characterized by pronounced hypoventilation, central apnea, and diminished chemoreflexes, particularly to abnormally high levels of arterial PCO2. The dysfunctional neurons causing these respiratory disorders are largely unknown. Here, we show that distinct, and previously undescribed, sets of medullary neurons coexpressing both transcription factors (dB2 neurons) account for specific respiratory functions and phenotypes seen in congenital hypoventilation. By combining intersectional chemogenetics, intersectional labeling, lineage tracing, and conditional mutagenesis, we uncovered subgroups of dB2 neurons with key functions in (i) respiratory tidal volumes, (ii) the hypercarbic reflex, (iii) neonatal respiratory stability, and (iv) neonatal survival. These data provide functional evidence for the critical role of distinct medullary dB2 neurons in neonatal respiratory physiology. In summary, our work identifies distinct subgroups of dB2 neurons regulating breathing homeostasis, dysfunction of which causes respiratory phenotypes associated with congenital hypoventilation.
Collapse
Affiliation(s)
- Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Abhisarika Patnaik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aikaterini Salivara
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Eser G. Isik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrian L. Knorz
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Airaghi
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michela Crotti
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alistair N. Garratt
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fanqi Meng
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michèle Studer
- Université Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Filippo M. Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hans G. Nothwang
- Division of Neurogenetics, Cluster of Excellence Hearing4all, Carl von Ossietzky University, Oldenburg, Germany
| | - Benjamin R. Rost
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulf Strauß
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Wellik DM. Hox genes and patterning the vertebrate body. Curr Top Dev Biol 2024; 159:1-27. [PMID: 38729674 DOI: 10.1016/bs.ctdb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The diversity of vertebrate body plans is dizzying, yet stunning for the many things they have in common. Vertebrates have inhabited virtually every part of the earth from its coldest to warmest climates. They locomote by swimming, flying, walking, slithering, or climbing, or combinations of these behaviors. And they exist in many different sizes, from the smallest of frogs, fish and lizards to giraffes, elephants, and blue whales. Despite these differences, vertebrates follow a remarkably similar blueprint for the establishment of their body plan. Within the relatively small amount of time required to complete gastrulation, the process through which the three germ layers, ectoderm, mesoderm, and endoderm are created, the embryo also generates its body axis and is simultaneously patterned. For the length of this axis, the genes that distinguish the neck from the rib cage or the trunk from the sacrum are the Hox genes. In vertebrates, there was evolutionary pressure to maintain this set of genes in the organism. Over the past decades, much has been learned regarding the regulatory mechanisms that ensure the appropriate expression of these genes along the main body axes. Genetic functions continue to be explored though much has been learned. Much less has been discerned on the identity of co-factors used by Hox proteins for the specificity of transcriptional regulation or what downstream targets and pathways are critical for patterning events, though there are notable exceptions. Current work in the field is demonstrating that Hox genes continue to function in many organs long after directing early patterning events. It is hopeful continued research will shed light on remaining questions regarding mechanisms used by this important and conserved set of transcriptional regulators.
Collapse
Affiliation(s)
- Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
7
|
Wéber I, Dakos A, Mészár Z, Matesz C, Birinyi A. Developmental patterns of extracellular matrix molecules in the embryonic and postnatal mouse hindbrain. Front Neuroanat 2024; 18:1369103. [PMID: 38496826 PMCID: PMC10940344 DOI: 10.3389/fnana.2024.1369103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Normal brain development requires continuous communication between developing neurons and their environment filled by a complex network referred to as extracellular matrix (ECM). The ECM is divided into distinct families of molecules including hyaluronic acid, proteoglycans, glycoproteins such as tenascins, and link proteins. In this study, we characterize the temporal and spatial distribution of the extracellular matrix molecules in the embryonic and postnatal mouse hindbrain by using antibodies and lectin histochemistry. In the embryo, hyaluronan and neurocan were found in high amounts until the time of birth whereas versican and tenascin-R were detected in lower intensities during the whole embryonic period. After birth, both hyaluronic acid and neurocan still produced intense staining in almost all areas of the hindbrain, while tenascin-R labeling showed a continuous increase during postnatal development. The reaction with WFA and aggrecan was revealed first 4th postnatal day (P4) with low staining intensities, while HAPLN was detected two weeks after birth (P14). The perineuronal net appeared first around the facial and vestibular neurons at P4 with hyaluronic acid cytochemistry. One week after birth aggrecan, neurocan, tenascin-R, and WFA were also accumulated around the neurons located in several hindbrain nuclei, but HAPLN1 was detected on the second postnatal week. Our results provide further evidence that many extracellular macromolecules that will be incorporated into the perineuronal net are already expressed at embryonic and early postnatal stages of development to control differentiation, migration, and synaptogenesis of neurons. In late postnatal period, the experience-driven neuronal activity induces formation of perineuronal net to stabilize synaptic connections.
Collapse
Affiliation(s)
- Ildikó Wéber
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adél Dakos
- Department of Pediatric and Preventive Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Zoltán Mészár
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clara Matesz
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - András Birinyi
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Rhodes CT, Asokumar D, Sohn M, Naskar S, Elisha L, Stevenson P, Lee DR, Zhang Y, Rocha PP, Dale RK, Lee S, Petros TJ. Loss of Ezh2 in the medial ganglionic eminence alters interneuron fate, cell morphology and gene expression profiles. Front Cell Neurosci 2024; 18:1334244. [PMID: 38419656 PMCID: PMC10899338 DOI: 10.3389/fncel.2024.1334244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Enhancer of zeste homolog 2 (Ezh2) is responsible for trimethylation of histone 3 at lysine 27 (H3K27me3), resulting in repression of gene expression. Here, we explore the role of Ezh2 in forebrain GABAergic interneuron development. Methods We removed Ezh2 in the MGE by generating Nkx2-1Cre;Ezh2 conditional knockout mice. We then characterized changes in MGE-derived interneuron fate and electrophysiological properties in juvenile mice, as well as alterations in gene expression, chromatin accessibility and histone modifications in the MGE. Results Loss of Ezh2 increases somatostatin-expressing (SST+) and decreases parvalbumin-expressing (PV+) interneurons in the forebrain. We observe fewer MGE-derived interneurons in the first postnatal week, indicating reduced interneuron production. Intrinsic electrophysiological properties in SST+ and PV+ interneurons are normal, but PV+ interneurons display increased axonal complexity in Ezh2 mutant mice. Single nuclei multiome analysis revealed differential gene expression patterns in the embryonic MGE that are predictive of these cell fate changes. Lastly, CUT&Tag analysis revealed that some genomic loci are particularly resistant or susceptible to shifts in H3K27me3 levels in the absence of Ezh2, indicating differential selectivity to epigenetic perturbation. Discussion Thus, loss of Ezh2 in the MGE alters interneuron fate, morphology, and gene expression and regulation. These findings have important implications for both normal development and potentially in disease etiologies.
Collapse
Affiliation(s)
- Christopher T Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Dhanya Asokumar
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Shovan Naskar
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Lielle Elisha
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Parker Stevenson
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- National Cancer Institute (NCI), NIH, Bethesda, MD, United States
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Soohyun Lee
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| |
Collapse
|
9
|
Ghasemi DR, Okonechnikov K, Rademacher A, Tirier S, Maass KK, Schumacher H, Joshi P, Gold MP, Sundheimer J, Statz B, Rifaioglu AS, Bauer K, Schumacher S, Bortolomeazzi M, Giangaspero F, Ernst KJ, Clifford SC, Saez-Rodriguez J, Jones DTW, Kawauchi D, Fraenkel E, Mallm JP, Rippe K, Korshunov A, Pfister SM, Pajtler KW. Compartments in medulloblastoma with extensive nodularity are connected through differentiation along the granular precursor lineage. Nat Commun 2024; 15:269. [PMID: 38191550 PMCID: PMC10774372 DOI: 10.1038/s41467-023-44117-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Medulloblastomas with extensive nodularity are cerebellar tumors characterized by two distinct compartments and variable disease progression. The mechanisms governing the balance between proliferation and differentiation in MBEN remain poorly understood. Here, we employ a multi-modal single cell transcriptome analysis to dissect this process. In the internodular compartment, we identify proliferating cerebellar granular neuronal precursor-like malignant cells, along with stromal, vascular, and immune cells. In contrast, the nodular compartment comprises postmitotic, neuronally differentiated malignant cells. Both compartments are connected through an intermediate cell stage resembling actively migrating CGNPs. Notably, we also discover astrocytic-like malignant cells, found in proximity to migrating and differentiated cells at the transition zone between the two compartments. Our study sheds light on the spatial tissue organization and its link to the developmental trajectory, resulting in a more benign tumor phenotype. This integrative approach holds promise to explore intercompartmental interactions in other cancers with varying histology.
Collapse
Affiliation(s)
- David R Ghasemi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne Rademacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Stephan Tirier
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
- Resolve BioSciences GmbH, Monheim am Rhein, Germany
| | - Kendra K Maass
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hanna Schumacher
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Piyush Joshi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maxwell P Gold
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Julia Sundheimer
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Britta Statz
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmet S Rifaioglu
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- Department of Electrical and Electronics Engineering, İskenderun Technical University, Hatay, Turkey
| | - Katharina Bauer
- Single-cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabrina Schumacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | | | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Kati J Ernst
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - David T W Jones
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jan-Philipp Mallm
- Single-cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Andrey Korshunov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Kristian W Pajtler
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
10
|
Miller A, Dasen JS. Establishing and maintaining Hox profiles during spinal cord development. Semin Cell Dev Biol 2024; 152-153:44-57. [PMID: 37029058 PMCID: PMC10524138 DOI: 10.1016/j.semcdb.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
Collapse
Affiliation(s)
- Alexander Miller
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Jeremy S Dasen
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
11
|
Zhang L, Zhou T, Su Y, He L, Wang Z. Involvement of histone methylation in the regulation of neuronal death. J Physiol Biochem 2023; 79:685-693. [PMID: 37544979 DOI: 10.1007/s13105-023-00978-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Neuronal death occurs in various physiological and pathological processes, and apoptosis, necrosis, and ferroptosis are three major forms of neuronal death. Neuronal apoptosis, necrosis, and ferroptosis are widely identified to involve the progress of stroke, Parkinson's disease, and Alzheimer's disease. A growing body of evidence has pointed out that neuronal death is tightly associated with expression of related genes and alteration of signaling molecules. In addition, recently, epigenetics has been increasingly focused on as a vital regulatory mechanism for neuronal apoptosis, necrosis, and ferroptosis, providing a new direction for treating nervous system diseases. Moreover, growing researches suggest that histone methylation or demethylation is involved in the processes of neuronal apoptosis, necrosis, and ferroptosis. These researches may imply that studying the potential roles of histone methylation is essential for treating the nervous system diseases. Here, we review potential roles of histone methylation and demethylation in neuronal death, which may give us a new direction in treating the nervous system diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Tai Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yaxin Su
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Li He
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zhongcheng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
12
|
Zhang M, Zhang Y, Xu Q, Crawford J, Qian C, Wang GH, Qian J, Dong XZ, Pletnikov MV, Liu CM, Zhou FQ. Neuronal Histone Methyltransferase EZH2 Regulates Neuronal Morphogenesis, Synaptic Plasticity, and Cognitive Behavior in Mice. Neurosci Bull 2023; 39:1512-1532. [PMID: 37326884 PMCID: PMC10533778 DOI: 10.1007/s12264-023-01074-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/09/2023] [Indexed: 06/17/2023] Open
Abstract
The histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2)-mediated trimethylation of histone H3 lysine 27 (H3K27me3) regulates neural stem cell proliferation and fate specificity through silencing different gene sets in the central nervous system. Here, we explored the function of EZH2 in early post-mitotic neurons by generating a neuron-specific Ezh2 conditional knockout mouse line. The results showed that a lack of neuronal EZH2 led to delayed neuronal migration, more complex dendritic arborization, and increased dendritic spine density. Transcriptome analysis revealed that neuronal EZH2-regulated genes are related to neuronal morphogenesis. In particular, the gene encoding p21-activated kinase 3 (Pak3) was identified as a target gene suppressed by EZH2 and H3K27me3, and expression of the dominant negative Pak3 reversed Ezh2 knockout-induced higher dendritic spine density. Finally, the lack of neuronal EZH2 resulted in impaired memory behaviors in adult mice. Our results demonstrated that neuronal EZH2 acts to control multiple steps of neuronal morphogenesis during development, and has long-lasting effects on cognitive function in adult mice.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yong Zhang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Qian Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Joshua Crawford
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Cheng Qian
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Guo-Hua Wang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Xin-Zhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Chang-Mei Liu
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
13
|
Steadman K, You S, Srinivas DV, Mouakkad L, Yan Y, Kim M, Venugopal SV, Tanaka H, Freeman MR. Autonomous action and cooperativity between the ONECUT2 transcription factor and its 3' untranslated region. Front Cell Dev Biol 2023; 11:1206259. [PMID: 37484909 PMCID: PMC10356556 DOI: 10.3389/fcell.2023.1206259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
The transcription factor ONECUT2 (OC2) is a master transcriptional regulator operating in metastatic castration-resistant prostate cancer that suppresses androgen receptor activity and promotes neural differentiation and tumor cell survival. OC2 mRNA possesses an unusually long (14,575 nt), evolutionarily conserved 3' untranslated region (3' UTR) with many microRNA binding sites, including up to 26 miR-9 sites. This is notable because miR-9 targets many of the same genes regulated by the OC2 protein. Paradoxically, OC2 expression is high in tissues with high miR-9 expression. The length and complex secondary structure of OC2 mRNA suggests that it is a potent master competing endogenous RNA (ceRNA) capable of sequestering miRNAs. Here, we describe a novel role for OC2 3' UTR in lethal prostate cancer consistent with a function as a ceRNA. A plausible ceRNA network in OC2-driven tumors was constructed computationally and then confirmed in prostate cancer cell lines. Genes regulated by OC2 3' UTR exhibited high overlap (up to 45%) with genes driven by the overexpression of the OC2 protein in the absence of 3' UTR, indicating a cooperative functional relationship between the OC2 protein and its 3' UTR. These overlapping networks suggest an evolutionarily conserved mechanism to reinforce OC2 transcription by protection of OC2-regulated mRNAs from miRNA suppression. Both the protein and 3' UTR showed increased polycomb-repressive complex activity. The expression of OC2 3' UTR mRNA alone (without protein) dramatically increased the metastatic potential by in vitro assays. Additionally, OC2 3' UTR increased the expression of Aldo-Keto reductase and UDP-glucuronyl transferase family genes responsible for altering the androgen synthesis pathway. ONECUT2 represents the first-described dual-modality transcript that operates as both a key transcription factor driving castration-resistant prostate cancer and a master ceRNA that promotes and protects the same transcriptional network.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael R. Freeman
- Division of Cancer Biology and Therapeutics, Biomedical Sciences and Pathology and Laboratory Medicine, Department of Urology, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, United States
| |
Collapse
|
14
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. Involvement of the H3.3 Histone Variant in the Epigenetic Regulation of Gene Expression in the Nervous System, in Both Physiological and Pathological Conditions. Int J Mol Sci 2023; 24:11028. [PMID: 37446205 DOI: 10.3390/ijms241311028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
All the cells of an organism contain the same genome. However, each cell expresses only a minor fraction of its potential and, in particular, the genes encoding the proteins necessary for basal metabolism and the proteins responsible for its specific phenotype. The ability to use only the right and necessary genes involved in specific functions depends on the structural organization of the nuclear chromatin, which in turn depends on the epigenetic history of each cell, which is stored in the form of a collection of DNA and protein modifications. Among these modifications, DNA methylation and many kinds of post-translational modifications of histones play a key role in organizing the complex indexing of usable genes. In addition, non-canonical histone proteins (also known as histone variants), the synthesis of which is not directly linked with DNA replication, are used to mark specific regions of the genome. Here, we will discuss the role of the H3.3 histone variant, with particular attention to its loading into chromatin in the mammalian nervous system, both in physiological and pathological conditions. Indeed, chromatin modifications that mark cell memory seem to be of special importance for the cells involved in the complex processes of learning and memory.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
15
|
Wu SR, Butts JC, Caudill MS, Revelli JP, Dhindsa RS, Durham MA, Zoghbi HY. Atoh1 drives the heterogeneity of the pontine nuclei neurons and promotes their differentiation. SCIENCE ADVANCES 2023; 9:eadg1671. [PMID: 37390208 PMCID: PMC10313176 DOI: 10.1126/sciadv.adg1671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Pontine nuclei (PN) neurons mediate the communication between the cerebral cortex andthe cerebellum to refine skilled motor functions. Prior studies showed that PN neurons fall into two subtypes based on their anatomic location and region-specific connectivity, but the extent of their heterogeneity and its molecular drivers remain unknown. Atoh1 encodes a transcription factor that is expressed in the PN precursors. We previously showed that partial loss of Atoh1 function in mice results in delayed PN development and impaired motor learning. In this study, we performed single-cell RNA sequencing to elucidate the cell state-specific functions of Atoh1 during PN development and found that Atoh1 regulates cell cycle exit, differentiation, migration, and survival of PN neurons. Our data revealed six previously not known PN subtypes that are molecularly and spatially distinct. We found that the PN subtypes exhibit differential vulnerability to partial loss of Atoh1 function, providing insights into the prominence of PN phenotypes in patients with ATOH1 missense mutations.
Collapse
Affiliation(s)
- Sih-Rong Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Jessica C. Butts
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Matthew S. Caudill
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Jean-Pierre Revelli
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ryan S. Dhindsa
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mark A. Durham
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Student Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Huda Y. Zoghbi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
17
|
Farley SJ, Grishok A, Zeldich E. Shaking up the silence: consequences of HMGN1 antagonizing PRC2 in the Down syndrome brain. Epigenetics Chromatin 2022; 15:39. [PMID: 36463299 PMCID: PMC9719135 DOI: 10.1186/s13072-022-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability is a well-known hallmark of Down Syndrome (DS) that results from the triplication of the critical region of human chromosome 21 (HSA21). Major studies were conducted in recent years to gain an understanding about the contribution of individual triplicated genes to DS-related brain pathology. Global transcriptomic alterations and widespread changes in the establishment of neural lineages, as well as their differentiation and functional maturity, suggest genome-wide chromatin organization alterations in trisomy. High Mobility Group Nucleosome Binding Domain 1 (HMGN1), expressed from HSA21, is a chromatin remodeling protein that facilitates chromatin decompaction and is associated with acetylated lysine 27 on histone H3 (H3K27ac), a mark correlated with active transcription. Recent studies causatively linked overexpression of HMGN1 in trisomy and the development of DS-associated B cell acute lymphoblastic leukemia (B-ALL). HMGN1 has been shown to antagonize the activity of the Polycomb Repressive Complex 2 (PRC2) and prevent the deposition of histone H3 lysine 27 trimethylation mark (H3K27me3), which is associated with transcriptional repression and gene silencing. However, the possible ramifications of the increased levels of HMGN1 through the derepression of PRC2 target genes on brain cell pathology have not gained attention. In this review, we discuss the functional significance of HMGN1 in brain development and summarize accumulating reports about the essential role of PRC2 in the development of the neural system. Mechanistic understanding of how overexpression of HMGN1 may contribute to aberrant brain cell phenotypes in DS, such as altered proliferation of neural progenitors, abnormal cortical architecture, diminished myelination, neurodegeneration, and Alzheimer's disease-related pathology in trisomy 21, will facilitate the development of DS therapeutic approaches targeting chromatin.
Collapse
Affiliation(s)
- Sean J. Farley
- grid.189504.10000 0004 1936 7558Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Alla Grishok
- grid.189504.10000 0004 1936 7558Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Boston University Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
18
|
Glover JC, Fritzsch B. Molecular mechanisms governing development of the hindbrain choroid plexus and auditory projection: A validation of the seminal observations of Wilhelm His. IBRO Neurosci Rep 2022; 13:306-313. [PMID: 36247525 PMCID: PMC9561746 DOI: 10.1016/j.ibneur.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Studies by His from 1868 to 1904 delineated the critical role of the dorsal roof plate in the development of the hindbrain choroid plexus, and of the rhombic lips in the development of hindbrain auditory centers. Modern molecular studies have confirmed these observations and placed them in a mechanistic context. Expression of the transcription factor Lmx1a/b is crucial to the development of the hindbrain choroid plexus, and also regulates the expression of Atoh1, a transcription factor that is essential for the formation of the cochlear hair cells and auditory nuclei. By contrast, development of the vestibular hair cells, vestibular ganglion and vestibular nuclei does not depend on Lmx1a/b. These findings demonstrate a common dependence on a specific gene for the hindbrain choroid plexus and the primary auditory projection from hair cells to sensory neurons to hindbrain nuclei. Thus, His' conclusions regarding the origins of specific hindbrain structures are borne out by molecular genetic experiments conducted more than a hundred years later.
Collapse
Affiliation(s)
- Joel C. Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| |
Collapse
|
19
|
Wang N, Li M, Cao Y, Yang H, Li L, Ge L, Fan Z, Zhang C, Jin L. PRMT6/LMNA/CXCL12 signaling pathway regulated the osteo/odontogenic differentiation ability in dental stem cells isolated from apical papilla. Cell Tissue Res 2022; 389:187-199. [PMID: 35543755 DOI: 10.1007/s00441-022-03628-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Tooth loss and maxillofacial bone defect are common diseases, which seriously affect people's health. Effective tooth and maxillofacial bone tissue regeneration is a key problem that need to be solved. In the present study, we investigate the role of PRMT6 in osteo/odontogenic differentiation and migration capacity by using SCAPs. Our results showed that knockdown of PRMT6 promoted the osteo/odontogenic differentiation compared with the control group, as detected by alkaline phosphatase activity, alizarin red staining, and the indicators of osteo/odontogenic differentiation measured by Western blot. In addition, overexpression of PRMT6 inhibited the osteo/odontogenic differentiation potentials of SCAPs. Then, knockdown of PRMT6 promoted the migration ability and overexpression of PRMT6 inhibited the migration ability in SCAPs. Mechanically, we discovered that the depletion of PRMT6 promoted the expression of CXCL12 by decreasing H3R2 methylation in the promoter region of CXCL12. In addition, PRMT6 formed a protein complex with LMNA, a nuclear structural protein. Depletion of LMNA inhibited the osteo/odontogenic differentiation and CXCL12 expression and increased the intranucleus PRMT6 in SCAPs. To sum up, PRMT6 might inhibit the osteo/odontogenic differentiation and migration ability of SCAPs via inhibiting CXCL12. And LMNA might be a negative regulator of PRMT6. It is suggested that PRMT6 may be a key target for SCAP-mediated bone and tooth tissue regeneration.
Collapse
Affiliation(s)
- Ning Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Miao Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
- Department of Endodontics, Capital Medical University School of Stomatology, Beijing, 100050, China
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Le Li
- Stomatological Disease Prevention and Control Center, Tsinghua University Hospital, Tsinghua University, Beijing, China
| | - Lihua Ge
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chen Zhang
- Department of Endodontics, Capital Medical University School of Stomatology, Beijing, 100050, China.
| | - Luyuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, 100050, China.
| |
Collapse
|
20
|
Martín-Fernández F, Bermejo-Santos A, Bragg-Gonzalo L, Briz CG, Serrano-Saiz E, Nieto M. Role of Nrp1 in controlling cortical inter-hemispheric circuits. eLife 2022; 11:69776. [PMID: 35230240 PMCID: PMC8887897 DOI: 10.7554/elife.69776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/03/2022] [Indexed: 01/09/2023] Open
Abstract
Axons of the corpus callosum (CC) mediate the interhemispheric communication required for complex perception in mammals. In the somatosensory (SS) cortex, the CC exchanges inputs processed by the primary (S1) and secondary (S2) areas, which receive tactile and pain stimuli. During early postnatal life, a multistep process involving axonal navigation, growth, and refinement, leads to precise CC connectivity. This process is often affected in neurodevelopmental disorders such as autism and epilepsy. We herein show that in mice, expression of the axonal signaling receptor Neuropilin 1 (Nrp1) in SS layer (L) 2/3 is temporary and follows patterns that determine CC connectivity. At postnatal day 4, Nrp1 expression is absent in the SS cortex while abundant in the motor area, creating a sharp border. During the following 3 weeks, Nrp1 is transiently upregulated in subpopulations of SS L2/3 neurons, earlier and more abundantly in S2 than in S1. In vivo knock-down and overexpression experiments demonstrate that transient expression of Nrp1 does not affect the initial development of callosal projections in S1 but is required for subsequent S2 innervation. Moreover, knocking-down Nrp1 reduces the number of S2L2/3 callosal neurons due to excessive postnatal refinement. Thus, an exquisite temporal and spatial regulation of Nrp1 expression determines SS interhemispheric maps.
Collapse
Affiliation(s)
- Fernando Martín-Fernández
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin, Madrid, Spain
| | - Ana Bermejo-Santos
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Campus de Cantoblanco, Nicolás Cabrera, Madrid, Spain
| | - Lorena Bragg-Gonzalo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin, Madrid, Spain
| | - Carlos G Briz
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin, Madrid, Spain
| | - Esther Serrano-Saiz
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Campus de Cantoblanco, Nicolás Cabrera, Madrid, Spain
| | - Marta Nieto
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin, Madrid, Spain
| |
Collapse
|
21
|
Feng W, Li Y, Kratsios P. Emerging Roles for Hox Proteins in the Last Steps of Neuronal Development in Worms, Flies, and Mice. Front Neurosci 2022; 15:801791. [PMID: 35185450 PMCID: PMC8855150 DOI: 10.3389/fnins.2021.801791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 12/28/2022] Open
Abstract
A remarkable diversity of cell types characterizes every animal nervous system. Previous studies provided important insights into how neurons commit to a particular fate, migrate to the right place and form precise axodendritic patterns. However, the mechanisms controlling later steps of neuronal development remain poorly understood. Hox proteins represent a conserved family of homeodomain transcription factors with well-established roles in anterior-posterior (A-P) patterning and the early steps of nervous system development, including progenitor cell specification, neuronal migration, cell survival, axon guidance and dendrite morphogenesis. This review highlights recent studies in Caenorhabditis elegans, Drosophila melanogaster and mice that suggest new roles for Hox proteins in processes occurring during later steps of neuronal development, such as synapse formation and acquisition of neuronal terminal identity features (e.g., expression of ion channels, neurotransmitter receptors, and neuropeptides). Moreover, we focus on exciting findings suggesting Hox proteins are required to maintain synaptic structures and neuronal terminal identity during post-embryonic life. Altogether, these studies, in three model systems, support the hypothesis that certain Hox proteins are continuously required, from early development throughout post-embryonic life, to build and maintain a functional nervous system, significantly expanding their functional repertoire beyond the control of early A-P patterning.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, United States
| | - Yinan Li
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
- Committee on Neurobiology, University of Chicago, Chicago, IL, United States
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
| |
Collapse
|
22
|
Sawai A, Pfennig S, Bulajić M, Miller A, Khodadadi-Jamayran A, Mazzoni EO, Dasen JS. PRC1 sustains the integrity of neural fate in the absence of PRC2 function. eLife 2022; 11:e72769. [PMID: 34994686 PMCID: PMC8765755 DOI: 10.7554/elife.72769] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.
Collapse
Affiliation(s)
- Ayana Sawai
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Sarah Pfennig
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Milica Bulajić
- Department of Biology, New York UniversityNew YorkUnited States
| | - Alexander Miller
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, NYU School of MedcineNew YorkUnited States
| | | | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
23
|
García-Guillén IM, Martínez-de-la-Torre M, Puelles L, Aroca P, Marín F. Molecular Segmentation of the Spinal Trigeminal Nucleus in the Adult Mouse Brain. Front Neuroanat 2021; 15:785840. [PMID: 34955765 PMCID: PMC8702626 DOI: 10.3389/fnana.2021.785840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The trigeminal column is a hindbrain structure formed by second order sensory neurons that receive afferences from trigeminal primary (ganglionic) nerve fibers. Classical studies subdivide it into the principal sensory trigeminal nucleus located next to the pontine nerve root, and the spinal trigeminal nucleus which in turn consists of oral, interpolar and caudal subnuclei. On the other hand, according to the prosomeric model, this column would be subdivided into segmental units derived from respective rhombomeres. Experimental studies have mapped the principal sensory trigeminal nucleus to pontine rhombomeres (r) r2-r3 in the mouse. The spinal trigeminal nucleus emerges as a plurisegmental formation covering several rhombomeres (r4 to r11 in mice) across pontine, retropontine and medullary hindbrain regions. In the present work we reexamined the issue of rhombomeric vs. classical subdivisions of this column. To this end, we analyzed its subdivisions in an AZIN2-lacZ transgenic mouse, known as a reference model for hindbrain topography, together with transgenic reporter lines for trigeminal fibers. We screened as well for genes differentially expressed along the axial dimension of this structure in the adult and juvenile mouse brain. This analysis yielded genes from multiple functional families that display transverse domains fitting the mentioned rhombomeric map. The spinal trigeminal nucleus thus represents a plurisegmental structure with a series of distinct neuromeric units having unique combinatorial molecular profiles.
Collapse
Affiliation(s)
- Isabel M García-Guillén
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Margaret Martínez-de-la-Torre
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| |
Collapse
|
24
|
Maheshwari U, Kraus D, Vilain N, Holwerda SJB, Cankovic V, Maiorano NA, Kohler H, Satoh D, Sigrist M, Arber S, Kratochwil CF, Di Meglio T, Ducret S, Rijli FM. Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets. Cell Rep 2021; 31:107767. [PMID: 32553152 DOI: 10.1016/j.celrep.2020.107767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/18/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
The mammalian precerebellar pontine nucleus (PN) has a main role in relaying cortical information to the cerebellum. The molecular determinants establishing ordered connectivity patterns between cortical afferents and precerebellar neurons are largely unknown. We show that expression of Hox5 transcription factors is induced in specific subsets of postmitotic PN neurons at migration onset. Hox5 induction is achieved by response to retinoic acid signaling, resulting in Jmjd3-dependent derepression of Polycomb chromatin and 3D conformational changes. Hoxa5 drives neurons to settle posteriorly in the PN, where they are monosynaptically targeted by cortical neuron subsets mainly carrying limb somatosensation. Furthermore, Hoxa5 postmigratory ectopic expression in PN neurons is sufficient to attract cortical somatosensory inputs regardless of position and avoid visual afferents. Transcriptome analysis further suggests that Hoxa5 is involved in circuit formation. Thus, Hoxa5 coordinates postmitotic specification, migration, settling position, and sub-circuit assembly of PN neuron subsets in the cortico-cerebellar pathway.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4051 Basel, Switzerland
| | - Dominik Kraus
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4051 Basel, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Sjoerd J B Holwerda
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Vanja Cankovic
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicola A Maiorano
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Daisuke Satoh
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biozentrum, University of Basel, Kingelbergstrasse 70, 4056 Basel, Switzerland
| | - Markus Sigrist
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biozentrum, University of Basel, Kingelbergstrasse 70, 4056 Basel, Switzerland
| | - Silvia Arber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biozentrum, University of Basel, Kingelbergstrasse 70, 4056 Basel, Switzerland
| | - Claudius F Kratochwil
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Thomas Di Meglio
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4051 Basel, Switzerland.
| |
Collapse
|
25
|
Iguchi T, Oka Y, Yasumura M, Omi M, Kuroda K, Yagi H, Xie MJ, Taniguchi M, Bastmeyer M, Sato M. Mutually Repulsive EphA7-EfnA5 Organize Region-to-Region Corticopontine Projection by Inhibiting Collateral Extension. J Neurosci 2021; 41:4795-4808. [PMID: 33906900 PMCID: PMC8260171 DOI: 10.1523/jneurosci.0367-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Coordination of skilled movements and motor planning relies on the formation of regionally restricted brain circuits that connect cortex with subcortical areas during embryonic development. Layer 5 neurons that are distributed across most cortical areas innervate the pontine nuclei (basilar pons) by protrusion and extension of collateral branches interstitially along their corticospinal extending axons. Pons-derived chemotropic cues are known to attract extending axons, but molecules that regulate collateral extension to create regionally segregated targeting patterns have not been identified. Here, we discovered that EphA7 and EfnA5 are expressed in the cortex and the basilar pons in a region-specific and mutually exclusive manner, and that their repulsive activities are essential for segregating collateral extensions from corticospinal axonal tracts in mice. Specifically, EphA7 and EfnA5 forward and reverse inhibitory signals direct collateral extension such that EphA7-positive frontal and occipital cortical areas extend their axon collaterals into the EfnA5-negative rostral part of the basilar pons, whereas EfnA5-positive parietal cortical areas extend their collaterals into the EphA7-negative caudal part of the basilar pons. Together, our results provide a molecular basis that explains how the corticopontine projection connects multimodal cortical outputs to their subcortical targets.SIGNIFICANCE STATEMENT Our findings put forward a model in which region-to-region connections between cortex and subcortical areas are shaped by mutually exclusive molecules to ensure the fidelity of regionally restricted circuitry. This model is distinct from earlier work showing that neuronal circuits within individual cortical modalities form in a topographical manner controlled by a gradient of axon guidance molecules. The principle that a shared molecular program of mutually repulsive signaling instructs regional organization-both within each brain region and between connected brain regions-may well be applicable to other contexts in which information is sorted by converging and diverging neuronal circuits.
Collapse
Affiliation(s)
- Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Department of Nursing, Faculty of Health Science, Fukui Health Science University, Fukui 910-3190, Japan
| | - Yuichiro Oka
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Osaka 565-0871, Japan
| | - Misato Yasumura
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Minoru Omi
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kazuki Kuroda
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hideshi Yagi
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Min-Jue Xie
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Osaka 565-0871, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Martin Bastmeyer
- Department of Cell and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
26
|
Utsunomiya S, Kishi Y, Tsuboi M, Kawaguchi D, Gotoh Y, Abe M, Sakimura K, Maeda K, Takemoto H. Ezh1 regulates expression of Cpg15/Neuritin in mouse cortical neurons. Drug Discov Ther 2021; 15:55-65. [PMID: 33678755 DOI: 10.5582/ddt.2021.01017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Immature neurons undergo morphological and physiological maturation in order to establish neuronal networks. During neuronal maturation, a large number of genes change their transcriptional levels, and these changes may be mediated by chromatin modifiers. In this study, we found that the level of Ezh1, a component of Polycomb repressive complex 2 (PRC2), increases during neuronal maturation in mouse neocortical culture. In addition, conditional knockout of Ezh1 in post-mitotic excitatory neurons leads to downregulation of a set of genes related to neuronal maturation. Moreover, the locus encoding Cpg15/Neuritin (Nrn1), which is regulated by neuronal activity and implicated in stabilization and maturation of excitatory synapses, is a direct target of Ezh1 in cortical neurons. Together, these results suggest that elevated expression of Ezh1 contributes to maturation of cortical neurons.
Collapse
Affiliation(s)
- Shun Utsunomiya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan.,Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masafumi Tsuboi
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuma Maeda
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan.,Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takemoto
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan.,Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Kitazawa T, Machlab D, Joshi O, Maiorano N, Kohler H, Ducret S, Kessler S, Gezelius H, Soneson C, Papasaikas P, López-Bendito G, Stadler MB, Rijli FM. A unique bipartite Polycomb signature regulates stimulus-response transcription during development. Nat Genet 2021; 53:379-391. [PMID: 33603234 PMCID: PMC7610396 DOI: 10.1038/s41588-021-00789-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Rapid cellular responses to environmental stimuli are fundamental for development and maturation. Immediate early genes can be transcriptionally induced within minutes in response to a variety of signals. How their induction levels are regulated and their untimely activation by spurious signals prevented during development is poorly understood. We found that in developing sensory neurons, before perinatal sensory-activity-dependent induction, immediate early genes are embedded into a unique bipartite Polycomb chromatin signature, carrying active H3K27ac on promoters but repressive Ezh2-dependent H3K27me3 on gene bodies. This bipartite signature is widely present in developing cell types, including embryonic stem cells. Polycomb marking of gene bodies inhibits mRNA elongation, dampening productive transcription, while still allowing for fast stimulus-dependent mark removal and bipartite gene induction. We reveal a developmental epigenetic mechanism regulating the rapidity and amplitude of the transcriptional response to relevant stimuli, while preventing inappropriate activation of stimulus-response genes.
Collapse
Affiliation(s)
- Taro Kitazawa
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dania Machlab
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Onkar Joshi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Nicola Maiorano
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sandra Kessler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,University of Basel, Basel, Switzerland,Correspondence to:
| |
Collapse
|
28
|
The Histone Modifications of Neuronal Plasticity. Neural Plast 2021; 2021:6690523. [PMID: 33628222 PMCID: PMC7892255 DOI: 10.1155/2021/6690523] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleosomes composed of histone octamer and DNA are the basic structural unit in the eukaryote chromosome. Under the stimulation of various factors, histones will undergo posttranslational modifications such as methylation, phosphorylation, acetylation, and ubiquitination, which change the three-dimensional structure of chromosomes and affect gene expression. Therefore, the combination of different states of histone modifications modulates gene expression is called histone code. The formation of learning and memory is one of the most important mechanisms for animals to adapt to environmental changes. A large number of studies have shown that histone codes are involved in the formation and consolidation of learning and memory. Here, we review the most recent literature of histone modification in regulating neurogenesis, dendritic spine dynamic, synapse formation, and synaptic plasticity.
Collapse
|
29
|
Gonçalves CS, Le Boiteux E, Arnaud P, Costa BM. HOX gene cluster (de)regulation in brain: from neurodevelopment to malignant glial tumours. Cell Mol Life Sci 2020; 77:3797-3821. [PMID: 32239260 PMCID: PMC11105007 DOI: 10.1007/s00018-020-03508-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
HOX genes encode a family of evolutionarily conserved homeodomain transcription factors that are crucial both during development and adult life. In humans, 39 HOX genes are arranged in four clusters (HOXA, B, C, and D) in chromosomes 7, 17, 12, and 2, respectively. During embryonic development, particular epigenetic states accompany their expression along the anterior-posterior body axis. This tightly regulated temporal-spatial expression pattern reflects their relative chromosomal localization, and is critical for normal embryonic brain development when HOX genes are mainly expressed in the hindbrain and mostly absent in the forebrain region. Epigenetic marks, mostly polycomb-associated, are dynamically regulated at HOX loci and regulatory regions to ensure the finely tuned HOX activation and repression, highlighting a crucial epigenetic plasticity necessary for homeostatic development. HOX genes are essentially absent in healthy adult brain, whereas they are detected in malignant brain tumours, namely gliomas, where HOX genes display critical roles by regulating several hallmarks of cancer. Here, we review the major mechanisms involved in HOX genes (de)regulation in the brain, from embryonic to adult stages, in physiological and oncologic conditions. We focus particularly on the emerging causes of HOX gene deregulation in glioma, as well as on their functional and clinical implications.
Collapse
Affiliation(s)
- Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elisa Le Boiteux
- Université Clermont Auvergne, CNRS, INSERM-iGReD, Clermont-Ferrand, France
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, INSERM-iGReD, Clermont-Ferrand, France
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
30
|
Chemokine receptor CXCR7 non-cell-autonomously controls pontine neuronal migration and nucleus formation. Sci Rep 2020; 10:11830. [PMID: 32678266 PMCID: PMC7367352 DOI: 10.1038/s41598-020-68852-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022] Open
Abstract
Long distance tangential migration transports neurons from their birth places to distant destinations to be incorporated into neuronal circuits. How neuronal migration is guided during these long journeys is still not fully understood. We address this issue by studying the migration of pontine nucleus (PN) neurons in the mouse hindbrain. PN neurons migrate from the lower rhombic lip first anteriorly and then turn ventrally near the trigeminal ganglion root towards the anterior ventral hindbrain. Previously we showed that in mouse depleted of chemokine receptor CXCR4 or its ligand CXCL12, PN neurons make their anterior-to-ventral turn at posteriorized positions. However, the mechanism that spatiotemporally controls the anterior-to-ventral turning is still unclear. Furthermore, the role of CXCR7, the atypical receptor of CXCL12, in pontine migration has yet to be examined. Here, we find that the PN is elongated in Cxcr7 knockout due to a broadened anterior-to-ventral turning positions. Cxcr7 is not expressed in migrating PN neurons en route to their destinations, but is strongly expressed in the pial meninges. Neuroepithelium-specific knockout of Cxcr7 does not recapitulate the PN phenotype in Cxcr7 knockout, suggesting that CXCR7 acts non-cell-autonomously possibly from the pial meninges. We show further that CXCR7 regulates pontine migration by modulating CXCL12 protein levels.
Collapse
|
31
|
Kluiver TA, Alieva M, van Vuurden DG, Wehrens EJ, Rios AC. Invaders Exposed: Understanding and Targeting Tumor Cell Invasion in Diffuse Intrinsic Pontine Glioma. Front Oncol 2020; 10:92. [PMID: 32117746 PMCID: PMC7020612 DOI: 10.3389/fonc.2020.00092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Diffuse Intrinsic Pontine Glioma (DIPG) is a rare, highly aggressive pediatric brain tumor that originates in the pons. DIPG is untreatable and universally fatal, with a median life expectancy of less than a year. Resection is not an option, due to the anatomical location of the tumor, radiotherapy has limited effect and no chemotherapeutic or targeted treatment approach has proven to be successful. This poor prognosis is partly attributed to the tumor's highly infiltrative diffuse and invasive spread. Thus, targeting the invasive behavior of DIPG has the potential to be of therapeutic value. In order to target DIPG invasion successfully, detailed mechanistic knowledge on the underlying drivers is required. Here, we review both DIPG tumor cell's intrinsic molecular processes and extrinsic environmental factors contributing to DIPG invasion. Importantly, DIPG represents a heterogenous disease and through advances in whole-genome sequencing, different subtypes of disease based on underlying driver mutations are now being recognized. Recent evidence also demonstrates intra-tumor heterogeneity in terms of invasiveness and implies that highly infiltrative tumor subclones can enhance the migratory behavior of neighboring cells. This might partially be mediated by “tumor microtubes,” long membranous extensions through which tumor cells connect and communicate, as well as through the secretion of extracellular vesicles. Some of the described processes involved in invasion are already being targeted in clinical trials. However, more research into the mechanisms of DIPG invasion is urgently needed and might result in the development of an effective therapy for children suffering from this devastating disease. We discuss the implications of newly discovered invasive mechanisms for therapeutic targeting and the challenges therapy development face in light of disease in the developing brain.
Collapse
Affiliation(s)
- T A Kluiver
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - M Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - D G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| |
Collapse
|
32
|
Li C, Li X, Bi Z, Sugino K, Wang G, Zhu T, Liu Z. Comprehensive transcriptome analysis of cochlear spiral ganglion neurons at multiple ages. eLife 2020; 9:50491. [PMID: 31913118 PMCID: PMC7299348 DOI: 10.7554/elife.50491] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
Inner ear cochlear spiral ganglion neurons (SGNs) transmit sound information to the brainstem. Recent single cell RNA-Seq studies have revealed heterogeneities within SGNs. Nonetheless, much remains unknown about the transcriptome of SGNs, especially which genes are specifically expressed in SGNs. To address these questions, we needed a deeper and broader gene coverage than that in previous studies. We performed bulk RNA-Seq on mouse SGNs at five ages, and on two reference cell types (hair cells and glia). Their transcriptome comparison identified genes previously unknown to be specifically expressed in SGNs. To validate our dataset and provide useful genetic tools for this research field, we generated two knockin mouse strains: Scrt2-P2A-tdTomato and Celf4-3xHA-P2A-iCreER-T2A-EGFP. Our comprehensive analysis confirmed the SGN-selective expression of the candidate genes, testifying to the quality of our transcriptome data. These two mouse strains can be used to temporally label SGNs or to sort them.
Collapse
Affiliation(s)
- Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenghong Bi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ken Sugino
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, United States
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tong Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
33
|
Abstract
Cre-mediated recombination has become a powerful tool to confine gene deletions (conditional knockouts) or overexpression of genes (conditional knockin/overexpression). By spatiotemporal restriction of genetic manipulations, major problems of classical knockouts such as embryonic lethality or pleiotropy can be circumvented. Furthermore, Cre-mediated recombination has broad applications in the analysis of the cellular behavior of subpopulations and cell types as well as for genetic fate mapping. This chapter gives an overview about applications for the Cre/LoxP system and their execution.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
34
|
Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:25-42. [PMID: 32958178 DOI: 10.1016/b978-0-444-64150-2.00004-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the central nervous system (CNS) is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical factors from early embryonic stages to postnatal life. Duringthe past decade, great strides have been made to unravel mechanisms underlying human CNS development through the employment of modern genetic techniques and experimental approaches. In this chapter, we review the current knowledge regarding the main developmental processes and signaling mechanisms of (i) neurogenesis, (ii) neuronal migration, and (iii) axon guidance. We discuss mechanisms related to neural stem cells proliferation, migration, terminal translocation of neuronal progenitors, and axon guidance and pathfinding. For each section, we also provide a comprehensive overview of the underlying regulatory processes, including transcriptional, posttranscriptional, and epigenetic factors, and a myriad of signaling pathways that are pivotal to determine the fate of neuronal progenitors and newly formed migrating neurons. We further highlight how impairment of this complex regulating system, such as mutations in its core components, may cause cortical malformation, epilepsy, intellectual disability, and autism in humans. A thorough understanding of normal human CNS development is thus crucial to decipher mechanisms responsible for neurodevelopmental disorders and in turn guide the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Accogli
- Unit of Medical Genetics, Istituto Giannina Gaslini Pediatric Hospital, Genova, Italy; Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Science, Università degli Studi di Genova, Genova, Italy
| | | | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
35
|
Coughlan E, Garside VC, Wong SFL, Liang H, Kraus D, Karmakar K, Maheshwari U, Rijli FM, Bourne J, McGlinn E. A Hox Code Defines Spinocerebellar Neuron Subtype Regionalization. Cell Rep 2019; 29:2408-2421.e4. [DOI: 10.1016/j.celrep.2019.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/12/2019] [Accepted: 10/10/2019] [Indexed: 11/25/2022] Open
|
36
|
Kuehner JN, Bruggeman EC, Wen Z, Yao B. Epigenetic Regulations in Neuropsychiatric Disorders. Front Genet 2019; 10:268. [PMID: 31019524 PMCID: PMC6458251 DOI: 10.3389/fgene.2019.00268] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Precise genetic and epigenetic spatiotemporal regulation of gene expression is critical for proper brain development, function and circuitry formation in the mammalian central nervous system. Neuronal differentiation processes are tightly regulated by epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodelers and non-coding RNAs. Dysregulation of any of these pathways is detrimental to normal neuronal development and functions, which can result in devastating neuropsychiatric disorders, such as depression, schizophrenia and autism spectrum disorders. In this review, we focus on the current understanding of epigenetic regulations in brain development and functions, as well as their implications in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily C Bruggeman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
37
|
Wever I, von Oerthel L, Wagemans CMRJ, Smidt MP. EZH2 Influences mdDA Neuronal Differentiation, Maintenance and Survival. Front Mol Neurosci 2019; 11:491. [PMID: 30705619 PMCID: PMC6344421 DOI: 10.3389/fnmol.2018.00491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Over the last decade several components have been identified to be differentially expressed in subsets of mesodiencephalic dopaminergic (mdDA) neurons. These differences in molecular profile have been implied to be involved in the selective degeneration of the SNc neurons in Parkinson’s disease. The emergence and maintenance of individual subsets is dependent on different transcriptional programs already present during development. In addition to the influence of transcription factors, recent studies have led to the hypothesis that modifications of histones might also influence the developmental program of neurons. In this study we focus on the histone methyltransferase EZH2 and its role in the development and maintenance of mdDA neurons. We generated two different conditional knock out (cKO) mice; an En1Cre driven cKO, for deletion of Ezh2 in mdDA progenitors and a Pitx3Cre driven cKO, to study the effect of post-mitotic deletion of Ezh2 on mdDA neurons maturation and neuronal survival. During development Ezh2 was found to be important for the generation of the proper amount of TH+ neurons. The loss of neurons primarily affected a rostrolateral population, which is also reflected in the analysis of the subset marks, Ahd2 and Cck. In contrast to early genetic ablation, post-mitotic deletion of Ezh2 did not lead to major developmental defects at E14.5. However, in 6 months old animals Cck was found ectopically in the rostral domain of mdDA neurons and Ahd2 expression was reduced in more mediocaudal positioned cells. In addition, Pitx3Cre driven deletion of Ezh2 led to a progressive loss of TH+ cells in the VTA and these animals display reduced climbing behavior. Together, our data demonstrates that Ezh2 is important for the generation of mdDA neurons during development and that during adult stages Ezh2 is important for the preservation of proper neuronal subset identity and survival.
Collapse
Affiliation(s)
- Iris Wever
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Lars von Oerthel
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Cindy M R J Wagemans
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
38
|
Abstract
Epigenetic mechanisms, including DNA and histone modifications, are pivotal for normal brain development and functions by modulating spatial and temporal gene expression. Dysregulation of the epigenetic machinery can serve as a causal role in numerous brain disorders. Proper mammalian brain development and functions depend on the precise expression of neuronal-specific genes, transcription factors and epigenetic modifications. Antagonistic polycomb and trithorax proteins form multimeric complexes and play important roles in these processes by epigenetically controlling gene repression or activation through various molecular mechanisms. Aberrant expression or disruption of either protein group can contribute to neurodegenerative diseases. This review focus on the current progress of Polycomb and Trithorax complexes in brain development and disease, and provides a future outlook of the field.
Collapse
|
39
|
Kratochwil CF, Liang Y, Gerwin J, Woltering JM, Urban S, Henning F, Machado-Schiaffino G, Hulsey CD, Meyer A. Agouti-related peptide 2 facilitates convergent evolution of stripe patterns across cichlid fish radiations. Science 2018; 362:457-460. [PMID: 30361373 DOI: 10.1126/science.aao6809] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/19/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
The color patterns of African cichlid fishes provide notable examples of phenotypic convergence. Across the more than 1200 East African rift lake species, melanic horizontal stripes have evolved numerous times. We discovered that regulatory changes of the gene agouti-related peptide 2 (agrp2) act as molecular switches controlling this evolutionarily labile phenotype. Reduced agrp2 expression is convergently associated with the presence of stripe patterns across species flocks. However, cis-regulatory mutations are not predictive of stripes across radiations, suggesting independent regulatory mechanisms. Genetic mapping confirms the link between the agrp2 locus and stripe patterns. The crucial role of agrp2 is further supported by a CRISPR-Cas9 knockout that reconstitutes stripes in a nonstriped cichlid. Thus, we unveil how a single gene affects the convergent evolution of a complex color pattern.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Zukunftskolleg, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology (IMPRS-OB), Max Planck Institute for Ornithology, Konstanz, Germany
| | - Yipeng Liang
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jan Gerwin
- Department of Biology, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology (IMPRS-OB), Max Planck Institute for Ornithology, Konstanz, Germany
| | | | - Sabine Urban
- Department of Biology, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology (IMPRS-OB), Max Planck Institute for Ornithology, Konstanz, Germany
| | - Frederico Henning
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gonzalo Machado-Schiaffino
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Functional Biology, Area of Genetics, University of Oviedo, Oviedo, Spain
| | - C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology (IMPRS-OB), Max Planck Institute for Ornithology, Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany. .,International Max Planck Research School for Organismal Biology (IMPRS-OB), Max Planck Institute for Ornithology, Konstanz, Germany
| |
Collapse
|
40
|
Martinez-Chavez E, Scheerer C, Wizenmann A, Blaess S. The zinc-finger transcription factor GLI3 is a regulator of precerebellar neuronal migration. Development 2018; 145:dev.166033. [PMID: 30470704 DOI: 10.1242/dev.166033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/15/2018] [Indexed: 01/24/2023]
Abstract
Hindbrain precerebellar neurons arise from progenitor pools at the dorsal edge of the embryonic hindbrain: the caudal rhombic lip. These neurons follow distinct migratory routes to establish nuclei that provide climbing or mossy fiber inputs to the cerebellum. Gli3, a zinc-finger transcription factor in the Sonic hedgehog signaling pathway, is an important regulator of dorsal brain development. We demonstrate that in Gli3-null mutant mice, disrupted neuronal migratory streams lead to a disorganization of precerebellar nuclei. Precerebellar progenitors are properly established in Gli3-null embryos and, using conditional gene inactivation, we provide evidence that Gli3 does not play a cell-autonomous role in migrating precerebellar neurons. Thus, GLI3 likely regulates the development of other hindbrain structures, such as non-precerebellar nuclei or cranial ganglia and their respective projections, which may in turn influence precerebellar migration. Although the organization of non-precerebellar hindbrain nuclei appears to be largely unaffected in absence of Gli3, trigeminal ganglia and their central descending tracts are disrupted. We show that rostrally migrating precerebellar neurons are normally in close contact with these tracts, but are detached in Gli3-null embryos.
Collapse
Affiliation(s)
- Erick Martinez-Chavez
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Claudia Scheerer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, Department of Anatomy, University of Tübingen, 72074 Tübingen, Germany
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany
| |
Collapse
|
41
|
Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV. Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity. Cell 2018; 174:1229-1246.e17. [PMID: 30078709 PMCID: PMC6150604 DOI: 10.1016/j.cell.2018.07.007] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/23/2018] [Accepted: 07/02/2018] [Indexed: 01/02/2023]
Abstract
In the auditory system, type I spiral ganglion neurons (SGNs) convey complex acoustic information from inner hair cells (IHCs) to the brainstem. Although SGNs exhibit variation in physiological and anatomical properties, it is unclear which features are endogenous and which reflect input from synaptic partners. Using single-cell RNA sequencing, we derived a molecular classification of mouse type I SGNs comprising three subtypes that express unique combinations of Ca2+ binding proteins, ion channel regulators, guidance molecules, and transcription factors. Based on connectivity and susceptibility to age-related loss, these subtypes correspond to those defined physiologically. Additional intrinsic differences among subtypes and across the tonotopic axis highlight an unexpectedly active role for SGNs in auditory processing. SGN identities emerge postnatally and are disrupted in a mouse model of deafness that lacks IHC-driven activity. These results elucidate the range, nature, and origins of SGN diversity, with implications for treatment of congenital deafness.
Collapse
Affiliation(s)
- Brikha R Shrestha
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chester Chia
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lorna Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sharon G Kujawa
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA
| | - M Charles Liberman
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Lee SW, Oh YM, Lu YL, Kim WK, Yoo AS. MicroRNAs Overcome Cell Fate Barrier by Reducing EZH2-Controlled REST Stability during Neuronal Conversion of Human Adult Fibroblasts. Dev Cell 2018; 46:73-84.e7. [PMID: 29974865 DOI: 10.1016/j.devcel.2018.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/16/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023]
Abstract
The ability to convert human somatic cells efficiently to neurons facilitates the utility of patient-derived neurons for studying neurological disorders. As such, ectopic expression of neuronal microRNAs (miRNAs), miR-9/9∗ and miR-124 (miR-9/9∗-124) in adult human fibroblasts has been found to evoke extensive reconfigurations of the chromatin and direct the fate conversion to neurons. However, how miR-9/9∗-124 break the cell fate barrier to activate the neuronal program remains to be defined. Here, we identified an anti-neurogenic function of EZH2 in fibroblasts that acts outside its role as a subunit of Polycomb Repressive Complex 2 to directly methylate and stabilize REST, a transcriptional repressor of neuronal genes. During neuronal conversion, miR-9/9∗-124 induced the repression of the EZH2-REST axis by downregulating USP14, accounting for the opening of chromatin regions harboring REST binding sites. Our findings underscore the interplay between miRNAs and protein stability cascade underlying the activation of neuronal program.
Collapse
Affiliation(s)
- Seong Won Lee
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Young Mi Oh
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ya-Lin Lu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Developmental, Regenerative and Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Woo Kyung Kim
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
Loss of Hox5 function results in myofibroblast mislocalization and distal lung matrix defects during postnatal development. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1030-1038. [PMID: 29752580 DOI: 10.1007/s11427-017-9290-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/23/2018] [Indexed: 02/01/2023]
Abstract
Alveologenesis is the final stage of lung development and is responsible for the formation of the principle gas exchange units called alveoli. The lung mesenchyme, in particular the alveolar myofibroblasts, are drivers of alveolar development, however, few key regulators that govern the proper distribution and behavior of these cells in the distal lung during alveologenesis have been identified. While Hox5 triple mutants (Hox5 aabbcc) exhibit neonatal lethality, four-allele, compound mutant mice (Hox5 AabbCc) are born in Mendelian ratios and are phenotypically normal at birth. However, they exhibit defects in alveologenesis characterized by a BPD-like phenotype by early postnatal stages that becomes more pronounced at adult stages. Invasive pulmonary functional analyses demonstrate significant increases in total lung volume and compliance and a decrease in elastance in Hox5 compound mutants. SMA+ myofibroblasts in the distal lung are distributed abnormally during peak stages of alveologenesis and aggregate, resulting in the formation of a disrupted elastin network. Examination of other key components of the distal lung ECM, as well as other epithelial cells and lipofibroblasts reveal no differences in distribution. Collectively, these data indicate that Hox5 genes play a critical role in alveolar development by governing the proper cellular behavior of myofibroblasts during alveologenesis.
Collapse
|
44
|
Barth PG, Aronica E, Fox S, Fluiter K, Weterman MAJ, Poretti A, Miller DC, Boltshauser E, Harding B, Santi M, Baas F. Deregulated expression of EZH2 in congenital brainstem disconnection. Neuropathol Appl Neurobiol 2018; 43:358-365. [PMID: 27886392 DOI: 10.1111/nan.12368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/07/2016] [Accepted: 11/25/2016] [Indexed: 12/17/2022]
Affiliation(s)
- P G Barth
- Department of Pediatric Neurology, Emma Children's Hospital/Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.,Department of (Neuro) Pathology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro) Pathology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - S Fox
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - K Fluiter
- Department of Genome Analysis Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - M A J Weterman
- Department of Genome Analysis Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - A Poretti
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D C Miller
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA
| | - E Boltshauser
- Department of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland
| | - B Harding
- Departments of Pathology and Lab Medicine (Neuropathology), Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Santi
- Departments of Pathology and Lab Medicine (Neuropathology), Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - F Baas
- Department of Genome Analysis Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Yung AR, Druckenbrod NR, Cloutier JF, Wu Z, Tessier-Lavigne M, Goodrich LV. Netrin-1 Confines Rhombic Lip-Derived Neurons to the CNS. Cell Rep 2018; 22:1666-1680. [PMID: 29444422 PMCID: PMC5877811 DOI: 10.1016/j.celrep.2018.01.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 02/02/2023] Open
Abstract
During brainstem development, newborn neurons originating from the rhombic lip embark on exceptionally long migrations to generate nuclei important for audition, movement, and respiration. Along the way, this highly motile population passes several cranial nerves yet remains confined to the CNS. We found that Ntn1 accumulates beneath the pial surface separating the CNS from the PNS, with gaps at nerve entry sites. In mice null for Ntn1 or its receptor DCC, hindbrain neurons enter cranial nerves and migrate into the periphery. CNS neurons also escape when Ntn1 is selectively lost from the sub-pial region (SPR), and conversely, expression of Ntn1 throughout the mutant hindbrain can prevent their departure. These findings identify a permissive role for Ntn1 in maintaining the CNS-PNS boundary. We propose that Ntn1 confines rhombic lip-derived neurons by providing a preferred substrate for tangentially migrating neurons in the SPR, preventing their entry into nerve roots.
Collapse
Affiliation(s)
- Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Jean-François Cloutier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Zhuhao Wu
- Laboratory of Brain Development & Repair, The Rockefeller University, New York, NY 10065, USA
| | - Marc Tessier-Lavigne
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Glover JC, Elliott KL, Erives A, Chizhikov VV, Fritzsch B. Wilhelm His' lasting insights into hindbrain and cranial ganglia development and evolution. Dev Biol 2018; 444 Suppl 1:S14-S24. [PMID: 29447907 DOI: 10.1016/j.ydbio.2018.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/03/2018] [Accepted: 02/04/2018] [Indexed: 01/04/2023]
Abstract
Wilhelm His (1831-1904) provided lasting insights into the development of the central and peripheral nervous system using innovative technologies such as the microtome, which he invented. 150 years after his resurrection of the classical germ layer theory of Wolff, von Baer and Remak, his description of the developmental origin of cranial and spinal ganglia from a distinct cell population, now known as the neural crest, has stood the test of time and more recently sparked tremendous advances regarding the molecular development of these important cells. In addition to his 1868 treatise on 'Zwischenstrang' (now neural crest), his work on the development of the human hindbrain published in 1890 provided novel ideas that more than 100 years later form the basis for penetrating molecular investigations of the regionalization of the hindbrain neural tube and of the migration and differentiation of its constituent neuron populations. In the first part of this review we briefly summarize the major discoveries of Wilhelm His and his impact on the field of embryology. In the second part we relate His' observations to current knowledge about the molecular underpinnings of hindbrain development and evolution. We conclude with the proposition, present already in rudimentary form in the writings of His, that a primordial spinal cord-like organization has been molecularly supplemented to generate hindbrain 'neomorphs' such as the cerebellum and the auditory and vestibular nuclei and their associated afferents and sensory organs.
Collapse
Affiliation(s)
- Joel C Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway; Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway; Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Albert Erives
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Victor V Chizhikov
- The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
47
|
Dominici C, Rappeneau Q, Zelina P, Fouquet S, Chédotal A. Non-cell autonomous control of precerebellar neuron migration by Slit and Robo proteins. Development 2018; 145:dev150375. [PMID: 29343636 DOI: 10.1242/dev.150375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 12/11/2017] [Indexed: 02/05/2023]
Abstract
During development, precerebellar neurons migrate tangentially from the dorsal hindbrain to the floor plate. Their axons cross it but their cell bodies stop their ventral migration upon reaching the midline. It has previously been shown that Slit chemorepellents and their receptors, Robo1 and Robo2, might control the migration of precerebellar neurons in a repulsive manner. Here, we have used a conditional knockout strategy in mice to test this hypothesis. We show that the targeted inactivation of the expression of Robo1 and Robo2 receptors in precerebellar neurons does not perturb their migration and that they still stop at the midline. The selective ablation of the expression of all three Slit proteins in floor-plate cells has no effect on pontine neurons and only induces the migration of a small subset of inferior olivary neurons across the floor plate. Likewise, we show that the expression of Slit proteins in the facial nucleus is dispensable for pontine neuron migration. Together, these results show that Robo1 and Robo2 receptors act non-cell autonomously in migrating precerebellar neurons and that floor-plate signals, other than Slit proteins, must exist to prevent midline crossing.
Collapse
Affiliation(s)
- Chloé Dominici
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| | - Quentin Rappeneau
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| | - Pavol Zelina
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| | - Stéphane Fouquet
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision 75012, Paris, France
| |
Collapse
|
48
|
Moreno-Bravo JA, Roig Puiggros S, Blockus H, Dominici C, Zelina P, Mehlen P, Chédotal A. Commissural neurons transgress the CNS/PNS boundary in absence of ventricular zone-derived netrin 1. Development 2018; 145:dev.159400. [PMID: 29343638 DOI: 10.1242/dev.159400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022]
Abstract
During the development of the central nervous system (CNS), only motor axons project into peripheral nerves. Little is known about the cellular and molecular mechanisms that control the development of a boundary at the CNS surface and prevent CNS neuron emigration from the neural tube. It has previously been shown that a subset of spinal cord commissural axons abnormally invades sensory nerves in Ntn1 hypomorphic embryos and Dcc knockouts. However, whether netrin 1 also plays a similar role in the brain is unknown. In the hindbrain, precerebellar neurons migrate tangentially under the pial surface, and their ventral migration is guided by netrin 1. Here, we show that pontine neurons and inferior olivary neurons, two types of precerebellar neurons, are not confined to the CNS in Ntn1 and Dcc mutant mice, but that they invade the trigeminal, auditory and vagus nerves. Using a Ntn1 conditional knockout, we show that netrin 1, which is released at the pial surface by ventricular zone progenitors is responsible for the CNS confinement of precerebellar neurons. We propose, that netrin 1 distribution sculpts the CNS boundary by keeping CNS neurons in netrin 1-rich domains.
Collapse
Affiliation(s)
- Juan Antonio Moreno-Bravo
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Sergi Roig Puiggros
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Heike Blockus
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Chloé Dominici
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Pavol Zelina
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| |
Collapse
|
49
|
McCubbrey AL, Janssen WJ. Modulation of Myeloid Cell Function Using Conditional and Inducible Transgenic Approaches. Methods Mol Biol 2018; 1809:145-168. [PMID: 29987790 DOI: 10.1007/978-1-4939-8570-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transgenic mice have emerged as a central tool in the study of lung myeloid cells during homeostasis and disease. The use of Cre/Lox site-specific recombination allows for conditional deletion of a gene of interest in a spatially controlled manner. The basic Cre/Lox system can be further refined to include an inducible trigger, enabling conditional deletion of a gene of interest in a spatially and temporally controlled manner. Here we provide an overview of commercially available conditional and inducible conditional mouse strains that target lung myeloid cells and describe the appropriate breeding schemes and controls for transgenic animal systems that can be used to modulate myeloid cell function.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- Department of Medicine, National Jewish Health, Denver, CO, USA.
- Division of Critical Care Medicine and Pulmonary Sciences, Department of Medicine, University of Colorado, Denver, CO, USA.
| | - William J Janssen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
50
|
Liu PP, Xu YJ, Teng ZQ, Liu CM. Polycomb Repressive Complex 2: Emerging Roles in the Central Nervous System. Neuroscientist 2017; 24:208-220. [DOI: 10.1177/1073858417747839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The polycomb repressive complex 2 (PRC2) is responsible for catalyzing both di- and trimethylation of histone H3 at lysine 27 (H3K27me2/3). The subunits of PRC2 are widely expressed in the central nervous system (CNS). PRC2 as well as H3K27me2/3, play distinct roles in neuronal identity, proliferation and differentiation of neural stem/progenitor cells, neuronal morphology, and gliogenesis. Mutations or dysregulations of PRC2 subunits often cause neurological diseases. Therefore, PRC2 might represent a common target of different pathological processes that drive neurodegenerative diseases. A better understanding of the intricate and complex regulatory networks mediated by PRC2 in CNS will help to develop new therapeutic approaches and to generate specific brain cell types for treating neurological diseases.
Collapse
Affiliation(s)
- Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|